Reference Data

¹H and ¹³C NMR spectral characterization of some antimalarial *in vitro* 3-amino-9-methyl-1*H*-pyrazolo[3,4-*b*]-4-quinolones

Jaime E. Charris,¹* José N. Domínguez,¹ Gricela Lobo,¹ Mary I. Cordero,¹ Simón E. López,² Bernardo Méndez,³ Sara Pekerar⁴ and Flavia Riggione¹

¹ Laboratorio de Síntesis Orgánica, Facultad de Farmacia,

Universidad Central de Venezuela, Aptdo. 47206, Los

Chaguáramos 1041-A, Caracas, Venezuela

² Departamento de Química, Universidad Simón Bolívar, Caracas, Venezuela

³ Escuela de Química, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela

⁴ Instituto Venezolano de Investigaciones Científicas, Altos de Pipe, Venezuela

Received 19 May 2000; accepted 5 July 2000

ABSTRACT: We report the ¹H NMR and ¹³C NMR chemical shifts and J(H,H), J(H,F) and J(C,F) coupling constants of nine 3-amino-9-methyl-1*H*-pyrazolo[3,4-*b*]-4-quinolone derivatives, all of them active against *Plasmodium falciparum in vitro*. They were characterized and assigned on the basis of ¹H, ¹³C and ¹³C–¹H (short- and long-range) correlated spectra. Copyright © 2000 John Wiley & Sons, Ltd.

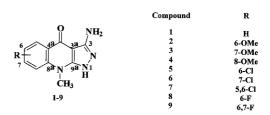
KEYWORDS: NMR; ¹H NMR; ¹³C NMR; quinolones; antimalarial

INTRODUCTION

Malaria remains one of the most important infectious disease problems in the world.¹ A significant and increasing problem in malaria control is the resistance of malaria parasites to available chemotherapeutic agents.² There is, therefore, a pressing need to identify new antimalarial drugs. We have recently reported the synthesis and spectral characterization of some 3-amino-9-phenylpyrazolo[3,4-*b*]-4-quinolones and 2,4-diamino-10-phenylpyrimido[4,5-*b*]-5-quinolones.^{3,4} These compounds proved to be an interesting family of antimalarial agents *in vitro*. In view of those findings, there has been a renewed interest in our laboratories in the synthesis, identification and spectral characterization of new analogues bearing MeO, Cl and F substituents and a methyl group at position 9. In this paper we present the ¹H NMR and ¹³C NMR data for 3-amino-9methyl-1*H*-pyrazolo[3,4-*b*]-4-quinolone derivatives (Fig. 1). They have demonstrated high antimalarial activity against a chloroquine-resistant strain of *Plasmodium falciparum in vitro*.

EXPERIMENTAL

Compounds


The quinolones $1{-}4$ were synthesized according to the literature⁵ and compounds $5{-}9$ were prepared by the synthetic route shown in Scheme 1. The respective phenyl isothiocyanate was condensed

Contract/grant sponsor: IIF.

Contract/grant sponsor: CDCH-UCV; Contract/grant number: 060344095.

Contract/grant sponsor: CYTED.

Contract/grant sponsor: CONICIT; Contract/grant numbers: LAB-97000665; S1 95000496.

Figure 1. Structures of 3-amino-9-methyl-1*H*-pyrazolo[3,4-*b*] 4-quinolone derivatives **1**–**9**.

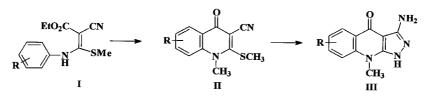
with ethyl cyanoacetate using potassium hydroxide, and MeI in dry 1,4-dioxane, the resulting *N*,*S*-acetal **I** was cyclized thermally and finally the quinolone **II** was *N*-alkylated regiospecifically by heating with potassium carbonate, DMF and MeI. The final products **III** were obtained when **II**, reacted with hydrazine hydrate. The structures and purities of the compounds were confirmed by their melting-points, elemental analysis (Atlantic Microlab, Norcross, GA, USA) and IR and NMR spectra.

NMR spectroscopy

NMR spectra were recorded on a JEOL EX 270 Fourier transform NMR spectrometer and a Bruker AMX 500 FT (500 MHz) instrument using DMSO-*d*₆; tetramethylsilane was used as an internal standard. The instruments were equipped with a 5 mm broadband probe head. Processing was performed using the program DELTA V1.8 and XWIN NMR V2.5, respectively, running on a Silicon Graphics Workstation.

In ¹H NMR experiments, the parameters were as follows: spectral window, 15 ppm; width of 30° pulse, $2\,\mu$ s; relaxation delay, 4 s; and number of scans, 8. In the ¹³C NMR experiments, the parameters were as follows: spectral window, 250 ppm; width of 30° pulse, $2.8\,\mu$ s; relaxation delay, 2 s; and number of scans, 9000–10 000. ¹H, ¹³C, COSY, HETCOR and FLOCK spectra were obtained using standard JEOL software.

Heteronuclear ¹³C⁻¹H HETCOR experiments were carried out with a spectral width of 17 000 Hz for ¹³C (F_2) and 4000 Hz for ¹H (F_1). The spectra were acquired with 1024 × 128 data points. The data were processed by exponential multiplication (LB: 3 Hz) in F_2 and sinusoidal multiplication in F_1 and zero filling was applied in F_1 . The mixing delay for single-bond correlation was 3.4 ms and for long-range bond correlation it was 70 ms and the relaxation delay was 1.5 s.


Two-dimensional inverse hydrogen detected heteronuclear shift correlation HMQC spectra and long-range correlation HMBC were obtained with the standard Bruker pulse program [${}^{1}J(C,H)$: 140 Hz, F_{2} 27.930 Hz and F_{1} 5040 Hz, relaxation delay 1.5 s, 2K × 128 data points. ${}^{n}J(C,H)$: 7 Hz, F_{2} 27.930 Hz and F_{1} 6666 Hz, relaxation delay 2.0 s, 2K × 128 data points].

RESULTS AND DISCUSSION

¹H and ¹³C NMR chemical shift assignments are given in Tables 1 and 2, respectively. The resonances were obtained by the data provided by ¹³C⁻¹H (short- and long-range) HETCOR, HMQC, FLOCK⁶ and HMBC experiments. Short-range correlations provided an unambiguous assignment of all the methine carbons. The long-range correlations determined by FLOCK and HMBC were useful in the assignment of quaternary carbons, particularly C-4a, -8a, -9a and -4, which showed similar chemical shifts for almost all of the compounds. In all the structures a three-bond connectivity was observed between the proton located at position 5 and that of the carbon at positions 4, 7 and 8a. Also, all those structures showed a three-bond connectivity between the proton of the methyl group at position 9 and that of the carbon at positions 8a and 9a. The ¹H⁻¹PF and ¹³C⁻¹⁹F coupling constants of the compounds are in agreement with the published data.⁷ In this work we found that structures **1–9** have very promising antimalarial activity against *Plasmodium falciparum in vitro*,⁸ compared with the activity of phenyl-substituted compounds reported previously.^{3,4}

^{*} *Correspondence to*: J. E. Charris, Laboratorio de Síntesis Orgánica, Facultad de Farmacia, Universidad Central de Venezuela, Aptdo. 47206, Los Chaguáramos 1041-A, Caracas, Venezuela.

Reference Data

Scheme 1. Preparation of compounds 5-9.

Table 1.	¹ H NMR chemical shifts	(ppm) and J(H,H) and J(F,H)	coupling constants (Hz) for	^r compounds 1–9
----------	------------------------------------	-----------------------------	-----------------------------	-----------------------------------

Compound	NH ^a	$\mathrm{NH_2}^\mathrm{a}$	OCH3 ^b	NCH3 ^b	5-H	6-H	7-H	8-H
1	11.72	6.41		3.62	8.13d, J 7.7	7.13dd, J 7.7, 6.9	7.65dd J 7.2, 6.9	7.42d, J 7.2
2	11.73	6.33	3.81	3.61	7.61d, J 2.9		7.27dd, J 9.2, 2.9	7.41d, J 9.2
3	11.67	6.32	3.89	3.60	8.05d, J 8.9	6.72dd, J 8.9, 3.2		6.79d, J 3.2
4	11.79	6.30	3.88	3.90	7.79d, J 7.8	7.08dd, J 7.4, 7.7	7.26d, J 7.4	
5	11.49	6.11		3.61	8.07d, J 2.5		7.46dd, J 8.9, 2.5	7.24d, J 8.9
6	11.77	6.44		3.61	8.09d, J 8.4	7.14d, J 8.7		7.48s
7	11.76	6.53		3.61			7.78d, J 8.9	7.42d, J 8.9
8	11.89	6.46		3.63	7.78d, J 8.8		7.50d, J 7.4	7.47d, J 4.3
9	11.82	6.50		3.61	7.95dd, J 10			7.51dd, J 11

^a Broad singlet.

^b Singlet.

Table 2. ¹³C NMR chemical shifts (ppm) for compounds 1–9^a

Carbon	1	2	3	4	5	6	7	8	9
C-3	149.07	148.91	148.80	149.16	149.35	149.23	149.93	149.22	149.46
C-3a	95.81	95.55	97.83	95.60	95.73	95.58	96.09	95.37	94.95
C-4	174.66	173.56	174.39	174.06	174.53	173.68	173.60	173.73	172.88
C-4a	123.17	123.74	116.73	125.56	124.16	121.74	120.16	123.67	119.49
C-5	126.38	106.73	128.23	118.82	125.81	128.32	131.53	110.90a	113.95e
C-6	120.08	153.18	107.88	120.79	125.06	119.95	125.04	156.79b	151.53f
C-7	133.04	121.98	163.46	116.69	132.50	137.90	132.98	120.62c	120.24g
C-8	114.32	115.32	97.83	150.02	115.54	113.96	115.11	116.49d	103.72
C-8a	143.21	137.64	144.71	134.45	141.64	143.94	144.36	139.97	140.37
C-9a	151.73	152.07	151.88	152.96	151.72	151.96	150.68	151.64	152.37
NCH ₃	30.92	31.97	31.20	29.19	30.80	30.84	32.08	30.73	31.70
OCH ₃		55.93	56.02	57.37					

^a J_a 22.32; J_b 243.60; J_c 23.88; J_d 5.19; J_e 24.9; J_f 242; J_g 225.30 Hz.

Acknowledgments

We thank the IIF, CDCH-UCV (grant No. 060344095 PG.06-30-4590-2000), CYTED and CONICIT (grant Nos LAB-97000665 and S1 95000496) for financial support.

REFERENCES

- World Health Organization, Weekly Epidemiol. Rec. 1997; 72: 269.
 Oaks SC, Mitchell VS, Perason GW, Carpenter CCJ (eds). Malaria: Obstacle and Opportunities. National Academy Press: Washington, DC, 1991; Ridley RG. J. Pharm. Pharmacol. 1997; 49S: 43.
- Domínguez JN, Basante W, Charris J, Riggione F. Farmaco 1996; 51: 407.
- Domínguez JN, Charris JE, Basante W, Méndez B. Magn. Reson. Chem. 1998; 36: 454.
- 5. Domínguez JN, Charris JE. Org. Prep. Proced. Int. 1993; 25: 683.
- Reynols WF, McLean S, Porpick-Dumont M, Enriquez RG. Magn. Reson. Chem. 1989; 27: 162.
- Pretsch E, Clerc T, Seibl J, Simon W. Tables of Spectral Data for Structure Determination of Organic Compounds. Springer: New York, 1989.
- Charris JE, Domínguez JN, Lobo G, Cordero MaI, Moreno JR, Riggione F. Arch. Venez. Farmacol. Ter. in press.