A repurposed drug screen for regulating metabolic disease: an overview in the management of traumatic brain injury

Autores/as

  • Kaveh Berenjian
  • Mohammad Sharifzadeh
  • Mohammadreza Rouini
  • Mojtaba Mojtahedzadeh
  • Sanaz Jamshidfar
  • Yalda H. Ardakani
  • Leila Behbood

Resumen

Introducción y antecedentes. El objetivo de este estudio es revisar los enfoques mecanicistas y las oportunidades terapéuticas en el manejo de las lesiones cerebrales traumáticas.

Métodos. Se ha descubierto una gran cantidad de medicamentos reutilizados por casualidad en el laboratorio o mediante un seguimiento cuidadoso de la acción del fármaco en la clínica y el análisis retrospectivo de los hallazgos clínicos. Las estatinas se usan ampliamente para tratar la hiperlipidemia y prevenir enfermedades cardiovasculares, aunque su aplicación como agentes neuroprotectores que debilitan el daño neurológico secundario aún es limitada en la lesión cerebral traumática (TBI). Sus otros mecanismos de acción no mediados por el colesterol (es decir, pleiotrópicos) incluyen hasta regula la expresión de la sintasa de óxido nítrico endotelial, mejora la neurogénesis y la sinaptogénesis y los efectos antiapoptóticos, aumenta la angiogénesis y varios mecanismos antioxidantes y antiinflamatorios.

Resultados. Casi todos los estudios han respaldado el papel potencial de las estatinas en la neuroprotección, y algunos se han centrado principalmente en sus efectos en modelos de lesiones cerebrales traumáticas. Se crean canales de potasio sensibles al ATP (KATP), que se pueden demostrar en las células de los islotes pancreáticos y en ciertas neuronas. El receptor potencial transitorio de melastatina 4 (TRPM4) es la segunda subunidad formadora de poros de SUR1. Se ha observado la regulación positiva de SUR1 y la apertura de SUR1-TRPM4 en los diferentes modelos relacionados con lesiones del sistema nervioso central (SNC), como TBI. Las sulfonilureas pueden prevenir la degeneración neuronal y mejorar los resultados cognitivos posteriores a una TBI al inhibir el canal SUR1-TRPM4.

Conclusión. La reutilización de medicamentos, conocida como reposicionamiento de medicamentos, se considera un método para volver a desarrollar un compuesto para utilizarlo en una enfermedad específica, que ahora se está convirtiendo en un procedimiento cada vez más necesario para los investigadores industriales y la comunidad académica.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Mojtahedzadeh M, Ahmadi A, Mahmoodpoor A, Beigmohammadi MT, Abdollahi M, Khazaeipour Z, et al. Hypertonic saline solution reduces the oxidative stress responses in traumatic brain injury patients. Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences 2014; 19:867.

Shiehmorteza M, Ahmadi A, Abdollahi M, Nayebpour M, Mohammadi M, Hamishehkar H, et al. Recombinant human erythropoietin reduces plasminogen activator inhibitor and ameliorates pro-inflammatory responses following trauma. DARU: Journal of Faculty of Pharmacy, Tehran University of Medical Sciences 2011; 19:159.

Taheri A, Emami M, Asadipour E, Kasirzadeh S, Rouini M-R, Najafi A, et al. A randomized controlled trial on the efficacy, safety, and pharmacokinetics of metformin in severe traumatic brain injury. Journal of neurology 2019; 266:1988-1997.

Jafari M, Ala S, Haddadi K, Alipour A, Mojtahedzadeh M, Ehteshami S, et al. Cotreatment with furosemide and hypertonic saline decreases serum neutrophil gelatinase-associated lipocalin (NGAL) and serum creatinine concentrations in traumatic brain injury: a randomized, single-blind clinical trial. Iranian journal of pharmaceutical research: IJPR 2018; 17:1130.

Shohrati M, Rouini M, Mojtahedzadeh M, Firouzabadi M. Evaluation of phenytoin pharmacokinetics in neurotrauma patients. DARU Journal of Pharmaceutical Sciences 2007; 15:34-40.

Heidenreich K. New Therapeutics for Traumatic Brain Injury: Prevention of Secondary Brain Damage and Enhancement of Repair and Regeneration: Academic Press; 2016.

Farooqui A. Effects of Statins and n–3 Fatty Acids on Heart and Brain Tissues: The Clash of the Titans. Hot Topics in Neural Membrane Lipidology: Springer; 2009. p. 277-318.

Farooqui AA, Ong W-Y, Horrocks LA, Chen P, Farooqui T. Comparison of biochemical effects of statins and fish oil in brain: the battle of the titans. Brain research reviews 2007; 56:443-471.

Kureishi Y, Luo Z, Shiojima I, Bialik A, Fulton D, Lefer DJ, et al. The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nature medicine 2000; 6:1004-1010.

Dimmeler S, Aicher A, Vasa M, Mildner-Rihm C, Adler K, Tiemann M, et al. HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. The Journal of clinical investigation 2001; 108:391-397.

Lim JH, Lee JC, Lee YH, Choi IY, Oh YK, Kim HS, et al. Simvastatin prevents oxygen and glucose deprivation/reoxygenation‐induced death of cortical neurons by reducing the production and toxicity of 4‐hydroxy‐2E‐nonenal. Journal of neurochemistry 2006; 97:140-150.

Johnson‐Anuna LN, Eckert GP, Franke C, Igbavboa U, Müller WE, Wood WG. Simvastatin protects neurons from cytotoxicity by up‐regulating Bcl‐2 mRNA and protein. Journal of neurochemistry 2007; 101:77-86.

Butterick TA, Igbavboa U, Eckert GP, Sun GY, Weisman GA, Müller WE, et al. Simvastatin stimulates production of the antiapoptotic protein Bcl-2 via endothelin-1 and NFATc3 in SH-SY5Y cells. Molecular neurobiology 2010; 41:384-391.

Lu D, Goussev A, Chen J, Pannu P, Li Y, Mahmood A, et al. Atorvastatin reduces neurological deficit and increases synaptogenesis, angiogenesis, and neuronal survival in rats subjected to traumatic brain injury. Journal of neurotrauma 2004; 21:21-32.

Lu D, Qu C, Goussev A, Jiang H, Lu C, Schallert T, et al. Statins increase neurogenesis in the dentate gyrus, reduce delayed neuronal death in the hippocampal CA3 region, and improve spatial learning in rat after traumatic brain injury. Journal of neurotrauma 2007; 24:1132-1146.

Wu H, Lu D, Jiang H, Xiong Y, Qu C, Li B, et al. Simvastatin-mediated upregulation of VEGF and BDNF, activation of the PI3K/Akt pathway, and increase of neurogenesis are associated with therapeutic improvement after traumatic brain injury. Journal of neurotrauma 2008; 25:130-139.

Chen S-F, Hung T-H, Chen C-C, Lin K-H, Huang Y-N, Tsai H-C, et al. Lovastatin improves histological and functional outcomes and reduces inflammation after experimental traumatic brain injury. Life sciences 2007; 81:288-298.

Wang H, Lynch JR, Song P, Yang H-J, Yates RB, Mace B, et al. Simvastatin and atorvastatin improve behavioral outcome, reduce hippocampal degeneration, and improve cerebral blood flow after experimental traumatic brain injury. Experimental neurology 2007; 206:59-69.

Lu D, Mahmood A, Qu C, Goussev A, Lu M, Chopp M. Atorvastatin reduction of intracranial hematoma volume in rats subjected to controlled cortical impact. Journal of neurosurgery 2004; 101:822-825.

Stoll LL, McCormick ML, Denning GM, Weintraub NL. Antioxidant effects of statins. Drugs of Today 2004; 40:975-990.

Alvarez E, Rodiño-Janeiro BK, Ucieda-Somoza R, González-Juanatey JR. Pravastatin counteracts angiotensin II-induced upregulation and activation of NADPH oxidase at plasma membrane of human endothelial cells. Journal of cardiovascular pharmacology 2010; 55:203-212.

Chen G, Zhang S, Shi J, Ai J, Qi M, Hang C. Simvastatin reduces secondary brain injury caused by cortical contusion in rats: possible involvement of TLR4/NF-κB pathway. Experimental neurology 2009; 216:398-406.

Li B, Mahmood A, Lu D, Wu H, Xiong Y, Qu C, et al. Simvastatin attenuates microglial cells and astrocyte activation and decreases interleukin-1B level after traumatic brain injury. Neurosurgery 2009; 65:179-186.

Simard JM, Chen M, Tarasov KV, Bhatta S, Ivanova S, Melnitchenko L, et al. Newly expressed SUR1-regulated NC Ca-ATP channel mediates cerebral edema after ischemic stroke. Nature medicine 2006; 12:433-440.

Simard JM, Geng Z, Woo SK, Ivanova S, Tosun C, Melnichenko L, et al. Glibenclamide reduces inflammation, vasogenic edema, and caspase-3 activation after subarachnoid hemorrhage. Journal of Cerebral Blood Flow & Metabolism 2009; 29:317-330.

Simard JM, Kilbourne M, Tsymbalyuk O, Tosun C, Caridi J, Ivanova S, et al. Key role of sulfonylurea receptor 1 in progressive secondary hemorrhage after brain contusion. Journal of neurotrauma 2009; 26:2257-2267.

Simard JM, Woo SK, Tsymbalyuk N, Voloshyn O, Yurovsky V, Ivanova S, et al. Glibenclamide—10-h treatment window in a clinically relevant model of stroke. Translational stroke research 2012; 3:286-295.

Simard JM, Tsymbalyuk N, Tsymbalyuk O, Ivanova S, Yurovsky V, Gerzanich V. Glibenclamide is superior to decompressive craniectomy in a rat model of malignant stroke. Stroke 2010; 41:531-537.

Kurland DB, Tosun C, Pampori A, Karimy JK, Caffes NM, Gerzanich V, et al. Glibenclamide for the treatment of acute CNS injury. Pharmaceuticals 2013; 6:1287-1303.

Popovich PG, Lemeshow S, Gensel JC, Tovar CA. Independent evaluation of the effects of glibenclamide on reducing progressive hemorrhagic necrosis after cervical spinal cord injury. Experimental neurology 2012; 233:615-622.

Ortega F, Gimeno-Bayon J, Espinosa-Parrilla J, Carrasco J, Batlle M, Pugliese M, et al. ATP-dependent potassium channel blockade strengthens microglial neuroprotection after hypoxia–ischemia in rats. Experimental neurology 2012; 235:282-296.

Kurland D, Hong C, Aarabi B, Gerzanich V, Simard JM. Hemorrhagic progression of a contusion after traumatic brain injury: a review. Journal of neurotrauma 2012; 29:19-31.

Alahmadi H, Vachhrajani S, Cusimano MD. The natural history of brain contusion: an analysis of radiological and clinical progression. Journal of neurosurgery 2010; 112:1139-1145.

NMD rTISGNRKrnueMAIMLFSFMSBEPDTM. Recombinant factor VIIA in traumatic intracerebral hemorrhage: results of a dose-escalation clinical trial. Neurosurgery 2008; 62:776-788.

Davis ME, Grumbach IM, Fukai T, Cutchins A, Harrison DG. Shear stress regulates endothelial nitric-oxide synthase promoter activity through nuclear factor κB binding. Journal of biological chemistry 2004; 279:163-168.

Davis ME, Cai H, Drummond GR, Harrison DG. Shear stress regulates endothelial nitric oxide synthase expression through c-Src by divergent signaling pathways. Circulation research 2001; 89:1073-1080.

Simard JM, Yurovsky V, Tsymbalyuk N, Melnichenko L, Ivanova S, Gerzanich V. Protective effect of delayed treatment with low-dose glibenclamide in three models of ischemic stroke. Stroke 2009; 40:604-609.

Zweckberger K, Hackenberg K, Jung CS, Hertle D, Kiening K, Unterberg A, et al. Glibenclamide reduces secondary brain damage after experimental traumatic brain injury. Neuroscience 2014; 272:199-206.

Jha RM, Molyneaux BJ, Jackson TC, Wallisch JS, Park S-Y, Poloyac S, et al. Glibenclamide produces region-dependent effects on cerebral edema in a combined injury model of traumatic brain injury and hemorrhagic shock in mice. Journal of neurotrauma 2018; 35:2125-2135.

Kunte H, Schmidt S, Eliasziw M, del Zoppo GJ, Simard JM, Masuhr F, et al. Sulfonylureas improve outcome in patients with type 2 diabetes and acute ischemic stroke. Stroke 2007; 38:2526-2530.

Kunte H, Busch MA, Trostdorf K, Vollnberg B, Harms L, Mehta RI, et al. Hemorrhagic transformation of ischemic stroke in diabetics on sulfonylureas. Annals of neurology 2012; 72:799-806.

Jassam Y, Izzy S, Whalen M, McGavern D, El Khoury J. Neuroimmunology of traumatic brain injury: time for a paradigm shift. Neuron. 2017;95(6):1246–1265.

Jansen J, Lord J, Thickett D, Midwinter M, McAuley D, Gao F. Clinical review: Statins and trauma-a systematic review. Crit Care. 2013;17(3):227.

Xiong Y, Mahmood A, Chopp M. Current understanding of neuroinflammation after traumatic brain injury and cell-based therapeutic opportunities. Chin J Traumatol. 2018;21(3):137–151.

Ziebell J, Morganti-Kossmann M. Involvement of pro-and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics. 2010;7(1):22–30.

Kumar A, Loane D. Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention. Brain Behav Immun. 2012;26(8):1191–1201.

Robertson C, McCarthy J, Miller E, Levin H, McCauley S, Swank P. Phase II clinical trial of atorvastatin in mild traumatic brain injury. J Neurotrauma. 2017;34(7):1394–1401.

Li B, Mahmood A, Lu D, Wu H, Xiong Y, Qu C, et al. Simvastatin attenuates microglia, astrocyte activation and decreases IL-1β Level following traumatic brain injury. Neurosurgery. 2009;65(1):179.

Whyte J, Ketchum J, Bogner J, Brunner R, Hammond F, Zafonte R, et al. Effects of statin treatment on outcomes after traumatic brain injury. J Neurotrauma. 2019;36(1):118–125.

Descargas

Publicado

2023-02-11 — Actualizado el 2023-04-16

Versiones