TRABAJO ESPECIAL DE GRADO

INFLUENCIA DEL BORDE DE ATAQUE SOBRE LAS CURVAS CARACTERISTICAS AERODINAMICAS DE PERFILES SERIE NACA Y SZ-2000

Presentado ante la ilustre Universidad Central de Venezuela por el Br. Daniel A. Trujillo G. para optar al Título de Ingeniero Mecánico TRABAJO ESPECIAL DE GRADO

INFLUENCIA DEL BORDE DE ATAQUE SOBRE LAS CURVAS CARACTERISTICAS AERODINAMICAS DE PERFILES SERIE NACA Y SZ-2000

TUTOR ACADÉMICO: Prof. Stefan Zarea

Presentado ante la ilustre Universidad Central de Venezuela por el Br. Daniel A. Trujillo G. para optar al Título de Ingeniero Mecánico

Caracas, 2008

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA MECANICA DEPARTAMENTO DE ENERGETICA

Caracas, 17 de julio de 2.008

<u>ACTA</u>

Los abajo firmantes, miembros del jurado por el Consejo de Escuela de Ingeniería Mecánica, para evaluar el Trabajo Especial de Grado presentado por el bachiller:

DANIEL TRUJILLO

Titulado:

"CUANTIFICACION DEL EFECTO DE LA MODIFICACION DEL BORDE DE ATAQUE SOBRE LOS PARAMETROS AERODINAMICOS DE PERFILES NACA Y SZ-2000"

Consideran que el mismo cumple con los requisitos exigidos por el plan de estudio conducente al Titulo de Ingeniero Mecánico.

Cesar Ferrer Jurado

Prof. José Luís Perera

Prof: José Luís Perera Jurado

Prof. Stefan Zarea Tutor

"Hacia el 50ª Aniversario del 21 de noviembre de 1957, Día del Estudiante"

Autor: Trujillo G. Daniel A.

INFLUENCIA DEL BORDE DE ATAQUE SOBRE LAS CURVAS CARACTERISTICAS AERODINAMICAS DE PERFILES SERIE NACA Y SZ 2000 Tutor Académico: Prof. Stefan Zarea, Tesis 283 pag.

Caracas, UCV. Facultad de Ingeniería. Escuela de Ingeniería Mecánica

Palabras Claves: Perfiles Aerodinámicos, Método ZAREA, Curvas Polares, Borde de Ataque.

RESUMEN

En este trabajo especial se han realizado estudios detallados en algunos perfiles de dos series determinadas, NACA de 6 dígitos y SZ-2000 a los cuales se les han hecho modificaciones que consisten en sustituir el borde de ataque extendido (intradós y extradós) aproximadamente un 20% de la cuerda, por curvas semejantes a parábolas siguiendo un método diseñado por el tutor de esta tesis Prof. S. Zarea (patente pendiente). Por medio de un Software (VisualFoil 4.1) se obtuvo el valor de los coeficientes aerodinámicos CL, CD, CM, para un rango aproximado de 15 grados de ángulo de ataque y 5 valores de numero de Reynolds. Se trazaron las curvas características de cada perfil (base y modificado) con el fin de estudiar la influencia del borde de ataque en las curvas características aerodinámicas y de esta manera establecer comparaciones de dichos perfiles modificados con los perfiles base, cuantificando y resaltando el incremento resultante en los valores de coeficiente de sustentación y fineza aerodinámica para valores con ángulo de ataque de 0°, 10° y máximos valor de dichos coeficientes, con respecto a los perfiles base seleccionados. En todos los casos estudiados las modificaciones del borde de ataque evidencia un incremento del coeficiente de sustentación. La fineza aerodinámica mostró un incremento para 95% de los perfiles estudiados demostrándose la eficacia del procedimiento de modificación utilizado. Para finalizar se observo que la modificación en el borde de ataque de un perfil tiene un efecto favorable y significativo sobre sus características aerodinámicas. Utilizando el software CFX se realizo la simulación del flujo alrededor un perfil NACA de 6 dígitos y el homologo modificado obteniendo el espectro aerodinámico, la distribución de presión y velocidad y los valores de los coeficientes CL, CD que difieren de los datos experimentales. El método de modificación del borde de ataque es fácil de aplicar y permitirá extender el campo de aplicación de perfiles existentes para resolver problemas de interés practico.

DEDICATORIA

Dedico este trabajo a mis padres, Armando y Delsy y a mis hermanos Damián y Dyanis con quienes he contado en todo momento.

AGRADECIMIENTOS

Para la realización de este trabajo especial aprovecho esta oportunidad para expresar mi reconocimiento y gratitud a:

- A mi Tutor Prof. Dr. Ing. Stefan Zarea, quien propuso el tema de estudio y que facilito el programa VisualFoil 4.1, por permitirme ser un combatiente en el desarrollo de su línea de investigación en el área de perfiles aerodinámicos y brindarme sus valiosos conocimientos, sugerencia y permanente supervisión para la elaboración del presente trabajo especial. Gracias a su perseverancia, buena disposición y animo de trabajo aprendí que lo mas importante para cumplir un objetivo es la constancia, voluntad, orden, espíritu creativo y mucho trabajo.
- Al Prof. Julio Segura por haberme facilitado el acceso a la sala de tesistas y el software CFX utilizado para el desarrollo del capitulo V de este trabajo especial, además del buen trato y sus valiosas sugerencias para el uso de dicho software.
- Al Ing. Miguel Barrito por haberme enseñado las herramientas necesarias en el software CFX para la realización de las simulaciones computacionales.
- Al Ing. Julio Aparicio por su oportuna ayuda en el uso del programa VisualFoil 4.1 y por brindarme el software Grapher.
- A Jesús Urdaneta mi gran amigo por todo el apoyo brindado, gracias al trabajo en equipo se hizo posible gran parte de todo el trabajo realizado.
- A Jorge Juzga, gracias a tus sugerencias y buena disposición se hizo posible resolver algunos problemas técnicos computacionales durante la realización de este trabajo especial.

NOMENCLATURA

- C_L : Coeficiente de sustentación
- C_D : Coeficiente de arrastre
- C_M : Coeficiente de momento
- CLmax: Coeficiente de sustentación máxima
- $C_{D(Lmax)}$: Coeficiente de arrastre para sustentación máxima
- C_P , c.p: Centro de presión
- C_e : Valor experimental
- C_c : Valor computational
- *c* : Cuerda del perfil
- emax : Espesor máximo
- *f_{max}* : Curvatura máxima
- *Re* : Numero de Reynolds
- xemax : Abscisa del espesor máxima del perfil
- xf_{max}: Abscisa de la curvatura máxima del perfil
- yemax: Ordenada del espesor máximo del perfil
- α : Angulo de ataque
- α_{max} : Angulo de ataque para sustentación máximo
- $\varepsilon = C_L / C_D$: Fineza aerodinámica
- F: Fuerza hidrodinámica

F_D : Fuerza de arrastre

- *F_L*: Fuerza de sustentación
- A: Area
- E_R : Error relativo porcentual

LISTA DE FIGURAS

CAPITULO I

Figura Nº

1.5.1.1 Características geométricas principales de un perfil aerodinámico	.6
1.5.2.1 Fuerza y momento aerodinámico resultante sobre un perfil	.7
1.5.2.2 Fuerza aerodinámica resultante y sus componentes	7
1.5.3.1 Fig. 1.5.3.1. Curvas características aerodinámicas: a) coeficiente de sustentación vs.	
ángulo de ataque, coeficiente de arrastre multiplicado por 20 vs. ángulo de ataque; b)	
coeficiente de momento vs. ángulo de ataque; c) fineza aerodinámica (Cl/Cd) vs.	
ángulo de ataque; y d) Curva polar; para el perfil SZ2051, Re = 1E61	0

CAPITULO III

Figura Nº

3.1 Contornos de los perfiles NACA estudiados20
3.2.1 a) Contorno, b) Curvas Polares del perfil NACA 631-212, c) Curvas Cl/Cd y d) Cl y Cd
vs. ángulo de ataque del perfil NACA 631-21222
3.2.2 a) Contorno, b) Curvas Polares del perfil NACA 631-412, c) Curvas Cl/Cd y d) Cl y Cd
vs. ángulo de ataque del perfil NACA 631-41223
3.2.3 a) Contorno, b) Curvas Polares del perfil NACA 632-215, c) Curvas Cl/Cd y d) Cl y Cd
vs. ángulo de ataque del perfil NACA 632-21524
3.2.4 a) Contorno, b) Curvas Polares del perfil NACA 632-615, c) Curvas Cl/Cd y d) Cl y Cd
vs. ángulo de ataque del perfil NACA 632-61525
3.2.5 a) Contorno, b) Curvas Polares del perfil NACA 634-221, c) Curvas Cl/Cd y d) Cl y Cd
vs. ángulo de ataque del perfil NACA 634-22126
3.2.6 a) Contorno, b) Curvas Polares del perfil NACA 634-421, c) Curvas Cl/Cd y d) Cl y Cd
vs. ángulo de ataque del perfil NACA 634-42127
3.2.7 a) Contorno, b) Curvas Polares del perfil NACA 63A-010, c) Curvas Cl/Cd y d) Cl y Cd
vs. ángulo de ataque del perfil NACA 63A-01028
3.2.8 a) Contorno, b) Curvas Polares del perfil NACA 641-012, c) Curvas Cl/Cd y d) Cl y Cd
vs. ángulo de ataque del perfil NACA 64 ₁ -012

3.2.9 a) Contorno, b) Curvas Polares del perfil NACA 64-110, c) Curvas Cl/Cd y d) Cl y Cd
vs. ángulo de ataque del perfil NACA 64-11030
3.2.10 a) Contorno, b) Curvas Polares del perfil NACA 64-409, c) Curvas Cl/Cd y d) Cl y Cd
vs. ángulo de ataque del perfil NACA 64-40931
3.2.11 a) Contorno, b) Curvas Polares del perfil NACA 641-412, c) Curvas Cl/Cd y d) Cl y Cd
vs. ángulo de ataque del perfil NACA 641-412
3.2.12 a) Contorno, b) Curvas Polares del perfil NACA 641-612, c) Curvas Cl/Cd y d) Cl y Cd
vs. ángulo de ataque del perfil NACA 641-612
3.2.13 a) Contorno, b) Curvas Polares del perfil NACA 642-415, c) Curvas Cl/Cd y d) Cl y Cd
vs. ángulo de ataque del perfil NACA 642-415
3.2.14 a) Contorno, b) Curvas Polares del perfil NACA 643-418, c) Curvas Cl/Cd y d) Cl y Cd
vs. ángulo de ataque del perfil NACA 643-41835
3.2.15 a) Contorno, b) Curvas Polares del perfil NACA 64A-010, c) Curvas Cl/Cd y d) Cl y Cd
vs. ángulo de ataque del perfil NACA 64A-01036
3.2.16 a) Contorno, b) Curvas Polares del perfil NACA 65-006, c) Curvas Cl/Cd y d) Cl y Cd
vs. ángulo de ataque del perfil NACA 65-00637
3.2.17 a) Contorno, b) Curvas Polares del perfil NACA 652-415, c) Curvas Cl/Cd y d) Cl y Cd
vs. ángulo de ataque del perfil NACA 652-415
3.2.18 a) Contorno, b) Curvas Polares del perfil NACA 653-418, c) Curvas Cl/Cd y d) Cl y Cd
vs. ángulo de ataque del perfil NACA 65 ₃ -418
3.2.19 a) Contorno, b) Curvas Polares del perfil NACA 653-618, c) Curvas Cl/Cd y d) Cl y Cd
vs. ángulo de ataque del perfil NACA 653-61840
3.2.20 a) Contorno, b) Curvas Polares del perfil NACA 662-415, c) Curvas Cl/Cd y d) Cl y Cd
vs. ángulo de ataque del perfil NACA 662-41541
3.3.1 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)
y (b) Curvas Polares del perfil NACA 631-212. Met. Panel y Capa Límite. 180 Puntos.
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil
NACA 63 ₁ -212

3.3.2 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)
y (b) Curvas Polares del perfil NACA 631-412. Met. Panel y Capa Límite. 180 Puntos.
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil
NACA 63 ₁ -412
3.3.3 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)
y (b) Curvas Polares del perfil NACA 632-215. Met. Panel y Capa Límite. 180 Puntos.
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil
NACA 63 ₂ -21545
3.3.4 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)
y (b) Curvas Polares del perfil NACA 632-615. Met. Panel y Capa Límite. 180 Puntos.
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil
NACA 63 ₂ -61546
3.3.5 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)
y (b) Curvas Polares del perfil NACA 634-221. Met. Panel y Capa Límite. 220 Puntos.
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil
NACA 63 ₄ -22147
3.3.6 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)
y (b) Curvas Polares del perfil NACA 634-421. Met. Panel y Capa Límite. 220 Puntos.
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil
NACA 63 ₄ -42148
3.3.7 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)
y (b) Curvas Polares del perfil NACA 63A-010. Met. Panel y Capa Límite. 180 Puntos.
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil
NACA 63A-010
3.3.8 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)
y (b) Curvas Polares del perfil NACA 641-012. Met. Panel y Capa Límite. 140 Puntos.
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil
NACA 641-012

3.3.9 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)
y (b) Curvas Polares del perfil NACA 64-110. Met. Panel y Capa Límite. 120 Puntos.
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil
NACA 64-110
3.3.10 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)
y (b) Curvas Polares del perfil NACA 64-409. Met. Panel y Capa Límite. 180 Puntos.
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil
NACA 64-409
3.3.11 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)
y (b) Curvas Polares del perfil NACA 641-412. Met. Panel y Capa Límite. 140 Puntos.
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil
NACA 641-412
3.3.12 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)
y (b) Curvas Polares del perfil NACA 641-612. Met. Panel y Capa Límite. 140 Puntos.
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil
NACA 64 ₁ -61254
3.3.13 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)
y (b) Curvas Polares del perfil NACA 642-415. Met. Panel y Capa Límite. 160 Puntos.
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil
NACA 64 ₂ -41555
3.3.14 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)
y (b) Curvas Polares del perfil NACA 643-418. Met. Panel y Capa Límite. 180 Puntos.
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil
NACA 64 ₃ -41856
3.3.15 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)
y (b) Curvas Polares del perfil NACA 64A-010. Met. Panel y Capa Límite. 220 Puntos.
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil
NACA 64A-010

CAPITULO IV

4.1.1 Contorno de los perfiles de la serie SZ2000 evaluados computacionalmente118
4.1.2 Contorno de los perfiles base y sus respectivas modificaciones119
4.2.1 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)
y (b) Curvas Polares del perfil NACA 63-006. Met. Panel y Capa Límite. 220 Puntos.
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil
NACA 63-006124

4.2.2 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)
y (b) Curvas Polares del perfil NACA 63-018. Met. Panel y Capa Límite. 220 Puntos.
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil
NACA 63-018
4.2.3 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)
y (b) Curvas Polares del perfil NACA 63-206. Met. Panel y Capa Límite. 220 Puntos.
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil
NACA 63-206
4.2.4 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)
y (b) Curvas Polares del perfil NACA 63-218. Met. Panel y Capa Límite. 220 Puntos.
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil
NACA 63-218
4.2.5 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)
y (b) Curvas Polares del perfil NACA 63-418. Met. Panel y Capa Límite. 220 Puntos.
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil
NACA 63-418
4.2.6 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)
y (b) Curvas Polares del perfil NACA 63-421. Met. Panel y Capa Límite. 220 Puntos.
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil
NACA 63-421
4.2.7 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)
y (b) Curvas Polares del perfil NACA 64-006. Met. Panel y Capa Límite. 220 Puntos.
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil
NACA 64-006
4.2.8 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)
y (b) Curvas Polares del perfil NACA 64-208. Met. Panel y Capa Límite. 220 Puntos.
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil
NACA 64-208131

4.2.16 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)
y (b) Curvas Polares del perfil NACA 66-415. Met. Panel y Capa Límite. 220 Puntos.
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil
NACA 66-415
4.2.17 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)
y (b) Curvas Polares del perfil NACA 63A-210. Met. Panel y Capa Límite. 220 Puntos.
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil
NACA 63A-210
4.2.18 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)
y (b) Curvas Polares del perfil NACA 64A-010. Met. Panel y Capa Límite. 220 Puntos.
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil
NACA 64A-010141
4.2.19 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)
y (b) Curvas Polares del perfil NACA 64A-410. Met. Panel y Capa Límite. 220 Puntos.
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil
NACA 65 ₃ -618
4.3.1 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)
y (b) Curvas Polares del perfil ZAREA 63-006. Met. Panel y Capa Límite. 220 Puntos.
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil
ZAREA 63-006
4.3.2 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)
y (b) Curvas Polares del perfil ZAREA 63-018. Met. Panel y Capa Límite. 220 Puntos.
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil
ZAREA 63-018
4.3.3 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)
y (b) Curvas Polares del perfil ZAREA 63-206. Met. Panel y Capa Límite. 220 Puntos.
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil
ZAREA 63-206145

4.3.4 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)
y (b) Curvas Polares del perfil ZAREA 63-218. Met. Panel y Capa Límite. 220 Puntos.
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil
ZAREA 63-218
4.3.5 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)
y (b) Curvas Polares del perfil ZAREA 63-418. Met. Panel y Capa Límite. 220 Puntos.
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil
ZAREA 63-418
4.3.6 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)
y (b) Curvas Polares del perfil ZAREA 63-421. Met. Panel y Capa Límite. 220 Puntos.
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil
ZAREA 63-421
4.3.7 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)
y (b) Curvas Polares del perfil ZAREA 64-006. Met. Panel y Capa Límite. 220 Puntos.
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil
ZAREA 64-006
4.3.8 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)
y (b) Curvas Polares del perfil ZAREA 64-208. Met. Panel y Capa Límite. 220 Puntos.
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil
ZAREA 64-208
4.3.9 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)
y (b) Curvas Polares del perfil ZAREA 64-418. Met. Panel y Capa Límite. 220 Puntos.
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil
ZAREA 64-418
4.3.10 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)
y (b) Curvas Polares del perfil ZAREA 65-006. Met. Panel y Capa Límite. 220 Puntos.
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil
ZAREA 65-006152

4.3.18 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)	
y (b) Curvas Polares del perfil ZAREA 64A-010. Met. Panel y Capa Límite. 220	
Puntos. (c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil	
ZAREA 64A-010	160
4.3.19 a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)	
y (b) Curvas Polares del perfil ZAREA 64A-410. Met. Panel y Capa Límite. 220	
Puntos. (c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil	
ZAREA 653-618	161
4.4.1 a) Cp (0°, 5° y α_M : α paraClmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)	
y (b) Curvas Polares del perfil SZ2051. Met. Panel y Capa Límite. 220 Puntos.	
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil	
SZ2051	162
4.4.2 a) Cp (0°, 5° y α_M : α paraClmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)	
y (b) Curvas Polares del perfil SZ2052. Met. Panel y Capa Límite. 220 Puntos.	
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil	
SZ2052	163
4.4.3 a) Cp (0°, 5° y α_M : α paraClmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)	
y (b) Curvas Polares del perfil SZ2053. Met. Panel y Capa Límite. 220 Puntos.	
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil	
SZ2053	164
4.4.4 a) Cp (0°, 5° y α_M : α paraClmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)	
y (b) Curvas Polares del perfil SZ2054. Met. Panel y Capa Límite. 220 Puntos.	
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil	
SZ2054	165
4.4.5 a) Cp (0°, 5° y α_M : α paraClmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)	
y (b) Curvas Polares del perfil SZ2055. Met. Panel y Capa Límite. 220 Puntos.	
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil	
SZ2055	166

4.4.6 a) Cp (0°, 5° y α_M : α paraClmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)	
y (b) Curvas Polares del perfil SZ2056. Met. Panel y Capa Límite. 220 Puntos.	
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil	
SZ2056	167
4.4.7 a) Cp (0°, 5° y α_M : α paraClmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)	
y (b) Curvas Polares del perfil SZ2057. Met. Panel y Capa Límite. 220 Puntos.	
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil	
SZ2057	168
4.4.8 a) Cp (0°, 5° y α_M : α paraClmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)	
y (b) Curvas Polares del perfil SZ2058. Met. Panel y Capa Límite. 220 Puntos.	
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil	
SZ2058	169
4.4.9 a) Cp (0°, 5° y α_M : α paraClmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)	
y (b) Curvas Polares del perfil SZ2059. Met. Panel y Capa Límite. 220 Puntos.	
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil	
SZ2059	170
4.4.10 a) Cp (0°, 5° y α_M : α paraClmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)	
y (b) Curvas Polares del perfil SZ2060. Met. Panel y Capa Límite. 220 Puntos.	
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil	
SZ2060	171
4.4.11 a) Cp (0°, 5° y α_M : α paraClmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)	
y (b) Curvas Polares del perfil SZ2061. Met. Panel y Capa Límite. 220 Puntos.	
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil	
SZ2061	172
4.4.12 a) Cp (0°, 5° y α_M : α paraClmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)	
y (b) Curvas Polares del perfil SZ2062. Met. Panel y Capa Límite. 220 Puntos.	
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil	
SZ2062	173

4.4.13 a) Cp (0°, 5° y α_M : α paraClmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)	
y (b) Curvas Polares del perfil SZ2063. Met. Panel y Capa Límite. 220 Puntos.	
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil	
SZ2063	174
4.4.14 a) Cp (0°, 5° y α_M : α paraClmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)	
y (b) Curvas Polares del perfil SZ2064. Met. Panel y Capa Límite. 220 Puntos.	
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil	
SZ2064	175
4.4.15 a) Cp (0°, 5° y α_M : α paraClmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)	
y (b) Curvas Polares del perfil SZ2065. Met. Panel y Capa Límite. 220 Puntos.	
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil	
SZ2065	176
4.4.16 a) Cp (0°, 5° y α_M : α paraClmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)	
y (b) Curvas Polares del perfil SZ2066. Met. Panel y Capa Límite. 220 Puntos.	
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil	
SZ2066	177
4.4.17 a) Cp (0°, 5° y α_M : α paraClmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)	
y (b) Curvas Polares del perfil SZ2067. Met. Panel y Capa Límite. 220 Puntos.	
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil	
SZ2067	178
4.4.18 a) Cp (0°, 5° y α_M : α paraClmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)	
y (b) Curvas Polares del perfil SZ2068. Met. Panel y Capa Límite. 220 Puntos.	
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil	
SZ2068	179
4.4.19 a) Cp (0°, 5° y α_M : α paraClmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)	
y (b) Curvas Polares del perfil SZ2069. Met. Panel y Capa Límite. 220 Puntos.	
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil	
SZ2069	180

4.4.20 a) Cp (0°, 5° y α_M : α paraClmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)	
y (b) Curvas Polares del perfil SZ2070. Met. Panel y Capa Límite. 220 Puntos.	
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil	
SZ2070	180
4.4.21 a) Cp (0°, 5° y α_M : α paraClmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)	
y (b) Curvas Polares del perfil SZ2071. Met. Panel y Capa Límite. 220 Puntos.	
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil	
SZ2071	181
4.4.22 a) Cp (0°, 5° y α_M : α paraClmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)	
y (b) Curvas Polares del perfil SZ2072. Met. Panel y Capa Límite. 220 Puntos.	
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil	
SZ2072	183
4.4.23 a) Cp (0°, 5° y α_M : α paraClmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)	
y (b) Curvas Polares del perfil SZ2073. Met. Panel y Capa Límite. 220 Puntos.	
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil	
SZ2073	184
4.4.24 a) Cp (0°, 5° y α_M : α paraClmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)	
y (b) Curvas Polares del perfil SZ2074. Met. Panel y Capa Límite. 220 Puntos.	
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil	
SZ2074	185
4.4.25 a) Cp (0°, 5° y α_M : α paraClmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)	
y (b) Curvas Polares del perfil SZ2075. Met. Panel y Capa Límite. 220 Puntos.	
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil	
SZ2075	186
4.4.26 a) Cp (0°, 5° y α_M : α paraClmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)	
y (b) Curvas Polares del perfil SZ2076. Met. Panel y Capa Límite. 220 Puntos.	
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil	
SZ2076	187

4.4.27 a) Cp (0°, 5° y α_M : α paraClmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)	
y (b) Curvas Polares del perfil SZ2077. Met. Panel y Capa Límite. 220 Puntos.	
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil	
SZ2077	188
4.4.28 a) Cp (0°, 5° y α_M : α paraClmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)	
y (b) Curvas Polares del perfil SZ2078. Met. Panel y Capa Límite. 220 Puntos.	
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil	
SZ2078	189
4.4.29 a) Cp (0°, 5° y α_M : α paraClmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)	
y (b) Curvas Polares del perfil SZ2079. Met. Panel y Capa Límite. 220 Puntos.	
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil	
SZ2079	190
4.4.30 a) Cp (0°, 5° y α_M : α paraClmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)	
y (b) Curvas Polares del perfil SZ2080. Met. Panel y Capa Límite. 220 Puntos.	
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil	
SZ2080	191
4.5.1 a) Cp (0°, 5° y α_M : α paraClmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)	
y (b) Curvas Polares del perfil SZ2055M. Met. Panel y Capa Límite. 220 Puntos.	
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil	
SZ2055M	192
4.5.2 a) Cp (0°, 5° y α_M : α paraClmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)	
y (b) Curvas Polares del perfil SZ2059M. Met. Panel y Capa Límite. 220 Puntos.	
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil	
SZ2059M	193
4.5.3 a) Cp (0°, 5° y α_M : α paraClmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha)	
y (b) Curvas Polares del perfil SZ2069M. Met. Panel y Capa Límite. 220 Puntos.	
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil	
SZ2069M	194

4.5.4.- a) Cp (0°, 5° y α_M: α paraClmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil SZ2074M. Met. Panel y Capa Límite. 220 Puntos.
(c) Curvas Cl/Cd y (d) Cl, Cd y Cm vs. Ángulo de ataque del perfil SZ2074M.

CAPITULO V

Figura	N°.	
5.1.1	Estructura del Software ANSYS CFX	.235
5.2.1	Geometría e identificación de las regiones	238
5.2.2	Influencia de los puntos de control y expansión sobre la malla de superficie	.239
5.2.3	Sensibilidad de la malla	240
5.3.1	Líneas de corriente sobre el perfil NACA 63A-210, $\alpha = 0^{\circ}$ y Re 1E6	245
5.3.2	Líneas de corriente sobre el perfil NACA 63A-210 con $\alpha = 5^{\circ}$ y Re = 1E6	245
5.3.3	Líneas de corriente sobre el perfil NACA 63A-210 con $\alpha = 10^{\circ}$ y Re = 1E6	246
5.3.4	Distribución de presión sobre el perfil NACA 63A-210 con $\alpha = 0^{\circ}$ y Re = 1E6	247
5.3.5	Distribución de presión sobre el perfil NACA 63A-210 con α = 5° y Re = 1E6	247
5.3.6	Distribución de presión sobre el perfil NACA 63A-210 con $\alpha = 10^{\circ}$ y Re = 1E6	248
5.3.7	Distribución de velocidad sobre el perfil NACA 63A-210, $\alpha = 0^{\circ}$ y Re = 1E6	250
5.3.8	Distribución de velocidad sobre el perfil NACA 63A-210, $\alpha = 5^{\circ}$ y Re = 1E6	250
5.3.9	Distribución de velocidad sobre el perfil NACA 63A-210, $\alpha = 10^{\circ}$ y Re = 1E6	251
5.3.10	Distribución vectorial de la velocidad del flujo alrededor del perfil NACA 63A-210 c	on
	$\alpha = 0^{\circ} \text{ y Re} = 1\text{E}6.$	253
5.3.11	Distribución vectorial de la velocidad del flujo alrededor del perfil NACA 63A-210	
	$\cos \alpha = 0^{\circ} \text{ y Re} = 1 \text{ E6.}$	253
5.3.12	Distribución vectorial de la velocidad del flujo alrededor del perfil NACA 63A-210	
	$\cos \alpha = 10^{\circ} \text{ y Re} = 1\text{E}6.$	254
5.3.13	Representación vectorial de la fuerza proyectada en el ejeY sobre la superficie del	
	perfil NACA 63A-210 con $\alpha = 0^{\circ}$ y Re = 1E6.	255
5.3.14	Representación vectorial de la fuerza proyectada en el eje Y sobre la superficie del	
	perfil NACA 63A-210 con α = 5° y Re = 1E6	255

5.3.15	Representación vectorial de la fuerza proyectada en el eje Y sobre la superficie del	
	perfil NACA 63A-210 con $\alpha = 10^{\circ}$ y Re = 1E6	256
5.4.1	Líneas de corriente sobre el perfil ZAREA 63A-210, $\alpha = 0^{\circ}$ y Re 1E6	259
5.4.2	Líneas de corriente sobre el perfil ZAREA 63A-210, $\alpha = 5^{\circ}$ y Re 1E6	259
5.4.3	Líneas de corriente sobre el perfil ZAREA 63A-210, $\alpha = 10^{\circ}$ y Re 1E6	260
5.4.4	Distribución de presión sobre el perfil ZAREA 63A-210 con $\alpha = 0^{\circ}$ y Re = 1E6	261
5.4.5	Distribución de presión sobre el perfil ZAREA 63A-210 con α = 5° y Re = 1E6	261
5.4.6	Distribución de presión sobre el perfil ZAREA 63A-210 con α = 10° y Re = 1E6	262
5.4.7	Distribución de velocidad sobre el perfil ZAREA 63A-210, $\alpha = 0^{\circ}$ y Re = 1E6	264
5.4.8	Distribución de velocidad sobre el perfil ZAREA 63A-210, $\alpha = 5^{\circ}$ y Re = 1E6	264
5.4.9	Distribución de velocidad sobre el perfil ZAREA 63A-210, $\alpha = 10^{\circ}$ y Re = 1E6	265
5.4.10	Distribución vectorial de la velocidad del flujo alrededor del perfil ZAREA 63A-210	
	$\cos \alpha = 0^{\circ} \text{ y Re} = 1\text{E6}.$	267
5.4.11	Distribución vectorial de la velocidad del flujo alrededor del perfil ZAREA 63A-210	
	$\cos \alpha = 5^{\circ} \text{ y Re} = 1\text{E6}.$	267
5.4.12	Distribución vectorial de la velocidad del flujo alrededor del perfil ZAREA 63A-210	
	$\cos \alpha = 10^{\circ} \text{ y Re} = 1\text{E6}.$.268
5.4.13	Representación vectorial de la fuerza proyectada en el eje Y sobre la superficie del	
	perfil ZAREA 63A-210 con $\alpha = 0^{\circ}$ y Re = 1E6	.269
5.4.14	Representación vectorial de la fuerza proyectada en el eje Y sobre la superficie del	
	perfil ZAREA 63A-210 con α = 5° y Re = 1E6	.269
5.4.15	Representación vectorial de la fuerza proyectada en el eje Y sobre la superficie del	
	perfil ZAREA 63A-210 con $\alpha = 10^{\circ}$ y Re = 1E6	.270

LISTA DE TABLAS

CAPITULO III

Tabla Nº

3.4.1 Comparación entre las características aerodinámica experimentales y computacionales
para el perfil NACA 631-212 para diferentes números de Reynolds
3.4.2 Comparación entre las características aerodinámica experimentales y computacionales
para el perfil NACA 631-412 para diferentes números de Reynolds67
3.4.3 Comparación entre las características aerodinámica experimentales y computacionales
para el perfil NACA 632-215 para diferentes números de Reynolds69
3.4.4 Comparación entre las características aerodinámica experimentales y computacionales
para el perfil NACA 632-615 para diferentes números de Reynolds71
3.4.5 Comparación entre las características aerodinámica experimentales y computacionales
para el perfil NACA 634-221 para diferentes números de Reynolds73
3.4.6 Comparación entre las características aerodinámica experimentales y computacionales
para el perfil NACA 634-421 para diferentes números de Reynolds75
3.4.7 Comparación entre las características aerodinámica experimentales y computacionales
para el perfil NACA 63A-010 para diferentes números de Reynolds77
3.4.8 Comparación entre las características aerodinámica experimentales y computacionales
para el perfil NACA 641-012 para diferentes números de Reynolds79
3.4.9 Comparación entre las características aerodinámica experimentales y computacionales
para el perfil NACA 64-110 para diferentes números de Reynolds
3.4.10 Comparación entre las características aerodinámica experimentales y computacionales
para el perfil NACA 64-409 para diferentes números de Reynolds
3.4.11 Comparación entre las características aerodinámica experimentales y computacionales
para el perfil NACA 641-412 para diferentes números de Reynolds
3.4.12 Comparación entre las características aerodinámica experimentales y computacionales
para el perfil NACA 641-612 para diferentes números de Reynolds90
3.4.13 Comparación entre las características aerodinámica experimentales y computacionales
para el perfil NACA 642-415 para diferentes números de Reynolds93
3.4.14 Comparación entre las características aerodinámica experimentales y computacionales
para el perfil NACA 643-418 para diferentes números de Reynolds

- 3.4.16.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 65-006 para diferentes números de Reynolds......101
- 3.4.18.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 65₃-418 para diferentes números de Reynolds......106
- 3.4.20.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 66₂-415 para diferentes números de Reynolds......110

CAPITULO IV

Tabla N°

4.1.1	Características geométricas de los perfiles base y modificados	123
4.6.1	Comparación entre las características aerodinámicas del perfil NACA 63-006 y la	
	modificación ZAREA 63-006	197
4.6.2	Comparación entre las características aerodinámicas del perfil NACA 63-018 y la	
	modificación ZAREA 63-018	198
4.6.3	Comparación entre las características aerodinámicas del perfil NACA 63-206 y la	
	modificación ZAREA 63-206	200
4.6.4	Comparación entre las características aerodinámicas del perfil NACA 63-218 y la	
	modificación ZAREA 63-218	201
4.6.5	Comparación entre las características aerodinámicas del perfil NACA 63-418 y la	
	modificación ZAREA 63-418	203
4.6.6	Comparación entre las características aerodinámicas del perfil NACA 63-421 y la	
	modificación ZAREA 63-421	205
4.6.7	Comparación entre las características aerodinámicas del perfil NACA 64-006 y la	
	modificación ZAREA 64-006	207

4.6.8	Comparación entre las características aerodinámicas del perfil NACA 64-208 y la	
	modificación ZAREA 64-208	.208
4.6.9	Comparación entre las características aerodinámicas del perfil NACA 64-418 y la	
	modificación ZAREA 64-418	.209
4.6.10	Comparación entre las características aerodinámicas del perfil NACA 65-006 y la	
	modificación ZAREA 65-006	.211
4.6.11	Comparación entre las características aerodinámicas del perfil NACA 65-209 y la	
	modificación ZAREA 65-209	.212
4.6.12	Comparación entre las características aerodinámicas del perfil NACA 65-415 y la	
	modificación ZAREA 65-415	.213
4.6.13	Comparación entre las características aerodinámicas del perfil NACA 65-421 y la	
	modificación ZAREA 65-421	.215
4.6.14	Comparación entre las características aerodinámicas del perfil NACA 65-618 y la	
	modificación ZAREA 65-618	.217
4.6.15	Comparación entre las características aerodinámicas del perfil NACA 66-221 y la	
	modificación ZAREA 66-221	.219
4.6.16	Comparación entre las características aerodinámicas del perfil NACA 66-415 y la	
	modificación ZAREA 66-415	.221
4.6.17	Comparación entre las características aerodinámicas del perfil NACA 63A-210 y la	
	modificación ZAREA 63A-210	.223
4.6.18	Comparación entre las características aerodinámicas del perfil NACA 64A-010 y la	
	modificación ZAREA 64A-010	.225
4.6.19	Comparación entre las características aerodinámicas del perfil NACA 64A-410 y la	
	modificación ZAREA 64A-410	.227
4.6.20	Comparación entre las características aerodinámicas del perfil SZ2055 y la	
	modificación SZ2055M	229
4.6.21	Comparación entre las características aerodinámicas del perfil SZ2059 y la	
	modificación SZ2059M	230
4.6.22	Comparación entre las características aerodinámicas del perfil SZ2069 y la	
	modificación SZ2069M	231

4.6.23 Comparación entre las características aerodinámic	as del perfil SZ2074 y la modificación
SZ2074M	

CAPITULO V

Tabla Nº

5.3.1	Parámetros de la simulación del perfil NACA 63A-210 para $Re = 1x10^6$	
5.4.1	Parámetros de la simulación del perfil ZAREA 63A-210 para $Re = 1x10^6$	260
5.5.1	Comparación entre las características aerodinámica evaluadas en VisualFoil y CFX	
	para el perfil NACA 63A-210	.274
5.5.2	Comparación entre las características aerodinámica evaluadas en VisualFoil y CFX	
	para el perfil NACA 63A-210	.274
5.5.3	Comparación entre las características aerodinámicas del perfil NACA 63A-210 y la	
	modificación ZAREA 63A-210	275

PORTADA	I
RESUMEN	II
DEDICATORIA	III
AGRADECIMIENTOS	IV
NOMENCLATURA	V
LISTA DE FIGURAS	VI
LISTA DE TABLAS	XXIII
INDICE	XXVII
0. INTRODUCCIÓN	1
1. CAPITULO I: FORMULACIÓN DEL PROBLEMA Y METODOLOGÍA DE EST	UDIO3
1.1. Planteamiento del tema	3
1.2. Importancia del estudio	3
1.3. Objetivos	4
1.4. Metodología de trabajo	5
1.5. Nociones básicas sobres perfiles aerodinámicos	6
1.5.1 Parámetros geométricos principales	6
1.5.2 Fuerzas y momento aerodinámico	7
1.5.3 Curvas características aerodinámicas	9
2. CAPITULO II: ANTECEDENTES Y ESTUDIOS PREVIOS	11
3. CAPITULO III: CARACTERISTICAS AERODINÁMICAS DE PERFILES SEI	RIE NACA
DE 6 DÍGITOS	13
3.1. Nomenclatura de los perfiles NACA	13
3.1.1. Perfiles NACA seleccionados para estudio comparativo	20
3.2. Curvas características aerodinámicas experimentales	21
3.3. Evaluación Computacional de 20 perfiles NACA-6	
3.4. Comparación de los resultados computacionales y experimentales	63
3.5. Comentarios	113

INDICE

4. CAPITULO IV: EVALUACION COMPUTACIONAL DE PERFILES DE LA SEI	RIE NACA,
SZ2000 Y MODIFICADOS	115
4.1. Modificación del borde de ataque y codificación de los nuevos perfiles	116
4.2. Evaluación computacional de los perfiles NACA seleccionados	124
4.3. Evaluación computacional de los perfiles NACA modificados	143
4.4. Evaluación computacional de los perfiles SZ2000	162
4.5. Evaluación computacional de los perfiles SZ2000 modificados	
4.6. Comparación de las características aerodinámicas de los perfiles base y modific	ados192
4.7. Comentarios	233
5. CAPITULO V: SIMULACIÓN DEL FLUJO ALREDEDOR DE DOS	PERFILES
UTILIZANDO EL PROGRAMA ANSYS CFX	
5.1. Nociones básicas	236
5.1.1. Estructura del programa ANSYS CFX	237
5.2. Metodología y parámetros establecidos	239
5.3. Simulación computacional del flujo alrededor del perfil NACA 63-A210	246
5.4. Simulación computacional del flujo alrededor del perfil ZAREA 63-A210	
5.5. Tablas comparativas	
5.6. Comentarios	
6. CONCLUSIONES Y RECOMENDACIONES	
7. REFERENCIAS BIBLIOGRAFICAS	
8. ANEXOS	

INTRODUCCIÓN

Históricamente el desarrollo en el área de la aerodinámica se a incrementado al pasar los años, debido a que antiguamente se utilizaban laboriosos métodos que requerían muchos recursos y tiempo para evaluar un perfil aerodinámico, actualmente por medio de programas computacionales este análisis se a hecho mas productivo y eficiente, debido a la necesidad de incrementar la eficiencia de las turbomáquinas, aviones, etc y a los métodos computacionales actuales que permiten una evaluación del comportamiento aerodinámico de nuevos perfiles.

En la Escuela de Ing. Mecánica UCV. el Prof. Stefan Zarea, especializado en el área de la aerodinámica, a desarrollado novedosos métodos para la generación de perfiles desarrollados en los 87 trabajos especiales y/o de grado que ha guiado durante 25 años donde se demuestra como una pequeña modificación en la geometría de un perfil, genera notables cambios en los valores de los coeficientes aerodinámicos. Una de las líneas de acción consiste en aprovechar los perfiles existentes a los cuales se modificarían adecuadamente bien sea el borde de ataque, el borde de fuga, o los dos bordes a fin de mejorar el desempeño aerodinámico, luego evaluando el comportamiento a través de los coeficientes aerodinámicos globales: C_L, C_D, Cm y la fineza aerodinámica ε. Para tal fin se dispone de programas de computación. De esta manera se pueden evaluar fácilmente los nuevos perfiles, se logra trazar las curvas características aerodinámicas y se accede a la comparación con las curvas características de los perfiles existentes. De esta manera, en un periodo de tiempo limitado se pueden desarrollar un numero relativamente grande de perfiles acercándose a una optimización. Para esta investigación, el Prof. tutor ha escogido varios perfiles de la serie NACA de 6 dígitos y SZ2000, que se estudiaran sistemáticamente con la metodología ya implementada en trabajos previos (Aparicio J., 2006, Ferrer C., 2007)

El informe esta organizado según los requerimientos definidos por las normativas de la EIM-UCV y esta dividido en cinco capítulos acompañados por las conclusiones y recomendaciones, las referencias bibliográficas y sus anexos que contienen información sobre los modelos matemáticos utilizados por el código CFX.

El primer capitulo trata sobre la formulación e importancia del problema estudiado, la motivación para la realización de esta investigación así como la metodología de trabajo utilizada.

El segundo capitulo trata sobre los estudios previos realizados en distintos países sobre aspectos relacionados al presente trabajo.

El tercer capitulo esta consagrado a las curvas características aerodinámicas de los perfiles NACA, explicándose brevemente su nomenclatura y la evaluación computacional utilizando el software VisualFoil 4.1 de los perfiles seleccionados, en este caso, los perfiles NACA de 6 dígitos. La importancia y aporte al campo de la aerodinámica de este capitulo esta principalmente en la comparación entre la evaluación computacional y los datos experimentales ya que a partir de esos resultados podemos tener una idea de la aproximación y confiabilidad que tiene el software utilizado para las geometrías NACA de 6 dígitos con los datos experimentales.

El cuarto capitulo trata sobre la evaluación computacional de perfiles NACA de 6 dígitos y de perfiles SZ-2000 inclusive los perfiles modificados. Este capitulo es el mas importante del presente trabajo especial ya que en el podremos observar claramente como una pequeña modificación en el borde de ataque de un perfil aerodinámico influye notablemente en las curvas aerodinámicas de los perfiles aerodinámicos, teniendo como resultado un incremento en el coeficiente de sustentación de los perfiles.

El quinto capitulo trata sobre la aplicación de un código CFD (Computational Fluid Dynamics) llamado ANSYS CFX sobre un perfil base y su modificación respectiva. En este capitulo se utiliza este poderoso software con el cual se puede simular el flujo alrededor del perfil y observar su comportamiento alrededor del contorno del perfil, generación de vortices y la estela generada. Este tipo de simulaciones se realizo por la primera vez en la EIM-UCV.

El sexto capitulo consta de las conclusiones que se obtuvieron en el trabajo realizado, en este capitulo se mencionara de manera concreta y clara los resultados obtenidos a partir de dicho trabajo. Adicionalmente en esta parte están algunas recomendaciones para futuras investigaciones en esta área.

En las referencias bibliográficas se muestra el material utilizado para la realización de este proyecto.

En la parte de Anexos se adjunta información adicional sobre el código CFX.

1. CAPITULO I: FORMULACIÓN DEL PROBLEMA Y METODOLOGÍA DE ESTUDIO

PLANTEAMIENTO DEL TEMA

En este proyecto se estudia la influencia que tiene el borde de ataque de un perfil en las curvas características aerodinámicas utilizando métodos computacionales con el fin de incrementar los valores de coeficiente de sustentación y fineza aerodinámica de los perfiles base seleccionados. En esta investigación se estudiaron 30 perfiles de la serie SZ-2000 y 18 perfiles NACA de 6 dígitos.

Para lograr este fin se sustituye el borde de ataque extendido aproximadamente un 20% de la cuerda, por otras curvas similares a parábolas asimétricas, que permita la modificación de la flecha máxima del perfil y el incremento del coeficiente de sustentación y fineza aerodinámica para un determinado número de Reynolds.

Por medio del programa computacional VisualFoil 4.1 se evalúan y comparan con datos experimentales, lo cual nos da la confiabilidad del programa sobre las geometrías estudiadas. Posteriormente se realiza la comparación de los perfiles base y los perfiles modificados.

La utilización del código CFD para la simulación del flujo alrededor de un perfil con el fin de evaluar los coeficientes aerodinámicos utilizando otro software y adicionalmente poder observar y analizar el comportamiento del flujo alrededor de los perfiles estudiados.

1.3 IMPORTANCIA DEL ESTUDIO

La importancia del estudio realizado parte de la necesidad que existe actualmente en los diseñadores de turbomáquinas, aviones, etc en mejorar la eficiencia y comportamiento de dichos equipos, necesidad que motiva al estudio de perfiles clásicos de la familia NACA y nuevas series de perfiles con mejor desempeño aerodinámico. En esta línea de acción están los perfiles desarrollados recientemente por el Prof. S. Zarea, serie SZ-2000, los cuales presentan una mejora en el comportamiento con respecto a los perfiles NACA.

Actualmente por medio de nuevos métodos y programas computacionales es posible calcular parámetros aerodinámicos de mucho interés además de poder trazar las curvas características aerodinámicas de un perfil, aspecto muy importante que anteriormente era muy difícil de obtener. Por esta razón por medio de la modificación de algún parámetro con respecto a la geometría de perfiles ya existente y el análisis por medio de los programas computacionales es posible diseñar nuevos perfiles con un mejor comportamiento aerodinámico.

Mediante la modificación del borde de ataque, método históricamente conocido pero que debido a los laboriosos métodos y recursos antiguamente utilizados a tenido muy poca aplicación se pueden trazar nuevos perfiles. Aplicando dicho método junto con programas computacionales se pueden generar nuevos perfiles con todos sus cálculos respectivos los cuales al compararlos con los perfiles clásicos NACA y los SZ-2000 permitirán establecer conclusiones acerca de cuanto influye la modificación del borde de ataque en un perfil determinado con respecto al comportamiento del coeficiente de sustentación y fineza aerodinámica.

1.3 OBJETIVOS

OBJETIVO PRINCIPAL

El objetivo principal de esta investigación consiste en estudiar la influencia que tiene la modificación del borde de ataque de algunos perfiles serie NACA de 6 dígitos y serie SZ-2000 en las curvas características aerodinámicas por medio de métodos computacionales.

OBJETIVOS ESPECIFICOS

El cumplimiento del objetivo principal de este proyecto se llevara a cabo mediante el seguimiento paso a paso de los objetivos específicos y alcances mencionados a continuación:

- Seleccionar un mínimo de 20 perfiles de las series NACA y SZ-2000 que serán establecidos como perfiles base para un estudio posterior.
- Por medio del uso de VisualFoil 4.1 trazar las curvas características de los perfiles base anteriormente seleccionados.
- Utilizar el método de modificación del borde de ataque de los perfiles base siguiendo las indicaciones del Prof. Tutor.
- Calcular las características geométricas de los perfiles modificados en la versión final (área, espesor máximo, abscisa del espesor máximo, flecha máxima, abscisa de la flecha máxima).
- Trazar las curvas características de los perfiles modificados utilizando VisualFoil 4.1.
- Interpretar los resultados comparando las curvas características aerodinámicas de los perfiles base y modificados.

 Realizar la simulación del flujo alrededor de un perfil NACA y su homologo modificado utilizando el software CFX.

1.4. METODOLOGÍA DE TRABAJO

Para lograr los objetivos previamente mencionados se realizarán varias actividades específicas según la metodología siguiente:

A₁- Recopilación y estudio de la bibliografía especifica.

- A₂- Adquirir destreza en el manejo de los programas VisualFoil 4.1, Grapher y CFX.
- A₃- Seleccionar los perfiles base NACA y SZ-2000, en común acuerdo con el Prof. tutor.
- A₄- Trazar computacionalmente las curvas características aerodinámicas de los perfiles base.
- A₅- Modificar los bordes de ataque de los perfiles base utilizando las curvas sugeridas por el Prof. tutor o de su propia selección.
- A₆- Cálculo de los parámetros y trazado de las curvas características de las mejores versiones de los perfiles modificados.
- A7- Cálculo de los parámetros geométricos de los perfiles estudiados.
- A8- Comparar las curvas características de los perfiles modificados y de los perfiles base.
- A₉- Simular el flujo alrededor de un perfil NACA y su homologo modificado con el código CFX.
- A₁₀- Formular las conclusiones sobre el procedimiento de modificación del borde de ataque utilizado.
- A₁₁- Redacción del informe final.
- A₁₂- Defensa publica.

1.5 NOCIONES BÁSICAS SOBRE PERFILES AERODINÁMICOS

Siguiendo la terminología aceptada en la actualidad (Anderson, Jr., 2006) se presentan las nociones geométricas y dinámicas principales referentes a perfiles aerodinámicos.

1.5.1 PARAMETROS GEOMÉTRICOS PRINCIPALES

Un perfil es la forma bidimensional que se obtiene de la sección transversal de un ala o del alabe de cualquier turbomáquina y consiste en un contorno cerrado alargado en la dirección del flujo delimitando su dominio de ancho variable.

De acuerdo con las condiciones bajo las cuales va a funcionar el perfil, la forma del perfil puede variar ampliamente. Los perfiles de bajo régimen subsónico, tienen el borde de ataque redondeado y el borde de fuga termina con un espesor pequeño.

Fig. 1.5.1.1. Características geométricas principales de un perfil aerodinámico

- Borde de ataque: Es la parte delantera del perfil donde incide la corriente.
- Borde de fuga o salida: Parte posterior del perfil por donde sale la corriente.
- Extradós: Parte del contorno del perfil ubicada en la zona superior a la cuerda.
- Intradós: Parte del contorno del perfil ubicada en la zona inferior de la cuerda.
- Espesor: distancia entre el intradós y el extradós, medida sobre la perpendicular a la cuerda en cada punto de ésta.
- Cuerda: segmento imaginario que une el borde de ataque con el borde de fuga. El ángulo que formará la recta que contiene a la cuerda con la dirección de la corriente fluida, definen convencionalmente el ángulo de ataque.
- Esqueleto: Segmento imaginario que va desde el borde de ataque al borde de fuga el cual divide el perfil en dos regiones iguales.
- Flecha del esqueleto: Es la máxima distancia entre la cuerda y el esqueleto.

1.5.2 FUERZAS Y MOMENTOS AERODINÁMICOS

Los únicos procesos físicos que utiliza la naturaleza para transmitir la fuerza a un cuerpo dentro de un fluido en movimientos son la distribución de presión y de esfuerzos cortantes sobre la superficie del mismo. El efecto de las distribuciones de presión y esfuerzo cortante integrados sobre la superficie completa del cuerpo es una fuerza aerodinámica resultante R y un momento M aplicado sobre el cuerpo como se observa en la siguiente figura.

Fig. 1.5.2.1. Fuerza y momento aerodinámico resultante sobre un perfil.

La fuerza resultante R puede ser descompuesta en dos componentes L y D relativas a la dirección del vector de velocidad de corriente libre (V_{∞}) tal y como se muestra en la siguiente figura.

Fig. 1.5.2.2. Fuerza aerodinámica resultante y sus componentes.

A la componente de la fuerza aerodinámica resultante en dirección perpendicular al vector de velocidad de corriente libre se le denomina fuerza de sustentación (L). Mientras que la otra componente de la fuerza aerodinámica resultante, paralela al vector de velocidad de corriente libre se le llama fuerza de arrastre (D). En función de esta descomposición de la fuerza resultante y el momento generado por el fluido en movimiento se han definido los siguientes parámetros adimensionales fundamentales para la evaluación de los perfiles:

Coeficiente de sustentación: $C_L \equiv L / (q_\infty S)$,

Coefficiente de arrastre: $C_D \equiv D / (q_\infty S)$,

Coefficiente de momento: $C_M \equiv M / (q_\infty Sl)$,

donde $q_{\infty} \equiv \frac{1}{2} \rho_{\infty} V_{\infty}$, es definida como la presión dinámica de la corriente libre, y *S* y l representan el área y una longitud características del cuerpo (cuerda) sometido a la corriente libre. Estas expresiones fueron utilizadas para conseguir los valores de dichos coeficientes en los cálculos realizados con el código VisualFoil 4.1 y durante las simulaciones CFD.

Para un cuerpo en dos dimensiones las fuerzas y momentos sobre la forma están definidos por unidad de longitud. Por esta razón los coeficientes aerodinámicos para cuerpos bidimensionales, por convención, se denotan con letras mayúsculas, y están definidos por:

$$C_{l} \equiv L' / (q_{\infty} c) ; C_{d} \equiv D' / (q_{\infty} c) ; C_{m} \equiv M' / (q_{\infty} c^{2})$$

donde el área característica convencionalmente esta dada por S = c.1 = c.

para estos casos también se define como parámetro adimensional el

coeficiente de Presión:

 $C_p \equiv (p-p_{\infty}) / q_{\infty}$; donde p_{∞} es la presión de la corriente libre.

Una vez definidos estos parámetros, el comportamiento de los perfiles aerodinámicos es evaluado calculando cada uno de estos coeficientes a diferentes ángulos de ataque para una misma velocidad de corriente libre y a partir de los datos obtenidos se construyen cuatro tipos de graficas diferentes: coeficiente de sustentación C_L vs. ángulo de ataque α , coeficiente de arrastre C_D vs ángulo de ataque α ; coeficiente de momento C_M vs. ángulo de ataque α , fineza aerodinámica ($^{Cl}/_{Cd}$) vs. ángulo de ataque α y coeficiente de sustentación C_L vs. coeficiente de arrastre de arrastre C_D (curva polar). Estas graficas son consideradas las curvas características aerodinámicas.

1.5.3 CURVAS CARACTERÍSTICAS AERODINÁMICAS

Las curvas características aerodinámicas son la representación grafica de la variación de los coeficientes aerodinámicos en función del ángulo de ataque del perfil. Por medio de las curvas características aerodinámicas se puede observar el comportamiento de un perfil para diferentes valores de ángulo de ataque y números de Reynolds. Las curvas características aerodinámicas consta de 3 gráficos los cuales son: C_L vs. α , C_D vs. α , C_M vs. α , ε vs. α .

En la figura 1.5.3.1 se observan las curvas características aerodinámicas del perfil SZ2051, la primera grafica se denomina "curva de sustentación", grafico muy importante debido a que se puede observar los diferentes valores del coeficiente de sustentación para un cierto rango de ángulo de ataque. En el mismo gráfico se encuentran representados los valores de coeficiente de arrastre multiplicado por 20 en función del ángulo de ataque a fin de utilizar la misma escala vertical. Este grafico es muy importante debido a que se puede observar los diferentes valores de sustentación y arrastre para un cierto rango de ángulo de ataque. Se debe destacar el punto de máxima sustentación. La segunda grafica mostrada es la del momento, la cual muestra los valores del coeficiente de momento para distintos valores de ángulo de ataque. La tercera gráfica ilustra la variación de la fineza aerodinámica con respecto al ángulo de ataque. La cuarta gráfica se denomina "curva polar", la cual relaciona el coeficiente de sustentación con el coeficiente de arrastre; esta curva junto con la curva C_L vs. α son las utilizadas en los catálogos de perfiles.

Fig. 1.5.3.1. Curvas características aerodinámicas: a) coeficiente de sustentación vs. ángulo de ataque, coeficiente de arrastre multiplicado por 20 vs. ángulo de ataque; b) coeficiente de momento vs. ángulo de ataque; c) fineza aerodinámica (Cl/Cd) vs. ángulo de ataque; y d) Curva polar; para el perfil SZ2051, Re = 1E6.

2. CAPITULO II: ANTECEDENTES Y ESTUDIOS PREVIOS

El campo de la aerodinámica es un tema históricamente estudiado desde los inicios del siglo XX hasta la actualidad, ya que es un área muy importante que involucra diversos campos tecnológicos. Por esta razón el campo de la aerodinámica es un tema estudiado por investigadores, institutos y universidades. El primer perfil aerodinámico patentado fue desarrollado por Horatio F. Phillips en 1884, posteriormente en 1902 los hermanos Wright construyeron y probaron sus perfiles en su propio túnel de viento. Existe una secuencia histórica acerca de los perfiles aerodinámicos empezando con los mencionados hermanos Wright en 1908, Göttingen en 1919, entre otros. Desde 1935 el Comité Nacional de Aerodinámica (NACA) desarrollo una revolucionaria serie de perfiles utilizando métodos que reducían significativamente el coeficiente de arrastre. Aunque estas formas o contornos nunca pudieron producir las reacciones esperadas con el flujo laminar en la practica. A principios de 1965 la NASA desarrollo otra revolucionaria serie de perfiles para regimen supercrítico. (Anderson, Jr., 2006).

Un desarrollo significativo en la generación de perfiles aerodinámicos se debe a los métodos teóricos ideados por (N.E. Joucowski, 1902, Kutta, A. I., 1902, Betz, W., 1905, Keune, R. 1906, Carafoli, E, 1928, Fuchs, W, 1935, Chaplyguin, 1936, C. Jacob, 1950), que utilizaron los métodos de las transformaciones conformes. Otros métodos basados en el uso de las series de fourier se deben a (Birnbown, K, 1924, Scholz, 1930, Hesse, 1950.).

A partir de esto podemos darnos cuenta como a través de los años se han ido desarrollando los perfiles aerodinámicos, los perfiles de la serie NACA han tenido gran desarrollo utilizando su propio túnel de viento para baja turbulencia y modelos matemáticos como la teoría del perfil delgado (Theory of thin wing section) y la teoría de espesor finito (Theory of wing section of finite thickness) con el fin de determinar el máximo valor de coeficiente de sustentación utilizando valores determinados de numero de Reynolds y seguir (Abbott, 1949, Felicien F., Fullmer Jr., 1944).

En las ultimas tres décadas los procedimientos computacionales han abierto otra perspectiva para el estudio y la optimización de perfiles aerodinámicos

Desde mediados del siglo XX se han investigado los factores que influyen en los coeficientes aerodinámicos de un perfil para el cual se han realizado numerosos estudios acerca de la

geometría de los mismos tomando criterios limitados y criterios múltiples. Por ejemplo a comienzo de los años 1950 NACA emprendió una serie de investigaciones para concluir acerca de los beneficios de confeccionar el borde de fuga de perfiles supersónicos y transónicos. Anderson, J., y Barlow, B. J., en 1979 realizaron estudios en un perfil con el borde de ataque doblado evaluando en un túnel de viento para conseguir las características aerodinámicas, Gomez, A. y Pinilla., 2006 realizaron estudios de un perfil de la serie NACA con el borde de fuga truncado el cual concluye con un incremento en el coeficiente de sustentación máximo y un incremento en el coeficiente de arrastre del perfil.

Distintas clases de nuevos perfiles aerodinámicos han sido trazados y se ha realizado la evaluación experimental y computacional por el Prof. Zarea y sus colaboradores (Rodríguez, R. J. E., 1978, Pantin, A. M. y Rojas, H., 1978, Figueira, N. J. y Vilaseca, U. M., 1981, Getan, E., 1981, Rodríguez, I., 1983, Pelaez, U. F. A., 1985, Martins, F. y Montoya, L. J. L., 1991, ZAREA, S., 1995, Zarea, S., Irausquin. 2002, Zarea, S., Irausquin, Leañes, E. 2003, Aparicio, J., 2006, Ferrer, C., 2007).

La evaluación computacional de la influencia del borde de fuga de los perfiles ZAREA ha sido realizada por Aparicio, G. J. A., 2006. La influencia de la rugosidad sobre perfiles ZAREA ha sido estudiada analíticamente (Zarea, S. 2001) y la evaluación experimental de la influencia de la modificación del borde de ataque de 3 perfiles SZ 1500 ha sido documentada en las memorias del V Congreso Iberoamericano de Ingeniería (Zarea, S., Irausquin. 2002).

Las investigaciones mas recientes utilizan simulaciones computacionales con las cuales se puede estudiar con mas detalle el comportamiento del flujo alrededor del perfil para entender los fenómenos que determinan la fineza de un perfil aerodinámico, por esta razón se han realizado numerosas investigaciones acerca de los fenómenos que se generan en los alrededores del contorno del perfil utilizando diferentes códigos CFD, como por ejemplo la transición formación de burbujas en la región de separación utilizando diferentes modelos de simulación PIV, "Large Eddy" para dos y tres dimensiones en el cual se examina el papel que cumple una pequeña escala de turbulencia con burbuja de separación en estado de transición sobre los coeficientes aerodinámicos. (Wilson P. G., 1998, Windte J., 2006, Bragg, M. B., 2007). Las curvas características aerodinámicas de la mayoría de los perfiles mencionados en la literatura especializada se encuentra en las publicaciones periódicas y en forma sistemática en los catálogos de perfiles Abbott, H., 1949., Von Doenhoff, 1950., Riegels, W. R., 1959., Miley, S. J., 1982.

3. CAPIULO III: CARACTERÍSTICAS AERODINÁMICAS DE PERFILES SERIE NACA DE 6 DÍGITOS

En este capitulo se hizo una selección de 20 perfiles NACA de 6 dígitos de acuerdo a un criterios que se mencionaran en la sección 3.1.1, los cuales se muestran con su nombre y nomenclatura respectiva en la figura 3.1. Posteriormente se tomaron sus datos experimentales de literatura especializada (Abbott, H., 1950 y Catálogo Miley J. S., 1982) para ser evaluados utilizando el software VisualFoil 4.1 con el fin de comparar los resultados computacionales con los datos experimentales y sacar conclusiones acerca de la confiabilidad que ofrece el software para las geometrías de la serie NACA de 6 dígitos.

En la primera parte de este capitulo se explica de manera clara y breve la nomenclatura y características generales de todas las familias NACA, con el fin de conocer de manera general las características de los perfiles que se evaluaran a continuación.

La presentación de las curvas características aerodinámicas esta dividida en 2 grupos. El primero consta de 20 curvas características aerodinámicas experimentales (Fig. 3.2.1 hasta 3.2.20) y el segundo de 20 curvas características aerodinámicas computacionales (Fig. 3.3.1. hasta 3.3.20.). Posteriormente se presentan 20 tablas comparativas que contienen los valores numéricos experimentales y computacionales, en las cuales se cuantifica la diferencia existente entre estos valores y el error relativo porcentual existente entre ambos.

Por ultimo se presentaran comentarios acerca de la confiabilidad que ofrece VisualFoil 4.1 sobre la evaluación de las características aerodinámicas para geometrías de perfiles NACA 6 dígitos.

3.1 NOMENCLATURA NACA

La Nomenclatura utilizada para los perfiles NACA viene dada por un código que puede ser desde 4 hasta 8 dígitos, conformando de esta manera distintas familias respectivamente. A continuación se mencionaran las características generales para cada familia NACA así como el significado de su nomenclatura respectiva (Abbott, H., 1950).

NACA de 4 Dígitos

• Distribución de Espesor: La distribución de espesor para 4 dígitos de NACA viene dada por la siguiente ecuación:

$$\pm y_t = \frac{t}{0.20} \Big(0.29690 \sqrt{x} - 0.12600x - 0.35160x^2 + 0.28430x^3 - 0.10150x^4 \Big)$$
(6.2)

Donde t = Máximo espesor expresado como una fracción de la cuerda.

El Radio del Borde de Ataque es:
$$r_t = 1.1019t^2$$
 (6.3)

Se puede notar que tanto en la ecuación (6.2) como en él (6.3), la ordenada de cualquier punto es directamente proporcional al espesor. También podemos notar que el radio del borde de ataque varia de forma cuadrática en función del espesor.

• Esqueleto: Para estudiar sistemáticamente el efecto de variación del valor de la flecha máxima y la forma del esqueleto, fue expresada de manera analítica como dos arcos tangentes parabólicos en la posición de ordenada máxima del esqueleto. Las ecuaciones que definen el esqueleto son:

$$y_c = \frac{m}{p^2}(2px - x^2)$$
 parte delantera a la ordenada máxima

 $y_c = \frac{m}{(1-p)^2} [(1-2p)+2px-x^2]$ después de la ordenada máxima

Donde:

m = Máxima ordenada del esqueleto expresada como una fracción de la cuerda.

P = Posición de máxima ordenada en la cuerda

• Sistema Numérico: El sistema numérico para la serie NACA de 4 dígitos esta basado en su geometría. El primer digito indica el máximo valor de la flecha máxima en porcentaje de la cuerda. El segundo dígito indica la distancia desde el borde de ataque hasta la flecha máxima en décimas de la cuerda y los últimos dos dígitos indican el máximo espesor en porcentaje de la

cuerda. Por ejemplo el perfil NACA 2415 tiene 2% de Flecha máxima localizado a 0.4c desde el borde de ataque con un 15% de máximo espesor.

• Características Teóricas Aproximadas: Las características teóricas como los valores de $(v/V)^2$ que son equivalentes a la distribución de presión para bajas velocidades fueron calculados por el método de espesor finito, los valores de velocidad para proporciones intermedias de espesor fueron obtenidos por escalamiento lineal de los incrementos de la velocidad obtenidos de los valores tabulados de v/V para la proporción de espesor más cercana de esta manera:

$$\left(\frac{\upsilon}{V}\right)_{t_2} = \left[\left(\frac{\upsilon}{V}\right)_{t_2} - 1\right]\frac{t_2}{t_1} + 1$$

Los valores de la proporción de incremento de la velocidad la V/v pueden ser obtenidos para espesor intermedio interpolando.

Estos valores han sido calculados por el método de espesor finito, los valores tabulados para cada esqueleto pueden ser asumidos para variar directamente con la ordenada máxima $y_c y$ los valores para esqueletos similares con cantidades diferentes de flecha máxima dentro de un cierto rango, pueden ser obtenidos simplemente escalando los valores tabulados.

NACA de 5 dígitos

• Distribución de Espesor: La distribución de espesor en la familia NACA de 5 dígitos es exactamente igual a la mencionada anteriormente de 4 dígitos.

• Esqueleto: El esqueleto esta definido por dos ecuaciones desarrolladas para producir formas que tienen curvaturas que van disminuyendo después del borde de ataque. Adicionalmente las ecuaciones están diseñadas para que la curvatura disminuya a cero justo en el punto de flecha máxima indicando desde ahí el borde de fuga. Estas ecuaciones que forman el esqueleto son:

$$y_c = \frac{1}{6}k_1[x^3 - 3mx^2 + m^2(3 - m)x]$$
 desde x = 0 hasta x = m

$$y_c = \frac{1}{6}k_1m^3(1-x)$$
 desde x = m hasta x = c = 1
(6.6)

Los valores de "m" fueron determinados seleccionando 5 posiciones "p" a la máxima flecha, ubicadas en: 0,05c, 0,10c, 0,15c, 0,20c, y 0,25c. Valores de k_1 fueron inicialmente calculados con un coeficiente de sustentación de diseño con valor de 0,3. Esta serie de Esqueletos luego fue extendida partiendo de otros coeficientes de sustentación. Todos estos resultados están expresados en múltiples tablas de datos.

• Sistema Numérico: El Sistema Numérico utilizado para esta serie de perfiles NACA de 5 dígitos esta basado en la combinación de la teoría aerodinámica utilizada y las características geométricas de dicho perfil. El primer dígito indica la magnitud de la flecha máxima en términos relativos a la magnitud del coeficiente de sustentación de diseño. El coeficiente de sustentación de diseño es la tercera parte en décimas del primer dígito. El segundo y tercer dígito, juntos indican la distancia desde el borde de ataque hasta la máxima flecha, dicha distancia esta expresada como un porcentaje de la cuerda, resultando finalmente en que la mitad de este número representa dicha distancia. Los últimos dos dígitos indican el máximo espesor como porcentaje de la cuerda. Por ejemplo el perfil NACA 230112 a sido diseñado con un coeficiente de sustentación de diseño con un valor de 0,3, la flecha máxima esta ubicada a 0,15c y tiene un 12% de máximo espesor.

• Características Teóricas Aproximadas: Las características teóricas aerodinámicas utilizadas para esta serie de perfiles de 5 dígitos fueron obtenidas por el mismo método previamente mencionado para la serie NACA de 4 dígitos.

NACA de 4 y 5 Dígitos Modificados:

Las primeras modificaciones en la serie NACA de 4 dígitos incluyeron perfiles con nariz fina y nariz truncada o cortada y se denotan con los sufijos T y B respectivamente. En algunas secciones de esta familia con perfiles que tienen esqueleto doblado o curvo se les denota utilizando 2R₁12 y 2R₂12 donde el primer dígito indica la flecha máxima en porcentaje de la cuerda, y el subíndice 1 y 2 indican un pequeño valor positivo o negativo del momento respectivamente.

Existe otra serie NACA de 5 dígitos que tiene las mimas características de la serie de 5 dígitos explicada anteriormente con la diferencia de que el nuevo esqueleto produce teóricamente cero momento de cabeceo. Este tipo de secciones se distingue por el tercer dígito, el cual es 1 en vez de 0. La modificación más importante para ambas familias (NACA 4 dígitos y NACA 5 dígitos) consiste en una variación sistemática en la distribución del espesor, estas modificaciones están indicadas por un guión seguido de dos dígitos. Por ejemplo NACA 0012-64 o NACA 23012-64, estas modificaciones consisten esencialmente en el cambio de radio utilizado para el borde de ataque con respecto a su valor normal (eq. 6.3) y el cambio de posición en el punto de máximo espesor con respecto al punto original aproximadamente por 0,3c (eq. 6.2).

El primer dígito después del guión indica la magnitud relativa en el radio del borde de ataque. El radio normal del borde de ataque esta designado por 6 y para un borde de ataque puntiagudo se utiliza el 0. El radio del borde de ataque varia hasta el cuadrado de este dígito exceptuando valores mayores de 8. El segundo dígito seguido del guión indica la posición del punto de máximo espesor en décimas de la cuerda.

Serie NACA-1

La serie NACA-1 fue el primer intento para desarrollaros perfiles de bajo arrastre y generar perfiles para velocidades criticas. El desarrollo de esta serie de perfiles (aproximadamente en 1939) estuvo basado en otras teorías las cuales presentaron muchas dificultades en la obtención de la distribución de presión alrededor del perfil, por esta razón se obtuvo dicha distribución para solo un rango relativamente limitado de valores de coeficiente de sustentación.

Comparado con las series señaladas anteriormente NACA 1-series se caracteriza por tener radios muy pequeños en el borde de ataque comparado con el gran ángulo presente en el borde de fuga, esta familia de perfiles se utiliza principalmente para hélices, impulsores.

• Distribución de Espesor: La ordenada para la distribución de espesor con mínimo punto de presión esta localizada a 0,6c y una proporción de espesor de 6, 9, 12, 15, 18 y 21 por ciento

están presentes en tablas ya calculadas. Estas tablas están presentadas de forma similar como las de la serie NACA 4 dígitos, esta serie no ha sido desarrollada con ninguna expresión analítica.

• Esqueleto: La serie NACA-1 presenta un tipo de esqueleto diseñado para carga uniforme el cual fue seleccionado porque el coeficiente de sustentación de diseño no genera cambios en la distribución de presión.

• Sistema Numérico: La 1-serie NACA esta denotada por 5 dígitos también, por ejemplo, el perfil NACA 16-212. El primer dígito representa la designación de la serie, el segundo dígito representa la distancia en décimas de la cuerda desde el borde de ataque hasta la posición de mínima presión de perfiles simétrico con 0 sustentación. El primer número seguido del guión representa la magnitud de flecha máxima expresado en términos de décimas del coeficiente de diseño máximo, y los últimos dos dígitos juntos indican el espesor expresado en términos de porcentaje de la cuerda. Los perfiles comúnmente utilizados en esta serie tienen la mínima presión ubicada a 0,6c y son usualmente referidos como serie 16 de NACA.

• Características Aerodinámicas Teóricas Aproximadas: Las características teóricas utilizadas en NACA 1-series se obtuvieron por la aplicación del método Theory of Thin Wing Section.

Serie NACA-6

Después de sucesivos intentos basados en procedimientos teóricos aproximados han tenido como resultado que ninguno de estos métodos a mostrado con la precisión necesaria el efecto de las fuerzas resultante en un contorno muy cercano al nuevo borde de ataque. Las pruebas realizadas en túneles de viento y pruebas de vuelo han mostrado que la extensa capa limite se puede mantener para altos números de Reynolds con una superficie suficientemente lisa. Estas pruebas proporcionan información de gran importancia en el efecto y la magnitud de gradientes de presión favorables.

Los perfiles de esta familia generalmente muestran bajos valores del máximo coeficiente de sustentación y en algunos casos está diseñados para flujo laminar lo que es muy practico, porque

los perfiles diseñados para flujo laminar excesivo generan valores de coeficiente de arrastre muy bajo cercanos a los valores de diseño de coeficiente de sustentación cuando la superficie es lisa, cuando la superficie es rugosa el arrastre aumenta.

• Distribución del Espesor: Las Tablas calculadas para la familia NACA-6 de distribución de espesor, son similares a las calculadas anteriormente para la serie NACA de 4 y 5 dígitos con la diferencia de que las ordenadas para valores intermedios de espesor han sido obtenidas de otra manera.

• Esqueleto: El esqueleto comúnmente usado con la 6-serie NACA produce una carga a lo largo de la cuerda desde el borde de ataque en el punto x/c=a con un decrecimiento lineal de carga hasta llegar al borde de fuga, los valores del esqueleto para esta serie se encuentran calculados para valores de a de 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, y 1.0. Las ordenadas de estos valores fueron calculadas utilizando otras expresiones analíticas.

• Sistema Numérico: La 6-serie NACA usualmente esta conformado por 6 dígitos los cuales juntos muestran o señalan que tipo de esqueleto presenta el perfil. Por ejemplo, la designación NACA 65,3-218, a = 0.5, el 6 es la designación de la serie. El 5 denota la posición a lo largo de la cuerda para el punto de presión mínima en décimas de la cuerda comenzando desde el borde de ataque para una sección geométrica, El 3 después de la coma proporciona el rango del coefficiente de sustentación en décimas por debajo del coefficiente de sustentación de diseño en donde existe un gradiente de presión favorable para ambas superficies. El 2 después del guión indica el coefficiente de diseño de sustentación en décimas. Los dos últimos dígitos indican el espesor de la sección en porcentaje de la cuerda. La designación a = 0.5 muestra el tipo de esqueleto utilizado, cuando la designación del tipo de esqueleto no se da, se sobreentiende que sé esta utilizando un esqueleto con a = 1.0.

PERFILES NACA SELECCIONADOS PARA ESTUDIO COMPARATIVO

Los perfiles de la serie NACA de 6 dígitos se han seleccionado para diferentes a partir del criterio de la selección de perfiles con diferentes valores de espesor máximo con el fin de evaluar la confiabilidad del software VisualFoil 4.1 para diferentes geometrías aerodinámicas.

A continuación se presenta en la figura 3.1. los contornos de los perfiles seleccionados para el presente estudio.

Fig. 3.1.- Contorno de los perfiles NACA estudiados.

Fig. 3.1.- Contorno de los perfiles NACA estudiados (Continuación).

3.2 CURVAS CARACTERÍSTICAS AERODINÁMICAS EXPERIMENTALES

Las curvas características aerodinámicas presentadas a continuación son el resultado del procesamiento de los datos experimentales presentados en el libro Abbott, H., 1950 y el catálogo Miley, 1982., con el fin de llevarlos a un formato diseñado por el profesor S. Zarea que facilita la observación del comportamiento de todos los coeficientes aerodinámicos de los perfiles seleccionados y permite su comparación con los obtenidos a partir de las evaluaciones computacionales.

Fig. 3.2.1. (a) Contorno y (b) Curvas Polares del perfil NACA 63(1)-212.

(d) Čl, Cd y Cm Vs. Ángulo de ataque del perfil NACA 64(1)-412.

(d) Čl, Cd y Cm Vs. Ángulo de ataque del perfil NACA 64(1)-612.

Fig. 3.2.13. (a) Contorno y (b) Curvas Polares del perfil NACA 64(2)-415.

(d) CI y Cd Vs. Ángulo de ataque del perfil NACA 65-006.

(d) Cl, Cd Vs. Ángulo de ataque del perfil NACA 65(3)-618.

Fig. 3.2.20. (a) Contorno y (b) Curvas Polares del perfil NACA 66(2)-415.

(d) CI, Cd y Cm Vs. Ángulo de ataque del perfil NACA 66(2)-415.

3.3 EVALUACIÓN COMPUTACIONAL DE 20 PERFILES NACA-6

"VisualFoil es una herramienta numérica de base MS Windows 95 que calcula los coeficientes de sustentación de arrastre y momento para perfiles NACA o de otra clase. El análisis del perfil esta basado en el método vortex panel para flujo incompresible ideal. Un nuevo calculo se hace cada vez que un perfil es escogido o el ángulo de ataque, la localización y deflexión del flap son modificadas. VisualFoil incluye efectos viscosos corrigiendo la solución no viscosa con el análisis de la capa limite. Las ecuaciones de la capa limite son resueltas usando un método de diferencia finita de segundo orden en la dirección de la corriente y un método seudoespectral en la dirección normal a la superficie. La turbulencia es calculada con el uso del modelo de turbulencia de Baldwin-Lomax. La aproximación semi-empirica de Squire-Young es usada para computar el coeficiente de arrastre de forma para el perfil. VisualFoil puede ser usado para calcular el comportamiento teórico de perfiles NACA de 4 y 5 dígitos para varias posiciones de las características de perfiles NACA de 4 y 5 dígitos, para el diseño y análisis de aeroplanos o para la evaluación teórica de la respuesta de un perfil a los cambios en el ángulo de ataque, localización y deflexión del flap" (Introducción, Ayuda, VisualFoil 4.1., 1997).

Los valores obtenidos con este software se presentan a continuación en un formato similar al mostrado en las graficas anteriores, agregando la curva Cp vs. x.

Fig. 3.3.1. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil NACA 63(1)-212. Met. Panel y Capa Límite. 180 Puntos.

Fig. 3.3.1. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil NACA 63(1)-212.

Fig. 3.3.2. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil NACA 63(1)-412. Met. Panel y Capa Límite. 180 Puntos.

Fig. 3.3.2. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil NACA 63(1)-412.

Fig. 3.3.3. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil NACA 63(2)-215. Met. Panel y Capa Límite. 180 Puntos.

Fig. 3.3.3. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil NACA 63(2)-215.

Fig. 3.3.4. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil NACA 63(2)-615. Met. Panel y Capa Límite. 180 Puntos.

Fig. 3.3.4. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil NACA 63(2)-615.

Fig. 3.3.5. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil NACA 63(4)-221. Met. Panel y Capa Límite. 220 Puntos.

Fig. 3.3.5. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil NACA 63(4)-221.

Fig. 3.3.6. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil NACA 63(4)-421. Met. Panel y Capa Límite. 220 Puntos.

Fig. 3.3.6. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil NACA 63(4)-421.

Fig. 3.3.7. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil NACA 63A010. Met. Panel y Capa Límite. 220 Puntos.

Fig. 3.3.7. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil NACA 63A-010.

Fig. 3.3.8. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil NACA 64(1)-612. Met. Panel y Capa Límite. 140 Puntos.

Fig. 3.3.8. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil NACA 64(1)-612.

Fig. 3.3.9. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil NACA 64-110. Met. Panel y Capa Límite. 120 Puntos.

Fig. 3.3.9. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil NACA 64-110.

Fig. 3.3.10. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil NACA 64-409. Met. Panel y Capa Límite. 180 Puntos.

Fig. 3.3.10. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil NACA 64-409.

Fig. 3.3.11. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil NACA 64(1)-412. Met. Panel y Capa Límite. 140 Puntos.

Fig. 3.3.11. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil NACA 64(1)-412.

Fig. 3.3.12. (a) Cp (0° , 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil NACA 64(1)-612. Met. Panel y Capa Límite. 140 Puntos.

Fig. 3.3.12. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil NACA 64(1)-612.

Fig. 3.3.13. (a) Cp (0° , 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil NACA 64(2)-415. Met. Panel y Capa Límite. 160 Puntos.

Fig. 3.3.13. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil NACA 64(2)-415.

Fig. 3.3.14. (a) Cp (0° , 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil NACA 64(3)-418. Met. Panel y Capa Límite. 180 Puntos.

Fig. 3.3.14. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil NACA 64(3)-418.

Fig. 3.3.15. (a) Cp (0° , 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil NACA 64A-010. Met. Panel y Capa Límite. 220 Puntos.

Fig. 3.3.15. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil NACA 64A-010.

Fig. 3.3.16. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil NACA 64-006. Met. Panel y Capa Límite. 100 Puntos.

Fig. 3.3.16. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil NACA 64-006.

Fig. 3.3.17. (a) Cp (0° , 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil NACA 65(2)-415. Met. Panel y Capa Límite. 160 Puntos.

Fig. 3.3.17. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil NACA 65(2)-415.

Fig. 3.3.18. (a) Cp (0° , 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil NACA 65(3)-418. Met. Panel y Capa Límite. 220 Puntos.

Fig. 3.3.18. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil NACA 65(3)-418.

Fig. 3.3.19. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil NACA 65(3)-618. Met. Panel y Capa Límite. 220 Puntos.

Fig. 3.3.19. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil NACA 65(3)-618.

Fig. 3.3.20. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil NACA 66(2)-415. Met. Panel y Capa Límite. 160 Puntos.

Fig. 3.3.20. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil NACA 66(2)-415.

3.4 COMPARACION DE RESULTADOS COMPUTACIONALES Y EXPERIMENTALES.

Con el fin de evaluar la capacidad de predicción de los valores de coeficientes aerodinámicos de los perfiles de la serie NACA de 6 dígitos se han diseñado un conjunto de tablas las cuales están conformadas por distintas expresiones que permiten cuantificar la diferencia existente entre los datos experimentales (Abbott, H., 1950.,Miley, 1982) con los valores computacionales obtenidos a partir del software VisualFoil 4.1. Las expresiones empleadas para la comparación son las siguiente:

 Error Absoluto: Es una medida del ajuste del cálculo de una magnitud con respecto al valor real o teórico que dicha magnitud tiene. La siguiente expresión fue utilizada para el calculo del error absoluto de los coeficientes de sustentación, arrastre, momento y la fineza aerodinámica tomando como valor real o teórico el dato experimental.

$$\Delta C_{L,D,M} = C_{e} - C_{c},$$

donde Ce representa el valor experimental y Cc es el valor computacional.

 Error Relativo (%): Es el error absoluto divido entre el valor real. Este fue calculado de dos formas; E_{R1} toma como valor real el computacional, mientras que E_{R2} toma como valor real el dato experimental. Las siguientes expresiones fueron utilizadas para calcular los errores relativos de todos los coeficientes aerodinámicos de los perfiles estudiados en este capitulo:

$$E_{R1}(\%) = (1 - C_e/C_c) \times 100,$$

 $E_{R2}(\%) = (1 - C_c/C_e) \times 100,$

En las tablas que se presentan a continuación se puede observar claramente la fuente de la cual fueron tomados los datos experimentales, numero de Reynolds y la cantidad de puntos utilizada para la evaluación computacional de cada perfil.

3.4 COMPARACION DE RESULTADOS COMPUTACIONALES Y EXPERIMENTALES.

Tabla 3.4.1.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 63₁-212 para diferentes números de Reynolds.

							NAC	A 631-212	2 (Abbot	tt), Re: 3.0	00.000									
	١	/isualFoil [·]	180 pts.			Abl	oott			Error Ab	osoluto		E _{R1} (9	%)= (1-	C _e /C _c)	x 100	E _{R2} (%)= (1	- C _c /C _e)x 100
α (deg)	C_{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E_{CD1}	E _{CM1}	Eε1	E_{CL2}	E_{CD2}	E _{CM2}	Eε2
0	0,1830	0,0048	-0,04	37,98	0,20	0,0049	-	40,82	-0,02	-0,0001	-	-2,84	-9,3	-1,7	-	-7,5	-8,5	-1,7	-	-7,0
1	0,2931	0,0050	-0,04	58,72	0,32	0,005	-	64,00	-0,03	0,0000	-	-5,28	-9,2	-0,2	-	-9,0	-8,4	-0,2	-	-8,3
2	0,4030	0,0053	-0,05	75,49	0,42	0,0051	-	82,35	-0,02	0,0002	-	-6,87	-4,2	4,5	-	-9,1	-4,1	4,7	-	-8,3
3	0,5125	0,0062	-0,05	82,59	0,55	0,0053	-	103,77	-0,04	0,0009	-	-21,19	-7,3	14,6	-	-25,7	-6,8	17,1	-	-20,4
4	0,6233	0,0075	-0,05	82,78	0,65	0,007	-	92,86	-0,03	0,0005	-	-10,08	-4,3	7,0	-	-12,2	-4,1	7,6	-	-10,9
5	0,7356	0,0090	-0,05	81,93	0,75	0,0083	-	90,36	-0,01	0,0007	-	-8,43	-2,0	7,6	-	-10,3	-1,9	8,2	-	-9,3
6	0,8434	0,0096	-0,05	87,87	0,85	0,0092	-	92,39	-0,01	0,0004	-	-4,52	-0,8	4,1	-	-5,1	-0,8	4,3	-	-4,9
7	0,9510	0,0107	-0,05	89,14	0,98	0,0105	-	93,33	-0,03	0,0002	-	-4,19	-3,1	1,6	-	-4,7	-3,0	1,6	-	-4,5
8	0,9973	0,0114	-0,07	87,10	1,10	0,0118	-	93,22	-0,10	-0,0004	-	-6,12	-10,3	-3,1	-	-7,0	-9,3	-3,0	-	-6,6
9	1,0852	0,0129	-0,08	84,39	1,18	0,013	-	90,77	-0,09	-0,0001	-	-6,38	-8,7	-1,1	-	-7,6	-8,0	-1,1	-	-7,0
10	1,1695	0,0146	-0,08	79,91	1,25	0,0144	-	86,81	-0,08	0,0002	-	-6,89	-6,9	1,6	-	-8,6	-6,4	1,6	-	-7,9
11	1,2253	0,0167	-0,10	73,56	1,35	0,0165	-	81,82	-0,12	0,0002	-	-8,26	-10,2	0,9	-	-11,2	-9,2	1,0	-	-10,1
12	1,2834	0,0193	-0,11	66,63	1,42	0,0189	-	75,13	-0,14	0,0004	-	-8,51	-10,6	1,9	-	-12,8	-9,6	1,9	-	-11,3

							NACA	631-212	(Abbott)	, Re: 6.000	0.000									
		VisualFoil	180 pts.			Abl	bott			Error Ab	soluto		E _{R1} (%)= (1	- C _e /C _c)x 100	E _{R2} (%)= (1	- C _c /C _e)x 100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,1831	0,0044	-0,04	41,79	0,20	0,0045	-	44,44	-0,02	-0,0001	-	-2,65	-9,2	-2,7	-	-6,3	-8,5	-2,6	-	-6,0
1	0,2937	0,0046	-0,04	64,21	0,32	0,0045	-	71,11	-0,03	0,0001	-	-6,90	-9,0	1,6	-	-10,8	-8,2	1,6	-	-9,7
2	0,4042	0,0049	-0,05	83,30	0,42	0,0045	-	93,33	-0,02	0,0004	-	-10,04	-3,9	7,3	-	-12,0	-3,8	7,8	-	-10,8
3	0,5152	0,0060	-0,05	86,05	0,55	0,0058	-	94,83	-0,03	0,0002	-	-8,77	-6,8	3,1	-	-10,2	-6,3	3,2	-	-9,3
4	0,6268	0,0068	-0,05	92,23	0,65	0,007	-	92,86	-0,02	-0,0002	-	-0,62	-3,7	-3,0	-	-0,7	-3,6	-2,9	-	-0,7
5	0,7397	0,0079	-0,05	94,09	0,75	0,008	-	93,75	-0,01	-0,0001	-	0,34	-1,4	-1,8	-	0,4	-1,4	-1,7	-	0,4
6	0,8487	0,0084	-0,05	100,97	0,85	0,0085	-	100,00	0,00	-0,0001	-	0,97	-0,2	-1,1	-	1,0	-0,2	-1,1	-	1,0
7	0,9576	0,0093	-0,05	102,48	0,98	0,0094	-	104,26	-0,02	-0,0001	-	-1,77	-2,3	-0,6	-	-1,7	-2,3	-0,6	-	-1,7
8	1,0606	0,0101	-0,05	105,01	1,10	0,0102	-	107,84	-0,04	-0,0001	-	-2,83	-3,7	-1,0	-	-2,7	-3,6	-1,0	-	-2,6
9	1,1088	0,0112	-0,07	98,88	1,20	0,0115	-	104,35	-0,09	-0,0003	-	-5,46	-8,2	-2,6	-	-5,5	-7,6	-2,5	-	-5,2
10	1,1965	0,0127	-0,08	94,30	1,30	0,0128	-	101,56	-0,10	-0,0001	-	-7,26	-8,7	-0,9	-	-7,7	-8,0	-0,9	-	-7,1

						N	ACA 6	3₁-212 (Ak	obott), R	e: 9.000.00)0									
	V	'isualFoil 1	80 pts.			Abl	bott			Error Abs	soluto		E _{R1} (%	%)= (1-	$C_e/C_c)$	x 100	E _{R2} (%	%)= (1-	$C_c/C_e)$	x 100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C _{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E_{CD1}	E _{CM1}	Eε1	E_{CL2}	E_{CD2}	E _{CM2}	Eε2
0	0,1832	0,0042	-0,04	44,07	0,20	0,0045	-	44,44	-0,02	-0,0003	-	-0,38	-9,2	-8,3	-	-0,9	-8,4	-7,6	-	-0,9
1	0,2943	0,0043	-0,04	67,79	0,32	0,0045	-	71,11	-0,03	-0,0002	-	-3,32	-8,7	-3,7	-	-4,9	-8,0	-3,5	-	-4,7
2	0,4052	0,0048	-0,04	84,81	0,42	0,0046	-	91,30	-0,01	0,0002	-	-6,49	-3,6	3,7	-	-7,7	-3,5	3,9	-	-7,1
3	0,5169	0,0058	-0,05	89,62	0,55	0,006	-	91,67	-0,03	-0,0002	-	-2,04	-6,4	-4,0	-	-2,3	-6,0	-3,9	-	-2,2
4	0,6288	0,0064	-0,05	97,67	0,65	0,007	-	92,86	-0,02	-0,0006	-	4,81	-3,4	-8,7	-	4,9	-3,3	-8,0	-	5,2
5	0,7416	0,0073	-0,05	101,27	0,75	0,0076	-	98,68	-0,01	-0,0003	-	2,58	-1,1	-3,8	-	2,6	-1,1	-3,6	-	2,6
6	0,8519	0,0078	-0,05	109,54	0,85	0,008	-	106,25	0,00	-0,0002	-	3,29	0,2	-2,9	-	3,0	0,2	-2,8	-	3,1
7	0,9616	0,0087	-0,05	110,92	0,98	0,0089	-	110,11	-0,02	-0,0002	-	0,81	-1,9	-2,7	-	0,7	-1,9	-2,6	-	0,7
8	1,0695	0,0095	-0,05	112,37	1,10	0,0096	-	114,58	-0,03	-0,0001	-	-2,21	-2,9	-0,9	-	-2,0	-2,8	-0,9	-	-1,9
9	1,1715	0,0105	-0,05	111,50	1,20	0,0104	-	115,38	-0,03	0,0001	-	-3,88	-2,4	1,0	-	-3,5	-2,4	1,0	-	-3,4
10	1,2098	0,0117	-0,07	103,13	1,30	0,0115	-	113,04	-0,09	0,0002	-	-9,91	-7,5	2,0	-	-9,6	-6,9	2,0	-	-8,8

Tabla 3.4.1.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 63₁-212 para diferentes números de Reynolds. (Continuación I)

						1	ACA	63 ₁ -412 (A	bbott),	Re: 3.000.	000									
		VisualFoil	180 pts.			Abl	bott			Error Ab	soluto		E _{R1} (%	%)= (1-	C_e/C_c	x 100	E _{R2} (%	%)= (1-	C_c/C_e)	x 100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C _{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E_{CD1}	E _{CM1}	Eε1	E_{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,3653	0,0050	-0,08	73,37	0,30	0,0054	-	55,56	0,07	-0,0004	-	17,81	17,9	-8,5	-	24,3	21,8	-7,8	-	32,1
1	0,4752	0,0052	-0,09	91,83	0,45	0,0054	-	83,33	0,03	-0,0002	-	8,50	5,3	-4,4	-	9,3	5,6	-4,2	-	10,2
2	0,5852	0,0055	-0,09	106,41	0,55	0,0055	-	100,00	0,04	0,0000	-	6,41	6,0	0,0	-	6,0	6,4	0,0	-	6,4
3	0,6946	0,0063	-0,09	110,82	0,65	0,006	-	108,33	0,04	0,0003	-	2,49	6,4	4,3	-	2,2	6,9	4,5	-	2,3
4	0,8041	0,0079	-0,09	102,04	0,78	0,0072	-	108,33	0,02	0,0007	-	-6,30	3,0	8,6	-	-6,2	3,1	9,4	-	-5,8
5	0,9135	0,0090	-0,09	101,32	0,88	0,0095	-	92,63	0,03	-0,0005	-	8,69	3,7	-5,4	-	8,6	3,8	-5,1	-	9,4
6	1,0206	0,0105	-0,09	97,14	0,98	0,0108	-	90,74	0,04	-0,0003	-	6,40	4,0	-2,8	-	6,6	4,1	-2,7	-	7,0
7	1,1243	0,0113	-0,10	99,42	1,05	0,0114	-	92,11	0,07	-0,0001	-	7,32	6,6	-0,8	-	7,4	7,1	-0,8	-	7,9
8	1,1715	0,0126	-0,11	93,01	1,15	0,0125	-	92,00	0,02	0,0001	-	1,01	1,8	0,8	-	1,1	1,9	0,8	-	1,1
9	1,2468	0,0140	-0,12	88,96	1,25	0,014	-	89,29	0,00	0,0000	-	-0,33	-0,3	0,1	-	-0,4	-0,3	0,1	-	-0,4
10	1,3264	0,0158	-0,13	83,84	1,38	0,016	-	86,25	-0,05	-0,0002	-	-2,41	-4,0	-1,1	-	-2,9	-3,9	-1,1	-	-2,8
11	1,4012	0,0181	-0,14	77,59	1,44	0,018	-	80,00	-0,04	0,0001	-	-2,41	-2,8	0,3	-	-3,1	-2,7	0,3	-	-3,0
12	1,4550	0,0207	-0,15	70,41	1,50	0,0195	-	76,92	-0,04	0,0012	-	-6,52	-3,1	5,6	-	-9,3	-3,0	6,0	-	-8,5

Tabla 3.4.2.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 63₁-412 para diferentes números de Reynolds.

							NACA	<mark>\ 63₁-412 (</mark>	Abbott)	, Re: 6.000	.000									
		VisualFoil	180 pts.			Abb	oott			Error Ab	soluto		E _{R1} (*	%)= (1·	$-C_e/C_c$	x 100	E _{R2} (%	%)= (1-	$C_c/C_e)$	x 100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,3658	0,0044	-0,08	82,38	0,30	0,0048	-	62,50	0,07	-0,0004	-	19,88	18,0	-8,1	-	24,1	21,9	-7,5	-	31,8
1	0,4761	0,0047	-0,08	102,09	0,45	0,0048	-	93,75	0,03	-0,0001	-	8,34	5,5	-2,9	-	8,2	5,8	-2,9	-	8,9
2	0,5865	0,0050	-0,09	116,65	0,55	0,005	-	110,00	0,04	0,0000	-	6,65	6,2	0,6	-	5,7	6,6	0,6	-	6,0
3	0,6972	0,0061	-0,09	115,07	0,65	0,0055	-	118,18	0,05	0,0006	-	-3,11	6,8	9,2	-	-2,7	7,3	10,2	-	-2,6
4	0,8078	0,0072	-0,09	111,61	0,78	0,0064	-	121,88	0,03	0,0008	-	-10,26	3,4	11,6	-	-9,2	3,6	13,1	-	-8,4
5	0,9189	0,0080	-0,09	114,38	0,88	0,0082	-	107,32	0,04	-0,0002	-	7,06	4,2	-2,1	-	6,2	4,4	-2,0	-	6,6
6	1,0291	0,0092	-0,09	111,87	0,98	0,009	-	108,89	0,05	0,0002	-	2,98	4,8	2,2	-	2,7	5,0	2,2	-	2,7
7	1,1325	0,0099	-0,09	114,62	1,05	0,0097	-	108,25	0,08	0,0002	-	6,37	7,3	1,8	-	5,6	7,9	1,9	-	5,9
8	1,2304	0,0111	-0,10	110,71	1,15	0,0105	-	109,52	0,08	0,0006	-	1,18	6,5	5,5	-	1,1	7,0	5,8	-	1,1
9	1,2837	0,0123	-0,11	104,13	1,30	0,0116	-	112,07	-0,02	0,0007	-	-7,94	-1,3	5,9	-	-7,6	-1,3	6,3	-	-7,1
10	1,3575	0,0138	-0,12	98,45	1,40	0,0135	-	103,70	-0,04	0,0003	-	-5,26	-3,1	2,1	-	-5,3	-3,0	2,1	-	-5,1
11	1,4360	0,0156	-0,13	91,88	1,48	0,015	-	98,67	-0,04	0,0006	-	-6,79	-3,1	4,0	-	-7,4	-3,0	4,2	-	-6,9
12	1,4945	0,0177	-0,14	84,33	1,58	0,017	-	92,94	-0,09	0,0007	-	-8,61	-5,7	4,1	-	-10,2	-5,4	4,2	-	-9,3

							NAC	A 63 ₁ -412	(Abbott), Re: 9.00	0.000									
	V	isualFoil 1	180 pts.			Abl	oott			Error Ab	soluto		E _{R1} (%)= (1	- C _e /C _c)x 100	E _{R2} (%)= (1	- C _c /C _e)x 100
α (deg)	C _{Lc}	C _{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤ _e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E_{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	Eε2
0	0,3657	0,0043	-0,08	85,07	0,30	0,0045	-	66,67	0,07	-0,0002	-	18,40	18,0	-4,7	-	21,6	21,9	-4,5	-	27,6
1	0,4767	0,0044	-0,08	107,74	0,45	0,0046	-	97,83	0,03	-0,0002	-	9,91	5,6	-4,0	-	9,2	5,9	-3,8	-	10,1
2	0,5876	0,0049	-0,09	120,62	0,55	0,005	-	110,00	0,04	-0,0001	-	10,62	6,4	-2,6	-	8,8	6,8	-2,6	-	9,7
3	0,6992	0,0060	-0,09	116,22	0,65	0,0055	-	118,18	0,05	0,0005	-	-1,96	7,0	8,6	-	-1,7	7,6	9,4	-	-1,7
4	0,8109	0,0068	-0,09	118,43	0,78	0,0064	-	121,88	0,03	0,0004	-	-3,44	3,8	6,5	-	-2,9	4,0	7,0	-	-2,8
5	0,9212	0,0075	-0,09	122,13	0,88	0,008	-	110,00	0,04	-0,0005	-	12,13	4,5	-6,1	-	9,9	4,7	-5,7	-	11,0
6	1,0315	0,0086	-0,09	120,50	0,98	0,0086	-	113,95	0,05	0,0000	-	6,55	5,0	-0,5	-	5,4	5,3	-0,5	-	5,7
7	1,1383	0,0092	-0,09	123,81	1,05	0,009	-	116,67	0,09	0,0002	-	7,15	7,8	2,1	-	5,8	8,4	2,2	-	6,1
8	1,2450	0,0105	-0,09	119,12	1,15	0,0098	-	117,35	0,09	0,0007	-	1,78	7,6	6,2	-	1,5	8,3	6,6	-	1,5
9	1,3383	0,0115	-0,10	116,03	1,30	0,0105	-	123,81	0,04	0,0010	-	-7,78	2,9	9,0	-	-6,7	2,9	9,8	-	-6,3
10	1,3727	0,0128	-0,12	107,42	1,40	0,0124	-	112,90	-0,03	0,0004	-	-5,48	-2,0	3,0	-	-5,1	-1,9	3,1	-	-4,9
11	1,4532	0,0144	-0,12	100,66	1,48	0,0136	-	108,82	-0,03	0,0008	-	-8,17	-1,8	5,8	-	-8,1	-1,8	6,2	-	-7,5
12	1,5286	0,0164	-0,13	92,94	1,59	0,0154	-	103,25	-0,06	0,0010	-	-10,30	-4,0	6,4	-	-11,1	-3,9	6,8	-	-10,0

Tabla 3.4.2.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 631-412 para diferentes números de Reynolds (Continuación I).

							NAC	A 632-215	5 (Abbot	t), Re: 3.00	00.000									
	۱	/isualFoil ⁻	180 pts.			Abl	oott			Error Ab	soluto		E _{R1} (%)= (1	- C _e /C _c)x 100	E _{R2} (%)= (1	- C _c /C _e)x 100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E_{CD1}	E _{CM1}	Eε1	E_{CL2}	E_{CD2}	E _{CM2}	Eε2
0	0,1860	0,0054	-0,04	34,70	0,15	0,0058	-	25,86	0,04	-0,0004	-	8,83	19,4	-8,2	-	25,5	24,0	-7,6	-	34,2
1	0,2986	0,0054	-0,04	55,00	0,25	0,0058	-	43,10	0,05	-0,0004	-	11,90	16,3	-6,8	-	21,6	19,4	-6,4	-	27,6
2	0,4105	0,0056	-0,05	73,55	0,40	0,0059	-	67,80	0,01	-0,0003	-	5,75	2,6	-5,7	-	7,8	2,6	-5,4	-	8,5
3	0,5223	0,0060	-0,05	87,40	0,50	0,0061	-	81,97	0,02	-0,0001	-	5,44	4,3	-2,1	-	6,2	4,5	-2,0	-	6,6
4	0,6335	0,0068	-0,05	93,54	0,60	0,0065	-	92,31	0,03	0,0003	-	1,23	5,3	4,0	-	1,3	5,6	4,2	-	1,3
5	0,7438	0,0084	-0,05	89,00	0,75	0,0085	-	88,24	-0,01	-0,0001	-	0,77	-0,8	-1,7	-	0,9	-0,8	-1,7	-	0,9
6	0,8539	0,0093	-0,06	91,40	0,85	0,0098	-	86,73	0,00	-0,0005	-	4,66	0,5	-4,9	-	5,1	0,5	-4,7	-	5,4
7	0,9110	0,0108	-0,07	83,98	0,95	0,011	-	86,36	-0,04	-0,0002	-	-2,38	-4,3	-1,4	-	-2,8	-4,1	-1,4	-	-2,8
8	1,0015	0,0119	-0,08	84,05	1,00	0,0115	-	86,96	0,00	0,0004	-	-2,91	0,2	3,5	-	-3,5	0,2	3,6	-	-3,3
9	1,0785	0,0136	-0,09	79,41	1,12	0,013	-	86,15	-0,04	0,0006	-	-6,74	-3,8	4,3	-	-8,5	-3,7	4,5	-	-7,8
10	1,1578	0,0149	-0,10	77,53	1,25	0,015	-	83,33	-0,09	-0,0001	-	-5,81	-8,0	-0,4	-	-7,5	-7,4	-0,4	-	-7,0
11	1,2143	0,0163	-0,11	74,66	1,30	0,0125	-	104,00	-0,09	0,0038	-	-29,34	-7,1	23,1	-	-39,3	-6,6	30,1	-	-28,2

Tabla 3.4.3.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 63₂-215 para diferentes números de Reynolds.

							NACA	A 63₂-215	(Abbott), Re: 6.00	0.000									
		VisualFoil	180 pts.			Abl	oott			Error Ab	soluto		E _{R1} (%)= (1-	- C _e /C _c)x 100	E _{R2} (%)= (1-	- C _c /C _e)x 100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E_{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,1862	0,0046	-0,04	40,55	0,15	0,0049	-	30,61	0,04	-0,0003	-	9,94	19,4	-6,7	-	24,5	24,1	-6,3	-	32,5
1	0,2994	0,0047	-0,04	63,11	0,25	0,005	-	50,00	0,05	-0,0003	-	13,11	16,5	-5,4	-	20,8	19,7	-5,1	-	26,2
2	0,4120	0,0050	-0,05	82,59	0,40	0,0051	-	78,43	0,01	-0,0001	-	4,16	2,9	-2,2	-	5,0	3,0	-2,2	-	5,3
3	0,5245	0,0055	-0,05	95,86	0,50	0,0054	-	92,59	0,02	0,0001	-	3,26	4,7	1,3	-	3,4	4,9	1,3	-	3,5
4	0,6370	0,0065	-0,05	97,43	0,60	0,006	-	100,00	0,04	0,0005	-	-2,57	5,8	8,2	-	-2,6	6,2	9,0	-	-2,6
5	0,7495	0,0077	-0,05	97,89	0,75	0,0081	-	92,59	0,00	-0,0004	-	5,29	-0,1	-5,8	-	5,4	-0,1	-5,5	-	5,7
6	0,8606	0,0083	-0,06	103,33	0,85	0,0085	-	100,00	0,01	-0,0002	-	3,33	1,2	-2,1	-	3,2	1,3	-2,0	-	3,3
7	0,9721	0,0096	-0,06	101,56	0,95	0,0094	-	101,06	0,02	0,0002	-	0,50	2,3	1,8	-	0,5	2,3	1,8	-	0,5
8	1,0236	0,0104	-0,07	98,02	1,05	0,01	-	105,00	-0,03	0,0004	-	-6,98	-2,6	4,2	-	-7,1	-2,5	4,4	-	-6,6
9	1,1048	0,0119	-0,08	92,51	1,15	0,011	-	104,55	-0,05	0,0009	-	-12,04	-4,1	7,9	-	-13,0	-3,9	8,6	-	-11,5
10	1,1878	0,0131	-0,09	90,77	1,25	0,012	-	104,17	-0,06	0,0011	-	-13,40	-5,2	8,3	-	-14,8	-5,0	9,1	-	-12,9
11	1.2626	0.0143	-0.10	88.32	1.38	0.0137	-	100.73	-0.12	0.0006	-	-12.41	-9.3	4.2	-	-14.0	-8.5	4.3	-	-12.3

							NAC	A 63 ₂ -215	5 (Abbot	tt), Re: 9.0	00.000									
	V	isualFoil 1	80 pts.			Abl	bott			Error Ab	soluto		E _{R1} (%)= (1-	Ce/Cc)	x 100	E _{R2} (%)= (1-	C_c/C_e	x 100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	Eε2
0	0,1866	0,0043	-0,04	43,58	0,15	0,0048		31,25	0,04	-0,0005		12,33	19,6	-12,1		28,3	24,4	-10,8		39,4
1	0,2997	0,0045	-0,04	67,35	0,25	0,0046		54,35	0,05	-0,0002		13,00	16,6	-3,4		19,3	19,9	-3,3		23,9
2	0,4128	0,0047	-0,05	88,06	0,40	0,0049		81,63	0,01	-0,0002		6,43	3,1	-4,5		7,3	3,2	-4,3		7,9
3	0,5258	0,0054	-0,05	98,06	0,50	0,005		100,00	0,03	0,0004		-1,94	4,9	6,8		-2,0	5,2	7,2		-1,9
4	0,6392	0,0063	-0,05	100,67	0,60	0,006		100,00	0,04	0,0003		0,67	6,1	5,5		0,7	6,5	5,8		0,7
5	0,7519	0,0072	-0,05	104,50	0,75	0,0078		96,15	0,00	-0,0006		8,35	0,3	-8,4		8,0	0,3	-7,8		8,7
6	0,8646	0,0078	-0,05	111,14	0,85	0,0081		104,94	0,01	-0,0003		6,20	1,7	-4,1		5,6	1,7	-4,0		5,9
7	0,9750	0,0089	-0,06	109,77	0,95	0,0088		107,95	0,03	0,0001		1,82	2,6	0,9		1,7	2,6	0,9		1,7
8	1,0847	0,0098	-0,06	110,65	1,05	0,0094		111,70	0,03	0,0004		-1,05	3,2	4,1		-1,0	3,3	4,3		-0,9
9	1,1268	0,0111	-0,08	101,10	1,15	0,0098		117,35	-0,02	0,0013		-16,25	-2,1	12,1		-16,1	-2,0	13,7		-13,8
10	1,2133	0,0122	-0,08	99,35	1,25	0,011		113,64	-0,04	0,0012		-14,29	-3,0	9,9		-14,4	-2,9	11,0		-12,6
11	1,2919	0,0133	-0,09	96,97	1,38	0,0125		110,40	-0,09	0,0008		-13,43	-6,8	6,2		-13,9	-6,4	6,6		-12,2

Tabla 3.4.3.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 632-215 para diferentes números de Reynolds (Continuación I).

							NACA	632-615 (Abbott	, Re: 3.00	0.000									
		VisualFoil	180 pts.			Ab	bott			Error At	osoluto		E _{R1} (%)= (1-	C_e/C_c)	c 100	E _{R2} (*	%)= (1-	C_c/C_e):	x 100
α (deg	g) C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E _{CL2}	E _{CD2}	E _{CM2}	E _{ε2}
0	0,553	2 0,0061	-0,13	90,32	0,40	0,0058	-	68,97	0,15	0,0003	-	21,35	27,7	5,3	-	23,6	38,3	5,6	-	31,0
1	0,665	4 0,0061	-0,13	108,81	0,52	0,0058	-	89,66	0,15	0,0003	-	19,16	21,8	5,2	-	17,6	28,0	5,4	-	21,4
2	0,776	2 0,0062	-0,13	125,06	0,65	0,0059	-	110,17	0,13	0,0003	-	14,89	16,3	4,9	-	11,9	19,4	5,2	-	13,5
3	0,888	1 0,0063	-0,13	141,92	0,75	0,0061	-	122,95	0,14	0,0002	-	18,97	15,6	2,5	-	13,4	18,4	2,6	-	15,4
4	0,996	6 0,0071	-0,14	140,59	0,85	0,0064	-	132,81	0,15	0,0007	-	7,77	14,7	9,7	-	5,5	17,2	10,8	-	5,9
5	1,100	2 0,0088	-0,14	125,69	0,95	0,0075	-	126,67	0,15	0,0013	-	-0,98	13,6	14,3	-	-0,8	15,8	16,7	-	-0,8
6	1,195	4 0,0105	-0,15	113,32	1,05	0,0091	-	115,38	0,15	0,0014	-	-2,07	12,2	13,7	-	-1,8	13,8	15,9	-	-1,8
7	1,263	6 0,0117	-0,16	107,70	1,15	0,0115	-	100,00	0,11	0,0002	-	7,70	9,0	2,0	-	7,1	9,9	2,0	-	7,7
8	1,340	4 0,0144	-0,17	93,06	1,25	0,014	-	89,29	0,09	0,0004	-	3,78	6,7	2,8	-	4,1	7,2	2,9	-	4,2
9	1,418	0 0,0155	-0,18	91,27	1,34	0,0178	-	75,28	0,08	-0,0023	-	15,99	5,5	-14,6	-	17,5	5,8	-12,7	-	21,2
10	1,489	2 0,0167	-0,19	89,27	1,36	0,02	-	68,00	0,13	-0,0033	-	21,27	8,7	-19,9	-	23,8	9,5	-16,6	-	31,3

Tabla 3.4.4.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 63₂-615 para diferentes números de Reynolds.

						Ν		63₂-615 (A	bbott),	Re: 6.000	.000									
		VisualFoil	180 pts.			Abl	oott			Error Ab	soluto		E _{R1} (%	%)= (1-	$C_e/C_c)$	x 100	E _{R2} (%	%)= (1-	$C_c/C_e)$	x 100
α (deg)	C_{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C _{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E_{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	Eε2
0	0,5547	0,0052	-0,13	105,84	0,40	0,0052	-	76,92	0,15	0,0000	-	28,92	27,9	0,8	-	27,3	38,7	0,8	-	37,6
1	0,6678	0,0052	-0,13	128,17	0,52	0,0053	-	98,11	0,15	-0,0001	-	30,06	22,1	-1,7	-	23,5	28,4	-1,7	-	30,6
2	0,7798	0,0053	-0,13	147,08	0,65	0,0052	-	125,00	0,13	0,0001	-	22,08	16,6	1,9	-	15,0	20,0	2,0	-	17,7
3	0,8921	0,0056	-0,13	158,60	0,75	0,0056	-	133,93	0,14	0,0000	-	24,67	15,9	0,4	-	15,6	18,9	0,4	-	18,4
4	1,0022	0,0067	-0,14	149,60	0,85	0,006	-	141,67	0,15	0,0007	-	7,93	15,2	10,4	-	5,3	17,9	11,7	-	5,6
5	1,1088	0,0083	-0,14	133,04	0,95	0,0075	-	126,67	0,16	0,0008	-	6,37	14,3	10,0	-	4,8	16,7	11,1	-	5,0
6	1,2121	0,0096	-0,14	126,21	1,05	0,0098	-	107,14	0,16	-0,0002	-	19,07	13,4	-2,0	-	15,1	15,4	-2,0	-	17,8
7	1,3109	0,0106	-0,15	123,87	1,15	0,0115	-	100,00	0,16	-0,0009	-	23,87	12,3	-8,7	-	19,3	14,0	-8,0	-	23,9
8	1,3691	0,0127	-0,16	108,18	1,25	0,0125	-	100,00	0,12	0,0002	-	8,18	8,7	1,2	-	7,6	9,5	1,2	-	8,2
9	1,4510	0,0136	-0,17	106,49	1,38	0,0137	-	100,73	0,07	-0,0001	-	5,76	4,9	-0,5	-	5,4	5,1	-0,5	-	5,7
10	1,5268	0,0146	-0,18	104,45	1,43	0,0153	-	93,46	0,10	-0,0007	-	10,98	6,3	-4,7	-	10,5	6,8	-4,5	-	11,8

							NACA	63 ₂ -615 (Abbott), Re: 9.00	0.000									
	V	isualFoil 1	80 pts.			Abl	bott			Error Ab	soluto		E _{R1} (%)= (1-	C_e/C_c)	k 100	E _{R2} (*	%)= (1-	C_c/C_e	x 100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C _{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,5553	0,0049	-0,13	113,71	0,40	0,0049	-	81,63	0,16	0,0000	-	32,08	28,0	-0,3	-	28,2	38,8	-0,3	-	39,3
1	0,6688	0,0049	-0,13	137,86	0,52	0,005	-	104,00	0,15	-0,0001	-	33,86	22,2	-3,1	-	24,6	28,6	-3,0	-	32,6
2	0,7822	0,0048	-0,13	161,75	0,65	0,0051	-	127,45	0,13	-0,0003	-	34,30	16,9	-5,5	-	21,2	20,3	-5,2	-	26,9
3	0,8934	0,0055	-0,13	163,72	0,75	0,0056	-	133,93	0,14	-0,0001	-	29,79	16,1	-2,6	-	18,2	19,1	-2,6	-	22,2
4	1,0042	0,0066	-0,13	151,76	0,85	0,006	-	141,67	0,15	0,0006	-	10,09	15,4	9,3	-	6,7	18,1	10,3	-	7,1
5	1,1115	0,0080	-0,14	139,28	0,95	0,0075	-	126,67	0,16	0,0005	-	12,61	14,5	6,0	-	9,1	17,0	6,4	-	10,0
6	1,2197	0,0090	-0,14	135,20	1,05	0,0098	-	107,14	0,17	-0,0008	-	28,06	13,9	-8,6	-	20,8	16,2	-7,9	-	26,2
7	1,3205	0,0099	-0,15	132,90	1,15	0,0115	-	100,00	0,17	-0,0016	-	32,90	12,9	-15,7	-	24,8	14,8	-13,6	-	32,9
8	1,3830	0,0118	-0,16	117,57	1,25	0,0114	-	109,65	0,13	0,0004	-	7,92	9,6	3,1	-	6,7	10,6	3,2	-	7,2
9	1,4670	0,0127	-0,17	115,88	1,38	0,0124	-	111,29	0,09	0,0003	-	4,59	5,9	2,1	-	4,0	6,3	2,1	-	4,1
10	1,5591	0,0137	-0,17	114,21	1,44	0,014	-	102,86	0,12	-0,0003	-	11,35	7,6	-2,6	-	9,9	8,3	-2,5	-	11,0

Tabla 3.4.4.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 632-615 para diferentes números de Reynolds (Continuación I).

	NACA 634-221 (Abbott), Re: 3.000.000																			
		VisualFoil	220 pts.			Abl	oott			Error Ab	soluto		E _{R1} (%)= (1-	$C_e/C_c)$	x 100	E _{R2} (%)= (1-	C_c/C_e)	x 100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤e	ΔC_L	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,1930	0,0065	-0,04	29,77	0,18	0,0062	-	29,03	0,01	0,0003	-	0,73	6,7	4,4	-	2,5	7,2	4,6	-	2,5
1	0,3108	0,0064	-0,04	48,83	0,30	0,0063	-	47,62	0,01	0,0001	-	1,21	3,5	1,0	-	2,5	3,6	1,0	-	2,5
2	0,4285	0,0067	-0,05	64,29	0,40	0,0065	-	61,54	0,03	0,0002	-	2,75	6,7	2,5	-	4,3	7,1	2,6	-	4,5
3	0,5435	0,0067	-0,05	81,16	0,50	0,0067	-	74,63	0,04	0,0000	-	6,53	8,0	0,0	-	8,0	8,7	0,0	-	8,8
4	0,6605	0,0071	-0,05	92,64	0,65	0,0069	-	94,20	0,01	0,0002	-	-1,56	1,6	3,2	-	-1,7	1,6	3,3	-	-1,7
5	0,7775	0,0072	-0,05	108,01	0,75	0,0071	-	105,63	0,03	0,0001	-	2,37	3,5	1,4	-	2,2	3,7	1,4	-	2,2
6	0,8320	0,0081	-0,07	103,33	0,88	0,0078	-	112,82	-0,05	0,0003	-	-9,49	-5,8	3,1	-	-9,2	-5,5	3,2	-	-8,4
7	0,9106	0,0090	-0,08	101,10	0,98	0,0093	-	105,38	-0,07	-0,0003	-	-4,28	-7,6	-3,3	-	-4,2	-7,1	-3,2	-	-4,1
8	1,0002	0,0101	-0,09	98,56	1,05	0,011	-	95,45	-0,05	-0,0009	-	3,10	-5,0	-8,4	-	3,2	-4,7	-7,7	-	3,3
9	1,0627	0,0119	-0,11	89,32	1,12	0,015	-	74,67	-0,06	-0,0031	-	14,66	-5,4	-26,1	-	16,4	-5,1	-20,7	-	19,6
10	1,1412	0,0129	-0,12	88,32	1,15	0,016	-	71,88	-0,01	-0,0031	-	16,45	-0,8	-23,8	-	18,6	-0,8	-19,2	-	22,9
11	1,1770	0,0146	-0,14	80,47	1,17	0,017	68,82	0,01	-0,0024	-	11,64	0,6	-16,2	-	14,5	0,6	-14,0	-	16,9	

Tabla 3.4.5.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 63₄-221 para diferentes números de Reynolds.

	NACA 63₄-221 (Abbott), Re: 6.000.000																			
		VisualFoil	220 pts.			Abb	oott			Error Ab	soluto		E _{R1} (%)= (1-	$C_e/C_c)$	x 100	E _{R2} (%)= (1-	C_c/C_e)	x 100
α (deg)	C_{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E_{CL2}	E _{CD2}	E _{CM2}	E _{ε2}
0	0,1931	0,0056	-0,04	34,67	0,18	0,0055	-	32,73	0,01	0,0001	-	1,94	6,8	1,3	-	5,6	7,3	1,3	-	5,9
1	0,3116	0,0055	-0,04	57,07	0,30	0,0056	-	53,57	0,01	-0,0001	-	3,50	3,7	-2,6	-	6,1	3,9	-2,5	-	6,5
2	0,4301	0,0057	-0,05	74,93	0,40	0,0058	-	68,97	0,03	-0,0001	-	5,97	7,0	-1,1	-	8,0	7,5	-1,1	-	8,7
3	0,5484	0,0057	-0,05	96,26	0,50	0,0059	-	84,75	0,05	-0,0002	-	11,51	8,8	-3,6	-	12,0	9,7	-3,4	-	13,6
4	0,6663	0,0060	-0,05	110,19	0,65	0,0062	-	104,84	0,02	-0,0002	-	5,35	2,5	-2,5	-	4,9	2,5	-2,5	-	5,1
5	0,7808	0,0064	-0,05	121,12	0,75	0,0066	-	113,64	0,03	-0,0002	-	7,49	3,9	-2,4	-	6,2	4,1	-2,3	-	6,6
6	0,8976	0,0073	-0,05	123,00	0,88	0,0078	-	112,82	0,02	-0,0005	-	10,18	2,0	-6,9	-	8,3	2,0	-6,4	-	9,0
7	0,9326	0,0085	-0,08	110,23	0,98	0,0092	-	106,52	-0,05	-0,0007	-	3,71	-5,1	-8,7	-	3,4	-4,8	-8,0	-	3,5
8	1,0256	0,0095	-0,08	107,94	1,10	0,011	-	100,00	-0,07	-0,0015	-	7,94	-7,3	-15,8	-	7,4	-6,8	-13,6	-	7,9
9	1,0924	0,0107	-0,10	102,13	1,18	0,013	-	90,77	-0,09	-0,0023	-	11,36	-8,0	-21,5	-	11,1	-7,4	-17,7	-	12,5
10	1,1992	0,0113	-0,10	105,99	1,25	0,015	-	83,33	-0,05	-0,0037	-	22,66	-4,2	-32,6	-	21,4	-4,1	-24,6	-	27,2

							NAC	A 63₄-221	(Abbot	t), Re: 9.00	00.000									
		VisualFoil	220 pts.			Abl	bott			Error Ab	soluto		E _{R1} (%	%)= (1- (C _e /C _c)x	100	E _{R2} (%	%)= (1- (C _c /C _e)	k 100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,1932	0,0051	-0,04	37,69	0,18	0,0052	-	34,62	0,01	-0,0001	-	3,07	6,8	-1,5	-	8,2	7,3	-1,4	-	8,9
1	0,3121	0,0050	-0,04	62,18	0,30	0,0053	-	56,60	0,01	-0,0003	-	5,57	3,9	-5,6	-	9,0	4,0	-5,3	-	9,8
2	0,4309	0,0053	-0,04	81,56	0,40	0,0054	-	74,07	0,03	-0,0001	-	7,49	7,2	-2,2	-	9,2	7,7	-2,2	-	10,1
3	0,5496	0,0052	-0,05	104,91	0,50	0,0055	-	90,91	0,05	-0,0003	-	14,00	9,0	-5,0	-	13,3	9,9	-4,7	-	15,4
4	0,6680	0,0056	-0,05	119,85	0,65	0,0058	-	112,07	0,02	-0,0002	-	7,79	2,7	-4,1	-	6,5	2,8	-3,9	-	6,9
5	0,7825	0,0062	-0,05	125,88	0,75	0,0062	-	120,97	0,03	0,0000	-	4,92	4,2	0,3	-	3,9	4,3	0,3	-	4,1
6	0,8999	0,0070	-0,05	127,97	0,88	0,0078	-	112,82	0,02	-0,0008	-	15,15	2,2	-10,9	-	11,8	2,3	-9,8	-	13,4
7	0,9352	0,0081	-0,08	115,26	0,98	0,009	-	108,89	-0,04	-0,0009	-	6,37	-4,8	-10,9	-	5,5	-4,6	-9,8	-	5,9
8	1,0287	0,0091	-0,08	113,19	1,15	0,0108	-	106,48	-0,12	-0,0017	-	6,71	-11,8	-18,8	-	5,9	-10,5	-15,9	-	6,3
9	1,1181	0,0099	-0,09	112,74	1,25	0,012	-	104,17	-0,13	-0,0021	-	8,58	-11,8	-21,0	-	7,6	-10,6	-17,4	-	8,2
10	1,2029	0,0108	-0,10	111,44	1,35	0,0136	-	99,26	-0,15	-0,0028	-	12,18	-12,2	-26,0	-	10,9	-10,9	-20,6	-	12,3
11	1,2835	0,0118	-0,11	108,69	1,40	0,0142	-	98,59	-0,12	-0,0024	-	10,10	-9,1	-20,3	-	9,3	-8,3	-16,8	-	10,2

Tabla 3.4.5.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 63₄-221 para diferentes números de Reynolds (Continuación I).

							NA	CA 63 ₄ -4	21 (Abb	oott), Re: 3	3.000.0	00								
	,	VisualFoil	220 pts			Abl	oott			Error Ab	soluto		E _{R1} ((%)= (1	- C _e /C _c)	x 100	E _{R2} (%)= (1-	C _c /C _e)	‹ 100
α (deg)	CLc	C _{Dc}	C _{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E _{CL2}	E _{CD2}	E _{CM2}	E _{ε2}
0	0,3820	0,0064	-0,09	59,93	0,32	0,0067	-	47,76	0,06	-0,0003	-	12,17	16,2	-5,1	-	20,3	19,4	-4,9	-	25,5
1	0,4973	0,0065	-0,09	76,73	0,45	0,0068	-	66,18	0,05	-0,0003	-	10,56	9,5	-4,9	-	13,8	10,5	-4,7	-	16,0
2	0,6111	0,0068	-0,10	89,76	0,58	0,0069	-	84,06	0,03	-0,0001	-	5,70	5,1	-1,4	-	6,4	5,4	-1,3	-	6,8
3	0,7243	0,0071	-0,10	102,66	0,70	0,007	-	100,00	0,02	0,0001	-	2,66	3,3	0,8	-	2,6	3,5	0,8	-	2,7
4	0,8367	0,0073	-0,11	113,89	0,80	0,0072	-	111,11	0,04	0,0001	-	2,78	4,4	2,0	-	2,4	4,6	2,0	-	2,5
5	0,9481	0,0076	-0,11	124,00	0,90	0,0076	-	118,42	0,05	0,0000	-	5,58	5,1	0,6	-	4,5	5,3	0,6	-	4,7
6	1,0547	0,0083	-0,12	127,80	1,03	0,008	-	128,75	0,02	0,0003	-	-0,95	2,3	3,1	-	-0,7	2,4	3,2	-	-0,7
7	1,0981	0,0095	-0,14	115,84	1,15	0,0092	-	125,00	-0,05	0,0003	-	-9,16	-4,7	2,9	-	-7,9	-4,5	3,0	-	-7,3
8	1,1683	0,0111	-0,15	105,13	1,22	0,015	-	81,33	-0,05	-0,0039	-	23,79	-4,4	-35,0	-	22,6	-4,2	-25,9	-	29,3
9	1,1693	0,0167	-0,18	69,99	1,29	0,014	-	92,14	-0,12	0,0027	-	-22,15	-10,3	16,2	-	-31,6	-9,4	19,3	-	-24,0
10	1,2556	0,0182	-0,19	68,97	1,33	0,021	-	63,33	-0,07	-0,0028	-	5,64	-5,9	-15,4	-	8,2	-5,6	-13,3	-	8,9
11	1,2327	0,0197	-0,23	62,52	1,32	0,018	-	73,33	-0,09	0,0017	-	-10,81	-7,1	8,7	-	-17,3	-6,6	9,5	-	-14,7
12	1,1893	0,0213	-0,27	55,73	1,29	0,013	-	99,23	-0,10	0,0083	-	-43,50	-8,5	39,1	-	-78,1	-7,8	64,2	-	-43,8
13	1,2048	0,0235	-0,30	51,33	1,28	0,0122	-	104,92	-0,08	0,0113	-	-53,59	-6,2	48,0	-	-104,4	-5,9	92,4	-	-51,1
14	1,1343	0,0255	-0,34	44,54	1,26	0,0125	-	100,80	-0,13	0,0130	-	-56,26	-11,1	50,9	-	-126,3	-10,0	103,7	-	-55,8

Tabla 3.4.6.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 63₄-421 para diferentes números de Reynolds.

							NAC	A 63₄-421	(Abbot	t), Re: 6.0	00.000									
	,	VisualFoil	220 pts.			Abb	oott			Error Ab	soluto		E _{R1} (%)= (1-	$C_e/C_c)$	x 100	E _{R2} (*	%)= (1-	C _c /C _e)	x 100
α (deg)	C_{Lc}	C_{Dc}	C_{Mc}	ε _c	C _{Le}	C_{De}	C_{Me}	٤ _e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E_{CD1}	E _{CM1}	Eε1	E_{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,3834	0,0054	-0,09	70,52	0,32	0,0058	-	55,17	0,06	-0,0004	-	15,35	16,5	-6,7	-	21,8	19,8	-6,3	-	27,8
1	0,4997	0,0055	-0,09	90,49	0,45	0,0058	-	77,59	0,05	-0,0003	-	12,90	9,9	-5,0	-	14,3	11,0	-4,8	-	16,6
2	0,6148	0,0058	-0,09	105,62	0,58	0,0059	-	98,31	0,03	-0,0001	-	7,31	5,7	-1,4	-	6,9	6,0	-1,3	-	7,4
3	0,7294	0,0060	-0,10	120,96	0,70	0,0052	-	134,62	0,03	0,0008	-	-13,66	4,0	13,8	-	-11,3	4,2	16,0	-	-10,1
4	0,8449	0,0062	-0,10	135,25	0,80	0,0063	-	126,98	0,04	-0,0001	-	8,26	5,3	-0,8	-	6,1	5,6	-0,8	-	6,5
5	0,9581	0,0067	-0,11	144,07	0,90	0,0068	-	132,35	0,06	-0,0002	-	11,72	6,1	-2,3	-	8,1	6,5	-2,2	-	8,9
6	1,0639	0,0077	-0,11	137,53	1,03	0,008	-	128,75	0,03	-0,0003	-	8,78	3,2	-3,4	-	6,4	3,3	-3,3	-	6,8
7	1,1208	0,0089	-0,13	126,24	1,15	0,0093	-	123,66	-0,03	-0,0004	-	2,58	-2,6	-4,8	-	2,0	-2,5	-4,5	-	2,1
8	1,1959	0,0103	-0,15	115,56	1,22	0,015	-	81,33	-0,02	-0,0047	-	34,23	-2,0	-44,9	-	29,6	-2,0	-31,0	-	42,1
9	1,2163	0,0148	-0,17	82,18	1,29	0,013	-	99,23	-0,07	0,0018	-	-17,05	-6,1	12,2	-	-20,7	-5,7	13,8	-	-17,2

NACA 63 ₄ -421 (Abbott), Re: 9.000.000																				
		VisualFoil	220 pts.			Abl	oott			Error Ab	soluto		E _{R1} ((%)= (1-	C _e /C _c)	x 100	E _{R2} (%)= (1-	C _c /C _e)	x 100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E_{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,3838	0,0050	-0,09	76,69	0,32	0,0056	-	57,14	0,06	-0,0006	-	19,55	16,6	-11,9	-	25,5	19,9	-10,6	-	34,2
1	0,5006	0,0051	-0,09	98,35	0,45	0,0056	-	80,36	0,05	-0,0005	-	17,99	10,1	-10,0	-	18,3	11,2	-9,1	-	22,4
2	0,6171	0,0053	-0,09	116,23	0,58	0,0058	-	100,00	0,04	-0,0005	-	16,23	6,0	-9,2	-	14,0	6,4	-8,5	-	16,2
3	0,7326	0,0055	-0,10	132,69	0,70	0,005	-	140,00	0,03	0,0005	-	-7,31	4,4	9,4	-	-5,5	4,7	10,4	-	-5,2
4	0,8487	0,0057	-0,10	148,79	0,80	0,0063	-	126,98	0,05	-0,0006	-	21,81	5,7	-10,4	-	14,7	6,1	-9,5	-	17,2
5	0,9609	0,0063	-0,11	153,40	0,90	0,0068	-	132,35	0,06	-0,0005	-	21,04	6,3	-8,6	-	13,7	6,8	-7,9	-	15,9
6	1,0704	0,0074	-0,11	144,06	1,03	0,008	-	128,75	0,04	-0,0006	-	15,31	3,8	-7,7	-	10,6	3,9	-7,1	-	11,9
7	1,1688	0,0088	-0,12	133,42	1,15	0,0098	-	117,35	0,02	-0,0010	-	16,08	1,6	-11,9	-	12,1	1,6	-10,6	-	13,7
8	1,2097	0,0099	-0,14	122,24	1,22	0,015	-	81,33	-0,01	-0,0051	-	40,90	-0,9	-51,6	-	33,5	-0,8	-34,0	-	50,3
9	1,2456	0,0138	-0,16	90,04	1,29	0,0125	-	103,20	-0,04	0,0013	-	-13,16	-3,6	9,6	-	-14,6	-3,4	10,7	-	-12,8

Tabla 3.4.6.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 634-421 para diferentes números de Reynolds (Continuación I).

							NACA	63A-01	0 (Abbo	ott), Re: 3.0	000.000									
	\ \	/isualFoil 2	220 pts.			Abb	ott			Error Ab	osoluto		E _{R1} (%)= (1	- C _e /C _c)	x 100	E _{R2} (%)= (1	- C _c /C _e)	x 100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤ _e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E_{CD1}	E _{CM1}	Eε1	E_{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,0000	0,0046	0,00	0,00	0,00	0,0045	-	0,00	0,00	0,0001	-	0,00	0,0	2,5	-	0,0	0,0	2,6	-	0,0
1	0,1078	0,0048	0,00	22,56	0,10	0,0048	-	20,83	0,01	0,0000	-	1,73	7,2	-0,5	-	7,7	7,7	-0,5	-	8,3
2	0,2154	0,0053	-0,01	40,27	0,20	0,005	-	40,00	0,02	0,0003	-	0,27	7,1	6,5	-	0,7	7,7	7,0	-	0,7
3	0,3254	0,0066	-0,01	49,54	0,30	0,0064	-	46,88	0,03	0,0002	-	2,66	7,8	2,6	-	5,4	8,5	2,6	-	5,7
4	0,4323	0,0069	-0,01	62,40	0,40	0,0072	-	55,56	0,03	-0,0003	-	6,85	7,5	-3,9	-	11,0	8,1	-3,8	-	12,3
5	0,5413	0,0076	-0,02	71,12	0,53	0,008	-	66,25	0,01	-0,0004	-	4,87	2,1	-5,1	-	6,9	2,1	-4,9	-	7,4
6	0,6487	0,0083	-0,02	78,34	0,62	0,0085	-	72,94	0,03	-0,0002	-	5,40	4,4	-2,7	-	6,9	4,6	-2,6	-	7,4
7	0,7555	0,0091	-0,02	83,31	0,72	0,009	-	80,00	0,04	0,0001	-	3,31	4,7	0,8	-	4,0	4,9	0,8	-	4,1
8	0,8598	0,0102	-0,03	84,03	0,82	0,0105	-	78,10	0,04	-0,0003	-	5,93	4,6	-2,6	-	7,1	4,9	-2,5	-	7,6
9	0,9621	0,0116	-0,03	83,18	0,95	0,011	-	86,36	0,01	0,0006	-	-3,19	1,3	4,9	-	-3,8	1,3	5,2	-	-3,7
10	1,0536	0,0132	-0,04	79,57	1,02	0,012	-	85,00	0,03	0,0012	-	-5,43	3,2	9,4	-	-6,8	3,3	10,4	-	-6,4
11	1,1373	0,0154	-0,05	73,99	1,08	0,013	-	83,08	0,06	0,0024	-	-9,09	5,0	15,4	-	-12,3	5,3	18,2	-	-10,9
12	1,1964	0,0180	-0,06	66,40	0,75	0,0142	-	52,82	0,45	0,0038	-	13,59	37,3	21,2	-	20,5	59,5	26,9	-	25,7

 Tabla 3.4.7.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA

 63A-010 para diferentes números de Reynolds.

	NACA 63A-010 (Abbott), Re: 6.000.000																			
	V	/isualFoil 2	220 pts.			Abb	oott			Error Al	bsoluto		E _{R1} (%)= (1-	Ce/Cc)	x 100	E _{R2} (%)= (1-	$C_c/C_e)$	x 100
α (deg)	C_{Lc}	C_{Dc}	C_{Mc}	ε _c	C _{Le}	C_{De}	C_{Me}	٤ _e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E_{CL1}	E_{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	$E_{\epsilon 2}$
0	0,0000	0,0044	0,00	0,00	0,00	0,0044	-	0,00	0,00	0,0000	-	0,00	0,0	-0,9	-	0,0	0,0	-0,9	-	0,0
1	0,1091	0,0045	0,00	24,18	0,10	0,0046	-	21,74	0,01	-0,0001	-	2,44	8,3	-2,0	-	10,1	9,1	-2,0	-	11,2
2	0,2184	0,0054	-0,01	40,77	0,20	0,0052	-	38,46	0,02	0,0002	-	2,31	8,4	2,9	-	5,7	9,2	3,0	-	6,0
3	0,3283	0,0059	-0,01	55,29	0,30	0,0064	-	46,88	0,03	-0,0005	-	8,41	8,6	-7,8	-	15,2	9,4	-7,2	-	17,9
4	0,4380	0,0062	-0,01	70,13	0,40	0,0065	-	61,54	0,04	-0,0003	-	8,59	8,7	-4,1	-	12,3	9,5	-3,9	-	14,0
5	0,5470	0,0068	-0,02	80,56	0,53	0,0072	-	73,61	0,02	-0,0004	-	6,95	3,1	-6,0	-	8,6	3,2	-5,7	-	9,4
6	0,6548	0,0072	-0,02	90,92	0,62	0,008	-	77,50	0,03	-0,0008	-	13,42	5,3	-11,1	-	14,8	5,6	-10,0	-	17,3
7	0,7629	0,0079	-0,02	96,87	0,72	0,0082	-	87,80	0,04	-0,0003	-	9,06	5,6	-4,1	-	9,4	6,0	-4,0	-	10,3
8	0,8688	0,0089	-0,03	98,13	0,82	0,009	-	91,11	0,05	-0,0001	-	7,02	5,6	-1,6	-	7,2	6,0	-1,6	-	7,7
9	0,9752	0,0099	-0,03	98,37	0,95	0,0095	-	100,00	0,03	0,0004	-	-1,63	2,6	4,2	-	-1,7	2,7	4,4	-	-1,6
10	1,0743	0,0112	-0,03	95,59	1,02	0,01	-	102,00	0,05	0,0012	-	-6,41	5,1	11,0	-	-6,7	5,3	12,4	-	-6,3
11	1,1685	0,0129	-0,04	90,84	1,08	0,0105	-	102,86	0,09	0,0024	-	-12,01	7,6	18,4	-	-13,2	8,2	22,5	-	-11,7
12	1,2513	0,0149	-0,05	84,16	0,75	0,0113	-	66,37	0,50	0,0036	-	17,79	40,1	24,0	-	21,1	66,8	31,6	-	26,8
13	1,2996	0,0186	-0,06	69,96	0,68	0,012	-	56,67	0,62	0,0066	-	13,30	47,7	35,4	-	19,0	91,1	54,8	-	23,5
14	1,3129	0,0219	-0,08	59,83	0,67	0,013	-	51,54	0,64	0,0089	-	8,29	49,0	40,8	-	13,9	95,9	68,8	-	16,1

NACA 63A-010 (Abbott), Re: 9.000.000																				
		VisualFoil	220 pts.			Abl	oott			Error A	bsoluto		E _{R1} ((%)= (1-	C _e /C _c)	x 100	E _{R2} (%)= (1-	C _c /C _e)	x 100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,0000	0,0042	0,00	0,00	0,00	0,0044	-	0,00	0,00	-0,0002	-	0,00	0,0	-4,4	-	0,0	0,0	-4,2	-	0,0
1	0,1095	0,0044	0,00	25,09	0,10	0,0045	-	22,22	0,01	-0,0001	-	2,87	8,7	-3,1	-	11,4	9,5	-3,0	-	12,9
2	0,2200	0,0052	-0,01	42,11	0,20	0,006	-	33,33	0,02	-0,0008	-	8,78	9,1	-14,8	-	20,8	10,0	-12,9	-	26,3
3	0,3306	0,0055	-0,01	59,86	0,30	0,0064	-	46,88	0,03	-0,0009	-	12,99	9,3	-15,9	-	21,7	10,2	-13,7	-	27,7
4	0,4404	0,0059	-0,01	74,52	0,40	0,0064	-	62,50	0,04	-0,0005	-	12,02	9,2	-8,3	-	16,1	10,1	-7,7	-	19,2
5	0,5507	0,0063	-0,02	86,80	0,53	0,007	-	75,71	0,02	-0,0007	-	11,09	3,8	-10,3	-	12,8	3,9	-9,4	-	14,6
6	0,6587	0,0068	-0,02	97,29	0,62	0,0078	-	79,49	0,04	-0,0010	-	17,80	5,9	-15,2	-	18,3	6,2	-13,2	-	22,4
7	0,7663	0,0073	-0,02	104,81	0,72	0,0082	-	87,80	0,05	-0,0009	-	17,01	6,0	-12,2	-	16,2	6,4	-10,8	-	19,4
8	0,8744	0,0082	-0,02	106,97	0,82	0,009	-	91,11	0,05	-0,0008	-	15,86	6,2	-10,1	-	14,8	6,6	-9,2	-	17,4
9	0,9818	0,0091	-0,03	107,62	0,95	0,0095	-	100,00	0,03	-0,0004	-	7,62	3,2	-4,1	-	7,1	3,3	-4,0	-	7,6
10	1,0854	0,0103	-0,03	105,43	1,02	0,01	-	102,00	0,07	0,0003	-	3,43	6,0	2,9	-	3,3	6,4	3,0	-	3,4
11	1,1827	0,0117	-0,03	100,89	1,08	0,0105	-	102,86	0,10	0,0012	-	-1,96	8,7	10,4	-	-1,9	9,5	11,6	-	-1,9
12	1,2748	0,0135	-0,04	94,65	1,18	0,011	-	107,27	0,09	0,0025	-	-12,62	7,4	18,3	-	-13,3	8,0	22,4	-	-11,8
13	1,3318	0,0166	-0,05	80,00	1,19	0,0115	-	103,48	0,14	0,0051	-	-23,48	10,6	30,9	-	-29,3	11,9	44,8	-	-22,7
14	1,3762	0,0196	-0,07	70,16	1,10	0,0125	-	88,00	0,28	0,0071	-	-17,84	20,1	36,3	-	-25,4	25,1	56,9	-	-20,3

Tabla 3.4.7.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 63A-010 para diferentes números de Reynolds (Continuación I).

	NACA 641-012 (Miley), Re: 700.000																			
	V	/isualFoil [·]	140 pts.			Mil	ey			Error A	bsoluto		E _{R1}	(%)= (1-	- C _e /C _c)x	100	E _{R2} (%)= (1-	C _c /C _e)x	100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C _{Le}	C_{De}	C_{Me}	٤ _e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E_{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	Eε2
0	0,0000	0,0072	0,00	0,00	-0,01	0,007	0,01	-1,43	0,01	0,0002	-0,01	1,43	-	2,7	-	-	-	2,7	-	-
1	0,1097	0,0071	0,00	15,40	0,08	0,007	0,01	11,43	0,03	0,0001	-0,01	3,97	27,1	1,8	600,3	25,8	37,2	1,8	-	34,8
2	0,2194	0,0074	0,00	0,0001	0,00	5,15	17,9	0,8	100,0	17,3	21,9	0,8	-	20,9						
3	0,3288	0,0075	-0,01	44,05	0,27	0,008	0,00	33,75	0,06	-0,0005	-0,01	10,30	17,9	-7,2	100,0	23,4	21,8	-6,7	-	30,5
4	0,4375	0,0082	-0,01	53,43	0,36	0,009	0,00	40,00	0,08	-0,0008	-0,01	13,43	17,7	-9,9	100,0	25,1	21,5	-9,0	-	33,6
5	0,5500	0,0113	-0,01	48,85	0,45	0,0103	-0,01	43,69	0,10	0,0010	0,00	5,16	18,2	8,5	-11,7	10,6	22,2	9,3	-10,5	11,8
6	0,6171	0,0119	-0,02	51,75	0,53	0,0121	-0,01	43,80	0,09	-0,0002	-0,01	7,95	14,1	-1,5	52,6	15,4	16,4	-1,5	110,8	18,1
7	0,7132	0,0129	-0,03	55,11	0,61	0,0143	-0,02	42,66	0,10	-0,0014	-0,01	12,45	14,5	-10,5	22,3	22,6	16,9	-9,5	28,7	29,2
8	0,7905	0,0139	-0,03	56,79	0,68	0,0169	-0,02	40,24	0,11	-0,0030	-0,01	16,56	14,0	-21,4	42,6	29,2	16,2	-17,6	74,2	41,1
9	0,8611	0,0160	-0,05	53,94	0,74	-	-0,03	-	0,12	-	-0,02	-	14,1	-	33,8	-	16,4	-	51,2	-
10	0,9209	0,0193	-0,06	47,79	0,79	-	-0,04	-	0,13	-	-0,02	-	14,2	-	31,3	-	16,6	-	45,6	-
11	0,8332	0,0227	-0,11	36,66	0,83	-	0,00	-	-0,06	-	0,4	-	53,5	-	0,4	-	115,2	-		

Tabla 3.4.8.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 641-012 para diferentes números de Reynolds.

	NACA 641-012 (Miley), Re: 1.000.000																			
	N N	/isualFoil 1	40 pts.			Mi	ley			Error Ab	soluto		E _{R1} (%)= (1-	- C _e /C _c)×	100	E _{R2} (%)= (1	- C _c /C _e)x	c 100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C _{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E_{CD1}	E _{CM1}	Eε1	E_{CL2}	E_{CD2}	E _{CM2}	Eε2
0	0,0000	0,0065	0,00	0,00	0	0,0064	0,01	0,00	0,00	0,0001	-0,01	0,00	-	1,6	-	-	-	1,6	-	-
1	0,1102	0,0064	0,00	17,12	0,1	0,0065	0,01	15,38	0,01	-0,0001	-0,01	1,73	9,2	-1,0	-	10,1	10,2	-1,0	-	11,3
2	0,2203	0,0067	0,00	33,09	0,2	0,0068	0,00	29,41	0,02	-0,0001	0,00	3,68	9,2	-2,1	100,0	11,1	10,1	-2,1	-	12,5
3	0,3302	0,0067	-0,01	48,99	0,3	0,0073	0,00	41,10	0,03	-0,0006	-0,01	7,89	9,1	-8,3	100,0	16,1	10,1	-7,7	-	19,2
4	0,4390	0,0084	-0,01	52,29	0,39	0,008	0,00	48,75	0,05	0,0004	-0,01	3,54	11,2	4,7	100,0	6,8	12,6	4,9	-	7,3
5	0,5517	0,0104	-0,01	53,13	0,49	0,0089	0,00	55,06	0,06	0,0015	-0,01	-1,92	11,2	14,3	100,0	-3,6	12,6	16,7	-	-3,5
6	0,6600	0,0111	-0,01	59,54	0,59	0,0101	0,00	58,42	0,07	0,0010	-0,01	1,12	10,6	8,9	100,0	1,9	11,9	9,8	-	1,9
7	0,7228	0,0119	-0,02	60,90	0,69	0,0115	-0,01	60,00	0,03	0,0004	-0,01	0,90	4,5	3,1	57,1	1,5	4,8	3,2	133,2	1,5
8	0,8027	0,0127	-0,03	63,32	0,78	0,0136	-0,01	57,35	0,02	-0,0009	-0,02	5,96	2,8	-7,3	68,5	9,4	2,9	-6,8	217,9	10,4
9	0,8865	0,0145	-0,04	60,93	0,88	-	-0,02	-	0,01	-	-0,02	-	0,7	-	48,7	-	0,7	-	95,0	-
10	0,9400	0,0174	-0,05	53,92	0,96	-	-0,04	-	-0,02	-	-0,01	-	-2,1	-	25,1	-	-2,1	-	33,6	-
11	0,8995	0,0203	-0,09	44,28	0,97	-	-0,07	-	-0,07	-	-0,02	-	-7,8	-	23,1	-	-7,3	-	30,1	-
	NACA 641-012 (Miley), Re: 1.500.000																			
---------	-------------------------------------	-------------------------	-----------------	----------------	-----------------	----------	-----------------	-------	----------------	----------------	----------------	-------	-------------------	------------------	-----------------------------------	------	-------------------	------------------	------------------	------
	V	/isualFoil [·]	140 pts.			Mi	ley			Error Ab	soluto		E _{R1} (%)= (1-	C _e /C _c)x	100	E _{R2} (%)= (1-	$C_c/C_e)x$	100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E _{CL2}	E _{CD2}	E _{CM2}	Eε2
0	0,0000	0,0058	0,00	0,00	0	0,0062	0,01	0,00	0,00	-0,0004	-0,01	0,00	-	-6,2	-	-	-	-5,8	-	-
1	0,1107	0,0058	0,00	19,17	0,1	0,0065	0,00	15,38	0,01	-0,0007	0,00	3,79	9,6	-12,6	100,0	19,8	10,7	-11,2	-	24,6
2	0,2213	0,0060	0,00	37,03	0,2	0,007	0,00	28,57	0,02	-0,0010	0,00	8,46	9,6	-17,2	100,0	22,8	10,6	-14,6	-	29,6
3	0,3313	0,0062	-0,01	53,72	0,3	0,0078	0,00	38,46	0,03	-0,0016	-0,01	15,26	9,5	-26,5	100,0	28,4	10,4	-20,9	-	39,7
4	0,4414	0,0081	-0,01	54,66	0,39	0,0088	0,00	44,32	0,05	-0,0007	-0,01	10,35	11,6	-9,0	100,0	18,9	13,2	-8,2	-	23,3
5	0,5545	0,0095	-0,01	58,62	0,49	0,01	0,00	49,00	0,06	-0,0005	-0,01	9,62	11,6	-5,7	100,0	16,4	13,2	-5,4	-	19,6
6	0,6625	0,0101	-0,01	65,41	0,58	0,0114	-0,01	50,88	0,08	-0,0013	0,00	14,54	12,5	-12,6	-2,9	22,2	14,2	-11,2	-2,9	28,6
7	0,7324	0,0108	-0,02	67,73	0,68	0,0132	-0,01	51,52	0,05	-0,0024	-0,01	16,22	7,2	-22,1	52,2	23,9	7,7	-18,1	109,2	31,5
8	0,8149	0,0115	-0,03	71,03	0,78	-	-0,01	-	0,03	-	-0,02	-	4,3	-	65,2	-	4,5	-	187,3	-
9	0,9009	0,0131	-0,04	68,77	0,87	-	-0,01	-	0,03	-	-0,03	-	3,4	-	71,7	-	3,5	-	254,0	-
10	0,9700	0,0158	-0,05	61,37	0,96	-	-0,02	-	0,01	-	-0,03	-	1,0	-	56,5	-	1,0	-	129,8	-
11	1,0246	0,0183	-0,06	56,03	1,04	-	-0,05	-	-0,02	-	-0,01	-	-1,5	-	16,4	-	-1,5	-	19,6	-
12	0,9254	0,0220	-0,11	42,15	1,09	-	-0,07	-	-0,16	-	-0,04	-	-17,8	-	37,3	-	-15,1	-	59,5	-

Tabla 3.4.8.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 641-012 para diferentes números de Reynolds (Continuación I).

							N	ACA 641	-012 (M	iley), Re: 2	2.000.0	00								
	V	isualFoil ⁻	140 pts.			Mi	ley			Error Ab	soluto		E _{R1} (%)= (1-	C _e /C _c)x	100	E _{R2} (%)= (1-	C _c /C _e)x	100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤ _e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E_{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,0000	0,0054	0,00	0,00	-0,06	0,0059	0,00	-10,17	0,06	-0,0005	0,00	10,17	-	-8,7	-	-	-100,0	-8,0	-	-100,0
1	0,1110	0,0054	0,00	20,70	0,04	0,0061	0,00	6,56	0,07	-0,0007	0,00	14,15	64,0	-13,8	100,0	68,3	177,5	-12,1	-	215,7
2	0,2219	0,0056	0,00	39,96	0,15	0,0064	0,00	23,44	0,07	-0,0008	0,00	16,52	32,4	-15,2	100,0	41,3	48,0	-13,2	-	70,5
3	0,3314	0,0064	-0,01	52,03	0,25	0,0069	-0,01	36,23	0,08	-0,0005	0,00	15,80	24,6	-8,3	-88,1	30,4	32,5	-7,7	-46,9	43,6
4	0,4430	0,0078	-0,01	56,99	0,36	0,0075	-0,01	48,00	0,08	0,0003	0,00	8,99	18,7	3,5	-51,1	15,8	23,1	3,6	-33,8	18,7
5	0,5559	0,0089	-0,01	62,31	0,46	0,0084	-0,01	54,76	0,10	0,0005	0,00	7,55	17,2	5,8	-33,6	12,1	20,8	6,2	-25,2	13,8
6	0,6643	0,0095	-0,01	69,75	0,56	0,0094	-0,01	59,57	0,10	0,0001	0,00	10,18	15,7	1,3	-7,8	14,6	18,6	1,3	-7,2	17,1
7	0,7733	0,0102	-0,01	75,49	0,66	0,0108	-0,02	61,11	0,11	-0,0006	0,01	14,38	14,7	-5,4	-87,0	19,0	17,2	-5,1	-46,5	23,5
8	0,8256	0,0107	-0,03	76,92	0,76	0,0122	-0,02	62,30	0,07	-0,0015	-0,01	14,62	7,9	-13,7	23,3	19,0	8,6	-12,0	30,3	23,5
9	0,9135	0,0122	-0,03	74,67	0,85	0,0136	-0,03	62,50	0,06	-0,0014	0,00	12,17	7,0	-11,2	6,9	16,3	7,5	-10,0	7,4	19,5
10	0,9852	0,0148	-0,04	66,76	0,94	-	-0,03	-	0,05	-	-0,01	-	4,6	-	28,8	-	4,8	-	40,5	-
11	1,0445	0,0170	-0,05	61,45	1,02	-	-0,04	-	0,02	-	-0,01	-	2,3	-	27,0	-	2,4	-	37,0	-
12	0,9958	0,0202	-0,09	49,23	1,1	-	-0,05	-	-0,10	-	-0,04	-	-10,5	-	46,8	-	-9,5	-	88,1	-

							N	ACA 641	-012 (M	iley), Re:	3.000.00	00								
	V	'isualFoil '	140 pts.			Mi	ley			Error Al	osoluto		E _{R1}	(%)= (1	- C _e /C _c)×	100	E _{R2} (%)= (1-	- C _c /C _e)	x 100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤ _e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E _{CL2}	E _{CD2}	E _{CM2}	E _{ε2}
0	0,0000	0,0049	0,00	0,00	0,01	0,005	0,00	2,00	-0,01	-0,0001	0,00	-2,00	-	-1,6	-	-	-	-1,6	-	-
1	0,1115	0,0049	0,00	22,96	0,12	0,0051	0,00	23,53	-0,01	-0,0002	0,00	-0,57	-7,7	-5,0	100,0	-2,5	-7,1	-4,8	-	-2,4
2	0,2225	0,0051	0,00	43,26	0,23	0,0053	0,00	43,40	-0,01	-0,0002	0,00	-0,14	-3,4	-3,0	100,0	-0,3	-3,3	-2,9	-	-0,3
3	0,3330	0,0066	0,00	50,80	0,34	0,0058	-0,01	58,62	-0,01	0,0008	0,01	-7,82	-2,1	11,5	-103,5	-15,4	-2,1	13,0	-50,9	-13,3
4	0,4451	0,0073	-0,01	60,87	0,45	0,0064	-0,01	70,31	0,00	0,0009	0,00	-9,44	-1,1	12,5	-63,8	-15,5	-1,1	14,3	-39,0	-13,4
5	0,5578	0,0082	-0,01	67,75	0,56	0,0072	-0,01	77,78	0,00	0,0010	0,00	-10,02	-0,4	12,5	-42,7	-14,8	-0,4	14,3	-29,9	-12,9
6	0,6677	0,0087	-0,01	76,57	0,66	0,0082	-0,01	80,49	0,01	0,0005	0,00	-3,91	1,2	6,0	-18,8	-5,1	1,2	6,3	-15,9	-4,9
7	0,7763	0,0094	-0,01	82,58	0,76	0,0093	-0,01	81,72	0,02	0,0001	0,00	0,85	2,1	1,1	-0,5	1,0	2,1	1,1	-0,4	1,0
8	0,8368	0,0098	-0,02	85,37	0,86	0,0105	-0,02	81,90	-0,02	-0,0007	0,00	3,46	-2,8	-7,1	14,0	4,1	-2,7	-6,6	16,3	4,2
9	0,9268	0,0112	-0,03	83,12	0,96	0,0116	-0,02	82,76	-0,03	-0,0004	-0,01	0,37	-3,6	-4,0	30,8	0,4	-3,5	-3,9	44,5	0,4
10	1,0123	0,0135	-0,04	74,91	1,06	0,013	-0,02	81,54	-0,05	0,0005	-0,02	-6,62	-4,7	3,8	43,5	-8,8	-4,5	3,9	76,9	-8,1
11	1,0768	0,0155	-0,05	69,38	1,15	0,0147	-0,03	78,23	-0,07	0,0008	-0,02	-8,85	-6,8	5,3	35,8	-12,8	-6,4	5,6	55,8	-11,3
12	1,1301	0,0183	-0,06	61,61	1,25	0,0172	-0,03	72,67	-0,12	0,0011	-0,03	-11,06	-10,6	6,2	50,4	-17,9	-9,6	6,6	101,6	-15,2
13	1,0170	0,0216	-0,12	47,13	1,34	-	-0,04	-	-0,32	-	-0,08	-	-31,8	-	65,4	-	-24,1	-	188,6	-

Tabla 3.4.8.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 641-012 para diferentes números de Reynolds (Continuación II).

							NA	CA 64-1	10 (Abb	oott), Re: 3	3.000.00	00								
	\ \	/isualFoil [·]	120 pts.			Abb	ott			Error Ab	osoluto		E _{R1} (%)= (1-	C_e/C_c)	‹ 100	E _{R2} (%)= (1-	C _c /C _e)	ĸ 100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤ _e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E_{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	Eε2
0	0,0910	0,0045	-0,02	20,08	0,10	0,0048	-	20,83	-0,01	-0,0003	-	-0,75	-9,9	-6,0	-	-3,8	-9,0	-5,6	-	-3,6
1	0,2009	0,0047	-0,02	42,64	0,20	0,0047	-	42,55	0,00	0,0000	-	0,08	0,4	0,3	-	0,2	0,4	0,3	-	0,2
2	0,3109	0,0050	-0,02	62,29	0,30	0,0048	-	62,50	0,01	0,0002	-	-0,21	3,5	3,8	-	-0,3	3,6	4,0	-	-0,3
3	0,4218	0,0068	-0,02	62,45	0,45	0,007	-	64,29	-0,03	-0,0002	-	-1,83	-6,7	-3,6	-	-2,9	-6,3	-3,5	-	-2,9
4	0,5336	0,0075	-0,02	70,87	0,50	0,0072	-	69,44	0,03	0,0003	-	1,43	6,3	4,4	-	2,0	6,7	4,6	-	2,1
5	0,6432	0,0080	-0,02	80,01	0,65	0,0082	-	79,27	-0,01	-0,0002	-	0,75	-1,1	-2,0	-	0,9	-1,0	-2,0	-	0,9
6	0,7461	0,0084	-0,02	89,27	0,70	0,0086	-	81,40	0,05	-0,0002	-	7,87	6,2	-2,9	-	8,8	6,6	-2,8	-	9,7
7	0,8562	0,0092	-0,02	93,44	0,87	0,01	-	87,00	-0,01	-0,0008	-	6,44	-1,6	-9,1	-	6,9	-1,6	-8,4	-	7,4
8	0,9640	0,0102	-0,02	94,44	1,00	0,0116	-	86,21	-0,04	-0,0014	-	8,24	-3,7	-13,6	-	8,7	-3,6	-12,0	-	9,6
9	1,0050	0,0124	-0,04	81,10	1,10	0,0135	-	81,48	-0,10	-0,0011	-	-0,38	-9,5	-8,9	-	-0,5	-8,6	-8,2	-	-0,5
10	1,0821	0,0144	-0,05	75,21	1,20	0,016	-	75,00	-0,12	-0,0016	-	0,21	-10,9	-11,2	-	0,3	-9,8	-10,1	-	0,3
11	1,1519	0,0170	-0,06	67,66	0,82	0,0098	-	83,67	0,33	0,0072	-	-16,01	28,8	42,4	-	-23,7	40,5	73,7	-	-19,1
12	1,1835	0,0202	-0,08	58,47	0,80	0,0095	-	84,21	0,38	0,0107	-	-25,74	32,4	53,1	-	-44,0	47,9	113,1	-	-30,6

Tabla 3.4.9.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 64-110 para diferentes números de Reynolds.

	NACA 64-110 (Abbott), Re: 6.000.000																			
	,	VisualFoil	120 pts.	-		Abl	oott			Error Ab	soluto		E _{R1} (9	%)= (1-	C _e /C _c)	c 100	E _{R2} (%)= (1-	C _c /C _e)	x 100
α (deg)	C_{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E_{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,0905	0,0041	-0,02	21,82	0,10	0,0045	-	22,22	-0,01	-0,0004	-	-0,40	-10,5	-8,5	-	-1,8	-9,5	-7,8	-	-1,8
1	0,2014	0,0043	-0,02	46,55	0,20	0,0045	-	44,44	0,00	-0,0002	-	2,10	0,7	-4,0	-	4,5	0,7	-3,8	-	4,7
2	0,3122	0,0054	-0,02	58,34	0,30	0,005	-	60,00	0,01	0,0004	-	-1,66	3,9	6,6	-	-2,9	4,1	7,0	-	-2,8
3	0,4243	0,0061	-0,02	69,49	0,45	0,0065	-	69,23	-0,03	-0,0004	-	0,26	-6,0	-6,5	-	0,4	-5,7	-6,1	-	0,4
4	0,5359	0,0066	-0,02	81,24	0,50	0,0068	-	73,53	0,04	-0,0002	-	7,71	6,7	-3,1	-	9,5	7,2	-3,0	-	10,5
5	0,6464	0,0070	-0,02	91,83	0,65	0,0075	-	86,67	0,00	-0,0005	-	5,16	-0,6	-6,5	-	5,6	-0,6	-6,1	-	6,0
6	0,7546	0,0074	-0,02	101,62	0,70	0,0079	-	88,61	0,05	-0,0005	-	13,01	7,2	-6,4	-	12,8	7,8	-6,0	-	14,7
7	0,8616	0,0080	-0,02	108,21	0,87	0,009	-	96,67	-0,01	-0,0010	-	11,55	-1,0	-13,0	-	10,7	-1,0	-11,5	-	11,9
8	0,9720	0,0088	-0,02	110,86	1,00	0,01	-	100,00	-0,03	-0,0012	-	10,86	-2,9	-14,1	-	9,8	-2,8	-12,3	-	10,9
9	1,0809	0,0108	-0,02	100,00	1,10	0,0112	-	98,21	-0,02	-0,0004	-	1,79	-1,8	-3,6	-	1,8	-1,7	-3,5	-	1,8
10	1,1154	0,0123	-0,04	90,39	1,20	0,013	-	92,31	-0,08	-0,0007	-	-1,92	-7,6	-5,3	-	-2,1	-7,1	-5,1	-	-2,1
11	1,1909	0,0144	-0,05	82,90	1,25	0,014	-	89,29	-0,06	0,0004	-	-6,39	-5,0	2,5	-	-7,7	-4,7	2,6	-	-7,2
12	1,2585	0,0170	-0,06	74,18	1,00	0,01	-	100,00	0,26	0,0070	-	-25,82	20,5	41,1	-	-34,8	25,9	69,7	-	-25,8
13	1.2853	0.0200	-0.08	64.38	0.84	0.009	-	93.33	0.45	0.0110	-	-28.95	34.6	54.9	-	-45.0	53.0	121.8	-	-31.0

							NAC	CA 64-110) (Abbo	tt), Re: 9.0	00.000									
	,	VisualFoil	120 pts	-		Abl	oott			Error Ab	soluto		E _{R1} (%)= (1-	C _e /C _c)>	c 100	E _{R2} (%)= (1-	$C_c/C_e)$	x 100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E_{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,0906	0,0040	-0,02	22,67	0,10	0,0041	-	24,39	-0,01	-0,0001	-	-1,72	-10,4	-2,6	-	-7,6	-9,5	-2,6	-	-7,1
1	0,2022	0,0041	-0,02	49,82	0,20	0,0042	-	47,62	0,00	-0,0001	-	2,20	1,1	-3,5	-	4,4	1,1	-3,4	-	4,6
2	0,3133	0,0052	-0,02	60,16	0,30	0,006	-	50,00	0,01	-0,0008	-	10,16	4,3	-15,2	-	16,9	4,4	-13,2	-	20,3
3	0,4261	0,0058	-0,02	73,60	0,45	0,0062	-	72,58	-0,02	-0,0004	-	1,02	-5,6	-7,1	-	1,4	-5,3	-6,6	-	1,4
4	0,5378	0,0062	-0,02	86,94	0,50	0,0065	-	76,92	0,04	-0,0003	-	10,02	7,0	-5,1	-	11,5	7,6	-4,8	-	13,0
5	0,6487	0,0066	-0,02	98,44	0,65	0,0072	-	90,28	0,00	-0,0006	-	8,16	-0,2	-9,3	-	8,3	-0,2	-8,5	-	9,0
6	0,7584	0,0070	-0,02	108,73	0,70	0,0075	-	93,33	0,06	-0,0005	-	15,39	7,7	-7,5	-	14,2	8,3	-7,0	-	16,5
7	0,8646	0,0074	-0,02	117,34	0,87	0,0085	-	102,35	-0,01	-0,0011	-	14,99	-0,6	-15,4	-	12,8	-0,6	-13,3	-	14,6
8	0,9755	0,0081	-0,02	120,40	1,00	0,0095	-	105,26	-0,02	-0,0014	-	15,13	-2,5	-17,3	-	12,6	-2,5	-14,7	-	14,4
9	1,0847	0,0100	-0,02	108,97	1,10	0,0106	-	103,77	-0,02	-0,0006	-	5,20	-1,4	-6,5	-	4,8	-1,4	-6,1	-	5,0
10	1,1193	0,0113	-0,04	99,15	1,20	0,0116	-	103,45	-0,08	-0,0003	-	-4,30	-7,2	-2,8	-	-4,3	-6,7	-2,7	-	-4,2
11	1,2098	0,0131	-0,04	92,13	1,25	0,0128	-	97,66	-0,04	0,0003	-	-5,52	-3,3	2,5	-	-6,0	-3,2	2,6	-	-5,7
12	1,2804	0,0154	-0,05	83,34	1,40	-	-	-	-0,12	-	-	-	-9,3	-	-	-	-8,5	-	-	-
13	1,3423	0,0181	-0,06	73,99	1,00	0,0094	-	106,38	0,34	0,0087	-	-32,40	25,5	48,2	-	-43,8	34,2	93,0	-	-30,5

Tabla 3.4.9.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 64-110 para diferentes números de Reynolds (Continuación I).

							NA	CA 64-4	09 (Mil	ey), Re: 70	00.000									
	١	/isualFoil ⁻	180 pts.			Mile	∋у			Error Ab	osoluto		E _{R1} ((%)= (1-	$-C_e/C_c)$	x 100	E _{R2} (%)= (1-	C_c/C_e)	x 100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤ _e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E_{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,3985	0,0065	-0,09	61,79	0,28	0,0059	-	47,46	0,12	0,0006	-	14,33	29,7	8,5	-	23,2	42,3	9,3	-	30,2
1	0,5050	0,0067	-0,09	75,43	0,38	0,0061	-	62,30	0,12	0,0006	-	13,13	24,7	8,9	-	17,4	32,9	9,8	-	21,1
2	0,6112	0,0070	-0,09	86,75	0,47	0,0064	-	73,44	0,14	0,0006	-	13,31	23,1	9,2	-	15,3	30,0	10,1	-	18,1
3	0,7180	0,0074	-0,09	96,73	0,56	0,0069	-	81,16	0,16	0,0005	-	15,57	22,0	7,0	-	16,1	28,2	7,6	-	19,2
4	0,8135	0,0114	-0,09	71,53	0,65	0,0089	-	73,03	0,16	0,0025	-	-1,51	20,1	21,8	-	-2,1	25,2	27,8	-	-2,1
5	0,8942	0,0109	-0,10	82,29	0,74	0,0138	-	53,62	0,15	-0,0029	-	28,66	17,2	-27,0	-	34,8	20,8	-21,3	-	53,5
6	0,9893	0,0237	-0,10	41,78	0,83	0,0164	-	50,61	0,16	0,0073	-	-8,83	16,1	30,7	-	-21,1	19,2	44,4	-	-17,5
7	1,0804	0,0263	-0,10	41,02	0,90	0,0181	-	49,72	0,18	0,0082	-	-8,70	16,7	31,3	-	-21,2	20,0	45,5	-	-17,5
8	1,1579	0,0298	-0,11	38,83	0,95	-	-	-	0,21	-	-	-	18,0	-	-	-	21,9	-	-	-
9	1,2269	0,0186	-0,12	66,08	0,99	-	-	-	0,24	-	-	-	19,3	-	-	-	23,9	-	-	-
10	1,2733	0,0326	-0,13	39,01	1,03	-	-	-	0,24	-	-	-	19,1	-	-	-	23,6	-	-	-

Tabla 3.4.10.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 64-409 para diferentes números de Reynolds.

	NACA 64-409 (Miley), Re: 1.000.000																			
		VisualFoil	180 pts.			Mil	ey			Error A	bsoluto		E _{R1} (9	%)= (1-	- C _e /C _c)	x 100	E _{R2} (9	%)= (1-	- C _c /C _e)	x 100
α (deg)	C_{Lc}	C_{Dc}	C _{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_M	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	$E_{\epsilon 2}$
0	0,3976	0,0058	-0,09	68,58	0,33	0,0055	-0,07	60,00	0,07	0,0003	-0,02	8,58	17,0	5,1	20,5	12,5	20,5	5,4	25,8	14,3
1	0,5045	0,0060	-0,09	83,76	0,42	0,0056	-0,07	75,00	0,08	0,0004	-0,02	8,76	16,7	7,0	20,9	10,5	20,1	7,6	26,4	11,7
2	0,6113	0,0063	-0,09	96,31	0,52	0,0060	-0,07	86,67	0,09	0,0003	-0,02	9,64	14,9	5,5	21,2	10,0	17,5	5,8	26,8	11,1
3	0,7181	0,0069	-0,09	103,52	0,60	0,0068	-0,07	88,24	0,12	0,0001	-0,02	15,29	16,5	2,0	21,3	14,8	19,7	2,0	27,1	17,3
4	0,8292	0,0105	-0,09	78,67	0,68	0,0090	-0,07	75,56	0,15	0,0015	-0,02	3,11	18,0	14,6	20,4	4,0	21,9	17,1	25,6	4,1
5	0,8959	0,0202	-0,10	44,34	0,76	0,0118	-0,07	64,41	0,14	0,0084	-0,03	-20,06	15,2	41,6	28,4	-45,2	17,9	71,2	39,7	-31,2
6	0,9973	0,0219	-0,10	45,51	0,84	0,0134	-0,07	62,69	0,16	0,0085	-0,03	-17,18	15,8	38,8	29,2	-37,7	18,7	63,5	41,2	-27,4
7	1,0902	0,0245	-0,10	44,44	0,92	0,0155	-0,07	59,35	0,17	0,0090	-0,03	-14,92	15,6	36,8	31,1	-33,6	18,5	58,3	45,2	-25,1
8	1,1702	0,0276	-0,11	42,40	0,99	-	-0,07	-	0,18	-	-0,04	-	15,4	-	34,9	-	18,2	-	53,5	-
9	1,2526	0,0313	-0,11	39,99	1,05	-	-0,07	-	0,20	-	-0,04	-	16,2	-	37,7	-	19,3	-	60,5	-
10	1,3045	0,0362	-0,12	36,01	1,08	-	-0,08	-	0,22	-	-0,04	-	17,2	-	35,7	-	20,8	-	55,6	-
11	1,3274	0,0351	-0,14	37,78	1,08	-	-0,11	-	0,25	-	-0,03	-	18,6	-	23,4	-	22,9	-	30,5	-

	NACA 64-409 (Miley), Re: 1.500.000																			
	``	Visual Foil	180 pts			Μ	iley			Error A	bsoluto		E _{R1} (*	%)= (1	- C _e /C _c)x 100	E _{R2} (*	%)= (1	- C _c /C _e)x 100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E_{CD1}	E _{CM1}	Eε1	E_{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,3966	0,0052	-0,09	76,76	0,31	0,005	-0,07	62,00	0,09	0,0002	-0,02	14,76	21,8	3,2	20,7	19,2	27,9	3,3	26,1	23,8
1	0,5041	0,0054	-0,09	93,79	0,41	0,005	-0,07	82,00	0,09	0,0004	-0,02	11,79	18,7	7,0	20,9	12,6	23,0	7,5	26,5	14,4
2	0,6112	0,0058	-0,09	105,72	0,51	0,0051	-0,07	100,00	0,10	0,0007	-0,02	5,72	16,6	11,8	21,2	5,4	19,8	13,4	26,8	5,7
3	0,7186	0,0072	-0,09	100,18	0,61	0,0053	-0,07	115,09	0,11	0,0019	-0,02	-14,92	15,1	26,1	21,2	-14,9	17,8	35,3	26,9	-13,0
4	0,8297	0,0097	-0,09	85,82	0,71	0,0065	-0,07	109,23	0,12	0,0032	-0,02	-23,41	14,4	32,8	20,3	-27,3	16,9	48,7	25,4	-21,4
5	0,9026	0,0186	-0,10	48,55	0,82	0,0094	-0,07	87,23	0,08	0,0092	-0,03	-38,69	9,1	49,4	27,2	-79,7	10,1	97,8	37,4	-44,3
6	1,0052	0,0204	-0,10	49,39	0,92	0,0112	-0,07	82,14	0,09	0,0092	-0,03	-32,75	8,5	45,0	27,7	-66,3	9,3	81,7	38,3	-39,9
7	1,1000	0,0227	-0,10	48,44	1,02	0,0128	-0,07	79,69	0,08	0,0099	-0,03	-31,24	7,3	43,6	29,4	-64,5	7,8	77,4	41,7	-39,2
8	1,1908	0,0255	-0,10	46,74	1,12	-	-0,07	-	0,07	-	-0,03	-	5,9	-	31,6	-	6,3	-	46,2	-
9	1,2668	0,0288	-0,11	43,97	1,21	-	-0,07	-	0,06	-	-0,04	-	4,5	-	35,7	-	4,7	-	55,4	-
10	1,3344	0,0326	-0,12	40,88	1,20	-	-0,08	-	0,13	-	-0,04	-	10,1	-	31,6	-	11,2	-	46,3	-

Tabla 3.4.10.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 64-409 para diferentes números de Reynolds (Continuación I).

	NACA 64-409 (Miley), Re: 2.000.000																			
	,	VisualFoil	180 pts			Mi	ley			Error A	Absoluto		E _{R1}	(%)=(1- C _e /C _c)>	k 100	E _{R2} (%)= (1	- C _c /C _e)	x 100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C _{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E_{CD1}	E _{CM1}	Eε1	E_{CL2}	E_{CD2}	E _{CM2}	Eε2
0	0,3961	0,0048	-0,09	82,84	0,27	0,0048	-0,07	56,25	0,13	0,0000	-0,02	26,59	31,8	-0,4	20,9	32,1	46,7	-0,4	26,4	47,3
1	0,5037	0,0051	-0,09	99,26	0,38	0,005	-0,07	76,00	0,12	0,0001	-0,02	23,26	24,6	1,5	21,0	23,4	32,5	1,5	26,7	30,6
2	0,6112	0,0055	-0,09	111,76	0,49	0,0055	-0,07	89,09	0,12	0,0000	-0,02	22,66	19,8	-0,6	21,2	20,3	24,7	-0,6	26,9	25,4
3	0,7200	0,0074	-0,09	96,95	0,60	0,0065	-0,07	92,31	0,12	0,0009	-0,02	4,64	16,7	12,5	20,9	4,8	20,0	14,2	26,4	5,0
4	0,8312	0,0091	-0,09	91,41	0,71	0,0082	-0,08	86,59	0,12	0,0009	-0,01	4,82	14,6	9,8	8,5	5,3	17,1	10,9	9,3	5,6
5	0,9207	0,0178	-0,09	51,62	0,81	0,0097	-0,08	83,51	0,11	0,0081	-0,01	-31,89	12,0	45,6	12,7	-61,8	13,7	83,9	14,5	-38,2
6	1,0071	0,0195	-0,10	51,63	0,90	0,0114	-0,08	78,95	0,11	0,0081	-0,02	-27,32	10,6	41,6	17,0	-52,9	11,9	71,1	20,4	-34,6
7	1,1022	0,0214	-0,10	51,62	0,99	0,0133	-0,08	74,44	0,11	0,0081	-0,02	-22,82	10,2	37,7	18,9	-44,2	11,3	60,5	23,3	-30,7
8	1,1932	0,0239	-0,10	49,97	1,09	-	-0,08	-	0,10	-	-0,02	-	8,7	-	21,3	-	9,5	-	27,1	-
9	1,2794	0,0269	-0,11	47,48	1,17	-	-0,08	-	0,11	-	-0,03	-	8,6	-	24,3	-	9,4	-	32,0	-
10	1,3610	0,0307	-0,11	44,37	1,25	-	-0,90	-	0,11	-	0,79	-	8,2	-	-715,4	-	8,9	-	-87,7	-
11	1,3970	0,0362	-0,13	38,64	1,31	-	-0,10	-	0,09	-	-0,03	-	6,2	-	20,7	-	6,6	-	26,1	-
12	1,4303	0,0242	-0,14	59,07	1,28	-	-0,11	-	0,15	-	-0,03	-	10,5	-	22,6	-	11,7	-	29,2	-

	NACA 64-409 (Miley), Re: 3.000.0																			
		VisualFoil	180 pts			Μ	iley			Error A	bsoluto		E _{R1} (9	%)= (1	- C _e /C _c)x 100	E _{R2} (%)= (1	- C _c /C _e)x 100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C _{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E_{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,3960	0,0045	-0,09	88,29	0,35	0,0045	-0,08	77,78	0,05	0,0000	-0,01	10,52	11,6	-0,3	9,6	11,9	13,1	-0,3	10,6	13,5
1	0,5038	0,0047	-0,09	106,79	0,46	0,0047	-0,08	97,87	0,04	0,0000	-0,01	8,92	8,7	0,4	9,7	8,4	9,5	0,4	10,8	9,1
2	0,6112	0,0052	-0,09	118,55	0,56	0,0052	-0,08	107,69	0,05	0,0000	-0,01	10,86	8,4	-0,9	9,9	9,2	9,1	-0,8	11,0	10,1
3	0,7220	0,0074	-0,09	97,86	0,67	0,0069	-0,08	97,10	0,05	0,0005	-0,01	0,76	7,2	6,5	9,1	0,8	7,8	6,9	10,0	0,8
4	0,8320	0,0084	-0,09	99,07	0,77	0,0086	-0,08	89,53	0,06	-0,0002	-0,01	9,54	7,5	-2,4	8,3	9,6	8,1	-2,3	9,0	10,7
5	0,9230	0,0165	-0,09	56,01	0,87	0,0093	-0,08	93,55	0,05	0,0072	-0,01	-37,54	5,7	43,6	12,1	-67,0	6,1	77,2	13,8	-40,1
6	1,0147	0,0180	-0,09	56,34	0,97	0,0104	-0,08	93,27	0,04	0,0076	-0,01	-36,93	4,4	42,3	15,3	-65,6	4,6	73,2	18,1	-39,6
7	1,1116	0,0199	-0,10	55,79	1,07	0,0118	-0,08	90,68	0,04	0,0081	-0,02	-34,89	3,7	40,8	16,9	-62,5	3,9	68,8	20,4	-38,5
8	1,2045	0,0222	-0,10	54,31	1,16	0,0132	-0,08	87,88	0,04	0,0090	-0,02	-33,57	3,7	40,5	19,1	-61,8	3,8	68,0	23,6	-38,2
9	1,2927	0,0249	-0,10	51,97	1,26	0,0148	-0,08	85,14	0,03	0,0101	-0,02	-33,17	2,5	40,5	21,8	-63,8	2,6	68,1	27,9	-39,0
10	1,3762	0,0280	-0,11	49,07	1,34	0,0169	-0,08	79,29	0,04	0,0111	-0,03	-30,22	2,6	39,7	24,9	-61,6	2,7	65,9	33,2	-38,1
11	1,4429	0,0329	-0,11	43,86	1,40	-	-0,08	-	0,04	-	-0,03	-	3,0	-	30,2	-	3,1	-	43,3	-
12	1,4846	0,0388	-0,13	38,24	1,35	-	-0,08	-	0,13	-	-0,05	-	9,1	-	37,8	-	10,0	-	60,8	-
13	1,5123	0,0454	-0,15	33,31	1,06	-	-0,12	-	0,45	-	-0,03	-	29,9	-	17,6	-	42,7	-	21,3	-
14	1,2643	0,0410	-0,23	30,84	0,94	-	-0,16	-	0,32	-	-0,07	-	25,6	-	30,7	-	34,5	-	44,4	-

Tabla 3.4.10.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 64-409 para diferentes números de Reynolds (Continuación II).

	NACA 64₁-412 (Miley), Re: 700.000																			
	\ \	/isualFoil [·]	140 pts.			Mi	ley			Error A	bsoluto		E _{R1} (%)= (1	- C _e /C _c)x 100	E _{R2}	(%)= (1	- C _c /C _e)	x 100
α (deg)	CLc	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤ _e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E_{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,3664	0,0073	-0,08	50,45	0,30	0,0071	-0,08	42,25	0,07	0,0002	0,00	8,20	18,1	2,2	3,7	16,2	22,1	2,3	3,9	19,4
1	0,4748	0,0076	-0,09	62,45	0,40	0,0071	-0,08	56,34	0,07	0,0005	-0,01	6,11	15,8	6,6	6,3	9,8	18,7	7,1	6,8	10,8
2	0,5837	0,0079	-0,09	73,48	0,50	0,0072	-0,08	69,44	0,08	0,0007	-0,01	4,04	14,3	9,4	8,6	5,5	16,7	10,3	9,4	5,8
3	0,6909	0,0082	-0,09	83,97	0,59	0,0074	-0,09	79,73	0,10	0,0008	0,00	4,24	14,6	10,1	0,0	5,1	17,1	11,2	0,0	5,3
4	0,8003	0,0085	-0,09	94,69	0,68	0,0077	-0,09	88,31	0,12	0,0008	0,00	6,37	15,0	8,9	1,9	6,7	17,7	9,8	1,9	7,2
5	0,9008	0,0108	-0,10	83,12	0,77	0,0081	-0,08	95,06	0,13	0,0027	-0,02	-11,94	14,5	25,3	16,2	-14,4	17,0	33,8	19,3	-12,6
6	0,9609	0,0141	-0,11	68,14	0,86	0,0113	-0,08	76,11	0,10	0,0028	-0,03	-7,97	10,5	19,9	26,7	-11,7	11,7	24,8	36,4	-10,5
7	1,0389	0,0151	-0,12	68,71	0,95	0,016	-0,08	59,38	0,09	-0,0009	-0,04	9,33	8,6	-5,8	32,2	13,6	9,4	-5,5	47,5	15,7
8	1,1064	0,0165	-0,13	66,94	1,02	0,0176	-0,08	57,95	0,09	-0,0011	-0,05	8,99	7,8	-6,5	38,1	13,4	8,5	-6,1	61,6	15,5
9	1,1915	0,0185	-0,14	64,35	1,08	-	-0,08	-	0,11	-	-0,06	-	9,4	-	41,1	-	10,3	-	69,7	-
10	1,2541	0,0208	-0,15	60,42	1,13	-	-0,08	-	0,12	-	-0,07	-	9,9	-	45,8	-	11,0	-	84,4	-
11	1,3109	0,0235	-0,16	55,68	1,17	-	-0,08	-	0,14	-	-0,08	-	10,7	-	50,1	-	12,0	-	100,5	-
12	1,1831	0,0266	-0,22	44,49	1,18	-	-0,09	-	0,00	-	-0,13	-	0,3	-	58,9	-	0,3	-	143,2	-

Tabla 3.4.11.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 641-412 para diferentes números de Reynolds.

							NAC	A 64₁-412	2 (Miley), Re: 1.00	0.000									
	,	VisualFoil	140 pts			Μ	liley			Error Ab	soluto		E _{R1} (%	6)= (1-	C _e /C _c)x	100	E _{R2} (%)= (1-	C _c /C _e)x	100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E_{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,3663	0,0066	-0,08	55,74	0,34	0,0064	-0,08	53,13	0,03	0,0002	0,00	2,62	7,2	2,6	3,7	4,7	7,7	2,7	3,9	4,9
1	0,4764	0,0069	-0,08	69,50	0,44	0,0066	-0,08	66,67	0,04	0,0003	0,00	2,83	7,6	3,7	5,9	4,1	8,3	3,9	6,2	4,3
2	0,5845	0,0072	-0,09	81,23	0,55	0,0068	-0,08	80,88	0,03	0,0004	-0,01	0,35	5,9	5,5	8,4	0,4	6,3	5,8	9,2	0,4
3	0,6940	0,0074	-0,09	93,42	0,65	0,0071	-0,08	91,55	0,04	0,0003	-0,01	1,87	6,3	4,4	10,3	2,0	6,8	4,6	11,5	2,0
4	0,8016	0,0078	-0,09	102,64	0,75	0,0074	-0,08	101,35	0,05	0,0004	-0,01	1,29	6,4	5,2	12,4	1,3	6,9	5,5	14,2	1,3
5	0,9039	0,0108	-0,09	83,84	0,84	0,0114	-0,08	73,68	0,06	-0,0006	-0,01	10,16	7,1	-5,7	15,5	12,1	7,6	-5,4	18,4	13,8
6	0,9728	0,0130	-0,11	74,60	0,93	0,0145	-0,08	64,14	0,04	-0,0015	-0,03	10,46	4,4	-11,2	24,6	14,0	4,6	-10,1	32,7	16,3
7	1,0534	0,0140	-0,11	75,46	1,02	0,0153	-0,08	66,67	0,03	-0,0013	-0,03	8,79	3,2	-9,6	30,1	11,6	3,3	-8,8	43,0	13,2
8	1,1240	0,0152	-0,12	73,91	1,09	0,0162	-0,08	67,28	0,03	-0,0010	-0,04	6,62	3,0	-6,5	35,9	9,0	3,1	-6,1	56,1	9,8
9	1,2110	0,0169	-0,13	71,49	1,14	-	-0,08	-	0,07	-	-0,05	-	5,9	-	38,9	-	6,2	-	63,6	-
10	1,2762	0,0189	-0,14	67,68	1,19	-	-0,08	-	0,09	-	-0,06	-	6,8	-	43,7	-	7,2	-	77,5	-
11	1,3356	0,0212	-0,15	63,00	1,23	-	-0,08	-	0,11	-	-0,07	-	7,9	-	48,1	-	8,6	-	92,7	-
12	1,3765	0,0241	-0,17	57,22	1,27	-	-0,08	-	0,11	-	-0,09	-	7,7	-	53,1	-	8,4	-	113,2	-
13	1,0648	0,0319	-0,27	33,37	1,27	-	-0,09	-	-0,21	-	-0,18	-	-19,3	-	67,2	-	-16,2	-	205,1	-

							NAC	A 64₁-412	(Miley)	, Re: 1.500	0.000									
		VisualFoil	140 pts			N	liley			Error Ab	osoluto		E _{R1} (%	5)= (1-	C_e/C_c)	x 100	E _{R2} (*	%)= (1-	C _c /C _e)x	100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E_{CD1}	E _{CM1}	Eε1	E _{CL2}	E _{CD2}	E _{CM2}	Eε2
0	0,3662	0,0059	-0,08	62,11	0,34	0,0057	-0,08	59,65	0,03	0,0002	0,00	2,46	7,2	3,3	3,7	4,0	7,7	3,4	3,9	4,1
1	0,4769	0,0062	-0,08	77,34	0,45	0,0057	-0,08	78,95	0,03	0,0005	0,00	-1,61	5,6	7,6	5,8	-2,1	6,0	8,2	6,1	-2,0
2	0,5869	0,0064	-0,09	91,11	0,56	0,0058	-0,08	96,55	0,03	0,0006	-0,01	-5,45	4,6	10,0	7,8	-6,0	4,8	11,1	8,4	-5,6
3	0,6955	0,0067	-0,09	104,27	0,66	0,0062	-0,08	106,45	0,04	0,0005	-0,01	-2,18	5,1	7,0	9,9	-2,1	5,4	7,6	11,0	-2,0
4	0,8028	0,0083	-0,09	96,74	0,77	0,0075	-0,08	102,67	0,03	0,0008	-0,01	-5,93	4,1	9,6	12,2	-6,1	4,3	10,6	13,9	-5,8
5	0,9108	0,0103	-0,09	88,78	0,87	0,0101	-0,08	86,14	0,04	0,0002	-0,01	2,64	4,5	1,5	13,9	3,0	4,7	1,6	16,2	3,1
6	1,0132	0,0120	-0,10	84,11	0,96	0,0131	-0,08	73,28	0,05	-0,0011	-0,02	10,83	5,2	-8,7	16,7	12,9	5,5	-8,0	20,0	14,8
7	1,0676	0,0128	-0,11	83,46	1,05	0,0139	-0,08	75,54	0,02	-0,0011	-0,03	7,92	1,6	-8,7	27,8	9,5	1,7	-8,0	38,6	10,5
8	1,1544	0,0140	-0,12	82,47	1,12	-	-0,08	-	0,03	-	-0,04	-	3,0	-	31,8	-	3,1	-	46,6	-
9	1,2302	0,0154	-0,13	79,91	1,18	-	-0,08	-	0,05	-	-0,05	-	4,1	-	36,6	-	4,3	-	57,6	-
10	1,2982	0,0170	-0,14	76,23	1,23	-	-0,08	-	0,07	-	-0,06	-	5,3	-	41,4	-	5,5	-	70,7	-
11	1,3602	0,0190	-0,15	71,60	1,27	-	-0,08	-	0,09	-	-0,07	-	6,6	-	46,0	-	7,1	-	85,0	-
12	1,4373	0,0216	-0,16	66,44	1,31	-	-0,09	-	0,13	-	-0,07	-	8,9	-	42,1	-	9,7	-	72,6	-
13	1,1748	0,0282	-0,25	41,73	1,34	-	-0,09	-	-0,17	-	-0,16	-	-14,1	-	63,6	-	-12,3	-	174,6	-

Tabla 3.4.11.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 641-412 para diferentes números de Reynolds (Continuación I).

	NACA 641-412 (Miley), Re: 2.000.000																			
	,	VisualFoil	140 pts.			Mi	ley			Error Ab	soluto		E _{R1} (%	o)= (1-	C_e/C_c)	k 100	E _{R2} (%)= (1-	C _c /C _e)x	100
α (deg)	C_{Lc}	C_{Dc}	C_{Mc}	ε _c	C _{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,3662	0,0055	-0,08	66,85	0,31	0,0059	-0,08	52,54	0,06	-0,0004	0,00	14,31	15,4	-7,7	3,7	21,4	18,1	-7,2	3,9	27,2
1	0,4772	0,0057	-0,08	83,19	0,42	0,0058	-0,08	72,41	0,06	-0,0001	0,00	10,78	12,0	-1,1	5,7	13,0	13,6	-1,1	6,0	14,9
2	0,5876	0,0060	-0,09	97,93	0,52	0,006	-0,08	86,67	0,07	0,0000	-0,01	11,26	11,5	0,0	7,6	11,5	13,0	0,0	8,2	13,0
3	0,6981	0,0062	-0,09	113,10	0,63	0,0065	-0,08	96,92	0,07	-0,0003	-0,01	16,18	9,7	-5,3	9,3	14,3	10,8	-5,0	10,2	16,7
4	0,8046	0,0084	-0,09	95,76	0,73	0,0075	-0,08	97,33	0,07	0,0009	-0,01	-1,58	9,3	10,7	11,7	-1,6	10,2	12,0	13,3	-1,6
5	0,9125	0,0098	-0,09	93,43	0,83	0,0091	-0,08	91,21	0,08	0,0007	-0,01	2,22	9,0	6,8	13,5	2,4	9,9	7,3	15,7	2,4
6	1,0198	0,0113	-0,09	89,89	0,92	0,0109	-0,08	84,40	0,10	0,0004	-0,01	5,49	9,8	3,9	15,2	6,1	10,8	4,1	18,0	6,5
7	1,0902	0,0121	-0,11	90,12	1,01	0,0128	-0,08	78,91	0,08	-0,0007	-0,03	11,22	7,4	-5,8	23,9	12,4	7,9	-5,5	31,5	14,2
8	1,1568	0,0131	-0,12	88,33	1,10	0,0141	-0,08	78,01	0,06	-0,0010	-0,04	10,32	4,9	-7,7	31,4	11,7	5,2	-7,1	45,8	13,2
9	1,2475	0,0145	-0,12	86,19	1,18	-	-0,08	-	0,07	-	-0,04	-	5,4	-	34,3	-	5,7	-	52,2	-
10	1,3182	0,0160	-0,13	82,61	1,26	-	-0,08	-	0,06	-	-0,05	-	4,4	-	39,2	-	4,6	-	64,4	-
11	1,3829	0,0177	-0,14	78,00	1,34	-	-0,08	-	0,04	-	-0,06	-	3,1	-	43,8	-	3,2	-	78,0	-
12	1,4618	0,0201	-0,15	72,82	1,40	-	-0,08	-	0,06	-	-0,07	-	4,2	-	46,4	-	4,4	-	86,6	-
13	1,3830	0,0266	-0,20	52,07	1,43	-	-0,08	-	-0,05	-	-0,12	-	-3,4	-	59,0	-	-3,3	-	143,9	-
14	1,1494	0,0309	-0,28	37,20	1,44	-	-0,08	-	-0,29	-	-0,20	-	-25,3	-	71,3	-	-20,2	-	248,9	-

							NAC	A 641-412	2 (Miley)	, Re: 3.00	0.000									
	,	VisualFoil	140 pts			Μ	iley			Error Ab	soluto		E _{R1} (%	%)= (1-	C _e /C _c)x	100	E _{R2} (%	%)= (1-	C _c /C _e)x	c 100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,3663	0,0050	-0,08	73,84	0,33	0,0052	-0,08	63,46	0,04	-0,0002	0,00	10,38	9,9	-4,8	3,7	14,1	11,0	-4,6	3,9	16,4
1	0,4777	0,0052	-0,08	91,83	0,44	0,0052	-0,08	84,62	0,04	0,0000	0,00	7,21	7,9	0,0	5,5	7,9	8,6	0,0	5,9	8,5
2	0,5885	0,0054	-0,09	108,03	0,55	0,0054	-0,08	101,85	0,04	0,0000	-0,01	6,17	6,5	0,9	7,3	5,7	7,0	0,9	7,9	6,1
3	0,6990	0,0059	-0,09	118,09	0,66	0,0062	-0,08	106,45	0,04	-0,0003	-0,01	11,63	5,6	-4,7	9,0	9,9	5,9	-4,5	9,9	10,9
4	0,8092	0,0082	-0,09	98,48	0,77	0,0076	-0,08	101,32	0,04	0,0006	-0,01	-2,84	4,8	7,5	10,6	-2,9	5,1	8,1	11,8	-2,8
5	0,9182	0,0092	-0,09	99,72	0,87	0,0092	-0,08	94,57	0,05	0,0000	-0,01	5,15	5,2	0,1	12,2	5,2	5,5	0,1	13,9	5,4
6	1,0262	0,0105	-0,09	98,19	0,97	0,0105	-0,08	92,38	0,06	0,0000	-0,01	5,81	5,5	-0,5	13,8	5,9	5,8	-0,5	16,0	6,3
7	1,1238	0,0112	-0,10	100,49	1,07	0,0118	-0,08	90,68	0,05	-0,0006	-0,02	9,81	4,8	-5,5	17,3	9,8	5,0	-5,2	21,0	10,8
8	1,1726	0,0121	-0,11	97,29	1,16	0,0131	-0,08	88,55	0,01	-0,0010	-0,03	8,74	1,1	-8,7	29,0	9,0	1,1	-8,0	40,9	9,9
9	1,2652	0,0133	-0,12	95,25	1,24	0,0145	-0,08	85,52	0,03	-0,0012	-0,04	9,73	2,0	-9,2	31,8	10,2	2,0	-8,4	46,7	11,4
10	1,3387	0,0146	-0,13	91,80	1,32	0,0161	-0,08	81,99	0,02	-0,0015	-0,05	9,82	1,4	-10,4	36,7	10,7	1,4	-9,4	58,0	12,0
11	1,4241	0,0163	-0,13	87,49	1,40	0,0177	-0,08	79,10	0,02	-0,0014	-0,05	8,39	1,7	-8,7	39,4	9,6	1,7	-8,0	65,1	10,6
12	1,4870	0,0181	-0,14	82,11	1,45	0,0194	-0,08	74,74	0,04	-0,0013	-0,06	7,37	2,5	-7,1	44,0	9,0	2,5	-6,7	78,7	9,9
13	1,4857	0,0239	-0,17	62,13	1,47	0,022	-0,08	66,82	0,02	0,0019	-0,09	-4,69	1,1	8,0	52,8	-7,5	1,1	8,7	111,8	-7,0
14	1,3731	0,0281	-0,22	48,94	1,47	-	-0,09	-	-0,10	-	-0,13	-	-7,1	-	59,7	-	-6,6	-	148,0	-
15	1,1133	0,0326	-0,31	34,15	1,45	-	-0,09	-	-0,34	-	-0,22	-	-30,2	-	71,3	-	-23,2	-	248,1	-

Tabla 3.4.11.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 641-412 para diferentes números de Reynolds (Continuación II).

			/), Re: 700	.000																
	,	VisualFoil	140 pts			М	iley			Error Al	osoluto		E _{R1} (%	%)= (1	- C _e /C _c)x 100	E _{R2} (%)= (1	- C _c /C _e)	x 100
α (deg)	CLc	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E _{CL2}	E _{CD2}	E _{CM2}	Eε2
0	0,5447	0,0076	-0,13	71,34	0,42	0,0077	-0,10	54,55	0,12	-0,0001	-0,03	16,79	22,9	-0,9	20,0	23,5	29,7	-0,8	25,0	30,8
1	0,6540	0,0078	-0,13	83,87	0,52	0,0077	-0,10	67,53	0,13	0,0001	-0,03	16,34	20,5	1,3	21,3	19,5	25,8	1,3	27,1	24,2
2	0,7595	0,0082	-0,13	92,20	0,63	0,0079	-0,10	79,75	0,13	0,0003	-0,03	12,45	17,0	4,1	23,1	13,5	20,5	4,3	30,1	15,6
3	0,8678	0,0088	-0,13	98,62	0,73	0,0081	-0,10	90,12	0,14	0,0007	-0,03	8,50	15,9	7,9	24,4	8,6	18,9	8,6	32,2	9,4
4	0,9722	0,0091	-0,14	107,15	0,84	0,0084	-0,10	100,00	0,13	0,0007	-0,04	7,15	13,6	7,4	26,0	6,7	15,7	8,0	35,1	7,2
5	1,0660	0,0106	-0,14	100,56	0,92	0,0089	-0,10	103,37	0,15	0,0017	-0,04	-2,81	13,7	16,0	28,8	-2,8	15,9	19,1	40,5	-2,7
6	1,1279	0,0154	-0,15	73,04	1,00	0,0095	-0,10	105,26	0,13	0,0059	-0,05	-32,22	11,3	38,5	34,9	-44,1	12,8	62,5	53,6	-30,6
7	1,2010	0,0167	-0,16	72,02	1,06	0,0114	-0,10	92,98	0,14	0,0053	-0,06	-20,96	11,7	31,6	38,9	-29,1	13,3	46,3	63,6	-22,5
8	1,2785	0,0181	-0,17	70,49	1,11	0,0103	-0,10	107,77	0,17	0,0078	-0,07	-37,28	13,2	43,2	41,9	-52,9	15,2	76,1	72,2	-34,6
9	1,3426	0,0199	-0,18	67,36	1,16	-	-0,10	-	0,18	-	-0,08	-	13,6	-	45,6	-	15,7	-	83,8	-
10	1,3995	0,0221	-0,20	63,38	1,20	-	-0,10	-	0,20	-	-0,10	-	14,3	-	49,2	-	16,6	-	96,8	-
11	1,4490	0,0247	-0,21	58,58	1,24	-	-0,10	-	0,21	-	-0,11	-	14,4	-	52,7	-	16,9	-	111,2	-
12	1,3889	0,0279	-0,25	49,72	1,28	-	-0,10	-	0,11	-	-0,15	-	7,8	-	60,4	-	8,5	-	152,6	-
13	1,2438	0,0336	-0,31	37,03	1,29	-	-0,11	-	-0,05	-	-0,20	-	-3,7	-	65,1	-	-3,6	-	186,2	-

Tabla 3.4.12.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 64₁-612 para diferentes números de Reynolds.

	NACA 641-612 (Miley), Re: 1.000.000																			
	,	VisualFoil	140 pts			Μ	iley			Error A	bsoluto		E _{R1} (9	%)= (1	- C _e /C _c)x 100	E _{R2} (%)= (1	- C _c /C _e)	x 100
α (deg)	C_{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,5466	0,0069	-0,12	79,28	0,38	0,0071	-0,11	53,52	0,17	-0,0002	-0,01	25,76	30,5	-3,0	11,7	32,5	43,8	-2,9	13,2	48,1
1	0,6565	0,0070	-0,13	93,41	0,49	0,0071	-0,11	69,01	0,17	-0,0001	-0,02	24,40	25,4	-1,0	13,1	26,1	34,0	-1,0	15,0	35,4
2	0,7635	0,0074	-0,13	102,55	0,59	0,0071	-0,11	83,10	0,17	0,0003	-0,02	19,45	22,7	4,6	14,8	19,0	29,4	4,9	17,4	23,4
3	0,8689	0,0080	-0,13	109,25	0,69	0,0071	-0,11	97,18	0,18	0,0009	-0,02	12,06	20,6	10,7	16,6	11,0	25,9	12,0	19,9	12,4
4	0,9785	0,0082	-0,13	119,55	0,79	0,0072	-0,11	109,72	0,19	0,0010	-0,02	9,82	19,3	12,0	17,6	8,2	23,9	13,7	21,4	9,0
5	1,0686	0,0110	-0,14	97,21	0,88	0,0075	-0,10	117,33	0,19	0,0035	-0,04	-20,12	17,6	31,8	28,5	-20,7	21,4	46,6	39,9	-17,1
6	1,1418	0,0143	-0,15	79,76	0,97	0,0082	-0,10	118,29	0,17	0,0061	-0,05	-38,53	15,0	42,7	33,4	-48,3	17,7	74,6	50,1	-32,6
7	1,2180	0,0154	-0,16	78,86	1,04	0,0098	-0,10	106,12	0,18	0,0056	-0,06	-27,26	14,6	36,5	37,2	-34,6	17,1	57,6	59,4	-25,7
8	1,2980	0,0167	-0,17	77,60	1,11	0,0123	-0,10	90,24	0,19	0,0044	-0,07	-12,64	14,5	26,5	40,2	-16,3	16,9	36,0	67,3	-14,0
9	1,3650	0,0183	-0,18	74,48	1,16	-	-0,10	-	0,20	-	-0,08	-	15,0	-	43,9	-	17,7	-	78,2	-
10	1,4459	0,0205	-0,19	70,67	1,21	-	-0,09	-	0,24	-	-0,10	-	16,3	-	51,4	-	19,5	-	105,8	-
11	1,5009	0,0227	-0,20	66,02	1,24	-	-0,10	-	0,26	-	-0,10	-	17,4	-	49,6	-	21,0	-	98,3	-
12	1,5485	0,0255	-0,21	60,70	1,25	-	-0,10	-	0,30	-	-0,11	-	19,3	-	53,0	-	23,9	-	112,7	-
13	1,3666	0,0299	-0,28	45,63	1,26	-	-0,10	-	0,11	-	-0,18	-	7,8	-	64,8	-	8,5	-	184,1	-

							NAC	A 641-612	(Miley)	, Re: 1.50	0.000									
	,	VisualFoil	140 pts			Μ	iley			Error Al	osoluto		E _{R1} (9	%)= (1	- C _e /C _c)x 100	E _{R2} ((%)= (1	I- C _c /C _e)	x 100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E_{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,5465	0,0062	-0,12	88,34	0,41	0,0066	-0,11	62,12	0,14	-0,0004	-0,01	26,22	25,0	-6,7	11,7	29,7	33,3	-6,3	13,2	42,2
1	0,6569	0,0063	-0,13	104,15	0,52	0,0063	-0,11	82,54	0,14	0,0000	-0,02	21,61	20,8	0,1	13,0	20,8	26,3	0,1	14,9	26,2
2	0,7667	0,0067	-0,13	115,02	0,63	0,0062	-0,11	101,61	0,14	0,0005	-0,02	13,41	17,8	7,0	14,3	11,7	21,7	7,5	16,6	13,2
3	0,8738	0,0071	-0,13	122,40	0,74	0,0065	-0,11	113,85	0,13	0,0006	-0,02	8,55	15,3	9,0	15,9	7,0	18,1	9,8	18,8	7,5
4	0,9795	0,0082	-0,13	119,64	0,84	0,0072	-0,11	116,67	0,14	0,0010	-0,02	2,97	14,2	12,1	17,5	2,5	16,6	13,7	21,2	2,5
5	1,0787	0,0108	-0,14	100,28	0,94	0,0083	-0,11	113,25	0,14	0,0025	-0,03	-12,97	12,9	22,8	19,9	-12,9	14,8	29,6	24,8	-11,5
6	1,1552	0,0132	-0,15	87,79	1,03	0,0098	-0,11	105,10	0,13	0,0034	-0,04	-17,31	10,8	25,5	25,0	-19,7	12,2	34,3	33,4	-16,5
7	1,2344	0,0142	-0,16	86,94	1,11	0,0127	-0,11	87,40	0,12	0,0015	-0,05	-0,47	10,1	10,6	29,1	-0,5	11,2	11,8	41,1	-0,5
8	1,3170	0,0153	-0,16	86,01	1,18	0,0145	-0,10	81,38	0,14	0,0008	-0,06	4,63	10,4	5,3	38,5	5,4	11,6	5,6	62,6	5,7
9	1,3870	0,0167	-0,17	82,96	1,24	-	-0,10	-	0,15	-	-0,07	-	10,6	-	42,1	-	11,9	-	72,7	-
10	1,4699	0,0186	-0,18	79,18	1,27	-	-0,10	-	0,20	-	-0,08	-	13,6	-	44,2	-	15,7	-	79,2	-
11	1,5278	0,0205	-0,19	74,59	1,30	-	-0,10	-	0,23	-	-0,09	-	14,9	-	47,8	-	17,5	-	91,5	-
12	1,5782	0,0228	-0,21	69,29	1,31	-	-0,10	-	0,27	-	-0,11	-	17,0	-	51,3	-	20,5	-	105,3	-
13	1,6006	0,0271	-0,23	59,11	1,31	-	-0,10	-	0,29	-	-0,13	-	18,2	-	55,7	-	22,2	-	125,6	-
14	1,2043	0,0347	-0,35	34,71	1,32	-	-0,10	-	-0,12	-	-0,25	-	-9,6	-	71,4	-	-8,8	-	250,0	-

Tabla 3.4.12.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 641-612 para diferentes números de Reynolds (Continuación I).

			, Re: 2.00	0.000																
	`	VisualFoil	140 pts.			Μ	iley			Error Ab	soluto		E _{R1} (%	6)= (1- 0	C _e /C _c)x	100	E _{R2} (%	%)= (1-	$C_c/C_e)x$	100
α (deg)	C_{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤ _e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E_{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,5481	0,0057	-0,12	95,72	0,44	0,0063	-0,11	69,84	0,11	-0,0006	-0,01	25,88	19,7	-10,0	11,4	27,0	24,6	-9,1	12,9	37,1
1	0,6572	0,0059	-0,13	112,19	0,55	0,006	-0,11	91,67	0,11	-0,0001	-0,02	20,53	16,3	-2,4	12,9	18,3	19,5	-2,4	14,8	22,4
2	0,7674	0,0062	-0,13	123,79	0,66	0,0061	-0,11	108,20	0,11	0,0001	-0,02	15,59	14,0	1,6	14,1	12,6	16,3	1,6	16,5	14,4
3	0,8748	0,0066	-0,13	131,83	0,76	0,0064	-0,11	118,75	0,11	0,0002	-0,02	13,08	13,1	3,6	15,7	9,9	15,1	3,7	18,6	11,0
4	0,9807	0,0082	-0,13	119,00	0,86	0,0072	-0,12	119,44	0,12	0,0010	-0,01	-0,44	12,3	12,6	9,8	-0,4	14,0	14,5	10,8	-0,4
5	1,0808	0,0104	-0,14	103,72	0,96	0,0085	-0,12	112,94	0,12	0,0019	-0,02	-9,22	11,2	18,4	12,3	-8,9	12,6	22,6	14,0	-8,2
6	1,1672	0,0124	-0,14	93,93	1,05	0,0107	-0,12	98,13	0,12	0,0017	-0,02	-4,20	10,0	13,9	16,5	-4,5	11,2	16,1	19,8	-4,3
7	1,2493	0,0134	-0,15	93,04	1,14	0,0126	-0,11	90,48	0,11	0,0008	-0,04	2,56	8,7	6,2	27,4	2,8	9,6	6,6	37,8	2,8
8	1,3193	0,0143	-0,16	92,05	1,22	0,014	-0,11	87,14	0,10	0,0003	-0,05	4,91	7,5	2,3	32,1	5,3	8,1	2,4	47,3	5,6
9	1,4071	0,0158	-0,17	89,29	1,29	-	-0,10	-	0,12	-	-0,07	-	8,3	-	40,4	-	9,1	-	67,7	-
10	1,4727	0,0173	-0,18	85,36	1,33	-	-0,10	-	0,14	-	-0,08	-	9,7	-	44,0	-	10,7	-	78,5	-
11	1,5528	0,0192	-0,19	80,85	1,35	-	-0,10	-	0,20	-	-0,09	-	13,1	-	46,0	-	15,0	-	85,3	-
12	1,6060	0,0212	-0,20	75,63	1,35	-	-0,10	-	0,26	-	-0,10	-	15,9	-	49,6	-	19,0	-	98,3	-
13	1,6526	0,0252	-0,21	65,67	1,35	-	-0,10	-	0,30	-	-0,11	-	18,3	-	53,0	-	22,4	-	112,6	-
14	1,3350	0,0321	-0,32	41,56	1,34	-	-0,10	-	-0,01	-	-0,22	-	-0,4	-	68,5	-	-0,4	-	217,4	-
15	1,1491	0,0379	-0,39	30,29	1,33	-	-0,10	-	-0,18	-	-0,29	-	-15,7	-	74,3	-	-13,6	-	288,6	-

							NAC	A 641-612	2 (Miley), Re: 3.00	0.000									
	,	VisualFoil	140 pts			Ν	iley			Error Al	osoluto		E _{R1} (9	%)= (1	- C _e /C _c)x 100	E _{R2} ((%)= (1	- C _c /C _e)	x 100
α (deg)	CLc	C_{Dc}	C _{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤ _e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E_{CL2}	E_{CD2}	E _{CM2}	Eε2
0	0,5482	0,0052	-0,12	105,52	0,48	0,0054	-0,11	88,89	0,07	-0,0002	-0,01	16,63	12,4	-3,9	11,4	15,8	14,2	-3,8	12,9	18,7
1	0,6595	0,0053	-0,13	124,81	0,59	0,0053	-0,11	111,32	0,07	0,0000	-0,02	13,49	10,5	-0,3	12,5	10,8	11,8	-0,3	14,3	12,1
2	0,7683	0,0056	-0,13	136,74	0,71	0,0053	-0,11	133,96	0,06	0,0003	-0,02	2,78	7,6	5,7	14,0	2,0	8,2	6,0	16,3	2,1
3	0,8787	0,0060	-0,13	146,26	0,82	0,0056	-0,12	146,43	0,06	0,0004	-0,01	-0,17	6,7	6,8	7,3	-0,1	7,2	7,3	7,9	-0,1
4	0,9832	0,0084	-0,13	116,95	0,92	0,0067	-0,12	137,31	0,06	0,0017	-0,01	-20,37	6,4	20,3	9,4	-17,4	6,9	25,5	10,3	-14,8
5	1,0894	0,0099	-0,13	110,36	1,02	0,0088	-0,12	115,91	0,07	0,0011	-0,01	-5,55	6,4	10,8	10,9	-5,0	6,8	12,2	12,2	-4,8
6	1,1873	0,0115	-0,14	103,27	1,12	0,0107	-0,11	104,67	0,07	0,0008	-0,03	-1,41	5,7	6,9	20,7	-1,4	6,0	7,4	26,1	-1,3
7	1,2639	0,0124	-0,15	101,94	1,20	0,0122	-0,11	98,36	0,06	0,0002	-0,04	3,58	5,1	1,6	25,6	3,5	5,3	1,6	34,4	3,6
8	1,3375	0,0132	-0,16	101,14	1,28	0,0136	-0,11	94,12	0,06	-0,0004	-0,05	7,02	4,3	-2,8	30,1	6,9	4,5	-2,8	43,1	7,5
9	1,4273	0,0145	-0,16	98,43	1,35	0,0152	-0,11	88,82	0,08	-0,0007	-0,05	9,62	5,4	-4,8	32,4	9,8	5,7	-4,6	47,8	10,8
10	1,5142	0,0160	-0,17	94,67	1,42	0,0168	-0,10	84,52	0,09	-0,0008	-0,07	10,15	6,2	-5,0	40,5	10,7	6,6	-4,8	68,1	12,0
11	1,5780	0,0175	-0,18	89,98	1,48	0,0186	-0,10	79,57	0,10	-0,0011	-0,08	10,41	6,2	-6,1	44,1	11,6	6,6	-5,7	79,0	13,1
12	1,6571	0,0196	-0,19	84,70	1,53	0,0207	-0,10	73,91	0,13	-0,0011	-0,09	10,78	7,7	-5,8	46,1	12,7	8,3	-5,5	85,6	14,6
13	1,6836	0,0227	-0,20	74,08	1,56	0,0221	-0,10	70,59	0,12	0,0006	-0,10	3,49	7,3	2,8	51,2	4,7	7,9	2,8	104,8	4,9
14	1,5856	0,0294	-0,25	53,87	1,58	-	-0,10	-	0,01	-	-0,15	-	0,4	-	60,7	-	0,4	-	154,7	-
15	1,4214	0,0344	-0,32	41,28	1,56	-	-0,10	-	-0,14	-	-0,22	-	-9,8	-	68,8	-	-8,9	-	220,6	-

Tabla 3.4.12.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 641-612 para diferentes números de Reynolds (Continuación II).

							NA	CA 642-	415 (M	liley), Re:	700.000									
	V	/isualFoil [·]	160 pts.			Mi	ley			Error A	bsoluto		E _{R1} (%)= (1-	C _e /C _c)	x 100	E _{R2}	(%)= (1	- C _c /C _e)×	(100
α (deg)	CLc	C_{Dc}	C _{Mc}	ε _c	C_{Le}	C_{De}	C _{Me}	٤ _e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E_{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,3708	0,0081	-0,09	45,69	0,32	0,0087	-0,08	36,78	0,05	-0,0006	-0,01	8,91	13,7	-7,2	6,4	19,5	15,9	-6,7	6,9	24,2
1	0,4811	0,0084	-0,09	57,56	0,41	0,009	-0,08	45,56	0,07	-0,0006	-0,01	12,00	14,8	-7,7	10,0	20,9	17,3	-7,1	11,1	26,3
2	0,5897	0,0086	-0,09	68,31	0,51	0,0094	-0,08	54,26	0,08	-0,0008	-0,01	14,05	13,5	-8,9	13,6	20,6	15,6	-8,2	15,7	25,9
3	0,6969	0,0089	-0,10	78,21	0,60	0,0098	-0,07	61,22	0,10	-0,0009	-0,03	16,98	13,9	-10,0	27,5	21,7	16,1	-9,1	37,9	27,7
4	0,8070	0,0091	-0,10	88,29	0,69	0,0102	-0,07	67,65	0,12	-0,0011	-0,03	20,64	14,5	-11,6	29,7	23,4	17,0	-10,4	42,2	30,5
5	0,9124	0,0096	-0,10	95,03	0,77	0,0106	-0,07	72,64	0,14	-0,0010	-0,03	22,39	15,6	-10,4	32,4	23,6	18,5	-9,4	48,0	30,8
6	0,9625	0,0117	-0,12	81,97	0,86	0,0113	-0,07	76,11	0,10	0,0004	-0,05	5,86	10,7	3,8	42,2	7,1	11,9	3,9	73,1	7,7
7	1,0151	0,0163	-0,14	62,31	0,94	0,0121	-0,07	77,69	0,08	0,0042	-0,07	-15,38	7,4	25,7	49,2	-24,7	8,0	34,6	97,0	-19,8
8	1,1016	0,0177	-0,15	62,28	1,01	0,0142	-0,08	71,13	0,09	0,0035	-0,07	-8,85	8,3	19,7	45,1	-14,2	9,1	24,6	82,3	-12,4
9	1,1691	0,0192	-0,16	60,98	1,09	-	-0,08	-	0,08	-	-0,08	-	6,8	-	49,4	-	7,3	-	97,7	-
10	1,2305	0,0209	-0,17	58,98	1,15	-	-0,08	-	0,08	-	-0,09	-	6,5	-	53,4	-	7,0	-	114,6	-
11	1,2187	0,0229	-0,20	53,31	1,19	-	-0,08	-	0,03	-	-0,12	-	2,4	-	60,6	-	2,4	-	153,8	-

Tabla 3.4.13.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 64₂-415 para diferentes números de Reynolds.

							NACA	64 ₂ -415	(Miley), Re: 1.00	0.000									
		VisualFoil	160 pts.			Mi	ley			Error A	bsoluto		E _{R1} (%)= (1	- C _e /C _c)x 100	E _{R2}	(%)= (1	- C _c /C _e)	x 100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E_{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,3721	0,0073	-0,09	50,77	0,32	0,0072	-0,08	44,44	0,05	0,0001	-0,01	6,32	14,0	1,8	6,1	12,5	16,3	1,8	6,5	14,2
1	0,4816	0,0076	-0,09	63,56	0,42	0,0073	-0,08	57,53	0,06	0,0003	-0,01	6,03	12,8	3,7	9,9	9,5	14,7	3,8	10,9	10,5
2	0,5927	0,0078	-0,09	75,95	0,52	0,0076	-0,08	68,42	0,07	0,0002	-0,01	7,53	12,3	2,6	12,9	9,9	14,0	2,7	14,8	11,0
3	0,7011	0,0081	-0,10	87,07	0,62	0,008	-0,08	77,50	0,08	0,0001	-0,02	9,57	11,6	0,7	16,2	11,0	13,1	0,7	19,3	12,3
4	0,8120	0,0082	-0,10	98,61	0,71	0,0086	-0,08	82,56	0,10	-0,0004	-0,02	16,06	12,6	-4,4	18,6	16,3	14,4	-4,3	22,9	19,4
5	0,9143	0,0091	-0,10	100,88	0,80	0,0095	-0,08	84,21	0,11	-0,0004	-0,02	16,67	12,5	-4,8	22,4	16,5	14,3	-4,6	28,9	19,8
6	0,9658	0,0117	-0,12	82,44	0,88	0,0108	-0,08	81,48	0,09	0,0009	-0,04	0,95	8,9	7,8	33,5	1,2	9,8	8,5	50,4	1,2
7	1,0432	0,0152	-0,13	68,73	0,94	0,0122	-0,08	77,05	0,10	0,0030	-0,05	-8,32	9,9	19,6	38,9	-12,1	11,0	24,4	63,6	-10,8
8	1,1187	0,0163	-0,14	68,53	1,01	0,0142	-0,07	71,13	0,11	0,0021	-0,07	-2,60	9,7	13,0	50,5	-3,8	10,8	15,0	102,2	-3,7
9	1,1886	0,0177	-0,15	67,33	1,09	-	-0,07	-	0,10	-	-0,08	-	8,3	-	54,3	-	9,0	-	119,0	-
10	1,2523	0,0192	-0,17	65,38	1,15	-	-0,07	-	0,10	-	-0,10	-	8,2	-	57,9	-	8,9	-	137,5	-
11	1,3303	0,0212	-0,18	62,82	1,19	-	-0,07	-	0,14	-	-0,11	-	10,5	-	60,0	-	11,8	-	150,2	-

							NAC	A 64 ₂ -41	5 (Miley	/), Re: 1.50	00.000									
		VisualFoil	160 pts			Mi	ley			Error Ab	osoluto		E _{R1} (%	%)= (1-	C _e /C _c)x	100	E _{R2}	(%)= (1	- C _c /C _e)x	100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E_{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,3721	0,0066	-0,09	56,42	0,35	0,0065	-0,08	53,85	0,02	0,0001	-0,01	2,58	5,9	1,4	6,1	4,6	6,3	1,5	6,5	4,8
1	0,4835	0,0068	-0,09	71,13	0,47	0,0066	-0,08	71,21	0,01	0,0002	-0,01	-0,08	2,8	2,9	9,4	-0,1	2,9	3,0	10,3	-0,1
2	0,5938	0,0070	-0,09	84,57	0,58	0,0069	-0,08	84,06	0,01	0,0001	-0,01	0,51	2,3	1,7	12,6	0,6	2,4	1,8	14,4	0,6
3	0,7050	0,0072	-0,09	97,66	0,69	0,0071	-0,08	97,18	0,02	0,0001	-0,01	0,48	2,1	1,6	15,3	0,5	2,2	1,7	18,1	0,5
4	0,8165	0,0074	-0,10	111,00	0,79	0,0082	-0,08	96,34	0,03	-0,0008	-0,02	14,66	3,3	-11,5	17,7	13,2	3,4	-10,3	21,5	15,2
5	0,9165	0,0093	-0,10	98,16	0,89	0,0108	-0,08	82,41	0,03	-0,0015	-0,02	15,76	2,9	-15,7	22,0	16,1	3,0	-13,6	28,2	19,1
6	0,9792	0,0114	-0,12	86,09	0,97	0,0128	-0,08	75,78	0,01	-0,0014	-0,04	10,31	0,9	-12,5	31,6	12,0	0,9	-11,1	46,3	13,6
7	1,0579	0,0139	-0,13	75,92	1,05	0,0155	-0,07	67,74	0,01	-0,0016	-0,06	8,18	0,7	-11,2	45,0	10,8	0,8	-10,1	81,7	12,1
8	1,1358	0,0150	-0,14	75,93	1,12	-	-0,07	-	0,02	-	-0,07	-	1,4	-	49,0	-	1,4	-	96,1	-
9	1,2234	0,0163	-0,14	75,19	1,19	-	-0,07	-	0,03	-	-0,07	-	2,7	-	51,6	-	2,8	-	106,6	-
10	1,2915	0,0176	-0,16	73,30	1,23	-	-0,07	-	0,06	-	-0,09	-	4,8	-	55,3	-	5,0	-	123,5	-
11	1,3539	0,0192	-0,17	70,52	1,25	-	-0,07	-	0,10	-	-0,10	-	7,7	-	58,6	-	8,3	-	141,8	-
12	1,3157	0,0230	-0,21	57,09	1,25	-	-0,08	-	0,07	-	-0,13	-	5,0	-	61,3	-	5,3	-	158,5	-
13	1,2218	0,0260	-0,26	47,05	1,24	-	-0,08	-	-0,02	-	-0,18	-	-1,5	-	69,0	-	-1,5	-	222,2	-
14	1,1052	0,0295	-0,31	37,47	1,22	-	-0,09	-	-0,11	-	-0,22	-	-10,4	-	71,3	-	-9,4	-	248,8	-

Tabla 3.4.13.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 642-415 para diferentes números de Reynolds (Continuación I).

							NAC	A 64 ₂ -41	5 (Miley), Re: 2.00	0.000									
	,	VisualFoil	160 pts			М	liley			Error Ab	soluto		E _{R1} (%	б)= (1- (C _e /C _c)x	100	E _{R2} ('	%)= (1-	C _c /C _e)x	100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C _{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E_{CD1}	E _{CM1}	Eε1	E_{CL2}	E_{CD2}	E _{CM2}	Eε2
0	0,3732	0,0061	-0,08	61,23	0,34	0,0062	-0,07	54,84	0,03	-0,0001	-0,01	6,39	8,9	-1,7	17,6	10,4	9,8	-1,7	21,3	11,6
1	0,4840	0,0063	-0,09	76,39	0,45	0,0061	-0,07	73,77	0,03	0,0002	-0,02	2,62	7,0	3,7	20,6	3,4	7,5	3,9	26,0	3,6
2	0,5961	0,0065	-0,09	91,48	0,55	0,0061	-0,08	90,16	0,05	0,0004	-0,01	1,32	7,7	6,4	12,1	1,4	8,4	6,8	13,7	1,5
3	0,7062	0,0067	-0,09	105,13	0,65	0,0062	-0,08	104,84	0,06	0,0005	-0,01	0,29	8,0	7,7	15,1	0,3	8,6	8,3	17,7	0,3
4	0,8177	0,0070	-0,10	116,64	0,74	0,0065	-0,08	113,85	0,08	0,0005	-0,02	2,79	9,5	7,3	17,4	2,4	10,5	7,9	21,1	2,5
5	0,9187	0,0094	-0,10	97,40	0,84	0,0084	-0,08	100,00	0,08	0,0010	-0,02	-2,60	8,6	10,9	21,6	-2,7	9,4	12,3	27,5	-2,6
6	1,0133	0,0109	-0,11	92,90	0,93	0,012	-0,08	77,50	0,08	-0,0011	-0,03	15,40	8,2	-10,0	26,3	16,6	9,0	-9,1	35,6	19,9
7	1,0713	0,0132	-0,12	81,36	1,02	0,0141	-0,08	72,34	0,05	-0,0009	-0,04	9,02	4,8	-7,1	35,4	11,1	5,0	-6,6	54,8	12,5
8	1,1514	0,0141	-0,13	81,52	1,10	0,0159	-0,08	69,18	0,05	-0,0018	-0,05	12,34	4,5	-12,6	40,0	15,1	4,7	-11,2	66,7	17,8
9	1,2407	0,0153	-0,14	80,91	1,18	-	-0,08	-	0,06	-	-0,06	-	4,9	-	43,0	-	5,1	-	75,4	-
10	1,3111	0,0166	-0,15	79,07	1,25	-	-0,08	-	0,06	-	-0,07	-	4,7	-	47,2	-	4,9	-	89,4	-
11	1,3758	0,0180	-0,16	76,29	1,29	-	-0,08	-	0,09	-	-0,08	-	6,2	-	51,2	-	6,7	-	104,7	-
12	1,4052	0,0217	-0,18	64,73	1,30	-	-0,08	-	0,11	-	-0,10	-	7,5	-	56,6	-	8,1	-	130,5	-
13	1,3194	0,0244	-0,23	54,08	1,29	-	-0,08	-	0,03	-	-0,15	-	2,2	-	65,7	-	2,3	-	191,7	-
14	1,2105	0,0276	-0,29	43,84	1,27	-	-0,08	-	-0,06	-	-0,21	-	-4,9	-	72,2	-	-4,7	-	259,5	-
15	1,0778	0,0314	-0,35	34,30	1,26	-	-0,08	-	-0,18	-	-0,27	-	-16,9	-	77,0	-	-14,5	-	334,0	-

							NAC	A 64 ₂ -415	(Miley)	, Re: 3.10	0.000		_							
		VisualFoil	160 pts			Μ	liley			Error Ab	soluto		E _{R1} (%	%)= (1-	C _e /C _c)x	100	E _{R2}	(%)= (1-	- C _c /C _e)x	(100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤ _e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E_{CL2}	E _{CD2}	E _{CM2}	E _{ε2}
0	0,3733	0,0055	-0,08	67,75	0,36	0,0057	-0,07	63,16	0,01	-0,0002	-0,01	4,59	3,6	-3,4	17,5	6,8	3,7	-3,3	21,3	7,3
1	0,4857	0,0057	-0,09	85,66	0,47	0,0057	-0,08	82,46	0,02	0,0000	-0,01	3,21	3,2	-0,5	8,8	3,7	3,3	-0,5	9,7	3,9
2	0,5973	0,0059	-0,09	101,58	0,59	0,0058	-0,08	101,72	0,01	0,0001	-0,01	-0,14	1,2	1,4	11,8	-0,1	1,2	1,4	13,3	-0,1
3	0,7095	0,0060	-0,09	117,70	0,70	0,006	-0,08	116,67	0,01	0,0000	-0,01	1,04	1,3	0,5	14,3	0,9	1,4	0,5	16,7	0,9
4	0,8192	0,0072	-0,10	114,25	0,80	0,0069	-0,08	115,94	0,02	0,0003	-0,02	-1,69	2,3	3,8	17,1	-1,5	2,4	3,9	20,6	-1,5
5	0,9259	0,0092	-0,10	100,96	0,90	0,0094	-0,07	95,74	0,03	-0,0002	-0,03	5,22	2,8	-2,5	30,1	5,2	2,9	-2,4	43,1	5,5
6	1,0286	0,0102	-0,10	100,47	1,00	0,0117	-0,07	85,47	0,03	-0,0015	-0,03	15,00	2,8	-14,3	33,1	14,9	2,9	-12,5	49,5	17,6
7	1,0850	0,0121	-0,12	89,82	1,09	0,013	-0,07	83,85	0,00	-0,0009	-0,05	5,98	-0,5	-7,6	41,9	6,7	-0,5	-7,1	72,0	7,1
8	1,1675	0,0129	-0,13	90,20	1,18	0,0143	-0,07	82,52	-0,01	-0,0014	-0,06	7,69	-1,1	-10,5	45,9	8,5	-1,1	-9,5	84,8	9,3
9	1,2586	0,0140	-0,14	89,81	1,26	0,0158	-0,07	79,75	0,00	-0,0018	-0,07	10,06	-0,1	-12,7	48,5	11,2	-0,1	-11,3	94,0	12,6
10	1,3315	0,0151	-0,15	88,10	1,33	0,0177	-0,07	75,14	0,00	-0,0026	-0,08	12,96	0,1	-17,1	52,2	14,7	0,1	-14,6	109,2	17,2
11	1,4164	0,0165	-0,15	85,59	1,38	-	-0,07	-	0,04	-	-0,08	-	2,6	-	54,4	-	2,6	-	119,5	-
12	1,4587	0,0200	-0,17	72,84	1,42	-	-0,07	-	0,04	-	-0,10	-	2,7	-	59,1	-	2,7	-	144,3	-
13	1,5069	0,0225	-0,19	67,04	1,44	-	-0,08	-	0,07	-	-0,11	-	4,4	-	57,1	-	4,6	-	133,1	-
14	1,4144	0,0253	-0,24	55,81	1,44	-	-0,08	-	-0,03	-	-0,16	-	-1,8	-	66,2	-	-1,8	-	195,8	-
15	1,2976	0,0287	-0,29	45,18	1,43	-	-0,08	-	-0,13	-	-0,21	-	-10,2	-	72,6	-	-9,3	-	265,3	-

Tabla 3.4.13.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 642-415 para diferentes números de Reynolds (Continuación II).

							NA	CA 64 ₃ -4	418 (Mil	ey), Re: 70	0.000									
	V	/isualFoil [·]	180 pts.			Mi	ley			Error Al	bsoluto		E _{R1} (*	%)= (1	- C _e /C _c)x 100	E _{R2}	(%)= (1	- C _c /C _e)	x 100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤ _e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E_{CL1}	E _{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,3735	0,0091	-0,09	41,21	0,31	0,0095	-0,06	32,63	0,06	-0,0004	-0,03	8,58	17,0	-4,8	31,6	20,8	20,5	-4,6	46,3	26,3
1	0,4827	0,0093	-0,09	52,09	0,42	0,0096	-0,07	43,75	0,06	-0,0003	-0,02	8,34	13,0	-3,6	24,6	16,0	14,9	-3,5	32,5	19,1
2	0,5940	0,0093	-0,10	63,91	0,51	0,0098	-0,07	52,04	0,08	-0,0005	-0,03	11,87	14,1	-5,4	28,0	18,6	16,5	-5,2	38,9	22,8
3	0,6978	0,0096	-0,10	72,77	0,61	0,01	-0,07	61,00	0,09	-0,0004	-0,03	11,77	12,6	-4,3	32,3	16,2	14,4	-4,1	47,7	19,3
4	0,8039	0,0098	-0,11	81,79	0,72	0,0103	-0,07	69,90	0,08	-0,0005	-0,04	11,88	10,4	-4,8	35,7	14,5	11,6	-4,6	55,4	17,0
5	0,8731	0,0100	-0,12	87,01	0,82	0,0106	-0,07	77,36	0,05	-0,0006	-0,05	9,66	6,1	-5,6	43,2	11,1	6,5	-5,3	76,1	12,5
6	0,9712	0,0106	-0,13	91,46	0,92	0,0109	-0,07	84,40	0,05	-0,0003	-0,06	7,06	5,3	-2,6	46,2	7,7	5,6	-2,6	86,0	8,4
7	1,0324	0,0127	-0,15	81,15	1,02	0,0115	-0,07	88,70	0,01	0,0012	-0,08	-7,55	1,2	9,6	52,1	-9,3	1,2	10,6	108,8	-8,5
8	1,0969	0,0154	-0,16	71,21	1,11	0,0133	-0,07	83,46	-0,01	0,0021	-0,09	-12,25	-1,2	13,7	56,5	-17,2	-1,2	15,8	129,9	-14,7
9	1,1228	0,0203	-0,19	55,41	1,15	0,0159	-0,07	72,33	-0,03	0,0044	-0,12	-16,92	-2,4	21,5	62,2	-30,5	-2,4	27,4	164,3	-23,4
10	1,1474	0,0221	-0,21	51,98	1,17	-	-0,07	-	-0,02	-	-0,14	-	-2,0	-	66,5	-	-1,9	-	198,6	-
11	1,0849	0,0239	-0,25	45,49	1,18	-	-0,07	-	-0,10	-	-0,18	-	-8,8	-	72,5	-	-8,1	-	263,4	-

Tabla 3.4.14.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 64₃-418 para diferentes números de Reynolds.

							NAC	A 64 ₃ -418	(Miley)), Re: 1.00	0.000									
	,	VisualFoil	180 pts			Μ	iley			Error Al	osoluto		E _{R1} (*	%)= (1	- C _e /C _c)x 100	E _{R2} (%)= (1	- C _c /C _e)	x 100
α (deg)	CLc	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,3754	0,0082	-0,09	45,74	0,27	0,0086	-0,07	31,40	0,11	-0,0004	-0,02	14,34	28,1	-4,8	19,8	31,4	39,0	-4,6	24,7	45,7
1	0,4857	0,0084	-0,09	57,86	0,39	0,0087	-0,07	44,83	0,10	-0,0003	-0,02	13,03	19,7	-3,6	23,9	22,5	24,5	-3,5	31,5	29,1
2	0,5978	0,0084	-0,10	71,20	0,51	0,0089	-0,08	57,30	0,09	-0,0005	-0,02	13,89	14,7	-6,0	16,9	19,5	17,2	-5,7	20,3	24,2
3	0,7066	0,0086	-0,10	81,70	0,63	0,009	-0,08	70,00	0,08	-0,0004	-0,02	11,70	10,8	-4,1	20,9	14,3	12,2	-3,9	26,4	16,7
4	0,8148	0,0088	-0,11	92,08	0,74	0,0092	-0,08	80,43	0,07	-0,0004	-0,03	11,65	9,2	-4,0	24,6	12,6	10,1	-3,8	32,6	14,5
5	0,9218	0,0091	-0,11	101,32	0,85	0,0094	-0,08	90,43	0,07	-0,0003	-0,03	10,89	7,8	-3,3	28,0	10,7	8,4	-3,2	38,8	12,0
6	0,9831	0,0098	-0,13	100,75	0,96	0,0098	-0,08	97,96	0,02	0,0000	-0,05	2,79	2,4	-0,4	37,1	2,8	2,4	-0,4	59,1	2,9
7	1,0479	0,0128	-0,14	82,00	1,04	0,0104	-0,08	100,00	0,01	0,0024	-0,06	-18,00	0,8	18,6	43,8	-22,0	0,8	22,9	77,9	-18,0
8	1,1150	0,0148	-0,16	75,44	1,11	0,0112	-0,08	99,11	0,00	0,0036	-0,08	-23,67	0,4	24,2	48,9	-31,4	0,4	32,0	95,5	-23,9
9	1,1460	0,0187	-0,18	61,17	1,15	0,0159	-0,08	72,33	0,00	0,0028	-0,10	-11,16	-0,3	15,1	55,4	-18,2	-0,3	17,8	124,0	-15,4
10	1,2231	0,0204	-0,19	60,06	1,19	-	-0,08	-	0,03	-	-0,11	-	2,7	-	57,9	-	2,8	-	137,6	-
11	1,1671	0,0220	-0,23	53,14	1,22	-	-0,08	-	-0,05	-	-0,15	-	-4,5	-	65,8	-	-4,3	-	192,3	-

							NAG	CA 64 ₃ -41	8 (Miley	/), Re: 1.5	00.000									
	,	VisualFoil	180 pts			Μ	iley			Error Al	osoluto		E _{R1} (%	%)= (1-	C _e /C _c)	x 100	E _{R2} (%)= (1	- C _c /C _e)>	< 100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,3770	0,0074	-0,09	51,13	0,3	0,0073	-0,07	41,10	0,08	0,0001	-0,02	10,04	20,4	1,0	19,4	19,6	25,7	1,0	24,1	24,4
1	0,4885	0,0075	-0,09	64,71	0,41	0,0074	-0,07	55,41	0,08	0,0001	-0,02	9,30	16,1	2,0	23,4	14,4	19,1	2,0	30,5	16,8
2	0,6013	0,0075	-0,10	79,88	0,52	0,0075	-0,08	69,33	0,08	0,0000	-0,02	10,55	13,5	0,4	16,1	13,2	15,6	0,4	19,2	15,2
3	0,7114	0,0077	-0,10	91,83	0,63	0,0078	-0,08	80,77	0,08	-0,0001	-0,02	11,06	11,4	-0,7	20,0	12,0	12,9	-0,7	24,9	13,7
4	0,8209	0,0079	-0,10	103,78	0,74	0,0081	-0,08	91,36	0,08	-0,0002	-0,02	12,43	9,9	-2,4	23,5	12,0	10,9	-2,3	30,7	13,6
5	0,9331	0,0081	-0,11	115,14	0,84	0,0084	-0,08	100,00	0,09	-0,0003	-0,03	15,14	10,0	-3,7	26,1	13,1	11,1	-3,5	35,3	15,1
6	0,9855	0,0101	-0,13	97,93	0,93	0,0088	-0,08	105,68	0,06	0,0013	-0,05	-7,75	5,6	12,6	36,8	-7,9	6,0	14,4	58,3	-7,3
7	1,0521	0,0124	-0,14	85,04	1,01	0,0095	-0,08	106,32	0,04	0,0029	-0,06	-21,28	4,0	23,2	43,4	-25,0	4,2	30,2	76,5	-20,0
8	1,1327	0,0138	-0,15	81,81	1,07	0,0108	-0,08	99,07	0,06	0,0030	-0,07	-17,26	5,5	22,0	47,4	-21,1	5,9	28,2	90,0	-17,4
9	1,1821	0,0173	-0,17	68,17	1,11	0,0115	-0,08	96,52	0,07	0,0058	-0,09	-28,36	6,1	33,7	53,0	-41,6	6,5	50,8	112,7	-29,4
10	1,2484	0,0186	-0,18	66,98	1,14	0,0152	-0,08	-	0,11	0,0034	-0,10	-	8,7	18,4	56,5	-	9,5	22,6	129,8	-
11	1,3248	0,0203	-0,19	65,15	1,17	-	-0,08	-	0,15	-	-0,11	-	11,7	-	58,9	-	13,2	-	143,0	-
12	1,1797	0,0234	-0,26	50,43	1,20	-	-0,08	-	-0,02	-	-0,18	-	-1,7	-	69,2	-	-1,7	-	225,0	-
13	1,1784	0,0261	-0,29	45,16	1,22	-	-0,08	-	-0,04	-	-0,21	-	-3,5	-	72,3	-	-3,4	-	261,4	-
14	1,0734	0,0288	-0,34	37,26	1,24	-	-0,08	-	-0,17	-	-0,26	-	-15,5	-	76,7	-	-13,4	-	329,5	-

Tabla 3.4.14.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 64₃-418 para diferentes números de Reynolds (Continuación I).

							NAG	CA 64 ₃ -41	8 (Miley	/), Re: 2.0	00.000									
	Ň	VisualFoil	180 pts			М	iley			Error Al	osoluto		E _{R1} (%	6)= (1-	$C_e/C_c)$	x 100	E _{R2} (%)= (1-	· C _c /C _e)>	< 100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C _{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,3771	0,0069	-0,09	54,82	0,35	0,0069	-0,07	50,72	0,03	0,0000	-0,02	4,10	7,2	-0,3	19,4	7,5	7,7	-0,3	24,1	8,1
1	0,4906	0,0070	-0,09	69,97	0,47	0,007	-0,07	67,14	0,02	0,0000	-0,02	2,82	4,2	0,2	22,9	4,0	4,4	0,2	29,7	4,2
2	0,6022	0,0070	-0,10	85,92	0,59	0,0071	-0,08	83,10	0,01	-0,0001	-0,02	2,82	2,0	-1,3	15,9	3,3	2,1	-1,3	18,9	3,4
3	0,7151	0,0072	-0,10	99,54	0,7	0,0073	-0,08	95,89	0,02	-0,0001	-0,02	3,65	2,1	-1,6	19,2	3,7	2,2	-1,6	23,8	3,8
4	0,8257	0,0073	-0,10	112,62	0,81	0,0075	-0,08	108,00	0,02	-0,0002	-0,02	4,62	1,9	-2,3	22,6	4,1	1,9	-2,2	29,2	4,3
5	0,9352	0,0075	-0,11	124,56	0,91	0,0078	-0,08	116,67	0,03	-0,0003	-0,03	7,90	2,7	-3,9	25,7	6,3	2,8	-3,7	34,6	6,8
6	0,9880	0,0102	-0,13	96,85	0,99	0,0084	-0,08	117,86	0,00	0,0018	-0,05	-21,01	-0,2	17,7	36,5	-21,7	-0,2	21,4	57,5	-17,8
7	1,0663	0,0120	-0,14	88,87	1,07	0,01	-0,08	107,00	0,00	0,0020	-0,06	-18,13	-0,3	16,7	41,9	-20,4	-0,3	20,0	72,1	-16,9
8	1,1490	0,0134	-0,15	85,68	1,12	0,013	-0,08	86,15	0,03	0,0004	-0,07	-0,47	2,5	3,1	45,9	-0,5	2,6	3,1	84,9	-0,5
9	1,2003	0,0164	-0,17	73,30	1,17	0,0161	-0,08	72,67	0,03	0,0003	-0,09	0,63	2,5	1,7	51,7	0,9	2,6	1,7	107,1	0,9
10	1,2685	0,0176	-0,18	72,09	1,2	-	-0,08	-	0,07	-	-0,10	-	5,4	-	55,3	-	5,7	-	123,5	-
11	1,3503	0,0192	-0,19	70,39	1,24	-	-0,08	-	0,11	-	-0,11	-	8,2	-	57,5	-	8,9	-	135,1	-
12	1,2657	0,0221	-0,24	57,20	1,26	-	-0,08	-	0,01	-	-0,16	-	0,5	-	66,5	-	0,5	-	198,1	-
13	1,2697	0,0246	-0,27	51,55	1,29	-	-0,08	-	-0,02	-	-0,19	-	-1,6	-	70,0	-	-1,6	-	232,8	-
14	1,1715	0,0272	-0,32	43,13	1,31	-	-0,08	-	-0,14	-	-0,24	-	-11,8	-	74,9	-	-10,6	-	298,8	-

							NAC	A 64 ₃ -41	8 (Miley	r), Re: 3.00	0.000									
		VisualFoil	180 pts			Μ	iley			Error Ab	soluto		E _{R1} (%	%)= (1-	C _e /C _c)>	100	E _{R2} (%)= (1-	$C_c/C_e)x$	100
α (deg)	CLc	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,3784	0,0062	-0,09	60,77	0,35	0,0062	-0,07	56,45	0,03	0,0000	-0,02	4,31	7,5	0,4	19,1	7,1	8,1	0,4	23,6	7,6
1	0,4914	0,0064	-0,09	76,94	0,48	0,0062	-0,07	77,42	0,01	0,0002	-0,02	-0,48	2,3	2,9	22,7	-0,6	2,4	3,0	29,4	-0,6
2	0,6053	0,0063	-0,09	95,38	0,6	0,0063	-0,08	95,24	0,01	0,0000	-0,01	0,14	0,9	0,7	15,2	0,1	0,9	0,7	18,0	0,1
3	0,7170	0,0065	-0,10	109,93	0,71	0,0065	-0,08	109,23	0,01	0,0000	-0,02	0,70	1,0	0,3	18,8	0,6	1,0	0,3	23,2	0,6
4	0,8307	0,0066	-0,10	125,46	0,82	0,0067	-0,08	122,39	0,01	-0,0001	-0,02	3,07	1,3	-1,2	21,6	2,4	1,3	-1,2	27,6	2,5
5	0,9402	0,0075	-0,11	124,99	0,91	0,0074	-0,08	122,97	0,03	0,0001	-0,03	2,02	3,2	1,6	24,9	1,6	3,3	1,6	33,1	1,6
6	1,0002	0,0100	-0,12	99,57	1	0,0098	-0,08	102,04	0,00	0,0002	-0,04	-2,47	0,0	2,4	34,9	-2,5	0,0	2,5	53,7	-2,4
7	1,0809	0,0113	-0,13	95,26	1,08	0,013	-0,08	83,08	0,00	-0,0017	-0,05	12,19	0,1	-14,6	40,3	12,8	0,1	-12,7	67,5	14,7
8	1,1654	0,0125	-0,14	93,41	1,13	0,0147	-0,08	76,87	0,04	-0,0022	-0,06	16,54	3,0	-17,8	44,4	17,7	3,1	-15,1	79,8	21,5
9	1,2339	0,0152	-0,16	81,10	1,18	-	-0,08	-	0,05	-	-0,08	-	4,4	-	49,1	-	4,6	-	96,6	-
10	1,3059	0,0164	-0,17	79,84	1,22	-	-0,08	-	0,09	-	-0,09	-	6,6	-	52,8	-	7,0	-	111,8	-
11	1,3727	0,0176	-0,18	77,84	1,25	-	-0,08	-	0,12	-	-0,10	-	8,9	-	56,2	-	9,8	-	128,1	-
12	1,4316	0,0207	-0,20	69,15	1,27	-	-0,08	-	0,16	-	-0,12	-	11,3	-	59,4	-	12,7	-	146,3	-
13	1,3610	0,0227	-0,24	60,09	1,28	-	-0,08	-	0,08	-	-0,16	-	5,9	-	67,1	-	6,3	-	204,3	-
14	1,2694	0,0249	-0,29	50,92	1,29	-	-0,08	-	-0,02	-	-0,21	-	-1,6	-	72,8	-	-1,6	-	268,2	-
15	1,2525	0,0279	-0,33	44,87	1,3	-	-0,09	-	-0,05	-	-0,24	-	-3,8	-	72,4	-	-3,7	-	262,7	-
16	1,1261	0,0309	-0,39	36,40	1,3	-	-0,09	-	-0,17	-	-0,30	-	-15,4	-	76,6	-	-13,4	-	327,9	-

Tabla 3.4.14.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 64₃-418 para diferentes números de Reynolds (Continuación II).

							NA	CA 64A-	010 (Ab	bott), Re:	3.000.0	000								
	V	/isualFoil 2	220 pts.			Abb	ott			Error Ab	soluto		E _{R1} (%)= (1-	C_e/C_c)	x 100	E _{R2} (%)= (1-	C_c/C_e)	k 100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤ _e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,0000	0,0045	0,00	0,00	0,00	0,004	-	0,00	0,00	0,0005	-	0,00	-	11,4	-	-	-	12,8	-	-
1	0,1081	0,0046	0,00	23,74	0,15	0,0042	-	35,71	-0,04	0,0004	-	-11,98	-38,8	7,8	-	-50,5	-27,9	8,4	-	-33,5
2	0,2155	0,0054	-0,01	39,63	0,35	0,0068	-	51,47	-0,13	-0,0014	-	-11,84	-62,5	-25,1	-	-29,9	-38,4	-20,1	-	-23,0
3	0,3255	0,0066	-0,01	49,28	0,45	0,0074	-	60,81	-0,12	-0,0008	-	-11,53	-38,3	-12,0	-	-23,4	-27,7	-10,7	-	-19,0
4	0,4335	0,0072	-0,01	60,37	0,59	0,0082	-	71,95	-0,16	-0,0010	-	-11,58	-36,1	-14,2	-	-19,2	-26,5	-12,4	-	-16,1
5	0,5417	0,0077	-0,02	69,92	0,69	0,0078	-	88,46	-0,15	-0,0001	-	-18,54	-27,4	-0,7	-	-26,5	-21,5	-0,7	-	-21,0
6	0,6479	0,0084	-0,02	77,59	0,75	0,009	-	83,33	-0,10	-0,0006	-	-5,75	-15,8	-7,8	-	-7,4	-13,6	-7,2	-	-6,9
7	0,7543	0,0091	-0,03	82,46	0,90	0,0104	-	86,54	-0,15	-0,0013	-	-4,08	-19,3	-13,7	-	-4,9	-16,2	-12,0	-	-4,7
8	0,8578	0,0103	-0,03	83,05	1,00	0,0125	-	80,00	-0,14	-0,0022	-	3,05	-16,6	-21,0	-	3,7	-14,2	-17,4	-	3,8
9	0,9587	0,0117	-0,03	82,06	1,08	0,0114	-	94,74	-0,12	0,0003	-	-12,68	-12,7	2,4	-	-15,4	-11,2	2,5	-	-13,4
10	1,0532	0,0134	-0,04	78,39	0,85	-	-	-	0,20	-	-	-	19,3	-	-	-	23,9	-	-	-
11	1,1303	0,0156	-0,05	72,26	0,82	-	-	-	0,31	-	-	-	27,5	-	-	-	37,8	-	-	-

Tabla 3.4.15.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 64A-010 para diferentes números de Reynolds.

							N	ACA 64A	-010 (A	bbott), Re	: 6.000	0.000								
	V	isualFoil 2	220 pts.			Abl	oott			Error Ab	soluto		E _{R1} (%))= (1- C	_e /C _c)x 1	100	E _{R2} (9	%)= (1-	$C_c/C_e)$	x 100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C _{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E_{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	Eε2
0	0,0000	0,0042	0,00	0,00	0,00	0,004	-	0,00	0,00	0,0002	-	0,00	#¡DIV/0!	4,1	-	-	-	4,2	-	-
1	0,1091	0,0043	0,00	25,57	0,15	0,0044	-	34,09	-0,04	-0,0001	-	-8,52	-37,5	-3,1	-	-33,3	-27,3	-3,0	-	-25,0
2	0,2182	0,0055	-0,01	39,47	0,35	0,0062	-	56,45	-0,13	-0,0007	-	-16,98	-60,4	-12,1	-	-43,0	-37,7	-10,8	-	-30,1
3	0,3283	0,0059	-0,01	55,34	0,45	0,0065	-	69,23	-0,12	-0,0006	-	-13,89	-37,1	-9,6	-	-25,1	-27,0	-8,7	-	-20,1
4	0,4386	0,0064	-0,01	68,91	0,59	0,0072	-	81,94	-0,15	-0,0008	-	-13,03	-34,5	-13,1	-	-18,9	-25,7	-11,6	-	-15,9
5	0,5467	0,0068	-0,02	80,89	0,69	0,0076	-	90,79	-0,14	-0,0008	-	-9,90	-26,2	-12,5	-	-12,2	-20,8	-11,1	-	-10,9
6	0,6542	0,0073	-0,02	89,91	0,75	0,0078	-	96,15	-0,10	-0,0005	-	-6,24	-14,6	-7,2	-	-6,9	-12,8	-6,7	-	-6,5
7	0,7633	0,0079	-0,02	96,61	0,90	0,009	-	100,00	-0,14	-0,0011	-	-3,39	-17,9	-13,9	-	-3,5	-15,2	-12,2	-	-3,4
8	0,8691	0,0089	-0,03	97,51	1,00	0,0106	-	94,34	-0,13	-0,0017	-	3,17	-15,1	-18,9	-	3,3	-13,1	-15,9	-	3,4
9	0,9726	0,0100	-0,03	97,28	1,10	-	-	-	-0,13	-	-	-	-13,1	-	-	-	-11,6	-	-	-
10	1,0740	0,0114	-0,03	94,56	1,16	-	-	-	-0,09	-	-	-	-8,0	-	-	-	-7,4	-	-	-
11	1,1680	0,0131	-0,04	89,49	1,00	-	-	-	0,17	-	-	-	14,4	-	-	-	16,8	-	-	-

							NAC	A 64A-01	0 (Abb	ott), Re: 9	.000.00	0								
	,	VisualFoil	220 pts			Ab	bott			Error Ab	osoluto		E _{R1} (%)= (1-	C_e/C_c)	k 100	E _{R2} (*	%)= (1-	$C_c/C_e)$	x 100
α (deg)	CLc	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	Eε2
0	0,0000	0,0040	0,00	0,00	0,00	0,004	-	0,00	0,00	0,0000	-	0,00	-	0,9	-	-	-	0,9	-	-
1	0,1097	0,0041	0,00	26,59	0,15	0,0046	-	32,61	-0,04	-0,0005	-	-6,02	-36,7	-11,5	-	-22,6	-26,8	-10,3	-	-18,5
2	0,2201	0,0053	-0,01	41,74	0,35	0,006	-	58,33	-0,13	-0,0007	-	-16,59	-59,0	-13,8	-	-39,8	-37,1	-12,1	-	-28,4
3	0,3303	0,0056	-0,01	58,49	0,45	0,0064	-	70,31	-0,12	-0,0008	-	-11,82	-36,2	-13,3	-	-20,2	-26,6	-11,8	-	-16,8
4	0,4408	0,0060	-0,01	73,48	0,59	0,0068	-	86,76	-0,15	-0,0008	-	-13,29	-33,8	-13,4	-	-18,1	-25,3	-11,8	-	-15,3
5	0,5505	0,0063	-0,02	87,46	0,69	0,0074	-	93,24	-0,14	-0,0011	-	-5,79	-25,3	-17,6	-	-6,6	-20,2	-14,9	-	-6,2
6	0,6587	0,0068	-0,02	97,33	0,75	0,0077	-	97,40	-0,09	-0,0009	-	-0,07	-13,9	-13,8	-	-0,1	-12,2	-12,1	-	-0,1
7	0,7666	0,0073	-0,02	104,46	0,90	0,0088	-	102,27	-0,13	-0,0015	-	2,19	-17,4	-19,9	-	2,1	-14,8	-16,6	-	2,1
8	0,8747	0,0082	-0,02	106,41	1,00	0,0105	-	95,24	-0,13	-0,0023	-	11,17	-14,3	-27,7	-	10,5	-12,5	-21,7	-	11,7
9	0,9794	0,0092	-0,03	106,52	1,10	-	-	-	-0,12	-	-	-	-12,3	-	-	-	-11,0	-	-	-
10	1,0822	0,0104	-0,03	104,14	1,16	-	-	-	-0,08	-	-	-	-7,2	-	-	-	-6,7	-	-	-
11	1,1823	0,0119	-0,04	99,63	1,23	-	-	-	-0,05	-	-	-	-4,0	-	-	-	-3,9	-	-	-

Tabla 3.4.15.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 64A-010 para diferentes números de Reynolds (Continuación I).

Tabla 3.4.16 Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA	
65-006 para diferentes números de Reynolds.	
NACA 65-006 (Abbatt) Re: 3 000 000	

							NACA	65-006 (Abbott)	, Re: 3.000	.000									
	۱ ۱	/isualFoil 1	00 pts.			Abb	ott			Error Abs	oluto		E _{R1} (*	%)= (1-	C_e/C_c)	‹ 100	E _{R2} (*	%)= (1-	C_c/C_e)	k 100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C _{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E_{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,0000	0,0038	0,00	0,00	0,00	0,0035	-	0,00	0,00	0,0003	-	0,00	-	8,8	-	-	-	9,7	-	-
1	0,1080	0,0040	0,00	26,91	0,08	0,0036	-	22,22	0,03	0,0004	-	4,69	25,9	10,3	-	17,4	35,0	11,4	-	21,1
2	0,2161	0,0056	0,00	38,40	0,20	0,006	-	33,33	0,02	-0,0004	-	5,07	7,4	-6,6	-	13,2	8,0	-6,2	-	15,2
3	0,3225	0,0059	0,01	54,89	0,30	0,0062	-	48,39	0,02	-0,0003	-	6,50	7,0	-5,5	-	11,8	7,5	-5,2	-	13,4
4	0,4256	0,0063	0,01	67,86	0,40	0,0068	-	58,82	0,03	-0,0005	-	9,04	6,0	-8,4	-	13,3	6,4	-7,8	-	15,4
5	0,5374	0,0070	0,01	77,06	0,50	0,0072	-	69,44	0,04	-0,0002	-	7,62	7,0	-3,3	-	9,9	7,5	-3,2	-	11,0
6	0,6488	0,0079	0,01	81,75	0,60	-	-	-	0,05	-	-	-	7,5	-	-	-	8,1	-	-	-

	NACA 65-006 (Abbott), Re: 6.000.000																			
	V	'isualFoil 1	00 pts.			Abb	ott			Error Ab	soluto		E _{R1} (%)= (1-	C _e /C _c)x	100	E _{R2} (*	%)= (1-	C _c /C _e)x	100
α (deg)	CLc	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C _{De}	C_{Me}	٤ _e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E_{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,0000	0,0036	0,00	0,00	0,00	0,0035	-	0,00	0,00	0,0001	-	0,00	-	3,8	-	-	-	3,9	-	-
1	0,1084	0,0043	0,00	25,18	0,08	0,0036	-	22,22	0,03	0,0007	-	2,96	26,2	16,4	-	11,7	35,5	19,6	-	13,3
2	0,2198	0,0051	0,01	42,77	0,20	0,0055	-	36,36	0,02	-0,0004	-	6,41	9,0	-7,0	-	15,0	9,9	-6,6	-	17,6
3	0,3289	0,0053	0,01	62,24	0,30	0,0058	-	51,72	0,03	-0,0005	-	10,51	8,8	-9,7	-	16,9	9,6	-8,9	-	20,3
4	0,4296	0,0054	0,01	79,13	0,40	0,0062	-	64,52	0,03	-0,0008	-	14,62	6,9	-14,2	-	18,5	7,4	-12,4	-	22,7
5	0,5420	0,0060	0,01	90,22	0,50	0,0066	-	75,76	0,04	-0,0006	-	14,46	7,8	-9,9	-	16,0	8,4	-9,0	-	19,1
6	0,6541	0,0068	0,02	96,69	0,60	0,0078	-	76,92	0,05	-0,0010	-	19,77	8,3	-15,3	-	20,4	9,0	-13,3	-	25,7
7	0,7653	0,0078	0,02	98,43	0,70	-	-	-	0,07	-	-	-	8,5	-	-	-	9,3	-	-	-
8	0,8585	0,0091	0,02	94,56	0,80	-	-	-	0,06	-	-	-	6,8	-	-	-	7,3	-	-	-
9	0,9521	0,0109	0,02	87,25	0,85	-	-	-	0,10	-	-	-	10,7	-	-	-	12,0	-	-	-

							NAC	CA 65-00)6 (Abb	ott), Re: 9.	000.000)								
	V	isualFoil	100 pt	S.		Abb	ott			Error At	osoluto		E _{R1} (%)= (1-	C _e /C _c)x	100	E _{R2} (%)= (1-	C _c /C _e)x	: 100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C _{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	Eε2
0	0	0,004	0	0,00	0,00	0,0035	-	0,00	0,00	0,0000	-	0,00	-	0,8	-	-	-	0,8	-	-
1	0,109	0,005	0	24,14	0,08	0,0045	-	17,78	0,03	0,0000	-	6,36	26,9	0,8	-	26,4	36,8	0,8	-	35,8
2	0,221	0,005	0,01	45,37	0,20	0,0054	-	37,04	0,02	-0,0005	-	8,33	9,7	-10,6	-	18,4	10,7	-9,6	-	22,5
3	0,332	0,005	0,01	66,03	0,30	0,0055	-	54,55	0,03	-0,0005	-	11,48	9,7	-9,3	-	17,4	10,7	-8,5	-	21,1
4	0,432	0,005	0,01	86,09	0,40	0,0059	-	67,80	0,03	-0,0009	-	18,29	7,4	-17,6	-	21,2	8,0	-15,0	-	27,0
5	0,545	0,006	0,01	98,26	0,50	0,006	-	83,33	0,04	-0,0005	-	14,92	8,2	-8,2	-	15,2	8,9	-7,6	-	17,9
6	0,657	0,006	0,02	105,72	0,60	0,0075	-	80,00	0,06	-0,0013	-	25,72	8,7	-20,7	-	24,3	9,5	-17,1	-	32,1
7	0,769	0,007	0,02	-	0,70	-	-	-	0,07	-	-	-	8,9	-	-	-	9,8	-	-	-
8	0,88	0,008	0,02	-	0,78	-	-	-	0,10	-	-	-	11,3	-	-	-	12,8	-	-	-
9	0,964	0,01	0,02	-	0,85	-	-	-	0,11	-	-	-	11,8	-	-	-	13,4	-	-	-
10	1,053	0,012	0,02	-	0,86	-	-	-	0,19	-	-	-	18,3	-	-	-	22,4	-	-	-

 Tabla 3.4.16.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA

 65-006 para diferentes números de Reynolds (Continuación I).

							NA	CA 65 ₂ -4	15 (Mi	ley), Re: 7	00.000									
	١	/isualFoil [·]	160 pts.			Mi	ley			Error A	bsoluto		E _{R1} (%)= (1	- C _e /C _c)x 100	E _{R2}	(%)= (1	- C _c /C _e)	x 100
α (deg)	CLc	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E_{CD1}	E _{CM1}	Eε1	E_{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,3703	0,0079	-0,09	47,16	0,33	0,01	-0,08	40,24	0,04	-0,0003	-0,01	6,92	10,9	-4,4	10,2	14,7	12,2	-4,3	11,4	17,2
1	0,4787	0,0080	-0,09	59,59	0,43	0,01	-0,08	52,44	0,05	-0,0002	-0,01	7,15	10,2	-2,1	14,7	12,0	11,3	-2,0	17,2	13,6
2	0,5895	0,0080	-0,10	73,32	0,53	0,01	-0,08	64,63	0,06	-0,0002	-0,02	8,68	10,1	-2,0	18,2	11,8	11,2	-2,0	22,3	13,4
3	0,6963	0,0084	-0,10	83,31	0,63	0,01	-0,08	75,90	0,07	0,0001	-0,02	7,41	9,5	0,7	22,1	8,9	10,5	0,7	28,4	9,8
4	0,8020	0,0088	-0,11	91,03	0,72	0,01	-0,08	84,71	0,08	0,0003	-0,03	6,32	10,2	3,5	25,7	6,9	11,4	3,7	34,6	7,5
5	0,8921	0,0095	-0,12	94,10	0,80	0,01	-0,08	87,91	0,09	0,0004	-0,04	6,19	10,3	4,0	31,3	6,6	11,5	4,2	45,5	7,0
6	0,9356	0,0154	-0,14	60,58	0,87	0,01	-0,07	87,00	0,07	0,0054	-0,07	-26,42	7,0	35,2	48,7	-43,6	7,5	54,4	95,0	-30,4
7	1,0114	0,0165	-0,15	61,23	0,93	0,0135	-0,07	68,89	0,08	0,0030	-0,08	-7,66	8,0	18,3	52,8	-12,5	8,7	22,3	111,8	-11,1
8	1,0972	0,0179	-0,16	61,32	0,98	-	-0,06	-	0,12	-	-0,10	-	10,7	-	61,8	-	12,0	-	162,0	-
9	1,1633	0,0194	-0,17	60,11	1,03	-	-0,06	-	0,13	-	-0,11	-	11,5	-	64,9	-	12,9	-	184,6	-
10	1,2428	0,0213	-0,18	58,22	1,07	-	-0,05	-	0,17	-	-0,13	-	13,9	-	72,3	-	16,1	-	261,0	-

Tabla 3.4.17.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 65₂-415 para diferentes números de Reynolds.

	NACA 652-415 (Miley), Re: 1.000.000																			
		VisualFoil	160 pts.			Ν	/liley			Error A	bsoluto		E _{R1} (%)= (1	- C _e /C _c)	x 100	E _{R2}	(%)= (1	- C _c /C _e)	x 100
α (deg)	C_{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E_{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,3722	0,0071	-0,09	52,71	0,32	0,01	-0,07	45,07	0,05	0,0000	-0,02	7,64	14,0	-0,6	21,0	14,5	16,3	-0,5	26,6	17,0
1	0,4819	0,0072	-0,09	66,60	0,43	0,01	-0,07	61,43	0,05	0,0002	-0,02	5,17	10,8	3,2	24,7	7,8	12,1	3,4	32,8	8,4
2	0,5933	0,0072	-0,10	82,23	0,54	0,01	-0,08	76,06	0,05	0,0001	-0,02	6,18	9,0	1,6	17,4	7,5	9,9	1,6	21,1	8,1
3	0,7015	0,0075	-0,10	93,53	0,64	0,01	-0,08	86,49	0,06	0,0001	-0,02	7,05	8,8	1,3	21,1	7,5	9,6	1,4	26,8	8,1
4	0,8086	0,0079	-0,11	102,26	0,74	0,01	-0,08	94,87	0,07	0,0001	-0,03	7,39	8,5	1,4	24,6	7,2	9,3	1,4	32,6	7,8
5	0,8854	0,0098	-0,12	90,59	0,82	0,01	-0,08	98,80	0,07	0,0015	-0,04	-8,21	7,4	15,1	32,2	-9,1	8,0	17,8	47,6	-8,3
6	0,9495	0,0143	-0,13	66,33	0,90	0,01	-0,08	94,74	0,05	0,0048	-0,05	-28,41	5,2	33,6	39,9	-42,8	5,5	50,7	66,3	-30,0
7	1,0275	0,0153	-0,14	67,17	0,96	-	-0,07	-	0,07	-	-0,07	-	6,6	-	51,5	-	7,0	-	106,1	-
8	1,1151	0,0165	-0,15	67,47	1,02	-	-0,07	-	0,10	-	-0,08	-	8,5	-	54,2	-	9,3	-	118,2	-
9	1,2003	0,0180	-0,16	66,64	1,08	-	-0,07	-	0,12	-	-0,09	-	10,0	-	56,6	-	11,1	-	130,7	-
10	1,2648	0,0196	-0,17	64,64	1,12	-	-0,07	-	0,14	-	-0,10	-	11,4	-	60,0	-	12,9	-	150,0	-

							NAG	CA 65 ₂ -41	5 (Miley	/), Re: 1.5	00.000									
	`	VisualFoil	160 pts			Μ	iley			Error Al	osoluto		E _{R1} (%	%)= (1-	Ce/Cc)	x 100	E _{R2} (%)= (1	- C _c /C _e)>	‹ 100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,3723	0,0063	-0,09	58,82	0,33	0,0065	-0,07	50,77	0,04	-0,0002	-0,02	8,05	11,4	-2,7	21,0	13,7	12,8	-2,6	26,5	15,9
1	0,4845	0,0065	-0,09	74,99	0,44	0,0065	-0,07	67,69	0,04	0,0000	-0,02	7,30	9,2	-0,6	24,2	9,7	10,1	-0,6	31,9	10,8
2	0,5967	0,0064	-0,10	92,97	0,55	0,0065	-0,07	84,62	0,05	-0,0001	-0,03	8,36	7,8	-1,3	27,1	9,0	8,5	-1,3	37,2	9,9
3	0,7062	0,0067	-0,10	105,74	0,65	0,0065	-0,07	100,00	0,06	0,0002	-0,03	5,74	8,0	2,7	30,2	5,4	8,7	2,8	43,2	5,7
4	0,8143	0,0072	-0,10	112,61	0,75	0,0066	-0,07	113,64	0,06	0,0006	-0,03	-1,03	7,9	8,7	33,1	-0,9	8,6	9,6	49,5	-0,9
5	0,8883	0,0101	-0,12	87,81	0,85	0,0069	-0,07	123,19	0,04	0,0032	-0,05	-35,37	4,3	31,8	40,3	-40,3	4,5	46,6	67,6	-28,7
6	0,9630	0,0132	-0,13	73,14	0,94	0,0078	-0,07	120,51	0,02	0,0054	-0,06	-47,37	2,4	40,8	46,0	-64,8	2,5	68,8	85,2	-39,3
7	1,0434	0,0141	-0,14	74,22	1,02	0,0102	-0,07	100,00	0,02	0,0039	-0,07	-25,78	2,2	27,4	50,1	-34,7	2,3	37,8	100,4	-25,8
8	1,1329	0,0152	-0,15	74,77	1,09	0,0142	-0,07	76,76	0,04	0,0010	-0,08	-1,99	3,8	6,3	52,8	-2,7	3,9	6,7	111,8	-2,6
9	1,2199	0,0165	-0,16	74,15	1,14	-	-0,06	-	0,08	-	-0,10	-	6,5	-	61,7	-	7,0	-	161,0	-
10	1,2868	0,0178	-0,17	72,28	1,18	-	-0,06	-	0,11	-	-0,11	-	8,3	-	64,6	-	9,1	-	182,5	-
11	1,3497	0,0214	-0,18	63,20	1,21	-	-0,06	-	0,14	-	-0,12	-	10,4	-	67,2	-	11,5	-	205,0	-
12	1,3944	0,0240	-0,20	58,13	1,22	-	-0,06	-	0,17	-	-0,14	-	12,5	-	70,1	-	14,3	-	234,3	-
13	1,2974	0,0270	-0,25	48,03	1,23	-	-0,06	-	0,07	-	-0,19	-	5,2	-	76,3	-	5,5	-	321,8	-
14	1,1806	0,0310	-0,31	38,14	1,23	-	-0,07	-	-0,05	-	-0,24	-	-4,2	-	77,4	-	-4,0	-	342,9	-
15	1,0396	0,0357	-0,37	29,14	1,23	-	-0,07	-	-0,19	-	-0,30	-	-18,3	-	81,2	-	-15,5	-	432,1	-

Tabla 3.4.17.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA <u>652-415 para diferentes números de Reynolds (Continuación I).</u>

							NAC	CA 65 ₂ -41	5 (Miley), Re: 2.00	0.000									
	١	/isual Foil	160 pts	i.		Μ	iley			Error Al	osoluto		E _{R1} (%)= (1-	C _e /C _c)	x 100	E _{R2} (%)= (1	- C _c /C _e)	x 100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E_{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,3738	0,0058	-0,09	63,95	0,34	0,0059	-0,07	57,63	0,03	-0,0001	-0,02	6,33	9,0	-1,0	20,7	9,9	9,9	-0,9	26,0	11,0
1	0,4850	0,0060	-0,09	80,82	0,45	0,0061	-0,08	73,77	0,04	-0,0001	-0,01	7,05	7,2	-1,6	13,2	8,7	7,8	-1,6	15,3	9,6
2	0,5975	0,0060	-0,10	100,34	0,56	0,0064	-0,08	87,50	0,04	-0,0004	-0,02	12,84	6,3	-7,5	16,5	12,8	6,7	-7,0	19,7	14,7
3	0,7098	0,0062	-0,10	115,23	0,66	0,0068	-0,08	97,06	0,05	-0,0006	-0,02	18,17	7,0	-10,4	19,5	15,8	7,5	-9,4	24,2	18,7
4	0,8151	0,0071	-0,10	115,29	0,76	0,0073	-0,08	104,11	0,06	-0,0002	-0,02	11,18	6,8	-3,3	23,4	9,7	7,3	-3,2	30,5	10,7
5	0,9053	0,0100	-0,11	90,68	0,85	0,0082	-0,08	103,66	0,06	0,0018	-0,03	-12,98	6,1	17,9	29,3	-14,3	6,5	21,7	41,4	-12,5
6	0,9755	0,0125	-0,13	78,35	0,94	0,0102	-0,07	92,16	0,04	0,0023	-0,06	-13,81	3,6	18,1	44,7	-17,6	3,8	22,1	80,8	-15,0
7	1,0581	0,0133	-0,14	79,57	1,02	0,0136	-0,07	75,00	0,04	-0,0003	-0,07	4,57	3,6	-2,3	48,8	5,7	3,7	-2,2	95,1	6,1
8	1,1492	0,0143	-0,14	80,29	1,09	-	-0,07	-	0,06	-	-0,07	-	5,2	-	51,5	-	5,4	-	106,0	-
9	1,2379	0,0155	-0,15	79,78	1,15	-	-0,07	-	0,09	-	-0,08	-	7,1	-	54,0	-	7,6	-	117,2	-
10	1,3072	0,0168	-0,16	77,98	1,20	-	-0,07	-	0,11	-	-0,09	-	8,2	-	57,4	-	8,9	-	134,9	-
11	1,3724	0,0201	-0,18	68,14	1,24	-	-0,07	-	0,13	-	-0,11	-	9,6	-	60,5	-	10,7	-	153,3	-
12	1,4299	0,0226	-0,19	63,33	1,27	-	-0,07	-	0,16	-	-0,12	-	11,2	-	63,5	-	12,6	-	173,8	-
13	1,3967	0,0253	-0,23	55,13	1,29	-	-0,07	-	0,11	-	-0,16	-	7,6	-	69,3	-	8,3	-	226,1	-
14	1,2880	0,0289	-0,28	44,61	1,30	-	-0,08	-	-0,01	-	-0,20	-	-0,9	-	71,8	-	-0,9	-	254,0	-

	NACA 65 ₂ -415 (Miley), Re: 3.000.000																			
	\ \	VisualFoil	160 pts			Μ	iley			Error Al	bsoluto		E _{R1} (9	%)= (1-	$C_e/C_c)$	x 100	E _{R2} ((%)= (1-	- C _c /C _e)x	: 100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C _{Le}	C_{De}	C_{Me}	٤e	ΔC_L	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,3739	0,0053	-0,09	70,56	0,31	0,0049	-0,07	63,27	0,06	0,0004	-0,02	7,30	17,1	7,5	20,6	10,3	20,6	8,1	26,0	11,5
1	0,4872	0,0054	-0,09	90,15	0,42	0,0049	-0,07	85,71	0,07	0,0005	-0,02	4,43	13,8	9,3	23,6	4,9	16,0	10,3	31,0	5,2
2	0,6003	0,0053	-0,10	112,42	0,52	0,0051	-0,07	101,96	0,08	0,0002	-0,03	10,45	13,4	4,5	26,4	9,3	15,4	4,7	35,9	10,3
3	0,7111	0,0057	-0,10	124,20	0,63	0,0055	-0,07	114,55	0,08	0,0002	-0,03	9,66	11,4	3,9	29,3	7,8	12,9	4,1	41,4	8,4
4	0,8163	0,0076	-0,10	107,41	0,73	0,0062	-0,07	117,74	0,09	0,0014	-0,03	-10,33	10,6	18,4	32,8	-9,6	11,8	22,6	48,7	-8,8
5	0,9148	0,0097	-0,11	94,28	0,83	0,0076	-0,07	109,21	0,08	0,0021	-0,04	-14,93	9,3	21,7	36,8	-15,8	10,2	27,7	58,2	-13,7
6	0,9879	0,0115	-0,12	85,87	0,92	0,0097	-0,07	94,85	0,07	0,0018	-0,05	-8,98	6,9	15,7	43,3	-10,5	7,4	18,6	76,3	-9,5
7	1,0729	0,0123	-0,13	87,30	1,01	0,0118	-0,07	85,59	0,06	0,0005	-0,06	1,70	5,9	4,0	47,3	2,0	6,2	4,2	89,9	2,0
8	1,1658	0,0132	-0,14	88,26	1,09	0,0136	-0,07	80,15	0,08	-0,0004	-0,07	8,12	6,5	-3,0	50,0	9,2	7,0	-2,9	100,1	10,1
9	1,2563	0,0143	-0,15	87,95	1,15	0,0153	-0,07	75,16	0,11	-0,0010	-0,08	12,78	8,5	-7,1	52,5	14,5	9,2	-6,6	110,7	17,0
10	1,3281	0,0154	-0,16	86,25	1,21	0,0175	-0,07	69,14	0,12	-0,0021	-0,09	17,11	8,9	-13,7	56,0	19,8	9,8	-12,0	127,4	24,7
11	1,3956	0,0185	-0,17	75,36	1,27	0,0201	-0,07	63,18	0,13	-0,0016	-0,10	12,17	9,0	-8,5	59,2	16,2	9,9	-7,9	145,0	19,3
12	1,4556	0,0207	-0,19	70,33	1,32	-	-0,07	-	0,14	-	-0,12	-	9,3	-	62,2	-	10,3	-	164,7	-
13	1,4952	0,0231	-0,20	64,66	1,37	-	-0,06	-	0,13	-	-0,14	-	8,4	-	70,5	-	9,1	-	239,4	-
14	1,3947	0,0262	-0,26	53,28	1,41	-	-0,06	-	-0,02	-	-0,20	-	-1,1	-	76,6	-	-1,1	-	327,5	-
15	1,3784	0,0305	-0,29	45,24	1,42	-	-0,07	-	-0,04	-	-0,22	-	-3,0	-	75,7	-	-2,9	-	311,1	-
16	1,2365	0,0350	-0,35	35,37	1,41	-	-0,07	-	-0,17	-	-0,28	-	-14,0	-	80,0	-	-12,3	-	399,7	-

Tabla 3.4.17.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA <u>652-415 para diferentes números de Reynolds (Continuación II).</u>

							NAC	A 65 ₃ -418	(Abbo	tt), Re: 3.0	000.000									
		VisualFoil	220 pts	-		Abl	oott			Error A	bsoluto		E _{R1} ((%)= (1-	- C _e /C _c)	x 100	E _{R2} (%)= (1-	C_c/C_e)	x 100
α (deg)	C _{Lc}	C_{Dc}	C _{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤ _e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E_{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,3776	0,0056	-0,09	67,00	0,30	0,0053	-	56,60	0,08	0,0003	-	10,40	20,5	5,9	-	15,5	25,9	6,3	-	18,4
1	0,4919	0,0057	-0,10	86,52	0,40	0,0053	-	75,47	0,09	0,0004	-	11,05	18,7	6,8	-	12,8	23,0	7,3	-	14,6
2	0,6040	0,0058	-0,10	103,30	0,52	0,0054	-	96,30	0,08	0,0004	-	7,00	13,9	7,6	-	6,8	16,1	8,3	-	7,3
3	0,7153	0,0060	-0,11	118,42	0,62	0,0056	-	110,71	0,10	0,0004	-	7,71	13,3	7,3	-	6,5	15,4	7,9	-	7,0
4	0,8283	0,0063	-0,11	132,44	0,72	0,0058	-	124,14	0,11	0,0005	-	8,31	13,1	7,3	-	6,3	15,0	7,8	-	6,7
5	0,9159	0,0084	-0,12	108,85	0,80	0,0059	-	135,59	0,12	0,0025	-	-26,74	12,7	29,9	-	-24,6	14,5	42,6	-	-19,7
6	0,9727	0,0107	-0,14	91,20	0,90	0,01	-	90,00	0,07	0,0007	-	1,20	7,5	6,2	-	1,3	8,1	6,6	-	1,3
7	1,0463	0,0133	-0,15	78,95	0,95	0,0138	-	68,84	0,10	-0,0005	-	10,11	9,2	-4,1	-	12,8	10,1	-4,0	-	14,7
8	1,1298	0,0147	-0,17	76,78	1,00	0,017	-	58,82	0,13	-0,0023	-	17,96	11,5	-15,5	-	23,4	13,0	-13,4	-	30,5
9	1,2086	0,0159	-0,18	75,80	1,08	0,021	-	51,43	0,13	-0,0051	-	24,37	10,6	-31,7	-	32,2	11,9	-24,1	-	47,4
10	1,2976	0,0176	-0,19	73,92	1,10	-	-	-	0,20	-	-	-	15,1	-	-	-	17,7	-	-	-
11	1,3697	0,0192	-0,20	71,19	1,18	-	-	-	0,19	-	-	-	13,9	-	-	-	16,1	-	-	-
12	1,4378	0,0212	-0,21	67,79	1,22	-	-	-	0,22	-	-	-	15,1	-	-	-	17,9	-	-	-
13	1,4515	0,0234	-0,24	61,90	1,25	-	-	-	0,20	-	-	-	13,9	-	-	-	16,1	-	-	-
14	1,3968	0,0260	-0,28	53,72	1,30	-	-	-	0,10	-	-	-	6,9	-	-	-	7,4	-	-	-

Tabla 3.4.18.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 65₃-418 para diferentes números de Reynolds.

							NACA	65 ₃ -418 (Abbott)	, Re: 6.00	0.000									
		VisualFoil	220 pts.			Abl	oott			Error Ab	osoluto		E _{R1} (*	%)= (1-	$C_e/C_c)$	c 100	E _{R2} (%)= (1-	C _c /C _e)x	< 100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C _{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	Eε2
0	0,3793	0,0048	-0,09	79,23	0,30	0,0044	-	68,18	0,08	0,0004	-	11,04	20,9	8,1	-	13,9	26,4	8,8	-	16,2
1	0,4946	0,0048	-0,10	102,51	0,40	0,0045	-	88,89	0,09	0,0003	-	13,63	19,1	6,7	-	13,3	23,7	7,2	-	15,3
2	0,6081	0,0050	-0,10	122,47	0,52	0,0046	-	113,04	0,09	0,0004	-	9,43	14,5	7,4	-	7,7	16,9	7,9	-	8,3
3	0,7225	0,0051	-0,10	141,61	0,62	0,005	-	124,00	0,10	0,0001	-	17,61	14,2	2,0	-	12,4	16,5	2,0	-	14,2
4	0,8314	0,0058	-0,11	142,34	0,72	0,0052	-	138,46	0,11	0,0006	-	3,88	13,4	11,0	-	2,7	15,5	12,3	-	2,8
5	0,9259	0,0085	-0,12	109,02	0,80	0,007	-	114,29	0,13	0,0015	-	-5,26	13,6	17,6	-	-4,8	15,7	21,3	-	-4,6
6	0,9948	0,0098	-0,13	101,23	0,90	0,0098	-	91,84	0,09	0,0000	-	9,39	9,5	0,3	-	9,3	10,5	0,3	-	10,2
7	1,0809	0,0117	-0,15	92,38	1,00	0,0116	-	86,21	0,08	0,0001	-	6,17	7,5	0,9	-	6,7	8,1	0,9	-	7,2
8	1,1689	0,0130	-0,16	89,68	1,04	0,0125	-	83,20	0,13	0,0005	-	6,48	11,0	4,1	-	7,2	12,4	4,3	-	7,8
9	1,2522	0,0141	-0,17	88,64	1,14	0,015	-	76,00	0,11	-0,0009	-	12,64	9,0	-6,2	-	14,3	9,8	-5,8	-	16,6
10	1,3317	0,0154	-0,18	86,40	1,20	0,018	-	66,67	0,13	-0,0026	-	19,74	9,9	-16,8	-	22,8	11,0	-14,4	-	29,6
11	1,4071	0,0169	-0,19	83,45	1,28	0,023	-	55,65	0,13	-0,0061	-	27,79	9,0	-36,4	-	33,3	9,9	-26,7	-	49,9
12	1,4783	0,0186	-0,20	79,69	1,30	-	-	-	0,18	-	-	-	12,1	-	-	-	13,7	-	-	-
13	1,5455	0,0205	-0,21	75,58	1,35	-	-	-	0,20	-	-	-	12,7	-	-	-	14,5	-	-	-
14	1,5560	0,0226	-0,24	68,84	1,38	-	-	-	0,18	-	-	-	11,3	-	-	-	12,8	-	-	-

	_					Ν		65₃-418 (A	bbott),	Re: 9.000	.000									
		VisualFoil	220 pts.			Ab	bott			Error Ab	soluto		E _{R1} (%	%)= (1-	$C_e/C_c)$	x 100	E _{R2} (%	%)= (1-	$C_c/C_e)$	x 100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C _{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E_{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,3805	0,0043	-0,09	87,52	0,30	0,0044	-	68,18	0,08	-0,0001	-	19,33	21,2	-1,2	-	22,1	26,8	-1,2	-	28,4
1	0,4955	0,0044	-0,10	111,83	0,40	0,0044	-	90,91	0,10	0,0000	-	20,92	19,3	0,7	-	18,7	23,9	0,7	-	23,0
2	0,6107	0,0045	-0,10	134,97	0,52	0,0045	-	115,56	0,09	0,0000	-	19,41	14,9	0,6	-	14,4	17,4	0,6	-	16,8
3	0,7241	0,0048	-0,10	151,10	0,62	0,004	-	155,00	0,10	0,0008	-	-3,90	14,4	16,5	-	-2,6	16,8	19,8	-	-2,5
4	0,8327	0,0062	-0,11	133,77	0,72	0,0052	-	138,46	0,11	0,0010	-	-4,69	13,5	16,5	-	-3,5	15,7	19,7	-	-3,4
5	0,9333	0,0082	-0,12	114,35	0,80	0,0086	-	93,02	0,13	-0,0004	-	21,32	14,3	-5,4	-	18,6	16,7	-5,1	-	22,9
6	1,0126	0,0093	-0,13	108,82	0,90	0,0102	-	88,24	0,11	-0,0009	-	20,58	11,1	-9,6	-	18,9	12,5	-8,8	-	23,3
7	1,0930	0,0109	-0,14	100,49	1,00	0,0108	-	92,59	0,09	0,0001	-	7,89	8,5	0,7	-	7,9	9,3	0,7	-	8,5
8	1,1826	0,0121	-0,15	97,52	1,05	0,0115	-	91,30	0,13	0,0006	-	6,22	11,2	5,2	-	6,4	12,6	5,4	-	6,8
9	1,2676	0,0131	-0,16	96,48	1,15	0,013	-	88,46	0,12	0,0001	-	8,02	9,3	1,1	-	8,3	10,2	1,1	-	9,1
10	1,3487	0,0143	-0,17	94,16	1,22	0,015	-	81,33	0,13	-0,0007	-	12,82	9,5	-4,7	-	13,6	10,6	-4,5	-	15,8
11	1,4398	0,0158	-0,18	91,21	1,27	0,0165	-	76,97	0,17	-0,0007	-	14,24	11,8	-4,5	-	15,6	13,4	-4,3	-	18,5
12	1,5140	0,0174	-0,19	87,17	1,35	-	-	-	0,16	-	-	-	10,8	-	-	-	12,2	-	-	-
13	1,5842	0,0192	-0,20	82,70	1,38	-	-	-	0,20	-	-	-	12,9	-	-	-	14,8	-	-	-
14	1,6502	0,0212	-0,22	77,95	1,40	-	-	-	0,25	-	-	-	15,2	-	-	-	17,9	-	-	-

Tabla 3.4.18.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA <u>65₃-418 para diferentes números de Reynolds (Continuación I).</u>

							A 65₃-618	(Abbo	tt), Re: 3.0	000.000										
	,	Visual Foil	220 pts			Abl	oott			Error A	bsoluto		E _{R1} (%)= (1-	Ce/Cc)	x 100	E _{R2} (%)= (1-	$C_c/C_e)$	x 100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E_{CL2}	E _{CD2}	E _{CM2}	E _{ε2}
0	0,5614	0,0059	-0,14	94,60	0,50	0,0055	-	90,91	0,06	0,0004	-	3,69	10,9	7,3	-	3,9	12,3	7,9	-	4,1
1	0,6753	0,0060	-0,14	113,24	0,55	0,0055	-	100,00	0,13	0,0005	-	13,24	18,6	7,8	-	11,7	22,8	8,4	-	13,2
2	0,7857	0,0062	-0,15	127,45	0,68	0,0056	-	121,43	0,11	0,0006	-	6,02	13,5	9,2	-	4,7	15,5	10,1	-	5,0
3	0,8951	0,0064	-0,15	139,73	0,84	0,0058	-	144,83	0,06	0,0006	-	-5,10	6,2	9,5	-	-3,6	6,6	10,4	-	-3,5
4	1,0038	0,0065	-0,16	153,74	0,95	0,0061	-	155,74	0,05	0,0004	-	-1,99	5,4	6,6	-	-1,3	5,7	7,0	-	-1,3
5	1,0979	0,0077	-0,17	142,05	1,05	0,0065	-	161,54	0,05	0,0012	-	-19,49	4,4	15,9	-	-13,7	4,6	18,9	-	-12,1
6	1,1515	0,0111	-0,19	103,61	1,10	0,0085	-	129,41	0,05	0,0026	-	-25,80	4,5	23,5	-	-24,9	4,7	30,8	-	-19,9
7	1,2209	0,0147	-0,20	83,03	1,15	0,017	-	67,65	0,07	-0,0023	-	15,38	5,8	-15,6	-	18,5	6,2	-13,5	-	22,7
8	1,3004	0,0157	-0,21	82,79	1,16	-	-	-	0,14	-	-	-	10,8	-	-	-	12,1	-	-	-
9	1,3764	0,0176	-0,23	78,37	1,20	-	-	-	0,18	-	-	-	12,8	-	-	-	14,7	-	-	-
10	1,4477	0,0191	-0,24	75,78	1,22	-	-	-	0,23	-	-	-	15,7	-	-	-	18,7	-	-	-
11	1,5147	0,0209	-0,25	72,64	1,30	-	-	-	0,21	-	-	-	14,2	-	-	-	16,5	-	-	-
12	1,5776	0,0229	-0,27	69,01	1,32	-	-	-	0,26	-	-	-	16,3	-	-	-	19,5	-	-	-
13	1,6482	0,0255	-0,28	64,59	1,35	-	-	-	0,30	-	-	-	18,1	-	-	-	22,1	-	-	-
14	1,5775	0,0281	-0,33	56,06	1,39	-	-	-	0,19	-	-	-	11,9	-	-	-	13,5	-	-	-

Tabla 3.4.19.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 65₃-618 para diferentes números de Reynolds.

			(Abbo	tt), Re: 6.0	00.000															
	,	Visual Foil	220 pts			Abb	oott			Error Al	osoluto		E _{R1} (%)= (1-	$C_e/C_c)$	x 100	E _{R2} (%)= (1-	C _c /C _e)	x 100
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E_{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,5665	0,0050	-0,14	112,69	0,50	0,0048	-	104,17	0,07	0,0002	-	8,52	11,7	4,5	-	7,6	13,3	4,7	-	8,2
1	0,6795	0,0051	-0,14	134,08	0,55	0,0049	-	112,24	0,13	0,0002	-	21,84	19,1	3,3	-	16,3	23,5	3,4	-	19,5
2	0,7939	0,0052	-0,15	152,12	0,68	0,0049	-	138,78	0,11	0,0003	-	13,35	14,3	6,1	-	8,8	16,8	6,5	-	9,6
3	0,9054	0,0054	-0,15	166,87	0,84	0,0051	-	164,71	0,07	0,0003	-	2,16	7,2	6,0	-	1,3	7,8	6,4	-	1,3
4	1,0152	0,0060	-0,16	170,42	0,95	0,0055	-	172,73	0,07	0,0005	-	-2,30	6,4	7,7	-	-1,4	6,9	8,3	-	-1,3
5	1,1021	0,0085	-0,17	130,24	1,05	0,0065	-	161,54	0,05	0,0020	-	-31,30	4,7	23,2	-	-24,0	5,0	30,2	-	-19,4
6	1,1766	0,0106	-0,18	111,16	1,10	0,011	-	100,00	0,08	-0,0004	-	11,16	6,5	-3,9	-	10,0	7,0	-3,8	-	11,2
7	1,2490	0,0129	-0,20	96,64	1,16	0,013	-	89,23	0,09	-0,0001	-	7,41	7,1	-0,6	-	7,7	7,7	-0,6	-	8,3
8	1,3320	0,0138	-0,21	96,48	1,20	0,0158	-	75,95	0,13	-0,0020	-	20,53	9,9	-14,4	-	21,3	11,0	-12,6	-	27,0
9	1,4115	0,0155	-0,22	91,24	1,26	0,0185	-	68,11	0,15	-0,0030	-	23,14	10,7	-19,6	-	25,4	12,0	-16,4	-	34,0
10	1,5013	0,0170	-0,23	88,44	1,30	-	-	-	0,20	-	-	-	13,4	-	-	-	15,5	-	-	-
11	1,5732	0,0185	-0,24	85,00	1,35	-	-	-	0,22	-	-	-	14,2	-	-	-	16,5	-	-	-
12	1,6408	0,0203	-0,25	80,86	1,40	-	-	-	0,24	-	-	-	14,7	-	-	-	17,2	-	-	-
13	1,7040	0,0223	-0,27	76,43	1,42	-	-	-	0,28	-	-	-	16,7	-	-	-	20,0	-	-	-
14	1,7546	0,0245	-0,28	71,53	1,48	-	-	-	0,27	-	-	-	15,6	-	-	-	18,6	-	-	-

	NACA 662-415 (Miley), Re: 700.000																			
	V	/isualFoil [·]	160 pts.		Miley				Error Absoluto				E _{R1} (%)= (1-	C _e /C _c)	x 100	E _{R2} (%)= (1- C _c /C _e)x 100			
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤ _e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,3447	0,0074	-0,09	46,57	0,25	0,0091	-0,06	27,47	0,09	-0,0017	-0,03	19,09	27,5	-22,9	35,5	41,0	37,9	-18,6	55,2	69,5
1	0,4517	0,0074	-0,10	60,83	0,34	0,0090	-0,06	37,78	0,11	-0,0016	-0,04	23,05	24,7	-21,2	39,7	37,9	32,9	-17,5	65,8	61,0
2	0,5575	0,0075	-0,11	74,55	0,43	0,0091	-0,06	47,25	0,13	-0,0016	-0,05	27,29	22,9	-21,7	43,4	36,6	29,7	-17,8	76,8	57,8
3	0,6619	0,0077	-0,11	86,22	0,52	0,0093	-0,06	55,91	0,14	-0,0016	-0,05	30,31	21,4	-21,2	46,8	35,2	27,3	-17,5	88,1	54,2
4	0,7448	0,0080	-0,12	93,30	0,61	0,0096	-0,05	63,54	0,13	-0,0016	-0,07	29,76	18,1	-20,3	60,0	31,9	22,1	-16,8	149,8	46,8
5	0,8087	0,0146	-0,14	55,22	0,70	0,0103	-0,05	67,96	0,11	0,0043	-0,09	-12,74	13,4	29,7	64,6	-23,1	15,5	42,2	182,9	-18,7
6	0,8992	0,0157	-0,15	57,27	0,78	0,0114	-0,05	68,42	0,12	0,0043	-0,10	-11,15	13,3	27,4	66,9	-19,5	15,3	37,7	202,2	-16,3
7	0,9872	0,0169	-0,16	58,35	0,86	-	-0,05	-	0,13	-	-0,11	-	12,9	-	69,0	-	14,8	-	222,2	-
8	1,0724	0,0183	-0,17	58,60	0,93	-	-0,04	-	0,14	-	-0,13	-	13,3	-	76,7	-	15,3	-	328,7	-
9	1,1551	0,0200	-0,18	57,90	0,98	-	-0,04	-	0,18	-	-0,14	-	15,2	-	78,0	-	17,9	-	355,3	-
10	1,2354	0,0220	-0,19	56,16	1,02	-	-0,04	-	0,22	-	-0,15	-	17,4	-	79,3	-	21,1	-	382,3	-

Tabla 3.4.20.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA 65₃-618 para diferentes números de Reynolds.

NACA 66 ₂ -415 (Miley), Re: 1.000.000																				
		VisualFoil	160 pts.		Miley				Error Absoluto				E _{R1} (9	%)= (1	- C _e /C _c)x 100	E _{R2} (%)= (1- C _c /C _e)x 100			
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E_{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,3490	0,0066	-0,09	52,88	0,25	0,0069	-0,06	36,23	0,10	-0,0003	-0,03	16,65	28,4	-4,5	34,8	31,5	39,6	-4,3	53,4	45,9
1	0,4616	0,0065	-0,10	70,61	0,35	0,0070	-0,06	50,00	0,11	-0,0005	-0,04	20,61	24,2	-7,1	38,1	29,2	31,9	-6,6	61,7	41,2
2	0,5700	0,0067	-0,10	85,43	0,44	0,0070	-0,06	62,86	0,13	-0,0003	-0,04	22,57	22,8	-4,9	41,7	26,4	29,5	-4,7	71,6	35,9
3	0,6769	0,0068	-0,11	99,06	0,53	0,0070	-0,06	75,71	0,15	-0,0002	-0,05	23,34	21,7	-2,4	45,0	23,6	27,7	-2,4	81,9	30,8
4	0,7810	0,0071	-0,12	109,39	0,62	0,0071	-0,06	87,32	0,16	0,0000	-0,06	22,06	20,6	0,6	48,2	20,2	26,0	0,6	93,0	25,3
5	0,8101	0,0135	-0,14	60,04	0,70	0,0076	-0,06	92,11	0,11	0,0059	-0,08	-32,07	13,6	43,7	57,5	-53,4	15,7	77,5	135,2	-34,8
6	0,9152	0,0146	-0,15	62,79	0,76	0,0097	-0,06	78,35	0,16	0,0049	-0,09	-15,56	17,0	33,5	59,2	-24,8	20,4	50,3	145,2	-19,9
7	1,0049	0,0157	-0,16	64,04	0,82	0,0135	-0,06	60,74	0,18	0,0022	-0,10	3,30	18,4	14,0	61,7	5,2	22,6	16,2	161,1	5,4
8	1,0919	0,0169	-0,17	64,46	0,88	-	-0,05	-	0,21	-	-0,12	-	19,4	-	70,0	-	24,1	-	233,2	-
9	1,1764	0,0184	-0,18	63,88	0,94	-	-0,05	-	0,24	-	-0,13	-	20,1	-	71,7	-	25,2	-	253,5	-
10	1,2388	0,0199	-0,19	62,27	0,99	-	-0,05	-	0,25	-	-0,14	-	20,1	-	74,0	-	25,1	-	284,2	-

NACA 662-415 (Miley), Re: 1.500.000																					
	,	VisualFoil	160 pts		Miley				Error Absoluto				E _{R1} (9	%)= (1	- C _e /C _c)x 100	E _{R2} (%)= (1- C _c /C _e)x 100				
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤ _e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E_{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	E _{ε2}	
0	0,3527	0,0058	-0,09	60,99	0,33	0,0055	-0,07	60,00	0,02	0,0003	-0,02	0,99	6,4	4,9	23,2	1,6	6,9	5,1	30,1	1,7	
1	0,4661	0,0058	-0,10	80,59	0,44	0,0055	-0,07	80,00	0,03	0,0003	-0,03	0,59	5,6	4,9	27,0	0,7	5,9	5,2	37,0	0,7	
2	0,5760	0,0059	-0,10	97,72	0,55	0,0056	-0,07	98,21	0,03	0,0003	-0,03	-0,49	4,5	5,0	31,0	-0,5	4,7	5,3	44,9	-0,5	
3	0,6893	0,0060	-0,11	114,55	0,65	0,0058	-0,07	112,07	0,04	0,0002	-0,04	2,48	5,7	3,6	34,0	2,2	6,0	3,7	51,5	2,2	
4	0,7633	0,0081	-0,12	93,89	0,75	0,0067	-0,07	111,94	0,01	0,0014	-0,05	-18,05	1,7	17,6	41,8	-19,2	1,8	21,3	71,8	-16,1	
5	0,8246	0,0124	-0,14	66,32	0,85	0,0093	-0,07	91,40	-0,03	0,0031	-0,07	-25,08	-3,1	25,2	49,1	-37,8	-3,0	33,7	96,4	-27,4	
6	0,9173	0,0133	-0,15	68,91	0,94	0,0137	-0,07	68,61	-0,02	-0,0004	-0,08	0,30	-2,5	-2,9	52,2	0,4	-2,4	-2,8	109,4	0,4	
7	1,0075	0,0143	-0,16	70,47	0,99	-	-0,06	-	0,02	-	-0,10	-	1,7	-	61,5	-	1,8	-	160,1	-	
8	1,1113	0,0156	-0,16	71,46	1,02	-	-0,06	-	0,09	-	-0,10	-	8,2	-	62,9	-	8,9	-	169,6	-	
9	1,1799	0,0166	-0,18	70,89	1,05	-	-0,05	-	0,13	-	-0,13	-	11,0	-	71,6	-	12,4	-	251,8	-	
10	1,2624	0,0182	-0,19	69,49	1,08	-	-0,05	-	0,18	-	-0,14	-	14,5	-	73,1	-	16,9	-	272,3	-	
11	1,3442	0,0221	-0,20	60,71	1,10	-	-0,04	-	0,24	-	-0,16	-	18,2	-	79,6	-	22,2	-	390,5	-	
12	1,3987	0,0247	-0,21	56,67	1,11	-	-0,03	-	0,29	-	-0,18	-	20,6	-	85,9	-	26,0	-	608,5	-	
13	1,4516	0,0284	-0,23	51,10	1,12	-	-0,02	-	0,33	-	-0,21	-	22,8	-	91,3	-	29,6	-	1044,0	-	
14	1,3380	0,0323	-0,29	41,48	1,11	-	-0,02	-	0,23	-	-0,27	-	17,0	-	93,0	-	20,5	-	1330,6	-	
15	1,3139	0,0380	-0,32	34,62	1,10	-	-0,02	-	0,21	-	-0,30	-	16,3	-	93,8	-	19,4	-	1502,3	-	

Tabla 3.4.20.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA <u>65₃-618 para diferentes números de Reynolds (Continuación I).</u>

NACA 662-415 (Miley), Re: 2.000.000																				
	١	√isual Foil	160 pts	•	Miley				Error Absoluto				E _{R1} (%	∕⁄₀)= (1·	- C _e /C _c)x 100	E _{R2} (%)= (1- C _c /C _e)x 100			
α (deg)	CLc	C_{Dc}	C_{Mc}	ε _c	C _{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E_{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	E _{ε2}
0	0,3558	0,0053	-0,09	66,87	0,27	0,0051	-0,07	52,94	0,09	0,0002	-0,02	13,93	24,1	4,2	22,5	20,8	31,8	4,3	29,0	26,3
1	0,4668	0,0053	-0,10	87,48	0,36	0,0049	-0,07	73,47	0,11	0,0004	-0,03	14,01	22,9	8,2	26,9	16,0	29,7	8,9	36,7	19,1
2	0,5809	0,0054	-0,10	107,25	0,45	0,0048	-0,07	93,75	0,13	0,0006	-0,03	13,50	22,5	11,4	30,2	12,6	29,1	12,8	43,2	14,4
3	0,6906	0,0055	-0,11	124,86	0,54	0,0049	-0,07	110,20	0,15	0,0006	-0,04	14,66	21,8	11,4	33,8	11,7	27,9	12,9	51,0	13,3
4	0,7645	0,0084	-0,12	90,76	0,63	0,0054	-0,06	116,67	0,13	0,0030	-0,06	-25,91	17,6	35,9	50,0	-28,5	21,3	56,0	99,9	-22,2
5	0,8381	0,0118	-0,13	71,19	0,71	0,0072	-0,06	98,61	0,13	0,0046	-0,07	-27,42	15,3	38,8	55,3	-38,5	18,0	63,5	123,5	-27,8
6	0,9324	0,0126	-0,14	73,94	0,79	0,0116	-0,06	68,10	0,14	0,0010	-0,08	5,84	15,3	8,0	58,0	7,9	18,0	8,7	138,0	8,6
7	1,0243	0,0135	-0,15	75,63	0,86	-	-0,06	-	0,16	-	-0,09	-	16,0	-	60,5	-	19,1	-	153,0	-
8	1,1135	0,0146	-0,16	76,46	0,92	-	-0,05	-	0,19	-	-0,11	-	17,4	-	69,0	-	21,0	-	222,4	-
9	1,2002	0,0157	-0,17	76,24	0,98	-	-0,05	-	0,22	-	-0,12	-	18,3	-	70,7	-	22,5	-	241,7	-
10	1,2844	0,0172	-0,18	74,87	1,04	-	-0,05	-	0,24	-	-0,13	-	19,0	-	72,3	-	23,5	-	261,4	-
11	1,3472	0,0206	-0,20	65,42	1,10	-	-0,04	-	0,25	-	-0,16	-	18,3	-	79,5	-	22,5	-	388,6	-
12	1,4248	0,0233	-0,21	61,09	1,15	-	-0,04	-	0,27	-	-0,17	-	19,3	-	80,6	-	23,9	-	415,1	-
13	1,4997	0,0267	-0,22	56,09	1,21	-	-0,04	-	0,29	-	-0,18	-	19,3	-	81,5	-	23,9	-	441,9	-
14	1,4474	0,0302	-0,26	47,89	1,26	-	-0,04	-	0,19	-	-0,22	-	12,9	-	84,5	-	14,9	-	546,9	-

NACA 662-415 (Miley), Re: 3.000.000																					
	١	/isual Foil	160 pts	i.	Miley				Error Absoluto				E _{R1} (%)= (1-	Ce/Cc)	x 100	E _{R2} (%)= (1- C _c /C _e)x 100				
α (deg)	C _{Lc}	C_{Dc}	C_{Mc}	ε _c	C_{Le}	C_{De}	C_{Me}	٤e	ΔC_{L}	ΔC_{D}	ΔC_{M}	Δε	E _{CL1}	E_{CD1}	E _{CM1}	Eε1	E _{CL2}	E_{CD2}	E _{CM2}	E _{ε2}	
0	0,3562	0,0048	-0,09	74,39	0,25	0,0051	-0,07	49,02	0,11	-0,0003	-0,02	25,37	29,8	-6,5	22,4	34,1	42,5	-6,1	28,9	51,7	
1	0,4707	0,0048	-0,09	98,70	0,34	0,0046	-0,07	73,91	0,13	0,0002	-0,02	24,79	27,8	3,5	26,1	25,1	38,4	3,7	35,3	33,5	
2	0,5855	0,0048	-0,10	121,24	0,44	0,0042	-0,07	104,76	0,15	0,0006	-0,03	16,48	24,8	13,0	29,3	13,6	33,1	15,0	41,5	15,7	
3	0,6896	0,0057	-0,11	119,97	0,54	0,0041	-0,07	131,71	0,15	0,0016	-0,04	-11,74	21,7	28,7	33,9	-9,8	27,7	40,2	51,3	-8,9	
4	0,7752	0,0086	-0,12	90,38	0,63	0,0047	-0,07	134,04	0,15	0,0039	-0,05	-43,66	18,7	45,2	40,3	-48,3	23,0	82,5	67,6	-32,6	
5	0,8515	0,0109	-0,13	78,18	0,72	0,0072	-0,07	100,00	0,13	0,0037	-0,06	-21,82	15,4	33,9	46,5	-27,9	18,3	51,3	86,8	-21,8	
6	0,9476	0,0117	-0,14	81,19	0,8	0,0122	-0,07	65,57	0,15	-0,0005	-0,07	15,62	15,6	-4,5	49,6	19,2	18,4	-4,3	98,6	23,8	
7	1,0412	0,0125	-0,15	83,08	0,88	0,0146	-0,07	60,27	0,16	-0,0021	-0,08	22,80	15,5	-16,5	52,6	27,4	18,3	-14,2	110,8	37,8	
8	1,1323	0,0135	-0,16	84,12	0,96	0,0153	-0,06	62,75	0,17	-0,0018	-0,10	21,37	15,2	-13,7	61,7	25,4	17,9	-12,0	160,8	34,1	
9	1,2208	0,0145	-0,17	84,04	1,03	-	-0,06	-	0,19	-	-0,11	-	15,6	-	63,8	-	18,5	-	176,1	-	
10	1,3069	0,0158	-0,18	82,74	1,09	-	-0,06	-	0,22	-	-0,12	-	16,6	-	65,7	-	19,9	-	191,8	-	
11	1,3721	0,0190	-0,19	72,17	1,15	-	-0,06	-	0,22	-	-0,13	-	16,2	-	68,3	-	19,3	-	215,4	-	
12	1,4515	0,0215	-0,20	67,67	1,2	-	-0,06	-	0,25	-	-0,14	-	17,3	-	69,9	-	21,0	-	232,2	-	
13	1,5045	0,0239	-0,22	62,84	1,25	-	-0,06	-	0,25	-	-0,16	-	16,9	-	72,2	-	20,4	-	259,3	-	
14	1,5559	0,0275	-0,23	56,59	1,3	-	-0,06	-	0,26	-	-0,17	-	16,4	-	74,1	-	19,7	-	286,1	-	
15	1,5445	0,0319	-0,26	48,43	1,35	-	-0,06	-	0,19	-	-0,20	-	12,6	-	77,2	-	14,4	-	338,0	-	

Tabla 3.4.20.- Comparación entre las características aerodinámica experimentales y computacionales para el perfil NACA <u>65₃-618 para diferentes números de Reynolds (Continuación II).</u>

3.5 COMENTARIOS.

En las tablas de la sección 3.4. donde se hace la comparación entre los resultados computacionales y experimentales se puede observar la diferencia existente entre los valores, expresados como diferencia (error absoluto) y como error relativo porcentual. Para comentar los resultados obtenidos en el estudio realizado se establecieron dos criterios de evaluación para el estudio de las diferencias existentes en el caso del coeficiente de sustentación. El primer criterio a utilizar será relacionar los errores porcentuales de acuerdo a un cierto rango del ángulo de ataque. El segundo criterio será de tipo geométrico en el cual se organizan los errores porcentuales ordenando los perfiles estudiados de acuerdo a su valor de máximo espesor y reportándose valores de α que estén entre 0° y 10°. Estos criterios se utilizaran con la finalidad de analizar los resultados obtenidos desde diferentes puntos de vista para poder establecer conclusiones acerca de la confiabilidad que ofrece el software VisualFoil 4.1.

Predicción del coeficiente de sustentación

Utilizando el primer criterio mencionado se obtuvo que de 20 perfiles evaluados para valores de 0° a 5° de α resultaron 5 perfiles con errores de 10%, 2 perfiles con 15% y 13 perfiles que reportaron errores mayores de 15%. Es importante resaltar que aproximadamente de estos últimos 13 perfiles, 6 de ellos presentan bajos valores de error pero con un error bastante amplio para 0°.

Para valores de α entre 5° y 10° resultaron 4 perfiles con errores menores a 5%, 6 perfiles con 10%, 8 perfiles de 15% y 2 perfiles con errores mayores a 15%.

Para valores de α mayores a 10° resultaron 4 perfiles con errores hasta de 10%, 4 perfiles de 15% y 9 perfiles con errores mayores a 15%, para este caso podemos observar que se reportaron un total de 17 perfiles, debido a que el software VisualFoil 4.1 no reporto valores de coeficiente de sustentación para los 3 perfiles restantes.

Utilizando el criterio geométrico podemos separar a los 20 perfiles evaluados en 7 grupos de acuerdo a su máximo valor de espesor reflejado como un porcentaje de la cuerda (6%c, 9%c, 10%c, 12%c, 15%c, 18%c y 21%c).

Para el grupo de 6% de espesor máximo solo se evaluó el perfil NACA 65-006 el cual tiene errores hasta de 10% para valores de α entre 0° y 10°.

El grupo de 9%c de espesor máximo solo se evaluó el perfil NACA 64-409 el cual reporta errores hasta de 22%.

El grupo de 10%c de espesor máximo consta de 3 perfiles NACA 63A-010, NACA 64-110 y NACA 64A-010 los cuales reportaron errores de 7%, 10% y 27% respectivamente.

El grupo de 12% de espesor máximo consta de 5 perfiles evaluados, NACA 631-212, NACA 631-412, NACA 641-012, NACA 641-412 y NACA 641-612 reportaron errores de 10%, 6%, 17%, 15% y 14% respectivamente.

El grupo de 15% c de espesor máximo consta igualmente de 5 perfiles evaluados,

NACA 63₂-215, NACA 63₂-615, NACA 64₂-415, NACA 65₂-415 y NACA 66₂-415 reportaron errores de 5%, 15%, 13%, 10% y 18% respectivamente.

El grupo de 18% de espesor máximo consta de 3 perfiles evaluados, NACA 64₃-418, NACA 65₃-618 y NACA 65₃-618 reportaron errores de 13%, 13% y 12% respectivamente.

El grupo de 21% de espesor máximo consta de 2 perfiles evaluados, NACA 63₄-221 y NACA 63₄-421 respectivamente.

Predicción del coeficiente de arrastre

Los errores reportados en la comparación entre datos experimentales y evaluación computacional con respecto al coeficiente de arrastre para todos los perfiles evaluados resultan en valores de error porcentual constantes en un limite de valores entre 5% y 7% lo cual se pueden considerar bastante bajos.

Predicción del coeficiente de momento

Para el coeficiente de momento debido a que para los perfiles tomados de la literatura Abbott no se tomaron los valores de coeficiente de momento por razones de imprecisiones en las gráficas de los coeficientes aerodinámicos se tomara el caso de los 7 perfiles tomados del catálogo Miley, de los cuales se puede decir que el software no ofrece resultados confiables de coeficiente de momento para ninguno de los perfiles evaluados. Los errores relativos a los resultados experimentales respecto a los valores computacionales exceden los límites de 15%.

Predicción de la Fineza

Debido a que la fineza es una variable que depende del coeficiente de sustentación y de arrastre solo 12 de los 20 perfiles evaluados ofrecen buenas predicción de la fineza para los rangos de ángulos de ataque de los cuales los valores de arrastre y sustentación son aceptables. Estos perfiles son:

Los perfiles NACA 63_1 -212, NACA 63_4 -221, NACA 63_4 -421, NACA 63A-010, NACA 64-110 y NACA 65_3 -618 para ángulos de ataque entre 0° y 8°.

Los perfiles NACA 63_1 -412, NACA 63_2 -215, NACA 63_2 -615, NACA 64_1 -012, NACA 64_1 -412 y NACA 65_2 -415 para ángulos de ataque entre 3° y 8°

En el caso de los demás perfiles NACA evaluados, los errores relativos de la fineza aerodinámica superan el 15%.

CAPITULO IV: EVALUACIÓN COMPUTACIONAL DE PERFILES DE LA SERIE NACA, SZ2000 Y MODIFICADOS.

En el presente capitulo se realiza el estudio acerca de la influencia que tiene el borde de ataque sobre las curvas características aerodinámicas. Para el estudio se hizo una selección de 18 perfiles NACA distintos a los perfiles estudiados en el capitulo III seleccionados utilizando un criterio explicado en la sección 4.1 y 30 perfiles de la serie SZ2000 asignados por el Prof. Tutor de esta tesis.

El presente capitulo en su parte inicial contiene una breve explicación en la cual se menciona el método utilizado para la modificación del borde de ataque y la codificación utilizada para los nuevos perfiles generados. A partir de este punto se mostraran las evaluaciones computacionales en 4 grupos los cuales son:

- El primer grupo contiene las curvas características aerodinámicas computacionales de los 18 perfiles base NACA seleccionados para la modificación.
- El segundo grupo contiene las curvas características aerodinámicas computacionales de los 18 perfiles NACA modificados.
- El tercer grupo contiene las curvas características aerodinámicas computacionales de los 30 perfiles serie SZ2000 asignados por el Prof. Tutor.
- El ultimo grupo contiene las curvas características aerodinámicas computacionales de los 4 perfiles modificados a partir de la serie SZ2000.

Por ultimo se presentan tablas comparativas entre los perfiles base y los modificados con el fin de cuantificar el incremento de los valores aerodinámicos de cada perfil y establecer comentarios al respecto en la ultima parte de este capitulo.
4.1. MODIFICACIÓN DEL BORDE DE ATAQUE Y CODIFICACIÓN DE LOS NUEVOS PERFILES.

La modificación del borde de ataque consiste en un método de mejoramiento de los coeficientes aerodinámicos de un perfil determinado a partir de un procedimiento de modificaciones sucesivas.

El método de modificaciones sucesivas utilizado para la modificación del borde de ataque también fue diseñado por el Prof.. S. Zarea y el mismo consistió en la sustitución del intradós y extradós del perfil correspondiente a aproximadamente 20% de la cuerda por curvas semejantes a parábolas asimétricas que guardaron condiciones de continuidad y tangencia en los puntos de unión con la porción del perfil sin modificar. Este procedimiento fue aplicado a los perfiles base tantas veces como fue necesario hasta conseguir un incremento considerable en los coeficientes de sustentación para lo diferentes ángulos de ataque. Se consiguieron hasta 3 modificaciones diferentes por cada perfil base seleccionado, pero en este trabajo solo se reportan las mas exitosas.

Una característica importante de este procedimiento consiste en la conservación de la cuerda, es decir, la cuerda del perfil modificado es igual al perfil base, en coordenadas adimensionales. En los métodos de modificación del borde de ataque de los perfiles reportados en la literatura especializada esta condición no esta respetada, lo que equivale con la modificación completa del perfil no solamente en el borde de ataque.

Los perfiles de la serie NACA de 6 dígitos modificados fueron nombrados siguiendo la codificación empleada en trabajos especiales anteriores. Se sustituye el nombre de la serie por la palabra ZAREA seguida por la numeración que identifica la familia y parámetros geométricos del perfil.

A los perfiles de la serie SZ 2000 modificados con este mismo método se le agrego la letra "M" al final del código.

Esta codificación obedece a uno de los criterios de identificación del perfil por el nombre del autor del procedimiento de obtención del mismo, tal como se acostumbra, por ejemplo con los perfiles Joukowski, Carafoli, etc.

Para evaluar dicho procedimiento se modifico el borde de ataque de 22 perfiles aerodinámicos, los cuales 18 son de la serie NACA 6 dígitos y 4 son de la serie SZ2000, la selección de los perfiles aerodinámicos para los perfiles NACA y SZ2000 se hizo con los siguientes criterios:

- La serie NACA de 6 dígitos debido al significado de su codificación respectiva empieza sus perfiles aerodinámicos con los dos primeros dígitos 63, por ejemplo el perfil 63-006, siguiendo por la serie 64, 65 y 66, adicionalmente hay unas modificaciones alternativas denotadas con la letra A, por ejemplo 63A010. A partir de esto el criterio utilizado para la selección de los perfiles a modificar es tomar por lo menos 2 o 3 perfiles de cada serie, con el fin de evaluar el método de mejoramiento sucesivos con diferentes tipos de geometrías aerodinámicas.
- El criterio utilizado para la selección de modificar 4 perfiles aerodinámicos a partir de 30 perfiles evaluados computacionalmente fue el de organizar de menor a mayor los perfiles de acuerdo a su valor de coeficiente de sustentación máxima. A partir de esto se tomaron 2 perfiles con valores de sustentación máxima bajos, se tomo uno con valor intermedio y el restante fue el que tuvo el mayor valor de sustentación máxima. Este criterio se utilizo con el fin de cuantificar y evaluar el comportamiento del método de mejoramiento sucesivo de acuerdo a las características aerodinámicas que tenga el perfil.

A continuación se muestra en la Fig. 4.1.1 los contornos de los 30 perfiles SZ2000 evaluados computacionalmente y en la Fig. 4.1.2 se muestran los contornos de los perfiles seleccionados (columna izquierda) acompañados de sus respectivas modificaciones (columna derecha) en la geometría seguido de la tabla 4.1.1 la cual muestra las características geométricas de los perfiles base y sus respectivas modificaciones.

Fig. 4.1.1.- Contornos de los perfiles de la serie SZ2000 evaluados computacionalmente.

Fig. 4.1.1.- Contornos de los perfiles de la serie SZ2000 evaluados computacionalmente (continuación)

Fig. 4.1.2. - Contornos de los perfiles base y sus respectivas modificaciones.

Fig. 4.1.2. - Contornos de los perfiles base y sus respectivas modificaciones. (continuación I)

Fig. 4.1.2. - Contornos de los perfiles base y sus respectivas modificaciones. (continuación II)

Perfil	f _{max} (%C)	Xf _{max}	e _{max} (%C)	xe _{max}	А
NACA 63-006	0	0	6	0,359	0,0382
ZAREA 63-006	2,3	0,151	6	0,386	0,0384
NACA 63-018	0	0	18	0,372	0,1118
ZAREA 63-018	2,8	0,2	18	0,39	0,112
NACA 63-206	1,1	0,414	6	0,372	0,0382
ZAREA 63-206	2,2	0,28	6	0,415	0,0386
NACA 63-218	1,1	0,5	18	0,372	0,1118
ZAREA 63-218	3,6	0,335	18	0,349	0,1122
NACA 63-418	2,2	0,5	18	0,359	0,1118
ZAREA 63-418	4,4	0,258	18	0,357	0,1116
NACA 63-421	2,2	0,5	21	0,359	0,1295
ZAREA 63-421	4,4	0,323	21	0,426	0,1291
NACA 64-006	0	0	6	0,414	0,0384
ZAREA 64-006	1,4	0,21	6	0,4425	0,0388
NACA 64-418	2,2	0,5	18	0,386	0,1123
ZAREA 64-418	3,8	0,269	18	0,33	0,1125
NACA 65-006	0	0	6	0,468	0,0393
ZAREA 65-006	1,4	0,2	6	0,442	0,0384
NACA 65-209	1,1	0,5	9	0,414	0,0587
ZAREA 65-209	2,2	0,266	9	0,442	0,0591
NACA 65-421	2,2	0,5	21	0,428	0,1337
ZAREA 65-421	4,4	0,25	21	0,414	0,1349
NACA 65-618	3,3	0,5	18	0,4288	0,1153
ZAREA 65-618	4,8	0,404	18	0,427	0,1158
NACA 66-415	2,2	0,5	15	0,471	0,1016
ZAREA 66-415	3,8	0,357	15	0,498	0,1018
NACA 63A-210	1,3	0,528	10	0,386	0,0662
ZAREA 63A-210	3	0,2811	10	0,416	0,0663
NACA 64A-010	0	0	10	0,414	0,0662
ZAREA 64A-010	2,1	0,416	10	0,513	0,0659
NACA 64A-410	2,7	0,5	10	0,4	0,0662
ZAREA 64A-410	3,6	0,43	10	0,402	0,0661
SZ2055	2,8	0,345	14,1	0,372	0,0937
SZ2055M	4	0,294	14,1	0,386	0,0942
SZ2059	1,5	0,386	16,8	0,359	0,1208
SZ2059M	2,6	0,36	16,8	0,385	0,1222
SZ2069	1,6	0,805	12	0,4	0,0734
SZ2069M	1,8	0,708	12	0,359	0,0743
SZ2074	1	0,104	13,5	0,386	0,0973
SZ2074M	2,1	0,375	13,5	0,348	0,0975

Tabla 4.1.1.- Características geométricas de los perfiles base y modificados.

4.2. EVALUACIÓN COMPUTACIONAL DE LOS PERFILES NACA SELECCIONADOS

Fig. 4.2.1. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil NACA 63-006.

Fig. 4.2.2. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil NACA 63-018. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.2.2. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil NACA 63-018.

Fig. 4.2.3. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil NACA 63-206. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.2.3. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil NACA 63-206.

Fig. 4.2.4. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil NACA 63-218. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.2.5. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil NACA 63-418. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.2.5. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil NACA 63-418.

Fig. 4.2.6. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil NACA 63-421. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.2.6. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil NACA 63-421.

Fig. 4.2.7. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil NACA 64-006. Met. Panel y Capa Límite. 100 Puntos.

Fig. 4.2.7. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil NACA 64-006.

Fig. 4.2.8. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil NACA 64-208. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.2.8. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil NACA 64-208.

Fig. 4.2.9. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil NACA 64-418. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.2.10. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil NACA 64-006. Met. Panel y Capa Límite. 100 Puntos.

Fig. 4.2.10. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil NACA 64-006.

Fig. 4.2.11. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil NACA 65-209. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.2.11. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil NACA 65-209.

Fig. 4.2.12. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil NACA 65-415. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.2.12. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil NACA 65-415.

Fig. 4.2.13. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil NACA 65-421. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.2.13. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil NACA 65-421.

Fig. 4.2.14. (a) Cp (0°, 5° yα_M :α para Clmax) vs.
X para Re = 1 E6 (leer Cp(α_M) a la derecha) y
(b) Curvas Polares del perfil NACA 65-618.
Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.2.15. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil NACA 66-221. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.2.15. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil NACA 66-221.

Fig. 4.2.16. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil NACA 66-415. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.2.16. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil NACA 66-415.

Fig. 4.2.17. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil NACA 63A-010. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.2.18. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil NACA 64A-010. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.2.19. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil NACA 64A-410. Met. Panel y Capa Límite. 220 Puntos.

4.3. EVALUACIÓN COMPUTACIONAL DE LOS PERFILES NACA MODIFICADOS

Fig. 4.3.1. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil ZAREA 63-006.

Fig. 4.3.2. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil ZAREA 63-018. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.3.3. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil ZAREA 63-206. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.3.4. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil ZAREA 63-218. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.3.5. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil ZAREA 63-418. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.3.6. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil ZAREA 63-421. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.3.7. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil ZAREA 64-006. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.3.8. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil ZAREA 64-208. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.3.9. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil ZAREA 64-418. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.3.10. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil ZAREA 65-006. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.3.11. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil ZAREA 65-209. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.3.12. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil ZAREA 65-415. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.3.13. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil ZAREA 65-421. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.3.14. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil ZAREA 65-618. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.3.15. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil ZAREA 66-221. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.3.16. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil ZAREA 66-415. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.3.17. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil ZAREA 63A-010. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.3.18. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil ZAREA 64A-410. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.3.19. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil ZAREA 64A-410. Met. Panel y Capa Límite. 220 Puntos.

4.4. EVALUACIÓN COMPUTACIONAL DE LOS PERFILES SZ2000

Fig. 4.4.1. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2051.

Fig. 4.4.2. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil SZ2052. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.4.3. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil SZ2053. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.4.4. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil SZ2054. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.4.5. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2055.

Fig. 4.4.6. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil SZ2056. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.4.7. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil SZ2057. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.4.8. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2058.

Fig. 4.4.9. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil SZ2059. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.4.10. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil SZ2060. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.4.11. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil SZ2061. Met. Panel y Capa Límite. 220 Puntos.

del perfil SZ2061.

Fig. 4.4.12. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil SZ2062. Met. Panel y Capa Límite. 220 Puntos.

del perfil SZ2062.

Fig. 4.4.13. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil SZ2063. Met. Panel y Capa Límite. 220 Puntos.

del perfil SZ2063.

Fig. 4.4.14. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil SZ2064. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.4.15. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil SZ2065. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.4.16. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil SZ2066. Met. Panel y Capa Límite. 220 Puntos.

del perfil SZ2066.

Fig. 4.4.17. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil SZ2067. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.4.18. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil SZ2068. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.4.19. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil SZ2069. Met. Panel y Capa Límite. 220 Puntos.

del perfil SZ2069.

Fig. 4.4.20. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil SZ2070. Met. Panel y Capa Límite. 220 Puntos.

del perfil SZ2070.

Fig. 4.4.21. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil SZ2071. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.4.22. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil SZ2072. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.4.23. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil SZ2073. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.4.24. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil SZ2074. Met. Panel y Capa Límite. 220 Puntos. Fig. 4.4.24. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2074.

Fig. 4.4.25. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil SZ2075. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.4.26. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil SZ2076. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.4.27. (a) Cp (0°, 5° yα_M :α para Clmax) vs.
X para Re = 1 E6 (leer Cp(α_M) a la derecha) y
(b) Curvas Polares del perfil SZ2077.
Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.4.28. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil SZ2078. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.4.29. (a) Cp (0°, 5° yα_M :α para Clmax) vs.
X para Re = 1 E6 (leer Cp(α_M) a la derecha) y
(b) Curvas Polares del perfil SZ2079.
Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.4.30. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil SZ2080. Met. Panel y Capa Límite. 220 Puntos.

4.5.-EVALUACION COMPUTACIONAL DE PERFILES SZ2000 MODIFICADOS

Fig. 4.5.1. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil SZ2055M. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.5.1. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2055M.

Fig. 4.5.2. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil SZ2059M. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.5.3. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil SZ2069M. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.5.4. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil SZ2074M. Met. Panel y Capa Límite. 220 Puntos.

4.6. COMPARACIÓN DE LAS CARACTRISTICAS AERODINÁMICAS DE LOS PERFILES BASE Y MODIFICADOS.

Con el fin de cuantificar la influencia que tiene la modificación del borde de ataque en los perfiles base sobre los coeficientes aerodinámicos se han diseñado un conjunto de tablas en las cuales se calcula la diferencia y variación porcentual entre los valores de los coeficientes aerodinámico de los perfiles base y sus respectivas modificaciones. Las expresiones utilizadas para cuantificar las variaciones de los coeficientes son:

 $\Delta C = C_M - C_B$

Diferencia:

Variación porcentual:
$$%C = \frac{(C_M - C_B)}{C_B} x100,$$

donde C_M representa los valores de los coeficientes aerodinámicos (C_L , C_D , C_m , ϵ) del perfil modificado y C_B los mismos valores para el perfil base.

Cuando la variación porcentual tiene un valor positivo significa que existe un incremento del valor con respecto al perfil base, por el contrario cuando el valor es negativo se dice que hay un decremento, es decir, el valor del coeficiente del perfil base es mayor que el modificado.

Las mejoras de las características aerodinámicas de una modificación se pueden ver reflejadas con un signo positivo (+) en la variación porcentual del coeficiente de sustentación y fineza aerodinámica o un signo negativo (-) en la variación porcentual del coeficiente de arrastre.

A continuación se muestran las tablas anteriormente explicadas en las cuales se evalúa cada perfil con su respectiva modificación para tres valores de Número de Reynolds.

Tabla 4.6.1.-Comparación entre las características aerodinámicas del perfil NACA 63-006 y la modificación ZAREA 63-006

			NAC	CA 63-0	006,ZARI	EA 63-00	6 Re=	1.000.000	C			
α (deg)	Cl _B	Cd _B	٤B	CIM	Cd _M	٤ _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,00	0,0047	0,00	0,13	0,0092	14,60	0,13	0,0045	14,60	-	96,5	-
1	0,10	0,0050	20,53	0,24	0,0093	25,90	0,14	0,0043	5,37	133,5	85,1	26,2
2	0,20	0,0054	37,27	0,34	0,0093	36,93	0,14	0,0040	-0,34	72,5	74,0	-0,9
3	0,30	0,0073	40,58	0,43	0,0072	59,81	0,14	-0,0001	19,24	45,9	-1,1	47,4
4	0,40	0,0131	30,81	0,55	0,0084	64,96	0,14	-0,0047	34,15	35,4	-35,8	110,8
5	0,51	0,0150	34,04	0,65	0,0092	70,91	0,14	-0,0058	36,87	28,2	-38,4	108,3

			NAC	A 63-0	006,ZARI	EA 63-00	6 Re=	3.000.000)			
α (deg)	Cl _B	Cd_{B}	٤B	Cl _M	Cd_M	٤ _M	ΔC_L	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,00	0,0042	0,00	0,14	0,0075	18,26	0,14	0,0033	18,26	-	77,7	-
1	0,10	0,0044	23,46	0,24	0,0075	32,33	0,14	0,0031	8,87	133,8	69,6	37,8
2	0,21	0,0056	37,54	0,35	0,0076	46,16	0,14	0,0020	8,62	66,8	35,6	23,0
3	0,31	0,0060	52,62	0,44	0,0056	79,31	0,13	-0,0004	26,69	40,1	-7,0	50,7
4	0,41	0,0106	38,59	0,55	0,0066	82,88	0,14	-0,0040	44,30	34,1	-37,6	114,8
5	0,52	0,0120	43,28	0,66	0,0073	90,26	0,14	-0,0047	46,98	27,1	-39,1	108,6
6	0,63	0,0138	45,30	0,77	0,0080	95,36	0,14	-0,0058	50,06	22,4	-41,8	110,5
7	0,73	0,0094	77,78	0,87	0,0090	96,53	0,13	-0,0004	18,75	18,2	-4,7	24,1

			NAC	CA 63-	006.ZAR	EA 63-00	6 Re=	9.000.000)			
α (deg)	Cl _B	Cd_{B}	ε _в	CIM	Cd _M	٤ _M	ΔC_{L}	ΔC_D	Δε	%Cl	%Cd	%ε
0	0,00	0,0040	0,00	0,14	0,0062	22,39	0,14	0,0022	22,39	-	55,5	-
1	0,11	0,0046	23,35	0,25	0,0062	39,57	0,14	0,0016	16,22	130,7	36,1	69,4
2	0,21	0,0049	43,69	0,35	0,0062	56,56	0,14	0,0013	12,87	64,5	27,1	29,5
3	0,32	0,0051	63,24	0,46	0,0063	73,32	0,14	0,0012	10,08	43,0	23,4	15,9
4	0,43	0,0052	81,39	0,56	0,0054	104,34	0,13	0,0001	22,95	30,8	2,1	28,2
5	0,53	0,0099	53,45	0,67	0,0059	113,29	0,14	-0,0040	59,84	26,9	-40,1	111,9
6	0,64	0,0112	56,83	0,78	0,0065	120,02	0,14	-0,0047	63,19	22,3	-42,1	111,2
7	0,74	0,0071	104,02	0,88	0,0072	122,25	0,14	0,0001	18,22	19,2	1,4	17,5
8	0,84	0,0090	93,65	0,98	0,0081	120,90	0,14	-0,0009	27,25	16,4	-9,8	29,1
9	0,93	0,0114	82,21	1,07	0,0095	112,39	0,14	-0,0018	30,19	14,8	-16,0	36,7

Tabla 4.6.2.-Comparación entre las características aerodinámicas del perfil NACA 63-018 y la modificación ZAREA 63-018.

			NA	CA 63-	018,ZAR	EA 63-0)18 Re=	1.000.00	0			
α (deg)	Cl _B	Cd_{B}	ε _B	Cl _M	Cd_M	٤ _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,00	0,0075	0,00	0,20	0,0078	26,02	0,20	0,0003	26,02	-	3,5	-
1	0,11	0,0077	14,60	0,31	0,0079	39,97	0,20	0,0002	25,38	181,5	2,8	173,9
2	0,22	0,0078	28,86	0,40	0,0098	41,08	0,18	0,0020	12,23	79,1	25,8	42,4
3	0,34	0,0078	42,78	0,50	0,0099	50,77	0,17	0,0020	7,98	49,5	26,0	18,7
4	0,44	0,0081	54,36	0,59	0,0104	56,42	0,14	0,0023	2,06	32,9	28,0	3,8
5	0,55	0,0083	65,40	0,68	0,0107	64,00	0,14	0,0024	-1,40	25,5	28,2	-2,1
6	0,64	0,0094	68,01	0,77	0,0112	68,93	0,13	0,0018	0,92	20,5	18,9	1,4
7	0,72	0,0109	65,88	0,83	0,0132	62,97	0,11	0,0023	-2,91	15,4	20,8	-4,4
8	0,80	0,0122	65,94	0,92	0,0141	65,36	0,12	0,0019	-0,57	14,8	15,8	-0,9
9	0,88	0,0153	57,14	0,98	0,0147	66,38	0,10	-0,0006	9,24	11,7	-3,8	16,2
10	0,89	0,0165	53,73	0,98	0,0157	62,39	0,09	-0,0008	8,66	10,6	-4,7	16,1
11	0,91	0,0180	50,19	1,02	0,0171	59,85	0,12	-0,0010	9,66	12,8	-5,4	19,2
12	0,91	0,0199	45,82	0,89	0,0203	43,89	-0,02	0,0004	-1,93	-2,3	2,0	-4,2

			NAG	CA 63-	018,ZAR	EA 63-0	18 Re=	= 3.000.00	0			
α (deg)	Cl _B	Cd_{B}	ε _B	Cl _M	Cd_M	٤ _M	ΔC_L	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,00	0,0057	0,00	0,21	0,0059	34,94	0,21	0,0002	34,94	-	3,6	-
1	0,11	0,0058	19,58	0,32	0,0059	53,83	0,21	0,0001	34,25	181,6	2,4	174,9
2	0,23	0,0059	38,74	0,43	0,0076	56,57	0,21	0,0018	17,83	90,3	30,3	46,0
3	0,34	0,0059	57,65	0,53	0,0076	69,61	0,19	0,0017	11,95	56,0	29,2	20,7
4	0,45	0,0064	70,96	0,64	0,0081	78,91	0,18	0,0017	7,95	40,6	26,4	11,2
5	0,56	0,0073	75,90	0,73	0,0083	88,70	0,18	0,0009	12,80	31,6	12,6	16,9
6	0,66	0,0085	77,54	0,83	0,0086	95,93	0,17	0,0001	18,39	25,8	1,7	23,7
7	0,75	0,0094	79,80	0,91	0,0104	87,13	0,16	0,0010	7,33	20,6	10,5	9,2
8	0,84	0,0103	82,16	0,99	0,0111	89,50	0,15	0,0008	7,34	17,5	7,9	8,9
9	0,92	0,0122	75,61	1,07	0,0116	91,95	0,14	-0,0006	16,33	15,7	-4,8	21,6
10	1,01	0,0132	76,36	1,16	0,0123	93,78	0,15	-0,0009	17,42	14,6	-6,7	22,8
11	1,09	0,0144	75,67	1,24	0,0132	93,28	0,15	-0,0011	17,60	13,7	-7,7	23,3
12	1,12	0,0158	71,13	1,18	0,0160	73,94	0,06	0,0002	2,81	5,2	1,2	3,9
13	1,13	0,0171	66,34	1,16	0,0175	66,29	0,03	0,0004	-0,06	2,2	2,3	-0,1

Tabla 4.6.2.-Comparación entre las características aerodinámicas del perfil NACA 63-018 y la modificación ZAREA 63-018 (continuación).

			NAC	CA 63-0	018,ZAR	EA 63-01	8 Re=	9.000.000	C			
α (deg)	Cl _B	Cd_{B}	ε _B	Cl _M	Cd_M	ε _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,00	0,0045	0,00	0,21	0,0046	44,99	0,21	0,0002	44,99	-	3,6	-
1	0,11	0,0046	25,20	0,32	0,0048	68,06	0,21	0,0002	42,86	181,4	4,2	170,1
2	0,23	0,0047	49,00	0,44	0,0061	71,47	0,21	0,0014	22,47	90,4	30,6	45,8
3	0,34	0,0050	69,06	0,55	0,0061	89,94	0,21	0,0012	20,88	60,4	23,2	30,2
4	0,46	0,0057	80,50	0,65	0,0064	101,19	0,19	0,0007	20,69	42,1	13,0	25,7
5	0,57	0,0065	87,54	0,76	0,0065	116,91	0,19	0,0000	29,36	33,4	-0,1	33,5
6	0,67	0,0072	93,34	0,87	0,0068	127,08	0,20	-0,0004	33,73	28,9	-5,3	36,1
7	0,78	0,0079	99,17	0,95	0,0083	113,35	0,17	0,0005	14,19	21,4	6,2	14,3
8	0,88	0,0085	104,03	1,05	0,0089	117,96	0,17	0,0004	13,93	19,2	5,1	13,4
9	0,97	0,0099	97,59	1,13	0,0093	121,68	0,17	-0,0006	24,09	17,2	-6,0	24,7
10	1,06	0,0107	98,43	1,23	0,0099	124,55	0,18	-0,0008	26,11	16,6	-7,8	26,5
11	1,14	0,0117	97,61	1,32	0,0106	124,04	0,18	-0,0011	26,43	15,6	-9,0	27,1
12	1,23	0,0128	95,53	1,35	0,0130	104,44	0,13	0,0001	8,91	10,3	0,9	9,3
13	1,31	0,0139	94,31	1,44	0,0142	101,38	0,13	0,0003	7,07	10,0	2,3	7,5
14	1,36	0,0212	64,35	1,44	0,0150	95,87	0,08	-0,0062	31,52	5,6	-29,1	49,0
15	1,32	0,0226	58,43	1,41	0,0164	85,83	0,09	-0,0061	27,40	6,9	-27,2	46,9
16	1,36	0,0240	56,67	1,37	0,0185	73,76	0,01	-0,0054	17,09	0,6	-22,7	30,1

Tabla 4.6.3.-Comparación entre las características aerodinámicas del perfil NACA 63-206 y la modificación ZAREA 63-206.

			NAC	A 63-2	206,ZARE	EA 63-206	3 Re=	1.000.000				
α (deg)	Cl _B	Cd_{B}	ε _B	Cl _M	Cd_M	ε _M	ΔC_{L}	ΔC_D	Δε	%Cl	%Cd	%ε
0	0,20	0,0047	41,31	0,28	0,0050	56,28	0,09	0,0003	14,98	43,7	5,5	36,3
1	0,30	0,0051	58,54	0,38	0,0052	73,56	0,08	0,0000	15,03	26,9	0,9	25,7
2	0,40	0,0055	71,92	0,47	0,0057	83,03	0,08	0,0002	11,11	19,1	3,2	15,5
3	0,49	0,0080	61,49	0,59	0,0067	87,29	0,09	-0,0013	25,80	18,8	-16,3	42,0
4	0,60	0,0087	69,25	0,70	0,0090	77,54	0,09	0,0003	8,29	15,6	3,2	12,0
5	0,71	0,0098	72,99	0,81	0,0099	81,48	0,09	0,0001	8,50	13,1	1,3	11,6
6	0,81	0,0113	71,46	0,90	0,0110	81,57	0,09	-0,0003	10,11	10,9	-2,9	14,1

			NAC	A 63-2	206,ZARE	EA 63-206	8 Re=	3.000.000				
α (deg)	Cl _B	Cd_{B}	٤ _B	Cl _M	Cd_M	ε _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,20	0,0042	46,31	0,29	0,0058	49,71	0,09	0,0015	3,40	46,5	36,5	7,3
1	0,30	0,0045	66,47	0,39	0,0048	80,84	0,09	0,0003	14,37	29,1	6,1	21,6
2	0,41	0,0059	68,85	0,49	0,0052	94,15	0,08	-0,0007	25,30	20,6	-11,8	36,7
3	0,51	0,0065	78,33	0,59	0,0055	106,09	0,08	-0,0010	27,76	14,8	-15,2	35,4
4	0,61	0,0069	88,28	0,70	0,0072	97,39	0,09	0,0003	9,11	15,0	4,3	10,3
5	0,71	0,0076	93,61	0,81	0,0079	102,36	0,09	0,0002	8,75	12,8	3,1	9,3
6	0,82	0,0086	95,23	0,92	0,0087	105,61	0,10	0,0001	10,37	11,9	0,9	10,9
7	0,91	0,0103	88,47	1,01	0,0098	102,46	0,09	-0,0005	13,99	10,3	-4,8	15,8
8	1,01	0,0128	79,33	1,09	0,0211	51,91	0,08	0,0083	-27,42	8,3	65,5	-34,6

			NAC	A 63-2	206,ZARE	EA 63-206	Re=	9.000.000				
α (deg)	Cl _B	Cd_{B}	ε _B	Cl _M	Cd _M	٤ _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,20	0,0040	48,96	0,29	0,0052	54,89	0,09	0,0012	5,93	46,4	30,6	12,1
1	0,30	0,0046	65,64	0,39	0,0045	87,01	0,09	-0,0001	21,37	29,4	-2,4	32,6
2	0,41	0,0053	77,78	0,50	0,0046	108,27	0,09	-0,0007	30,49	21,1	-13,0	39,2
3	0,52	0,0055	93,40	0,59	0,0046	127,45	0,07	-0,0009	34,05	14,4	-16,1	36,5
4	0,61	0,0055	110,69	0,70	0,0058	121,58	0,09	0,0003	10,89	15,0	4,7	9,8
5	0,72	0,0061	117,75	0,81	0,0064	127,62	0,09	0,0002	9,86	12,8	4,0	8,4
6	0,83	0,0068	121,21	0,92	0,0070	130,78	0,09	0,0002	9,57	11,1	3,0	7,9
7	0,94	0,0080	116,63	1,03	0,0080	129,38	0,09	-0,0001	12,74	9,8	-1,0	10,9
8	1,03	0,0095	108,66	1,12	0,0169	66,06	0,09	0,0074	-42,60	8,6	78,6	-39,2
9	1,12	0,0115	97,08	1,21	0,0197	61,50	0,09	0,0082	-35,58	8,5	71,2	-36,6
10	1,20	0,0145	82,70	1,30	0,0230	56,46	0,10	0,0084	-26,24	7,9	58,1	-31,7

Tabla 4.6.4.-Comparación entre las características aerodinámicas del perfil NACA 63-218 y la modificación ZAREA 63-218.

			NAG	CA 63-	218,ZAR	EA 63-2 ⁻	18 Re=	1.000.00	00			
α (deg)	Cl _B	Cd_{B}	ε _B	Cl _M	Cd_M	٤ _M	ΔC_L	ΔC_D	Δε	%Cl	%Cd	%ε
0	0,21	0,0077	27,07	0,40	0,0120	33,25	0,19	0,0043	6,18	91,7	56,1	22,8
1	0,32	0,0078	40,98	0,51	0,0104	48,67	0,19	0,0026	7,69	58,3	33,3	18,8
2	0,43	0,0079	54,32	0,60	0,0108	55,60	0,17	0,0029	1,28	39,2	36,0	2,3
3	0,54	0,0081	66,65	0,69	0,0112	61,95	0,15	0,0031	-4,70	27,9	37,7	-7,1
4	0,64	0,0084	76,14	0,79	0,0116	67,84	0,15	0,0032	-8,29	23,4	38,4	-10,9
5	0,74	0,0087	85,37	0,87	0,0121	72,13	0,13	0,0034	-13,24	17,6	39,2	-15,5
6	0,83	0,0096	87,06	0,96	0,0126	76,07	0,13	0,0031	-10,99	15,2	31,9	-12,6
7	0,91	0,0110	82,79	1,05	0,0135	77,49	0,13	0,0025	-5,30	14,6	22,5	-6,4
8	0,98	0,0128	76,66	1,13	0,0141	79,69	0,15	0,0014	3,03	15,0	10,7	3,9
9	1,04	0,0153	67,72	1,15	0,0170	67,79	0,12	0,0017	0,06	11,2	11,1	0,1
10	1,04	0,0180	57,51	1,14	0,0183	62,56	0,11	0,0003	5,05	10,3	1,4	8,8
11	1,03	0,0196	52,42	1,12	0,0196	56,96	0,09	0,0000	4,54	8,7	0,0	8,7
12	1,06	0,0215	49,42	1,16	1,7228	0,68	0,10	1,7013	-48,75	9,6	7921,6	-98,6

			NAC	CA 63-	218,ZAR	EA 63-21	8 Re=	3.000.00	0			
α (deg)	Cl _B	Cd_{B}	ε _B	Cl _M	Cd_M	ε _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,21	0,0058	35,58	0,41	0,0096	42,83	0,20	0,0038	7,26	98,7	65,1	20,4
1	0,32	0,0059	54,14	0,53	0,0082	64,66	0,21	0,0022	10,52	64,7	37,9	19,4
2	0,43	0,0060	71,92	0,63	0,0085	73,93	0,19	0,0024	2,01	44,3	40,4	2,8
3	0,55	0,0061	89,19	0,73	0,0088	83,26	0,18	0,0026	-5,93	33,6	43,1	-6,6
4	0,66	0,0065	102,28	0,83	0,0091	91,73	0,17	0,0026	-10,55	26,3	40,8	-10,3
5	0,76	0,0072	105,50	0,93	0,0095	98,07	0,17	0,0023	-7,43	22,3	31,6	-7,0
6	0,86	0,0087	98,64	1,02	0,0098	103,99	0,17	0,0012	5,35	19,7	13,5	5,4
7	0,95	0,0098	96,80	1,12	0,0105	106,26	0,17	0,0007	9,46	18,1	7,6	9,8
8	1,03	0,0108	95,03	1,21	0,0110	109,81	0,18	0,0002	14,79	17,3	1,5	15,6
9	1,11	0,0121	91,88	1,26	0,0135	93,80	0,15	0,0014	1,92	13,7	11,3	2,1
10	1,17	0,0145	80,78	1,33	0,0144	92,33	0,16	-0,0001	11,55	13,6	-0,6	14,3
11	1,24	0,0157	78,87	1,40	0,0155	90,58	0,17	-0,0002	11,71	13,4	-1,3	14,9
12	1,29	0,0169	75,91	1,46	0,0167	87,66	0,17	-0,0003	11,75	13,5	-1,7	15,5
13	1,27	0,0186	68,46	1,42	0,0181	78,14	0,15	-0,0004	9,68	11,5	-2,3	14,1
14	1,29	0,0254	51,04	1,38	0,0192	71,47	0,08	-0,0061	20,43	6,3	-24,1	40,0
15	1,19	0,0276	43,03	1,40	0,0213	65,97	0,21	-0,0064	22,94	18,0	-23,0	53,3
16	1,20	0,0293	40,98	1,33	0,0225	59,21	0,13	-0,0068	18,23	11,1	-23,1	44,5

Tabla 4.6.4.-Comparación entre las características aerodinámicas del perfil NACA 63-218 y la modificación ZAREA 63-218 (continuación).

			NAC	A 63-2	218,ZARI	EA 63-21	8 Re=	9.000.000	כ			
α (deg)	Cl _B	Cd_{B}	ε _B	Cl _M	Cd_M	ε _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,21	0,0046	45,05	0,41	0,0079	52,35	0,21	0,0033	7,29	100,5	72,6	16,2
1	0,32	0,0047	68,93	0,53	0,0066	80,92	0,21	0,0019	11,99	65,4	40,9	17,4
2	0,44	0,0047	91,88	0,65	0,0068	94,80	0,21	0,0021	2,92	48,1	43,5	3,2
3	0,55	0,0050	109,72	0,75	0,0070	106,67	0,20	0,0020	-3,05	36,0	39,9	-2,8
4	0,66	0,0056	118,25	0,86	0,0073	117,74	0,19	0,0017	-0,51	28,8	29,4	-0,4
5	0,78	0,0067	116,13	0,96	0,0076	126,94	0,18	0,0009	10,81	23,4	12,9	9,3
6	0,87	0,0076	115,52	1,07	0,0079	135,96	0,19	0,0003	20,44	22,1	3,8	17,7
7	0,98	0,0084	116,12	1,16	0,0084	138,71	0,19	0,0000	22,60	19,2	-0,2	19,5
8	1,07	0,0091	118,11	1,26	0,0087	144,08	0,19	-0,0003	25,96	17,6	-3,6	22,0
9	1,16	0,0099	117,71	1,33	0,0108	122,31	0,17	0,0010	4,60	14,2	9,9	3,9
10	1,23	0,0118	104,30	1,41	0,0117	120,81	0,18	-0,0001	16,50	14,8	-0,9	15,8
11	1,31	0,0128	101,94	1,48	0,0125	118,33	0,18	-0,0003	16,39	13,6	-2,2	16,1
12	1,39	0,0138	100,34	1,56	0,0186	83,81	0,17	0,0048	-16,54	12,2	34,4	-16,5
13	1,46	0,0152	96,46	1,63	0,0145	112,10	0,16	-0,0007	15,64	11,1	-4,4	16,2
14	1,53	0,0159	96,19	1,71	0,0156	110,02	0,18	-0,0003	13,83	11,9	-2,2	14,4

Tabla 4.6.5.-Comparación entre las características aerodinámicas del perfil NACA 63-418 y la modificación ZAREA 63-418.

			NAC	A 63-4	118,ZARE	EA 63-418	8 Re= 1	.000.000				
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd_M	ε _M	ΔC_{L}	ΔC_D	Δε	%Cl	%Cd	%ε
0	0,41	0,0079	52,63	0,61	0,0084	72,30	0,19	0,0006	19,67	47,2	7,1	37,4
1	0,52	0,0080	65,76	0,71	0,0086	81,97	0,18	0,0007	16,21	35,1	8,4	24,6
2	0,63	0,0082	77,38	0,81	0,0090	90,60	0,18	0,0008	13,22	27,8	9,2	17,1
3	0,73	0,0086	85,76	0,88	0,0120	73,37	0,14	0,0034	-12,39	19,4	39,5	-14,4
4	0,84	0,0089	93,74	0,97	0,0124	77,81	0,13	0,0035	-15,93	15,5	39,1	-17,0
5	0,94	0,0093	100,56	1,05	0,0132	79,30	0,11	0,0039	-21,25	11,5	41,3	-21,1
6	1,03	0,0098	105,18	1,13	0,0138	81,87	0,10	0,0040	-23,31	9,6	40,8	-22,2
7	1,11	0,0112	98,91	1,21	0,0144	83,52	0,10	0,0033	-15,39	9,1	29,2	-15,6
8	1,16	0,0132	88,39	1,28	0,0151	84,64	0,12	0,0020	-3,74	10,2	15,0	-4,2
9	1,22	0,0152	80,36	1,37	0,0160	85,38	0,15	0,0008	5,03	12,0	5,4	6,3
10	1,27	0,0181	70,04	1,36	0,0190	71,39	0,09	0,0009	1,35	7,0	5,0	1,9

			NAC	A 63-4	418,ZARE	EA 63-418	8 Re= 3	8.000.000				
α (deg)	Cl _B	Cd_{B}	ε _B	Cl _M	Cd_M	٤ _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,41	0,0059	69,28	0,61	0,0064	96,13	0,20	0,0004	26,85	48,4	7,0	38,8
1	0,53	0,0060	87,53	0,72	0,0065	111,13	0,20	0,0005	23,60	38,0	8,7	27,0
2	0,64	0,0061	103,97	0,84	0,0068	123,80	0,20	0,0006	19,83	31,0	10,0	19,1
3	0,75	0,0065	116,24	0,92	0,0094	97,98	0,17	0,0029	-18,26	22,3	45,1	-15,7
4	0,86	0,0067	128,04	1,02	0,0097	104,56	0,15	0,0030	-23,48	17,8	44,3	-18,3
5	0,96	0,0073	131,14	1,11	0,0103	107,56	0,16	0,0030	-23,58	16,3	41,8	-18,0
6	1,05	0,0087	121,44	1,20	0,0108	111,66	0,15	0,0021	-9,78	14,4	24,4	-8,1
7	1,14	0,0102	111,05	1,29	0,0113	114,46	0,16	0,0011	3,41	13,7	10,3	3,1
8	1,21	0,0116	104,67	1,38	0,0118	116,63	0,17	0,0002	11,96	13,7	2,0	11,4
9	1,29	0,0128	100,89	1,46	0,0124	117,95	0,17	-0,0004	17,06	13,3	-3,1	16,9
10	1,36	0,0143	94,89	1,50	0,0149	100,42	0,14	0,0006	5,53	10,1	4,0	5,8
11	1,41	0,0171	82,17	1,47	0,0196	74,86	0,06	0,0025	-7,32	4,3	14,5	-8,9
12	1,46	0,0185	78,87	1,42	0,0212	67,09	-0,04	0,0027	-11,77	-2,7	14,3	-14,9

Tabla 4.6.5.-Comparación entre las características aerodinámicas del perfil NACA 63-418 y la modificación ZAREA 63-418 (continuación)

			NAC	A 63-4	418,ZARI	EA 63-41	8 Re= 9	9.000.000				
α (deg)	Cl _B	Cd_{B}	ε _Β	Cl _M	Cd_M	ε _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,41	0,0047	87,64	0,61	0,0059	103,62	0,20	0,0012	15,98	49,4	26,4	18,2
1	0,53	0,0047	111,13	0,73	0,0051	142,20	0,20	0,0004	31,06	38,6	8,3	28,0
2	0,64	0,0049	132,06	0,84	0,0053	159,81	0,20	0,0004	27,75	31,6	8,8	21,0
3	0,75	0,0052	145,71	0,94	0,0075	124,51	0,18	0,0023	-21,20	24,1	45,3	-14,6
4	0,87	0,0058	150,38	1,05	0,0078	134,10	0,18	0,0020	-16,28	20,4	35,0	-10,8
5	0,97	0,0068	142,23	1,15	0,0083	138,35	0,18	0,0015	-3,88	18,7	22,0	-2,7
6	1,07	0,0078	136,84	1,25	0,0086	145,00	0,18	0,0008	8,16	16,9	10,3	6,0
7	1,17	0,0090	129,54	1,35	0,0090	149,34	0,18	0,0000	19,79	15,5	0,2	15,3
8	1,26	0,0099	127,27	1,44	0,0094	152,93	0,18	-0,0005	25,66	14,6	-4,6	20,2
9	1,35	0,0108	125,37	1,53	0,0098	155,41	0,18	-0,0009	30,04	13,4	-8,5	24,0
10	1,43	0,0115	123,76	1,59	0,0120	132,16	0,16	0,0005	8,40	11,5	4,4	6,8
11	1,49	0,0140	106,51	1,60	0,0160	100,14	0,11	0,0020	-6,37	7,4	14,2	-6,0
12	1,55	0,0152	102,25	1,66	0,0221	75,23	0,11	0,0069	-27,03	7,1	45,6	-26,4
13	1,62	0,0166	97,66	1,67	0,0238	70,21	0,05	0,0072	-27,45	2,9	43,1	-28,1
14	1,68	0,0322	52,28	1,60	0,0215	74,74	-0,08	-0,0107	22,46	-4,6	-33,3	43,0
15	1,70	0,0344	49,37	1,54	0,0237	64,99	-0,16	-0,0107	15,62	-9,4	-31,2	31,6

Tabla 4.6.6.-Comparación entre las características aerodinámicas del perfil NACA 63-421 y la modificación ZAREA 63-421.

			NAC	CA 63-4	421,ZARI	EA 63-42	1 Re=	1.000.000)			
α (deg)	Cl _B	Cd_{B}	ε _B	Cl _M	Cd_M	٤ _M	ΔC_{L}	ΔC_D	Δε	%Cl	%Cd	%ε
0	0,42	0,0086	48,57	0,61	0,0089	67,84	0,19	0,0004	19,26	45,8	4,4	39,7
1	0,52	0,0088	59,61	0,71	0,0093	76,86	0,19	0,0005	17,25	36,2	5,6	28,9
2	0,63	0,0089	70,98	0,81	0,0096	84,83	0,18	0,0007	13,85	29,2	8,1	19,5
3	0,73	0,0092	79,96	0,90	0,0100	90,32	0,17	0,0009	10,36	23,4	9,3	13,0
4	0,83	0,0095	87,43	0,99	0,0105	94,60	0,16	0,0009	7,17	18,8	9,8	8,2
5	0,93	0,0099	93,24	1,02	0,0138	74,02	0,09	0,0038	-19,23	9,9	38,4	-20,6
6	1,01	0,0104	96,97	1,10	0,0143	76,62	0,08	0,0039	-20,35	8,2	37,0	-21,0
7	1,09	0,0110	99,57	1,17	0,0149	78,49	0,08	0,0039	-21,08	7,1	35,9	-21,2
8	1,18	0,0117	100,98	1,26	0,0157	80,11	0,08	0,0040	-20,87	6,7	34,4	-20,7
9	1,23	0,0135	91,55	1,34	0,0165	80,96	0,10	0,0030	-10,59	8,4	22,6	-11,6
10	1,28	0,0152	84,34	1,30	0,0176	73,76	0,02	0,0025	-10,58	1,6	16,2	-12,5

			NAC	CA 63-4	421,ZAR	EA 63-42	1 Re=	3.000.000				
α (deg)	Cl _B	Cd_{B}	ε _Β	Cl _M	Cd_{M}	ε _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,42	0,0065	64,30	0,62	0,0067	92,62	0,21	0,0003	28,33	49,9	4,0	44,1
1	0,53	0,0066	80,54	0,74	0,0070	106,28	0,21	0,0004	25,74	39,0	5,4	32,0
2	0,65	0,0067	96,83	0,84	0,0072	116,27	0,19	0,0005	19,44	29,4	7,8	20,1
3	0,76	0,0069	110,53	0,95	0,0075	125,76	0,18	0,0006	15,23	24,2	9,2	13,8
4	0,86	0,0072	119,84	1,05	0,0079	133,20	0,19	0,0007	13,36	22,2	9,9	11,1
5	0,97	0,0074	130,06	1,09	0,0107	101,55	0,12	0,0033	-28,52	12,7	44,4	-21,9
6	1,07	0,0078	136,73	1,19	0,0112	106,16	0,12	0,0034	-30,56	11,1	43,0	-22,4
7	1,15	0,0088	130,48	1,27	0,0117	109,03	0,12	0,0028	-21,44	10,3	31,9	-16,4
8	1,22	0,0105	116,07	1,35	0,0122	111,16	0,13	0,0017	-4,91	11,0	15,9	-4,2
9	1,28	0,0121	106,09	1,44	0,0128	113,03	0,16	0,0007	6,93	12,6	5,7	6,5
10	1,35	0,0134	100,71	1,52	0,0137	110,99	0,17	0,0003	10,28	12,5	2,1	10,2
11	1,41	0,0148	95,00	1,59	0,0142	111,56	0,18	-0,0006	16,56	12,7	-4,0	17,4
12	1,48	0,0172	86,13	1,27	0,0218	58,33	-0,21	0,0047	-27,80	-13,9	27,2	-32,3

Tabla 4.6.6.-Comparación entre las características aerodinámicas del perfil NACA 63-421 y la modificación ZAREA 63-421 (continuación).

			NAC	A 63-4	421,ZARI	EA 63-42	1 Re= 9	9.000.000				
α (deg)	Cl _B	Cd_{B}	ε _Β	Cl _M	Cd_M	ε _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,42	0,0051	81,64	0,63	0,0053	119,26	0,21	0,0002	37,62	50,9	3,3	46,1
1	0,53	0,0052	102,59	0,74	0,0054	137,55	0,21	0,0002	34,96	39,7	4,2	34,1
2	0,65	0,0052	124,77	0,86	0,0056	152,83	0,21	0,0004	28,05	32,4	8,1	22,5
3	0,77	0,0054	141,75	0,96	0,0058	164,78	0,20	0,0004	23,03	25,9	8,3	16,2
4	0,88	0,0056	157,64	1,07	0,0061	174,79	0,19	0,0005	17,15	21,4	9,5	10,9
5	0,98	0,0061	161,10	1,15	0,0086	133,58	0,17	0,0025	-27,53	17,1	41,2	-17,1
6	1,09	0,0069	157,24	1,25	0,0089	140,26	0,17	0,0020	-16,98	15,3	29,3	-10,8
7	1,18	0,0080	147,83	1,35	0,0093	144,61	0,16	0,0013	-3,22	13,8	16,3	-2,2
8	1,26	0,0094	133,46	1,44	0,0097	147,94	0,18	0,0003	14,48	14,2	3,0	10,9
9	1,34	0,0106	126,23	1,52	0,0101	150,39	0,18	-0,0005	24,16	13,7	-4,5	19,1
10	1,41	0,0115	122,48	1,60	0,0108	148,10	0,19	-0,0007	25,62	13,6	-6,1	20,9
11	1,49	0,0126	118,24	1,70	0,0113	149,69	0,20	-0,0013	31,45	13,6	-10,3	26,6
12	1,55	0,0137	113,10	1,59	0,0178	89,46	0,04	0,0041	-23,64	2,6	29,7	-20,9
13	1,59	0,0168	94,59	1,53	0,0194	79,13	-0,06	0,0025	-15,45	-3,8	15,0	-16,3

Tabla 4.6.7.-Comparación entre las características aerodinámicas del perfil NACA 64-006 y la modificación ZAREA 64-006.

			NAC	A 64-0	06,ZARE	A 64-006	3 Re= 1	1.000.000				
α (deg)	Cl _B	Cd_{B}	٤ _B	Cl _M	Cd_M	ε _M	ΔC_{L}	ΔC_D	Δε	%Cl	%Cd	%ε
0	0,00	0,0046	0,00	-	-	-	-	-	-	-	-	-
1	0,10	0,0049	21,15	0,19	0,0052	37,04	0,09	0,0003	15,89	85,5	5,9	75,1
2	0,20	0,0054	38,00	0,28	0,0056	49,75	0,07	0,0002	11,76	36,6	4,3	30,9
3	0,30	0,0073	40,50	0,39	0,0067	57,41	0,09	-0,0006	16,91	30,3	-8,1	41,8
4	0,40	0,0132	30,58	0,50	0,0125	39,51	0,09	-0,0007	8,93	22,6	-5,1	29,2
5	0,51	0,0152	33,65	0,60	0,0145	41,45	0,09	-0,0007	7,79	17,9	-4,3	23,2

			NAC	A 64-0	06,ZARE	A 64-006	6 Re= 3	3.000.000				
α (deg)	Cl _B	Cd_{B}	٤B	Cl _M	Cd_M	εΜ	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,00	0,0041	0,00	0,09	0,0062	14,74	0,09	0,0020	14,74	-	49,5	-
1	0,10	0,0043	24,48	0,19	0,0048	40,81	0,09	0,0005	16,33	86,3	11,7	66,7
2	0,21	0,0056	37,31	0,30	0,0053	56,21	0,09	-0,0003	18,90	42,2	-5,6	50,7
3	0,31	0,0060	52,70	0,39	0,0055	71,67	0,08	-0,0005	18,97	25,7	-7,6	36,0
4	0,41	0,0107	38,36	0,50	0,0105	48,18	0,09	-0,0003	9,82	22,5	-2,5	25,6
5	0,52	0,0121	42,93	0,61	0,0117	52,46	0,09	-0,0004	9,54	17,8	-3,6	22,2
6	0,63	0,0080	78,22	0,72	0,0077	93,75	0,09	-0,0003	15,54	15,0	-4,0	19,9

			NAC	A 64-0	06,ZARE	EA 64-006	8 Re=	9.000.000				
α (deg)	Cl _B	Cd_{B}	٤B	Cl _M	Cd_M	٤ _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,00	0,0038	0,00	0,09	0,0056	16,23	0,09	0,0018	16,23	-	47,3	-
1	0,11	0,0047	22,89	0,20	0,0045	43,87	0,09	-0,0001	20,98	86,5	-2,7	91,7
2	0,21	0,0049	43,76	0,31	0,0047	65,67	0,09	-0,0002	21,91	42,5	-5,1	50,1
3	0,32	0,0051	63,49	0,41	0,0047	86,94	0,09	-0,0003	23,45	27,7	-6,7	36,9
4	0,43	0,0052	81,56	0,51	0,0087	58,68	0,08	0,0035	-22,88	19,8	66,5	-28,1
5	0,53	0,0099	53,12	0,62	0,0096	64,47	0,09	-0,0003	11,35	17,8	-3,0	21,4
6	0,63	0,0062	101,66	0,73	0,0062	118,07	0,09	-0,0001	16,41	14,9	-1,0	16,1
7	0,74	0,0076	98,48	0,84	0,0068	123,13	0,09	-0,0007	24,65	12,7	-9,9	25,0
8	0,84	0,0092	91,70	0,95	0,0077	123,05	0,10	-0,0015	31,35	12,4	-16,2	34,2
9	0,93	0,0118	79,41	1,04	0,0086	120,76	0,10	-0,0032	41,35	10,9	-27,0	52,1

Tabla 4.6.8.-Comparación entre las características aerodinámicas del perfil NACA 64-208 y la modificación ZAREA 64-208.

			NAC	A 64-2	208,ZARE	A 64-208	B Re=	1.000.000				
α (deg)	Cl _B	Cd_{B}	ε _B	Cl _M	Cd_M	٤ _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,20	0,0054	36,96	0,29	0,0074	38,97	0,09	0,0021	2,01	46,1	38,6	5,4
1	0,30	0,0055	55,21	0,40	0,0076	52,01	0,09	0,0021	-3,19	30,2	38,2	-5,8
2	0,41	0,0058	70,32	0,51	0,0106	47,85	0,10	0,0047	-22,46	23,6	81,6	-31,9
3	0,51	0,0074	69,11	0,59	0,0088	67,78	0,08	0,0013	-1,34	15,7	18,0	-1,9
4	0,62	0,0093	66,66	0,70	0,0094	74,67	0,08	0,0001	8,01	13,2	1,1	12,0
5	0,72	0,0099	72,76	0,80	0,0102	78,71	0,08	0,0003	5,95	11,4	3,0	8,2
6	0,81	0,0110	73,94	0,90	0,0111	80,75	0,09	0,0002	6,81	11,0	1,6	9,2
7	0,91	0,0124	72,80	0,99	0,0122	81,12	0,09	-0,0002	8,32	9,6	-1,6	11,4
8	1,00	0,0148	67,27	1,09	0,0136	79,84	0,09	-0,0012	12,57	9,0	-8,1	18,7

			NAC	A 64-2	208,ZARE	EA 64-208	3 Re= 3	3.000.000				
α (deg)	Cl _B	Cd_{B}	ε _B	Cl _M	Cd_M	ε _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,20	0,0044	45,27	0,29	0,0061	47,59	0,09	0,0017	2,32	46,6	39,5	5,1
1	0,30	0,0045	68,04	0,40	0,0063	62,77	0,09	0,0019	-5,27	30,5	41,5	-7,8
2	0,41	0,0055	74,54	0,51	0,0086	58,86	0,10	0,0031	-15,68	23,8	56,8	-21,0
3	0,52	0,0068	76,71	0,61	0,0072	84,69	0,09	0,0004	7,98	17,2	6,1	10,4
4	0,63	0,0074	84,59	0,70	0,0074	94,48	0,08	0,0000	9,89	12,4	0,6	11,7
5	0,72	0,0078	92,92	0,81	0,0080	101,12	0,09	0,0003	8,20	12,8	3,6	8,8
6	0,83	0,0086	96,25	0,91	0,0088	103,47	0,08	0,0001	7,22	9,3	1,7	7,5
7	0,92	0,0096	96,22	1,02	0,0095	106,59	0,09	-0,0001	10,37	10,2	-0,5	10,8
8	1,02	0,0111	91,56	1,11	0,0105	106,10	0,09	-0,0007	14,54	9,0	-5,9	15,9
9	1,12	0,0129	86,27	1,20	0,0118	101,95	0,09	-0,0011	15,69	8,0	-8,6	18,2
10	1,20	0,0154	77,64	1,30	0,0132	97,98	0,10	-0,0022	20,33	8,4	-14,1	26,2
11	1,26	0,0188	67,06	1,37	0,0154	88,92	0,11	-0,0034	21,87	8,8	-17,9	32,6

			NAC	A 64-2	208,ZARE	EA 64-208	8 Re=	9.000.000				
α (deg)	Cl _B	Cd_B	ε _в	Cl _M	Cd_M	٤ _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,20	0,0039	50,93	0,29	0,0052	55,47	0,09	0,0013	4,54	46,8	34,8	8,9
1	0,31	0,0041	74,91	0,40	0,0057	69,23	0,09	0,0017	-5,67	30,4	41,1	-7,6
2	0,41	0,0054	76,58	0,51	0,0071	71,27	0,09	0,0017	-5,31	22,7	31,8	-6,9
3	0,52	0,0058	90,99	0,61	0,0060	102,60	0,09	0,0002	11,61	17,4	4,2	12,8
4	0,63	0,0061	102,91	0,72	0,0063	115,14	0,09	0,0001	12,23	14,2	2,1	11,9
5	0,74	0,0065	113,09	0,82	0,0065	126,97	0,08	-0,0001	13,88	11,1	-1,1	12,3
6	0,84	0,0069	121,11	0,93	0,0071	131,59	0,09	0,0002	10,48	11,1	2,2	8,7
7	0,95	0,0077	123,29	1,04	0,0077	135,00	0,09	0,0000	11,71	9,8	0,3	9,5
8	1,04	0,0088	118,70	1,13	0,0084	134,81	0,09	-0,0004	16,11	8,4	-4,5	13,6
9	1,13	0,0100	113,35	1,22	0,0094	130,66	0,09	-0,0006	17,31	8,0	-6,3	15,3
10	1,23	0,0116	106,04	1,32	0,0104	127,27	0,09	-0,0012	21,23	7,3	-10,6	20,0
11	1,31	0,0136	96,42	1,40	0,0119	117,80	0,10	-0,0017	21,38	7,3	-12,2	22,2
12	1,36	0,0178	76,80	1,49	0,0134	111,14	0,13	-0,0043	34,35	9,4	-24,4	44,7
13	1,40	0,0219	64,07	1,56	0,0160	97,41	0,16	-0,0059	33,33	11,3	-26,8	52,0

Tabla 4.6.9.-Comparación entre las características aerodinámicas del perfil NACA 64-418 y la modificación ZAREA 64-418.

			NAC	CA 64-	418,ZAR	EA 64-41	8 Re=	1.000.000)			
α (deg)	Cl _B	Cd_{B}	ε _B	Cl _M	Cd_M	٤ _M	ΔC_{L}	ΔC_D	Δε	%Cl	%Cd	%ε
0	0,41	0,0080	51,79	0,56	0,0100	55,51	0,14	0,0021	3,72	34,9	25,8	7,2
1	0,52	0,0082	64,28	0,66	0,0087	75,93	0,14	0,0006	11,66	26,6	7,1	18,1
2	0,62	0,0083	75,02	0,76	0,0088	86,47	0,14	0,0005	11,45	21,9	5,7	15,3
3	0,73	0,0086	85,46	0,86	0,0090	94,77	0,12	0,0005	9,31	17,0	5,5	10,9
4	0,83	0,0088	95,21	0,96	0,0091	105,50	0,12	0,0003	10,29	14,7	3,5	10,8
5	0,93	0,0091	102,22	0,99	0,0123	80,63	0,06	0,0032	-21,59	6,4	34,9	-21,1
6	1,03	0,0096	107,49	1,08	0,0131	82,91	0,06	0,0035	-24,58	5,4	36,6	-22,9
7	1,10	0,0120	91,45	1,14	0,0136	84,11	0,05	0,0016	-7,33	4,5	13,6	-8,0
8	1,15	0,0141	81,59	1,16	0,0183	63,03	0,00	0,0042	-18,56	0,4	29,9	-22,7
9	1,18	0,0182	65,04	1,16	0,0197	59,06	-0,02	0,0015	-5,98	-2,0	8,0	-9,2
10	1,25	0,0197	63,65	1,18	0,0213	55,16	-0,08	0,0016	-8,49	-6,2	8,2	-13,3
11	1,23	0,0214	57,53	1,10	0,0227	48,31	-0,14	0,0013	-9,22	-11,0	6,0	-16,0
12	1,26	0,0234	53,70	1,09	0,0246	44,35	-0,16	0,0012	-9,35	-13,0	5,3	-17,4

			NAC	CA 64-	418,ZAR	EA 64-41	8 Re=	3.000.000)			
α (deg)	Cl _B	Cd_{B}	ε _Β	Cl _M	Cd_M	٤ _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,41	0,0060	68,42	0,57	0,0078	72,66	0,15	0,0018	4,23	37,4	29,4	6,2
1	0,53	0,0062	85,06	0,67	0,0066	101,53	0,15	0,0004	16,47	27,8	7,1	19,4
2	0,64	0,0063	101,76	0,78	0,0066	118,47	0,14	0,0003	16,71	22,7	5,4	16,4
3	0,75	0,0065	116,23	0,89	0,0068	130,61	0,13	0,0003	14,38	17,9	4,9	12,4
4	0,85	0,0066	130,27	0,99	0,0068	146,24	0,14	0,0002	15,97	16,0	3,4	12,3
5	0,96	0,0070	137,47	1,05	0,0096	109,33	0,09	0,0026	-28,15	9,8	38,0	-20,5
6	1,04	0,0094	110,29	1,14	0,0102	112,09	0,10	0,0007	1,80	9,2	7,4	1,6
7	1,12	0,0110	102,55	1,24	0,0107	116,84	0,12	-0,0003	14,30	10,8	-2,7	13,9
8	1,21	0,0122	99,80	1,25	0,0148	84,20	0,03	0,0026	-15,60	2,7	21,7	-15,6
9	1,27	0,0147	86,51	1,33	0,0160	83,15	0,06	0,0013	-3,36	5,0	9,2	-3,9
10	1,35	0,0159	84,74	1,38	0,0171	80,78	0,03	0,0012	-3,96	2,3	7,3	-4,7
11	1,41	0,0172	81,97	1,46	0,0183	79,61	0,05	0,0011	-2,36	3,6	6,7	-2,9
12	1,49	0,0187	79,93	1,45	0,0195	74,49	-0,04	0,0008	-5,44	-2,6	4,5	-6,8
13	1,50	0,0202	74,01	1,37	0,0212	64,42	-0,13	0,0010	-9,60	-8,6	5,1	-13,0
14	1,51	0,0271	55,71	1,27	0,0233	54,21	-0,24	-0,0037	-1,49	-16,1	-13,8	-2,7

Tabla 4.6.9.-Comparación entre las características aerodinámicas del perfil NACA 64-418 y la modificación ZAREA 64-418 (continuación).

			NAC	A 64-4	18,ZARE	A 64-418	8 Re= 9	.000.000				
α (deg)	Cl _B	Cd_{B}	ε _B	Cl _M	Cd_M	ε _M	ΔC_{L}	ΔC_D	Δε	%Cl	%Cd	%ε
0	0,41	0,0048	86,13	0,57	0,0063	89,71	0,15	0,0015	3,58	37,6	32,1	4,2
1	0,53	0,0049	108,19	0,68	0,0052	130,89	0,15	0,0003	22,70	29,0	6,7	21,0
2	0,64	0,0049	129,91	0,78	0,0052	151,01	0,14	0,0003	21,10	22,4	5,3	16,2
3	0,76	0,0050	150,10	0,90	0,0053	169,87	0,14	0,0003	19,77	18,9	5,0	13,2
4	0,87	0,0054	161,68	1,01	0,0057	175,38	0,14	0,0004	13,70	15,7	6,7	8,5
5	0,96	0,0073	132,26	1,09	0,0077	141,77	0,13	0,0004	9,50	13,3	5,7	7,2
6	1,06	0,0086	123,13	1,19	0,0081	146,67	0,13	-0,0005	23,54	12,4	-5,6	19,1
7	1,16	0,0094	123,32	1,29	0,0085	152,46	0,13	-0,0009	29,13	11,5	-9,8	23,6
8	1,25	0,0103	121,55	1,33	0,0121	109,53	0,08	0,0018	-12,02	6,2	17,9	-9,9
9	1,33	0,0120	111,37	1,40	0,0131	107,40	0,07	0,0011	-3,98	5,4	9,3	-3,6
10	1,42	0,0130	109,39	1,48	0,0140	105,61	0,06	0,0010	-3,78	4,1	7,8	-3,5
11	1,49	0,0140	105,95	1,54	0,0149	103,82	0,06	0,0008	-2,13	3,8	5,9	-2,0
12	1,56	0,0151	103,51	1,63	0,0160	101,38	0,06	0,0009	-2,13	4,1	6,2	-2,1
13	1,64	0,0166	98,80	1,67	0,0173	96,34	0,03	0,0007	-2,46	1,9	4,5	-2,5
14	1,70	0,0321	52,83	1,65	0,0190	86,96	-0,04	-0,0131	34,13	-2,4	-40,7	64,6
15	1,76	0,0348	50,51	1,66	0,0208	79,69	-0,10	-0,0141	29,18	-6,0	-40,4	57,8

Tabla 4.6.10.-Comparación entre las características aerodinámicas del perfil NACA 65-006 y la modificación ZAREA 65-006.

			NAC	A 65-0	06,ZARE	A 65-006	8 Re=	1.000.000				
α (deg)	Cl _B	Cd_{B}	ε _B	Cl _M	Cd_M	٤ _M	ΔC_{L}	ΔC_D	Δε	%Cl	%Cd	%ε
0	0,00	0,0047	0,00	0,09	0,0071	12,95	0,09	0,0024	12,95	-	50,6	-
1	0,10	0,0047	22,02	0,19	0,0051	37,84	0,09	0,0004	15,82	84,9	7,6	71,8
2	0,21	0,0074	28,23	0,29	0,0062	47,58	0,09	-0,0012	19,36	41,2	-16,3	68,6
3	0,31	0,0077	40,55	0,39	0,0077	50,85	0,08	0,0000	10,29	24,8	-0,5	25,4
4	0,40	0,0134	30,12	0,50	0,0139	35,79	0,09	0,0004	5,67	22,7	3,3	18,8

			NAC	A 65-0	06,ZARE	A 65-006	6 Re= 3	3.000.000				
α (deg)	Cl _B	Cd_{B}	ε _B	Cl _M	Cd_M	٤ _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,00	0,0038	0,00	0,09	0,0060	15,27	0,09	0,0022	15,27	-	56,7	-
1	0,11	0,0040	26,91	0,19	0,0049	39,58	0,09	0,0009	12,67	79,0	21,7	47,1
2	0,22	0,0056	38,40	0,30	0,0054	55,50	0,08	-0,0002	17,09	38,4	-4,2	44,5
3	0,32	0,0059	54,89	0,40	0,0060	66,59	0,07	0,0001	11,70	22,9	1,3	21,3
4	0,43	0,0063	67,86	0,50	0,0112	44,90	0,08	0,0050	-22,96	18,7	79,3	-33,8
5	0,54	0,0070	77,06	0,61	0,0069	88,33	0,07	0,0000	11,27	13,9	-0,6	14,6
6	0,65	0,0079	81,75	0,72	0,0076	94,49	0,07	-0,0003	12,74	11,0	-4,0	15,6

			NAC	A 65-0	06,ZARE	A 65-006	Re=	9.000.000				
α (deg)	Cl _B	Cd_{B}	ε _B	Cl _M	Cd_M	٤ _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,00	0,0035	0,00	0,09	0,0057	16,13	0,09	0,0021	16,13	-	60,6	-
1	0,11	0,0045	24,14	0,20	0,0058	34,52	0,09	0,0013	10,38	83,5	28,3	43,0
2	0,22	0,0049	45,37	0,31	0,0048	63,64	0,08	-0,0001	18,26	38,3	-1,4	40,3
3	0,33	0,0050	66,03	0,41	0,0050	82,37	0,08	0,0000	16,34	24,2	-0,4	24,7
4	0,43	0,0050	86,09	0,51	0,0093	55,19	0,08	0,0043	-30,90	18,7	85,2	-35,9
5	0,54	0,0055	98,26	0,62	0,0056	111,85	0,08	0,0000	13,59	14,1	0,2	13,8
6	0,66	0,0062	105,72	0,73	0,0061	119,76	0,07	-0,0001	14,04	11,1	-1,9	13,3
7	0,77	0,0071	108,36	0,84	0,0068	123,73	0,07	-0,0003	15,36	9,1	-4,5	14,2
8	0,88	0,0083	106,49	0,94	0,0076	123,10	0,06	-0,0007	16,61	6,4	-8,0	15,6
9	0,96	0,0097	99,42	1,04	0,0085	121,75	0,07	-0,0012	22,33	7,6	-12,2	22,5
10	1,05	0,0117	89,81	1,13	0,0100	113,44	0,08	-0,0017	23,63	7,6	-14,8	26,3

Tabla 4.6.11.-Comparación entre las características aerodinámicas del perfil NACA 65-209 y la modificación ZAREA 65-209.

			NAC	A 65-2	09,ZARE	A 65-209	Re= 1	.000.000				
α (deg)	Cl _B	Cd_{B}	ε _B	Cl _M	Cd_M	ε _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,20	0,0057	35,15	0,30	0,0077	38,46	0,10	0,0020	3,31	47,7	35,0	9,4
1	0,31	0,0057	53,52	0,40	0,0059	68,03	0,09	0,0002	14,51	30,8	2,9	27,1
2	0,41	0,0059	70,25	0,51	0,0062	82,59	0,09	0,0003	12,35	22,7	4,3	17,6
3	0,52	0,0072	71,64	0,61	0,0076	80,65	0,09	0,0004	9,01	18,1	4,9	12,6
4	0,63	0,0098	64,53	0,72	0,0089	80,87	0,09	-0,0009	16,34	14,3	-8,8	25,3
5	0,72	0,0105	68,86	0,81	0,0109	74,46	0,09	0,0004	5,60	12,0	3,6	8,1
6	0,82	0,0115	71,57	0,90	0,0115	78,45	0,08	0,0000	6,88	9,4	-0,2	9,6
7	0,90	0,0126	71,69	0,99	0,0126	78,44	0,08	0,0000	6,75	9,4	0,0	9,4
8	0,99	0,0145	68,16	1,08	0,0140	77,40	0,09	-0,0005	9,24	9,4	-3,6	13,6

			NAC	A 65-2	09,ZARE	A 65-209	Re= 3	.000.000				
α (deg)	Cl _B	Cd_{B}	٤ _B	Cl _M	Cd_M	ε _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,20	0,0042	47,06	0,30	0,0060	49,16	0,10	0,0018	2,10	49,0	42,6	4,5
1	0,31	0,0043	71,07	0,40	0,0047	86,10	0,10	0,0004	15,02	31,0	8,2	21,1
2	0,41	0,0050	82,16	0,51	0,0059	86,32	0,10	0,0009	4,15	23,0	17,1	5,1
3	0,52	0,0071	73,84	0,62	0,0069	90,11	0,09	-0,0002	16,27	17,9	-3,4	22,0
4	0,63	0,0078	81,46	0,73	0,0075	97,08	0,09	-0,0003	15,62	14,8	-3,7	19,2
5	0,74	0,0083	88,72	0,83	0,0087	95,21	0,08	0,0003	6,49	11,4	3,8	7,3
6	0,83	0,0090	92,37	0,91	0,0091	100,88	0,08	0,0000	8,51	9,6	0,3	9,2
7	0,92	0,0098	94,36	1,01	0,0100	101,62	0,09	0,0002	7,26	10,0	2,1	7,7
8	1,02	0,0110	92,64	1,11	0,0110	101,29	0,09	0,0000	8,65	8,9	-0,4	9,3
9	1,11	0,0130	85,63	1,21	0,0121	99,90	0,10	-0,0009	14,26	8,9	-6,6	16,7
10	1,19	0,0152	78,63	1,29	0,0134	96,35	0,10	-0,0017	17,72	8,6	-11,4	22,5
11	1,26	0,0182	69,51	1,37	0,0155	88,56	0,11	-0,0027	19,05	8,6	-14,7	27,4
12	1,31	0,0223	59,03	1,45	0,0176	82,13	0,13	-0,0047	23,10	10,0	-20,9	39,1

			NAC	A 65-2	09,ZARE	A 65-209	Re= 9	.000.000				
α (deg)	Cl _B	Cd_{B}	ε _B	Cl _M	Cd_M	ε _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,20	0,0035	56,66	0,30	0,0052	57,30	0,10	0,0017	0,64	49,0	47,4	1,1
1	0,31	0,0038	81,09	0,40	0,0045	88,73	0,10	0,0008	7,64	31,2	19,9	9,4
2	0,42	0,0055	76,17	0,51	0,0053	96,87	0,10	-0,0002	20,70	22,9	-3,4	27,2
3	0,53	0,0059	89,14	0,62	0,0058	107,54	0,10	-0,0001	18,40	18,1	-2,1	20,6
4	0,64	0,0063	100,61	0,73	0,0063	116,85	0,10	-0,0001	16,24	15,1	-0,9	16,1
5	0,75	0,0068	109,84	0,84	0,0071	118,72	0,10	0,0003	8,89	13,0	4,5	8,1
6	0,85	0,0073	116,46	0,94	0,0073	128,16	0,09	0,0000	11,70	10,2	0,2	10,0
7	0,94	0,0078	120,77	1,03	0,0080	128,77	0,09	0,0002	7,99	10,0	3,2	6,6
8	1,04	0,0087	119,74	1,13	0,0088	128,73	0,09	0,0001	8,99	8,9	1,3	7,5
9	1,14	0,0101	112,63	1,23	0,0097	127,07	0,10	-0,0004	14,44	8,4	-3,9	12,8
10	1,23	0,0116	106,18	1,33	0,0107	123,82	0,09	-0,0009	17,65	7,7	-7,7	16,6
11	1,32	0,0135	97,67	1,41	0,0122	115,41	0,09	-0,0013	17,74	7,1	-9,3	18,2
12	1,39	0,0158	87,81	1,50	0,0137	109,28	0,11	-0,0021	21,47	7,9	-13,3	24,5
13	1,45	0,0188	77,24	1,57	0,0154	102,14	0,12	-0,0034	24,90	8,4	-18,0	32,2
14	1,43	0,0256	55,80	1,64	0,0174	94,42	0,21	-0,0083	38,63	14,6	-32,3	69,2

Tabla 4.6.12.-Comparación entre las características aerodinámicas del perfil NACA 65-415 y la modificación ZAREA 65-415.

			NAC	CA 65-	415,ZAR	EA 65-41	5 Re=	1.000.000)			
α (deg)	Cl _B	Cd_{B}	ε _B	Cl _M	Cd_M	ε _M	ΔC_{L}	ΔC_D	Δε	%Cl	%Cd	%ε
0	0,41	0,0070	58,19	0,60	0,0089	67,37	0,19	0,0019	9,19	46,6	26,6	15,8
1	0,52	0,0072	72,20	0,70	0,0075	93,46	0,18	0,0003	21,26	35,6	4,7	29,4
2	0,63	0,0073	86,49	0,79	0,0109	72,28	0,16	0,0036	-14,21	25,2	49,9	-16,4
3	0,73	0,0075	97,16	0,88	0,0114	77,29	0,15	0,0039	-19,87	21,0	52,1	-20,5
4	0,83	0,0077	107,00	0,98	0,0119	82,50	0,15	0,0041	-24,50	18,1	53,1	-22,9
5	0,92	0,0093	98,86	1,07	0,0124	86,22	0,15	0,0031	-12,64	16,0	33,0	-12,8
6	0,99	0,0141	69,98	1,15	0,0129	89,07	0,17	-0,0011	19,09	17,1	-8,0	27,3
7	1,07	0,0152	70,45	1,25	0,0138	90,18	0,18	-0,0014	19,73	16,4	-9,1	28,0
8	1,15	0,0165	69,92	1,33	0,0145	91,51	0,17	-0,0020	21,59	15,0	-12,2	30,9
9	1,23	0,0178	69,07	1,35	0,0202	66,93	0,12	0,0024	-2,14	10,1	13,6	-3,1
10	1,29	0,0194	66,41	1,42	0,0219	64,74	0,13	0,0025	-1,67	10,0	12,9	-2,5
11	1,36	0,0213	63,79	1,43	0,0241	59,47	0,07	0,0028	-4,32	5,3	12,9	-6,8
12	1,43	0,0235	60,61	1,38	0,0334	41,31	-0,05	0,0099	-19,31	-3,3	41,9	-31,9

			NAC	CA 65-	415,ZAR	EA 65-41	5 Re=	3.000.000)			
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd_M	٤ _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,41	0,0070	58,19	0,61	0,0069	87,95	0,20	-0,0001	29,76	48,4	-1,8	51,1
0	0,41	0,0052	77,92	0,72	0,0056	128,77	0,31	0,0003	50,85	76,2	6,6	65,3
1	0,52	0,0054	96,82	0,81	0,0085	94,62	0,29	0,0032	-2,19	55,4	59,1	-2,3
2	0,63	0,0054	117,13	0,91	0,0090	102,01	0,28	0,0036	-15,13	44,4	65,9	-12,9
3	0,74	0,0056	134,05	1,01	0,0093	108,90	0,27	0,0037	-25,15	35,9	67,3	-18,8
4	0,84	0,0071	117,59	1,11	0,0097	114,79	0,27	0,0026	-2,79	32,7	35,9	-2,4
5	0,93	0,0095	98,64	1,21	0,0101	119,14	0,27	0,0007	20,50	29,2	7,0	20,8
6	1,03	0,0113	91,01	1,30	0,0107	120,82	0,27	-0,0006	29,81	26,1	-5,0	32,8
7	1,12	0,0122	91,87	1,39	0,0112	123,83	0,27	-0,0010	31,96	24,3	-7,8	34,8
8	1,21	0,0132	91,55	1,43	0,0164	87,37	0,22	0,0032	-4,18	18,6	24,3	-4,6
9	1,29	0,0142	91,07	1,51	0,0178	84,90	0,21	0,0035	-6,17	16,5	25,0	-6,8
10	1,36	0,0155	88,09	1,58	0,0195	81,10	0,21	0,0040	-6,98	15,6	25,6	-7,9
11	1,44	0,0169	85,49	1,62	0,0275	58,83	0,18	0,0107	-26,65	12,4	63,3	-31,2
12	1,51	0,0184	82,20	1,62	0,0297	54,69	0,11	0,0113	-27,51	7,4	61,4	-33,5
13	1,58	0,0207	76,53	1,56	0,0326	47,93	-0,02	0,0119	-28,60	-1,3	57,6	-37,4
14	1,64	0,0400	40,95	1,39	0,0356	39,08	-0,25	-0,0044	-1,87	-15,0	-10,9	-4,6

Tabla 4.6.12.-Comparación entre las características aerodinámicas del perfil NACA 65-415 y la modificación ZAREA 65-415. (continuación).

			NAC	CA 65-4	415,ZAR	EA 65-41	5 Re=	9.000.000				
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd_M	ε _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,41	0,0041	99,12	0,61	0,0055	110,27	0,20	0,0014	11,16	49,5	34,4	11,3
1	0,52	0,0042	124,45	0,72	0,0046	155,71	0,20	0,0005	31,26	38,7	10,8	25,1
2	0,63	0,0043	148,04	0,82	0,0069	119,83	0,19	0,0026	-28,22	29,7	60,2	-19,1
3	0,75	0,0052	144,71	0,93	0,0072	128,69	0,18	0,0020	-16,02	24,3	39,7	-11,1
4	0,84	0,0073	116,40	1,03	0,0075	138,55	0,19	0,0002	22,15	22,3	2,8	19,0
5	0,95	0,0082	116,14	1,14	0,0078	146,58	0,19	-0,0004	30,44	20,0	-4,9	26,2
6	1,05	0,0092	114,28	1,24	0,0081	153,30	0,19	-0,0011	39,02	18,3	-11,8	34,1
7	1,15	0,0099	115,64	1,34	0,0086	155,92	0,19	-0,0013	40,29	16,6	-13,5	34,8
8	1,24	0,0107	115,63	1,44	0,0090	160,66	0,20	-0,0018	45,04	15,9	-16,6	39,0
9	1,34	0,0116	116,01	1,49	0,0134	111,10	0,15	0,0019	-4,91	11,3	16,2	-4,2
10	1,42	0,0126	112,66	1,57	0,0145	108,33	0,15	0,0019	-4,33	10,9	15,3	-3,8
11	1,50	0,0137	110,00	1,65	0,0159	103,86	0,15	0,0022	-6,14	9,9	16,4	-5,6
12	1,58	0,0148	106,52	1,70	0,0322	52,83	0,12	0,0173	-53,68	7,6	116,9	-50,4
13	1,66	0,0165	100,02	1,77	0,0355	49,74	0,11	0,0190	-50,28	6,8	114,8	-50,3
14	1,72	0,0327	52,50	1,83	0,0391	46,80	0,11	0,0064	-5,70	6,5	19,5	-10,9
15	1,79	0,0357	50,10	1,83	0,0432	42,36	0,04	0,0075	-7,75	2,4	21,2	-15,5
16	1,83	0,0396	46,26	1,67	0,0473	35,23	-0,16	0,0077	-11,04	-9,0	19,5	-23,9

Tabla 4.6.13.-Comparación entre las características aerodinámicas del perfil NACA 65-421 y la modificación ZAREA 65-421.

		NACA 65-421,ZAREA 65-421 Re= 1.000.000														
α (deg)	Cl _B	Cd_B	٤ _B	Cl _M	Cd_M	٤ _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε				
0	0,40	0,0081	49,62	0,59	0,0103	56,67	0,18	0,0022	7,05	44,9	26,9	14,2				
1	0,51	0,0082	61,89	0,68	0,0103	66,54	0,18	0,0021	4,64	34,4	25,0	7,5				
2	0,61	0,0085	72,48	0,78	0,0105	74,58	0,17	0,0020	2,11	27,5	23,9	2,9				
3	0,71	0,0086	83,30	0,88	0,0106	83,68	0,17	0,0020	0,38	23,8	23,3	0,5				
4	0,81	0,0089	90,62	0,97	0,0109	89,61	0,16	0,0019	-1,01	20,2	21,5	-1,1				
5	0,90	0,0093	96,95	1,06	0,0112	94,33	0,16	0,0019	-2,62	17,4	20,6	-2,7				
6	1,00	0,0096	104,68	1,05	0,0190	55,58	0,05	0,0094	-49,11	5,0	97,8	-46,9				
7	1,09	0,0103	105,57	1,06	0,0201	52,83	-0,03	0,0098	-52,74	-2,4	95,0	-50,0				
8	1,12	0,0135	83,31	-	-	-	-	-	-	-	-	-				
9	1,19	0,0162	73,29	1,12	0,0235	47,53	-0,07	0,0073	-25,76	-5,8	45,2	-35,2				

	NACA 65-421,ZAREA 65-421 Re= 3.000.000													
α (deg)	Cl _B	Cd_{B}	εΒ	Cl _M	Cd_M	٤ _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε		
0	0,41	0,0060	68,58	0,61	0,0079	77,03	0,19	0,0019	8,44	46,9	30,8	12,3		
1	0,53	0,0061	86,32	0,72	0,0078	91,63	0,19	0,0018	5,31	36,7	28,8	6,2		
2	0,64	0,0063	101,40	0,82	0,0080	103,17	0,19	0,0017	1,77	29,6	27,4	1,7		
3	0,75	0,0063	118,11	0,93	0,0080	116,58	0,18	0,0017	-1,53	24,7	26,4	-1,3		
4	0,85	0,0066	128,68	1,03	0,0082	125,52	0,18	0,0016	-3,16	21,0	24,1	-2,5		
5	0,95	0,0069	138,20	1,12	0,0091	122,75	0,16	0,0022	-15,46	17,2	31,9	-11,2		
6	1,05	0,0076	138,12	1,12	0,0154	72,49	0,06	0,0078	-65,64	6,2	102,3	-47,5		
7	1,10	0,0106	103,99	1,19	0,0164	72,64	0,09	0,0058	-31,35	8,5	55,3	-30,1		
8	1,17	0,0125	93,85	1,28	0,0177	72,36	0,11	0,0052	-21,49	9,1	41,5	-22,9		
9	1,25	0,0140	89,43	1,36	0,0192	71,25	0,11	0,0051	-18,17	8,9	36,7	-20,3		
10	1,32	0,0172	76,51	1,36	0,0205	66,62	0,05	0,0032	-9,89	3,5	18,8	-12,9		
11	1,39	0,0183	75,69	1,38	0,0222	62,48	0,00	0,0038	-13,21	-0,2	20,9	-17,4		
12	1,47	0,0200	73,34	1,40	0,0241	58,11	-0,07	0,0040	-15,23	-4,8	20,2	-20,8		
13	1,42	0,0213	66,67	1,32	0,0257	51,36	-0,10	0,0044	-15,31	-7,1	20,5	-23,0		
14	1,43	0,0230	62,33	1,31	0,0279	47,00	-0,12	0,0049	-15,34	-8,5	21,4	-24,6		
15	1,44	0,0249	57,89	1,30	0,0304	42,73	-0,14	0,0055	-15,16	-9,8	22,1	-26,2		

Tabla 4.6.13.-Comparación entre las características aerodinámicas del perfil NACA 65-421 y la modificación ZAREA 65-421 (continuación).

			NAC	A 65-4	21,ZARE	A 65-421	Re= 9	.000.000				
α (deg)	Cl _B	Cd_B	ε _в	Cl _M	Cd_M	٤ _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,42	0,0047	89,28	0,62	0,0063	99,81	0,21	0,0016	10,54	49,8	34,0	11,8
1	0,53	0,0047	112,52	0,74	0,0062	119,01	0,21	0,0015	6,49	38,6	31,0	5,8
2	0,65	0,0049	134,12	0,84	0,0063	133,73	0,19	0,0014	-0,39	29,3	29,7	-0,3
3	0,77	0,0049	156,63	0,95	0,0066	144,99	0,19	0,0017	-11,63	24,2	34,2	-7,4
4	0,87	0,0051	170,26	1,05	0,0076	138,00	0,18	0,0025	-32,26	20,7	48,9	-18,9
5	0,97	0,0059	164,34	1,13	0,0088	129,29	0,16	0,0028	-35,06	16,2	47,7	-21,3
6	1,05	0,0081	129,29	1,17	0,0127	92,57	0,12	0,0046	-36,72	11,8	56,1	-28,4
7	1,14	0,0098	116,61	1,26	0,0135	92,72	0,12	0,0038	-23,89	10,5	38,9	-20,5
8	1,22	0,0109	111,73	1,35	0,0146	92,38	0,13	0,0037	-19,35	10,8	34,0	-17,3
9	1,30	0,0119	109,68	1,42	0,0157	90,88	0,12	0,0038	-18,80	9,3	31,9	-17,1
10	1,37	0,0140	97,93	1,51	0,0169	89,16	0,14	0,0030	-8,77	10,2	21,1	-9,0
11	1,46	0,0150	97,12	1,58	0,0181	87,12	0,12	0,0031	-10,00	8,1	20,5	-10,3
12	1,53	0,0162	94,36	1,65	0,0196	83,88	0,11	0,0034	-10,48	7,5	20,9	-11,1
13	1,62	0,0175	92,42	1,67	0,0213	78,17	0,05	0,0038	-14,24	3,0	21,8	-15,4
14	1,70	0,0189	89,98	1,59	0,0228	69,91	-0,11	0,0039	-20,07	-6,4	20,4	-22,3
15	1,70	0,0201	84,46	1,59	0,0247	64,39	-0,11	0,0046	-20,07	-6,3	22,9	-23,8
16	1,72	0,0223	76,86	1,59	0,0269	58,97	-0,13	0,0046	-17,89	-7,5	20,5	-23,3

Tabla 4.6.14.-Comparación entre las características aerodinámicas del perfil NACA 65-618 y la modificación ZAREA 65-618.

	NACA 65-618,ZAREA 65-618 Re= 1.000.000													
α (deg)	Cl _B	Cd_{B}	ε _B	Cl _M	Cd_M	٤ _M	ΔC_{L}	ΔC_D	Δε	%Cl	%Cd	%ε		
0	0,61	0,0079	76,82	0,75	0,0098	76,19	0,14	0,0019	-0,64	23,4	24,4	-0,8		
1	0,71	0,0080	89,04	0,85	0,0084	101,07	0,13	0,0004	12,03	18,8	4,7	13,5		
2	0,82	0,0083	98,38	0,95	0,0087	108,97	0,14	0,0004	10,60	16,7	5,4	10,8		
3	0,92	0,0086	106,73	1,05	0,0089	117,88	0,13	0,0003	11,15	14,7	3,8	10,4		
4	1,02	0,0088	115,34	1,15	0,0094	122,30	0,13	0,0006	6,96	12,9	6,5	6,0		
5	1,12	0,0093	120,61	1,24	0,0098	125,69	0,12	0,0006	5,09	10,6	6,1	4,2		
6	1,21	0,0097	124,16	1,27	0,0145	87,91	0,06	0,0047	-36,25	5,2	48,6	-29,2		
7	1,26	0,0131	96,43	1,33	0,0165	80,78	0,07	0,0034	-15,64	5,7	26,2	-16,2		
8	1,31	0,0161	81,71	1,40	0,0175	80,21	0,09	0,0014	-1,50	6,8	8,8	-1,8		
9	1,36	0,0206	66,02	1,48	0,0185	80,40	0,13	-0,0021	14,39	9,2	-10,3	21,8		
10	1,42	0,0220	64,59	1,56	0,0199	78,81	0,14	-0,0022	14,22	10,0	-9,9	22,0		
11	1,48	0,0238	61,94	1,62	0,0211	76,85	0,15	-0,0027	14,91	10,0	-11,3	24,1		
12	1,49	0,0259	57,48	1,51	0,0265	57,03	0,02	0,0006	-0,45	1,6	2,4	-0,8		

			NAC	A 65-6	18,ZARE	A 65-618	3 Re= 3	3.000.000				
α (deg)	Cl _B	Cd_{B}	ε _B	Cl _M	Cd_M	٤ _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,61	0,0059	104,12	0,76	0,0075	100,78	0,15	0,0017	-3,34	24,2	28,3	-3,2
1	0,72	0,0060	121,42	0,87	0,0062	139,75	0,15	0,0003	18,33	20,2	4,4	15,1
2	0,83	0,0062	134,61	0,98	0,0065	151,04	0,15	0,0003	16,42	17,8	5,0	12,2
3	0,94	0,0064	146,56	1,09	0,0066	164,46	0,15	0,0002	17,90	15,7	3,1	12,2
4	1,05	0,0065	160,38	1,18	0,0071	166,75	0,14	0,0006	6,37	13,3	9,0	4,0
5	1,14	0,0072	159,34	1,27	0,0084	150,42	0,13	0,0013	-8,93	11,0	17,6	-5,6
6	1,21	0,0101	119,66	1,34	0,0113	118,94	0,13	0,0011	-0,71	10,4	11,1	-0,6
7	1,29	0,0125	103,53	1,41	0,0130	108,46	0,12	0,0005	4,92	9,2	4,2	4,8
8	1,36	0,0139	98,28	1,49	0,0138	107,84	0,13	-0,0001	9,57	9,2	-0,5	9,7
9	1,43	0,0165	86,53	1,58	0,0145	108,46	0,15	-0,0020	21,92	10,4	-11,9	25,3
10	1,50	0,0176	84,97	1,65	0,0155	106,54	0,15	-0,0022	21,57	9,9	-12,3	25,4
11	1,58	0,0193	82,14	1,73	0,0166	104,16	0,15	-0,0027	22,02	9,4	-13,7	26,8
12	1,65	0,0207	79,77	1,76	0,0212	82,97	0,11	0,0005	3,20	6,8	2,6	4,0
13	1,71	0,0225	75,71	1,80	0,0228	78,82	0,09	0,0002	3,11	5,2	1,1	4,1
14	1,78	0,0246	72,15	1,80	0,0244	73,66	0,02	-0,0002	1,50	1,4	-0,7	2,1

Tabla 4.6.14.-Comparación entre las características aerodinámicas del perfil NACA 65-618 y la modificación ZAREA 65-618 (continuación).

	NACA 65-618,ZAREA 65-618 Re= 9.000.000													
α (deg)	Cl _B	Cd_{B}	٤B	Cl _M	Cd _M	٤ _M	ΔC_L	ΔC_{D}	Δε	%Cl	%Cd	%ε		
0	0,61	0,0046	134,19	0,77	0,0060	128,43	0,16	0,0014	-5,76	25,4	31,1	-4,3		
1	0,73	0,0046	157,61	0,88	0,0048	183,25	0,15	0,0002	25,64	21,1	4,1	16,3		
2	0,84	0,0048	177,39	1,00	0,0050	199,08	0,15	0,0002	21,69	17,9	5,1	12,2		
3	0,96	0,0050	193,33	1,09	0,0055	197,71	0,14	0,0006	4,38	14,3	11,8	2,3		
4	1,06	0,0054	194,27	1,20	0,0066	180,51	0,14	0,0012	-13,76	13,0	21,6	-7,1		
5	1,15	0,0077	149,45	1,29	0,0078	165,74	0,14	0,0001	16,29	12,6	1,5	10,9		
6	1,24	0,0096	129,36	1,39	0,0090	154,28	0,15	-0,0006	24,92	12,0	-6,1	19,3		
7	1,33	0,0108	123,27	1,47	0,0105	140,25	0,14	-0,0003	16,99	10,2	-3,1	13,8		
8	1,42	0,0118	120,71	1,55	0,0111	139,88	0,13	-0,0007	19,17	9,3	-5,6	15,9		
9	1,49	0,0135	110,54	1,65	0,0119	138,50	0,15	-0,0016	27,96	10,4	-11,9	25,3		
10	1,57	0,0144	108,73	1,73	0,0127	136,18	0,15	-0,0018	27,45	9,8	-12,3	25,2		
11	1,66	0,0158	105,31	1,80	0,0143	125,39	0,14	-0,0014	20,08	8,3	-9,0	19,1		
12	1,73	0,0169	102,58	1,85	0,0173	106,92	0,12	0,0004	4,35	6,9	2,6	4,2		
13	1,80	0,0184	97,51	1,91	0,0186	102,69	0,12	0,0002	5,19	6,4	1,1	5,3		
14	1,88	0,0200	93,72	1,99	0,0199	99,89	0,11	-0,0001	6,16	6,0	-0,5	6,6		
15	1,94	0,0215	89,91	2,04	0,0379	53,78	0,10	0,0164	-36,13	5,3	76,1	-40,2		
16	1,98	0,0238	83,36	1,90	0,0444	42,73	-0,08	0,0206	-40,63	-4,3	86,8	-48,7		
17	1,98	0,0449	44,07	1,78	0,0500	35,59	-0,20	0,0051	-8,48	-10,1	11,3	-19,2		

Tabla 4.6.15.-Comparación entre las características aerodinámicas del perfil NACA 66-221 y la modificación ZAREA 66-221.

			NA	CA 66	-221,ZAF	REA 66-2	21 Re	= 1.000.00	00			
α (deg)	Cl _B	Cd_{B}	ε _B	Cl _M	Cd _M	٤ _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,18	0,0070	26,19	0,38	0,0097	39,38	0,20	0,0027	13,18	108,2	38,5	50,3
1	0,29	0,0070	41,75	0,49	0,0095	51,40	0,20	0,0025	9,65	66,7	35,4	23,1
2	0,40	0,0071	56,61	0,57	0,0074	76,06	0,16	0,0003	19,45	40,9	4,9	34,4
3	0,50	0,0073	68,53	0,63	0,0125	50,01	0,12	0,0052	-18,52	25,0	71,3	-27,0
4	0,59	0,0074	80,13	0,72	0,0132	54,75	0,13	0,0057	-25,38	21,1	77,3	-31,7
5	0,70	0,0076	91,55	0,81	0,0139	58,63	0,12	0,0063	-32,92	16,8	82,4	-36,0
6	0,76	0,0104	73,83	0,90	0,0171	52,80	0,14	0,0067	-21,03	17,8	64,7	-28,5
7	0,84	0,0160	52,38	1,00	0,0184	54,44	0,17	0,0024	2,06	19,8	15,3	3,9
8	0,93	0,0170	54,48	1,08	0,0197	54,78	0,15	0,0027	0,30	16,3	15,6	0,6
9	1,03	0,0184	55,80	1,12	0,0210	53,40	0,09	0,0026	-2,39	9,1	13,9	-4,3
10	1,11	0,0197	56,32	1,16	0,0224	51,73	0,05	0,0027	-4,59	4,2	13,4	-8,2
11	1,15	0,0213	54,15	1,19	0,0241	49,29	0,03	0,0028	-4,86	2,8	12,9	-9,0
12	1,19	0,0230	51,89	1,28	0,0264	48,37	0,09	0,0034	-3,52	7,2	15,0	-6,8
13	1,22	0,0248	49,26	1,30	0,0284	45,69	0,07	0,0036	-3,57	6,1	14,4	-7,2
14	1,25	0,0268	46,39	1,31	0,0305	42,94	0,06	0,0036	-3,45	5,1	13,5	-7,4
15	1,26	0,0298	42,39	1,31	0,0328	40,02	0,05	0,0030	-2,37	4,1	10,2	-5,6
16	1,27	0,0325	39,11	1,31	0,0360	36,46	0,04	0,0035	-2,64	3,1	10,6	-6,8
17	1,28	0,0356	35,79	1,30	0,0389	33,53	0,03	0,0033	-2,26	2,2	9,1	-6,3

			NA	CA 66	-221,ZAF	REA 66-2	21 Re	= 3.000.00)0			
α (deg)	Cl _B	Cd_{B}	ε _B	Cl _M	Cd _M	٤ _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,18	0,0070	26,19	0,41	0,0073	55,50	0,22	0,0003	29,30	122,1	4,8	111,9
1	0,29	0,0070	41,75	0,51	0,0071	71,77	0,22	0,0001	30,02	74,8	1,7	71,9
2	0,40	0,0071	56,61	0,61	0,0053	115,49	0,21	-0,0018	58,88	52,6	-25,2	104,0
3	0,50	0,0073	68,53	0,66	0,0099	67,31	0,16	0,0026	-1,23	32,7	35,1	-1,8
4	0,59	0,0074	80,13	0,76	0,0104	73,34	0,17	0,0030	-6,79	28,4	40,3	-8,5
5	0,70	0,0076	91,55	0,86	0,0110	78,20	0,17	0,0034	-13,35	23,7	44,8	-14,6
6	0,76	0,0104	73,83	0,94	0,0138	68,17	0,18	0,0035	-5,66	23,2	33,5	-7,7
7	0,84	0,0160	52,38	1,04	0,0147	70,29	0,20	-0,0012	17,91	23,8	-7,8	34,2
8	0,93	0,0170	54,48	1,13	0,0158	71,44	0,20	-0,0012	16,96	21,5	-7,3	31,1
9	1,03	0,0184	55,80	1,22	0,0168	72,22	0,19	-0,0016	16,43	18,3	-8,6	29,4
10	1,11	0,0197	56,32	1,32	0,0182	72,23	0,21	-0,0015	15,91	18,7	-7,4	28,2
11	1,15	0,0213	54,15	1,39	0,0197	70,64	0,24	-0,0016	16,48	20,4	-7,7	30,4
12	1,19	0,0230	51,89	1,42	0,0210	67,70	0,23	-0,0019	15,82	19,5	-8,4	30,5
13	1,22	0,0248	49,26	1,45	0,0225	64,42	0,23	-0,0023	15,17	18,8	-9,2	30,8
14	1,25	0,0268	46,39	1,47	0,0241	61,17	0,23	-0,0028	14,78	18,2	-10,3	31,9
15	1,26	0,0298	42,39	1,49	0,0258	57,62	0,22	-0,0040	15,24	17,7	-13,4	35,9
16	1,27	0,0325	39,11	1,49	0,0282	52,96	0,22	-0,0044	13,86	17,3	-13,4	35,4
17	1,28	0,0356	35,79	1,58	0,0312	50,53	0,30	-0,0044	14,74	23,7	-12,4	41,2

Tabla 4.6.15.-Comparación entre las características aerodinámicas del perfil NACA 66-221 y la modificación ZAREA 66-221 (continuación).

			NAC	CA 66-	221,ZAR	EA 66-22	21 Re=	9.000.00	0			
α (deg)	Cl _B	Cd_{B}	٤ _B	Cl _M	Cd _M	ε _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,21	0,0038	55,80	0,42	0,0057	73,19	0,21	0,0020	17,39	100,6	52,9	31,2
1	0,33	0,0038	86,28	0,52	0,0056	93,22	0,19	0,0018	6,94	58,7	46,9	8,0
2	0,45	0,0038	116,78	0,62	0,0052	117,60	0,17	0,0014	0,83	37,4	36,4	0,7
3	0,55	0,0039	141,73	0,69	0,0079	87,28	0,14	0,0040	-54,45	25,1	103,2	-38,4
4	0,63	0,0060	104,85	0,80	0,0084	94,92	0,16	0,0024	-9,94	26,0	39,2	-9,5
5	0,73	0,0077	94,55	0,90	0,0089	101,03	0,17	0,0012	6,48	23,7	15,7	6,8
6	0,82	0,0089	92,31	0,98	0,0114	86,46	0,16	0,0024	-5,85	19,3	27,4	-6,3
7	0,92	0,0106	86,98	1,08	0,0121	89,01	0,16	0,0016	2,03	17,4	14,8	2,3
8	1,01	0,0112	89,70	1,17	0,0130	90,25	0,17	0,0018	0,55	16,5	15,8	0,6
9	1,10	0,0120	91,98	1,27	0,0139	91,08	0,16	0,0019	-0,90	14,7	15,9	-1,0
10	1,20	0,0128	93,33	1,36	0,0149	91,46	0,16	0,0020	-1,87	13,3	15,6	-2,0
11	1,29	0,0139	92,91	1,45	0,0160	90,29	0,16	0,0021	-2,61	12,0	15,3	-2,8
12	1,38	0,0149	92,52	1,54	0,0171	89,53	0,15	0,0022	-2,99	11,0	14,7	-3,2
13	1,47	0,0161	91,57	1,60	0,0184	87,36	0,13	0,0023	-4,22	9,0	14,3	-4,6
14	1,56	0,0173	90,33	1,63	0,0196	83,41	0,07	0,0023	-6,92	4,8	13,5	-7,7
15	1,64	0,0190	86,17	1,73	0,0214	80,90	0,09	0,0024	-5,28	5,7	12,6	-6,1
16	1,67	0,0205	81,53	1,75	0,0234	74,85	0,08	0,0029	-6,68	4,9	14,3	-8,2
17	1,69	0,0220	76,75	1,76	0,0251	70,19	0,07	0,0031	-6,56	4,2	13,9	-8,6
18	1,71	0,0238	71,82	1,77	0,0269	65,58	0,06	0,0032	-6,24	3,4	13,3	-8,7
19	1,80	0,0264	68,23	1,76	0,0289	61,05	-0,03	0,0025	-7,18	-1,9	9,6	-10,5
20	1,81	0,0285	63,30	1,76	0,0310	56,62	-0,05	0,0025	-6,68	-2,8	8,7	-10,6

Tabla 4.6.16.-Comparación entre las características aerodinámicas del perfil NACA 66-415 y la modificación ZAREA 66-415.

			NAC	A 66-4	15,ZARE	EA 66-415	5 Re=	1.000.000				
α (deg)	Cl _B	Cd_{B}	ε _Β	Cl _M	Cd_M	٤ _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,40	0,0064	62,91	0,54	0,0085	64,14	0,14	0,0021	1,23	35,4	32,8	1,9
1	0,51	0,0065	78,52	0,65	0,0066	98,66	0,14	0,0001	20,14	28,2	2,0	25,7
2	0,61	0,0065	94,33	0,75	0,0068	109,79	0,14	0,0003	15,47	22,3	5,1	16,4
3	0,72	0,0068	106,35	0,81	0,0110	73,46	0,09	0,0043	-32,89	12,6	63,1	-30,9
4	0,82	0,0071	115,76	0,91	0,0115	78,95	0,09	0,0044	-36,81	10,8	62,5	-31,8
5	0,87	0,0135	64,82	1,00	0,0122	82,51	0,13	-0,0013	17,69	15,0	-9,6	27,3
6	0,97	0,0145	66,71	1,10	0,0127	86,45	0,13	-0,0018	19,74	13,4	-12,5	29,6
7	1,05	0,0155	67,99	1,19	0,0133	89,54	0,14	-0,0022	21,54	13,3	-14,0	31,7
8	1,14	0,0168	67,90	1,25	0,0180	69,27	0,11	0,0012	1,37	9,5	7,3	2,0
9	1,22	0,0181	67,31	1,34	0,0196	68,33	0,12	0,0015	1,02	9,7	8,1	1,5
10	1,30	0,0200	65,16	1,40	0,0209	67,09	0,10	0,0009	1,93	7,7	4,6	3,0
11	1,37	0,0218	63,13	1,49	0,0230	64,57	0,11	0,0013	1,44	8,3	5,8	2,3
12	1,44	0,0243	59,27	1,57	0,0252	62,10	0,13	0,0009	2,83	8,8	3,9	4,8
13	1,52	0,0273	55,57	1,56	0,0273	57,33	0,05	0,0000	1,75	3,0	-0,2	3,2

			NAC	A 66-4	15,ZARE	EA 66-415	5 Re= 3	3.000.000				
α (deg)	Cl _B	Cd_{B}	٤ _B	Cl _M	Cd _M	εΜ	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,41	0,0046	88,76	0,56	0,0065	86,44	0,15	0,0019	-2,32	36,9	40,6	-2,6
1	0,52	0,0046	112,58	0,67	0,0047	142,55	0,15	0,0001	29,98	28,7	1,6	26,6
2	0,63	0,0047	135,98	0,77	0,0053	146,66	0,14	0,0006	10,68	21,5	12,7	7,9
3	0,73	0,0050	147,98	0,85	0,0087	98,20	0,12	0,0037	-49,78	15,7	74,4	-33,6
4	0,81	0,0084	96,43	0,95	0,0090	105,10	0,13	0,0005	8,67	16,0	6,5	9,0
5	0,91	0,0108	84,06	1,05	0,0095	109,99	0,14	-0,0013	25,93	15,2	-12,0	30,8
6	1,01	0,0117	86,47	1,14	0,0099	115,70	0,14	-0,0018	29,23	13,5	-15,1	33,8
7	1,10	0,0124	88,32	1,23	0,0111	110,57	0,14	-0,0013	22,25	12,4	-10,2	25,2
8	1,19	0,0135	88,40	1,31	0,0146	89,45	0,12	0,0011	1,04	9,8	8,5	1,2
9	1,27	0,0145	88,09	1,39	0,0157	88,42	0,11	0,0012	0,33	8,8	8,4	0,4
10	1,35	0,0158	85,75	1,48	0,0170	86,91	0,12	0,0012	1,17	9,0	7,6	1,4
11	1,44	0,0172	83,85	1,55	0,0184	83,96	0,11	0,0012	0,11	7,3	7,2	0,1
12	1,51	0,0191	79,32	1,63	0,0201	81,21	0,12	0,0010	1,90	7,7	5,2	2,4
13	1,60	0,0212	75,44	1,71	0,0219	78,01	0,11	0,0008	2,56	7,2	3,7	3,4
14	1,66	0,0232	71,55	1,77	0,0236	75,06	0,11	0,0004	3,52	6,7	1,7	4,9
15	1,72	0,0256	67,38	1,76	0,0290	60,87	0,04	0,0034	-6,51	2,4	13,4	-9,7

Tabla 4.6.16.-Comparación entre las características aerodinámicas del perfil NACA 66-415 y la modificación ZAREA 66-415 (continuación).

			NAC	A 66-4	415,ZARI	EA 66-41	5 Re= 9	9.000.000				
α (deg)	Cl _B	Cd_B	εΒ	Cl _M	Cd_M	٤ _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,41	0,0035	117,99	0,56	0,0051	109,90	0,15	0,0016	-8,09	37,4	47,5	-6,9
1	0,52	0,0035	148,49	0,67	0,0043	157,81	0,15	0,0007	9,32	28,6	21,0	6,3
2	0,64	0,0036	176,88	0,77	0,0055	139,98	0,13	0,0019	-36,89	21,0	52,8	-20,9
3	0,73	0,0062	118,46	0,87	0,0069	125,57	0,14	0,0008	7,10	19,2	12,4	6,0
4	0,84	0,0078	107,58	0,98	0,0072	135,39	0,14	-0,0006	27,81	16,8	-7,2	25,9
5	0,94	0,0088	106,39	1,08	0,0076	141,94	0,14	-0,0012	35,55	15,3	-13,6	33,4
6	1,04	0,0095	108,88	1,18	0,0087	135,20	0,14	-0,0008	26,32	13,7	-8,4	24,2
7	1,14	0,0102	111,93	1,27	0,0095	133,50	0,13	-0,0006	21,57	11,7	-6,3	19,3
8	1,23	0,0110	111,80	1,35	0,0120	112,88	0,12	0,0010	1,08	10,0	9,0	1,0
9	1,32	0,0118	111,75	1,43	0,0128	111,67	0,12	0,0011	-0,08	9,1	9,1	-0,1
10	1,41	0,0129	109,28	1,53	0,0139	110,12	0,12	0,0010	0,83	8,2	7,4	0,8
11	1,49	0,0139	107,42	1,60	0,0151	106,48	0,11	0,0012	-0,95	7,5	8,4	-0,9
12	1,58	0,0155	102,11	1,69	0,0164	103,42	0,11	0,0009	1,31	6,9	5,5	1,3
13	1,66	0,0169	98,14	1,78	0,0178	99,80	0,12	0,0009	1,65	7,3	5,5	1,7
14	1,73	0,0184	93,78	1,84	0,0192	96,18	0,12	0,0008	2,39	6,7	4,1	2,6
15	1,81	0,0204	88,71	1,91	0,0237	80,49	0,10	0,0033	-8,22	5,4	16,1	-9,3
16	1,87	0,0234	80,03	1,96	0,0260	75,30	0,08	0,0026	-4,73	4,5	11,0	-5,9
17	1,93	0,0257	75,09	1,96	0,0496	39,54	0,03	0,0239	-35,56	1,6	92,9	-47,3
18	1,94	0,0491	39,47	1,87	0,0546	34,29	-0,07	0,0055	-5,18	-3,4	11,2	-13,1

Tabla 4.6.17.-Comparación entre las características aerodinámicas del perfil NACA 63A-210 y la modificación ZAREA 63A-210.

NACA 63A-210,ZAREA 63A-210 Re= 1.000.000												
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd_M	٤ _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,17	0,0058	29,65	0,32	0,0081	39,02	0,14	0,0023	9,37	83,5	39,4	31,6
1	0,28	0,0060	46,79	0,42	0,0082	51,58	0,14	0,0022	4,80	51,6	37,5	10,3
2	0,39	0,0062	61,94	0,53	0,0066	79,77	0,14	0,0004	17,82	37,1	6,5	28,8
3	0,49	0,0069	71,17	0,62	0,0083	75,31	0,13	0,0014	4,14	26,6	19,6	5,8
4	0,59	0,0082	71,83	0,73	0,0087	83,20	0,14	0,0005	11,37	23,6	6,7	15,8
5	0,69	0,0104	66,82	0,83	0,0092	90,69	0,14	-0,0012	23,87	19,7	-11,8	35,7
6	0,80	0,0114	69,97	0,93	0,0098	95,38	0,14	-0,0016	25,41	17,4	-13,9	36,3
7	0,89	0,0126	71,18	1,02	0,0127	80,64	0,13	0,0001	9,47	14,3	0,9	13,3
8	0,98	0,0140	70,48	1,10	0,0146	75,63	0,12	0,0006	5,15	11,8	4,2	7,3
9	1,07	0,0160	66,82	1,19	0,0159	75,02	0,12	-0,0001	8,20	11,5	-0,7	12,3
10	1,13	0,0184	61,65	1,26	0,0178	70,73	0,13	-0,0005	9,07	11,3	-2,9	14,7
11	1,18	0,0214	55,21	1,31	0,0199	66,03	0,13	-0,0016	10,82	10,7	-7,4	19,6
12	1,23	0,0267	46,26	1,36	0,0222	61,29	0,13	-0,0044	15,02	10,4	-16,6	32,5

NACA 63A-210,ZAREA 63A-210 Re= 3.000.000												
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd_M	٤ _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,18	0,0048	37,38	0,32	0,0066	48,08	0,14	0,0018	10,70	78,0	38,4	28,6
1	0,29	0,0049	58,60	0,43	0,0068	62,70	0,14	0,0019	4,10	47,6	38,0	7,0
2	0,40	0,0053	75,16	0,53	0,0056	94,79	0,14	0,0003	19,63	33,9	6,1	26,1
3	0,51	0,0068	75,39	0,63	0,0063	100,19	0,13	-0,0004	24,80	24,6	-6,2	32,9
4	0,62	0,0075	81,95	0,74	0,0067	111,43	0,13	-0,0009	29,48	20,6	-11,3	36,0
5	0,72	0,0082	88,51	0,85	0,0070	121,65	0,13	-0,0012	33,14	17,8	-14,3	37,4
6	0,83	0,0089	92,72	0,95	0,0089	106,43	0,12	0,0000	13,71	14,8	0,0	14,8
7	0,93	0,0098	95,46	1,06	0,0100	106,07	0,12	0,0002	10,61	13,1	1,8	11,1
8	1,04	0,0111	93,19	1,15	0,0116	99,34	0,11	0,0004	6,15	10,8	3,9	6,6
9	1,13	0,0130	86,91	1,24	0,0127	98,00	0,12	-0,0003	11,09	10,2	-2,2	12,8
10	1,22	0,0150	81,54	1,32	0,0141	93,82	0,10	-0,0009	12,28	8,3	-5,9	15,1
11	1,28	0,0174	73,70	1,40	0,0156	89,49	0,11	-0,0018	15,79	8,9	-10,3	21,4
12	1,33	0,0205	64,76	1,45	0,0173	84,01	0,13	-0,0032	19,24	9,4	-15,6	29,7
13	1.35	0.0242	55.95	1.51	0.0193	78.22	0.16	-0.0049	22.27	11.4	-20.3	39.8
Tabla 4.6.17.-Comparación entre las características aerodinámicas del perfil NACA 63A-210 y la modificación ZAREA 63A-210 (continuación).

			NACA	63A-2	10,ZARE	A 63A-21	0 Re=	9.000.000				
α (deg)	Cl _B	Cd_{B}	ε _в	Cl _M	Cd_M	٤ _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,18	0,0043	41,65	0,32	0,0057	56,20	0,14	0,0014	14,54	78,6	32,4	34,9
1	0,29	0,0044	65,59	0,43	0,0060	72,15	0,14	0,0015	6,55	47,6	34,2	10,0
2	0,40	0,0052	77,33	0,54	0,0049	110,30	0,14	-0,0003	32,97	34,2	-5,9	42,6
3	0,52	0,0060	86,10	0,65	0,0054	119,83	0,13	-0,0006	33,74	25,8	-9,6	39,2
4	0,63	0,0064	97,24	0,75	0,0053	142,59	0,13	-0,0012	45,35	20,3	-18,0	46,6
5	0,74	0,0069	106,40	0,86	0,0067	129,77	0,12	-0,0003	23,37	16,9	-4,1	22,0
6	0,84	0,0072	116,31	0,97	0,0073	132,85	0,13	0,0001	16,53	15,6	1,2	14,2
7	0,95	0,0079	121,03	1,08	0,0080	134,93	0,13	0,0001	13,90	13,2	1,5	11,5
8	1,06	0,0089	118,45	1,18	0,0094	125,49	0,12	0,0004	7,03	11,1	4,8	5,9
9	1,16	0,0104	111,89	1,28	0,0102	124,87	0,12	-0,0002	12,99	10,0	-1,5	11,6
10	1,26	0,0118	106,11	1,37	0,0114	120,27	0,11	-0,0005	14,15	8,9	-3,9	13,3
11	1,34	0,0136	98,73	1,46	0,0126	116,23	0,12	-0,0010	17,50	8,8	-7,6	17,7
12	1,42	0,0157	90,03	1,54	0,0139	110,81	0,12	-0,0019	20,78	8,5	-11,9	23,1
13	1,48	0,0184	80,43	1,61	0,0154	104,57	0,12	-0,0031	24,14	8,3	-16,7	30,0
14	1,49	0,0232	64,43	1,66	0,0176	94,09	0,16	-0,0056	29,66	10,8	-24,1	46,0

Tabla 4.6.18.-Comparación entre las características aerodinámicas del perfil NACA 64A-010 y la modificación ZAREA 64A-010.

			NAC	A 64A-	010,ZARI	EA 64A-0	10 Re	= 1.000.00	00			
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd_M	٤ _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,00	0,0057	0,00	0,11	0,0059	19,08	0,11	0,0002	19,08	-	2,9	-
1	0,11	0,0059	18,29	0,22	0,0061	36,13	0,11	0,0002	17,84	104,2	3,4	97,5
2	0,21	0,0061	35,47	0,32	0,0075	43,06	0,11	0,0015	7,59	50,5	23,9	21,4
3	0,32	0,0071	44,90	0,43	0,0077	55,83	0,11	0,0006	10,93	34,2	7,9	24,3
4	0,43	0,0091	47,17	0,54	0,0079	67,95	0,11	-0,0012	20,77	25,4	-12,9	44,0
5	0,53	0,0098	54,33	0,64	0,0083	78,00	0,11	-0,0016	23,68	20,8	-15,8	43,6
6	0,64	0,0107	59,74	0,75	0,0109	68,59	0,11	0,0003	8,86	17,9	2,7	14,8
7	0,74	0,0118	62,56	0,85	0,0120	71,40	0,12	0,0002	8,83	15,6	1,3	14,1
8	0,83	0,0135	61,80	0,95	0,0132	72,07	0,12	-0,0003	10,27	14,1	-2,2	16,6
9	0,92	0,0157	58,81	1,05	0,0149	70,50	0,13	-0,0008	11,69	13,7	-5,2	19,9
10	0,99	0,0186	52,96	1,13	0,0180	62,65	0,14	-0,0007	9,69	14,1	-3,5	18,3
11	1,01	0,0227	44,43	1,18	0,0210	56,29	0,18	-0,0016	11,85	17,5	-7,3	26,7

			NAC	A 64A-	010,ZAR	EA 64A-0	10 Re:	= 3.000.00	00			
α (deg)	Cl _B	Cd_{B}	٤ _B	Cl _M	Cd_{M}	٤ _M	ΔC_{L}	ΔC_D	Δε	%Cl	%Cd	%ε
0	0,00	0,0045	0,00	0,12	0,0046	25,46	0,12	0,0001	25,46	-	1,3	-
1	0,11	0,0046	23,74	0,22	0,0048	46,58	0,12	0,0003	22,84	107,9	5,9	96,2
2	0,22	0,0054	39,63	0,33	0,0058	56,60	0,12	0,0004	16,96	53,6	7,6	42,8
3	0,33	0,0066	49,28	0,44	0,0059	73,97	0,11	-0,0007	24,70	34,6	-10,3	50,1
4	0,43	0,0072	60,37	0,55	0,0061	90,33	0,11	-0,0011	29,95	26,1	-15,7	49,6
5	0,54	0,0077	69,92	0,65	0,0065	100,42	0,11	-0,0012	30,50	20,9	-15,8	43,6
6	0,65	0,0084	77,59	0,76	0,0086	88,91	0,12	0,0002	11,33	18,0	2,9	14,6
7	0,75	0,0091	82,46	0,87	0,0094	92,80	0,12	0,0002	10,34	15,3	2,5	12,5
8	0,86	0,0103	83,05	0,98	0,0103	94,58	0,12	0,0000	11,53	14,1	0,2	13,9
9	0,96	0,0117	82,06	1,08	0,0116	93,64	0,12	-0,0001	11,58	12,8	-1,1	14,1
10	1,05	0,0134	78,39	1,17	0,0140	83,84	0,12	0,0006	5,45	11,5	4,3	6,9
11	1,13	0,0156	72,26	1,26	0,0162	77,74	0,13	0,0005	5,48	11,1	3,3	7,6
12	1,19	0,0184	64,33	1,32	0,0189	69,93	0,13	0,0005	5,60	11,4	2,5	8,7
13	1,18	0,0237	49,71	1,36	0,0223	61,11	0,18	-0,0014	11,40	15,5	-6,0	22,9

Tabla 4.6.18.-Comparación entre las características aerodinámicas del perfil NACA 64A-010 y la modificación ZAREA 64A-010 (continuación).

			NACA	64A-0	10,ZARE	A 64A-0	10 Re=	9.000.00	0			
α (deg)	Cl _B	Cd_B	εΒ	Cl _M	Cd _M	٤ _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,00	0,0040	0,00	0,12	0,0056	20,85	0,12	0,0016	20,85	-	38,8	-
1	0,11	0,0041	26,59	0,23	0,0043	52,74	0,12	0,0002	26,15	108,5	5,1	98,4
2	0,22	0,0053	41,74	0,34	0,0048	70,92	0,12	-0,0005	29,18	53,6	-9,6	69,9
3	0,33	0,0056	58,49	0,45	0,0048	92,64	0,12	-0,0008	34,14	35,7	-14,3	58,4
4	0,44	0,0060	73,48	0,56	0,0049	112,83	0,12	-0,0011	39,35	26,5	-17,6	53,6
5	0,55	0,0063	87,46	0,67	0,0063	106,59	0,12	0,0000	19,13	21,1	-0,6	21,9
6	0,66	0,0068	97,33	0,78	0,0070	111,27	0,12	0,0002	13,94	17,9	3,1	14,3
7	0,77	0,0073	104,46	0,89	0,0076	117,25	0,12	0,0002	12,79	15,6	3,0	12,2
8	0,87	0,0082	106,41	0,99	0,0083	119,84	0,12	0,0001	13,43	13,7	0,9	12,6
9	0,98	0,0092	106,52	1,10	0,0092	119,03	0,12	0,0001	12,51	12,4	0,6	11,7
10	1,08	0,0104	104,14	1,20	0,0113	106,89	0,12	0,0009	2,75	11,2	8,4	2,6
11	1,18	0,0119	99,63	1,30	0,0129	100,89	0,12	0,0010	1,26	9,8	8,4	1,3
12	1,27	0,0137	92,83	1,39	0,0149	93,19	0,12	0,0012	0,36	9,4	9,0	0,4
13	1,32	0,0170	77,62	1,46	0,0174	84,04	0,14	0,0004	6,41	10,5	2,1	8,3
14	1,36	0,0202	67,58	1,51	0,0205	74,07	0,15	0,0003	6,49	11,1	1,4	9,6

Tabla 4.6.19.-Comparación entre las características aerodinámicas del perfil NACA 64A-410 y la modificación ZAREA 64A-410.

	NACA 64A-410,ZAREA 64A-410 Re= 1.000.000												
α (deg)	Cl _B	Cd_{B}	٤B	Cl _M	Cd _M	٤ _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε	
0	0,34	0,0060	57,36	0,44	0,0078	55,74	0,09	0,0018	-1,62	26,8	30,5	-2,8	
1	0,45	0,0061	73,40	0,54	0,0064	84,28	0,09	0,0003	10,88	20,5	4,9	14,8	
2	0,56	0,0064	86,49	0,65	0,0068	94,94	0,09	0,0004	8,45	16,5	6,2	9,8	
3	0,66	0,0069	95,21	0,74	0,0068	109,76	0,08	-0,0002	14,56	12,3	-2,6	15,3	
4	0,75	0,0080	94,07	0,84	0,0096	87,38	0,09	0,0016	-6,69	11,7	20,3	-7,1	
5	0,85	0,0103	82,08	0,94	0,0102	92,07	0,09	-0,0001	10,00	11,0	-1,1	12,2	
6	0,95	0,0125	76,18	1,04	0,0108	96,18	0,09	-0,0017	20,00	9,3	-13,4	26,3	
7	1,04	0,0136	76,02	1,12	0,0142	79,21	0,09	0,0005	3,19	8,3	3,9	4,2	
8	1,13	0,0151	75,30	1,20	0,0155	77,49	0,07	0,0005	2,18	6,0	3,0	2,9	
9	1,20	0,0171	69,94	1,27	0,0179	71,01	0,07	0,0007	1,08	6,0	4,4	1,5	
10	1,27	0,0194	65,24	1,33	0,0201	66,34	0,07	0,0007	1,10	5,4	3,6	1,7	
11	1,33	0,0223	59,55	1,41	0,0232	60,73	0,08	0,0008	1,19	5,8	3,7	2,0	
12	1,40	0,0267	52,54	1,48	0,0269	54,86	0,07	0,0002	2,32	5,2	0,8	4,4	
13	1,44	0,0323	44,46	1,54	0,0319	48,19	0,10	-0,0004	3,73	7,0	-1,3	8,4	

			NACA	64A-4	10,ZARE	A 64A-41	0 Re=	3.000.000				
α (deg)	Cl _B	Cd_B	εΒ	Cl _M	Cd_M	٤ _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,35	0,0046	75,01	0,44	0,0063	70,34	0,09	0,0016	-4,67	26,6	35,0	-6,2
1	0,45	0,0048	95,20	0,55	0,0050	109,25	0,09	0,0002	14,05	20,7	5,2	14,8
2	0,56	0,0051	110,23	0,66	0,0055	120,08	0,09	0,0004	9,85	16,7	7,2	8,9
3	0,67	0,0064	104,22	0,75	0,0061	123,77	0,09	-0,0003	19,54	12,8	-5,0	18,8
4	0,77	0,0082	94,85	0,86	0,0074	115,80	0,09	-0,0007	20,96	11,0	-9,1	22,1
5	0,87	0,0087	100,09	0,96	0,0079	122,23	0,09	-0,0008	22,14	10,8	-9,3	22,1
6	0,98	0,0099	99,01	1,07	0,0097	109,96	0,09	-0,0002	10,95	9,2	-1,7	11,1
7	1,08	0,0108	99,60	1,16	0,0113	103,14	0,09	0,0005	3,54	7,9	4,2	3,6
8	1,17	0,0120	98,02	1,26	0,0123	101,80	0,08	0,0004	3,77	7,0	3,1	3,8
9	1,26	0,0134	93,92	1,34	0,0144	93,07	0,08	0,0010	-0,85	6,3	7,3	-0,9
10	1,34	0,0150	89,44	1,42	0,0161	87,87	0,08	0,0011	-1,58	5,7	7,6	-1,8
11	1,41	0,0169	83,71	1,49	0,0182	81,55	0,07	0,0013	-2,17	5,0	7,8	-2,6
12	1,47	0,0198	74,26	1,55	0,0208	74,41	0,08	0,0010	0,15	5,3	5,1	0,2
13	1,53	0,0229	66,88	1,60	0,0239	67,06	0,08	0,0011	0,18	4,9	4,7	0,3
14	1,60	0,0266	59,90	1,67	0,0279	59,91	0,07	0,0012	0,01	4,6	4,6	0,0
15	1,64	0,0315	52,22	1,60	0.0331	48,36	-0,04	0,0016	-3,86	-2,7	5,1	-7,4

Tabla 4.6.19.-Comparación entre las características aerodinámicas del perfil NACA 64A-410 y la modificación ZAREA 64A-410 (continuación).

			NACA	64A-4	10,ZARE	A 64A-41	0 Re=	9.000.000				
α (deg)	Cl _B	Cd_B	εΒ	Cl _M	Cd_M	٤ _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,35	0,0041	85,77	0,44	0,0053	83,35	0,09	0,0012	-2,41	27,0	30,7	-2,8
1	0,46	0,0042	108,33	0,55	0,0044	126,98	0,10	0,0001	18,65	21,0	3,2	17,2
2	0,57	0,0046	123,87	0,66	0,0052	128,08	0,10	0,0006	4,21	16,7	12,9	3,4
3	0,68	0,0064	105,50	0,77	0,0058	132,42	0,10	-0,0006	26,93	14,1	-9,1	25,5
4	0,79	0,0070	112,01	0,88	0,0062	142,54	0,09	-0,0008	30,53	12,0	-12,0	27,3
5	0,89	0,0075	119,07	0,98	0,0069	141,36	0,09	-0,0006	22,29	9,8	-7,5	18,7
6	0,99	0,0080	124,16	1,09	0,0081	134,20	0,10	0,0001	10,03	9,7	1,5	8,1
7	1,10	0,0088	125,65	1,19	0,0092	130,36	0,09	0,0004	4,71	8,5	4,5	3,8
8	1,20	0,0097	124,22	1,29	0,0100	129,07	0,09	0,0003	4,85	7,6	3,6	3,9
9	1,30	0,0108	120,24	1,38	0,0118	117,67	0,08	0,0010	-2,57	6,5	8,8	-2,1
10	1,39	0,0120	116,17	1,47	0,0131	112,00	0,07	0,0011	-4,17	5,3	9,2	-3,6
11	1,48	0,0134	110,42	1,55	0,0148	105,22	0,08	0,0014	-5,20	5,2	10,4	-4,7
12	1,55	0,0156	99,83	1,61	0,0166	97,13	0,06	0,0011	-2,70	3,9	6,8	-2,7
13	1,61	0,0176	91,60	1,68	0,0189	88,60	0,07	0,0013	-3,00	4,1	7,6	-3,3
14	1,67	0,0201	83,24	1,73	0,0217	79,95	0,06	0,0016	-3,29	3,7	8,0	-4,0
15	1,73	0,0230	75,17	1,80	0,0250	71,94	0,07	0,0020	-3,23	4,2	8,9	-4,3
16	1,81	0,0268	67,39	1,86	0,0294	63,27	0,05	0,0026	-4,11	3,0	9,7	-6,1

Tabla 4.6.20.-Comparación entre las características aerodinámicas del perfil SZ2055 y la modificación SZ2055M.

				SZ20)55,SZ20	55M Re=	500.0	00				
α (deg)	Cl _B	Cd_{B}	٤ _B	Cl _M	Cd _M	٤ _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	1,45	0,0111	130,07	1,55	0,0116	133,59	0,10	0,0004	3,53	6,8	3,9	2,7
1	1,57	0,0116	135,01	1,66	0,0120	137,98	0,10	0,0005	2,97	6,2	3,9	2,2
2	1,68	0,0121	139,04	1,76	0,0126	139,44	0,08	0,0005	0,39	4,6	4,3	0,3
3	1,77	0,0127	140,10	1,87	0,0132	141,54	0,10	0,0005	1,44	5,4	4,3	1,0
4	1,89	0,0137	138,01	1,97	0,0170	116,10	0,09	0,0033	-21,90	4,5	24,2	-15,9
5	1,98	0,0155	128,19	2,09	0,0196	106,76	0,11	0,0041	-21,43	5,4	26,6	-16,7
6	2,09	0,0177	118,04	2,18	0,0210	103,47	0,08	0,0033	-14,57	3,9	18,5	-12,3
7	2,20	0,0229	95,88	2,28	0,0228	100,25	0,09	-0,0001	4,38	4,0	-0,6	4,6

				SZ20	55,SZ205	5M Re=	1.000.	000				
α (deg)	Cl _B	Cd_{B}	ε _B	Cl _M	Cd_M	٤ _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	1,38	0,0092	149,55	1,48	0,0096	153,99	0,10	0,0004	4,44	7,2	4,1	3,0
1	1,50	0,0096	155,78	1,57	0,0100	157,81	0,08	0,0004	2,03	5,2	3,8	1,3
2	1,59	0,0100	159,33	1,69	0,0104	161,83	0,10	0,0005	2,50	6,2	4,5	1,6
3	1,71	0,0105	162,92	1,78	0,0111	160,81	0,08	0,0006	-2,11	4,5	5,9	-1,3
4	1,80	0,0118	152,32	1,89	0,0144	130,99	0,08	0,0026	-21,33	4,7	21,8	-14,0
5	1,90	0,0138	137,67	1,99	0,0167	118,63	0,08	0,0029	-19,04	4,4	21,2	-13,8
6	2,02	0,0158	127,31	2,09	0,0180	116,67	0,08	0,0021	-10,64	3,9	13,4	-8,4
7	2,12	0,0196	108,06	2,18	0,0194	112,80	0,07	-0,0002	4,74	3,2	-1,1	4,4
8	2,20	0,0214	102,85	2,28	0,0236	96,96	0,08	0,0021	-5,89	3,6	9,9	-5,7
9	2,29	0,0240	95,68	2,37	0,0260	91,18	0,08	0,0021	-4,50	3,5	8,6	-4,7
10	2,39	0,0279	85,44	2,48	0,0290	85,47	0,09	0,0011	0,03	4,0	3,9	0,0
11	2,49	0,0319	78,11	2,57	0,0327	78,39	0,08	0,0009	0,28	3,1	2,7	0,4

				SZ20	55,SZ205	5M Re=	3.000.	000				
α (deg)	Cl _B	Cd_{B}	٤ _B	Cl _M	Cd _M	٤ _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	1,27	0,0071	179,18	1,35	0,0074	183,18	0,08	0,0003	4,00	6,4	4,1	2,2
1	1,37	0,0074	185,75	1,45	0,0078	186,03	0,08	0,0004	0,28	5,9	5,7	0,2
2	1,47	0,0080	182,41	1,55	0,0086	180,83	0,08	0,0005	-1,58	5,6	6,5	-0,9
3	1,57	0,0090	174,42	1,65	0,0094	174,80	0,08	0,0004	0,38	5,0	4,8	0,2
4	1,69	0,0106	158,74	1,77	0,0114	155,00	0,08	0,0008	-3,75	4,8	7,3	-2,4
5	1,79	0,0123	145,96	1,87	0,0134	139,75	0,08	0,0011	-6,21	4,5	9,1	-4,3
6	1,89	0,0134	141,17	1,98	0,0143	138,24	0,09	0,0010	-2,94	5,0	7,2	-2,1
7	2,00	0,0157	127,72	2,07	0,0154	134,75	0,07	-0,0003	7,03	3,6	-1,8	5,5
8	2,10	0,0171	122,86	2,18	0,0190	114,75	0,08	0,0019	-8,11	3,9	11,3	-6,6
9	2,19	0,0189	115,65	2,29	0,0208	109,75	0,10	0,0019	-5,90	4,4	10,0	-5,1
10	2,30	0,0220	104,56	2,39	0,0230	104,00	0,09	0,0010	-0,56	4,1	4,7	-0,5
11	2,40	0,0247	97,55	2,50	0,0256	97,64	0,09	0,0009	0,09	3,9	3,8	0,1
12	2,51	0,0279	89,86	2,59	0,0287	90,23	0,08	0,0008	0,36	3,2	2,8	0,4
13	2,59	0,0306	84,65	2,69	0,0327	82,38	0,10	0,0021	-2,26	4,0	6,9	-2,7

Tabla 4.6.21.-Comparación entre las características aerodinámicas del perfil SZ2059 y la modificación SZ2059M.

				SZ2	059,SZ2	059M Re	= 500.	000				
α (deg)	Cl _B	Cd_{B}	ε _B	Cl _M	Cd_M	٤ _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,56	0,0108	51,99	0,66	0,0134	49,67	0,10	0,0026	-2,33	18,7	24,2	-4,5
1	0,67	0,0111	60,41	0,78	0,0139	55,89	0,10	0,0028	-4,52	15,4	24,8	-7,5
2	0,79	0,0116	67,81	0,89	0,0146	60,80	0,10	0,0030	-7,01	13,3	26,3	-10,3
3	0,90	0,0121	74,12	1,00	0,0153	65,36	0,10	0,0032	-8,75	11,6	26,5	-11,8
4	1,01	0,0129	78,22	1,12	0,0175	63,92	0,11	0,0046	-14,30	10,6	35,3	-18,3
5	1,11	0,0140	79,30	1,23	0,0187	65,47	0,11	0,0047	-13,83	10,2	33,4	-17,4
6	1,23	0,0158	77,47	1,34	0,0200	66,82	0,11	0,0042	-10,65	9,1	26,5	-13,7
7	1,34	0,0179	74,62	1,45	0,0218	66,53	0,11	0,0039	-8,08	8,4	21,5	-10,8
8	1,46	0,0242	60,23	1,56	0,0238	65,40	0,10	-0,0004	5,18	6,9	-1,5	8,6
9	1,56	0,0266	58,71	1,67	0,0259	64,35	0,10	-0,0008	5,65	6,5	-2,8	9,6

				SZ20	59,SZ20	59M Re=	= 1.000	.000				
α (deg)	Cl _B	Cd_{B}	٤ _B	Cl _M	Cd_M	٤ _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,44	0,0087	50,61	0,53	0,0093	57,11	0,09	0,0007	6,50	21,5	7,7	12,8
1	0,55	0,0091	59,92	0,65	0,0112	57,58	0,10	0,0021	-2,34	18,4	23,2	-3,9
2	0,65	0,0091	71,69	0,76	0,0116	65,21	0,11	0,0026	-6,48	16,5	28,1	-9,0
3	0,76	0,0094	80,98	0,87	0,0122	71,26	0,11	0,0028	-9,72	14,1	29,6	-12,0
4	0,88	0,0099	88,99	0,99	0,0128	76,99	0,11	0,0029	-12,00	12,2	29,7	-13,5
5	0,99	0,0107	92,75	1,10	0,0147	74,83	0,11	0,0040	-17,92	11,1	37,7	-19,3
6	1,10	0,0120	91,25	1,21	0,0158	76,93	0,12	0,0037	-14,32	10,5	31,0	-15,7
7	1,21	0,0136	89,04	1,33	0,0168	78,95	0,11	0,0032	-10,09	9,4	23,3	-11,3
8	1,32	0,0156	84,67	1,44	0,0182	79,05	0,11	0,0025	-5,62	8,5	16,2	-6,6
9	1,44	0,0204	70,71	1,55	0,0198	78,22	0,10	-0,0006	7,51	7,3	-3,1	10,6
10	1,55	0,0223	69,62	1,66	0,0213	77,75	0,11	-0,0010	8,13	6,8	-4,4	11,7
11	1,66	0,0248	66,93	1,77	0,0235	75,07	0,11	-0,0013	8,15	6,4	-5,2	12,2
12	1,74	0,0268	65,08	1,85	0,0252	73,47	0,11	-0,0016	8,39	6,1	-6,0	12,9

SZ2059,SZ2059M Re= 3.000.000												
α (deg)	Cl _B	Cd_{B}	ε _B	Cl _M	Cd_M	٤ _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,42	0,0073	57,21	0,52	0,0077	67,23	0,10	0,0004	10,02	24,3	5,8	17,5
1	0,52	0,0075	69,70	0,63	0,0093	68,60	0,11	0,0017	-1,10	21,1	23,0	-1,6
2	0,63	0,0073	86,45	0,74	0,0090	81,39	0,10	0,0017	-5,06	16,5	23,7	-5,9
3	0,74	0,0072	102,04	0,85	0,0095	89,43	0,11	0,0023	-12,61	15,6	31,9	-12,4
4	0,85	0,0080	107,05	0,97	0,0099	97,23	0,11	0,0020	-9,81	13,3	24,7	-9,2
5	0,97	0,0091	106,21	1,08	0,0116	93,59	0,12	0,0025	-12,62	12,0	27,1	-11,9
6	1,09	0,0105	103,68	1,20	0,0124	96,62	0,11	0,0019	-7,06	10,5	18,6	-6,8
7	1,20	0,0118	101,73	1,31	0,0131	99,83	0,11	0,0013	-1,90	9,3	11,4	-1,9
8	1,31	0,0132	99,89	1,42	0,0142	100,41	0,11	0,0010	0,52	8,4	7,8	0,5
9	1,43	0,0161	88,67	1,54	0,0154	99,91	0,11	-0,0008	11,24	7,3	-4,7	12,7
10	1,54	0,0175	87,85	1,65	0,0164	100,25	0,11	-0,0010	12,40	7,4	-5,9	14,1
11	1,65	0,0193	85,37	1,76	0,0180	97,73	0,11	-0,0013	12,36	6,9	-6,6	14,5
12	1,76	0,0215	81,86	1,87	0,0198	94,25	0,11	-0,0016	12,39	6,5	-7,5	15,1
13	1,87	0,0237	78,70	1,44	0,0289	50,01	-0,42	0,0052	-28,69	-22,7	21,7	-36,5

Tabla 4.6.22.-Comparación entre las características aerodinámicas del perfil SZ2069 y la modificación SZ2069M.

	SZ2069,SZ2069M Re= 500.000											
α (deg)	Cl _B	Cd_{B}	٤ _B	Cl _M	Cd _M	٤ _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,99	0,0074	132,65	1,03	0,0076	135,11	0,04	0,0002	2,45	4,2	2,3	1,8
1	1,08	0,0078	138,67	1,13	0,0082	139,14	0,05	0,0004	0,47	4,9	4,5	0,3
2	1,19	0,0085	138,71	1,25	0,0114	109,92	0,07	0,0028	-28,80	5,6	33,2	-20,8
3	1,30	0,0119	109,22	1,34	0,0120	112,11	0,04	0,0000	2,88	2,9	0,2	2,6
4	1,39	0,0128	109,22	1,37	0,0126	108,32	-0,02	-0,0001	-0,90	-1,7	-0,9	-0,8
5	1,41	0,0165	85,57	1,47	0,0135	109,23	0,06	-0,0030	23,65	4,5	-18,2	27,6
6	1,57	0,0182	85,89	1,61	0,0170	94,60	0,04	-0,0012	8,71	2,8	-6,6	10,1
7	1,68	0,0210	79,72	1,73	0,0195	88,32	0,05	-0,0015	8,60	2,9	-7,1	10,8

	SZ2069,SZ2069M Re= 1.000.000											
α (deg)	Cl _B	Cd_{B}	٤ _B	Cl _M	Cd_{M}	ε _M	ΔC_L	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,92	0,0060	152,76	0,89	0,0063	140,39	-0,03	0,0003	-12,37	-3,6	4,9	-8,1
1	0,95	0,0065	146,21	1,02	0,0085	119,50	0,07	0,0020	-26,71	7,3	31,3	-18,3
2	1,07	0,0081	131,49	1,13	0,0098	115,19	0,06	0,0017	-16,30	5,9	20,9	-12,4
3	1,20	0,0104	115,46	1,24	0,0104	119,65	0,04	0,0000	4,19	3,7	0,1	3,6
4	1,30	0,0111	117,53	1,34	0,0109	123,65	0,04	-0,0002	6,12	3,4	-1,7	5,2
5	1,40	0,0120	117,38	1,45	0,0116	125,08	0,04	-0,0004	7,70	3,1	-3,2	6,6
6	1,51	0,0130	115,86	1,55	0,0123	126,37	0,04	-0,0007	10,51	2,9	-5,6	9,1
7	1,59	0,0175	90,62	1,64	0,0168	97,62	0,05	-0,0008	7,00	3,0	-4,4	7,7
8	1,69	0,0201	84,14	1,74	0,0186	93,38	0,05	-0,0015	9,24	2,8	-7,4	11,0

SZ2069,SZ2069M Re= 3.000.000												
α (deg)	Cl _B	Cd_{B}	ε _B	Cl _M	Cd_M	ε _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,80	0,0050	161,02	0,87	0,0067	130,10	0,07	0,0017	-30,92	8,8	34,7	-19,2
1	0,92	0,0062	149,52	0,98	0,0071	138,18	0,06	0,0009	-11,34	6,4	15,1	-7,6
2	1,05	0,0076	137,66	1,10	0,0079	138,35	0,05	0,0003	0,69	4,7	4,2	0,5
3	1,16	0,0084	138,42	1,20	0,0084	144,17	0,05	0,0000	5,76	4,0	-0,2	4,2
4	1,26	0,0089	141,52	1,31	0,0087	149,82	0,05	-0,0002	8,30	3,6	-2,2	5,9
5	1,37	0,0096	142,23	1,42	0,0093	152,20	0,05	-0,0003	9,97	3,3	-3,5	7,0
6	1,48	0,0104	141,89	1,52	0,0098	154,81	0,05	-0,0006	12,92	3,1	-5,5	9,1
7	1,58	0,0115	137,26	1,63	0,0113	144,71	0,05	-0,0003	7,44	3,1	-2,2	5,4
8	1,66	0,0154	108,03	1,71	0,0148	115,50	0,05	-0,0006	7,46	2,9	-3,8	6,9
9	1,77	0,0181	97,40	1,82	0,0163	111,39	0,05	-0,0018	14,00	2,8	-10,2	14,4
10	1,87	0,0212	88,25	1,92	0,0180	106,39	0,05	-0,0032	18,13	2,6	-14,9	20,5
11	1,97	0,0253	78,00	2,02	0,0201	100,43	0,05	-0,0051	22,43	2,5	-20,4	28,8

Tabla 4.6.23.-Comparación entre las características aerodinámicas del perfil SZ2074 y la modificación SZ2074M.

	SZ2074,SZ2074M Re= 500.000											
α (deg)	Cl _B	Cd_{B}	٤B	Cl _M	Cd _M	εΜ	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,27	0,0089	30,04	0,4	0,009	50,38	0,16	-0,0004	20,33	60,4	-4,4	67,7
1	0,36	0,0082	44,21	0,6	0,012	48,33	0,19	0,0033	4,12	53,2	40,1	9,3
2	0,47	0,0086	55,42	0,7	0,012	55,25	0,19	0,0035	-0,17	40,4	40,9	-0,3
3	0,59	0,0090	64,92	0,8	0,013	61,16	0,19	0,0037	-3,76	32,4	40,6	-5,8
4	0,72	0,0131	54,76	0,9	0,013	65,93	0,17	0,0003	11,17	23,4	2,5	20,4
5	0,82	0,0140	58,91	1	0,014	70,13	0,17	0,0002	11,22	20,4	1,1	19,0
6	0,93	0,0152	61,47	1,1	0,015	72,86	0,16	-0,0001	11,38	17,5	-0,9	18,5
7	1,04	0,0167	62,33	1,2	0,016	74,20	0,16	-0,0005	11,86	15,7	-2,8	19,0

	SZ2074,SZ2074M Re= 1.000.000											
α (deg)	Cl _B	Cd_{B}	ε _B	Cl _M	Cd_M	ε _M	ΔC_L	ΔC_D	Δε	%Cl	%Cd	%ε
0	0,25	0,0075	32,73	0,4	0,007	59,82	0,16	-0,0007	27,09	65,4	-9,5	82,8
1	0,35	0,0071	49,05	0,5	0,01	55,49	0,19	0,0026	6,45	54,6	36,6	13,1
2	0,45	0,0068	65,86	0,6	0,01	63,84	0,20	0,0033	-2,02	43,7	48,2	-3,1
3	0,56	0,0075	74,89	0,8	0,011	71,02	0,19	0,0031	-3,86	34,2	41,5	-5,2
4	0,69	0,0111	62,66	0,9	0,011	76,47	0,17	0,0002	13,82	24,0	1,6	22,1
5	0,80	0,0119	67,82	1	0,012	81,83	0,17	0,0000	14,01	20,7	0,0	20,7
6	0,91	0,0128	70,81	1,1	0,013	85,97	0,17	-0,0002	15,16	19,2	-1,8	21,4
7	1,01	0,0140	72,42	1,2	0,014	88,05	0,17	-0,0005	15,63	17,2	-3,6	21,6
8	1,12	0,0154	72,69	1,3	0,016	81,98	0,18	0,0004	9,29	15,8	2,7	12,8

	SZ2074,SZ2074M Re= 3.000.000											
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd _M	٤ _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε
0	0,22	0,0064	34,97	0,4	0,006	66,78	0,17	-0,0004	31,81	77,5	-7,1	91,0
1	0,33	0,0063	52,82	0,5	0,007	67,36	0,17	0,0012	14,54	52,7	19,7	27,5
2	0,44	0,0062	70,15	0,6	0,008	78,20	0,18	0,0017	8,05	41,7	27,1	11,5
3	0,55	0,0077	71,28	0,7	0,008	87,64	0,18	0,0007	16,35	33,9	8,9	22,9
4	0,66	0,0088	75,68	0,8	0,009	95,44	0,18	0,0001	19,75	27,0	0,7	26,1
5	0,77	0,0094	82,62	1	0,009	102,81	0,18	-0,0001	20,19	23,1	-1,0	24,4
6	0,88	0,0101	87,52	1,1	0,01	108,69	0,18	-0,0003	21,17	20,3	-3,1	24,2
7	1,00	0,0110	90,30	1,2	0,01	111,98	0,18	-0,0005	21,68	18,1	-4,8	24,0
8	1,11	0,0120	91,78	1,3	0,012	103,12	0,18	0,0004	11,33	16,0	3,2	12,3
9	1,21	0,0135	90,33	1,4	0,015	90,82	0,19	0,0020	0,49	15,4	14,8	0,5
10	1,32	0,0149	88,09	1,5	0,017	87,34	0,19	0,0023	-0,76	14,4	15,4	-0,9
11	1,42	0,0168	84,84	1,6	0,019	83,34	0,19	0,0026	-1,51	13,4	15,5	-1,8
12	1,53	0,0190	80,48	1,1	0,023	47,45	-0,43	0,0041	-33,03	-28,4	21,4	-41,0

4.7. COMENTARIOS.

En las tablas de la sección 4.6 en donde se comparan los datos del perfil base con su respectiva modificación para diferentes valores de ángulo de ataque es importante destacar que para todas las modificaciones realizadas la variación de los coeficiente de Cl_{max} varía en los límites de 1,6% a 28,2%. El ángulo de ataque correspondiente al máximo valor de coeficiente de sustentación no varia para la mayoría de los casos, pero hay excepciones en los cuales hay un incremento de 1° o 2° con respecto al valor del perfil base para Re = 1.000.000 y por ultimo la variación de fineza para los puntos de máximo valor de coeficiente de sustentación esta en el rango 1,9% hasta 32,5%.

Todas las modificaciones realizadas se caracterizan por tener un incremento en los valores de coeficiente de sustentación para todos los ángulos de ataque reflejados por el software VisualFoil 4.1, a excepción de los NACA 64-418, NACA 65-415 y NACA 65-421 a los cuales por medio de su respectiva modificación el valor de coeficiente de sustentación máxima decreció, sin embargo, para todos los ángulos de ataque restantes si presentaron mejoras aceptables en los valores de coeficiente de sustentación.

Para ángulos de 5° el incremento del valor de C_L en los perfiles modificados es del mismo orden de magnitud que para $\alpha = 10^{\circ}$. Para ángulos de incidencia menores de 5° en la mayoría de los casos el incremento porcentual es mayor. Para cada perfil estudiado los valores están reportados en las tablas de comparación.

Adicionalmente podemos observar que todas las modificaciones aplicadas presentan un pequeño incremento en el coeficiente de arrastre, pero la fineza aerodinámica se incrementa lo cual representa un balance positivo para las mejoras realizadas.

La explicación del incremento de C_L de los perfiles modificados consiste en el aumento de la flecha máxima de estos perfiles como consecuencia del cambio del borde de ataque.

La curva de sustentación o C_L vs α para cada uno de los perfiles modificados se presenta como aproximadamente la traslación en la dirección vertical de la curva del perfil base, por esta razón se puede observar a través de las tablas de la sección 4.6 que el incremento porcentual para ángulos de ataques pequeños es mayor que en el caso de ángulos de ataque grandes.

En base a los resultados obtenidos en la evaluación computacional de los perfiles base de las series NACA 6 dígitos y SZ2000 y de los perfiles modificados se puede inferir que el

procedimiento de modificación del borde de ataque utilizado conlleva a su mejoramiento de las características aerodinámicas. Por ser un procedimiento fácil de implementar y que no afecta la geometría global del perfil se puede considerar que puede presentar interés para los diseñadores de turbomáquinas, planeadores, aviones, etc.

CAPITULO V: SIMULACIÓN DEL FLUJO ALREDEDOR DE DOS PERFILES UTILIZANDO EL PROGRAMA ANSYS CFX.

En el presente capitulo se hace el estudio del comportamiento del flujo alrededor de un perfil aerodinámico, para un perfil base NACA 63A-210 y su respectiva modificación ZAREA 63A-210 utilizando un código CFD llamado CFX.

El presente capitulo se inicia presentando las nociones básicas del software utilizado, con el fin de conocer su estructura y alcances. Seguidamente se explica con mayor detalle cada elemento o bloque que conforman el código CFD utilizado, en el cual conoceremos todos los criterios utilizados tanto en la parte de diseño de la malla y geometría como en la parte de cálculos para la simulación. Para la redacción de este texto se utilizo el manual de CFX, la tesis del Ing. M. Baritto. y las clases impartidas por el profesor J. Segura sobre este tema, incluso las explicaciones practicas guiadas por M. Baritto.

Posteriormente se explicara la metodología utilizada para las simulaciones la cual consta de 5 importantes pasos o actividades a realizar para cada simulación:

- Diseño de la geometría.
- Diseño y generación de la malla.
- Pre-procesamiento.
- Calculador (Solver).
- Post-procesamiento.

A partir de la explicación de la metodología utilizada para la realización de las simulaciones se muestran los resultados generados en dos grupos. El primer grupo de resultados son para el perfil NACA 63A-212 en el cual se muestra el resultado de cada corrida realizada por separado, es decir, los coeficientes aerodinámicos de sustentación y arrastre, incluyendo imágenes de contornos de velocidades, presión, vectores de fuerza, vectores de velocidad y líneas de corriente, las cuales se estudiaran y comentaran posteriormente. El segundo grupo de resultados son para el perfil ZAREA 63A-210, el cual se estudiara de manera similar al mencionado anteriormente.

En la parte final de este capitulo se comentaran todos los resultados generados por las simulaciones obtenidas por el código CFX.

5.1. NOCIONES BASICAS.

El conjunto de expresiones matemáticas que describen los procesos de momentum, transferencia de calor y masa son conocidos como las ecuaciones de Navier-Stokes. Este conjunto de ecuaciones diferenciales parciales que fueron obtenidas a principios del siglo XIX no tienen una solución general analítica, pero pueden ser discretizadas y resueltas por métodos numéricos.

Otros procesos como el de la combustión pueden ser descritos a través de ecuaciones que se resuelven en conjunto con las de Navier-Stokes. Normalmente se utilizan modelos aproximados para generar estas ecuaciones adicionales, un claro e importante ejemplo de este caso lo tenemos mencionando los modelos de turbulencia.

Existen diferentes métodos de solución utilizados en los códigos CFD. El mas común es el conocido como "Método de volúmenes finitos" en el cual esta basado el software ANSYS CFX utilizado en este trabajo especial.

El método de volúmenes finito consiste en dividir la región de interés en pequeñas sub-regiones, llamadas volúmenes de control. Las ecuaciones son discretizadas y resueltas iterativamente para cada elemento de volumen finito, obteniéndose como resultado un valor aproximado de cada variable para cualquier punto determinado del dominio. De esta manera se puede obtener una imagen aproximada del comportamiento del flujo en un determinado volumen de control.

5.1.1 ESTRUCTURA DEL ANSYS CFX.

ANSYS CFX consta de 5 módulos de software que pasan la información requerida para realizar el análisis CFD.

Fig.5.1.1.- Estructura del Software ANSYS CFX

- Generador de malla o CFX CAD2Mesh: El generador de malla es el primer modulo contenido en la estructura del software ANSYS CFX. el método de volumen finito explicado anteriormente, requiere de una malla de trabajo que pueda discretizar el dominio presente, por esta razón es necesaria la generación de la misma. Este modulo permite la generación de la malla para una cierta geometría (volumen de control) a partir de ciertos parámetros establecidos por el usuario, algunos de estos parámetros pueden ser, forma, tamaño, factores de expansión de los elementos finitos que conforman el dominio establecido.
- Pre-Procesador Físico: ANSYS CFX Pre, permite la importación de una gran variedad de mallas con el fin de que las mallas que mejor se adapten a las geometrías complejas puedan ser procesadas mas apropiadamente de acuerdo a la geometría en estudio. En este modulo el usuario especifica los valores físicos del fluido, condiciones de borde, valores iniciales y parámetros de calculo.
- Calculador: ANSYS CFX-Solver calcula la solución de todas las variables especificadas en el pre-procesador físico para resolver el problema estudiado.

- Administrador de trabajo CFD: El ANSYS CFX-Solver provee un mayor control para el manejo de las tareas CFD, sus funciones mas importantes son:
 - Especificación de los archivos de entrada del ANSYS CFX-Solver.
 - Iniciar y detener el calculador.
 - o Monitoreo del proceso iterativo.
 - o Configuración del calculador para cálculos en paralelo.
- Post-Procesador: ANSYS CFX-Post provee a través de una interfaz gráficas herramientas para analizar y presentar los resultados de las simulaciones. Las características mas importantes incluidas en este modulo son:
 - o Post-procesamiento cuantitativo.
 - Generación de reportes.
 - o Líneas de comando y estado de los archivo de entrada.
 - Variables definidas por el usuario.
 - Generación de una variedad de gráficos en los cuales la visibilidad, transparencia, color y precisión de las líneas pueden ser controlados por el usuario.

5.2 METODOLOGÍA Y PARÁMETROS ESTABLECIDOS

La metodología seguida para las simulaciones realizadas en este trabajo especial consta de 5 pasos los cuales se explicaran a continuación incluyendo los parámetros establecidos en cada paso respectivamente.

Diseño de la Geometría

Antes de generar la malla es necesario tener una geometría sólida cerrada, dicha geometría puede ser creada utilizando el software modelador de geometría de ANSYS (Design Modeler) o cualquier otro programa que permita la generación de sólidos. Es importante destacar que en ANSYS CFX la geometría o volumen de control generado representa el espacio o dominio que ocupara el fluido en el proceso a simular. Por ejemplo: si se desea evaluar el flujo en una tubería de sección circular, la geometría indicada para esta simulación seria generar un cilindro macizo que tenga un valor de diámetro igual al diámetro interno del conducto que se desea estudiar.

En el caso de estudio, como se desea simular el flujo alrededor de un perfil aerodinámico, la geometría o sólido mas apropiado para dicha representación es una placa plana rectangular muy fina (debido a que se simulara un problema en dos dimensiones) con un orificio en el centro con la forma del contorno del perfil aerodinámico que se desea evaluar. Las dimensiones utilizadas para la placa fina variaron desde un valor mínimo de 15.000mm x 7000mm x 10mm donde el contorno del perfil (orificio) esta situado en el centro, hasta valores de 35.000mm x 7000mm x 10mm con el perfil ubicado en el mismo punto, es decir, prolongando el volumen de control en 20.000(mm) después del borde de fuga. La razón de esta variación en las dimensiones de la geometría se debe a que para las simulaciones con alto valor de ángulo de ataque y número de Reynolds es necesario una mayor extensión del dominio aguas abajo del perfil para lograr que la perturbación del flujo generada por el mismo se disipe completamente antes de llegar a la condición de salida.

El contorno del perfil fue trazado basándose en una cuerda de 1000mm. Para cada ángulo de ataque evaluado fue necesario la generación de un nuevo sólido para que cumpliera con las condiciones necesarias para la simulación.

Todos estos modelos fueron diseñados y generados con la ayuda del software de dibujo AUTOCAD 2006.

Diseño y generación de la malla

En esta etapa se utilizo el modulo CFXMesh incluido en el software ANSYS CFX, el cual genera mallas con elementos no estructurados. Una vez importada la geometría del volumen de control al generador de malla, la misma debió ser dividida en 6 regiones correspondientes a las 7 superficies que la forman y que fueron identificadas como muestra en la figura:

Fig. 5.2.1.- Geometría e identificación de las regiones.

A continuación se enumeran los parámetros de diseño que debieron ser aplicados con el fin de obtener una malla de superficie mas refinada alrededor de la superficie del perfil

• Puntos de Control: Es un parámetro que limita el tamaño de los elementos de un volumen finito que se encuentran en un radio determinado con respecto a un punto establecido por el usuario. En la malla generada se establecieron 4 puntos de control distribuidos en el borde de ataque, borde de fuga, extradós e intradós respectivamente con el fin de incluir las zonas cercanas al contorno del perfil. El radio de alcance establecido en los puntos de control fue de 350mm con una longitud de arista (Length Scale) de 5mm y un factor de expansión de 1.1.

 Expansión (Inflation): Es un parámetro que permite definir la cantidad de capas de elementos alrededor de una superficie, en una región perpendicular a la misma con el fin de simular los efectos de la capa limite. En la malla generada se aplico este parámetro sobre la superficie del perfil definiendo 14 capas de elementos en una región de 5mm.

En la figura 5.2.2. se puede observar de manera clara y detallada la influencia de los parámetros establecidos sobre la malla generada

Fig. 5.2.2.- Influencia de los puntos de control y expansion sobre la malla de superficie.

Para generar la malla de volumen se utilizo un parámetro recomendado para simulaciones bidimensionales denominado Extrusion 2-D el cual permite extruir entre dos planos una cantidad determinada de capas de malla superficial. Este parámetro fue aplicado entre la superficie frontal y trasera de la geometría limitando a 5 el numero de capas extruidas.

Fig. 5.2.3. Sensibilidad de la malla.

Utilizando los parámetros de diseño anteriormente explicados se procedió al refinamiento de la malla para las simulaciones. Para esto, se hizo un estudio de la sensibilidad de la malla para cantidades diferentes de elementos contenidos en el volumen de control. La finalidad de dicho estudio es refinar la malla hasta un punto tal que los resultados de los coeficientes aerodinámicos sean independientes de la cantidad de elementos presentes en el dominio. En la Fig. 5.2.3. se muestran los valores de los coeficientes aerodinámicos de sustentación y arrastre para diferentes valores de elementos bajo las mismas condiciones, es decir, para un mismo valor de Número de Reynolds. En dicha figura se puede observar una diferencia relativamente pequeña entre los valores de los coeficientes para la malla 2,3 y 4 respectivamente teniendo en cuenta que la diferencia entre ellas es de 150.000 elementos, por esta razón las mallas generadas para todos los casos de estudio contienen entre 350.000 y 500.000 elementos.

Pre-procesamiento

El modulo de pre-procesamiento CFX-Pre, permite al usuario definir los modelos físicos, propiedades del fluido y las condiciones de borde necesarias para realizar la simulación CFD.

En esta etapa lo primero que debe hacerse es importar la malla anteriormente generada y crear el dominio de trabajo, en el cual se especifica el fluido de trabajo y sus propiedades. Para el problema de estudio se selecciono aire a condiciones Standard (T= 25 °C. y P = 1 atm). Otro aspecto de importancia que debe especificarse en el dominio es el modelo de turbulencia. El modulo de pre-procesamiento posee una amplia librería de modelos de turbulencia aplicables a

una gran variedad de situaciones. Para todas las simulaciones realizadas se utilizo el modelo de turbulencia k-epsilon. Este es un modelo matemático que debido a sus características de robustez y estabilidad se a convertido en el modelo mas popular empleado por los códigos CFD (ANSYS CFX, Fluent, entre otros.)

Después de haber generado y definido las propiedades del dominio, se deben establecer las condiciones de borde en función de las regiones creadas anteriormente. La condición de entrada para el volumen de control se encuentra definida por la región que posee este mismo nombre y consiste en un campo de velocidades constante en dirección X, que viene dado a partir del número de Reynolds que se va a simular.

La condición de salida del volumen de control se encuentra delimitada por la región del dominio con este mismo nombre a la cual se le asigna como presión relativa de salida el valor de 0 Pa.

Debido a que en este caso se esta simulando un problema bidimensional, se asigna a las regiones frontal y trasera condiciones de borde de simetría.

A los planos de superficie superior e inferior se les asigno la condición de pared con una interacción entre el flujo y la misma de libre deslizamiento.

Como ultima condición de borde se le asigno a la superficie del perfil la condición de pared con una interacción entre el flujo y la misma de no deslizamiento.

Para finalizar la etapa de procesamiento se requiere la inicialización de ciertos parámetros los cuales pueden ser definidos automáticamente por el programa o asignados manualmente por el usuario. En este caso se utilizo para todas las corridas la configuración pre-establecida por el software como condiciones de inicialización.

Calculador

El modulo Calculador del CFX-Solver es el encargado de resolver el problema CFD a partir de los parámetros establecidos en el pre-procesador. Este produce los resultados requeridos en un proceso no interactivo, el calculador determina las variables de la siguiente manera:

• Las ecuaciones diferenciales parciales son integradas sobre todo el volumen de control, siendo equivalente a la aplicación de las leyes básicas de conservación a cada elemento de volumen de control.

- Estas ecuaciones integrales se convierten en sus sistema de ecuaciones algebraicos debido a la generación de un conjunto de términos aproximados para las ecuaciones integrales.
- El sistema de ecuaciones algebraicos es resuelto iterativamente.

Se requiere un enfoque iterativo debido a la naturaleza no lineal de las algebraicas, y a medida que la solución aproximada se acerca a la exacta se dice que el proceso esta convergiendo.

La aproximación entre la solución obtenida y la exacta depende de ciertos factores entre los cuales se incluyen el tamaño y la forma del volumen de control y la magnitud de los residuos finales.

Complejos procesos físicos como la combustión y la turbulencia son a menudo modelados por relaciones empíricas. Las aproximación inherentes en estos modelos también contribuyen a la diferencia entre la solución CFD y la de flujo real.

El proceso de solución del modulo calculador no requiere ninguna interacción con el usuario y es generalmente realizado como un procesamiento por lotes. El CFX-Solver produce un archivo de resultado para ser analizado mediante el uso del post-procesador.

En el modulo calculador se hicieron aproximadamente 25 corridas efectivas utilizando un valor de precisión de 1×10^{-4} las cuales tuvieron un tiempo de duración de 3 a 4 horas cada una.

Post-procesador

El ultimo modulo de ANSYS CFX llamado post-procesamiento es el componente usado para analizar, visualizar y presentar los resultados de manera interactiva, algunas importantes características que pueden visualizarse en el post-procesador son las siguientes:

- Visualización de la geometría y el volumen de control.
- Representación vectorial del flujo indicando dirección y magnitud.
- Visualización de variables que solo tienen magnitud como la temperatura, presión y velocidad en todo el dominio.
- Cálculos numéricos.
- Animaciones.
- Trazado de gráficos para representar determinadas variables.
- Guardar archivos de salida.

En el post-procesador se hizo para cada corrida muchas de las características anteriormente mencionadas, empezando por el calculo del coeficiente de sustentación y arrastre utilizando la función fuerza suministrada por el mismo software en dirección X y Y, los cuales mediante el uso de las ecuaciones explicadas en el capitulo I se hizo posible el calculo de los coeficientes aerodinámicos para cada simulación realizada. Adicionalmente para cada corrida se generaron múltiples características visuales como la representación vectorial de la velocidad del fluido en la cual podremos observar como varia en los alrededores del perfil aerodinámico, la representación vectorial de las fuerzas a las que esta sometido el perfil, generación de las líneas de corriente en todo el dominio y por ultimo la representación de los contornos de presión y velocidad.

5.3. SIMULACIÓN COMPUTACIONAL DEL FLUJO ALREDEDOR DEL PERFIL NACA 63A-210

Los resultados de la simulación computacional realizada para el perfil NACA 63A-210 Se presentan comenzando, con una pequeña tabla en donde se indican los parámetros establecidos en la simulación, seguidamente se mostraran las imágenes generadas con el fin de observar claramente el comportamiento del fluido al variar el ángulo de ataque de un perfil aerodinámico bajo las mismas condiciones.

Parámetro	Valor
Cuerda del Perfil	1000 mm
Condición de Entrada	15,6 m/s
Fluido	Aire
Temperatura	300 K
Numero de Reynolds	1x10 ⁶
Numero de Mach	0,046
Modelo de Transferencia de Calor	Isotérmico
Modelo de Turbulencia	k-ε
Región-Perfil	Pared (No Deslizamiento)
Condición de Salida	Presión estática promedio

Resultados para Re = 1.000.000

Tabla N 5.3.1.- Parámetros de la simulación del perfil NACA 63A-210 para $Re = 1x10^6$.

Fig. 5.3.1. Líneas de corriente sobre el perfil NACA 63A-210, $\alpha = 0^{\circ}$ y Re 1E6.

Fig. 5.3.2. Líneas de corriente sobre el perfil NACA 63A-210 con α = 5° y Re = 1E6.

Fig. 5.3.3. Líneas de corriente sobre el perfil NACA 63A-210 con $\alpha = 10^{\circ}$ y Re = 1E6.

En la figura 5.3.1. se puede observar un campo de líneas de corriente uniforme en la zona del extradós e intradós, se observa en las cercanías de la superficie un valor de aproximadamente 17 m/s. Adicionalmente se puede ver que para ángulo de ataque de 0° la estela generada por el perfil es bastante fina.

En la figura 5.3.2 a diferencia de la anterior se puede observar que hay un pequeño cambio entre la magnitud de las líneas de corriente para cada zona. En el extradós se observa que para una velocidad de aproximadamente 20 m/s aumentando levemente al acercarse a la parte superior del borde de ataque.

En la figura 5.3.3. se puede notar claramente como varia el campo de líneas de corriente de acuerdo al valor del ángulo de ataque. Se observa que la máxima velocidad esta concentrada en el borde de ataque. Adicionalmente se puede notar en dicha figura la región de separación que se genera prácticamente desde el borde de ataque del perfil.

Fig. 5.3.4. Distribución de presión sobre el perfil NACA 63A-210 con $\alpha = 0^{\circ}$ y Re = 1E6.

Fig. 5.3.5. Distribución de presión sobre el perfil NACA 63A-210 con α = 5° y Re = 1E6.

Fig. 5.3.6. Distribución de presión sobre el perfil NACA 63A-210 con $\alpha = 10^{\circ}$ y Re = 1E6.

En la figura 5.3.4., se puede observar las zonas donde hay variación de presión en los alrededores del perfil resaltando el punto en el borde de ataque donde hay mayor presión con un valor aproximado de 151,1 Pa. ubicado en la zona mas extrema del perfil en el borde de ataque. También se puede notar que a pesar de tener un valor de 0 en el ángulo de ataque, el campo de presión en el intradós el cual tiene un valor de -35,42 abarcando una zona aproximada del 60% de la cuerda es levemente mayor que el campo de presiones presente en el extradós el cual tiene un valor de -56,71 Pa. hasta el 70% de la cuerda disminuyendo en la región restante a -35,42 Pa.. respectivamente.

En la figura 5.3.5., se puede notar como la diferencia de presiones entre la zona del extradós y el intradós se incrementa, en este caso para la parte superior tenemos desde –372,5 Pa (punto de menor presión). hasta –66.89 Pa. y en el caso de la parte inferior se observan presiones desde 155,02 Pa. hasta 44,2 Pa.

Se puede observar que la figura 5.3.6. presenta una escala de colores diferente a las figuras explicadas anteriormente, esto se debe a que esta imagen fue tomada de una computadora con

una configuración diferente a las demás, sin embargo en esta figura se puede notar que al igual que en lo ocurrido en las dos anteriores, se incrementa la diferencia entre ambas regiones obteniendo en el caso de 10° para la región superior un valor de –263,6 Pa. hasta –16 Pa. y para la parte inferior se observa un valor de presión máxima de 148,6 Pa. ubicado en el borde de ataque y un mínimo valor de 25,1 Pa. En esta figura es importante resaltar la concentración de las regiones de alta y baja presión comparando con los casos anteriores.

Fig. 5.3.7. Distribución de velocidad sobre el perfil NACA 63A-210, $\alpha = 0^{\circ}$ y Re = 1E6.

Fig. 5.3.8. Distribución de velocidad sobre el perfil NACA 63A-210, $\alpha = 5^{\circ}$ y Re = 1E6.

Fig. 5.3.9. Distribución de velocidad sobre el perfil NACA 63A-210, $\alpha = 10^{\circ}$ y Re = 1E6.

En la figura 5.3.7. se observa la distribución de velocidad para un valor de 0° de ángulo de ataque en la cual se puede ver el caso contrario con respecto a los valores de la distribución de presiones en donde tenemos en el borde de ataque el punto de estancamiento o velocidad 0 y en este caso en la parte superior se tiene un campo de velocidades con un valor de 18,23 m/s hasta aproximadamente un 80% de la cuerda y en la parte inferior se observa una zona con el mismo valor pero ocupando hasta aproximadamente un 60% de la cuerda.

En la figura 5.3.8. se nota al igual que en la distribución de presión como se va incrementando la diferencia entre los valores de velocidad entre ambas regiones sobretodo acercándose hacia el borde de ataque. Para la parte superior cercana al borde de ataque se observa un campo de velocidad con un valor de 22,03 m/s hasta aproximadamente un 50% de la cuerda, seguidamente se puede notar una disminución leve hasta 19,05 m/s proyectado al 85% de la cuerda. En el intradós se puede notar un pequeño campo de velocidad que ocupa aproximadamente hasta el 30% de la cuerda con un valor de 12,4 m/s y a partir de ese punto un campo de velocidades uniforme de 17,03 m/s aproximadamente.

En la figura 5.3.9. se puede observar de igual manera que en el caso anterior una escala de colores diferentes, esto se debe a las mismas razones explicadas en la figura 5.3.6. En la presente figura se puede notar región de separación en donde la velocidad del flujo es prácticamente cero comenzando desde el borde de ataque y terminando en el borde de fuga, adicionalmente se puede observar como en el borde de ataque hay una pequeña zona donde se concentran los máximos valores de velocidad con valores desde 28,8 m/s hasta 20,19 m/s en una pequeña zona ubicada en el borde de ataque.

Fig.5.3.10. Distribución vectorial de la velocidad del flujo alrededor del perfil NACA 63A-210 con $\alpha = 0^{\circ}$ y Re = 1E6.

Fig.5.3.11. Distribución vectorial de la velocidad del flujo alrededor del perfil NACA 63A-210 con $\alpha = 0^{\circ}$ y Re = 1E6.

Fig.5.3.12. Distribución vectorial de la velocidad del flujo alrededor del perfil NACA 63A-210 con $\alpha = 10^{\circ}$ y Re = 1E6.

En las presentes visualizaciones se muestra la distribución de velocidad pero esta vez representada vectorialmente, la finalidad de dichas figuras es para poder observar claramente la dirección y sentido del flujo en todos los puntos del dominio. Los aspectos mas importantes a destacar en estas figuras es observar como el flujo para ángulos de ataque entre 0 y 5° se mantiene pegado al perfil aerodinámico, sin embargo en el caso de la figura 5.3.12 en el cual el ángulo de ataque tiene un valor de 10°, se puede observar claramente el comportamiento que presenta el fluido en la región de separación, se puede notar como el flujo se mueve de manera circular con valores de velocidad muy bajos debido a la turbulencia generada en el flujo por el perfil aerodinámico, este es un fenómeno comúnmente llamado como la generación de vortices.

ANS

Fig. 5.3.13. Representación vectorial de la fuerza proyectada en el ejeY sobre la superficie del perfil NACA 63A-210 con $\alpha = 0^{\circ}$ y Re = 1E6.

Fig. 5.3.14. Representación vectorial de la fuerza proyectada en el eje Y sobre la superficie del perfil NACA 63A-210 con $\alpha = 5^{\circ}$ y Re = 1E6.

Fig. 5.3.15. Representación vectorial de la fuerza proyectada en el eje Y sobre la superficie del perfil NACA 63A-210 con $\alpha = 10^{\circ}$ y Re = 1E6.

En las siguientes figuras se muestra la proyección de la Fuerza en la dirección "Y" para diferentes valores del ángulo de ataque con el fin de observar los puntos donde hay una mayor interacción con el fluido de acuerdo al ángulo de ataque que tenga el perfil aerodinámico. Esta fuerza generada en un perfil por efecto del flujo a sus alrededor se denomina fuerza de sustentación.

En la figura 5.3.13. se puede observar que en la zona del extradós la magnitud de los vectores se va incrementando a medida que se acerca al lugar geométrico del perfil con mayor espesor, indicando valores de fuerza máxima de $8,864 \times 10^{-4}$ N ubicada aproximadamente a 35% de la cuerda. También se puede observar los diferentes valores de fuerzas que se generan en la superficie del intradós los cuales son muy bajos pero conservan la misma dirección positiva de Y.

En la figura 5.3.14. se puede observar como en el caso de la superficie del extradós los máximos valores de fuerza se desplazan hacia el borde de ataque aumentando su magnitud con respecto a la evaluación para 0°. El valor de fuerza máxima para esta figura es de 4,665x10⁻³ el cual es 5 veces mayor en magnitud que el valor de fuerza máxima mencionado anteriormente.

Para el caso del intradós los valores de fuerza aunque siguen siendo bastante bajos se puede observar un pequeño incremento en los valores.

En la figura 5.3.15 se observa como los valores de fuerza máxima se concentran en el borde de ataque obteniendo valores hasta de $8,614 \times 10^{-3}$ N, también se puede observar el considerable aumento en los valores de fuerzas en la superficie del intradós sobretodo en la región del borde de ataque y disminuyendo progresivamente a medida que se acerca al borde de fuga.
5.4 SIMULACIÓN COMPUTACIONAL DEL FLUJO ALREDEDOR DEL PERFIL ZAREA 63-A210.

Los resultados de la simulación computacional realizada para el perfil ZAREA 63A-210 Se presentan comenzando, con una pequeña tabla en donde se indican los parámetros establecidos en la simulación, seguidamente se mostraran las imágenes generadas con el fin de observar claramente el comportamiento del fluido al variar el ángulo de ataque de un perfil aerodinámico bajo las mismas condiciones.

Simulación para Re= 1.000.000.

Parámetro	Valor
Cuerda del Perfil	1000 mm
Condición de Entrada	15,6 m/s
Fluido	Aire
Temperatura	300 K
Numero de Reynolds	1x10 ⁶
Numero de Mach	0,046
Modelo de Transferencia de Calor	Isotérmico
Modelo de Turbulencia	k-ε
Región-Perfil	Pared (No Deslizamiento)
Condición de Salida	Presión estática promedio

Tabla N 5.4.1.- Parámetros de la simulación del perfil ZAREA 63A-210 para $Re = 1x10^6$.

Fig. 5.4.1. Líneas de corriente sobre el perfil ZAREA 63A-210, $\alpha = 0^{\circ}$ y Re 1E6.

Fig. 5.4.2. Líneas de corriente sobre el perfil ZAREA 63A-210, $\alpha = 5^{\circ}$ y Re 1E6.

Fig. 5.4.3. Líneas de corriente sobre el perfil ZAREA 63A-210, $\alpha = 10^{\circ}$ y Re 1E6.

En la figura 5.4.1. se puede observar un campo de líneas de corriente uniforme en la zona del extradós e intradós, en las cercanías de la superficie se nota un valor aproximado de 19 m/s. Adicionalmente se puede ver que para ángulo de ataque de 0º la estela generada por el perfil es bastante fina.

En la figura 5.4.2 a diferencia de la anterior se puede observar que hay un pequeño cambio entre la magnitud de la velocidad en las líneas de corriente para cada zona. En el extradós se observa aproximadamente 22,7 m/s aumentando levemente al acercarse a la parte superior del borde ataque y en el intradós se observan valores aproximados de 13,2 m/s.

En la figura 5.4.3. se puede notar claramente como varia el campo de líneas de corriente de acuerdo al valor de ángulo de ataque. Se observa que la máxima velocidad esta concentrada en el borde de ataque. Adicionalmente se puede notar en dicha figura la región de separación generada prácticamente desde el borde de ataque del perfil con un valor de 28,6 m/s.

Fig. 5.4.4. Distribución de presión sobre el perfil ZAREA 63A-210 con $\alpha = 0^{\circ}$ y Re = 1E6.

Fig. 5.4.5. Distribución de presión sobre el perfil ZAREA 63A-210 con α = 5° y Re = 1E6.

Fig. 5.4.6. Distribución de presión sobre el perfil ZAREA 63A-210 con $\alpha = 10^{\circ}$ y Re = 1E6.

En la figura 5.4.4. se puede observar las zonas donde hay variación de presión en los alrededores del perfil resaltando el punto en el borde de ataque donde hay mayor presión con un valor aproximado de 140 Pa. ubicado en la zona mas extrema del perfil en el borde de ataque. También se puede notar que a pesar de tener un valor de 0° en el ángulo de ataque, el campo de presión en el intradós el cual tiene un valor de -22,94 abarcando una zona aproximada del 70% de la cuerda es levemente mayor que el campo de presiones presente en el extradós el cual tiene un valor de -131,6 Pa. hasta el 20% de la cuerda disminuyendo en la región restante a -50,01 Pa.. respectivamente.

En la figura 5.4.5. se puede notar como la diferencia de presiones entre la zona del extradós y el intradós se incrementa, en este caso para la parte superior tenemos desde –247,5 Pa (punto de menor presión). hasta –56.6 Pa. y en el caso de la parte inferior se observan presiones desde 155,02 Pa. hasta 49,1 Pa.

En la figura 5.4.6. al igual que en lo ocurrido en las dos anteriores, se incrementa la diferencia entre ambas regiones obteniendo en el caso de 10° para la región superior un valor de -353,3 Pa. hasta -37,8 Pa. y para la parte inferior se observa un valor de presión máxima de 132,4 Pa. ubicado en el borde de ataque y un mínimo valor de 47,1 Pa. En esta figura es importante resaltar la concentración de las regiones de alta y baja presión comparando con los casos anteriores.

Fig. 5.4.7. Distribución de velocidad sobre el perfil ZAREA 63A-210, $\alpha = 0^{\circ}$ y Re = 1E6.

Fig. 5.4.8. Distribución de velocidad sobre el perfil ZAREA 63A-210, $\alpha = 5^{\circ}$ y Re = 1E6.

Fig. 5.4.9. Distribución de velocidad sobre el perfil ZAREA 63A-210, $\alpha = 10^{\circ}$ y Re = 1E6.

En la figura 5.4.7. se observa la distribución de velocidad para un valor de 0° de ángulo de ataque en la cual se puede ver el caso contrario con respecto a los valores de la distribución de presiones en donde tenemos en el borde de ataque el punto de estancamiento o velocidad 0 y en este caso en la parte superior se tiene un campo de velocidades máximas en una región entre el 10% y 60% de la cuerda con un valor de 19,97 m/s y en la parte inferior se observa una zona con un campo de velocidades constante el cual tiene valores de 13,98 m/s.

En la figura 5.4.8. se nota al igual que en la distribución de presión como se va incrementando la diferencia entre los valores de velocidad entre ambas regiones sobretodo acercándose hacia el borde de ataque. Para la parte superior cercana al borde de ataque se observa un valor máximo de 24,48 m/s y valores cercanos ocupando aproximadamente el 50% de la cuerda. En la zona del Intradós se puede notar un pequeño campo de velocidad que ocupa aproximadamente hasta el 20% de la cuerda con pequeños valores desde 4,895 m/s hasta 12,2 m/s ocupando la zona del borde de ataque hasta aproximadamente un 20% de la cuerda. A

partir de este punto se observa un campo constante de velocidades con un valor de 14,6 m/s proyectándose hasta el borde de fuga.

En la figura 5.4.9. se puede observar la región de separación en donde la velocidad del flujo es prácticamente cero comenzando desde el borde de ataque y terminando en el borde de fuga, adicionalmente se puede notar como en el borde de ataque hay una pequeña zona donde se concentran los máximos valores de velocidad desde 28,06 m/s hasta 22,8 m/s en una pequeña zona que ocupa el 20% de la cuerda.

Fig.5.4.10. Distribución vectorial de la velocidad del flujo alrededor del perfil

ZAREA 63A-210 con $\alpha = 0^{\circ}$ y Re = 1E6.

Fig.5.4.11. Distribución vectorial de la velocidad del flujo alrededor del perfil ZAREA 63A-210 con $\alpha = 5^{\circ}$ y Re = 1E6.

Fig.5.4.12. Distribución vectorial de la velocidad del flujo alrededor del perfil ZAREA 63A-210 con $\alpha = 10^{\circ}$ y Re = 1E6.

En las presentes visualizaciones se muestra la distribución de velocidad pero esta vez representada vectorialmente, la finalidad de dichas figuras como se menciono anteriormente es poder observar claramente la dirección y sentido del flujo en la región de interés en el volumen de control. Los aspectos mas importantes a destacar en estas figuras es observar como el flujo para ángulos de ataque entre 0 y 5° se mantiene pegado al perfil aerodinámico, sin embargo en el caso de la figura 5.4.12 en el cual el ángulo de ataque tiene un valor de 10°, se puede observar claramente el comportamiento que presenta el fluido en la región de separación, se puede notar como hay una poca cantidad de flujo que se mueve de manera circular con valores de velocidad muy bajos debido a la turbulencia generada al flujo por el perfil aerodinámico, este es un fenómeno comúnmente llamado como la generación de vortices.

Fig. 5.4.13. Representación vectorial de la fuerza proyectada en el eje Y sobre la superficie del perfil ZAREA 63A-210 con $\alpha = 0^{\circ}$ y Re = 1E6.

ANSYS

Fig. 5.4.14. Representación vectorial de la fuerza proyectada en el eje Y sobre la superficie del perfil ZAREA 63A-210 con $\alpha = 5^{\circ}$ y Re = 1E6.

Fig. 5.4.15. Representación vectorial de la fuerza proyectada en el eje Y sobre la superficie del perfil ZAREA 63A-210 con $\alpha = 10^{\circ}$ y Re = 1E6.

En la figura 5.4.13. se puede observar que en la zona del extradós los máximos valores de fuerza se encuentran ubicados aproximadamente a 20% de la cuerda alcanzando unos valores hasta de 1,506x10⁻³ N. En el caso del intradós podemos observar en el borde de ataque el máximo valor de fuerza con sentido positivo concentrado en la zona mas extrema el perfil alcanzando una magnitud de 2,089x10⁻³ N. A partir de este valor se puede notar un decremento repentino de los valores a lo largo de todo el intradós

En la figura 5.4.14. se puede observar como en el caso de la superficie del extradós los valores de fuerza en la zona del borde de ataque se incrementan considerablemente a valores aproximados de $3,014x10^{-3}$ N. Para el caso de la superficie del intradós se observa que la magnitud de la fuerza concentrada en el punto donde su valor hasta $5,237x10^{-4}$ N.

En la figura 5.4.15 se observa como los valores de fuerza máxima se concentran en el borde de ataque obteniendo valores hasta de $7,31 \times 10^{-3}$ N, también se puede observar el progresivo incremento en los valores de fuerzas en la superficie del intradós sobretodo en la región del borde de ataque a medida que se va incrementando el valor de ángulo de ataque.

5.5. TABLAS COMPARATIVAS

También fueron realizadas simulaciones para los mismos ángulos de ataque para número de Reynolds de 3.000.000, para estas condiciones no se muestran imágenes del comportamiento del flujo. Sin embargo, en esta sección se muestran los coeficientes aerodinámicos calculados en estas simulaciones.

El único parámetro de simulación que debió ser modificado en el pre-procesador para lograr compilar estas simulaciones en el calculador, fue el valor de la velocidad de corriente libre en la condición de borde de entrada. En la cual como se menciono anteriormente para la simular numero de Reynolds de 1.000.000 se utilizó 15.6 m/s y para 3.000.000 se utilizó 46.8 m/s.

A continuación se muestra en las tabla 5.5.1. los resultados computacionales obtenidos en las simulaciones para los perfiles NACA 63A-210 y ZAREA 63A-210 en las cuales se muestran los valores de los coeficientes aerodinámicos de sustentación y arrastre, adicionalmente se cuantificara en estas tablas el incremento en los coeficientes para 0°, 5° y 10° de ángulo de ataque.

En la tablas 5.5.1. y 5.5.2. se mostrara la comparación de dichos valores con la evaluación anteriormente realizada con el software VisualFoil 4.1 para este perfil y su homologo modificado con el fin de cuantificar la diferencia existente entre dichos valores y poder concluir acerca de los resultados obtenidos.

Las expresiones utilizadas para cuantificar el error son las mismas que se definieron en el capitulo III.

Las tablas 5.5.3 comparan los coeficientes aerodinámicos entre el perfil NACA 63A-210 y ZAREA 63A-210 calculado a partir de las simulaciones CFD a diferentes Números de Reynolds. Muestra las diferencias absoluta entre los coeficientes y la variación porcentual de estas características con respecto a las del perfil base. Las expresiones utilizadas para cuantificar estos parámetros son las mismas que se definieron en el capitulo IV.

Tabla Nº 5.5.1. Comparación entre las características aerodinámica evaluadas en VisualFoil y	CFX pa	ara el j	perfil NACA 63	3A-210.
--	--------	----------	----------------	---------

	NACA 63A-210 VisualFoil-CFX Re= 1.000.000														
α (deg)	VisualFoil 220 pts.			CFX			Error Absoluto			E _{R1} (%)= (1- C _v /Cc)x 100			E _{R2} (%)= (1-Cc/C _v)x 100		
	CI	Cd	3	CI	Cd	3	ΔC_{L}	ΔC_{D}	Δε	E _{CL1}	E _{CD1}	Eε1	E _{CL2}	E _{CD2}	E _{ε2}
0	0,17229	0,00581	29,65	0,14978	0,012	12,28	0,02	-0,01	17,37	-15,0	52,4	-141,5	13,1	-109,9	58,6
5	0,69404	0,01039	66,82	0,66724	0,021	31,18	0,03	-0,01	35,65	-4,0	51,5	-114,3	3,9	-106,0	53,3
10	1,13376	0,01839	61,65	0,9776	0,073	13,36	0,16	-0,05	48,30	-16,0	74,9	-361,6	13,8	-298,0	78,3

	NACA 63A-210 VisualFoil-CFX Re= 3.000.000														
α (deg)	VisualFoil 220 pts.			CFX			Error Absoluto			E _{R1} (%)= (1- C _v /Cc)x 100			E _{R2} (%)= (1-Cc/C _v)x 100		
	CI	Cd	ε	CI	Cd	ε	ΔC_{L}	ΔC_{D}	Δε	E _{CL1}	E _{CD1}	Eε1	E _{CL2}	E _{CD2}	E _{ε2}
0	0,17338	0,0047	36,75	0,158	0,01	15,43	0,02	-0,01	21,32	-9,7	53,9	-138,2	8,9	-117,0	58,0
5	0,70803	0,00817	86,62	0,6792	0,019	35,41	0,03	-0,01	51,21	-4,2	57,4	-144,6	4,1	-134,6	59,1
10	1,20147	0,01391	86,40	0,96565	0,067	14,40	0,24	-0,05	72,00	-24,4	79,3	-500,1	19,6	-382,3	83,3

Tabla Nº 5.5.2. Comparación entre las características aerodinámica evaluadas en VisualFoil y CFX para el perfil NACA 63A-210.

	ZAREA 63A-210 VisualFoil-CFX Re= 1.000.000														
α (deg)	VisualFoil 220 pts.			CFX			Error Absoluto			E _{R1} (%)= (1- C _v /Cc)x 100			E _{R2} (%)= (1-Cc/C _v)x 100		
	CI	Cd	3	CI	Cd	3	ΔC_{L}	ΔC_{D}	Δε	E _{CL1}	E _{CD1}	Eε1	E _{CL2}	E _{CD2}	E _{ε2}
0	0,31621	0,0081	39,02	0,2858	0,014	19,92	0,03	-0,01	19,11	-10,6	43,5	-95,9	9,6	-77,1	49,0
5	0,83075	0,00916	90,69	0,8201	0,021	38,39	0,01	-0,01	52,30	-1,3	57,1	-136,2	1,3	-133,2	57,7
10	1,26226	0,01785	70,73	1,29937	0,039	32,96	-0,04	-0,02	37,76	2,9	54,7	-114,6	-2,9	-120,9	53,4

	ZAREA 63A-210 VisualFoil-CFX Re= 3.000.000														
α (deg)	VisualFoil 220 pts.			CFX			Error Absoluto			E _{R1} (%)= (1- C _v /Cc)x 100			E _{R2} (%)= (1-Cc/C _v)x 100		
	CI	Cd	3	CI	Cd	3	ΔC_{L}	ΔC_{D}	Δε	E _{CL1}	E _{CD1}	Eε1	E _{CL2}	E_{CD2}	E _{ε2}
0	0,31913	0,00664	48,08	0,2987	0,012	24,60	0,02	-0,01	23,48	-6,8	45,3	-95,4	6,4	-82,9	48,8
5	0,85045	0,00699	121,65	0,84858	0,015	57,86	0,00	-0,01	63,79	-0,2	52,3	-110,3	0,2	-109,8	52,4
10	1,32223	0,01409	93,82	1,05898	0,05	21,22	0,26	-0,04	72,60	-24,9	71,8	-342,1	19,9	-254,1	77,4

	NACA 63A-210,ZAREA 63A-210 Re= 1.000.000													
α (deg)	Cl _B	Cd_{B}	ε _B	Cl _M	Cd_M	٤ _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε		
0	0,14978	0,0122	12,28	0,2858	0,014	19,92	0,14	0,0022	7,64	90,8	17,6	62,2		
5	0,66724	0,0214	31,18	0,8201	0,021	38,39	0,15	0,0000	7,21	22,9	-0,2	23,1		
10	0,9776	0,07319	13,36	1,29937	0,039	32,96	0,32	-0,0338	19,61	32,9	-46,1	146,8		
			NACA	63A-210,Z/	AREA 63	A-210 R	e= 3.00	0.000						
α (deg)	Cl _B	Cd_{B}	ε _B	Cl _M	Cd_M	٤ _M	ΔC_{L}	ΔC_{D}	Δε	%Cl	%Cd	%ε		
0	0,158	0,01024	15,43	0,2987	0,012	24,60	0,14	0,0019	9,17	89,1	18,6	59,5		
5	0,6792	0,01918	35,41	0,84858	0,015	57,86	0,17	-0,0045	22,44	24,9	-23,5	63,4		
10	0,96565	0,06707	14,40	1,05898	0,05	21,22	0,09	-0,0172	6,82	9,7	-25,6	47,4		

Tabla Nº 5.5.3.- Comparación entre las características aerodinámicas del perfil NACA 63A-210 y la modificación ZAREA 63A-210.

5.6 COMENTARIOS.

En las tablas de la sección 5.5 se muestran los resultados obtenidos en las simulaciones realizadas en el software ANSYS CFX las cuales se comparan con la evaluación computacional realizada anteriormente en VisualFoil 4.1. con el fin de evaluar la confiabilidad de los resultados obtenidos, adicionalmente se compara en otra tabla contenida en la misma sección los resultados del perfil base y su respectiva modificación evaluados en el código CFD.

En las tablas 5.5.1 y 5.5.2 se hace la comparación entre los resultados obtenidos por las simulaciones computacionales y las anteriormente realizadas en VisualFoil. Como podemos observar para Re = 1.000.000 la diferencia entre los valores de coeficiente de sustentación es muy pequeña para valores de 0° y 5° de α y se incrementa a un valor considerable para 10°, para Re = 3.000.0000 se presenta una situación similar con la diferencia de que existe un incremento mayor en la diferencia para valores de α de 10°. Analizando los valores obtenidos en las simulaciones para el coeficiente de arrastre se puede notar que son bastante altos en comparación a los reportados por el software VisualFoil 4.1. lo cual se ve reflejada en una disminución brusca en la fineza aerodinámica.

En la tabla 5.5.3 se puede observar los valores de coeficiente de sustentación y arrastre para 0°, 5° y 10°, en los cuales se reporta un incremento porcentual de 90.8%, 22.9% y 32.9% para Re = 1.000.000 y 89.1%, 24.9% y 9.7% para Re = 3.000.000. Adicionalmente como se menciono en capítulos anteriores el método utilizado para la modificación del borde de ataque genera un pequeño incremento en el coeficientes de arrastre.

El software CFX pone en evidencia que el perfil modificado tiene un mejor desempeño aerodinámico que el perfil base, tal como resulto en la evaluación con VisualFoil 4.1.

La simulación realizada permite visualizar el espectro aerodinámico y cuantificar el tamaño de las zonas de baja y alta presión y de velocidad respectivamente.

6. CONCLUSIONES Y RECOMENDACIONES.

El presente trabajo realizado permite formular las siguientes conclusiones:

- El método ideado por el Prof. Stefan Zarea (patente pendiente) y aplicado en dicho trabajo especial el cual consiste en generar un nuevo perfil a partir de una pequeña modificación en el borde de ataque que conlleva el aumento de la flecha máxima se ve reflejado incremento en los coeficientes aerodinámicos del perfil modificado.
- Al aplicar el método de modificación para 18 perfiles de la serie NACA de 6 dígitos y 4 perfiles de la serie SZ2000 se obtuvo un mejoramiento en el comportamiento aerodinámico con respecto al coeficiente de sustentación 1,6% y 28%.
- 3. Comparando los resultados computacionales y experimentales del software VisualFoil 4.1 para la serie NACA de 6 dígitos utilizando diferentes criterios y para la mayoría se obtuvieron errores menores al 15% hasta un valor de α de 8° independiente del número de Reynolds, por esta razón se puede concluir que el programa VisualFoil 4.1 es confiable para esta clase de perfiles.
- Se trazaron las curvas características computacionales de los perfiles base y modificados y se cuantifico el incremento en los valores de los coeficientes aerodinámicos originado por el cambio del borde de ataque.
- 5. Los perfiles NACA seleccionados para las modificaciones se caracterizan por cubrir un amplio rango de espesores máximos con el fin de probar que el método empleado funciona para una gran variedad de geometrías aerodinámicas.
- 6. La modificación realizada en los perfiles NACA de 6 dígitos genera adicionalmente un incremento leve en el coeficiente arrastre.
- 7. Un incremento en la fineza aerodinámica que varia en el rango de 1,9% a 32%.
- 8. La aplicación del método de modificación del borde de ataque a la serie NACA de 6 dígitos, la cual es una familia con características geométricas modestas demuestra que se pueden mejorar las características aerodinámicas de perfiles con coeficientes aerodinámicos bajos, para de esta manera poder ser aprovechados y ser aplicados en el diseño de turbomáquinas, hélices, etc.

- Para los perfiles de la serie SZ2000, la modificación del borde de ataque se refleja en un incremento del coeficiente de sustentación variando entre 3% y 15.8% y de la fineza aerodinámica en el rango 4.5% a 12.8%.
- 10. El software ANSYS CFX se aplico para simular el flujo alrededor de un perfil NACA y su homologo modificado lo que permitió trazar el espectro aerodinámico y la distribución de presión y velocidad para tres valores del ángulo de incidencia. Los valores del coeficiente de sustentación calculados difieren poco de los datos experimentales para ángulos de incidencia menores de 7° y están por debajo para α >7°. Los valores del coeficiente de arrastre calculado es prácticamente el doble de los valores experimentales, de manera que para la evaluación global de los perfiles es necesario utilizar y otros software.

Para investigaciones futuras en el área de perfiles, en base a esta experiencia, considero conveniente sugerir:

- En el caso del uso del código CFX utilizar mallas estructuradas en vez de mallas no estructuradas que el propio software ofrece.
- Refinar las mallas hasta el limite razonable para mejorar la precisión de los resultados.
- Utilizar equipos computacionales con características apropiadas para lograr simulaciones optimas.

7. REFERENCIAS BIBLIOGRAFICAS.

- ABBOTT, I. H., & VON DOENHOFF, A. E., 1959, *Theory of Wing Sections*, Dover Publications, Inc. New York, USA.
- ANDERSON, J. y BARLOW, B. J., 1979, A Study of the Dropped Leading Edge Airfoil University of Maryland, College Park Department of Aerospace Engineering, pp. 41.
- ANDERSON, Jr., 2006, *Fundamentals of Aerodynamics*, Mcgraw-Hill Series in Aeronautical and Aerospace Engineering, Fourth Edition, USA.
- APARICIO, G. J. A., 2006, Influencia del Borde de Fuga Romo Sobre Las Curvas Características de Perfiles Aerodinámicos GOE, NACA y FX, Tesis, Ing. Mec., Universidad Central de Venezuela, Caracas.
- BARITTO, M., 2007, Ascenso de Burbujas de Taylor en Mini-Conductos verticales de sección No-Circular: Estudio Numérico, Tesis, Ing. Mec., Universidad Central de Venezuela, Caracas.
- BRAGG, M. B., AND JACOBS, J. J., 2006, Particle Image Velocimetry Measurements of the Separation Bubble on an Iced Airfoil, 24th AIAA Applied Aerodynamics Conference, San Francisco, CA, pp.14.
- BRAGG, M. B., AND JACOBS, J. J., 2007, Two- and Three-Dimensional Iced Airfoil Separation Bubble Measurements by Particle Image Velocimetry, 45th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, pp. 16.
- CHANDRASEKHARA, M. S., et al, 1997, Design and Development of Dynamically Deforming Leading Edge Airfoil for Unsteady Flow Control, NAVY-NASA, pp. 10.
- CHANDRASEKHARA, M. S. y TUNG, P. B., 2004, Aerodynamic Flow Control using a Variable Droop Leading Edge Airfoil, Navy-NASA, pp. 19.
- CHARL ES L. et al., 1996, Computer Program to Obtain Ordinates for NACA Airfoils, NASA, Langley Research Center, Hampton Virginia.
- DE ACEVEDO, H. y ROJAS, M., 2003, Curvas Características de Perfiles Aerodinámicos Serie SZ-2000, Tesis, Ing. Mec., Universidad Central de Venezuela, Caracas.
- EKATERINARIS J. A., 2004, Prediction of active flow control performance on airfoils and wings, Aerospace Science and Technology,

- ERICKSON, G. E., 1995, High angle of attack aerodynamics, Ann. Rev. Fluid Mech., Vol. 27, p. 45-88.
- FELICIEN F., FULLMER JR., 1944, Wind Tunnel Investigation of NACA 66(215)-216, 66,1-212, and 65₁-212 Airfoils with 0.20-Airfoil-Chord Split Flaps, Langley Memorial Aeronautical Laboratory, Langley Field.
- FERRER C., 2007, Características geométricas y aerodinámicas de perfiles utilizados en diseño de turbomáquinas hidráulicas, Trabajo de ascenso, Ing. Mec., Universidad Central de Venezuela, Caracas.
- FIGUEIRA, N. J. y VILASECA, U. M., 1981, Generación de Perfiles Aerodinámicos Utilizando Funciones Polinómicas, Tesis, Ing. Mec., Universidad Simón Bolívar, Caracas.
- FRANK, E., 1987, Calculo de la Capa Límite sobre Perfiles Eppler y Zarea, Tesis, Ing. Mec., Universidad Simón Bolívar, Caracas.
- GETAN, E., 1981, Estudio de Perfiles Aerodinámicos Definidos por Seis Parámetros, Tesis, Ing. Mec., Universidad Simón Bolívar, Caracas.
- GOMEZ, ALVARO PINILLA, 2006 Aerodynamic Characteristics of Airfoils with Blunt Trailing Edge, *Revista de Ingenieria*, Universidad de los Andes. No 24., pp. 11.
- HANLEY, P., 1989, Aerodynamic and Airfoil Analysis Software, MIT Course.
- JOHANSEN, J., 2002, CFD Study of a NACA 63-415 Aerofoil Fitted with Stall Strips, Risø-R-1370(EN), Roskilde, September, pp. 52.
- KITSIOS V., KOTAPATI R. B., 2006, Numerical Simulation of Lift Enhancement on a NACA 0015 airfoil using ZNMF Jets, *Center for Turbulence Research*.
- KUETHE, A. M. y CHOW, CH., 1976, Foundation of Aerodynamics, John Wiley & Sons.
- LA GRECA, A., 1983, Flujo Rotacional Alrededor de un Perfil Aerodinámico, Tesis, Ing. Mec., Universidad Simón Bolívar, Caracas.
- MARTIN P. B., MCALISTER K. W., 2003, Dynamic Stall Measurements and Computations for a VR-12 Airfoil with a Variable Droop Leading Edge, American Helicopter Society 59th Annual Forum.
- MARTINS F. y MONTOYA, L. J. L., 1991, Calculo de las Características Aerodinámicas de Perfiles Zarea Modificados, Tesis, Ing. Mec., Universidad Central de Venezuela, Caracas.

- MATESCU D., ABDO M., 2005, Efficient second-order analytical solutions for airfoils in subsonic flows, *Aerospace Science and Technology*.
- MAUGHMER, M. D., et al, 2001, The Design and Testing of a Winglet Airfoil for Low-Speed Aircraft, *AIAA* 2001-2478. pp. 10.
- MCCROSKEY, W. J., 1981, The Phenomenon of Dynamic Stall, NASA
- MILEY, S. J., 1982, A Catalog of Low Reynolds Number Airfoil Data for Wind Turbine Applications, Texas A&M University, Texas, USA.
- PANTIN, A. M. y ROJAS, H., 1978, Estudio Teórico Practico Sobre Perfiles Aerodinámicos, Tesis, Ing. Mec., Universidad Simón Bolívar, Caracas.
- PALIKARAS, YAKINTHOS K., 2003, The effect of negative shear on the transitional separated flow around a semi-circular leading edge, *Heat and Fluid Flow*. No. 24. pp. 9.
- PELAEZ, U. F. A., 1985, Desarrollo de Perfiles Aerodinámicos Mediante Dos Curvas Generatrices Cerradas, Tesis, Ing. Mec., Universidad Central de Venezuela, Caracas.
- PREMALATHA, RAMAMOORTHY P., 1991, Performance of an Airfoil at low Reynolds Number, National Aeronautical Laboratory, Project Document CF 9102, pp. 88.
- RODRIGUEZ, R. J. E., 1978, Generación de Perfiles Aerodinámicos, Tesis, Ing. Mec., Universidad Simón Bolívar, Caracas.
- RODRIGUEZ, I., 1983, Generación de Perfiles Aerodinámicos Mediante el Método Zarea, Tesis, Ing. Mec., Universidad Central de Venezuela, Caracas.
- SACKS, I. y URRESH, I., 1982, Estudio del flujo Alrededor de Perfiles Aerodinámicos Obtenidos por inversión Compleja, tesis, Ing. Mec., Universidad Simón Bolívar, Caracas.
- SARKAR S., VENKATRAMAN K., 2005, Influence of Pitching angle of incidence on the dynamic stall behaviour of a symmetric airfoil, *European Journal of Mechanics*. *No. 16, pp.20*
- SHAN HUA, JIANG LI., 2003, Direct Numerical Simulation of flow separation around NACA 0012 Airfoil, *Computers & Fluids*
- STAFF OF LANGLEY RESEARCH CENTER, 1979, Exploratory Study of the Effects of Wing Leading Edge Modifications on the Stall/Spin Behavior of a Light General Aviation Airplane, NASA TP 1589.
- TUCK, J.SORIA, 2004 Active Flow Control over a NACA 0015 Airfoil using a ZNMF Jet, 15th Australasian Fluid Mechanics Conference, The University of Sydney, Australia.

- ZAREA, S., 1995, New Methods in Aero- hydrodynamic Profile Generation, III Congress on Fluid Mechanics, USB.
- ZAREA, S., 2001 Periodic Beltrami flows around cylindrical obstacles, Recent Developments in Fluid Mechanics, Proceedings of LACAFLUM, pag. 131-137, Caracas.
- ZAREA, S., IRAUSQUIN. 2002. Evaluación computacional de tres perfiles aerodinámicos serie SZ-1500, Memorias del V Congreso Iberoamericano de Ingeniería Mecánica, Chile.
- ZAREA, S., IRAUSQUIN. 2002. Evaluación experimental de tres perfiles aerodinámicos serie SZ-1500 con borde de ataque modificado, Memorias del V Congreso Iberoamericano de Ingeniería Mecánica, Chile.
- ZAREA, S., et al, 2003, Evaluación experimental de ocho perfiles aerodinámicos serie SZ-1500 para bajos números de Reynolds, *Revista de la Fac. de Ingeniería*, UCV. Vol. 18, No 3. pp.11.

8. ANEXOS

En la sección de ayuda del software ANSYS CFX las ecuaciones que se resuelven numéricamente para cada elemento de volumen finitos son mostradas de la siguiente forma:

The Continuity
$$\frac{\partial \rho}{\partial t} + \nabla \bullet (\rho U) = 0$$
 (Eqn. 77)
Equation

The Momentum Equations

$$\frac{\partial(\rho U)}{\partial t} + \nabla \bullet (\rho U \otimes U) = -\nabla p + \nabla \bullet \tau + S_M$$
(Eqn. 78)

Where the stress tensor, τ , is related to the strain rate by

$$\tau = \mu \left(\nabla \boldsymbol{U} + \left(\nabla \boldsymbol{U} \right)^T - \frac{2}{3} \delta \nabla \bullet \boldsymbol{U} \right)$$
 (Eqn. 79)

$$\begin{array}{l} \text{The Total} \\ \text{Energy Equation} \end{array} \quad \frac{\partial(\rho h_{\text{tot}})}{\partial t} - \frac{\partial p}{\partial t} + \nabla \bullet (\rho \, \boldsymbol{U} h_{\text{tot}}) \\ = \nabla \bullet (\lambda \nabla T) + \nabla \bullet (\boldsymbol{U} \bullet \tau) + \boldsymbol{U} \bullet \boldsymbol{S}_{M} + \boldsymbol{S}_{E} \end{array} \tag{Eqn. 80}$$

Where $h_{\rm tot}$ is the total enthalpy, related to the static enthalpy h(T, p) by:

$$h_{\text{tot}} = h + \frac{1}{2}U^2 \tag{Eqn. 81}$$

The term $\nabla \bullet (U \bullet \tau)$ represents the work due to viscous stresses and is called the viscous work term.

The term $U \bullet S_M$ represents the work due to external momentum sources and is currently neglected.