Compuestos bioactivos de canela y su efecto en la disminución del síndrome metabólico: revisión sistemática

Autores/as

  • Fernanda Riós Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo https://orcid.org/0000-0002-2101-5848
  • Aurora Quintero Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo https://orcid.org/0000-0003-4638-6028
  • Javier Piloni Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo https://orcid.org/0000-0002-1367-5010
  • Raquel Cariño Laboratorio de Química Médica y Farmacología, Biología de la Reproducción Centro de Investigación, Departamento de Medicina, Facultad de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo https://orcid.org/0000-0003-4776-3534
  • Abigail Reyes Laboratorio de Química Médica y Farmacología, Biología de la Reproducción Centro de Investigación, Departamento de Medicina, Facultad de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo https://orcid.org/0000-0002-2151-7979

DOI:

https://doi.org/10.37527/2023.73.1.007

Palabras clave:

Canela, Síndrome Metabólico, Compuestos Bioactivos

Resumen

Introducción. El síndrome metabólico (SM) aumenta el ingreso hospitalario y el riesgo de desarrollar COVID-19, los fármacos utilizados para su tratamiento ocasionan efectos secundarios por lo que se ha optado por la búsqueda de alternativas terapéuticas a base de compuestos bioactivos contenidos en plantas medicinales. La canela se utiliza como agente terapéutico debido a sus propiedades comprobadas con diversos mecanismos de acción reportados en el tratamiento de varias patologías. Objetivo. Documentar los estudios in vitroin vivo, estudios clínicos y los mecanismos de acción reportados del efecto de la administración de extractos y polvo de canela en las comorbilidades relacionadas con el SM. Materiales y métodos. Revisión sistemàtica de artículos en bases de datos electrónicas, incluyendo estudios de canela en polvo, extractos acuosos, de acetato de etilo y metanol de la corteza de canela, período de 5 años, excluyendo todo artículo relacionado a su efecto antimicrobiano, antifúngico y aceite de canela. Resultados. Las evidencias de los principales compuestos bioactivos contenidos en la canela validan su potencial en el tratamiento de enfermedades relacionadas al SM, con limitados estudios que indagan en los mecanismos de acción correspondientes a sus actividades biológicas. Conclusiones. Las evidencias de las investigaciones validan su potencial en el tratamiento de estas patologías, debido a sus principales compuestos bioactivos: cinamaldehído, transcinamaldehído, ácido cinámico, eugenol y, antioxidantes del tipo proantocianidinas A y flavonoides, los cuales participan en diversos mecanismos de acción que activan e inhiben enzimas, con efecto hipoglucemiante (quinasa y fosfatasa), antiobesogénico (UPC1), antiinflamatorio (NOS y COX), hipolipemiante (HMG-CoA) y antihipertensivo (ECA).

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Saklayen MG. The Global Epidemic of the Metabolic Syndrome. Curr Hypertens Rep. 2018;20 (2):12. doi: 10.1007/s11906-018-0812-z.

Denova-Gutiérrez E, López-Gatell H, Alomia-Zegarra JL, et al. The Association of Obesity, Type 2 Diabetes, and Hypertension with Severe Coronavirus Disease 2019 on Admission Among Mexican Patients. Obesity (Silver Spring) 2020;28(10):1826–1832. doi: 10.1002/oby.22946.

Jahangir MA, Shehzad A, Butt MS, Shahid M. Therapeutic Potential of Cinnamomum Zeylanicum Extract to Mitigate Hyperglycemia. Ann King Edw Med Univ. 2017; 23(2):225–234. doi: 10.21649/akemu.v23i2.1586

INEGI (Instituto Nacional de Estadística y Geografía) 2020. Características de las defunciones registradas en México durante Enero a Agosto de 2020. 2020. Disponible en: https://www.inegi.org.mx/contenidos/saladeprensa/boletines/2021/EstSociodemo/DefuncionesRegistradas2020_Pnles.pdf

Engin A. The definition and prevalence of obesity and metabolic syndrome. In: Advances in Experimental Medicine and Biology. Springer New York LLC; 2017. p. 1–17.

INEGI (Instituto Nacional de Estadística y Geografía) 2018. Encuesta Nacional de Salud y Nutrición 2018 Presentación de resultados. 2018. Disponible en: https://ensanut.insp.mx/encuestas/ensanut2018/doctos/informes/ensanut_2018_presentacion_resultados.pdf

INEGI (Instituto Nacional de Estadística y Geografía) 2020. Módulo De Práctica Deportiva y Ejercicio Físico. Comun Prensa. 2022;1–13. Disponible en: https://www.inegi.org.mx/contenidos/saladeprensa/boletines/2022/mopradef/mopradef2021.pdf

Lopéz M de la T, Bellido D, Monereo S, Lecube A, Sánchez E, Tinahones FJ. Ganancia de peso durante el confinamiento por la COVID-19; encuesta de la Sociedad Española de Obesidad | López de la Torre | BMI-Journal. Bariátrica & Metabólica Ibero-Americana. 2020;10:2774–82.

Suh S. Metformin-associated lactic acidosis. Endocrinol Metab. 2015;30(1):45–6.

Dujic T, Causevic A, Bego T, Malenica M, Velija-Asimi Z, Pearson ER, Semiz S. Organic cation transporter 1 variants and gastrointestinal side effects of metformin in patients with Type 2 diabetes. Diabet Med. 2016;33(4):511–4.

McCreight LJ, Bailey CJ, Pearson ER. Metformin and the gastrointestinal tract. Diabetologia. 2016;59(3):426–35.

Beji RS, Khemir S, Wannes WA, Ayari K, Ksouri R. Antidiabetic, antihyperlipidemic and antioxidant influences of the spice cinnamon (Cinnamomum zeylanicumon) in experimental rats. Brazilian J Pharm Sci. 2018;54(2):2–9.

Du Souich P, Roederer G, Dufour R. Myotoxicity of statins: Mechanism of action. Pharmacol Ther. 2017 Jul 1;175:1–16.

Goldstein LB. Adverse effects of statins. JAMA - J Am Med Assoc. 2017;317(10):1079–81.

Karahalil B, Hare E, Koç G, Uslu İ, Şentürk K, Özkan Y. Hepatotoxicity associated with statins. Arh Hig Rada Toksikol. 2017;68(4):254–60.

Bellosta S, Corsini A. Statin drug interactions and related adverse reactions: an update. Expert Opin Drug Saf. 2018;17(1):25–37.

Abd Allah ESH, Gomaa AMS. Effects of curcumin and captopril on the functions of kidney and nerve in streptozotocin-induced diabetic rats: Role of angiotensin converting enzyme 1. Appl Physiol Nutr Metab. 2015;40(10):1061–7.

Zamani Z, Nematbakhsh M, Eshraghi-Jazi F, Talebi A, Jilanchi S, Navidi M,Shirdavani S, and Ashrafi F. Effect of enalapril in cisplatininduced nephrotoxicity in rats; gender-related difference. Adv Biomed Res. 2016;5(1):1–8.

Kataria V, Wang H, Wald JW, Phan YL. Lisinopril-Induced Alopecia: A Case Report. J Pharm Pract. 2017;30(5):562–6.

Sobczuk P, Szczylik C, Porta C, Czarnecka AM. Renin angiotensin system deregulation as renal cancer risk factor. Oncol Lett. 2017;14(5):5059–68.

Cicero AFG, Colletti A. Role of phytochemicals in the management of metabolic syndrome. Phytomedicine. 2016;23(11):1134–44.

Kassaee SM, Goodarzi MT, Roodbari NH, Yaghmaei P. The effects of Cinnamomum Zeylanicum on lipid profiles and histology via up-regulation of LDL receptor gene expression in hamsters fed a high cholesterol diet. Jundishapur J Nat Pharm Prod. 2017;12(3):37340–8.

Anand V, Varalakshmi, Prasana, Kumar S, Pushpa, Hedina A. Cinnamomum Zeylanicum Linn. The spice with multi potential. Syst Rev Pharm. 2016;7(1):24–9.

Lu QY, Summanen PH, Lee RP, Huang J, Henning SM, Heber D, et al. Prebiotic Potential and Chemical Composition of Seven Culinary Spice Extracts. J Food Sci. 2017;82(8):1807–13.

Bi X, Lim J, Henry CJ. Spices in the management of diabetes mellitus. Food Chem. 2017;217:281–93.

Ge Q, Chen L, Chen K. Treatment of Diabetes Mellitus Using iPS Cells and Spice Polyphenols. J Diabetes Res. 2017;2017. 5837804.

Lopes BP, Gaique TG, Souza LL, Paula GSM, Kluck GEG, Atella GC, Pazos-Moura CC and Oliveira KJ. Beneficial effects of Cinnamon on hepatic lipid metabolism are impaired in hypothyroid rats. J Funct Foods. 2018;50:210–5.

Mohammed A, Islam MS. Spice-derived bioactive ingredients: Potential agents or food adjuvant in the management of diabetes mellitus. Front Pharmacol. 2018,22;9.

McCrea CE, West SG, Kris-Etherton PM, Lambert JD, Gaugler TL, Teeter DL, Sauder KA, Gu Y, Glisan SL, and Skulas-Ray AC. Effects of culinary spices and psychological stress on postprandial lipemia and lipase activity: Results of a randomized crossover study and in vitro experiments. J Transl Med. 2015,16;13(1).

Mukthamba P, Srinivasan K. Hypolipidemic influence of dietary fenugreek (Trigonella foenum-graecum) seeds and garlic (Allium sativum) in experimental myocardial infarction. Food Funct. 2015;6(9):3117–3125. doi: 10.1039/c5fo00240k.

Ghaffari S, Roshanravan N. Saffron; An updated review on biological properties with special focus on cardiovascular effects. Biomed Pharmacother. 2019;109:21–7.

Kumar S, Kumari R, Mishra S. Pharmacological properties and their medicinal uses of Cinnamomum: a review. J Pharm Pharmacol. 2019;71(12):1735–61.

Abeysekera WPKM, Arachchige SPG, Ratnasooriya WD. Bark Extracts of Ceylon Cinnamon Possess Antilipidemic Activities and Bind Bile Acids In Vitro. Evidence-based Complement Altern Med. 2017;2017.

Mazimba O, Wale K, T.E. K, Mihigo SO, y Kokengo B. Cinnamomum verum: Ethylacetate and methanol extracts antioxidant and antimicrobial activity. J Med Plants Stud. 2015;3:28–32.

Gunawardena D, Karunaweera N, Lee S, Van Der Kooy F, Harman DG, Raju R, Bennerr L, Gyengesi E, Sucher NJ and Munch G. Anti-inflammatory activity of cinnamon (C. zeylanicum and C. cassia) extracts - Identification of E-cinnamaldehyde and o-methoxy cinnamaldehyde as the most potent bioactive compounds. Food Funct. 2015;6(3):910–9.

Balijepalli MK, Buru AS, Sakirolla R, Pichika MR. Cinnamomum genus: A review on its Biological Activities. Int J Pharm Pharm Sci. 2017;9:1–11.

Hussain Z, Khan JA, Arshad A, Asif P, Rashid H, Arshad MI. Protective effects of Cinnamomum zeylanicum L. (Darchini) in acetaminophen-induced oxidative stress, hepatotoxicity and nephrotoxicity in mouse model. Biomed Pharmacother. 2019;109:2285–92.

Shimna K, Krishnamurthy KS, Shamina A. Coumarin, essential oil and total phenol levels in bark and leaves of cinnamomum species. J Plant Crop. 2017;45(3):200–5.

Maiti R, González RH, Kumari CHA, Sarkar NC. Macro and micro-nutrient contents of 18 medicinal plants used traditionally to alleviate diabetes in nuevo leon, northeast of Mexico. Pakistan J Bot. 2016;48(1):271–6.

Bastos MS, Del Vesco AP, Santana TP, Santos TS, de Oliveira Junior GM, Fernandes RPM, et al. The role of cinnamon as a modulator of the expression of genes related to antioxidant activity and lipid metabolism of laying quails. Kunze G, editor. PLoS One. 2017;12(12):1–15.

Muhammad DRA, Dewettinck K. Cinnamon and its derivatives as potential ingredient in functional food—A review. Int J Food Prop. 2017;20:1–27.

Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and metaanalyses: The PRISMA statement. Int J Surg. 2010;8(5):336–41.

Tulini FL, Souza VB, Echalar-Barrientos MA, Thomazini M, Pallone EMJA, Favaro-Trindade CS. Development of solid lipid microparticles loaded with a proanthocyanidin-rich cinnamon extract (Cinnamomum zeylanicum): Potential for increasing antioxidant content in functional foods for diabetic population. Food Res Int. 2016;85:10–8.

Hammid. S. A, Assim Z, Ahmad F. Chemical composition of Cinnamomum species collected in Sarawak. UKM Journal Article Repository. 2016;45(4):627–32.

Liyanage T, Madhujith T, Wijesinghe KGG. Comparative study on major chemical constituents in volatile oil of true cinnamon (Cinnamomum verum Presl. syn. C. zeylanicum Blum.) and five wild cinnamon species grown in Sri Lanka. Trop Agric Res. 2017;28(3):270–80.

Shawky E, Selim DA. Rapid Authentication and Quality Evaluation of Cinnamomum verum Powder Using Near-Infrared Spectroscopy and Multivariate Analyses. Planta Med. 2018;84(18):1380–7.

Vakilwala M, Macan K, Tandel A. Phytochemical Screening, Chemical Composition and Antimicrobial Activity of Cinnamon verum Bark. Int J Innov Sci Res.2017;4(4):69–74.

Abou Khalil R, Rayane BA, Doumit S, Bitar J, Nasser R, Khoury E. Cinnamaldehyde and cinnamic acid from cinnamon bark (Cinnamomum verum) increase the binding of glucose to human albumin. Biochim Clin. 2018;42(2):112–118.

Zare R, Nadjarzadeh A, Zarshenas MM, Shams M, Heydari M. Efficacy of cinnamon in patients with type II diabetes mellitus: A randomized controlled clinical trial. Clin Nutr. 2019;38(2):549–556.

Alsoodeeri FN, Alqabbani HM, Aldossari NM. Effects of Cinnamon (Cinnamomum cassia) Consumption on Serum Lipid Profiles in Albino Rats. J Lipids. 2020;2020:1–7.

Hadi A, Campbell MS, Hassani B, Pourmasoumi M, Salehi-sahlabadi A, Hosseini SA. The effect of cinnamon supplementation on blood pressure in adults: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr ESPEN. 2020;36:10–16.

Maruthamuthu R, Ramanathan K. Phytochemical Analysis of Bark Extract of Cinnamomum verum: A Medicinal Herb Used for the Treatment of Coronary Heart Disease in Malayali Tribes, Pachamalai Hills, Tamil Nadu, India. Int J Pharmacogn Phytochem Res. 2016;8(7):1218–1222.

Pratibha, Yadav SS, Bhandari U, Naik G. Antioxidant properties and phytochemical screening of commercial cinnamon bark. Eur J Biomed Pharm Sci. 2018;5(2):964–970.

Deyno S, Eneyew K, Seyfe S, Tuyiringire N, Peter EL, Muluye RA, et al. Efficacy and safety of cinnamon in type 2 diabetes mellitus and pre-diabetes patients: A meta-analysis and meta-regression. Diabetes Research and Clinical Practice. Elsevier Ireland Ltd; 2019.156.

Hendre AS, Sontakke A V., Patil SR, Phatak RS. Effect of cinnamon supplementation on fasting blood glucose and insulin resistance in patients with type 2 diabetes. Pravara Med Rev. 2019;11(2):4–8.

Mousavi SM, Karimi E, Hajishafiee M, Milajerdi A, Amini MR, Esmaillzadeh A. Anti-hypertensive effects of cinnamon supplementation in adults: A systematic review and dose-response Meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. 2020;60(18):3144–3154.

Namazi N, Khodamoradi K, Khamechi SP, Heshmati J, Ayati MH, Larijani B. The impact of cinnamon on anthropometric indices and glycemic status in patients with type 2 diabetes: A systematic review and metaanalysis of clinical trials. Complement Ther Med. 2019;43:92–101.

Davari M, Hashemi R, Mirmiran P, Hedayati M, Sahranavard S, Bahreini S, Tavakoly R, and Talaei B. Effects of cinnamon supplementation on expression of systemic inflammation factors, NF-kB and Sirtuin-1 (SIRT1) in type 2 diabetes: A randomized, double blind, and controlled clinical trial. Nutr J. 2020;19(1):1–8.

Ranasinghe P, Jayawardena R, Pigera S, Wathurapatha WS, Weeratunga HD, Premakumara GAS, Katulanda P, Constantine GR, and Galappaththy P. Evaluation of pharmacodynamic properties and safety of Cinnamomum zeylanicum (Ceylon cinnamon) in healthy adults: A phase I clinical trial. BMC Complement Altern Med. 2017;17(1):550

Yun JW, You JR, Kim YS, Kim SH, Cho EY, Yoon JH, Kwon E, Ja-June J, Jin-Sung P, Hyoung-Chin K, Jeong-Hwan C, and Byeong-Cheol K. in vitro and in vivo safety studies of cinnamon extract (Cinnamomum cassia) on general and genetic toxicology. Regul Toxicol Pharmacol. 2018;95:115–123.

Kassaee SM, Goodarzi MT, Oshaghi EA. Antioxidant, antiglycation and antihyperlipidemic effects of Trigonella foenum and Cinnamon in type 2 diabetic rats. Jundishapur J Nat Pharm Prod. 2018;13(1): e38414.

Abeysekera WPKM, Arachchige SPG, Abeysekera WKSM, Ratnasooriya WD, Medawatta HMUI. Antioxidant and Glycemic Regulatory Properties Potential of Different Maturity Stages of Leaf of Ceylon Cinnamon (Cinnamomum zeylanicum Blume) in Vitro. Evid-based Complement Altern Med. 2019;2019.

Lin GM, Chen YH, Yen PL, Chang ST. Antihyperglycemic and antioxidant activities of twig extract from Cinnamomum osmophloeum. J. Tradit Complement Med. 2016;6(3):281–288.

Kaskoos RA. GC/MS Profile and in-vitro Antidiabetic Activity of Cinnamomum z eylanicum Blume., Bark and Trachyspermum ammi (L.) Sprague, Seeds . J Essent Oil Bear Plants. 2019;22(2):535–544.

Sharafeldin K, Rizvi MR. Effect of traditional plant medicines (Cinnamomum zeylanicum and Syzygium cumini) on oxidative stress and insulin resistance in streptozotocin-induced diabetic rats. J Basic Appl Zool. 2015;72:126–134.

Lin GM, Hsu CY, Chang ST. Antihyperglycemic activities of twig extract of indigenous cinnamon (Cinnamomum osmophloeum) on high-fat diet and streptozotocin-induced hyperglycemic rats. J Sci Food Agric. 2018;98(15):5908–5915.

Rajasekhar C, Nayak N, Kokila BN, Rao UK, Vijayaraghavan S. Quantification and comparison of insulin sensitizing property of aqueous extract of Cinnamomum zeylanicum bark with rosiglitazone in steroid induced insulin resistance in wistar rats Quantification and comparison of insulin. J Chem Pharm Res. 2016;8:32–39.

Qusti S, El Rabey HA, Balashram SA. The Hypoglycemic and Antioxidant Activity of Cress Seed and Cinnamon on Streptozotocin Induced Diabetes in Male Rats. Evid-based Complement Altern Med. 2016;2016::5614564

Hosni AA, Abdel-Moneim AA, Abdel-Reheim ES, Mohamed SM, Helmy H. Cinnamaldehyde potentially attenuates gestational hyperglycemia in rats through modulation of PPARγ, proinflammatory cytokines and oxidative stress. Biomed Pharmacother. 2017;88:52–60.

Anderson RA, Zhan Z, Luo R, Guo X, Guo Q, Zhou J, et al. Cinnamon extract lowers glucose, insulin and cholesterol in people with elevated serum glucose. J Tradit Complement Med. 2016;6(4):332–336.

Tangvarasittichai S, Sanguanwong S, Sengsuk C, Tangvarasittichai Y. Effect of Cinnamon Supplementation on Oxidative Stress, Inflammation and Insulin Resistance in Patients with Type 2 Diabetes Mellitus. Artic Int J Toxicol Pharmacol Res. 2015;7 (4):158–164.

Crawford P, Thai C, Obholz J el al. Assessment of the effect of lifestyle intervention plus water-soluble cinnamon extract on lowering blood glucose in prediabetics, a randomized, double-blind, multicenter, placebo controlled trial: Study protocol for a randomized controlled trial. Trials. 2016;17(1):9

Gupta Jain S, Puri S, Misra A, Gulati S, Mani K. Effect of oral cinnamon intervention on metabolic profile and body composition of Asian Indians with metabolic syndrome: A randomized double -blind control trial. Lipids Health Dis. 2017;16(1):113

Sengsuk C, Sanguanwong S, Tangvarasittichai O, Tangvarasittichai S. Effect of cinnamon supplementation on glucose, lipids levels, glomerular filtration rate, and blood pressure of subjects with type 2 diabetes mellitus. Diabetol Int. 2016;7(2):124–132.

Shahid M, Khalid S, Waseem H. Therapeutic potential of Cinnamon against Glycemic Index among males and females. Ann Res. 2020; 1:24–29.

Romeo GR, Lee J, Mulla CM, Noh Y, Holden C, Lee BC. Influence of cinnamon on glycemic control in individuals with prediabetes: A randomized controlled trial. J Endocr Soc. 2020;4(11): bvaa094.

Wright CB, Calder S, Humphries L. Effect of cinnamon on postprandial glucose. J Diabetes Res. 2015;564(21):1–7.

Sahib AS. Anti-diabetic and antioxidant effect of cinnamon in poorly controlled type-2 diabetic Iraqi patients: A randomized, placebo-controlled clinical trial. J Intercult Ethnopharmacol. 2016;5(2):108–113.

Mirmiranpour H, Huseini HF, Derakhshanian H, Khodaii Z, Tavakoli-Far B. Effects of probiotic, cinnamon, and synbiotic supplementation on glycemic control and antioxidant status in people with type 2 diabetes; a randomized, double-blind, placebo-controlled study. J Diabetes Metab Disord. 2020;19(1):53–60.

Tangvarasittichai S, Sanguanwong S, Sengsuk C, Tangvarasittichai O. Effect of Cinnamon Supplementation on Oxidative Stress, Inflammation and Insulin Resistance in Patients with Type 2 Diabetes Mellitus. Int J Toxicol Pharmacol Res. 2015;7(4):1–8.

Gupta Jain S, Puri S, Misra A, Gulati S, Mani K. Effect of oral cinnamon intervention on metabolic profile and body composition of Asian Indians with metabolic syndrome: A randomized double -blind control trial. Lipids Health Dis. 2017;16(1):113–124.

Song MY, Kang SY, Kang A, Hwang JH, Park YK, Jung HW. Cinnamomum cassia Prevents High-Fat Diet-Induced Obesity in Mice through the Increase of Muscle Energy. Am J Chin Med. 2017;45(5):1017–1031.

Kaur N, Chugh H, Tomar V, Sakharkar MK, Dass SK, Chandra R. Cinnamon attenuates adiposity and affects the expression of metabolic genes in Diet-Induced obesity model of zebrafish. Artif Cells, Nanomedicine Biotechnol. 2019;47(1):2930–2939.

Lopes BP, Gaique TG, Souza LL, Paula GSM, Kluck GEG, Atella GC, Gomes ANC, Simas NK, Kuster RM, Ortiga-Carvalho TM, Pazos-Moura CC, and Oliveira KJ. Cinnamon extract improves the body composition and attenuates lipogenic processes in the liver and adipose tissue of rats. Food Funct. 2015;6(10):3257–3265.

Kwan HY, Wu J, Su T, Chao XJ, Liu B, Fu X, Leung C, Hiu R, Kai A, Bin Q, Fong WF and Zhi-Ling Y. Cinnamon induces browning in subcutaneous adipocytes. Sci Rep. 2017;7(1):1–12.

Kim MS, Kim JY. Cinnamon subcritical water extract attenuates intestinal inflammation and enhances intestinal tight junction in a Caco-2 and RAW264.7 coculture model. Food Funct. 2019;10(7):4350–4360.

Schink A, Naumoska K, Kitanovski Z, Kampf CJ, Fröhlich-Nowoisky J, Thines E, Poschl U, Schuppan D, and Lucas K. Anti-inflammatory effects of cinnamon extract and identification of active compounds influencing the TLR2 and TLR4 signaling pathways. Food Funct. 2018;9(11):5950–5964.

Hagenlocher Y, Hösel A, Bischoff SC, Lorentz A. Cinnamon extract reduces symptoms, inflammatory mediators and mast cell markers in murine IL-10-/- colitis. J Nutr Biochem. 2016;30:85–92.

Sayad-Fathi S, Zaminy A, Babaei P, Yousefbeyk F, Azizi N, Nasiri E. The methanolic extract of cinnamomum zeylanicum bark improves formaldehyde-induced neurotoxicity through reduction of phospho-tau (Thr231), inflammation, and apoptosis. EXCLI J. 2020;19:671–686.

Haidari F, Mohammadshahi M, Abiri B, Zarei M, Fathi M. Cinnamon extract supplementation improves inflammation and oxidative stress induced by acrylamide: An experimental animal study. Avicenna J phytomed. 2020;10(3):243–252.

Sohrabi M, Alahgholi-Hajibehzad M, Mahmoodian ZG, Siyar SAH, Zamani A. Effect of cinnamon and turmeric aqueous extracts on serum interleukin-17F level of high fructose-fed rats. Iran J Immunol. 2018;15(1):38–46.

Zareie A, Sahebkar A, Khorvash F, Bagherniya M, Hasanzadeh A, Askari G. Effect of cinnamon on migraine attacks and inflammatory markers: A randomized double-blind placebo-controlled trial. Phyther Res. 2020;34(11):2945–2952.

Hoi JK, Lieder B, Liebisch B, Czech C, Hans J, Ley JP, et al. TRPA1 Agonist Cinnamaldehyde Decreases Adipogenesis in 3T3-L1 Cells More Potently than the Non-agonist Structural Analog Cinnamyl Isobutyrate. ACS Omega. 2020;5(51):33305–33313.

Nwaka C, Onochie A, Nwaka A, Olisah M. Comparative studies on the effects of Zinginber officinale and Cinnamomum zeylanicum diets on the lipid profile, body weight, liver and kidney functions of male wistar rats . IDOSR J Sci Res. 2019;4(1):91–101.

Kassaee SM, Goodarzi MT, Roodbari NH, Yaghmaei P. The effects of Cinnamomum zeylanicum on lipid profiles and histology via up-regulation of LDL receptor gene expression in hamsters fed a high cholesterol diet. Jundishapur J Nat Pharm Prod. 2017;12(3):e37340

Arisha SM, Sakr SA, Abd-Elhaseeb FR. Cinnamomum zeylanicum alleviate testicular damage induced by high fat diet in albino rats; histological and ultrastructural studies. Heliyon. 2020;6(11):67–83.

Bastos MS, Del Vesco AP, Santana TP, Santos TS, De Oliveira Junior GM, Fernandes RPM, et al. The role of cinnamon as a modulator of the expression of genes related to antioxidant activity and lipid metabolism of laying quails. PLoS One. 2017;12(12):1–15.

Tilavat Y, Parmar R. Efficacy of Cinnamomum Zeylanicum and Cinnamomum Tamala in the Management of Hypercholesterolemia. J Ayurveda Integr Med Sci. 2017;2(2):69–72.

Borzoei A, Rafraf M, Niromanesh S, Farzadi L, Narimani F, Doostan F. Effects of cinnamon supplementation on antioxidant status and serum lipids in women with polycystic ovary syndrome. J Tradit Complement Med. 2018;8(1):128–133.

Shirzad F, Morovatdar N, Rezaee R, Tsarouhas K. Cinnamon effects on blood pressure and metabolic profile: A double-blind, randomized, placebo-controlled trial in patients with stage 1 hypertension. Avicenna J Phytomed 2020;7(11):1–10.

Nagendra Nayak IM, Rajasekhar C, Jetti R. Antiatherosclerotic potential of aqueous extract of Cinnamomum zeylanicum bark against glucocorticoid induced atherosclerosis in wistar rats. J Clin Diagnostic Res. 2017;11(5):FC19–F23.

Ranjini HS, Padmanabha Udupa EG, Kamath SU, Setty M, Hadapad B, Kamath A. An in vitro study of Cinnamomum zeylanicum as natural inhibitor of angiotensin-converting enzyme (ACE) on sheep (ovis aries) tissues. Asian J Pharm Clin Res. 2016;9(5):249–252.

Sedighi M, Nazari A, Faghihi M, Rafieian-Kopaei M, Karimi A, Moghimian M, Mozaffarpur SA, Rashidipour M, Namdari M, Cheraghi M, and Rasouulian B. Protective effects of cinnamon bark extract against ischemia–reperfusion injury and arrhythmias in rat. Phyther Res. 2018;32(10):1983–1991.

Ndoen YEJ, Triwahyuni P, Boyoh DY. The Effectiveness of Ceylon Cinnamon powder (Cinnamomum Zeylanicum) for adult women´s blood pressure. J Int Sch Conf. 2016;1(5):150–154.

Puttaswamy NY, Rupini GD, Ahmed F, Urooj A. in vitro hypoglycemic potential of spices: Cinnamon and Cumi. Pak J Pharm Sci. 2018;31(6):2367–2372.

Cenobio-Galindo A de J, Pimentel-González DJ, Del Razo-Rodríguez OE, Medina-Pérez G, Carrillo-Inungaray ML, Reyes-Munguía A, Campos-Montiel RG. Antioxidant and antibacterial activities of a starch film with bioextracts microencapsulated from cactus fruits (Opuntia oligacantha).Food Sci Biotechnol 2019;28(5):1553–1561.

Nagendra Nayak IM, Rajasekhar C, Jetti R. Antiatherosclerotic potential of aqueous extract of Cinnamomum zeylanicum bark against glucocorticoid induced atherosclerosis in wistar rats. J Clin Diagnostic Res. 2017;11(5):19–23.

Taheri A, Lavasani H, Kasirzadeh S, Sheikholeslami B, Ardakani YH, Rouini MR. Changes in CYP2D enzyme activity following induction of type 2 diabetes, and administration of cinnamon and metformin: an experimental animal study. Xenobiotica. 2018;48(10):984–989.

Talaei B, Amouzegar A, Sahranavard S, Hedayati M, Mirmiran P, Azizi F. Effects of cinnamon consumption on glycemic indicators, advanced glycation end products, and antioxidant status in type 2 diabetic patients. Nutrients. 2017;9(9):991.

Song MY, Kang SY, Kang A, Hwang JH, Park YK, Jung HW. Cinnamomum cassia Prevents High-Fat Diet-Induced Obesity in Mice through the Increase of Muscle Energy. Am J Chin Med. 2017;45(5):1017–1031.

Alsoodeeri FN, Alqabbani HM, Aldossari NM. Effects of Cinnamon (Cinnamomum cassia) Consumption on Serum Lipid Profiles in Albino Rats . J Lipids. 2020;2020: 8469830.

Azimi P, Ghiasvand R, Feizi A, Hosseinzadeh J, Bahreynian M, Hariri M, Khosvari-Boroujeni H. Effect of cinnamon, cardamom, saffron and ginger consumption on blood pressure and a marker of endothelial function in patients with type 2 diabetes mellitus: A randomized controlled clinical trial. Blood Press. 2016;25(3):133–140.

Descargas

Publicado

2023-05-03

Cómo citar

Riós, F., Quintero, A., Piloni, J., Cariño, R., & Reyes, A. (2023). Compuestos bioactivos de canela y su efecto en la disminución del síndrome metabólico: revisión sistemática. Archivos Latinoamericanos De Nutrición (ALAN), 73(1), 74–85. https://doi.org/10.37527/2023.73.1.007

Número

Sección

Artículo de Revisión