El Programa Original de David Hilbert y el Problema de la Decidibilidad
Palabras clave:
David Hilbert, Metamatemática, Teorema de indecidibilidad de Church, Axioma de resolubilidadResumen
En este artículo realizamos una reconstrucción del Programa original de Hilbert antes del surgimiento de los teoremas limitativos de la tercera década del siglo pasado. Para tal reconstrucción empezaremos por mostrar lo que Torretti llama los primeros titubeos formales de Hilbert, es decir, la defensa por el método axiomático como enfoque fundamentante. Seguidamente, mostraremos como estos titubeos formales se establecen como un verdadero programa de investigación lógico-matemático y como dentro de dicho programa la inquietud por la decidibilidad de los problemas matemáticos y en específico la decidibilidad de la Lógica de primer orden cobra peso. Luego pasamos a analizar como la inquietud por la decibilidad toma lugar dentro del pensamiento filosófico-matemático de Hilbert presentándose como uno de los grandes problemas a los cuales la metamatemática debe encontrar una solución, esto lo hacemos mostrando un contraste con autores, como John von Neumann y Roberto Torretti, quienes de alguna u otra manera no interpretan el problema de la decidibilidad de la Lógica de primer orden como un problema de peso dentro del programa original de Hilbert. Finalmente argumentamos que el resultado meta-teórico de Church puede entenderse como una refutación del optimismo intelectual que permea a todo el programa original de Hilbert.