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Resumen. 

Este trabajo de tesis de investigación presenta un algoritmo que utiliza datos de 

restauración y daño de componentes de sistemas de infraestructura (p. ej. 

Puentes, tanques de agua,  subestaciones eléctricas) para estimar dependencia 

entre sistemas impactados por terremotos. Esta contribución se ubica en el 

contexto del desarrollo de métodos estandarizados para el diseño de estructuras 

que garantizan niveles adecuados de operación y seguridad no solo a nivel local, 

sino a nivel del sistema que dichas estructuras conforman. En este sentido, es 

existen casos documentados donde interdependencias, en la misma manera que 

la falla de un componente (p. ej. puente) perjudica a un sistema (transporte), la 

disrupción de un sistema perjudica a otros sistemas y el efecto en cadena que el 

daño directo genera se distribuye entre y a través de los sistemas. Algoritmos 

para predecir el performance de sistemas interconectados han sido propuestos. 

Sin embargo, la interdependencia entre sistemas se mantiene como una variable 

en donde análisis de sensibilidad de este parámetro han demostrado la gran 

magnitud en que análisis probabilísticos varían sus resultados.  

Métodos alternativos para estimar la dependencia entre sistemas utilizan series 

temporales sosteniendo la hipótesis que dichos sistemas presentan fallas o son 



restaurados en el tiempo de manera correlacionada. El método en este trabajo 

de tesis se basa sobre la hipótesis que las fallas y restauración de sistemas se 

correlaciona también en el espacio, ya que componentes a mayor proximidad 

geográfica tienden a fallar o recuperar funcionalidad de con cierta dependencia.  

El algoritmo presentado se basa en conceptos matemáticos y geoestatísticos 

como métricas para el cálculo de correlación entre dos variables y el método de 

Kriging. 

Ya que este método se ha demostrado práctico para datos reales en un caso de 

estudio (Terremoto en la zona Talcahuano-Concepción en Chile en el 2010) que 

el autor de este manuscrito presentó recientemente en artículo científico de 

conferencia, esta contribución explora sistemas artificiales en un marco de 

experimentos computacionales usando teoría de grafos y el método de Monte 

Carlo. Los resultados de este análisis son satisfactorios y generalizan las 

conclusiones de resultados previos para el caso de estudio de Chile, avalando que 

la correlación espacial estima de manera consistente la dependencia entre 

sistemas de infraestructura interconectados. 
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ABSTRACT 

This thesis concerns the development, testing, and study of a Kriging-based tool for quantifying 

interdependencies between lifeline systems, using spatially lagged correlations for measuring 

coupling, range, and location of interdependencies. 

The need for modeling infrastructures, not as individual systems but as coupled systems, is 

widely acknowledged by the scientific community, and contributions in this subject currently 

come from a variety of approaches (e.g. Complex systems theory and network science); 

nevertheless, there are few model validation and calibration efforts to available case studies for 

ensuring their practical use and feasibility. 

 Additionally, there is a need for establishing the databases necessary for validation and 

calibration to real case studies. This thesis supports model validation and calibration by 

establishing preliminary guidelines for databases required and presents a Kriging-based 

approach to assess and quantify interdependence between lifeline systems. An emerging 

Kriging-based tool (Wu, Dueñas-Osorio, & Villagrán, 2012) represented a primary step 

towards quantifying spatial lifeline systems interdependence during their recovery, unveiling 

geographical and operational coupling patterns in the context of seismic threats; however, this 

application uses real and not specialized available databases, limiting its potential in face of 

what can be captured from richer and more dedicated databases. 

This research expands on the geostatistical tool and present a more systematic approach, 

supporting recovery modelling and exploiting reconstruction information of utilities to quantify 

interdependence strength, range, and anisotropy across lifeline systems. Here, simple yet 

realistic recovery scenarios are used in order to exhaust the capabilities of this methodology 

when describing the recovery of interdependent networks, which gravitates mainly on 
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geographical, physical, and logistical coupling among utilities making use of local and global 

spatial-correlations. Then, we relate spatial correlation based metrics deriving from this 

approach to other network level properties from the graph theory perspective and depict 

intuitive connections using an experimental design approach. Lastly, we exemplify potential 

applications of this approach for powerful visualizations of recovery efforts for tracking 

progress and interdependence among lifeline systems.  
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1 INTRODUCTION 

1.1 Motivation 

Lifelines are a complex web of essential utility and transportation systems serving communities 

with goods and services; its constant operation is what creates the fabric of modern societies, 

which include urban networks like power, water, gas, transportation, and telecommunications 

systems. Nevertheless, the worldwide steady rise of population in urban areas, increasing 

demand of services, and expansion of lifelines have not been accompanied with a proper 

handling of interdependencies across systems, leaving societies in a gradually more vulnerable 

position to disruptive events. 

Despite the efforts and significant progress through science and technology for improving 

resilience at the community scale, the costs emanating from lifelines disruptions continue 

growing. For example, in the United States, it is estimated that natural and man-made disaster 

events represent an average annual cost of $57 billion and many researchers claim that the trend  

in disaster losses is unstainable to the point that they will become more than what the 

government can afford (Gilbert, 2010). 

In addition, there is evidence that developed countries’ governments are not investing enough 

money to satisfy projected needs, resulting in greater losses. For instance, in the United States, 

the total documented cumulative gap between projected needs and likely investment in these 

critical systems will be $1.1 trillion by 2020 (ASCE, 2013). Also, surprisingly, it is common 

for developed countries not to apply available knowledge in their current policies (White, 

Kates, & Burton, 2002), which points out the huge gap that exist between research findings 

and policy makers. 

Mitigating the socio-economic rupture of lifeline systems subjected to natural and man-made 

disruptions is difficult because of the uncertainty from the natural processes governing hazards 
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and lack of information available for its study. In contributions from the research community, 

lifeline systems’ modelers develop abstractions for conducting practical probabilistic 

performance assessments for supporting vulnerability mitigation strategies. In addition to this, 

they have proposed tools for aiding decision-makers in restoring infrastructure networks. 

Nevertheless, there is a gap between research findings and the prospects of their practical use; 

hence, there are no standardized methods for assessing the vulnerability and resilience of 

interdependent lifeline systems yet. For this reason, authors believe that the growing field of 

infrastructure networks modeling should aim to include validation and calibration exercises to 

real case studies. 

Some of the challenges that model validation and calibration face are the availability of 

appropriate datasets and the means for conveying existing interdependencies (Rinaldi, 

Peerenboom, & Kelly, 2001) into the proposed models effectively. In this thesis, guidelines for 

the required datasets are provided and the theory of an emerging Kriging based approach 

(Paredes-Toro, Dueñas-Osorio, & Cimellaro, 2014; Wu et al., 2012) for quantifying 

interdependencies across lifeline is presented. 

1.2 Interdependent lifeline systems’ modeling 

Based on the scope, recent models for the study of interdependencies across systems (Ouyang, 

2014) can fall within the next two groups: forward analysis models and restoration models. The 

former models use probability theory to predict the response of interdependent infrastructural 

systems to natural and man-made hazards. The latter group of models focuses on the recovery 

of disrupted interdependent networks, and likewise, many contributions from different fields 

of studies are available. 

Common approaches of forward analysis models for interdependent lifeline systems include 

economic theory, game theory, agent-based, and network based methods. For example, Haimes 
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et al. (Haimes & Jiang, 2001) introduce an Inoperability Input-output Model (IIM) for 

infrastructures in order to study the risk of inoperability, a notion of unreliability for 

interdependent networks; Cagno et al. (Cagno, De Ambroggi, Grande, & Trucco, 2011) 

integrate the topologies to this approach. In addition to this, Zhang et al. (Zhang, Peeta, & 

Friesz, 2005) proposed an agent-based simulation that formulates the equilibrium analysis 

using game theory principles. Hernandez and Dueñas-Osorio (Hernandez-Fajardo & Dueñas-

Osorio, 2011) proposed the Interdependence Fragility Algorithm (IFA), which employs 

network topologies and connectivity loss metric to perform statistical analyses in a simulation 

framework to assess interdependence strength; Buldyrev et al. (Buldyrev, Parshani, Paul, 

Stanley, & Havlin, 2010) also make use of the topologies but from an analytical perspective. 

Likewise, restoration models of interdependent lifeline systems exhibit a wide range of 

approaches such as dynamical systems theory, complex systems theory, and network based. 

However, network based models are preferred in the context of supporting decision-makers 

since they consider practical aspects in real settings of lifelines reconstruction, such as demand 

of the commodities, limited resources, flow capacities, and costs of repairs and transportation. 

Among the network-based models, the research by Lee II and Wallace (Lee II, Mitchell, & 

Wallace, 2007) presents five types of interdependencies between infrastructure systems, 

namely, input dependence, mutual dependence, shared dependence, exclusive-or dependence, 

and co-located dependence. These interdependencies are then used to develop a network flows 

based mathematical model to guide the restoration of services. Similarly, Gonzales et al. 

(González, Dueñas-Osorio, Sánchez-Silva, & Medaglia, 2014) propose another decision 

support model, the Iterative Interdependent Network Design Problem (iINDP), an algorithm 

that finds the minimum-cost recovery strategy for a partially destroyed system solving a 

constrained optimization problem. 
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Despite the field study used for developing interdependent lifeline systems models, in forward 

analysis or recovery stage, the models rely on assumptions about coupling across infrastructure 

systems that later on translate into logical instances or numerical input. Since these assumptions 

have not been rigorously formalized for modelling, verification and validation is gaining 

attention (Farina, Graziano, Panzieri, Pascucci, & Setola, 2013). However, model validation and 

calibration to real case studies requires datasets and quantification tools that can integrate to 

modeling efforts. This study will focus on supporting model validation and calibration via 

quantification of interdependencies for informing probabilistic response models and decision-

making support tools. 

1.3 Interdependent networks and interdependencies 

When a system 𝑖 requires an input service from another system 𝑗 in order to function, one can 

say that system 𝑖 has a dependency on system 𝑗 and the interconnectedness of systems 𝑖 and 𝑗 

is unidirectional.  Real networks however, exhibit dependencies in both directions; this is, one 

or more components in system 𝑖 are dependent on system 𝑗, which in turn has one dependent 

component or more requiring input services from system 𝑖. The previous case is regarded as 

interdependent networks. 
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Figure 1Power and water networks presenting different levels of coupling. (a) Independent systems. (b) Dependent system. 

(c) Interdependent systems. 

Edges connecting systems in Figure 1 are interdepdencies defining. a physical connection or 

more generally the flow of information. Of great importance at this point is the 

conceptualization of interdepencies by Rinaldi et al.(2001). In their work, they provide four 

flexible definitions of interdependence that allows unifying  the terminology in the complex 

system’s community . These are: 

- Physical interdependence: whenever the state of each system is dependent on the 

material output(s) of another. A typical example is a water pumping station requiring 

electricity or a power generation facility that used water for cooling operations. 

- Cyber Interdependence: whenever systems’ states depend on information transmitted 

through an information infrastructure. For instance, some power generation systems are 

able to regulate they production according to demand levels, which in turn, are 

associated to other systems. 

- Geographic Interdependence: whenever a single environmental event can influence the 

state of all systems or a subset of their components sharing a geographical location. 
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Natural and man-made hazards are good examples of this; for example, liquefaction 

braking water and gas pipes, fire, explosions, among others. 

- Logical Interdependence: Whenever a mechanism that is not physical, cyber, or a 

geographic connection influence the state of systems. 

1.4 Quantification of lifeline systems’ interdependencies 

Although a significant number of contributions can be found in the interdependent lifeline 

systems modeling field, less has been done in the quantification branch (Casalicchio & Galli, 

2008). Available quantification methods include efforts to quantify direction of failures, 

escalation of cascading effects, coupling strength, and indexes for the degree of dependency 

and interdependency. Based on failure data, Zimmerman (R. Zimmerman, 2004) proposed a 

simple metric to determine the direction of interdependent failures, which from the viewpoint 

of an individual lifeline system, it is the ratio between the number of times being a cause of 

failure to the number of times being affected by failure. In addition, referring to power outages, 

Zimmerman and Restrepo (Rae Zimmerman & Restrepo, 2006) proposed a metric to determine 

whether cascading failures are escalating or attenuating in the context of power networks, 

consisting in the ratio of the duration of the electric power outage to the duration of a 

subsequent infrastructure failure that is dependent upon electric power. Moreover, in an effort 

to narrow the quantification efforts to the degradation of services or functionalities, Setola 

(Setola, 2010) proposes indexes that are a function of inoperability variations of infrastructures 

with respect to normal service conditions for quantifying intra-dependency and inter-

dependency indexes, being the last one a non-reciprocal function for quantifying coupling of 

two interdependent systems. Less easily computed metrics are available in regards to the 

strength of coupling in the form of correlations. For instance, Mendonça et al. (Mendonça & 

Wallace, 2006) used Pearson’s correlation coefficients to measure the degree of association 
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across impacted infrastructures in the context of the 2001 World Trade Center Attack. In 

addition to this, Dueñas-Osorio et al. (Dueñas-Osorio & Kwasinski, 2012) derived coupling 

strengths for operational and logistical interdependencies using a time-series analysis 

approach. 

1.5 Adopted methodology and thesis objectives 

In an attempt for developing interdependence quantification tools that can be integrated into 

models (Ouyang, 2014), we present an enhanced Kriging Aided Spatial Correlation Algorithm 

(KASCA) (Paredes-Toro et al., 2014; Wu et al., 2012) for quantifying interdependencies across 

lifeline systems and support validation and calibration of network based models. Exploiting 

lifelines recovery information and using spatial correlations at different scales provides 

measures of coupling among systems and their components that serve as input for network 

based models (Hernandez-Fajardo & Dueñas-Osorio, 2011). In order to illustrate the 

effectiveness of the novel approach, computational experiments are conducted using idealized 

infrastructure networks and hazards scenarios for testing consistency with initial input 

conditions and interdependencies. In addition to this, the presented tools are accompanied with 

graphical representations of interdependencies that are intended to aid vulnerability mitigation 

efforts and decision-makers. 

By focusing on studying failure and recovery patterns of interdependent networks, this study 

provides a better understanding on how the spatial configuration of interconnected networks 

and the hazard affect their coupled behavior during response or recovery efforts to disruptions. 

Additionally, quantifying spatial interdependencies between spatial networks helps refining 

algorithms that may fall short conceptualizing interdependencies, making it possible to 

calibrate models to real events as well as validate them. 
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The presented approach expands previous KASCA contributions (Paredes-Toro et al., 2014; 

Wu et al., 2012) acknowledging the temporal dimension, which is crucial for stablishing 

interdependence directionality in quantification efforts. Nevertheless, a full joint spatial-

temporal analysis is not under the scope of this thesis, since it requires considering the physics 

governing natural processes of lifelines’ operation (e.g. simulating lifelines’ time of failure 

propagation of a damaged electrical substation supplying a water pumping station) in much 

detail. For this reason, the simulation framework referenced in this study assumes 

instantaneous communication and failure propagation across lifeline systems as found in the 

research of Hernandez-Fajardo et al.(Hernandez-Fajardo & Dueñas-Osorio, 2011); however, 

the reduced time scale of information and energy sharing found in lifeline systems justifies the 

instantaneous interaction assumption across systems. 

To test validity of the presented Kriging-based approach to locate and quantify 

interdependencies without lacking generality, we perform a systematic analysis by means of 

an experimental design approach. The recovery scenarios that will be considered expands the 

space variables that are typically encountered in real case settings, particularly varying network 

topologies, performance parameters, and decision-making related variables. 

The structure of the thesis is as follows. Section 2 describes the mentioned Kriging-aided 

approach, including their mathematical definitions, underlying assumptions, aims, and 

preliminary statements on its limitations. Moreover, some definitions from the graph theory 

perspective that will be useful in the next sections are reviewed. Section 3 offers a 

comprehensive summary of the enhanced KASCA-based interdependence metrics and 

visualizations, using toy models to exemplify their interpretations. Section 4 describe the 

simulation framework in the computational experiments for testing KASCA-based metrics and 
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discuss the results, along with remarks about network properties influencing interdependencies. 

Section 5 presents conclusions from this contribution and outline ideas for future research. 

  



 

10 

 

 

2 BACKGROUND IN GEOSTATISTICS AND CONCEPTS IN 

GRAPH THEORY 

In this section, we first present the mathematical definitions used in KASCA for quantifying 

interdependencies across lifeline systems. Secondly, some concepts in graph theory are 

outlined since the following sections will refer to a network-based simulation framework and 

the proposed tool is intended to inform interdependent network models using this approach. 

However, the results deriving from KASCA are general and provide measures of 

interdependence across lifelines that are useful when analyzing the resilience of infrastructure 

networks (e.g. Cimellaro et al. (Cimellaro, Solari, & Bruneau, 2014)). 

2.1 Mathematical concepts 

Before describing the algorithm, we introduce the concept of Kriging (Webster & Oliver, 2001) 

and correlation coefficients as metrics of association or coupling between systems (Dueñas-

Osorio & Kwasinski, 2012; Mendonça & Wallace, 2006; Paredes-Toro et al., 2014; Wu et al., 

2012). In addition to this, we assemble the previous definitions and present the algorithm for 

quantifying time and space interdependencies across systems and producing local cross-

correlation maps, global cross-correlation maps(Paredes-Toro et al., 2014), and their temporal 

expansions as novelty. 

2.1.1 Kriging  

Kriging is a generic term for a range of least-squares methods to provide the best linear 

unbiased predictions; best meaning that they minimize the variance. In brief, Kriging performs 

estimations over non-sampled locations using prior knowledge (i.e. field observations); 

because of this, it is often referred to as a geostatistical spatial interpolator. Performing 
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estimation with this technique involves solving a generally constrained optimization problem 

that leads to a system of equations called kriging system. In order to make the kriging system 

useful, one needs to model the spatial variability of the random field, or more specifically, 

formulate a variogram model. 

 

Figure 2. Distributed points on region 𝐷. 

Before introducing the variogram, some considerations and definitions in regards to the random 

field 𝑍(𝑋) observed at locations 𝑋𝑖, (with 𝑖 = 1,2, . . , 𝑛.) in a certain region 𝐷 will be introduced 

(Figure 2). First, let us assume that the random field has a fixed expected value 𝐸[𝑍] = 𝜇 so 

that it is first order stationary.  Second, consider that for any realization of 𝑍(𝑋), there is a 

covariance structure that relates all observations at different locations as a function of their 

relative position so that one can say the random field is second order stationary or weak second 

order stationary if this is true for an enclosed region 𝐷 (Figure 2). At his point, we can write 

the equations for the covariance between two observations occurring at relative distance ℎ and 

the equation of the variogram, whose meaning will become more evident when relating it to 

the covariance. 

𝑍(𝑋0) 

𝑍(𝑋𝑖) 

𝐷 
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Figure 3. Standardized residuals at different locations in the network. 

 𝐶(𝑍(𝑋1), 𝑍(𝑋2 )) = 𝐸[(𝑍(𝑋1 )𝑍(𝑋2 )] − 𝜇2 (Eq. 1) 

After considering that the random field is second order stationary and the relative positions ℎ 

of observations describes their spatial variability, the covariance can be written as: 

 𝐶(ℎ) = 𝐸[𝑍(𝑋)𝑍(𝑋 + ℎ)] − 𝜇2 (Eq. 2) 

The variogram function describes the variability of observations at different locations or, in 

other words, the variance of the difference of observation pairs. 

 2𝛾(𝑍(𝑋1), 𝑍(𝑋2)) = 𝐸 [(𝑍(𝑋1) − 𝑍(𝑋2))
2
] (Eq. 3) 

Which again, considering the second order stationary of the random field becomes: 

 2𝛾(ℎ) = 𝐸[(𝑍(𝑋) − 𝑍(𝑋 + ℎ))
2
] (Eq. 4) 

With some effort and following the previous considerations, the semi-variogram can be written 

in terms of the covariance as follows: 

2𝛾(ℎ) = 𝐸[𝑍(𝑋)2 + 𝑍(𝑋 + ℎ)2 − 2𝑍(𝑋)𝑍(𝑋 + ℎ)] 
            = (𝐸[𝑍(𝑋)2] − 𝜇2) + (𝐸[𝑍(𝑋 + ℎ)2] − 𝜇2) + (−2𝐸[𝑍(𝑋)𝑍(𝑋 + ℎ)] + 2𝜇2)  

 𝛾(ℎ) = 𝐶(0) − 𝐶(ℎ) (Eq. 5) 

The variogram function used for supporting kriging predictions will be a parametric curve fitted 

to an experimental variogram. The experimental variogram 𝛾𝐸 can be computed as [20]: 
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 𝛾𝐸(ℎ) =
1

2𝑚(ℎ)
∑ {𝑍(𝑋𝑖) − 𝑍(𝑋𝑖𝑖+ℎ)}

𝑚(ℎ)
𝑖=1  (Eq. 6) 

Where 𝑚(ℎ) averages the variances of differences of measures separated at distances within 

the lag ℎ. Computing 𝛾𝐸(ℎ) for different lags ℎ results into a set of points with coordinates 

(𝛾𝐸,ℎ) that can be fitted by a parametric curve. 

There are different models to fit the experimental variogram, however, they can be 

distinguished as bounded and unbounded models, being the later a group of models that allow 

the semivariogram to grow indefinitely as distance increases. Among the authorized models 

for fitting the experimental variogram that are common in the literature are the linear, spherical, 

exponential, Gaussian, and stable models (Wackernagel, 1995). The infrastructural recovery 

data in this study showed exponential and sigmoid shapes; hence, stable models were used as 

suggested in the literature (Webster & Oliver, 2001): 

𝛾(ℎ) = 𝑐{1 − exp [(−
|ℎ|

𝑟
)
𝛼

]} (Eq. 7) 

Where 𝑐 represents the sill, 𝑟 is parameter describing the range or length of correlation an 𝛼 is 

another parameter of the function with constrain 0 ≤ 𝛼 ≤ 2. The selected function is adjusted 

to the experimental variogram using weighted-least squares fitting and weights proposed by 

McBratney and Webster (McBratney & Webster, 1986). 

After modeling the spatial variability of the random field under consideration, we can now 

formulate the kriging estimator: 

 �̂�(𝑋0) = ∑ 𝜆𝑖𝑍(𝑋𝑖)
𝑛
𝑖=1  (Eq. 8) 

Where �̂�(𝑋0) is the estimate and 𝜆𝑖 is the kriging weights that corresponds to the sample 𝑍(𝑋𝑖). 

Following the definition of kriging, the weights are calculated minimizing the error variance: 

 𝐸 [(𝑍(𝑋0) − �̂�(𝑋0))
2

] = 𝐸[𝑍(𝑋0)
2 + �̂�(𝑋0)

2 − 2𝑍(𝑋0)�̂�(𝑋0)] (Eq. 9) 
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Using Eq. 7 The error variance 𝜎𝐸 can be rewritten as: 

 𝜎𝐸 = 𝐶(𝑍(𝑋0), Z(𝑋0)) + ∑∑ 𝜆𝑖𝜆𝑗𝐶(𝑍(𝑋𝑖), Z(𝑋𝑗))
𝑛
𝑗=1 − 2∑ 𝜆𝑖𝐶(𝑋0, 𝑋i)

𝑛
𝑖=1  (Eq. 10) 

Or in terms of the variogram as: 

𝜎𝐸 = 𝐶(𝑍(𝑋0), Z(𝑋0)) + ∑∑𝜆𝑖𝜆𝑗

𝑛

𝑗=1

(𝐶(0) − 𝛾(𝑍(𝑋𝑖), 𝑍(𝑋𝑗)))

− 2∑𝜆𝑖 (𝐶(0) − 𝛾(𝑍(𝑋0), 𝑍(𝑋𝑖)))

𝑛

𝑖=1

 

      = 𝛾(ℎ) + 𝐶(ℎ) + 𝐶(0) − ∑∑𝜆𝑖𝜆𝑗𝛾(𝑍(𝑋𝑖), 𝑍(𝑋𝑗))

𝑛

𝑗=1

𝑛

𝑖=1

− 2𝐶(0)

+ 2∑𝜆𝑖𝛾(𝑍(𝑋0), 𝑍(𝑋𝑖))

𝑛

𝑖=1

 

 𝜎𝐸 = 2∑ 𝜆𝑖𝛾(𝑍(𝑋0), 𝑍(𝑋𝑖))
𝑛
𝑖=1 − ∑ ∑ 𝜆𝑖𝜆𝑗𝛾(𝑍(𝑋𝑖), 𝑍(𝑋𝑗))

𝑛
𝑗=1

𝑛
𝑖=1  (Eq. 11) 

The other part of the kriging system is given by the constraints of the optimization problem, 

such as the unbiased condition of the kriging estimator. 

Ordinary kriging (OK) is the most popular variant of Kriging and it serves well in most 

situations with its assumptions easily satisfied. That is why it is often regarded as the ‘work-

horse’ of geostatistics (Oliver & Webster, 2014). It requires only knowledge of the variogram 

function and data for its implementation. It is also robust with regards to moderate departures 

from those assumptions and a less than an optimal choice of model for the variogram. 

For satisfying the condition of unbiased estimator it must follow that:  

𝐸[𝑍(𝑋) − �̂�(𝑋)] = 0 

                                = 𝐸[𝑍(𝑋)] − ∑𝜆𝑖𝐸[𝑍(𝑋𝑖)]

𝑛

𝑖=1

 

                                = (1 − ∑𝜆𝑖

𝑛

𝑖=1

)𝜇 = 0 
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 ∑ 𝜆𝑖
𝑛
𝑖=1 = 1  (Eq. 12) 

Now imposing the constraint in (Eq. 12 using a Lagrange multiplier, the error variance to be 

minimized becomes: 

 𝜎𝐸 = 2∑ 𝜆𝑖𝛾(𝑋𝑖, 𝑋0)
𝑛
𝑖=1 − ∑ ∑ 𝜆𝑖𝜆𝑗𝛾(𝑋𝑖, 𝑋𝑗)

𝑛
𝑗=1

𝑛
𝑖=1 − 2𝑣(∑ 𝜆𝑖

𝑛
𝑖=1 − 1) (Eq. 13) 

Computing the partial derivatives of  (Eq. 13) with respect to the 𝑛 + 1 variables in the same 

equation (kriging weights 𝜆𝑖 and the Lagrange multiplier 𝑣) leads to the Kriging system of 

equations for computing the weights 

𝜕𝜎𝑒

𝜕𝜆𝑖
= 0, 𝑖 = 1,2, … , 𝑛 

 
𝜕𝜎𝑒

𝜕𝑣
= 0 (Eq. 14) 

The Kriging system is then: 

∑𝜆𝑖𝛾(

𝑛

𝑖=1

𝑋𝑖, 𝑋𝑗) + 𝑣 = 𝛾(𝑋𝑗, 𝑋0),    𝑗 = 1,2, … , 𝑛 

 ∑ 𝜆𝑖
𝑛
𝑖=1 = 1 (Eq. 15) 

Which in matrix notation becomes:  

 

[
 
 
 
 
 

𝛾(𝑋𝑖, 𝑋𝑗) 𝛾(𝑋𝑖, 𝑋𝑗+1) … 𝛾(𝑋𝑖, 𝑋𝑛) 1

𝛾(𝑋𝑖+1, 𝑋𝑗) 𝛾(𝑋𝑖+1, 𝑋𝑗+1) ⋯ 𝛾(𝑋𝑖+1, 𝑋𝑛) 1

⋮ ⋮ ⋱ ⋮ ⋮
𝛾(𝑋𝑛, 𝑋𝑗) 𝛾(𝑋𝑛, 𝑋𝑗+1) … 𝛾(𝑋𝑛, 𝑋𝑛) 1

1 1 ⋯ 1 0]
 
 
 
 
 

[
 
 
 
 

𝜆𝑖

𝜆𝑖 + 1
⋮

𝜆𝑛

𝑣 ]
 
 
 
 

=

[
 
 
 
 
 

𝛾(𝑋0, 𝑋𝑗)

𝛾(𝑋0, 𝑋𝑗+1)

⋮
𝛾(𝑋0, 𝑋𝑛)

1 ]
 
 
 
 
 

 (Eq. 16) 

 

This spatial interpolation technique presents a series of advantages with respect to the others, 

such as accounting for the relative position of sampling points and the so-called screen effect. 

The first relates to the property of assigning more weight to isolated samples than to those that 
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are clustered, and the second is the property of assigning less weight to samples laying behind 

closer samples. 

2.1.2 Correlation coefficient as measures of interdependence 

The next measures of linear and nonlinear dependency are used to study the correlation between 

two sets concerning different lifelines and containing repair times prior full system restoration 

at different locations. 

2.1.2.1 Pearson’s correlation coefficient 

Pearson’s correlation coefficient has already been used as a measure of association to quantify 

the degree of interdependence between infrastructure systems (Mendonça & Wallace, 2006; 

Paredes-Toro et al., 2014; Wu et al., 2012). Pearson’s rho coefficient (Rodgers & Nicewander, 

1988) describes the degree of linear correlation between two sets of data, and it is a generally 

accepted metric to quantify interdependence. 

 𝜌 =
∑(𝑋𝑖−�̅�)(𝑌𝑖−�̅�)

[∑(𝑋𝑖−�̅�)2 ∑(𝑌𝑖−�̅�)2]1 2⁄  (Eq. 17) 

In this thesis, sets 𝑋 and 𝑌 contain times of repairs prior to the full restoration of lifeline systems 

𝑖 and 𝑗 at specific locations. 

2.1.2.2 Rank correlation coefficients 

Since the presented methodology attempts to capture not only the intensity of coupling but also 

its spatial distribution and range, rank correlation coefficients such as Kendall’s tau and 

Spearman’s rho are used to quantify nonlinear dependency of lifeline systems. 

Again, in function of all 𝑛2 pairs of sets 𝑋 and 𝑌, Kendall’s tau is defined as (Johnson & 

Gibbons, 1973): 

 𝑇 =
∑ ∑ 𝑈𝑖𝑗𝑉𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1

[(∑ ∑ 𝑈𝑖𝑗
2𝑛

𝑗=2
𝑛
𝑖=1 )(∑ ∑ 𝑉𝑖𝑗

2𝑛
𝑗=1

𝑛
𝑖=1 )]

0.5
  
 (Eq. 18) 
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With 𝑈𝑖𝑗 = 𝑠𝑔𝑛(𝑋𝑗 − 𝑋𝑖) and 𝑉𝑖𝑗 = 𝑠𝑔𝑛(𝑌𝑗 − 𝑌𝑖). Where, 

𝑠𝑔𝑛(𝑢) = {
−1
0
1

 

𝑖𝑓 𝑢 < 0
𝑖𝑓 𝑢 = 0
𝑖𝑓 𝑢 > 0

 

Spearman’s rho coefficient is defined as: 

 𝑅 = 1 −
6∑ 𝐷𝑖

2𝑛
𝑖=1

𝑛(𝑛2−1)
 (Eq. 19) 

Where, 

𝐷𝑖 = 𝑟𝑎𝑛𝑘(𝑋𝑖) − 𝑟𝑎𝑛𝑘(𝑌𝑖) 

2.2 Basic concepts and terminology in graph theory 

In infrastructural engineering, lifeline systems are considered interconnected spatially 

distributed components in which flow of services and commodities take place. The 

geographical, topological, and flow information of a network can be mathematically 

represented with a graph. Denoted 𝐺(𝑉, 𝐸), a graph is formed by a set 𝑉 of vertices and a set 

𝐸 of edges (Figure 4a). Each edge 𝑒𝑖 contains one or two terms of set 𝑉 to indicate its 

endpoint(s). An alternative representation of the topological information of a graph is the 

adjacency matrix 𝐴 (Figure 4b), a square matrix with as many rows and columns as number of 

vertices in the graph. The entry at row 𝑖 and column 𝑗 is the multiplicity of the adjacency from 

vertex 𝑉𝑖 to 𝑉𝑗 (Newman, 2010). In this thesis, only simplicial graphs (Gross & Tucker, 2001) 

are considered (i.e. no self-loops and multiple edges are allowed); however, directed edges are 

permitted. Thus, thee entries in the adjacency matrix can be defined as follow: 

𝑎𝑖𝑗 = {
1
0
 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑖 𝑎𝑛𝑑 𝑗

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Using the previous expression for filling adjacency matrix’s entries results into a symmetric 

square matrix. However, one can indicate direction of connectivity (Figure 4) modifying the 

previous expression as follows. 

𝑎𝑖𝑗 = {
1
0
 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑓𝑟𝑜𝑚 𝑣𝑒𝑟𝑡𝑒𝑥 𝑖 𝑡𝑜 𝑗

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

 

Figure 4. Basic concepts in graph theory. (a) Directed graph and its (b) Adjacency matrix. 

An important definition when describing the connectedness of graph is the concept of a path. 

A path is the combinatorial analog of a continuous image of a line segment. This is, for a given 

source and terminal nodes, a succession of vertices and edges serves as a path to connect them. 

In Figure 4a, there is a path between vertices 1 and 4 (𝑉 = {1,2,3,4}; 𝐸 = {{1,2}, {2,3}, {3,4}}). 

Common algorithms for finding paths or deciding their existence are Dijkstra and Tarjan’s 

strongly connected components. Finding paths become relevant in the study of infrastructure 

networks since they recognize internal connection routes or loss of functionality of components 

in the aftermath of a perturbation. 

Another relevant concept is planarity of graphs. A planar graph is a graph that can be drawn in 

the plane in such a way that its edges meet only at their end vertices, if they meet at all 

(Barthélemy, 2011; Clark & Holton, 1991). Planarity in infrastructure networks is common 

1

2

3

4

𝐴 = (

0 1 0 0
1 0 1 0
0 0 0 1
0 1 1 0

) 
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because physical objects form graph’s edges, and thus, overlapping connections are not always 

possible or cost effective.  

In addition to convenient mathematical representations, graph theory and network science past 

studies compare properties of real networks to those of hypothetical models (Brando, Lin, 

Giovinazzi, & Palermo, 2012; Brummitt, D’Souza, & Leicht, 2012; Cardillo, Scellato, Latora, 

& Porta, 2006; Hines, Blumsack, Sanchez, & Barrows, 2010; Lhomme, Serre, Diab, & 

Laganier, 2013; Yazdani & Jeffrey, 2010). This is relevant to lifeline systems’ modelers for 

developing robust vulnerability assessment methods and for designing networks that are more 

resilient by studying the space of variables influencing lifelines’ response to disruptions (e.g. 

Network redundancy and robustness). In this study, we use spatial models considering lattice-

like structures (Watts & Strogatz, 1998) and random geometric graphs (Dı́az, Penrose, Petit, & 

Serna, 2001), and for both ,we consider their extreme topological formations (Cardillo et al., 

2006) (Figure 5): Greedy Triangulations (GT) and Minimum Spanning Trees (MST). 

  

Figure 5. Example network models. (a) Lattice-like structure with a GT approximation as topological formation. (b) Random 

geometric structure with a MST topology. 
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3 KRIGING AIDED SPATIAL CORRELATION 

ALGORITHM (KASCA) 

In this section, we first describe the algorithm for quantifying intensity and range of spatial 

correlations among lifeline systems. Two main subroutines fallow a data preparation phase: the 

computation of Kriging restoration surfaces filling space in a polar mesh-like distribution, and 

the computation of spatially lagged auto-correlations and cross-correlations. In addition, 

spatially distributed coupling intensities are derived to support utility and emergency managers 

with recommendations on location and allocation of resources. Lastly, we present remarks in 

the theory, assumptions, and limitations of this approach. 

3.1 Kriging restoration surfaces 

Let us assume that a pair of lifelines are damaged after some disruptive event and time of 

repairs prior full restoration at different locations of the systems are known. Typically, these 

are available through utility operator’s records of outage time of components prior their 

restoration, and given that they are spatially distributed they provide field observations for 

studying the spatial variability of systems’ restoration. 

Considering the time of repairs prior full restoration of system 𝑖 sampled at location 𝑗 as the 

field observations of the random variable 𝑍𝑖(𝑋𝑗), it is possible to start the variogram 

formulation as follows. First, one should compute the variogram estimator 𝛾𝐸(ℎ) =

1

2𝑚(ℎ)
∑ {𝑍(𝑋𝑖) − 𝑍(𝑋𝑖𝑖+ℎ)}

𝑚(ℎ)
𝑖=1  (Eq. 6). Secondly, using a weighted least-squares 

approach, covariance or variogram models (e.g. 𝛾(ℎ) = 𝑐{1 − exp [(−
|ℎ|

𝑟
)
𝛼

]} (Eq. 7) are 

fitted to the variogram estimator. In this study stable models were considered at the end, after 

finding out for several cases that they provide the lowest mean squared residuals. In addition, 

the non-linear regression was performed using the Levenberg–Marquardt and the weights 
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considered are those proposed by Cressie & Wikle (2011) For more detailed steps and 

guidelines computing the variogram refer to the literature cited in the previous section.  

After modeling the spatial variability of systems’ restoration, it is possible to perform Kriging 

interpolation at unknown locations. For reasons that are going to become clearer in the next 

section, a Kriging surface representing system’s 𝑖 time of repairs prior full restauration across 

a region is formed by estimates computed in a polar mesh-like structure around each field 

observation. Cross-estimates are computed too, this is, using the variogram and field 

observations of a complementary system 𝑗 to perform Kriging interpolation, estimates are 

computed again around field observations of system 𝑖. 

3.2 Spatial correlation analysis 

Here we show how to derive spatially lagged auto-correlations and cross-correlations for 

generating global correlation maps function of relative position considering distance and 

direction, and global correlation plots function of relative position considering distance only. 

The general idea that will be extended to derive global correlation maps and plots is that of 

creating a vector filling it with restoration times of system 𝑖 at certain locations (e.g., where its 

components are located) and create another vector containing restorations of system 𝑗 at the 

same locations using Kriging estimates. The resulting value will be the global strength of 

coupling between systems 𝐼𝑠𝑡𝑟(𝑖,𝑗), that can be regarded as a measure of dependency of system 

𝑗 to system 𝑖. We take the previous notion of co-located correlation one step further by 

replacing the second vector with one filled with Kriging estimations at relative positions 

ℎ(𝑟𝑖, 𝜃𝑖)  with respect to the ones considered in the first vector. Filling with lagged coupling 

strength estimates 𝐼𝑠𝑡𝑟(𝑖,𝑗)(ℎ(𝑟𝑖, 𝜃𝑖)) a polar mesh-like grid we now can verify rich 

heterogeneity in spatial dependency. 
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In addition to global correlation maps and plots, we compute their analogs local correlation 

maps and plots. After learning correlation range sin during global analysis, a new local polar 

mesh is used for deriving Kriging estimates around field observations matching location of 

system’s components. Again, crossed Kriging estimates are computed across lifeline systems 

for enabling the computation of cross-correlations. The sets of vectors to be considered in 𝜌 =

∑(𝑋𝑖−�̅�)(𝑌𝑖−�̅�)

[∑(𝑋𝑖−�̅�)2 ∑(𝑌𝑖−�̅�)2]1 2⁄  (Eq. 17-𝑅 = 1 −
6∑ 𝐷𝑖

2𝑛
𝑖=1

𝑛(𝑛2−1)
 (Eq. 19 refer to one vector filled 

with Kriging estimates around field observation 𝑍𝑖(𝑋𝑗) at relative positions following the new 

local polar mesh distribution and using geostatistical information of system 𝑖, and another 

vector with Kriging estimates matching previous locations but using the geostatistical 

information of a complementary system 𝑗. 

3.3 Summary and theory of the algorithm 

 

The emerging KASCA methodology considers the state of a network, measured based on a 

performance quantity, as a realization of a random field in the two dimensional Euclidean 

space. This consideration allows intra-dependence studies when topological information from 

networks is not available, and allows interdependent spatial analyses by estimating a spatial 

covariance structure from field data, however the network space is not considered and the 

topological effect is expected to be recovered via spatial correlations with the coupling range. 

As it will be shown later, the covariance structure will be substituted by the variogram, a model 

of the spatial variability that can be obtained from failure and recovery data. 

 

Prepare lifeline 
system data 

representing the 
realization of the 

correlated random 
process

Estimate the spatial 
covariance structure 

via the variogram

Perform kriging 
estimations at 

needed locations 

Carry out the spatial-
time lagged cross-

correlation analyses.
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Natural or man-made process Space of variability 

KASCA  assumed 

variability 

Seismic Demands 

 

Euclidean Euclidean 

Component Failure probabilities 

and serviceability rates 

  

Euclidean and 

Network 

Euclidean 

Component Recovery times 

 

Euclidean and 

Network 

Euclidean 

 

For instance, Figure 6-a depicts a network after a disruptive event indicating damaged arcs in 

red disconnecting some demand nodes from supplying nodes. Figure 6-b shows in red again 

the minimum arcs that were recovered to reconnect the isolated demand nodes to the network 

and find a path to the supplying nodes. Figure 6-c shows the same network with some line 

segments normal to the plane containing the network; the length of this normal line segments 

are proportional to the time of disconnection between the disruption and the recovery, in fact, 

they can only be seen for demand nodes that were disconnected after the disruptive event. Since 

each component has a mean recovery time and a standard deviation that can be obtained via 

numerical probabilistic approaches (such as Monte Carlo simulation), one can work with the 

normalized residuals (Figure 3) satisfying the constant mean condition for applying OPK. 
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Figure 6. A network consisting on supplying and demand nodes. (a) Partially disrupted network (in Red) after an 

earthquake. (b) The minimum recovered arcs and components to ensure recover connectivity. (c) Normal segments to the 

plane containing the network indicate times required for resuming operation at nodes. 
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4 SIMULATION FRAMEWORK FOR TESTING KASCA 

In this section, we describe the simulation framework adopted in this thesis for generating 

restoration data of lifeline systems subjected to seismic perturbations. First, the modeling 

approach considered for evaluating interconnected lifeline systems’ response to an earthquake 

scenario in the literature is outlined. Secondly, the recovery strategy for deriving time of repairs 

prior full system restoration of omponents is described. Lastly, results from applying KASCA 

to the simulated recovery data is presented. 

4.1 Interdependent lifeline system's response to an earthquake scenario. 

The first step of the simulation framework used in this thesis is generating independent 

networks using the models reviewed in section 2. We start from lattice-like (Watts & Strogatz, 

1998) and random geometric (Dı́az et al., 2001) structures to establish the spatial configuration 

of components to later adapt their topologies to extreme cases in planar networks. The 

algorithms for generating lattice-like graphs and random geometric networks are not of great 

relevance since the final topology of networks is complemented or degraded to obtain Greedy 

Triangulations (GT) and Minimum Spanning Trees (MST) respectively. Conversely, the 

algorithms used in this thesis for computing these extreme topological models are the greedy 

algorithm (Devadoss & O’Rourke, 2011) for computing GTs and Kruskal’s algorithm (Buhl et 

al., 2006) for computing MST’s. Briefly, the greedy algorithm consists of adding non 

intersecting edges to the initial network until maximizing the number of triangulations possible 

we the prescribed conditions; however, edges that connect nodes along the convex hull that are 

not immediate neighbors are neglected  here. These edges of great length are rare in real 

networks and for this reason here we consider approximations of greedy triangulations. In 

regards to the algorithm for generating MSTs, it consists in subtracting all edges from a graph 

and ranking them with respect to their length such that they are included again testing for each, 
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however, that no cycles are created in the graph with their inclusion. In addition to network 

science aspects of lifelines generated in this simulation approach, there are operational 

characteristics to consider in order to make them represent real lifelines. We randomly flag 

vertices as part of one of three representative groups of most lifelines distributing services to 

communities: generation, distribution, and transmission or intersection. The proportion of 

nodes assigned to each group follows that found in the literature (Ouyang, Dueñas-osorio, & 

Asce, 2011; Poljanšek, Bono, & Gutiérrez, 2012). 

What follows in this simulation framework is defining the physical interconnections between 

systems. These are typically established using service areas but here we simply connect 

systems' components needing external services with the nearest component providing that 

service in a complementary network. This approach is realistic in the sense that in real 

networks, demand vertices are supplied from the nearest distribution network component (e.g. 

Electricity substations and telecommunication tower antennas). 

Defined all interdependent lifeline systems, we now provide a geographical context in which 

the seismic hazard is present. In the field of infrastructure networks, the Shelby county 

earthquake has been used (Adachi & Ellingwood, 2008) for studying lifelines' response to 

seismic perturbations and for applications of models supporting decision-makers. In this thesis, 

the Shelby county earthquake is used to derive seismic demands but lifelines considered are 

those generated as stated previously. Here we provide a general description on how seismic 

demands were generated. For more details Adachi & Ellingwood, 2008, 2009: 

- Select an attenuation law from the literature, select the parameters that better adjust to 

the location of interest, and compute seismic demands at components' locations. Here 

we adopt the attenuation laws proposed by Atkinson & Boore (1995) which offer 

parameters that were computed for Easter North America. 
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- Select fragility curves for lifelines components. Here we used those suggested by 

FEMA. 

- Compute failure probabilities of components using their fragility curves and seismic 

demands estimated using the attenuation laws. 

To evaluate the network response, a cyclic-based interdependence is considered for the failure 

propagation under the assumption of instantaneous communication of failure and information 

across systems. This is, after evaluating components’ loss of operation through connectivity 

analyses for each system, these are iteratively reevaluated considering external disconnections 

as new source of damage at each cycle until reaching a steady state for all systems. For each 

state, evaluate connectivity of vertices for the next cases: generation nodes are operating if they 

did not fail distribution nodes and transmission nodes are in operation if they are connected to 

a not failed generator node. 

Once component's failure probabilities are known, it is possible to simulate lifeline's response 

to the ground motion. The simulation of the mean response that will be evaluated with the 

Kriging approach is as follows: 

- Generate pseudo random numbers to simulate for n realizations components’ state 

up/down (i.e. not failed or failed). 

- Compute the connective coming from direct damage and using the cyclic-based 

approach update interdependence induced failures. The iterative procedure is done until 

reaching a steady state of the system. 

- At the, we are given a network whose failed and/or disconnected components are 

known. 
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5 TESTING AND ANALISYS OF KRIGING BASED TOOLS 

BY COMPUTATIONAL EXPERIMENTS 

In this section, we outline the analyses carried out by the KASKA approaches to test the 

influence of functional and network level properties on the quantified interdependence 

measures as well as the robustness of the quantification method. In the end of the section, we 

analyze the results obtain in the light of confirming KASCA validity for measuring degree of 

coupling across lifeline systems’ via spatial correlations. 

Previous results from applications of KASCA on real networks where interpreted taking into 

account their spatial layout only. Nevertheless, an impact due to network level properties on 

the performance of lifelines systems is warranted but their connections to spatial properties 

were not completely understood in the context of the previous methodology. 

We use the KASKA approach on idealized networks, specifically for extreme models, 

Minimum Spanning Trees (MST) and Greedy Triangulations (GT).  This approach depicts how 

the quantified spatial correlation metrics are intrinsically related to network properties such as 

the algebraic connectivity and the spectral gap. Then, we confirm our remarks using models 

among these limit cases, to expose the sensitivity of the metrics to the mentioned properties. 

We should clarify that the use of idealized scenarios for simulating failure and recovery data is 

not a limitation for this study; it is instead, a systematic study of how interdependencies can be 

released on failure and recovery phases and identifying crucial parameters governing them. 

The space of variables to be study form the network science perspective are: 

- Spatial distribution of components according to the network model considered. 
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- Meshedness coefficient considering extremal topological formations, in particular a 

greedy triangulation approximation and minimum spanning tree. 

- Coupling level established ranging the percentage of vertices requiring external 

connections, this is, have dependency with outside systems’ components. 

In regards to the functional parameters, these are fixed to a proportion commonly found in real 

networks. 

 

  
Figure 7. Interdependence strengths obtained using KASCA for different levels of coupling. 

5.1 Discussion and analysis of results 

Here, the global response is used to verify KASCA’s validity for deriving coupling strengths. 

For low percentage of removed nodes and edges, the Interdependence length degrades rapidly 

on the GT. MST exhibits 150% more interdependence length. 

Depending on the intensity of the event, GT networks exhibit fast decaying interdependence 

strength and, when the intensity of the event increases, this behavior tends to the one displayed 

by MST networks. This was the expected behavior, since from one model to the other, network 

properties such as the Meshedness coefficient (a measure of redundancies in the system) 
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condition the minimum number of network components to recover. However, when the 

intensity of the event is high enough, total destruction of both networks is expected and if a 

minimal functional level of the network is the target on the recovery efforts, similar actions 

take place in both networks due to their shared spatial setup. 
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6 CONCLUSIONS AND FUTURE RESEARCH 

The results of this study confirm the applicability of the kriging based techniques to quantify 

spatial interdependencies across systems from failure and recovery data of utilities for 

supporting model validation and calibration. Also, we show that the emerging kriging based 

techniques can be used to visualize failure and recovery data to aid operators or emergency 

managers envisioning interdependent phenomena among multilayered networks in time and 

space via volume rendering techniques. 

The enhanced Kriging-based tools supports that interdependencies across systems are 

heterogeneous in space, as found by Wu et al. (Wu et al., 2012) after using recovery data in the 

context of the 2010 Mw 8.8 Chile Earthquake.  However, in this study time is addressed and 

there is control over the interdependencies being activated, and since, does not suffer from the 

statistical noise coming from different interdependencies manifesting simultaneously (e.g. 

change of decision pattern in the course of recovery due to resource availability, among other 

statistical distortions encountered when applying  KASCA to real non specialized data 

(Paredes-Toro et al., 2014; Wu et al., 2012). The fact that a network can vary its configuration 

due to disruptions or its recovery clearly implies that interdependencies are not only 

heterogeneous in space, but in time as well. 

It is clear then that interdependencies are spatial-temporal dependent relationships that can 

manifest through the network phases (service conditions, exceptional event, and recovery 

actions) as a function of the event, networks fragility, degree of coupling. 

This technique covers results provided by other empirical approaches that aim to capture 

frequent and significant failure patterns (McDaniels, Chang, Peterson, Mikawoz, & Reed, 

2007) and other correlation analyses (Dueñas-Osorio & Kwasinski, 2012) via interdependence 
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length and strength estimations. However, the main advantage of the proposed methods is that 

it quantifies and locates in space interdependencies between interconnected networks that can 

easily be mapped to the modeling practices. Having a complete understanding of the 

interdependence model assumptions and their implications is determinant to verify that a 

certain model has an holistic abstraction of the possible coupled behavior of lifeline systems, 

and when it is not the case this method suggest calibrations that can be translated into the 

model.  

Figure 7 demonstrate how taking time into account for the computation of correlations is able 

to capture coupling strengths and physical their directionality (not to be confused with spatial 

directionality). This represents a major advance respect the classical method that. 

This thesis has demonstrated the validity of computing spatial correlations of networks’ 

restoration to derive coupling measures that consider their directionality. However, the 

presented tool was sensitive to superposition of interdependencies (Figure 7). Future research 

should aim to consider filtering methods of  data to discard spurious correlations. In addition, 

future efforts pursuing spatial techniques should integrate fully time for a joint Spatial-

Temporal method. A sequential approach would capture in time intensity, length, spatial and 

functional directionalities due to physical and logical interdependencies, verifying that they are 

functions of the event and the decision-making process for a given interdependent network. 

The classical approach of this method provided length and directionalities of correlations. The 

interdependence length obtained via global averaged correlation plots represents a 

comprehensive measure of the influence extension that recovery efforts had over the network. 

Also, directionality of the recovery scheme was captured by means of the global correlation 

maps, suggesting that positive and negative correlations where closely related to functional and 

logistical spatial interdependencies respectively.  
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