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Abstract 
Plugging of cuttings in the wellbore is a common problem during drilling processes.  Some authors have analyzed settling or 
slip velocity of particles in a liquid both analytically and experimentally.  The concentration of cuttings throughout the well 
has been also analyzed.  It has been proven that numerical models have the potential to help predict the performance of the 
cuttings concentration for solving this problem.   
A computer model for determining the cuttings concentration for the different processes applied during wellbore drilling is 
presented.  It is a useful tool for the drilling engineer to predict and analyze the drilled cuttings transport to assure efficient 
wellbore cleaning during operations. The model is based on central difference, and non-Newtonian power low fluids can be 
used. The effect of the cuttings interaction for different concentration in the settling velocity was determined experimentally. 
The model was designed to allow the user to calculate the cuttings bed formation, determine whether the bed remains 
stationary or build ups and analyze the position of the cuttings bed formed and the height of the cuttings bed layer. 
Using a typical case study, the wellbore cuttings concentration and the height of the cutting bed are shown for the different 
processes; i.e. during hole-cleaning and shut down. The effect of operating parameters, wellbore geometry, non-Newtonian 
fluid parameters and cutting characteristics was analyzed.  This computer model is a helpful tool to predict stuck problems 
and speed up wellbore cleaning processes. 
 
Particles Transport Model 
Conservation of mass 
Conservation of mass is the basic transport equation for the analysis of the concentration of particles in a liquid flow.  The 
total material flowing into an element of the system (see Fig 1) less the total output flow equals the accumulation of material. 
If the particles are assumed incompressible, this statement can be written as follows (Civan): 
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where the left hand side is the rate of accumulation, and the right hand side accounts for incoming particles through the 
surface located at the element x , and outcoming particles flowing through: the surface located at xx Δ+ , and the 
formation.   
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Fig. 1-Sketch of a control volume (basic element) 
 
For the cuttings analysis, where the particles are usually larger than the pore size, F can be assumed negligible. The cross-
sectional area in each element can be assumed constant.  Then, equation (1) can be written:  
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The right hand side can be written: 
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As shown later, the relation between the velocity and the concentration can be calculated.  It is convenient to apply the chain 

rule 
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which is a parameter with velocity dimension and is a function of the concentration.  Then, the equation becomes: 
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Note that when α  is a constant, that is no slip or very low concentration, eq. (5) becomes
∂
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the concentration with respect to time at the bottom of the well (BC’s) will travel along the well with the same shape at a 
velocityV . 
 
Finite Difference Solution 
A diagram of the discretization is shown in Fig. 2.  The method chosen for the discretization of the time component was 
Stone & Brian, centered in time and weighted in space. It is defined as: 
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Where w w w1 2 3, ,  are weighting factors determined for best numerical performance. 
Note that definingθ = +w w1 3, leads to w2 1= −θ .  If w w1 3= , the eq. (6) becomes: 
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Fig. 2-Diagram of the discretization of the well. 
 
The equation chosen for the discretization of the distance component is also centered in time and weighted in space: 
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f1 , f2   are also weighting factors determined for best performance. 

Note that when f f1 2
1
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Equation (8) can be written: 
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A substitution of eq. (10) and (6) in eq. (5) leads to: 
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Rearranging gives: 
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a w f D j= +1 2α ,  b w f f Dj= + −2 1 2( )α ,  c w f D j= −3 1α ,  p w f Dj= −1 2α ,  q w f f D j= − −2 1 2( )α ,  

r w f D j= +3 1α ,  d pC qC rCn
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Eqs. (12) to (12.7) gives the concentration at the three elements after one timestep.  This system can be expressed as a 
tridiagonal matrix and can be solved with Thomas algorithm.  
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The initial conditions should be given for the first timestep. The concentration at the last element (bottom) must be also 
known, that is, the boundary condition. An appropriate equation should be written for the first element: 
at j= ⇒1  

a = 0 , b w D= +2 1α , c w D= −3 1α , p = 0 , q w D= −2 1α , r w D= +3 1α , d qC rCn n= +1 2  
Another appropriate equation should be written for the element before the last one: 
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Slip Phenomena Treatment 
The velocity of the particles depends on the velocity of the liquid and the slip velocity between the liquid and the particles, 

V Va Vs= − .....................................................................................................................................................................(14) 
where V is the velocity of the particles, Va  is the average velocity of the liquid, and Vs  is the slip velocity.  Because the 
cross-sectional area of liquid flow depends on the concentration, Va  also depends on the concentration: 

( )
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A C
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where Q  is the liquid flow rate.  In this model, Va  is assumed constant. 
 
Solving Stock Law, which relates the drag force to the gravity and buoyancy forces, for slip velocity, gives the following 
equation: 
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It has been shown that the drag coefficient KDj  depends on the Reynolds number, particles shape, and particles 
concentration.  In this model the particles are assumed to be spheres.  Ariza, using  dimensionless analysis with experimental 
data, derived a relationship between the drag coefficient and the Reynolds number for a single particle. 
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where the Reynolds number for a single particle of a non Newtonian fluid is define: 
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As can be seen, both eqs. (16) and (17) depends on the slip velocity and must be solved iteratively. 

A simpler relationship can be used as a first approximation, KDo
o

= +
40 1
Re

..................................................................(19) 

Substitution of this eq. in eq. (16) for a single particle, that is, 
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where the coefficients are, a
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The use of eq. (20) gives a starting point for the iteration with eqs. (16) and (17) mentioned above, which gets the slip 
velocity and Reynolds number for a single particle flowing through a non Newtonian fluid.  Convergence is obtained in few 
trials. 
A relationship between the multi-particle drag coefficient and the single particle drag coefficient was also obtained by Ariza 
as a function of the concentration. 
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Now, the velocity of the particles can be calculated with eq.(14) substituting eq. (21) in eq. (16):  
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In order to solve for α  of eq. (5), not only the velocity of particles V is needed, but also its derivative respect to the 

concentration of particles
dV
dC

.  Taking the derivative of eq. (23) with respect to the concentration and rearranging gives: 
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where m  is given in eq. (22) and KDo  is given in eq. (17) 
For a given concentration, α  can now be determined using eqs. (23) and (24).  In the numerical model, α  for each element 
is assumed known, so an iteration process must be used to calculate the concentration along the well for each time step.  The 
value of α  used for the finite difference model is the average between the times; i.e., α n  andα n+1 , the latter being the 
result of an iteration process between the algorithm for calculating the tridiagonal matrix and the algorithm for calculating α
n+1  with the eqs. (4), (23), and (24). 
A program that includes all the algorithms mentioned above was made in FORTRAN.  Since the program was improved to 
analyze hole cleaning and shut in problems, it will be described later. 
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Model Testing and Tuning 
In order to check the stability and accuracy of the numerical model, tuning parameters such as time step and weighting 
factors were analyzed for negligible slip velocity.  The analysis of the α  algorithm and the slip velocity was also coupled 
and some of the tuning parameters were readjusted.   
 
Initial Tuning 
A constant concentration for a specific time was used as a boundary condition. When no slip, the solution of the system to 
this boundary condition, as mentioned before, will be a step function of height given by the difference between the initial 
concentration and the temporal concentration at the boundary.  The starting data used for the analysis is given in table 1. 
 
Table. 1. General Data used 

 
 
Note that the no slip condition is obtained using a very small particle diameter. This could also be achieved using very high 
viscosity or assuming particle density equal to liquid density.  Also note that the weighting factors are the same, w w1 3= , 
which means that eq. (6.1) apply.  An initial concentration of zero along the well is set for all runs.  The boundary condition 
is given as a constant concentration of 10% at the bottom (deepest element) for a period of two seconds and 0% for the 
remaining time. This BC’s will represent a step function of height 0.1 (concentration), and with the particles velocity being 
10 cm/s, the width will be 20-cm long.  After 10 seconds, the slug of the moving particles should be located between 100 cm 
and 120 cm from the top of the well.  Note that each block is 1-cm length and the block number corresponds also to cm from 
the top. 

The optimum distance increment and time step are related to the equation
dx
dt

V
C

⎛
⎝
⎜

⎞
⎠
⎟ = .  For this case, the time step dt

obtained using this equation is 0.1 seconds.  Stone&Brian suggest using less than half of the calculated dt .   
Fig. 3 shows the result of the program using different timesteps for the set of data given. 

g = 980 cm/s

dp = 2.E-6 cm

denp = 2.6 g/cc

denL = 1 g/cc

k’ = 1E-2 eqP

n = 1

Vstol = 1%

Alphatol = 1%

dt = .001 s

Length = 200. cm

Va = 10. cm/s

w1 = 2.E-1

w3 = 2.E-1

f2 = 4.5E-1

N = 200 blocks

T = 20.1 sec
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Fig. 3-Time step Analysis 
The results of 0.001s, 0.01s, and 0.04s are nearly the same.  A time step of 0.04s is chosen as the optimum considering the 
computer time. 
The effects of the weighting factor f2 (see eq. 8) were analyzed and are shown in Fig. 4.  High oscillations are obtained when 
f2 is set 0.5 (see eq. 8.1).  The best model performance is chosen to be one with f2 of 0.45. 
Note that w w1 3=  held for this runs, which means that eq. (6.1) apply.  Recall θ = +w w1 3 , thenθ = 2 1w .  The parameter 
θ  was analyzed and the result is shown in Fig. 5. 
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Fig. 4-Analysis of weighting factor f2 

 
Fig. 5-Analysis of Parameter θ  
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The best performance is achieved for θ  close to 0.4, w w1 3= = 0.2. 
An analysis of the weighting factors defined in eq. (6), w1  and w3 , was performed and is shown in Fig. 6a.  Using Higher 
values of w3  than w1  gives instability in the back of the slug if the θ  is higher than 0.4. 

 
Fig. 6.A- Analysis of weighting factors w1  and w3 . 
Using Higher values of w3  than w1  gives instability in the front of the slug if the θ  is lower than 0.4.  Using higher values 
of w1  than w3  gives stability but the accuracy is diminished.  Several runs were made for different values of w1  and w3  to 
obtain the best performance, see Fig. 6.b for results. Values of w1  = 0.17 and w3  = 0.20 were found to be the optimum. 
 

 
Fig. 6.B. Analysis of weighting factors w1  and w3  
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The slug was verified to be stable and accurate after 18 seconds, just before leaving the well.  The slug has to be between 20 
cm and 40 cm from the top of the well after 18 sec.  See Fig. 6.c. 

 
Fig. 6.c- Slug of 10% concentration after 10 and 18 seconds, optimum tuning. 
 
Effects of Slip Velocity 
The analysis of the α  algorithm and the slip velocity was performed with the same data used for the initial tuning, but 
particle size was increased to reasonable values.  The initial concentration was set to 0%.  Instead of the short step function 
used before, a constant concentration of 5% was used as a boundary condition for any time after the initial.  The solution of 
the system, now dependent on slip, can not be obtained without the model.  Fig. 7 shows the result of the model to these 
conditions for different particle sizes after 10 sec and 19 sec. 
 

 
Fig. 7-Effects of Particle Size 
 
When particle size is increased, the slope of the front (slug) is greater, and the solution tends to oscillate.  The instability was 
tried to diminish with the tuning parameters.  Where Fig. 8. shows how time step is not affecting the stability, Fig. 9. shows 

how the weighting factor f2 can eliminate it.  And optimum f2 of 0.4 will be used for future runs. 
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Fig. 8-Effects of timestep 

 
Fig. 9-Effects of weighting factor f2 
 
Effects of Boundary Condition Function 
In order to verify that the instabilities seen so far when considering slip are caused by the step function, an analysis of the 
boundary condition function was performed.  An idealized smooth function was used as a temporal boundary condition: a 
half sine function with peak 10% at 2 sec (4 sec long).  Fig. 10 compares the result of the model for both boundary condition 
functions.  It can be noticed that the particles tend to accumulate in the front of the slug and get spread in the back as they go 
to the surface. 

 
Fig. 10-Result of the model for two different boundary condition functions. 
Further analyses of the weighting factors were performed.  Fig. 11 shows how, although setting the weighting factors and w3  
(left), and f2 and w3  (right) to zero, the boundary condition function set for the concentration at the bottom changes its shape 
while flowing through the well.   
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Fig. 11-Effects of weighting factors when slip, w3  =0 (left), and f2 =w3=0 (right). 
 
This behavior is associated to the slip velocity dependence on the concentration.  The parameter α  defined in eq. (4) is no 
longer a constant.  Such numerical model can only obtain the solution to this problem.  Fig. 12 compares the results of the 
model for “the optimum tuning parameters” to the results when neglecting slip using those parameters. 

 
Fig. 12-Comparison of results when neglecting slip. 
 
Coupling Moving Boundary Model 
The model becomes more interesting when the analysis of particles along the well is coupled to problems such as well-bore 
cleaning, and the stack particles in the bottom-hole when the well is shut down.   In order to analyze the flow of particles 
along the well when the bottom-hole is a moving boundary defined by the height of stack particles, mass balance in the stack 
section is again the right equation to apply. 
d
dt

d V A
control
surface

ρ ν ρ+ =∑∫ ° 0.............................................................................................................................................(25) 

The first term represents the rate of accumulation, and the second, represents the net flow.  The parameter ( )ν φ= −1 Ah , is 

the volume of particles.  The parameterφ  is the void fraction in the stack zone.  If density of particles is assumed constant as 
before, the equation becomes: 
d
dt

V ACp
ν
− = 0 , where 

 

Well Concentration
C(N) is a sine of 4 sec. (@2sec is .1)

0.00E+00

1.00E-02

2.00E-02

3.00E-02

4.00E-02

5.00E-02

6.00E-02

7.00E-02

8.00E-02

9.00E-02

0 20 40 60 80 100 120 140 160 180 200
Block Number

C
on

ce
nt

ra
tio

n

t =10 sec
t = 19 sec

Dp = 3E-2 cm 

Dt=  .04 sec
w1=.17,w3=0.
f2=0.40
Va=10 cm/sec
2 mts long
200 blocks

Well Concentration
C(N) is a sine of 4 sec. (@2sec is .1)

0.00E+00

1.00E-02

2.00E-02

3.00E-02

4.00E-02

5.00E-02

6.00E-02

7.00E-02

0 20 40 60 80 100 120 140 160 180 200
Block Number

C
on

ce
nt

ra
tio

n

t =10 sec
t = 19 sec

Dp = 3E-2 cm 

Dt=  .04 sec
w1=.17,w3=0.
f2=0.
Va=10 cm/sec
2 mts long
200 blocks

Well Concentration
C(N) is a sine of 4 sec. (@2sec is .1)

0.00E+00

1.00E-02

2.00E-02

3.00E-02

4.00E-02

5.00E-02

6.00E-02

7.00E-02

8.00E-02

9.00E-02

1.00E-01

0 20 40 60 80 100 120 140 160 180 200
Block Number

C
on

ce
nt

ra
tio

n

t =10 sec
t = 19 sec

Dp = 3E-2 cm 

Dt=  .04 sec
w1=.17,w3=.20
f2=0.40
Va=10 cm/sec
2 mts long
200 blocks

Well Concentration
C(N) is a sine of 4 sec. (@2sec is .1)

0.00E+00

1.00E-02

2.00E-02

3.00E-02

4.00E-02

5.00E-02

6.00E-02

7.00E-02

8.00E-02

9.00E-02

1.00E-01

0 20 40 60 80 100 120 140 160 180 200
Block Number

C
on

ce
nt

ra
tio

n

t =10 sec
t = 19 sec

Dp = 3E-6 cm 
     ==>V=Va
Dt=  .04 sec
w1=.17,w3=.2
f2=0.4
Va=10 cm/sec
2 mts long
200 blocks



SPE-169300-MS  13 

 
Fig. 13-Diagram for bottom-hole mass balance 
 
The first term represents the rate of accumulation, and the second, represents the net flow.  The parameter ( )ν φ= −1 Ah , is 

the volume of particles.  The parameterφ  is the void fraction in the stack zone.  If density of particles is assumed constant as 
before, the equation becomes: 
d
dt

V ACp
ν
− = 0 ................................................................................................................................................................(26) 

where Vp  is the velocity of particles seen by the interface of stack particles: 

 V V dh
dtp N= − +  .................................................................................................. ..... ..... ..... ..... ..... ..... .....................(27) 

where VN  is the velocity of the particles in the deepest element.  Recall V Va VsN N N= − .   

whereas VaN  is be the velocity of the fluid in the element N, being zero for the shut down problem. 

Assuming VaN  constant eq. (26) can be written ( )[ ]d
dt

Ah V dh
dt

ACN N1− = − +⎛
⎝
⎜

⎞
⎠
⎟φ .  Rearranging gives: 

( )
dh
dt

V C
C

N N

N

=
−
− −1 φ

.......................................................................................................................................................(28) 

The term 
dh
dt

 represents the variation of the height of the stack interface after one timestep.  The phenomena represented by 

eq. (28) can be coupled as a boundary condition to the numerical model for the concentration of particles along the well 
(NMCPAW) described in last chapter.  This can be achieved in two different ways.  One could be calculating the timestep of 
NMCPAW with eq. (28) to clean or accumulate one block of particles, and increase or decrease the number of blocks by one. 
This is not recommended because it will obviously affect the numerical performance of the NMCPAW,   (recall 
dx
dt

V
C

⎛
⎝
⎜

⎞
⎠
⎟ = ).  The other way is to calculate how much distance Δhn+1 the interface of stack particles changes in one 

timestep.  This distance is also the change of the length Ln+1  of the NMCPAW. 
L L hn n n+ += −1 1Δ ..........................................................................................................................................................(29) 

The element size will now change for each timestep since the number of blocks are the same: 
Δx L Nn n+ +=1 1 / ..........................................................................................................................................................(30) 
The height of stack particles hn+1 , as well as Ln+1,  will increase or decrease depending if the well is being cleaned out or if 
it was shut in. 
h h hn n n+ += +1 1Δ ..............................................................................................................................................................(31) 
The algorithm for such a system is shown and self-explained in Figs. 14 and 15. 
 

h(t)

dh
dt

V(j)

C(j)

C=1-Φ

C(N)
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Fig. 14-Flow chart of the computer program 

 
Fig. 15-Flow chart of the computer program. 
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Discussion of Results 
Shut Down Analysis 
For the problem of analyzing the concentration of particles when the well is shut down the program was run with a similar 
data set as before using “the optimum tuning parameters”.  Two different particle sizes were analyzed.  The initial 
concentration was set 1% along the well.  The bottom-hole of the well was supposed to be cleaned at the beginning (no 
stack).  Fig. 16.a shows two plots with the results of the simulation.  The one at the left shows the concentration in the last 
element and the height of stack particles as a function of time.  The plot at the right shows the concentration along the well at 
four different times.  As can be seen, the particles accumulate in the bottom and the rest of the well is already cleaned after 
about seven seconds for that particle size flowing through the specified fluid. 

 
Fig. 16.A- Shut Down Analysis 
 
Fig. 16.b shows similar plots with the results of the model for as much as half the particle size of the Fig. 16.a.  The particles 
accumulate in the bottom and the rest of the well is cleaned after about 13 seconds. 

 
Fig. 16.B- Shut Down Analysis 
 
Clean Out Analysis 
Several runs were performed to analyze the clean out problem.  Again, the initial concentration was set 1% throughout the 
well.  The same data used in the shut in problem was used for this analysis, but neither the velocity of liquid, nor the initial 
stack height of particles was assumed zero.  No slip is considered since the particle size was set close to zero.  Fig. 17 shows 
the results when the initial stack height of particles was 20 cm. Fig. 18 shows the results when the initial stack height of 
particles was 10 cm. It can be noticed in both figures how the particles stack at the bottom in the beginning of the simulation 
will create a slug that travels along the well while the bottom is being cleaned. 
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Fig. 17-Clean Out Analysis. Initial stack height of particles was 20 cm. 

 
Fig. 18-Clean Out Analysis. Initial stack height of particles was 10 cm. 
 
Fig. 19 shows the results with the initial stack height of particles of 20 cm but the particle size and the liquid velocity were 
increased (more slip). 
 

 
Fig. 19-Clean Out Analysis considering slip. Initial stack height of particles was 20 cm. 
 
The bottom hole concentration when cleaning out was assumed constant for all the runs.   This value depends on many 

factors like the concentration of the stack particles (1-φ ), the height of stack particles, the liquid velocity, geometry of the 
well-bore, and some others.  As an attempt to simulate a non constant bottom-hole concentration, a sine function dependent 

on the height and φ  was analyzed.  The function was defined:  C(N)=sin(((1-poro)/6.)*3.1416*h/ho)+0.01.  Fig. 20 shows 
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the results of the program with such a boundary condition.  No slip was considered in this simulation.  Fig. 21 shows the 
same plots but the particle size and the liquid velocity were increased, considering the effect of slip. 

 
Fig. 20-Clean Out Analysis. ho = 20 cm. Sine function as BC’s. No slip. 
 

 
Fig. 21-Clean Out Analysis. ho = 20 cm. Sine function as BC’s. Considering slip. 
 
Conclusions 
A program to analyze the concentration of particles (cuttings) throughout the well has been devised. The numerical model 
considers hole-cleaning and shut down problems as moving boundaries. The program has been tested for stability and 
qualitative behavior, and it seems to give good results.  The use of Thomas algorithm in this program for the tridiagonal 
system, limits the flow of particles within the well to only one direction.  In a real case, this is typical, but not always true. 
Although the program represents very well an idealized unidimensional system, further analysis has to be made to 
successfully relate results of the numerical analysis to field applications.  The velocity of the particles is not uniform in a 
cross-sectional area.  These phenomena can be noticed in a simple laboratory experiment.  In the case of flow through the 
annulus, as in drilling, the effect of having two walls makes the assumption of uniform particle velocity even worse.  An 
empirical factor that accounts for these phenomena dependent on the fluid type could improve the analogy to field 
applications.  A more sophisticated numerical analysis with cylindrical coordinates can also accomplish the job. 
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Nomenclature 
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