Prevalence of computer vision syndrome in Peruvian university students during the COVID-19 health emergency

Authors

  • Edwin G. Estrada Araoz
  • Jimmy N. Paricahua Peralta
  • Mabeli C. Zuloaga Araoz
  • Néstor A. Gallegos Ramos
  • Yolanda Paredes Valverde
  • Rosel Quispe Herrera
  • Libertad Velásquez Giersch

Keywords:

Computer vision syndrome; COVID-19, university students; virtual education.

Abstract

Introduction: In recent years, the use of computers, laptops, tablets and smartphones has experienced a constant increase, and even more so, the health emergency caused by COVID-19 has caused a significant increase in the amount of connection time to said devices. because the teaching modality changed from face-to-face to virtual.

Objective: To determine the prevalence and sociodemographic variables associated with computer visual syndrome (VIS) in Peruvian university students during the COVID-19 health emergency.

Materials and methods: The research had a quantitative approach; the design was non-experimental and the transectional descriptive type. The sample was made up of 215 students from the professional career of Education to whom the Computer Syndrome Questionnaire (SVI-Q) was applied, an instrument with acceptable levels of reliability and validity. Subsequently, the responses were systematized and analyzed using the SPSS® software.

Results: It was determined that there is a high prevalence of SVI and that some sociodemographic variables such as gender, age group, time of exposure to digital devices, as well as having a pre-existing eye disease were significantly associated with said prevalence (p<0.05).

Conclusions: It is necessary to promote the application of preventive strategies, such as the 20-20-20 rule, and to improve ergonomic conditions, such as the use of adequate seats, anti-glare screens and brightness adjustment to reduce the prevalence. and symptoms associated with IVS.

Downloads

Download data is not yet available.

References

Estrada, E. Emotional exhaustion in Peruvian university students during the COVID-19 pandemic. Revista Tempos e Espaços em Educação. 2021. 14(33):e16542. https://doi.org/10.20952/revtee.v14i33.16542

Buitrago, F., Ciurana, R., Fernández, M. & Tizón, J. Pandemia de la COVID-19 y salud mental: reflexiones iniciales desde la atención primaria de salud española. Atención Primaria. 2021. 53(1):89-101. https://doi.org/10.1016/j.aprim.2020.06.006

Estrada, E. & Mamani, M. Competencia digital y variables sociodemográficas en docentes peruanos de educación básica regular. Revista San Gregorio. 2021. 1(45):1-16. http://dx.doi.org/10.36097/rsan.v0i45.1502

Mejía, C., Rodríguez, J., Charri, J., Liendo, D., Morocho, N., Benites, C., Avalos, M., Medina, D., Carranza, R. & Mamani, O. Repercusión académica de la COVID-19 en universitarios peruanos. Revista Cubana de Investigaciones Biomédicas. 2021. 40(1):e814. http://www.revibiomedica.sld.cu/index.php/ibi/article/view/814

Wang, L., Wei, X. & Deng, Y. Computer vision syndrome during SARS-CoV-2 outbreak in university students: A comparison between online courses and classroom lectures. Frontiers in Public Health. 2021. 9:696036. https://doi.org/10.3389/fpubh.2021.696036

Fernández, D., Soriano, A., Galvez, T., Agui, N., Soriano, D. & Benites, V. Síndrome visual informático en estudiantes universitarios de posgrado de una universidad privada de Lima, Perú. Archivos de la Sociedad Española de Oftalmología. 2021. 96(10):515-520. https://doi.org/10.1016/j.oftal.2020.12.003

Artime, E., Sánchez, F., Suárez, A., Iglesias, F. & Segui, M. Prediction of computer vision syndrome in health personnel by means of genetic algorithms and binary regression trees. Sensors. 2019. 19(12):2800. https://doi.org/10.3390/s19122800

Altalhi, A., Khayyat, W., Khojah, O., Alsalmi, M. & Almarzouki, H. Computer vision syndrome among Health Sciences students in Saudi Arabia: Prevalence and risk factors. Cureus. 2020. 12(2):e7060. https://doi.org/10.7759/cureus.7060

Zenbaba, D., Sahiledengle, B., Bonsa, M., Tekalegn, Y., Azanaw, J. & Kumar, V. Prevalence of computer vision syndrome and associated factors among Instructors in Ethiopian Universities: A web-based cross-sectional study. The Scientific World Journal. 2021. 2021:3384332. https://doi.org/10.1155/2021/3384332

Abudawood, G., Ashi, H. & Almarzouki, N. Computer vision syndrome among undergraduate medical students in King Abdulaziz University, Jeddah, Saudi Arabia. Journal of Ophthalmology. 2020. 2020:2789376. https://doi.org/10.1155/2020/2789376

Alhasan, A. & Aalam, W. Magnitude and determinants of computer vision syndrome among Radiologists in Saudi Arabia: A national survey. Academic Radiology. 2021. S1076-6332(21):00496-7. https://doi.org/10.1016/j.acra.2021.10.023

Lemma, M., Beyene, K. & Tiruneh, M. Computer vision syndrome and associated factors among secretaries working in Ministry offices in Addis Ababa, Ethiopia. Clinical optometry. 2020. 12:213-222. https://doi.org/10.2147/OPTO.S284934

Al Tawil, L., Aldokhayel, S., Zeitouni, L., Qadoumi, T., Hussein, S. & Ahamed, S. Prevalence of self-reported computer vision syndrome symptoms and its associated factors among university students. European Journal of Ophthalmology. 2018. 30(1):189-195. https://doi.org/10.1177/1120672118815110

Dessie, A., Adane, F., Nega, A., Wami, S. D. & Chercos, D. Computer vision syndrome and associated factors among computer users in Debre Tabor Town, Northwest Ethiopia. Journal of Environmental and Public Health. 2018. 2018:4107590. https://doi.org/10.1155/2018/4107590

Gammoh Y. Digital eye strain and its risk factors among a university student population in Jordan: A cross-sectional study. Cureus. 2021. 13(2):e13575. https://doi.org/10.7759/cureus.13575

Mersha, G., Hussen, M., Belete, G., Tegene, M. Knowledge about computer vision syndrome among bank workers in Gondar City, Northwest Ethiopia, Occupational Therapy International. 2020. 2020: 2561703. https://doi.org/10.1155/2020/2561703

Huyhua, S., Meléndez, J., Odar, C., Ruiz, D. & Tejada, S. Síndrome visual informático y estrés académico en estudiantes de enfermería durante el confinamiento por la COVID-19. Revista de la Universidad del Zulia. 2021. 12(35):572-583. https://doi.org/10.46925//rdluz.35.33

Sánchez, H., Reyes, C. & Mejía, K. Manual de términos en investigación científica, tecnológica y humanística. Lima: Universidad Ricardo Palma; 2018.

Hernández, R. & Mendoza, C. Metodología de la investigación: las rutas cuantitativa, cualitativa y mixta. México: McGraw-Hill; 2018.

Seguí, M., Cabrero, J., Crespo, A., Verdú, J. & Ronda, E. A reliable and valid questionnaire was developed to measure computer vision syndrome at the workplace. Journal of clinical epidemiology. 2015. 68(6):662-673. https://doi.org/10.1016/j.jclinepi.2015.01.015

Molina, M. Validación de los analizadores visuales y determinación del síndrome visual informático en trabajadores de la función pública valenciana. Universidad de Alicante; 2017. http://hdl.handle.net/10045/83007

Turkistani, A., Al-Romaih, A., Alrayes, M., Al Ojan, A. & Al-Issawi, W. Computer vision syndrome among Saudi population: An evaluation of prevalence and risk factors. Journal of Family Medicine and Primary Care. 2021. 10(6):2313-2318. https://doi.org/10.4103/jfmpc.jfmpc_2466_20

Sheppard, A. & Wolffsohn, J. Digital eye strain: prevalence, measurement and amelioration. BMJ open ophthalmology. 2018. 3(1):e000146. https://doi.org/10.1136/bmjophth-2018-000146

Poudel, S. & Khanal, S. Magnitude and determinants of computer vision syndrome (CVS) among it workers in Kathmandu, Nepal. Nepalese Journal of Ophthalmology. 2020. 12(24): 245-251. https://doi.org/10.3126/nepjoph.v12i2.29387

Logaraj, M., Madhupriya, V. & Hegde, S. Computer vision syndrome and associated factors among medical and engineering students in Chennai. Annals of Medical and Health Sciences Research. 2014. 4(2):179-185. https://doi.org/10.4103/2141-9248.129028

Ranasinghe, P., Wathurapatha, W., Perera, Y., Lamabadusuriya, D., Kulatunga, S., Jayawardana, N. & Katulanda, P. Computer vision syndrome among computer office workers in a developing country: an evaluation of prevalence and risk factors. BMC Research Notes. 2016. 9:150. https://doi.org/10.1186/s13104-016-1962-1

Shantakumari, N., Eldeeb, R., Sreedharan, J. & Gopal, K. Computer use and vision-related problems among university students in ajman, United Arab Emirate. Annals of Medical and Health Sciences Research. 2014. 4(2):258-263. https://doi.org/10.4103/2141-9248.129058

Derbew, H., Nega, A., Tefera, W., Zafu, T., Tsehaye, K., Haile, K. & Temesgen, B. Assessment of computer vision syndrome and personal risk factors among employees of Commercial Bank of Ethiopia in Addis Ababa, Ethiopia. Journal of Environmental and Public Health. 2021. 2021:6636907. https://doi.org/10.1155/2021/6636907

Cantó, N., Sánchez, M., Ivorra, B. & Seguí, M. Computer vision syndrome prevalence according to individual and video display terminal exposure characteristics in Spanish university students. International Journal of Clinical Practice. 2020. 75(3):e13681. https://doi.org/10.1111/ijcp.13681

Al Rashidi, S. & Alhumaidan, H. Computer vision syndrome prevalence, knowledge and associated factors among Saudi Arabia University Students: Is it a serious problem? International Journal of Health Sciences. 2017. 11(5):17-19. https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC5669505/

Published

2023-04-08

How to Cite

Estrada Araoz, E. G. ., Paricahua Peralta, J. N. ., Zuloaga Araoz, M. C. ., Gallegos Ramos, N. A. ., Paredes Valverde, Y. ., Quispe Herrera, R. ., & Velásquez Giersch, L. . (2023). Prevalence of computer vision syndrome in Peruvian university students during the COVID-19 health emergency. AVFT – Archivos Venezolanos De Farmacología Y Terapéutica, 41(4). Retrieved from http://caelum.ucv.ve/ojs/index.php/rev_aavft/article/view/25990