TRABAJO ESPECIAL DE GRADO

"OBTENCIÓN DE ECUACIONES DE ESTADO PARA LAS PROPIEDADES TERMODINÁMICAS DEL AGUA EN LAS FASES LÍQUIDA, GASEOSA Y EN EL EQUILIBRIO LÍQUIDO-VAPOR"

Presentado ante la Ilustre

Universidad Central de Venezuela

Por el Br. Barrientos B., Daniel A.

Para optar al Título de

Ingeniero Mecánico

Caracas, 2010

TRABAJO ESPECIAL DE GRADO

"OBTENCIÓN DE ECUACIONES DE ESTADO PARA LAS PROPIEDADES TERMODINÁMICAS DEL AGUA EN LAS FASES LÍQUIDA, GASEOSA Y EN EL EQUILIBRIO LÍQUIDO-VAPOR"

TUTOR ACADÉMICO: Prof. Franklin Baduy Córdova

Presentado ante la Ilustre

Universidad Central de Venezuela

Por el Br. Barrientos B., Daniel A.

Para optar al Título de

Ingeniero Mecánico

Caracas, 2010

Facultad de Ingeniería INGENIERIA MECÁNICA Universidad Central de Venezuela DEPARTAMENTO DE ENERGETICA

Caracas, 04 de noviembre de 2.010

<u>ACTA</u>

Los abajo firmantes, miembros del jurado por el Consejo de Escuela de Ingeniería Mecánica, para evaluar el Trabajo Especial de Grado presentado por los bachilleres:

DANIEL BARRIENTOS

Titulado:

"OBTENCIÓN DE ECUACIONES DE ESTADO PARA LAS PROPIEDADES TERMODINÁMICAS DEL AGUA EN LAS FASES LIQUIDA Y GASEOSA Y EN EL EQUILIBRIO LIQUIDO VAPOR"

Consideran que el mismo cumple con los requisitos exigidos por el plan de estudio conducente al Titulo de Ingeniero Mecánico.

na Prof. Julio Segura

Jurado

Prof. Eugenib Sansone Jurado

Prof. Franklin Baduy Tutor

"Núcleo de Ingeniería "Armando Mendoza" hacia el 30º Aniversario"

Facultad de Ingeniería INGENIERIA MECÁNICA Universidad Central de Venezuela Departamento de Energética

Caracas, 04 de noviembre de 2.010

Ciudadana Profa. Norma Guzmán Jefe de División de Control de Estudios Presente.

Quienes suscriben profesores del Jurado Examinador, designado por el Consejo de la Escuela de Ingeniería Mecánica, nos dirigimos a usted, con la finalidad de informarle la decisión de otorgar a los alumnos:

> DANIEL BARRIENTOS C.I. 17.692.474

"MENCION TRABAJO ESPECIAL DE GRADO"

Por la excelencia demostrada en la realización del Trabajo Especial de Grado Titulado:

"OBTENCIÓN DE ECUACIONES DE ESTADO PARA LAS PROPIEDADES TERMODINÁMICAS DEL AGUA EN LAS FASES LIQUIDA Y GASEOSA Y EN EL EQUILIBRIO LIQUIDO VAPOR"

Sin otro particular a que hacer referencia, quedamos de usted, Prof. Julio Segura Prof. Eugenio Sansone Jurado Jurado Prof. Franklin Baduy Tutor

"Hacia el 50^ª Aniversario del 21 de noviembre de 1957, Día del Estudiante"

Barrientos B., Daniel A.

"OBTENCIÓN DE ECUACIONES DE ESTADO PARA LAS PROPIEDADES TERMODINÁMICAS DEL AGUA EN LAS FASES LÍQUIDA, GASEOSA Y EN EL EQUILIBRIO LÍQUIDO-VAPOR"

Tutor Académico: Prof. Franklin Baduy Córdova. Caracas, U. C. V. Facultad de Ingeniería, Escuela de Ingeniería Mecánica. 2010. 217 Pág.

ECUACIONES, TERMODINÁMICA, AGUA, PROPIEDADES, PROGRAMACIÓN.

Resumen: el objetivo fundamental del presente trabajo es obtener ecuaciones de estado no convencionales, que permiten determinar propiedades termodinámicas del agua en fase líquida, vapor o en el equilibrio líquido-vapor. Para esto se realizó una serie de ajustes o regresiones matemáticas entre valores de propiedades termodinámicas como temperatura, presión, volumen específico, energía interna, entalpía y entropía, relacionándolas entre sí, usando para ello ayudas computacionales. La obtención de estos ajustes o regresiones matemáticas permite conocer todas las propiedades termodinámicas del agua en un estado termodinámico de equilibrio. Los valores utilizados para realizar los ajustes fueron tomados de las tablas de propiedades del agua. Se obtuvo para la fase vapor como vapor sobrecalentado cuatrocientas setenta y siete (477) y para la fase líquida como líquido comprimido setenta y ocho (78) ecuaciones de estado no convencionales distintas y para el caso del equilibrio líquido-vapor ciento veintisiete (127) ecuaciones distintas. Cada una de las ecuaciones obtenidas arroja valores de las propiedades termodinámicas que difieren en menos del 1% del valor presentado en las tablas de propiedades del agua utilizadas, por tanto puede concluirse que estas son una herramienta eficiente y adecuada para la obtención de las propiedades termodinámicas del agua. Por último, se elaboró un programa computacional en el lenguaje de programación C++ que permite conocer la fase en la que se encuentra el agua y todas las propiedades termodinámicas en función de temperatura y presión, que son las propiedades medibles de manera directa.

Barrientos B., Daniel A.

"OBTAINING EQUATIONS OF STATE FOR WATER THERMODYNAMIC PROPERTIES IN LIQUID, GAS AND VAPOR-LIQUID EQUILIBRIUM PHASES"

Academic Tutor: Prof. Franklin Baduy Córdova. Caracas, U. C. V. Engineering Faculty, Mechanical Engineering School. 2010. 217 Pages.

EQUATIONS, THERMODYNAMICS, WATER, PROPERTIES, PROGRAMMING.

Abstract: The fundamental purpose of this investigation is to obtain nonconventional equations of state to determine thermodynamic properties of water in liquid, vapor or in vapor-liquid equilibrium. In order to obtain these a mathematical regression analysis was conducted among thermodynamic properties values as temperature, pressure, specific volume, internal energy, enthalpy and entropy, relating them with one another, using computer aids. Obtaining the regression function allows to find out all the thermodynamic properties of water of a thermodynamic equilibrium state. The values used to obtain the regression functions were taken from the thermodynamic properties of water and steam tables. Four hundred and seventy seven (477) different non-conventional equations of state were obtained for vapor phase as saturated steam, seventy eight (78) for liquid phase as compressed liquid and one hundred and twenty seven (127) different equations for the vapor-liquid equilibrium. Each developed equation yields thermodynamic properties numeric values that differs in less than 1% of the value of the thermodynamic properties of water and steam tables used, therefore, it can be concluded that the resulting equations are an efficient and appropriate implementation tool to obtain the thermodynamic properties of water in all its phases. Finally, a computer program was designed in C++ programming language to find out the water phase as well as all the thermodynamic properties for a given temperature and pressure, which are directly measurable properties.

AGRADECIMIENTOS

En primer lugar a la Universidad Central de Venezuela, por darme toda la instrucción académica necesaria para haber culminado mi carrera.

Al Profesor Franklin Baduy por haberme aportado toda la ayuda necesaria en este trabajo de grado.

A mis padres y hermano por haberme apoyado durante toda mi carrera.

A Dios, ya que sin el nada hubiese sido posible.

A mi suegra por toda la ayuda prestada.

Y en especial a mi novia por haberme ayudado en mí carrera. Muchísimas gracias.

ÍNDICE

LISTA DE SÍ	MBOLOS	xvii
INTRODUCO	CIÓN	1
CAPÍTULO I		
FUNDAMEN	TOS DE LA INVESTIGACIÓN	
1.1 Plan	teamiento del problema	
1.2 Obje	tivos	5
1.2.1	Objetivo General	5
1.2.2	Objetivos Específicos	5
CAPÍTULO I	Ι	7
MARCO TEĆ	ÓRICO	7
2.1 Tern	nodinámica	7
2.1.1	Propiedades Termodinámicas	7
2.1.2	Estado termodinámico de equilibrio	
2.1.3	Vapor saturado, vapor sobrecalentado, líquido comprimido y me	ezcla
líquido-v	apor	8
2.1.4	Condiciones de Saturación	
2.1.4.1	Ecuación de Antoine	
2.1.4.2	Condiciones para la identificación de las fases	
2.1.5	Condiciones Críticas	
2.1.6	Factor Acéntrico	
2.2 Méte	odos convencionales de obtención de los valores de las propiedad	les 12
termodinan		
2.2.1	Diagramas de propiedades para procesos de cambios de fase	
2.2.2	Superficie presión- volumen- temperatura	
2.2.3	Tablas de propiedades	
2.2.4	Ecuaciones de estado	16
2.2.4.1	Ecuación de estado de gas ideal	
2.2.4.2	Ecuaciones viriales de estado	
2.2.4.3	Ecuación de estado de Van der Waals	
2.2.4.4	Ecuación de Redlich-Kwong	
2.2.4.5	Ecuación de S-R-K	

2.2.4.	6 Ecuación de Peng Robinson	
2.2.4.	7 Ecuación de estado de Beattie- Bridgeman	
2.2.4.	8 Ecuación de estado de Benedict-Webb-Rubin	
2.3 Fun	damentos matemáticos y de software	21
2.3.1	Regresión o ajuste matemático	
2.3.1.	1 Regresión lineal o de primer orden	
2.3.1.	2 Ajuste polinómico o regresión polinómica	
2.3.1.	3 Ajuste potencial o regresión potencial	23
2.3.2	Error absoluto y relativo	
2.3.3	Regresión por mínimos cuadrados	
2.3.4	Microsoft Office Excel	25
2.3.5	CurveExpert	
2.3.6	Lenguaje de programación C++	27
CAPÍTULO	III	
METODOL	DGÍA	
3.1 Rev	visión bibliográfica general	
3.2 Tra	nscripción de la data a Microsoft Excel	
3.3 Org	anización de datos y obtención de ajustes para VS y LC	
3.3.1	Organización de datos	
3.3.2	Obtención de ajustes.	
3.4 Org	anización de ajustes para VS y LC	
3.5 Org	anización de datos y obtención de ajustes para L-V	
3.6 Obt	ención de ecuaciones de la forma f(x, y)	
3.6.1	Obtención de ecuaciones en función de la presión	
3.6.2	Obtención de las ecuaciones en función de dos variables	
3.7 Org	anización de las ecuaciones definitivas	
3.8 Dis	eño del programa computacional en el software Dev-C++	
CAPÍTULO	IV	
RESULTAD	OS Y ANÁLISIS DE RESULTADOS	
4.1 Var	oor sobrecalentado y Líquido comprimido	
4.1.1	Tipos de ecuaciones	
4.1.2	Tablas de resultados	
4.1.3	Instrucciones y explicaciones de las tablas de resultados	

4.1.3.1 Unidades de las propiedades y coeficientes de las ecuaciones de
estado
4.1.4 Discusión de resultados
4.1.4.1 Ecuaciones
4.1.4.2 Errores y tablas de errores55
4.2 Equilibrio líquido-vapor55
4.2.1 Tipos de ecuaciones
4.2.2 Tablas de resultados
4.2.3 Instrucciones y explicaciones de los tablas de resultados
4.2.4 Discusión de resultados
4.2.4.1 Ecuaciones
4.2.4.2 Casos especiales
4.2.4.3 Errores y tablas de error60
4.3 Programa en C++62
4.3.1 ¿Qué se utilizó para hacer el programa?62
4.3.2 ¿Qué muestra el programa?62
4.3.3 Explicación de las funciones
4.3.4 Ambiente de trabajo
4.3.5 Análisis del programa
CAPÍTULO V
CONCLUSIONES
CAPÍTULO VI67
RECOMENDACIONES
REFERENCIAS BIBLIOGRÁFICAS
APÉNDICE
A.1 Ruta de cálculo para una ecuación de estado no convencional71
A.2 Ecuaciones de estado no convencionales obtenidas75
A.3 Tablas de error de cada una de las ecuaciones obtenidas176
A.4 Tablas de resultados que contienen las ecuaciones obtenidas para la mezcla líquido-vapor
A.5 Tablas de error correspondiente a las ecuaciones desarrolladas para la mezcla líquido-vapor
A.6 Imágenes correspondientes a las tablas de propiedades del agua utilizadas.214

ÍNDICE DE FIGURAS

Figura N° 1. Diagrama T-v de una sustancia pura13
Figura N° 2. Diagrama P-T para una sustancia pura14
Figura N° 3. Diagrama P-v de una sustancia pura
Figura N° 4. Representación de la superficie P-v-T de una sustancia
que se expande al congelarse y de una sustancia que se contrae al congelarse15
Figura N° 5. Ambiente de trabajo en Microsoft Excel 201026
Figura N° 6. Ambiente de trabajo en el programa Curve Expert para Windows27
Figura N° 7. Esquema general de la metodología empleada
Figura N° 8. Representación esquemática de la obtención de ajustes
matemáticos
Figura N° 9. Ambiente de trabajo en el programa realizado en el
software Dev-C++63
Figura N° 10. Representación gráfica del conjunto de datos de t y v así
como el ajuste matemático realizado para los mismos, para una presión de 1 bar72
Figura N° 11. Ejemplo de la distribución de las tablas de propiedades
del agua en físico para el VS215
Figura N° 12. Ejemplo de la distribución de las tablas de propiedades
del agua en físico para la mezcla L-V

ÍNDICE DE TABLAS

Tabla N° 1. Ejemplo de la visualización de la organización de los ajustes
obtenidos en la etapa anterior, para v(t), para distintas p, en la fase VS37
Tabla N° 2. Gráficos y ecuaciones a obtener para el agua en estado L-V
Tabla N° 3. Cuadro de selección de fase para presiones mayores a 220 bar44
Tabla N° 4. Cuadro de selección de fase para presiones menores a 220 bar44
Tabla N° 5. Ecuaciones de estado de la forma v(t,p) obtenidas para la fase VS 46
Tabla N° 6. Cantidad de ecuaciones de estado no convencionales
obtenidas para la fase VS53
Tabla N° 7. Cantidad de ecuaciones de estado no convencionales
obtenidas para la fase LC53
Tabla N° 8. Tipos de ecuaciones obtenidas para la fase L-V
Tabla N° 9. Ecuaciones en función de la temperatura para el equilibrio L-V57
Tabla N° 10. Cantidad de ecuaciones obtenidas para la fase L-V
Tabla N° 11. Errores obtenidos para las ecuaciones de la forma
$v_f(t),v_g(t),u_f(t),u_g(t),h_f(t),h_g(t),s_f(t),s_g(t) \ \ \text{en la fase L-V}61$
Tabla N° 12. Representación del formato de organización de
propiedades para realizar el ajuste71
Tabla N° 13. Ecuaciones obtenidas para la data del ejemplo
Tabla N° 14. Ejemplo de la visualización de los cálculos del
error relativo porcentual en Excel73
Tabla N° 15. Ecuaciones v(t) organizadas para sus distintos valores de presión73
Tabla N° 16. Ecuaciones F(p) y G(p) para el rango de presión de 0.01 a 2 bar74
Tabla N° 17. Evaluación de ecuación de estado obtenida para el rango
de presión de 0.01 a 2 bar75
Tabla N° 18. Ecuaciones de estado de la forma v(t,p) obtenidas para la fase VS 76
Tabla N° 19. Ecuaciones de estado no convencionales obtenidas para
u(t,p) para la fase VS90

Tabla N° 20. Ecuaciones de estado no convencionales obtenidas para
h(t,p) para la fase VS98
Tabla N° 21. Ecuaciones de estado no convencionales obtenidas para
s(t,p) para la fase VS107
Tabla N° 22. Ecuaciones de estado no convencionales obtenidas para
u(v,p) para la fase VS115
Tabla N° 23. Ecuaciones de estado no convencionales obtenidas para
h(v,p) para la fase VS124
Tabla N° 24. Ecuaciones de estado no convencionales obtenidas para
s(v,p) para la fase VS
Tabla N° 25. Ecuaciones de estado no convencionales obtenidas para
h(u,p) para la fase VS135
Tabla N° 26. Ecuaciones de estado no convencionales obtenidas para
s(u,p) para la fase VS
Tabla N° 27. Ecuaciones de estado no convencionales obtenidas para
s(h,p) para la fase VS
 s(h,p) para la fase VS
 s(h,p) para la fase VS. 151 Tabla N° 28. Ecuaciones de estado no convencionales de la forma v(t,p) obtenidas para la fase LC. 161 Tabla N° 29. Ecuaciones de estado no convencionales de la forma u(t,p) obtenidas para la fase LC. 163 Tabla N° 30. Ecuaciones de estado no convencionales de la forma h(t,p) obtenidas para la fase LC. 164 Tabla N° 31. Ecuaciones de estado no convencionales de la forma s(t,p) obtenidas para la fase LC. 166 Tabla N° 32. Ecuaciones de estado no convencionales de la forma u(v,p) obtenidas para la fase LC.
 s(h,p) para la fase VS. Tabla N° 28. Ecuaciones de estado no convencionales de la forma v(t,p) obtenidas para la fase LC. 161 Tabla N° 29. Ecuaciones de estado no convencionales de la forma u(t,p) obtenidas para la fase LC. 163 Tabla N° 30. Ecuaciones de estado no convencionales de la forma h(t,p) obtenidas para la fase LC. 164 Tabla N° 31. Ecuaciones de estado no convencionales de la forma s(t,p) obtenidas para la fase LC. 166 Tabla N° 32. Ecuaciones de estado no convencionales de la forma u(v,p) obtenidas para la fase LC. 167 Tabla N° 33. Ecuaciones de estado no convencionales de la forma
 s(h,p) para la fase VS. 151 Tabla N° 28. Ecuaciones de estado no convencionales de la forma v(t,p) obtenidas para la fase LC. 161 Tabla N° 29. Ecuaciones de estado no convencionales de la forma u(t,p) obtenidas para la fase LC. 163 Tabla N° 30. Ecuaciones de estado no convencionales de la forma h(t,p) obtenidas para la fase LC. 164 Tabla N° 31. Ecuaciones de estado no convencionales de la forma s(t,p) obtenidas para la fase LC. 166 Tabla N° 32. Ecuaciones de estado no convencionales de la forma u(v,p) obtenidas para la fase LC. 167 Tabla N° 33. Ecuaciones de estado no convencionales de la forma h(v,p) obtenidas para la fase LC. 167 Tabla N° 33. Ecuaciones de estado no convencionales de la forma h(v,p) obtenidas para la fase LC.
 s(h,p) para la fase VS. 151 Tabla N° 28. Ecuaciones de estado no convencionales de la forma v(t,p) obtenidas para la fase LC. 161 Tabla N° 29. Ecuaciones de estado no convencionales de la forma u(t,p) obtenidas para la fase LC. 163 Tabla N° 30. Ecuaciones de estado no convencionales de la forma h(t,p) obtenidas para la fase LC. 164 Tabla N° 31. Ecuaciones de estado no convencionales de la forma s(t,p) obtenidas para la fase LC. 166 Tabla N° 32. Ecuaciones de estado no convencionales de la forma u(v,p) obtenidas para la fase LC. 167 Tabla N° 33. Ecuaciones de estado no convencionales de la forma h(v,p) obtenidas para la fase LC. 167 Tabla N° 34. Ecuaciones de estado no convencionales de la forma

Tabla N° 35. Ecuaciones de estado no convencionales de la forma
h(u,p) obtenidas para la fase LC
Tabla N° 36. Ecuaciones de estado no convencionales de la forma
s(u,p) obtenidas para la fase LC174
Tabla N° 37. Ecuaciones de estado no convencionales de la forma
s(h,p) obtenidas para la fase LC175
Tabla N° 38. Errores obtenidos para ecuaciones dependientes de dos
variables para la fase VS176
Tabla N° 39. Errores obtenidos para ecuaciones dependientes de dos
variables para la fase VS178
Tabla N° 40. Errores obtenidos para ecuaciones dependientes de dos
variables para la fase VS
Tabla N° 41. Errores obtenidos para ecuaciones dependientes de dos
variables para la fase VS
Tabla N° 42. Errores obtenidos para ecuaciones dependientes de dos
variables para la fase VS184
Tabla N° 43. Errores obtenidos para ecuaciones dependientes de dos
variables para la fase LC
Tabla N° 44. Errores obtenidos para ecuaciones dependientes de dos
variables para la fase LC
Tabla N° 45. Errores obtenidos para ecuaciones dependientes de dos
Tabla N° 45. Errores obtenidos para ecuaciones dependientes de dosvariables para la fase LC
Tabla N° 45. Errores obtenidos para ecuaciones dependientes de dos variables para la fase LC
Tabla N° 45. Errores obtenidos para ecuaciones dependientes de dos variables para la fase LC
Tabla N° 45. Errores obtenidos para ecuaciones dependientes de dos variables para la fase LC
 Tabla N° 45. Errores obtenidos para ecuaciones dependientes de dos variables para la fase LC
 Tabla N° 45. Errores obtenidos para ecuaciones dependientes de dos variables para la fase LC
 Tabla N° 45. Errores obtenidos para ecuaciones dependientes de dos variables para la fase LC
 Tabla N° 45. Errores obtenidos para ecuaciones dependientes de dos variables para la fase LC. Tabla N° 46. Errores obtenidos para ecuaciones dependientes de dos variables para la fase LC. Tabla N° 47. Errores obtenidos para ecuaciones dependientes de dos variables para la fase LC. 187 Tabla N° 47. Errores obtenidos para ecuaciones dependientes de dos variables para la fase LC. 188 Tabla N° 48. Ecuaciones en función de la temperatura para el equilibrio L-V. 190 Tabla N° 50. Ecuaciones en función de la temperatura para el equilibrio L-V.

Tabla N° 52. Ecuaciones en función del volumen específico de la
f ase líquida para el equilibrio L-V
Tabla N° 53. Ecuaciones en función del volumen específico de la
fase líquida para el equilibrio L-V
Tabla N° 54. Ecuaciones en función del volumen específico de la
fase líquida para el equilibrio L-V
Tabla N° 55. Ecuaciones en función del volumen específico de la
fase líquida para el equilibrio L-V
Tabla N° 56. Ecuaciones en función del volumen específico de la
fase vapor para el equilibrio L-V
Tabla N° 57. Ecuaciones en función del volumen específico de la
fase vapor para el equilibrio L-V
Tabla N° 58. Ecuaciones en función del volumen específico de la
fase vapor para el equilibrio L-V
Tabla N° 59. Ecuaciones en función del volumen específico de la
fase vapor para el equilibrio L-V
Tabla N° 60. Ecuaciones en función de la energía interna específica
de la fase líquida para el equilibrio L-V199
Tabla N° 61. Ecuaciones en función de la energía interna específica
de la fase líquida para el equilibrio L-V199
Tabla N° 62. Ecuaciones en función de la energía interna específica
de la fase líquida para el equilibrio L-V
Tabla N° 63. Ecuaciones en función de la energía interna específica
de la fase vapor para el equilibrio L-V
Tabla N° 64. Ecuaciones en función de la energía interna específica
de la fase vapor para el equilibrio L-V201
Tabla N° 65. Ecuaciones en función de la energía interna específica
de la fase vapor para el equilibrio L-V
Tabla N° 66. Ecuaciones en función de la energía interna específica
de la fase vapor para el equilibrio L-V

Tabla N° 67. Ecuaciones en función de la entalpía específica de la
fase líquida para el equilibrio L-V
Tabla N° 68. Ecuaciones en función de la entalpía específica de la
fase líquida para el equilibrio L-V
Tabla N° 69. Ecuaciones en función de la entalpía específica de la
fase líquida para el equilibrio L-V
Tabla N° 70. Ecuaciones en función de la entalpía específica de la
fase vapor para el equilibrio L-V
Tabla N° 71. Ecuaciones en función de la entalpía específica de la
fase vapor para el equilibrio L-V
Tabla N° 72. Ecuaciones en función de la entalpía específica de la
fase vapor para el equilibrio L-V
Tabla N° 73. Ecuaciones en función de la entropía específica de la
fase vapor para el equilibrio L-V
Tabla N° 74. Ecuaciones en función de la entropía específica de la
fase vapor para el equilibrio L-V

Tabla N° 82. Errores obtenidos para las ecuaciones de la forma	
s _f (h _g), s _g (h _g) en la fase L-V	
Tabla N° 83. Errores obtenidos para las ecuaciones de la forma	
s _g (s _f) en la fase L-V.	214

LISTA DE SÍMBOLOS

A continuación se presenta una lista de los símbolos más importantes utilizados durante este Trabajo Especial de Grado, es importante destacar que las unidades señaladas a continuación son las más utilizadas, aunque pueden variar de acuerdo a la ecuación utilizada.

Símbolo	Significado	Unidades
р	Presión Absoluta	bar
t	Temperatura	°C
Т	Temperatura Absoluta	K
V	Volumen específico	cm ³ /g
S	Entropía específica	J/g
h	Entalpía específica	J/g
VS	Vapor sobrecalentado	adim
LC	Líquido comprimido	adim
L-V	Líquido-vapor	adim
Х	Calidad de la mezcla	adim
m _v	Masa del Vapor	g
m _t	Masa Total	g
V _f	Volumen específico de la fase líquida	cm ³ /g
Vg	Volumen específico de la fase vapor	cm ³ /g
u _f	Energía interna específica de la fase líquida	J/g
ug	Energía interna específica de la fase vapor	J/g
$\mathbf{h}_{\mathbf{f}}$	Entalpía específica de la fase líquida	J/g
h_{g}	Entalpía específica de la fase vapor	J/g

Sf	Entropía específica de la fase líquida	J/g K
Sg	Entropía específica de la fase vapor	J/g K
P ^{sat}	Presión de saturación	bar
A, B, C	Constantes para la ecuación 2.3	kPa, kPa/°C, °C
t ^{sat}	Temperatura de saturación	К
T _c	Temperatura Crítica	К
P _c	Presión Crítica	bar
ω	Factor acéntrico	
R	Constante universal de los gases	bar l/g K
У	Variable dependiente	adim
х	Variable independiente	adim
a,b	Constantes para las ecuaciones 2.24, 2.25,	-
	2.27, 2.28, 2.33 y 2.34	
n	Tamaño de la muestra para las ecuaciones	adim
	2.25, 2.26, 2.33, 2.34, 2.35	
r^2	Error cuadrático	adim
Ε	Error absoluto	adim
Er	Error relativo	adim
${f E}_{\%}$	Error relativo porcentual	%
a_0, a_1, a_2, a_n	Coeficientes de la matriz ecuación 2.35	-
A, B, C, D,	Coeficientes de las ecuaciones obtenidas	adim
E, F, G, H,	en función de una y dos variables	
I, J, K, M		
N, O, P Q		

INTRODUCCIÓN

El manejo de las propiedades termodinámicas de equilibrio de diversas sustancias es de vital importancia para el diseño equipos de intercambio de energía. Cuando se reflexiona acerca de ecuaciones termodinámicas, se observa que existe una ausencia de correlaciones, por lo que el cálculo se hace bastante engorroso y generalmente se debe apelar al uso de tablas de propiedades termodinámicas para la obtención de los valores deseados.

Las ecuaciones de estado existentes actualmente cuentan con un número de términos y constantes abundantes y presentan únicamente a la presión de forma explícita en función de la temperatura y el volumen específico. Las otras propiedades tales como energía interna, entalpía y entropía se obtendrían mediante la aplicación de las relaciones termodinámicas, lo cual no resulta en una tarea sencilla.

La correlación de la data existente para las propiedades termodinámicas mediante ecuaciones más sencillas y precisas en cada dominio y rango considerados, representaría una ayuda útil en el diseño de experimentos, desarrollo de instrumentos de medición y en la enseñanza de la termodinámica y materias afines.

En base a todo lo señalado, lo que se pretende en este Trabajo Especial de Grado es obtener un conjunto de ecuaciones de estado no convencionales, explícitas de cada propiedad termodinámica en función de dos propiedades termodinámicas independientes.

Inicialmente se obtienen ecuaciones que dependen de la temperatura y la presión en vista de que las mismas cuentan con instrumentos de medición precisos. Las ecuaciones anteriormente descritas poseerán la forma de v (t,p), pero no solo relacionan el volumen con la temperatura y la presión, sino también la energía interna, entalpía y entropía, como por ejemplo u(t,p), h(t,p) y s(t,p).

Adicionalmente se desea desarrollar ecuaciones de estado no convencionales que dependan de otras dos propiedades termodinámicas como por ejemplo u(v,p), s(h,p), permitiendo así obtener relaciones entre propiedades que no pueden lograrse utilizando las ecuaciones de estado convencionales. Las ecuaciones desarrolladas serán incorporadas a un software para diseñar un programa computacional que permita obtener el valor de cualquier propiedad termodinámica y conocer la fase en la que se encuentra el agua, especificando para esto solo la temperatura y la presión.

Las nuevas ecuaciones de estado no convencionales obtenidas son de gran utilidad ya que pueden ser empleadas como base para el diseño de instrumentos de medición de, por ejemplo, la entalpía unitaria. Adicionalmente las mismas servirán para la formulación de problemas didácticos, es decir, en la enseñanza de la termodinámica.

El presente Trabajo Especial de Grado se encuentra dividido en seis Capítulos. En el Capítulo I se presentan los fundamentos de la investigación como el planteamiento del problema, el objetivo general y los específicos. En el Capítulo II se presentan los conceptos teóricos que fundamentan la investigación, como por ejemplo las ecuaciones de estado convencionales, diagramas de propiedades termodinámicas, ajustes o regresiones matemáticos, entre otros.

En el Capítulo III se presenta la metodología empleada para llevar a cabo los objetivos planteados, se establecen los pasos fundamentales para la obtención de las ecuaciones de estado no convencionales planteadas, así como también el desarrollo del programa computacional. El Capítulo IV presenta los resultados obtenidos y el análisis de los mismos. Posteriormente en el Capítulo V se presentan las conclusiones obtenidas durante el presente trabajo y por último en el Capítulo VI se realizan una serie de recomendaciones.

CAPÍTULO I

FUNDAMENTOS DE LA INVESTIGACIÓN

Todo proyecto surge de una serie de aspectos que se desean investigar y evaluar, lo que posteriormente origina una serie de planteamientos que se desean alcanzar en el mismo. A continuación se presentan las principales razones por las cuales se dio origen al presente Trabajo Especial de Grado y el conjunto de objetivos que se desean plantear.

1.1 Planteamiento del problema

Una ecuación de estado es una relación funcional que típicamente vincula una variable dependiente con dos independientes. Usualmente se presenta de la forma p (v, t), lo que representa una limitación en el estudio de la variación de otras propiedades en determinados procesos, como la energía interna, la entalpía y la entropía, que son de gran interés en la termodinámica de la ingeniería mecánica.

Este tipo de ecuaciones han sido estudiadas por diferentes personas a lo largo de la historia y hoy son conocidas como ecuaciones de estado de Van der Waals, Peng-Robinson, Benedict Webb Rubin, Redich-Kwong, Soave, entre otras y representan una herramienta importante para la obtención de propiedades termodinámicas.

En vista de que en la actualidad no existe un medio que pueda sustituir las tablas de propiedades del agua o las ecuaciones de estado anteriormente nombradas, surge la idea de desarrollar un conjunto de ecuaciones de estado que permitan correlacionar propiedades termodinámicas de tres en tres, utilizando para esto las tablas de propiedades del agua existentes. Es importante destacar que es necesario que las mimas sean de dos tipos: inicialmente un grupo que dependan de la temperatura y la presión y permitan evaluar la energía interna, entalpía y entropía, otro grupo que correlacione a una propiedad termodinámica con dos propiedades termodinámicas cualesquiera, como por ejemplo, s (h,p). Todas estas ecuaciones serán desarrolladas

para el agua como vapor sobrecalentado y como líquido comprimido. Para la mezcla líquido-vapor se desean obtener ecuaciones que relaciones dos propiedades cualesquiera entre sí.

Dichas ecuaciones se obtienen por medio de ajustes matemáticos que se realizarán a los valores de las tablas de propiedades del agua, que a su vez estarán adecuadas a dominios y rangos muy bien definidos. Es importante destacar que los ajustes o regresiones matemáticas (lineales o no) se realizan a través de programas computacionales garantizando que las ecuaciones de estado no convencionales obtenidas sean lo más precisas posibles en comparación a la data que les da origen para cada dominio-rango definido.

Actualmente existe un constante avance tecnológico que va creciendo ilimitadamente ya que día a día surgen herramientas distintas que permiten simplificar trabajos demasiado complejos. Una herramienta importante es la programación, la cual es fundamental en el desarrollo de soluciones para problemas de la vida cotidiana. Por esta razón se desea diseñar un programa computacional que permita programar las ecuaciones de estado no convencionales logradas para obtener de manera sencilla valores de propiedades termodinámicas como energía interna, entalpía y entropía, así como la fase en la que se encuentra el agua para una determinada presión y temperatura.

Por último, es importante resaltar que este trabajo pretende ser una herramienta importante para el desarrollo de actividades didácticas en la enseñanza de materias como termodinámica y adicionalmente que pueda servir de base para futuras ampliaciones en vista de adaptarlo para otras sustancias distintas al agua

1.2 Objetivos

A continuación se presentan los objetivos a cumplir en la elaboración y desarrollo del presente trabajo:

1.2.1 Objetivo General

Obtener ecuaciones de estado explícitas de cada propiedad termodinámica unitaria en función de dos propiedades termodinámicas independientes.

1.2.2 Objetivos Específicos

- Buscar la data tabulada de las propiedades termodinámicas del agua.
- Discretizar la data encontrada de una manera conveniente para las fases líquido comprimido, vapor sobrecalentado y mezcla líquido-vapor.
- Correlacionar la data por los rangos definidos en el punto anterior mediante el uso de ajustes o regresiones matemáticas para las fases líquido comprimido, vapor sobrecalentado.
- Obtener ecuaciones que relacionen tres propiedades independientes, para la fase vapor sobrecalentado y líquido comprimido a través de los ajustes realizados en el punto anterior.
- Garantizar que las ecuaciones obtenidas sean de la forma más simple posible para poder ser aplicadas a fines didácticos.

- Obtener ecuaciones que relacionen dos propiedades termodinámicas distintas a través de ajustes o regresiones matemáticas para la mezcla líquido-vapor.
- Garantizar que las ecuaciones obtenidas en los objetivos anteriores arrojen valores que tengan un error relativo porcentual menor al 1% con respecto a los valores existentes en las tablas de propiedades del agua.
- Diseñar un programa computacional que permita obtener valores de las propiedades termodinámicas

CAPÍTULO II

MARCO TEÓRICO

En este capítulo se presentan los conceptos teóricos más relevantes en los que se fundamenta este trabajo especial de grado, se exponen algunos conceptos básicos, los métodos para obtención de propiedades termodinámicas existentes y conceptos matemáticos fundamentales empleados en los capítulos posteriores.

2.1 Termodinámica

La termodinámica es la ciencia que estudia los fenómenos que ocurren en los sistemas en función de las propiedades observables y medibles. A su vez puede definirse como la ciencia que estudia la energía y sus transformaciones. La energía es la capacidad que tiene un sistema para realizar un cambio. La palabra termodinámica proviene de las palabras griegas therme, que significa calor y dynamis que significa fuerza [CENGELY BOLES, 2007].

2.1.1 Propiedades Termodinámicas

Cualquier característica de un sistema se le llama propiedad. Algunas muy familiares son presión, temperatura, volumen y masa. Otras pueden ser energía interna, entalpía y entropía. Las propiedades pueden ser intensivas, que dependen de la masa, y extensivas que no dependen del tamaño o extensión del sistema.

2.1.2 Estado termodinámico de equilibrio

El estado de equilibrio de un sistema es descrito por un conjunto de propiedades calculadas o medidas en un sistema que en ese instante no experimenta ningún cambio de manera espontánea. En un determinado estado las propiedades del sistema tienen un valor fijo. Si cambia el valor de una de las propiedades el sistema pasa a estar en otro estado distinto.

La termodinámica permite describir el funcionamiento de numerosos equipos ingenieriles, por ejemplo es necesaria en cálculos de requerimientos de calor y trabajo para procesos químicos y físicos. Para poder aplicar la termodinámica a cualquier problema real, como el antes mencionado, se debe inicialmente identificar el sistema y definir el estado termodinámico, para definir un estado termodinámico es necesario conocer las propiedades como presión y temperatura, para así poder definir a partir de tablas o ecuaciones de estado el resto de las propiedades como energía interna, volumen específico, entalpía y entropía y por lo tanto poder realizar los cálculos termodinámicos necesarios para resolver el problema real.

2.1.3 Vapor saturado, vapor sobrecalentado, líquido comprimido y mezcla líquido-vapor.

En la interfase líquido-vapor ambas fases se encuentran a la temperatura y presión de saturación. En esta condición cada fase se denomina saturada, significando su factibilidad de cambiar de una fase a la otra, a la misma temperatura y presión. Así el vapor se denomina vapor saturado y al líquido presente se le llama líquido saturado.

Si la sustancia está en fase liquida, puede ocurrir que la presión de la misma supera a la presión de saturación correspondiente a la temperatura dada, en este caso se dice que la sustancia es un liquido comprimido. De forma equivalente, si la sustancia está en fase liquida, puede ocurrir que la temperatura de la misma sea menor a la temperatura de saturación correspondiente a la presión dada, a esta sustancia se le denomina líquido sub enfriado.

En una mezcla de líquido saturado y vapor saturado la calidad se define como la fracción de vapor en masa de esa mezcla, por la siguiente ecuación [CENGELY BOLES, 2007].

$$x = \frac{m_v}{m_t} \qquad (2.1)$$

El valor de la calidad se encuentra entre 0 y 1: cero (0) si la sustancia existe como líquido saturado, y uno (1) si la sustancia existe como vapor saturado.

Una mezcla saturada puede tratarse como una combinación de dos subsistemas: el del líquido saturado y el del vapor saturado. Por lo general se desconoce la cantidad de masa en cada fase, entonces es más conveniente imaginar que las dos fases forman una mezcla homogénea, entonces las propiedades de esta mezcla serían las propiedades promedio de la mezcla saturada líquido-vapor. El volumen ocupado por el líquido saturado se denota como v_f y el del vapor saturado como v_g. Otra ecuación existente para determinar la calidad de una mezcla es la siguiente _[CENGELY BOLES, 2007]:

$$x = \frac{v - v_f}{v_g - v_f} \tag{2.2}$$

Cabe acotar que así como existe el volumen de líquido y vapor saturado, también existe la energía interna del líquido saturado u_f y la del vapor saturado u_g , la entalpía del líquido saturado h_f y la del vapor saturado h_g y la entropía del líquido saturado s_f y la del vapor saturado s_g .

2.1.4 Condiciones de Saturación

A una determinada presión, la temperatura a la que una sustancia cambia de fase es llamada temperatura de saturación. De igual manera a una determinada temperatura, la presión a la que una sustancia cambia de fase se llama presión de saturación.

2.1.4.1 Ecuación de Antoine

La curva de presión de vapor relaciona a la presión con su correspondiente temperatura de saturación. La presión de saturación puede determinarse, entre otras ecuaciones, por la ecuación de Antoine. La principal ventaja de esta ecuación es que los valores de las constantes están disponibles para una gran cantidad de especies, cada conjunto de constantes es válido para un intervalo de temperaturas y no se debe utilizar fuera del mismo. La ecuación de Antoine se presenta a continuación [SMITH et al, 2007]:

$$Ln(p^{sat}) = A - \frac{B}{t+C} \qquad (2.3)$$

Donde A, B y C son los parámetros de la ecuación de Antoine, las correspondientes al agua son: 16.8872, 3885.7 y 230.1 respectivamente [SMITH et al, 2007]. La presión debe ser introducida en kPa y la temperatura en °C.

2.1.4.2 Condiciones para la identificación de las fases

Conocer las condiciones de saturación de una sustancia permite conocer si la misma se encuentra en fase líquida o vapor, además se puede determinar si la

sustancia es un vapor sobrecalentado, líquido comprimido o una mezcla líquido-vapor y se determina a través de las siguientes condiciones:

- Si la presión a la que se encuentra la sustancia está por debajo de su presión de saturación (p < p^{sat}) la sustancia es un vapor sobrecalentado.
- Si la presión a la que se encuentra la sustancia está por encima de su presión de saturación ($p > p^{sat}$) la sustancia es un líquido comprimido.
- Si la presión a la que se encuentra la sustancia es igual a su presión de saturación ($p = p^{sat}$) entonces la sustancia es una mezcla líquido-vapor.
- Si la temperatura a la que se encuentra la sustancia está por debajo de su temperatura de saturación ($t < t^{sat}$) la sustancia es un líquido comprimido.
- Si la temperatura a la que se encuentra la sustancia está por encima de su temperatura de saturación ($t > t^{sat}$) la sustancia es un vapor sobrecalentado.
- Si la temperatura a la que se encuentra la sustancia es igual a su temperatura de saturación ($t = t^{sat}$) la sustancia es una mezcla líquido-vapor.

2.1.5 Condiciones Críticas

Existe un punto en el que los estados de líquido saturado y de vapor saturado son idénticos, este punto se denomina punto crítico. La presión y la temperatura crítica corresponden a las condiciones de temperatura y presión más altas a las cuales se observa que una especie química pura existe en equilibrio líquido-vapor [SMITH et al, 2007].

El punto crítico representa la temperatura máxima a la que se puede licuar un gas simplemente aumentando su presión. La condición de una sustancia a temperatura y presión mayor a la crítica se denomina supercrítica _[CENGELY BOLES, 2007]. La temperatura y presión crítica se denotan como T_c y P_c respectivamente.

2.1.6 Factor Acéntrico

Para el estudio de las sustancias con comportamiento real se utiliza una correlación denominada correlación del factor de compresibilidad, la cual relaciona una serie de parámetros que generalmente son la presión crítica y la temperatura crítica. Con frecuencia se introduce un tercer parámetro para mejorar la exactitud de la correlación, este parámetro es el factor acéntrico, denotado con la letra griega ω , el cual agrega un factor de corrección a la correlación para un fluido simple. El factor acéntrico toma en cuenta la forma molecular, la complejidad geométrica y la polaridad de la sustancia. Generalmente los valores se encuentran tabulados para diversas sustancias [VAN WILEN et al, 1999].

2.2 Métodos convencionales de obtención de los valores de las propiedades termodinámicas.

A continuación se presentan algunos métodos para determinar las propiedades termodinámicas de los fluidos. Destacan los diagramas, las tablas de propiedades termodinámicas y las ecuaciones de estado.

2.2.1 Diagramas de propiedades para procesos de cambios de fase

Entre los diagramas más usados para este fin, es importante destacar diagramas como el diagrama de Mollier y el diagrama t-s. Hace un par de décadas, se trabajaba con ellos y se les podía encontrar en distintas unidades, con líneas de color para cada propiedad. Eran útiles, a pesar de su incomodidad asociada al tamaño, pues permitían la ubicación de los estados y la lectura de los valores, con una baja apreciación. Sobre los mismos se puede trazar el proceso o cambio de estado en estudio, lo que genera un deterioro de la carta, que obliga a reemplazarla. Hoy en día, estos diagramas se han convertido en programas computacionales que permiten calcular las propiedades de manera más práctica.

Un diagrama de procesos de cambio de fase de una sustancia pura es una gráfica que representa una variable del sistema contra la otra, en la misma se muestran las condiciones en las cuales la sustancia existe como líquido, gas o sólido. Existen varios tipos de diagramas de proceso de cambio de fase como lo son temperatura en función del volumen, presión en función del volumen y presión en función de la temperatura. El más común de estos diagramas es el que presenta la presión en el eje vertical y la temperatura en el horizontal. A continuación se presenta el diagrama de temperatura en función del volumen para una sustancia pura, indicando las regiones y los estados de la sustancia.

Figura Nº 1. Diagrama T-v de una sustancia pura [UNEFA, 2009].

A continuación se presenta el diagrama de la temperatura en función de la presión para una sustancia pura, este se conoce como diagrama de fases ya que las tres fases se encuentran separadas entre sí por tres líneas, la línea de sublimación que separa la región sólida de la de vapor, la línea de evaporación que separa la región líquida de la de vapor y la línea de fusión que separa la región sólida de la líquida. El

punto en donde estas tres líneas convergen se denomina punto triple donde las tres fases coexisten en equilibrio.

Figura N° 2. Diagrama P-T para una sustancia pura [UNEFA, 2009].

Por último se presenta el diagrama de la presión en función del volumen para una sustancia pura, este diagrama es similar al presentado para T-v pero las líneas de temperatura (constantes) tienen una tendencia hacia abajo como se muestra en la siguiente figura.

Figura N° 3. Diagrama P-v de una sustancia pura [UNEFA, 2009].

2.2.2 Superficie presión- volumen- temperatura

El estado de una sustancia compresible se determina mediante cualquiera de dos propiedades intensivas dependientes: una vez que se han fijado las dos propiedades, todas las demás se vuelven dependientes. Cualquier ecuación de la forma z= z(x,y) representa una superficie en el espacio, por esta razón es posible representar el comportamiento P-v-T de una sustancia como una superficie en el espacio de la forma P= P(v,T). Todos los diagramas bidimensionales expuestos anteriormente son proyecciones de esta superficie [CENGELY BOLES, 2007].

Figura N° 4. Representación de la superficie P-v-T de una sustancia que se expande al congelarse y de una sustancia que se contrae al congelarse _[CENGELY BOLES, 2007].

2.2.3 Tablas de propiedades

En general las relaciones entre las propiedades termodinámicas de una sustancia son bastante complejas como para expresarse por medio de ecuaciones simples, por tanto las mismas se reflejan en forma de tablas. Algunas de las propiedades termodinámicas se miden fácilmente, otras se calculan a través de relaciones que mantienen propiedades medibles. Los resultados de las mediciones y cálculos de las propiedades termodinámicas se encuentran en tablas con un formato ordenado.

La más utilizada de estas tablas son las del agua, existen muchas versiones de las mismas como las de Keenan y Keyes y las presentadas en la literatura que se encuentran divididas en tres partes: líquido comprimido, vapor sobrecalentado y mezcla de líquido-vapor. De estas tablas, para ciertas condiciones de presión y temperatura se puede obtener información de volumen específico, energía interna, entalpía y entropía. La IAPWS (International Association for the Properties of Water and Steam), es una asociación que publica las tablas de propiedades antes mencionadas, siendo la última versión "Revised Release on the IAPWS Industrial Formulation 1997" [INTERNATIONAL ASSOCIATION FOR THE PROPERTIES OF WATER AND STEAM, 2007].

2.2.4 Ecuaciones de estado

Se conoce como ecuación de estado a cualquier ecuación que relacione la presión, temperatura y volumen de una sustancia. Las relaciones entre otras propiedades pertenecientes a una sustancia que se halla en estado de equilibrio también se conocen como ecuación de estado.

La mayoría de las ecuaciones de estado existentes correlacionan únicamente p, v y t, lo cual es un impedimento para el estudio de las relaciones funcionales entre otras propiedades termodinámicas.

2.2.4.1 Ecuación de estado de gas ideal

La ecuación de gases ideales se deriva de la teoría cinética de los gases, suponiendo que las moléculas de gas tienen volumen insignificante, no ejercen fuerza unas sobre otras y presentan choques elásticos con las paredes del recipiente que las contiene [FELDER Y ROUSSEAU, 2005].

En 1802 los franceses J. Charles y J. Gay-Lussac determinaron experimentalmente que a bajas presiones el volumen de una sustancia es proporcional a su temperatura y definieron la ecuación de estado de gas ideal como [CENGELY BOLES, 2007]:

$$Pv = RT$$
 (2.4)

Cuando la ecuación 2.4 describe el comportamiento PVT de un gas, se dice que éste se comporta como gas ideal.

2.2.4.2 Ecuaciones viriales de estado

La ecuación de estado de una sustancia se puede expresar como una serie [CENGEL Y BOLES, 2007]:

$$P = \frac{RT}{v} + \frac{a(T)}{v^2} + \frac{b(T)}{v^3} + \frac{c(T)}{v^4} + \frac{d(T)}{v^5} + \cdots$$
(2.5)

La ecuación 2.5 y otras similares se llaman ecuaciones de estado viriales, y los coeficientes son funciones de la temperatura y se llaman coeficientes viriales, los cuales se determinan experimental o teóricamente. Esta ecuación es aplicable solo a
la fase gaseosa de la sustancia, por tanto no debe ser utilizada para mezclas líquidovapor _[CENGEL Y BOLES, 2007].

2.2.4.3 Ecuación de estado de Van der Waals

La ecuación de estado se propuso en 1873, tiene dos constantes que se determinan del comportamiento de una sustancia en su punto crítico, es válida solo para sustancias gaseosas y está dada por [CENGEL Y BOLES, 2007]:

$$P = \frac{RT}{(v-b)} - \frac{a}{v^2} \qquad (2.6)$$

Con esta ecuación se pretende mejorar la ecuación de gas ideal al incluir dos de los efectos que no se consideran en el modelo de gas ideal: el volumen que ocupan las moléculas por sí mismas y las fuerzas intermoleculares. Con el término $\frac{a}{v^2}$ se toman en cuenta las fuerzas intermoleculares y con b el volumen que ocupan las moléculas por sí mismas. Estas constantes a y b se determinan por medio de las siguientes ecuaciones [CENGEL Y BOLES, 2007]:

$$a = \frac{27R^2Tc^2}{64Pc}$$
 (2.7) $b = \frac{RTc}{8Pc}$ (2.8)

2.2.4.4 Ecuación de Redlich-Kwong

Introducida en el año 1949, se origina de forma empírica. Esta ecuación predice tres raíces para el volumen, es posible que de esas tres, dos sean complejas. Y posee dos constantes: a y b. Con esta ecuación no se obtienen buenos resultados en la fase líquida, pero sirve adecuadamente para la fase gaseosa [SMITH et al. 2007]:

$$P = \frac{RT}{v - b} - \frac{a}{v(v + b)T^{\frac{1}{2}}}$$
(2.9)

Las constantes a y b que aparecen en esta ecuación se determinan haciendo uso de la presión y temperatura crítica de la sustancia a través de las siguientes ecuaciones [GIRALDO, 2005]:

$$a = \frac{0.42748R^2 T_c^{\frac{5}{2}}}{P_c} \quad (2.10) \qquad b = \frac{0.08664RT_c}{P_c} \quad (2.11)$$

2.2.4.5 Ecuación de S-R-K

En 1972 Soave reemplazando un término de la ecuación de Redlich-Kwong por uno en función de la temperatura y del factor acéntrico, presentó una nueva ecuación conocida como S-R-K. Se puede representar mediante la ecuación [GIRALDO, 2005]:

$$P = \frac{RT}{v-b} - \frac{a\alpha}{v^2 + vb} \quad (2.12)$$

Donde a y b son constantes que se determinan por las ecuaciones presentadas a continuación y α es una ecuación que depende del factor acéntrico ω del compuesto [GIRALDO, 2005]:

$$a = \frac{0.42747R^2 T_c^2}{P_c} \quad (2.13) \qquad b = \frac{0.08664RT_c}{P_c} \quad (2.14)$$

$$\alpha = (1 + (0.48508 + 1.55171\omega - 0.15613\omega^2)(1 - T_r^{0.5}))^2 \quad (2.15)$$

2.2.4.6 Ecuación de Peng Robinson

Esta ecuación fue desarrollada en 1976, los resultados que genera son similares a los de la ecuación de Soave, siendo la ecuación de Peng-Robinson mucho más eficiente en la predicción de densidades de muchos compuestos en fase líquida, especialmente los apolares. La ecuación se presenta a continuación [GIRALDO, 2005]:

$$P = \frac{RT}{v - b} - \frac{a\alpha}{v^2 + 2vb - b^2}$$
(2.16)

Donde a y b son constantes que se determinan por las ecuaciones presentadas a continuación y α es una ecuación que depende del factor acéntrico ω del compuesto [GIRALDO, 2005]:

$$a = \frac{0.45723552R^2 T_c^2}{P_c} \quad (2.17) \qquad b = \frac{0.07779607RT_c}{P_c} \quad (2.18)$$

$$\alpha = (1 + (0.37464 + 1.54226\omega - 0.26992\omega^2)(1 - T_r^{0.5}))^2 \quad (2.19)$$

2.2.4.7 Ecuación de estado de Beattie- Bridgeman

Fue propuesta en el año 1928, está basada en cinco constantes que se determinan de forma experimental y se expresa como [CENGELY BOLES, 2007]:

$$P = \frac{RT}{v^2} \left(1 - \frac{c}{vT^3} \right) (v+b) - \frac{a}{v}$$
(2.20)

Las constantes que aparecen en la ecuación a y b se determinan por medio de las siguientes ecuaciones [CENGELY BOLES, 2007]:

$$a = A_0 \left(1 - \frac{a_1}{\bar{\nu}} \right)$$
 (2.21) $b = B_0 \left(1 - \frac{b_1}{\bar{\nu}} \right)$ (2.22)

Los valores de las constantes a_0 , b_0 y c dependen de la sustancia. Es importante destacar que esta ecuación es válida solo para sustancias en estado gaseoso.

2.2.4.8 Ecuación de estado de Benedict-Webb-Rubin

En 1940 se amplió la ecuación de Beattie-Bridgeman y se aumentó el número de constantes a ocho. La ecuación de estado de Benedict-Webb-Rubin se expresa como [CENGELY BOLES, 2007]:

$$P = \frac{RT}{v} + \left(B_0 RT - A_0 - \frac{C_0}{T^2}\right) \frac{1}{v^2} + \frac{bRT - a}{v^3} + \frac{a\alpha}{v^6} + \frac{c}{v^3 T^2} \left(1 + \frac{\gamma}{v^2}\right) e^{\frac{-\gamma}{v^2}}$$
(2.23)

Las constantes que aparecen en las ecuaciones 2.20, 2.21, 2.22 y 2.23 pueden encontrarse tabuladas en cualquier libro de texto de termodinámica.

2.3 Fundamentos matemáticos y de software.

Para llevar a cabo este trabajo especial de grado es necesario el estudio de ciertos fundamentos matemáticos como las regresiones o ajustes matemáticos y los programas de computación que permiten la realización de los mismos.

2.3.1 Regresión o ajuste matemático

Consiste en una ecuación que pase lo más próximo a todos los puntos (xi, yi) en un conjunto de datos, de manera que los coeficientes de la misma sean los adecuados para que el error sea menor [ALAMAR et al, 2006].

2.3.1.1 Regresión lineal o de primer orden

Si los puntos (xi, yi) están más o menos alineados, suele interesar una regresión lineal, en ésta se busca la recta o polinomio de primer grado que se ajuste lo mejor posible a la nube de puntos dada, en el sentido en que minimiza el error cuadrático. La ecuación de una regresión lineal o de primer orden se define como [ALAMAR et al, 2006]:

$$y = ax + b \quad (2.24)$$

De la ecuación anterior se trata de encontrar los valores de a y b tales que minimicen el error cuadrático:

$$r^{2} = \sum_{i=1}^{n} (yi - (axi + b))^{2} \qquad (2.25)$$

2.3.1.2 Ajuste polinómico o regresión polinómica

Este caso aparece cuando la nube de puntos se ajusta a un polinomio de grado arbitrario. Se considera un conjunto de datos que se quieren aproximar a un polinomio de la forma [ALAMAR et al, 2006]:

$$y(x) = \sum_{i=0}^{n} a_i x^i \qquad (2.26)$$

El método consiste en obtener los coeficientes del polinomio imponiendo que minimicen el error cuadratico r^2 .

2.3.1.3 Ajuste potencial o regresión potencial

La nube de puntos en este caso se ajusta a una ecuación potencial que relaciona las variables x y y, para obtener los valores de las variables en estos casos se realizan operaciones matemáticas para encontrar a partir del ajuste potencial un ajuste lineal. Se representa a traves de la siguiente ecuación [Gil y Rodriguez, 2005]:

$$y = ax^b \qquad (2.27)$$

Para linealizar una ecuación potencial se debe aplicar logarítmos de la siguiente manera [Gil y Rodriguez, 2005]:

$$\log(y) = \log(a) + b * \log(x)$$
 (2.28)

2.3.2 Error absoluto y relativo

El error relativo de un trabajo experimental o medición permite conocer qué tan alejado del valor real (teórico) se encuentra el valor obtenido de manera experimental o práctica.

El error absoluto de una medición o trabajo experimental es la diferencia entre el valor teórico de una variable y el valor experimental o medido [PURCELL et al. 2007].

$$E = V_{teo} - V_{exp} \tag{2.29}$$

El error relativo es el cociente entre el error absoluto y el valor medido o experimental [PURCELL et al, 2007].

$$Er = \frac{E}{V_{teo}} \qquad (2.30)$$

Esta ecuación puede escribirse también de la siguiente manera [PURCELL et al, 2007]:

$$Er = \frac{V_{teo} - V_{exp}}{V_{teo}}$$
(2.31)

El error relativo porcentual es el error relativo multiplicado por 100.

$$E_{\%} = Erx100$$
 (2.32)

2.3.3 Regresión por mínimos cuadrados

El objetivo es determinar la mejor aproximación de un conjunto de valores por una recta general (que no necesariamente pase por el origen) o una curva de forma polinómica. En el caso de rectas que no necesariamente pasan por el origen con el método de mínimos cuadrados se determina el valor de la pendiente (a) y el punto de corte de esa recta con el eje y (b). La suma de las distancias de cada punto del gráfico a la recta, elevada al cuadrado nos da una idea de que tan cerca está la recta o curva de los datos experimentales y se denomina desviación cuadrática. El método de minimos cuadrados permite encontrar la pendiente de la recta y el punto de corte que minimice el valor de la desviación cuadrática a través de las siguientes ecuaciones [UNIVERSIDAD DE LA REPUBLICA, 2010]:

$$a = \frac{n(\sum_{i=1}^{n} x_i y_i) - (\sum_{i=1}^{n} y_i)(\sum_{i=1}^{n} x_i)}{n(\sum_{i=1}^{n} x_i^2) - (\sum_{i=1}^{n} x_i)^2}$$
(2.33)

$$b = \frac{(\sum_{i=1}^{n} y_i)(\sum_{i=1}^{n} x_i^2) - (\sum_{i=1}^{n} y_i)(\sum_{i=1}^{n} x_i)}{n(\sum_{i=1}^{n} x_i^2) - (\sum_{i=1}^{n} x_i)^2}$$
(2.34)

En el caso de un ajuste polinómico se debe encontrar el conjunto de coeficientes del polinomio que minimicen la desviación cuadrática, para esto debe resolverse la siguiente matriz [UNIVERSIDAD DE LA REPUBLICA, 2010]:

$$\begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{bmatrix} = inv \begin{bmatrix} \sum_{i=1}^{n} x_{i}^{0} & \sum_{i=1}^{n} x_{i}^{1} & \sum_{i=1}^{n} x_{i}^{2} & \dots & \sum_{i=1}^{n} x_{i}^{m} \\ \sum_{i=1}^{n} x_{i}^{1} & \sum_{i=1}^{n} x_{i}^{2} & \sum_{i=1}^{n} x_{i}^{3} & \dots & \sum_{i=1}^{n} x_{i}^{m+1} \\ \sum_{i=1}^{n} x_{i}^{2} & \sum_{i=1}^{n} x_{i}^{3} & \sum_{i=1}^{n} x_{i}^{4} & \dots & \sum_{i=1}^{n} x_{i}^{m+2} \\ \sum_{i=1}^{n} x_{i}^{m} & \sum_{i=1}^{n} x_{i}^{m+1} & \sum_{i=1}^{n} x_{i}^{m+2} & \dots & \sum_{i=1}^{n} x_{i}^{2m} \end{bmatrix} x \begin{bmatrix} \sum_{i=1}^{n} y_{i} x_{i}^{0} \\ \sum_{i=1}^{n} y_{i} x_{i}^{1} \\ \sum_{i=1}^{n} y_{i} x_{i}^{2} \\ \vdots \\ \sum_{i=1}^{n} x_{i}^{m} & \sum_{i=1}^{n} x_{i}^{m+1} & \sum_{i=1}^{n} x_{i}^{m+2} & \dots & \sum_{i=1}^{n} x_{i}^{2m} \end{bmatrix}^{n} x \begin{bmatrix} x_{1} \\ \sum_{i=1}^{n} y_{i} x_{i}^{0} \\ \sum_{i=1}^{n} y_{i} x_{i}^{2} \\ \vdots \\ \sum_{i=1}^{n} y_{i} x_{i}^{m} \end{bmatrix}^{(2.35)}$$

2.3.4 Microsoft Office Excel

Microsoft Office es una suite de oficina lanzada por Microsoft en el año 1989 para Apple Macintosh, más tarde se creó una versión para Windows en 1990. Microsoft Excel es una herramienta de Microsoft Office que permite construir hojas de cálculo que pueden representar planillas, cuadros estadísticos, entre otros. El programa muestra las celdas organizadas en filas y columnas, cada celda puede contener datos o una fórmula y tambíen puede contener referencias a otras céldas. Excel es la primera hoja de cálculo que permite al usuario definir la apariencia de las hojas de cálculo, cambiar fuentes, colores tamaños y apariencia de cada celda. A continuación se presenta el ambiente de trabajo en este programa:

Archivo 1	(* - + nicio braert	ar Diseño	de página	Fórmulas Datos	Revisar	Libro1 - Micro Vista	osoft Ex	cel				9009 9009	12
Pegar J	Calibri N.A. 1	+ 11 + 1 () + Fuerte	• A' A' • <u>A</u> •	= = = & . E = = ik : Almeation	部 第一团 -	General S + % 000 * Número	- 4 21 6	Formato	Dar formato Estilos de • como tabla • celda • Estilos	Gen Insertar - Me Elminar - El Formato - Celdar	Σ · 2 · 2 · 2 · y fittar - sele Modificar	An and a second	
A1			f.										¥
A A A A A A A A A A A A A A A A A A A		B	С	D	E	£		G	H I	1	K	L	1. A.
5 6 7 8													
9 10 11													
12 13 14													
16 17													
19 20													
Lists	юја1 / нојал	с уснојаз	W)					1.	-	-	1 WI 100% (=)		4
Inicio	3. 2	(1)		I						ES	- 80 02 18 0	19:56 20/11/2009	

Figura N° 5. Ambiente de trabajo en Microsoft Excel 2010 [MICROSOFT OFFICE, 2010].

En esta herramienta se pueden realizar tambien gráficos de ecuaciones y ajustes matemáticos lineales, polinómicos, exponenciales, entre otros. Microsoft Excel obtiene las líneas de tendencia y los ajustes polinómicos por el método de mínimos cuadrados. Los ajustes de forma potencial se calculan aplicando el método de mínimos cuadrados a la linealización de la ecuación general de una curva potencial [MICROSOFT OFFICE, 2010].

2.3.5 CurveExpert

Es un programa diseñado para realizar gráficos y análisis de curvas, trabaja en cualquier sistema operativo y es sencillo de usar. Las componentes x e y pueden ser modeladas usando herramientas de regresión lineal, no lineal, interpolación y otros. Los usuarios de este programa pueden modificar y crear modelos, también posee herramientas para el análisis de curvas. Curve Expert define cual es el mejor modelo de ajuste de una curva de una manera rápida y eficiente [HYAMS, 2010]. A continuación se presenta el ambiente de trabajo del programa:

Figura Nº 6. Ambiente de trabajo en el programa CurveExpert para Windows [HYAMS, 2010].

2.3.6 Lenguaje de programación C++.

Es un lenguaje de programación de propósito general que ofrece economía sintáctica, control de flujo y estructuras sencillas y un buen conjunto de operadores. Es un lenguaje pequeño y sencillo, lo que lo hace un lenguaje potente con un campo de aplicación ilimitado. Ha tenido implementaciones en programas como: GNU Compiler Collection, Dev-C++, wxDev-C++, Intel C++ compliler, Borland C++ Builder, Microsoft Visual C++ y C-free.

CAPÍTULO III

METODOLOGÍA

En este capítulo se presenta la metodología empleada para el logro del objetivo general y los objetivos específicos propuestos. En resumen el trabajo consistió en la obtención de ecuaciones de estado no convencionales de cada propiedad termodinámica unitaria, en función de dos propiedades independientes. La sustancia de la que se obtuvo estas ecuaciones es el agua, como vapor sobrecalentado y líquido comprimido. Para la mezcla líquido-vapor se generaron ecuaciones que dependen de una sola propiedad.

La data se obtuvo de las tablas de propiedades correspondientes al agua en fase líquida como líquido comprimido, en fase vapor como vapor sobrecalentado y en el equilibrio líquido-vapor. Las herramientas Excel y CurveExpert se utilizaron para la obtención de ajustes o regresiones matemáticas y el software Dev-C++ para la elaboración de un programa que permite conocer el estado en el que se encuentra el agua, así como sus propiedades en determinado estado termodinámico de equilibrio, especificando para esto sólo la temperatura y la presión.

A continuación se presenta un esquema que sintetiza la metodología llevada a cabo:

Figura N° 7. Esquema general de la metodología empleada.

3.1 Revisión bibliográfica general

En esta etapa del trabajo especial de grado se llevó a cabo una revisión bibliográfica de una gran cantidad de aspectos fundamentales para el desarrollo del mismo. Inicialmente se realizó la lectura de fundamentos de termodinámica, así como también de las ecuaciones de estado existentes actualmente.

Posteriormente se realizó la búsqueda de las tablas de propiedades del agua, para así cumplir con uno de los objetivos específicos planteados. Entre las disponibles se encuentra las de la IAPWS (International Association for the Properties of Water and Steam), así como también de las existentes en la literatura como las de Keenan y Keyes y las de Wagner y Kretschmar. Luego de ser buscadas se seleccionó la más adecuada para realizar el presente trabajo especial de grado, llamadas "Steam Tables, Thermodynamic Properties of water including vapor, liquid and solid phases"_{[KEENAN,} 1969], debido a que se encuentran estructuradas de una manera práctica y conveniente para la obtención de los ajustes, adicionalmente estas tablas se encuentran dividas en rangos más pequeños, lo que implica que el error al obtener las ecuaciones es mucho menor.

Luego se realizó un estudio de ecuaciones matemáticas y métodos de ajuste de datos, para poder desarrollar las ecuaciones de estado no convencionales, así como también la búsqueda de programas disponibles para realizar la transcripción de los datos en físico a digital para posteriormente elegir el más práctico. Se utilizó el programa Microsoft Excel para la transcripción de los datos ya que el mismo presenta una estructura de fácil uso y es un programa muy utilizado debido a su gran cantidad de funciones. Se estudiaron e implementaron las herramientas de ajustes del programa Microsoft Excel y el programa CurveExpert, los cuales se utilizaron para realizar los ajustes matemáticos.

Por último, se realizó una revisión de software de programación disponible para desarrollar el programa de las tablas de propiedades, el mismo debe mostrar el código fuente para realizar futuras mejoras o ampliaciones. En el caso de este trabajo especial de grado se utilizó el lenguaje de programación C++ y el software Dev-C++, ya que su código fuente puede servir para ser modificado o adaptado a otro software de programación y es un software libre, por tanto se puede tener fácil acceso al mismo.

3.2 Transcripción de la data a Microsoft Excel

En la actualidad no existe ningún medio que sustituya las tablas de vapor o las ecuaciones de estado anteriormente nombradas para obtener las propiedades termodinámicas del agua, de manera simple. Las ecuaciones de estado existentes sólo permiten relacionar la presión, el volumen específico y la temperatura, por tanto se desarrolló ecuaciones de estado no convencionales que permiten obtener relaciones entre otras propiedades como la entalpía, energía interna y entropía. Para esto, se parte de las tablas de propiedades del agua ya existentes. Como ya sabemos hay numerosas versiones de las mismas, las usadas en este trabajo sólo se encuentran disponibles en físico y no poseen una versión digital.

Para la obtención de las ecuaciones de estado, es necesario realizar una serie de ajustes matemáticos en programas computacionales y para eso es necesario transcribir la data de las tablas en físico a digital. Para esto se escogió la herramienta computacional Microsoft Excel en su versión 2010, ya que es bastante práctica y fácil de usar, permite organizar tablas de una manera sencilla y además es una herramienta ampliamente usada alrededor del mundo. Por tanto la transcripción de la data a Excel representa un posible aporte para trabajos futuros.

Las tablas de propiedades del agua que se poseen en físico están estructuradas de la siguiente manera: la data está dividida en tres secciones: mezcla líquido-vapor, vapor sobrecalentado y líquido comprimido, las cuales se encuentran unidas en un solo tomo, cada una debidamente separada. Inicialmente se encuentra la sección de mezcla líquido-vapor en la cual existe una columna correspondiente a la temperatura (°C) y para cada valor se presenta información de:

- Presión (bar).
- Volumen específico (cm³/g), tanto del vapor v_g como del líquido v_f .
- Energía interna específica (J/g), tanto del vapor u_g como del líquido u_f, así como también la referida al cambio de fase por evaporación u_{fg}.
- Entalpía específica (J/g), tanto del vapor h_g como del líquido h_f , así como también la referida al cambio de fase por evaporación h_{fg} .
- Entropía específica (J/g K), tanto del vapor s_g como del líquido s_f, así como también la referida al cambio de fase por evaporación s_{fg}.

En la figura N°12 presentada en el apéndice se puede observar cómo se encuentran distribuidas las tablas presentes en la sección correspondiente a mezcla líquido-vapor.

Posteriormente se encuentra la sección de vapor sobrecalentado y la de líquido comprimido, ambas poseen la misma estructura especificada a continuación: para una presión establecida se presenta una columna con una serie de temperaturas (°C) que varía desde los 0°C hasta los 1300°C y para cada uno de los valores de temperatura se presenta la siguiente información:

- Volumen específico v (cm^3/g).
- Energía interna específica u (J/g).
- Entalpía específica h (J/g).
- Entropía específica s (J/g K).

En la figura N°11 presentada en el apéndice se encuentra un ejemplo de cómo se encuentran estructuradas las tablas de propiedades del agua para la fase vapor sobrecalentado.

La transcripción de datos se realizó por secciones, inicialmente con la sección de vapor sobrecalentado, por ser la que más rangos de presión posee, luego la de líquido comprimido, ya que posee la misma estructura que la anterior y por último la correspondiente a la mezcla líquido vapor.

3.3 Organización de datos y obtención de ajustes para VS y LC

3.3.1 Organización de datos

Inicialmente se procedió a trabajar con la sección de VS, primero se dividió el rango de presión (0.01-1000) bar, en varios más pequeños. Todo esto se realizó con la finalidad de trabajar con hojas de cálculo menos cargadas y por tanto más ordenadas lo que minimiza el riesgo de errores a la hora de tomar los datos para realizar los ajustes. Se trabajó desde la presión más pequeña en orden creciente, hasta llegar a los 1000 bar. De igual manera se dividió en rangos menores las data de líquido comprimido.

3.3.2 Obtención de ajustes.

Se obtuvo para cada rango de presión ajustes de la forma: $v(t)_p$, $u(t)_p$, $h(t)_p$, $s(t)_p$, $u(v)_p$, $h(v)_p$, $s(v)_p$, $h(u)_p$, $s(u)_p$ y $s(h)_p$. El subíndice p denota que las ecuaciones de ajuste se realizan a p constante. Cabe destacar que para la obtención de estos ajustes se estableció un criterio de selección, se obtuvo solo 10 ajustes de este tipo para minimizar el trabajo. El criterio de selección fue no realizar los ajustes invertidos, es decir si se realizó el ajuste s(u), el invertido u(s) no fue realizado. Los ajustes matemáticos se realizaron inicialmente para VS y luego para LC, a través de dos programas distintos Microsoft Excel y CurveExpert.

Para cada presión perteneciente a un rango considerado, se correlacionaron $v(t)_p$, $u(t)_p$, $h(t)_p$ y $s(t)_p$. Los coeficientes de estas ecuaciones obtenidas son función de p. Estos coeficientes se representan en el diagrama de flujo siguiente por las letras A, B, C, D, etc., según el ajuste que se seleccionó como definitivo:

Figura Nº 8. Representación esquemática de la obtención de ajustes matemáticos.

Como puede observarse en la figura, inicialmente se obtuvo el gráfico $y(x)_z$, luego se procedió a encontrar el mejor ajuste y su respectiva ecuación para el conjunto de datos a través de Microsoft Excel de acuerdo al diagrama de flujo. Como complemento se realizó lo mismo con el programa CurveExpert. Seguidamente se evaluaron las dos ecuaciones de ajuste obtenidas con la data tabulada de propiedades termodinámicas para determinar el error relativo porcentual (E_%) para cada una, el criterio fijado es que el mismo debía ser menor al 1% para todas las ecuaciones obtenidas. Se seleccionó como ecuación de ajuste definitiva la que tuviera un E_% menor.

En el caso del líquido comprimido se realiza exactamente el mismo procedimiento que para el vapor sobrecalentado, los ajustes obtenidos son: v(t), u(t), h(t), s(t), u(v), h(v), s(v), h(u), s(u) y s(h). Al ser el número de datos menor que para el vapor sobrecalentado, la cantidad de ajustes obtenidos también es menor.

3.4 Organización de ajustes para VS y LC.

La siguiente etapa del presente trabajo especial de grado es la organización de los ajustes obtenidos en la etapa anterior. Desde este punto en adelante se comienzan a obtener las ecuaciones que dependen de dos variables, hasta este momento tenemos solamente ajustes matemáticos que son ecuaciones que dependen de una sola variable, las mismas deben ser organizadas para posteriormente obtener las ecuaciones de dos variables.

Los ajustes obtenidos en la etapa anterior se organizaron por valores de presión, ya que para cada presión existe un ajuste distinto, por tanto del lado derecho se crea una columna para cada coeficiente del ajuste de manera que los mismos queden uno debajo del otro como se muestra en la tabla a continuación:

	$v(t)_p = At^6 + Bt^5 + Ct^4 + Dt^3 + Et^2 + Ft + G + H(1/t) + I(1/t^2) + J(1/t^3)$								
P (bar)	D	Ε	F	G	Н				
0.01			461.58	126021					
0.02			230.8	62994					
3			1.53704008	424.178149	-3053.17686				
4			1.15220985	319.539125	-3184.1372				
5			0.92114708	256.942204	-3299.11503				
71		5.22E-06	0.05085548	31.6576044	-5484.9655				
72		5.00E-06	0.0497	31.642	-5543.3				
73		5.00E-06	0.0485	31.637	-5603.3				
110	-1.34E-08	4.83E-05	-2.15E-02	4.93E+01	-9.71E+03				
112	-1.23E-08	4.47E-05	-1.82E-02	4.72E+01	-9.40E+03				
114	-1.26E-08	4.58E-05	-2.03E-02	4.77E+01	-9.54E+03				

Tabla N° 1. Ejemplo de la visualización de la organización de los ajustes obtenidos en la etapa anterior, para v(t), para distintas p, en la fase VS.

3.5 Organización de datos y obtención de ajustes para L-V

La metodología empleada para realizar los ajustes de la mezcla L-V es distinta a la empleada para VS Y LC, principalmente, el objetivo es distinto, en este caso se desea obtener ecuaciones que dependan de una sola variable. La diferencia fundamental entre estos ajustes y los anteriores es que estos se realizan independientemente del valor de la presión. Para la obtención de estos ajustes, inicialmente, se graficaron las funciones presentadas en la tabla a continuación:

Tabla N° 2. Gráficos y ecuaciones a obtener para el agua en estado L-V.

f(t)	f(v _f)	f(v _g)	f(u _f)	f(u _g)	f(h _f)	f(h _g)	f(s _f)
v _f (t)	$v_g(v_f)$	$u_{f}(v_{g})$	$u_g(u_f)$	h _f (u _g)	h _g (h _f)	s _f (h _g)	$s_g(s_f)$.
v _g (t)	u _f (v _f)	$u_g(v_g)$	h _f (u _f)	$h_g(u_g)$	s _f (h _f)	s _g (h _g)	
u _f (t)	$u_g(v_f)$	$h_{f}(v_{g})$	$h_g(u_f)$	$s_f(u_g)$	s _g (h _f)		
u _g (t)	h _f (v _f)	$h_g(v_g)$	$s_f(u_f)$	$s_g(u_g)$			
h _f (t)	$h_g(v_f)$	$s_{f}(v_{g})$	$s_g(u_f)$				
h _g (t)	$s_f(v_f)$	$S_g(V_g)$					
s _f (t)	$s_g(v_f)$						
s _g (t)							

Para poder ajustar los datos de una manera correcta se dividió el rango total de temperaturas en rangos más pequeños. Luego de obtenidos los gráficos correspondientes a cada rango de temperatura distinto, se procedió a aplicar la metodología empleada para obtener los ajustes de VS y LC, la cual se explica en la figura N°8. La diferencia fundamental entre ambas es que para L-V los ajustes son únicamente polinomios cuyo grado máximo es 7.

3.6 Obtención de ecuaciones de la forma f(x, y).

3.6.1 Obtención de ecuaciones en función de la presión.

Inicialmente en los cuadros obtenidos en la etapa 2.3 se identificaron los rangos de presión en los cuales el tipo de ajuste se mantenga, para así minimizar el número de ecuaciones en función de dos variables a obtener. El objetivo es desarrollar ecuaciones en función de dos variables del tipo:

$$f(x,p) = a(p)x^{n} + b(p)x^{n-1} + c(p)x^{n-2} + \dots +$$
(3.1)

Donde los coeficientes a(p), b(p), c(p),... son ecuaciones en función de la presión. Lo que se desea obtener en esta etapa de la metodología son las ecuaciones de estos coeficientes.

Esto se realizó ajustando los coeficientes de las primeras ecuaciones obtenidas en función de la presión, para rangos en los que se mantuvo el mismo número de coeficientes. Cabe destacar que se utilizaron dos criterios para selección de los rangos de presión para la obtención de la ecuación de estado perteneciente a ese rango: el primer criterio es que se debe elegir un rango de presión en el que la ecuación de estado obtenida sea simple y no una ecuación muy voluminosa, ya que para fines didácticos es mucho más práctico utilizar una ecuación simple.

El segundo criterio empleado fue que el error relativo porcentual correspondiente a los valores de las propiedades determinados por medio de las ecuaciones de estado desarrolladas con respecto al valor teórico existente en las tablas de vapor utilizadas, siempre debía dar menor al 1%.

Para obtener este tipo de ajustes en función de la presión se procedió como se indica en la figura N°8, sólo que en este caso se presentan ajustes polinómicos, potenciales y lineales.

3.6.2 Obtención de las ecuaciones en función de dos variables.

A continuación se presenta un ejemplo para la obtención de una ecuación de la forma v (t,p). Hasta este momento se tiene un ajuste que depende de una variable, el cual fue hallado en la etapa 2.3. Se utiliza una ecuación de segundo grado como ejemplo, a pesar de que los ajustes no necesariamente tengan esa forma:

$$v(t) = At^2 + Bt + C \tag{3.2}$$

Luego, como se explicó anteriormente, cada coeficiente de la ecuación A, B y C en la presente etapa se transforman en nuevas ecuaciones en función de la presión para un rango determinado. Finalmente se obtuvo la ecuación en función de dos variables de la forma:

$$v(t,p) = A(p)t^{2} + B(p)t + C(p)$$
 (3.3)

Donde A(p), B(p), C(p) representan a las ecuaciones obtenidas en el punto 2.6.2.

El error relativo porcentual se obtuvo mediante la evaluación de la ecuación obtenida en un conjunto de puntos ya conocidos mediante las tablas de propiedades del agua, si el error del valor de la propiedad hallado mediante la ecuación obtenida difiere del valor teórico en menos del 1%, la ecuación es correcta para el rango de presión especificado.

Para las ecuaciones de estado no convencionales se lograron obtener las siguientes: v(t, p), u(t, p), h(t, p), s(t, p), u(v, p), h(v, p), s(v, p), h(u, p), s(u, p) y s(h, p).

3.7 Organización de las ecuaciones definitivas

En la presente etapa se organizaron las ecuaciones obtenidas para VS y LC, en función de la presión, de una manera ordenada y explícita para su fácil comprensión, los cuadros correspondientes a estas ecuaciones se presentan en el capítulo correspondiente a los apéndices sección A.2. Finalmente se organizaron las ecuaciones correspondientes al equilibrio L-V en otra serie de cuadros, cada cuadro presenta las ecuaciones en función de una variable distinta, los mismos se presentan en el capítulo correspondiente a los apéndices sección A.4

3.8 Diseño del programa computacional en el software Dev-C++.

En vista que se contaba con ciertos conocimientos previos en cuanto al lenguaje de programación C++, se decidió trabajar con un software que utilice este lenguaje como lo es el Dev-C++. Inicialmente se realizó una revisión a profundidad del lenguaje para familiarizarse con el software a utilizar. Posteriormente se comienza a escribir el código fuente para el diseño de un programa que permite la obtención de todas las propiedades termodinámicas del agua en sus diferentes fases introduciendo como datos de entrada únicamente la temperatura y la presión. Adicionalmente el programa debe indicar en qué fase se encuentra el agua para esas condiciones.

Para la obtención del código fuente se utilizaron todas las ecuaciones de estado no convencionales obtenidas en función de la temperatura y la presión, para las fases VS y LC, también se utilizaron las ecuaciones en función de la temperatura para la mezcla L-V. Para conocer la fase en la que se encuentra el agua se utilizó la ecuación de Antoine junto a ciertos criterios determinados a través de las tablas de propiedades utilizadas, además de las condiciones expuestas en el Capítulo II, correspondiente al marco teórico.

Cabe destacar que luego de desarrollado el programa se procedió a validarlo, para esto se comprobó para cada rango de presión y temperatura que los valores del resto de las propiedades fueran similares a los presentados en las tablas utilizadas como base.

CAPÍTULO IV

RESULTADOS Y ANÁLISIS DE RESULTADOS

En este capítulo se presentan los resultados obtenidos durante este trabajo, dando así a conocer las ecuaciones de estado no convencionales desarrolladas, explicando los criterios utilizados para la selección de los rangos. De igual manera se presenta el error relativo porcentual correspondiente a las ecuaciones obtenidas. Luego se muestra y se explica cómo se obtuvo el programa desarrollado para el cálculo de las propiedades, sus funciones y aplicaciones. Para realizar una discusión más entendible, los resultados y sus respectivos análisis han sido divididos en las secciones que se presentan a continuación:

-Vapor sobrecalentado y Líquido comprimido

- Tipos de ecuaciones
- Tablas de resultados
- Instrucciones y explicaciones de las tablas de resultados
 - Unidades de las propiedades y coeficientes de las ecuaciones de estado
- Discusión de resultados
 - Ecuaciones
 - Error y tablas de error.
- Equilibrio líquido-vapor
 - Tipos de ecuaciones

- Tablas de resultados
- Instrucciones y explicaciones de las tablas de resultados
- Discusión de resultados
 - Ecuaciones
 - Casos especiales
 - Error y tablas de error.
- Programa en C++
 - ¿Qué se utilizó para hacer el programa?
 - ¿Qué muestra el programa?
 - Explicación de las funciones
 - Ambiente de trabajo
 - Análisis del programa

4.1 Vapor sobrecalentado y Líquido comprimido

4.1.1 Tipos de ecuaciones

Se agrupan las fases de vapor sobrecalentado y líquido comprimido debido a su similitud en cuanto a la forma de las ecuaciones obtenidas, las cuales se colocan a continuación: v(t,p), u(t,p), h(t,p), s(t,p), u(v,p), h(v,p), s(v,p), h(u,p), s(u,p) y s(h,p). Donde para cada una existe más de una ecuación que varía desde ajustes lineales, polinómicos, hasta potenciales, por ejemplo para las ecuaciones correspondientes a la forma v(t,p) en el vapor sobrecalentado existen 46 ecuaciones dividiendo en 46 rangos los valores de presión de la data que pertenecen al rango de 0 a 1000 bar.

4.1.2 Tablas de resultados

Las tablas de resultados presentan todas las ecuaciones de estado no convencionales desarrolladas.

Para saber a partir de que rango de temperatura es aplicable cada ecuación se debe inicialmente determinar la presión a la cual se desea conocer la propiedad, pueden ocurrir dos casos:

Caso 1: Si la presión es mayor a 220 bar utilizar el siguiente cuadro:

Tabla N° 3. Cuadro de selección de fase para presiones mayores a 220 bar.

Propiedad	Fase	Propiedad	Fase
t > 378		t < 378	
v > 2.014	Vapor	v < 2.014	Líquido
u > 1793.9	sobrecalentado	u < 1793.9	comprimido
h > 1934.5		h < 1934.5	

Caso 2: si la presión es menor a 220 bar, debe utilizar la ecuación de Antoine para determinar la temperatura de saturación correspondiente a esa presión y utilizar el siguiente cuadro:

Tabla Nº 4. Cuadro de selección de fase para presiones menores a 220 bar.

Propiedad	Fase	Propiedad	Fase
$t > t^{sat}$		t < t ^{sat}	
v > 4.824	Vapor	v < 2.0138	Líquido
u > 2239	sobrecalentado	u < 1793.9	comprimido
h > 2345		h < 1834.5	
t = 1	tsat	Equilibri	o líquido-vapor

A continuación se presenta una tabla que contiene las ecuaciones de estado no convencionales obtenidas de la forma v(t, p) para la fase vapor sobrecalentado en un rango de presión de 0.01 a 49 bar, cabe destacar que el resto de las ecuaciones obtenidas en el presente trabajo se encuentran en la sección A.1 correspondiente al apéndice.

	$\mathbf{v}(t, \mathbf{p}) = \mathbf{A}(\mathbf{p})t^3 + \mathbf{B}(\mathbf{p})t^2 + \mathbf{C}(\mathbf{p})t + \mathbf{D}(\mathbf{p}) + \mathbf{E}(\mathbf{p})1/t + \mathbf{F}(\mathbf{p})1/t^2 + \mathbf{G}(\mathbf{p})1/t^3$								
N°	Rango			α (p)=Hp ⁶ +Ip ⁵ +Jp	$b^4 + Kp^3 + Lp^2 + M$	p+N		
ec	ec de p(bar)	Coef.	Н	Ι	J	К	L		
1	0.01 0.2	C(p)							
1	0.01 a 2	D(p)							
		C(p)							
2	3 a 6	D(p)							
		E(p)					5.27095025		
		C(p)							
3	7 a 9	D(p)							
		E(p)					-3.7143		
		C(p)							
4	10 a 16	D(p)							
		E(p)			-1.40675906	76.43877161	-1544.545556		
		C(p)							
5	17 a 22	D(p)							
		E(p)			-1.877735812	145.8341684	-4234.273384		
		C(p)							
6	23 a 29	D(p)							
		E(p)		-1.5325	196.225	-10039.40417	256547.975		
		C(p)							
7	30 a 35	D(p)							
		E(p)		1.53083333	-249.2916667	16226.1625	-527671.8583		
		C(p)							
8	36 a 38	D(p)					0.0405		
		E(p)					-2.85		
		C(p)							
9	39 a 42	D(p)				0.141166667	-16.8925		
		E(p)				-29.21666667	3497		
		C(p)							
10	43 a 45	D(p)					-0.0025		
		E(p)					13.3		
		C(p)							
11	46 a 49	D(p)				-0.027	3.808		
		E(p)				8.1833333	-1151.25		

	$v(t,p) = A(p)t^{3} + B(p)t^{2} + C(p)t + D(p) + E(p)1/t + F(p)1/t^{2} + G(p)1/t^{3}$							
NO				α(p)=	= Op ^Q			
N°ec		М	Ν	0	Q			
	0.01 0			4.651935219	-0.997723092			
1	0.01 a 2			1231.538768	-1.006696605			
				4.627163825	-1.003007181			
2	3 a 6			1240.303411	-0.977498603			
		-1.656807453E+02	-2.60411724E+03					
				4.640896463	-1.00419098			
3	7 a 9			1205.975882	-0.9643833			
		9.8361	-3130.4					
				4.670288085	-1.006725743			
4	10 a 16			1148.72921	-0.944274754			
		13718.74115	-48448.83854					
	17 a 22			4.734984966	-1.0113719			
5				1041.221001	-0.910488384			
		54447.64323	-264930.6161					
	23 a 29			4.788260866	-1.014867123			
6				955.4799431	-0.883480183			
		-3274430.563	16695890.5					
				4.882841228	-1.020451585			
7	30 a 35			885.251451	-0.861447554			
		8573408.057	-55680529.1					
				4.970085607	-1.025287098			
8	36 a 38	-3.8585	126.836					
		184.25	-6552.9					
				7.583988391	-1.140086842			
9	39 a 42	672.9223333	-8886.54					
		-139511.7833	1851470.6					
				5.026540176	-1.028320291			
10	43 a 45	-0.4425	58.588					
		-1168.4	21941.3					
				5.164582883	-1.035316386			
11	46 a 49	-179.497	2860.277					
		53950.76667	-845953.7					

4.1.3 Instrucciones y explicaciones de las tablas de resultados

En primer lugar cabe destacar que se obtuvo diez tablas para la fase vapor sobrecalentado y diez más para la fase líquido comprimido. Para poder utilizar los cuadros anteriores de manera correcta es indispensable entender como están ordenados los datos, inicialmente se presenta la primera línea del cuadro en donde se da a conocer como es la forma de la ecuación que depende de dos variables, en el caso de los coeficientes que se encuentran en la primera línea son ecuaciones que dependen de la presión. En la línea siguiente aparece la expresión "polinomio de la forma", la cual representa la forma de la ecuación correspondiente a cada coeficiente que es función de la presión. Se resalta el único caso de v(t,p) de vapor sobrecalentado donde se tienen polinomios y ajustes potenciales, como ecuaciones de los coeficientes de la presión.

Del lado izquierdo se encuentra el rango de presión (bar), esta columna representa el rango de presiones en el cual es válida la ecuación de dos variables. Siguiendo a la derecha se tiene una columna que contiene las letras que indican cuales coeficientes en función de la presión están presentes en la ecuación de la franja superior del cuadro. A continuación de cada letra hacia su derecha se encuentran los valores que corresponden a los coeficientes de las ecuaciones que son solo función de la presión y en la parte superior de cada valor está la letra que indica su posición en la ecuación.

Al utilizar las ecuaciones de estado no convencionales obtenidas es necesario colocar el número completo (con todas las cifras que aparecen en el cuadro) y exacto que aparece como el valor de los coeficientes ya que esto es lo que permite mantener el error relativo porcentual en menos del 1%.

Para el mayor entendimiento del uso de los cuadros se explica un ejemplo mostrando el procedimiento a seguir paso a paso para el cálculo de una propiedad. Suponiendo que quisiéramos conocer la ecuación de estado no convencional que se debe usar para determinar el valor del volumen específico del vapor sobrecalentado de agua, a una presión de 3 bar y una temperatura de 300°C. El procedimiento sería el que se muestra a continuación:

- Paso 1: se debe buscar el cuadro titulado v(t,p) de vapor sobrecalentado.
- Paso 2: se procede a ubicar el dato de presión dentro de la columna de rangos de presión.
- Paso 3: del lado derecho de la columna de presión se observan las letras que aparecen, éstas indican los coeficientes dependientes de p que dan forma a la ecuación del volumen específico en función de dos variables. En este caso se encuentran C(p), D(p) y E(p).
- Paso 4: con los coeficientes encontrados en el paso anterior, se define la ecuación v(t,p).

$$v(t,p) = C(p) * t + D(p) + \frac{E(p)}{t}$$
 (4.1)

 Paso 5: una vez obtenida la forma de la ecuación en función de dos variables, se identifica la forma de ecuación de cada coeficiente dependiente de la presión, para esto es necesario ubicar el conjunto de valores correspondiente a ese rango de presión, donde cada uno va a tener una letra distinta al subir en su misma columna

Para el caso de C(p) y D(p) se observa que son de la forma potencial debido a que al ver hacia la parte superior de cada valor correspondiente se encuentran las letras O y Q, definiendo para estos coeficientes ecuaciones de la siguiente forma:

$$\mathcal{C}(p) = 0 * p^Q \quad (4.2)$$

$$D(p) = 0 * p^Q \quad (4.3)$$

Para E(p) en la parte superior de cada valor se encuentran las letras L, M, N. que al revisar el tipo de polinomio correspondiente a este cuadro se observa que representan a una ecuación cuadrática de la forma:

$$E(p) = L * p^2 + M * p + N$$
 (4.4)

Paso 6: definir la forma definitiva de la ecuación dependiente de dos variables, esto se realiza sustituyendo las ecuaciones correspondientes a cada coeficiente en función de p obtenidas en los pasos anteriores, en la ecuación en función de dos variables (4.1) que se obtuvo en el paso 4.

$$v(t,p) = O_C * p^{Q_C} * t + O_D * p^{Q_D} + \frac{L_E * p^2 + M_E * p + N_E}{t}$$
(4.5)

Se coloca cada coeficiente en función de la presión como subíndice para recordar cuales valores de la tabla deben ser los correctos para cada caso.

- Paso 7: se sustituyen los valores correspondientes a cada coeficiente de la ecuación obtenida en el paso 6, se procede de la siguiente manera:

$$v(t,p) = 4.627163825 * p^{-1.003007181} * t + 1240.303411 * p^{-0.977498603} + \frac{5.27095025 * p^2 + (-165.6807453) * p - 2604.11724}{t}$$
(4.6)

La ecuación 4.6 representa la ecuación de estado no convencional para v en función de t y p, válida en un rango de presión de 3 a 6 bar.

 Paso 8: para obtener el valor del volumen específico correspondiente a las condiciones de p y t dadas, se evalúa la ecuación para ese par de datos de la siguiente manera:

$$v(t,p) = 4.627163825 * 3^{-1.003007181} * 300 + 1240.303411 * 3^{-0.977498603} + \frac{5.27095025 * 3^2 + (-165.6807453) * 3 - 2604.11724}{300}$$

$$v(t,p) = 874.793217 cm^3 / g$$

Para conocer las unidades en las que se encuentra cada propiedad revisar el capítulo II metodología sección (3.2)

4.1.3.1 Unidades de las propiedades y coeficientes de las ecuaciones de estado

Las ecuaciones de estado no convencionales obtenidas en el presente trabajo fueron desarrolladas para que las propiedades termodinámicas que las mismas relacionan tuvieran ciertas unidades determinadas. En todos los casos las unidades son las siguientes: t (°C), p (bar), u (J/g), h (J/g) y s (J/Kg K).

Es importante destacar que los coeficientes correspondientes a cada una de las ecuaciones poseen ciertas unidades, las cuales son diferentes para cada una de las ecuaciones obtenidas. Para determinar las propiedades termodinámicas no es necesario conocer las unidades de los coeficientes, siempre que se respeten las unidades en las que son introducidas las propiedades.

A pesar de esto, se muestra un ejemplo de cómo obtener la igualdad dimensional en las ecuaciones presentadas en las tablas. No necesariamente los coeficientes deben tener un solo conjunto de unidades, es probable que la igualdad dimensional se mantenga con unas diferentes a las mostradas en el ejemplo, por esta razón la idea es buscar un conjunto de unidades que satisfagan la igualdad dimensional en la ecuación como se muestra a continuación:

El ejemplo se realizará para la ecuación perteneciente a la tabla N° 5 presentada anteriormente. La ecuación número 4 de la forma v(t,p) y corresponde al rango de 10 a 16 bar. - Se escribe la ecuación de la forma v(t,p) como se explicó anteriormente:

$$v(t,p) = (O_c * p^{Q_c}) * t + (O_D * p^{Q_D}) + (J_E * p^2 + Ke * p - Le) * \frac{1}{t}$$
(4.7)

- Como el volumen específico posee unidades de cm3/g, cada término de la ecuación debe tener esas mismas unidades por tanto, para el primer término:

$$(O_c * p^{Qc}) * t = \frac{cm^3}{g}$$
 (4.8)

Para esto O_C y Q_C deben tener ciertas unidades que permitan que esa igualdad se cumpla, para t en °C y p en bar. Por tanto:

$$\left(\frac{cm^3}{g*bar*{}^\circ C}*bar\right)*{}^\circ C=\frac{cm^3}{g}$$

Lo que quiere decir que, para este caso, O_C tiene unidades de (cm³/g*bar*°C) y Q_C es adimensional. Para el segundo término se procede de manera similar al anterior O_C tiene unidades de (cm³/g*bar) y Q_C es adimensional. Para el tercer término:

$$(J_E * p^2 + Ke * p - Le) * \frac{1}{t} = \frac{cm^3}{g}$$

Para esto:

$$\left(\frac{cm^3 * {}^\circ C}{g * bar^2} * bar^2 + \frac{cm^3 * {}^\circ C}{g * bar} * bar - \frac{cm^3 * {}^\circ C}{g}\right) * \frac{1}{{}^\circ C} = \frac{cm^3}{g}$$

Por lo tanto J_E tiene unidades de (cm3*°C/ (g*bar2)), K_E (cm3*°C/ (g*bar)) y L_E (cm3*°C/ g).

4.1.4 Discusión de resultados

4.1.4.1 Ecuaciones

La tabla presentada a continuación representa la cantidad de ecuaciones de estado no convencionales obtenidas para la fase de vapor sobrecalentado:

f(x,y)	Numero de ecuaciones
v(t,p)	46
u(t,p)	45
h(t,p)	45
s(t,p)	45
u(v,p)	60
h(v,p)	41
s(v,p)	41
h(u,p)	45
s(u,p)	54
s(h,p)	55

Tabla Nº 6. Cantidad de ecuaciones de estado no convencionales obtenidas para la fase VS.

Es importante destacar que la suma de las ecuaciones presentadas en el cuadro anterior da un total de 477, únicamente para la fase vapor sobrecalentado. A continuación se presenta la siguiente tabla que indica la cantidad de ecuaciones de estado no convencionales obtenidas para la fase líquido comprimido:

Tabla N° 7. Cantidad de ecuaciones de estado no convencionales obtenidas para la fase LC.

f(x,y)	Número de ecuaciones
v(t,p)	9
u(t,p)	8
h(t,p)	8
s(t,p)	8
u(v,p)	7
h(v,p)	8
s(v,p)	8
h(u,p)	7
s(u,p)	7
s(h,p)	8
En el caso de la fase líquido comprimido se obtuvo 78 ecuaciones de estado no convencionales.

Se observa que existe una diferencia significativa entre el número de ecuaciones de estado obtenidas para el vapor sobrecalentado y para líquido comprimido, esto se debe a que existe una extensa data disponible para el vapor sobrecalentado.

Es importante destacar que siempre se divide la data en rangos en función de la presión, debido a que la temperatura tiene las siguientes condiciones: para el vapor sobrecalentado, cada ecuación es válida desde una temperatura mayor a la temperatura de saturación para la presión a evaluar hasta 1300 °C. Siendo lo contrario para el liquido comprimido, que van desde 1 °C hasta una temperatura menor a la de saturación correspondiente a la presión a evaluar.

El hecho de que existe un elevado número de ecuaciones para la fase vapor sobrecalentado, se debe también a los criterios de selección de rangos establecidos que se explican a continuación.

El primer criterio que se consideró fue que al momento de evaluar las ecuaciones de estado en cada punto, el valor de la propiedad obtenido a través de la misma, no arrojara un error relativo porcentual mayor al 1% con respecto al valor real tabulado.

El segundo criterio considerado fue que al momento de hacer las regresiones o ajustes, éstas no tuvieran un grado mayor a 7, para así poder hacer ecuaciones más simples. Estos dos criterios considerados en primer lugar ayudaron a que las ecuaciones obtenidas fueran se una gran precisión para el cálculo de las propiedades, pero a su vez al limitar el grado del polinomio conllevó a que se desarrollara un gran número de ecuaciones de estado no convencionales en la parte de vapor sobrecalentado.

4.1.4.2 Errores y tablas de errores.

Al momento de obtener cada ecuación de estado, para cumplir con los criterios de elaboración de las mismas, se evaluó cada una en varios puntos para así verificar que su error relativo porcentual fuera menor al 1%. Esto es debido a que se planteó como objetivo y meta del trabajo lograr hacer ecuaciones sencillas explícitas que tuvieran un error muy bajo para poder ser utilizadas en sustitución de otros métodos disponibles de obtención de propiedades termodinámicas del agua en sus diferentes estados.

En el apéndice A.3 se encuentran una serie de tablas que certifican que las ecuaciones del trabajo cumplen con el criterio establecido para el error relativo porcentual.

4.2 Equilibrio líquido-vapor

4.2.1 Tipos de ecuaciones

Para la mezcla líquido-vapor se desarrollaron ecuaciones que dependen de una sola variable, en vista que para cada temperatura hay una sola presión y viceversa se obtienen un total de 36 ecuaciones mostrándolas en el cuadro a continuación, así como las ecuaciones anteriores son válidas para un rango de presión éstas son válidas para rangos de temperatura detallados en el próximo punto.

f(t)	f(v _f)	f(v _g)	f (u _{f})	f(ug)	f(h _f)	f(hg)	f (s _f)
v _f (t)	$v_g(v_f)$	$u_{\rm f}(v_{\rm g})$	$u_g(u_f)$	$h_f(u_g)$	h _g (h _f)	s _f (h _g)	$s_g(s_f)$.
v _g (t)	$u_f(v_f)$	$u_g(v_g)$	$h_f(u_f)$	h _g (u _g)	s _f (h _f)	s _g (h _g)	
u _f (t)	$u_g(v_f)$	h _f (v _g)	$h_g(u_f)$	s _f (u _g)	s _g (h _f)		
u _g (t)	h _f (v _f)	$h_g(v_g)$	s _f (u _f)	$s_g(u_g)$			
h _f (t)	h _g (v _f)	$s_{f}(v_{g})$	$s_g(u_f)$				
h _g (t)	$s_f(v_f)$	$s_g(v_g)$					
s _f (t)	$s_g(v_f)$						
s _g (t)							

Tabla N° 8. Tipos de ecuaciones obtenidas para la fase L-V.

4.2.2 Tablas de resultados

En la sección A.4 del apéndice se presentan un conjunto de tablas en las cuales se encuentran todas las ecuaciones obtenidas para relacionar las propiedades termodinámicas de la fase líquido-vapor.

Las unidades correspondientes a las propiedades termodinámicas son: t (°C), p (bar), $v_f y v_g (cm^3/g)$, u_f , u_g , $h_f y h_g (J/g) y$ por ultimo $s_f y s_g (J/g^*K)$. De igual manera que para VS y LC los coeficientes correspondientes a cada una de las ecuaciones obtenidas poseen ciertas unidades para que se cumpla la igualdad dimensional en la ecuación, si se desea conocerlas debe seguirse el procedimiento que se explicó en la sección 4.1.3.1 del presente capítulo.

A continuación se presenta un ejemplo para las ecuaciones en función de la temperatura válidas en un rango de 0 a 90 °C, el resto de las ecuaciones se presenta en la sección A.4 correspondiente al apéndice.

Válidas en el rango (0-90) °C.										
$\alpha(t) = At^4 + Bt^3 + Ct^2 + Dt + E + F(1/t) + G(1/t^2)$										
Ecuación	EcuaciónABCDEFG									
v _f (t)		-1.6481E-08	6.2532E-06	-3.128E-05	1.000096					
v _g (t)	8.32012E-04	-0.26272577	30.9607038	-1487.19149	3098.89977	1807831.1749	-6577837.9246			
u _f (t)				4.1831	0.1899					
u _g (t)			-9E-04	1.4147	2375.1					
h _f (t)				4.1844	0.1914					
h _g (t)			-1.2E-03	1.8816	2501.1					
s _f (t)			-2E-05	0.0151	2.4E-03					
s _g (t)		-3E-07	1E-04	-0.0266	9.1556					

Tabla N° 9. Ecuaciones en función de la temperatura para el equilibrio L-V.

4.2.3 Instrucciones y explicaciones de los tablas de resultados

En la sección A.4 del apéndice se presentan un total de 28 tablas que reportan las ecuaciones de estado obtenidas para cada fase, observando en el título de cada tabla el rango para el cual son válidas las ecuaciones, siguiendo con la forma del polinomio de la ecuación en la segunda franja y del lado izquierdo de las tablas aparecen los tipos de ecuaciones con los valores de sus coeficientes a su derecha.

Al igual que las tablas anteriores al momento de utilizar los valores es necesario copiar el número exacto y completo ya que esto es lo que permite mantener los errores menores al 1%. Estas tablas se utilizan de una manera muy parecida a los de la sección anterior, con la diferencia de que las ecuaciones dependen de una sola propiedad y están dadas para distintos rangos de temperatura según sea el caso.

4.2.4 Discusión de resultados

4.2.4.1 Ecuaciones

A continuación se presenta la siguiente tabla que representa la cantidad de ecuaciones obtenidas para el equilibrio líquido-vapor:

Тіро	N°	Тіро	N°	Тіро	N°	Тіро	N°	Тіро	N°	Тіро	N°
v _f (t)	4	s _f (t)	4	hg(vf)	4	hg(vg)	3	s _f (u _f)	3	hg(hf)	3
v _g (t)	4	s _g (t)	4	s _f (v _f)	4	s _f (v _g)	3	s _g (u _f)	3	s _f (h _f)	3
u _f (t)	4	vg(vf)	4	sg(vf)	4	sg(vg)	3	$h_f(u_g)$	4	s _g (h _f)	3
u _g (t)	4	u _f (v _f)	4	u _f (v _g)	3	ug(uf)	3	$h_g(u_g)$	4	s _f (h _g)	3
h _f (t)	4	ug(vf)	4	ug(vg)	3	h _f (u _f)	3	s _f (u _g)	4	s _g (h _g)	3
h _g (t)	4	h _f (v _f)	4	h _f (v _g)	3	h _g (u _f)	3	s _g (u _g)	4	s _g (s _f)	3

Tabla Nº 10. Cantidad de ecuaciones obtenidas para la fase L-V.

Se puede observar que se obtuvo un total de 127 ecuaciones para el equilibrio L-V.

4.2.4.2 Casos especiales

Para las ecuaciones en función de la energía interna específica y la entalpía específica de la fase vapor, se observa que existen para diferentes ecuaciones el mismo rango de aplicación. La energía interna u_g posee cuatro tablas distintas de ecuaciones, cada una es aplicable en un determinado rango de energía interna: la tabla N°63 muestra ecuaciones válidas para valores de u_g de (2376.7-2494.5) J/g, la N°64 para valores de u_g pertenecientes al rango (2494-2543.3) J/g, la tabla N°65 para el rango (2595.4-2606.10)J/g y por último la tabla N°66 para el rango (2053.7-2604.15)J/g.

Esto quiere decir que para un valor de ug existen dos valores de h_f , h_g , s_f y s_g , por tanto para poder utilizar estas ecuaciones también se debe conocer el valor de la temperatura a la cual se encuentra la mezcla. Por esta razón las tablas anteriormente mencionadas poseen aparte del rango correspondiente a ug otro correspondiente a t y ambas condiciones se deben cumplir simultáneamente. Lo mismo ocurre para h_g .

Este comportamiento se debe a que los valores existentes de u_g y h_g en las tablas de propiedades del agua para la mezcla líquido vapor presentan un comportamiento parabólico, es decir, que inician con un valor que va aumentando, luego presentan un pico y comienzan a descender de nuevo. Por esta razón existen dos valores de h_f , h_g , s_f y s_g para u_g y dos valores de s_f y s_g para h_g . Esto explica el hecho de que las tablas mencionadas anteriormente para u_g y las tablas N°70, N°71 y N°72 correspondientes a hg poseen un rango para t y otro rango para u_g y h_g respectivamente. Ambas propiedades deben encontrarse dentro de esos rangos para seleccionar la tabla adecuada.

4.2.4.3 Errores y tablas de error

Se utilizaron los mismos criterios de selección de rangos que los antes explicados, primero conservar el error relativo porcentual de cada una en menos del 1% y segundo no obtener ecuaciones complejas. Es por esto que existe la diferencia en número de ecuaciones en algunas propiedades.

En la sección A.5 del apéndice se presentan un conjunto de tablas que contienen los errores de cada ecuación para la mezcla líquido-vapor. En las mismas se demuestra que estas ecuaciones cumplen con las condiciones fijadas. Se presenta del lado izquierdo el rango para el cual son validas las ecuaciones que están indicadas a la derecha y se encuentran los valores de las propiedades obtenidas de las tablas de propiedades, luego la propiedad calculada con las ecuaciones y el error relativo porcentual.

A continuación se presenta un ejemplo que contiene los errores obtenidos con las ecuaciones $v_f(t)$, $v_g(t)$, $u_f(t)$, $u_g(t)$, $h_f(t)$, $h_g(t)$, $s_f(t)$, $s_g(t)$ para la fase L-V:

Rango (°C)	Ecuación	Vteo	Vexp	E _% (%)
	v _f (t)	1.0009	1.0009781	0.007807
	$v_g(t)$	77926	78199.85	0.3514232
	u _f (t)	50.41	50.3871	0.0454275
(0,00)	$u_g(t)$	2404.3	2404.4118	0.00465
(0-90)	h _f (t)	79.77	79.695	0.0940203
	h _g (t)	2527.1	2527.1502	0.0019872
	s _f (t)	0.239	0.2383055	0.2905828
	s _g (t)	8.645	8.6452676	0.0030958
	v _f (t)	1.0451	1.0414113	0.3529561
	v _g (t)	1789.1	1791.2056	0.1176906
	u _f (t)	448.47	447.8537	0.1374228
(01, 200)	u _g (t)	2512.4	2512.395	0.000199
(91-200)	h _f (t)	444.37	443.7756	0.1337624
	h _g (t)	2693	2693.551	0.0204605
	s _f (t)	1.3751	1.37084	0.3097957
	s _g (t)	7.2614	7.2830088	0.2975845
	v _f (t)	1.1777	1.1779253	0.0191316
	v _g (t)	98.51	98.576887	0.0678984
	u _f (t)	940.87	940.244	0.0665342
(200, 200)	u _g (t)	2603.2	2603.0857	0.0043909
(200-299)	h _f (t)	945.43	945.8062	0.0397914
	h _g (t)	2804.2	2804.098	0.0036366
	s _f (t)	2.5824	2.5866	0.1626394
	s _g (t)	6.2646	6.265	0.0063851
	v _f (t)	1.4522	1.4501607	0.1404312
	v _g (t)	16.867	16.826724	0.2387849
	u _f (t)	1415.5	1408.1917	0.5163045
	u _g (t)	2527.8	2526.7182	0.0427959
	h _f (t)	1407.2	1412.1748	0.3535224
(300-374)	h _g (t)	2706.1	2704.1065	0.0736656
	s _f (t)	3.359	3.366736	0.2303073
	$s_g(t)$	5.6314	5.6225	0.1580431

 $\begin{array}{l} \mbox{Tabla N}^\circ \mbox{11. Errores obtenidos para las ecuaciones de la forma v_f(t), v_g(t), u_f(t), u_g(t), h_f(t) \mbox{,} h_g(t), s_f(t), s_g(t) \mbox{ errores obtenidos para las ecuaciones de la forma v_f(t), v_g(t), u_f(t), u_g(t), h_f(t) \mbox{,} h_g(t), s_f(t), s_g(t) \mbox{ errores obtenidos para las ecuaciones de la forma v_f(t), v_g(t), u_f(t), u_g(t), h_f(t) \mbox{,} h_g(t), s_f(t), s_g(t) \mbox{,} h_g(t), s_f(t), s_g(t), s$

4.3 Programa en C++

4.3.1 ¿Qué se utilizó para hacer el programa?

Para la elaboración del programa se utilizaron las ecuaciones de estado no convencionales obtenidas para la fase de líquido comprimido, y para el vapor sobrecalentado, pero solo las de las propiedades en función de la temperatura y la presión, de igual manera para la fase de equilibrio líquido-vapor se utilizaron las ecuaciones de las propiedades en función de la temperatura.

Para determinar la temperatura de saturación y así definir la fase en la que se encuentra la data de entrada al programa se utilizó la ecuación de Antoine.

4.3.2 ¿Qué muestra el programa?

Como resultados el programa indica la fase en la que se encuentra el agua para los datos de entrada. Adicionalmente presenta información para el vapor sobrecalentado y el líquido comprimido de los valores de las siguientes propiedades: volumen específico, energía interna, entalpía y entropía. En cambio para el equilibrio líquido-vapor muestra los valores de las propiedades anteriormente mencionadas pero en ambos puntos del equilibrio, es decir, para el líquido saturado y para el vapor saturado.

4.3.3 Explicación de las funciones

El programa elaborado pide como datos de entrada la temperatura y la presión a las cuales el usuario desea conocer los valores de las propiedades, dando la opción a escoger si la temperatura es ingresada en °C o en K. Una vez ingresada la presión también hay que seleccionar si se ingresó en kPa o en bar. Posteriormente aparecen en pantalla los resultados de las propiedades a la temperatura y presión indicada inicialmente y finaliza preguntando si se desea correr de nuevo el programa o salir.

4.3.4 Ambiente de trabajo

Es una aplicación muy básica, muestra una pantalla negra de letras blancas, es de un uso muy fácil no hace falta tener un manual para poder utilizarlo debido a la sencillez en la que se elaboró.

A continuación se presenta una imagen en la que se muestra el programa calculando los valores de las propiedades a una presión y temperatura de trabajo.

🛋 C:\Users\Fabiana\Desktop\TESIS Dan\programandotelo\programa tesis\Calculo de las propiedad... Bienvenido al programa de calculo de las propiedades del agua Introduzca temperatura y seleccione unidad, presione enter en cada seleccion 1 Kelvin 2 Centigrados 540 Introduzca Presion y seleccione unidad, presione enter en cada seleccion 1 KPa 2 Bar 620 Fase: vapor sobrecalentado volumen especifico 3 energia interna 2576 Valor de '3∕g) Valor de energia Valor de entalpia 2805.158 Valor de entropia 5.229509 (J/a Desea salir Si = 1No = 2•

Figura N° 9. Ambiente de trabajo en el programa realizado en el software Dev-C++.

4.3.5 Análisis del programa

Resulta una aplicación de igual grado de confiabilidad que las ecuaciones obtenidas a lo largo del trabajo, en vista de que funciona con ellas, tiene las limitaciones de solo trabajar con temperatura y presión de entrada y trabajar con pocas unidades de entrada, pero la fortaleza de dar todos sus resultados con un error relativo porcentual menor al 1%, por lo que pudiera ser aplicado por estudiantes para la resolución de problemas.

CAPÍTULO V

CONCLUSIONES

Una vez realizado el Trabajo Especial de Grado se pueden establecer las siguientes conclusiones:

- Las ecuaciones desarrolladas durante este trabajo, para vapor sobrecalentado y líquido comprimido son ecuaciones de estado no convencionales.
- Las ecuaciones obtenidas a lo largo del trabajo son muy precisas con errores relativos porcentuales menores al 1 %.
- Las ecuaciones de estado desarrolladas están formadas por coeficientes que son regresiones matemáticas lineales, polinómicas y potenciales.
- Se obtuvo en total 477 ecuaciones de estado no convencionales para el agua en vapor sobrecalentado.
- Se obtuvo en total 78 ecuaciones de estado no convencionales para el agua en fase líquido comprimido.
- Se obtuvo un total de 127 ecuaciones para el agua como mezcla líquido vapor.
- Cada ecuación de estado no convencional obtenida es válida para un rango de temperatura y presión establecido.
- Debido a la escasa desviación que existe entre las tablas de propiedades del agua y las ecuaciones de estado no convencionales desarrolladas se obtiene un gran número de ecuaciones.

- Las ecuaciones obtenidas pueden servir de sustituto de otros medios de cálculo de propiedades termodinámicas para el agua.
- El número de ecuaciones obtenidas para el agua como vapor sobrecalentado, líquido comprimido y mezcla líquido-vapor es significativo, no como se pensó inicialmente. La obtención de las ecuaciones resultó un trabajo muy extenso.
- Las ecuaciones obtenidas presentan la estructura matemática más simple posible.
- La transcripción de las tablas de propiedades del agua a Microsoft Excel representan un aporte para futuras investigaciones.
- Las ecuaciones desarrolladas en el presente trabajo representan una ayuda útil en el desarrollo de instrumentos de medición y en la enseñanza de la termodinámica y materias afines
- Se diseñó un programa computacional en el lenguaje de programación C++, el cual permite conocer todas las propiedades del agua, así como su fase para una determinada presión y temperatura.
- El programa diseñado utiliza las ecuaciones de estado desarrolladas en el presente trabajo.
- El valor de las propiedades calculado por el programa es totalmente confiable.
- El programa puede ser utilizado por estudiantes para la resolución de problemas.

CAPÍTULO VI

RECOMENDACIONES

A continuación se plantean una serie de recomendaciones con la finalidad de mejorar en furos proyectos los resultados obtenidos en el presente trabajo, así como también para ampliar el estudio realizado:

- Utilizar la metodología empleada en el presente trabajo para desarrollar ecuaciones de estado para sustancias diferentes al agua.
- Adicionar el resto de las ecuaciones que no se desarrollaron en el presente trabajo, para así poder disponer de todas las posibles combinaciones de todas las propiedades termodinámicas.
- Se recomienda utilizar las ecuaciones de estado desarrolladas con fines didácticos, en la enseñanza de materias como la termodinámica.
- Se recomienda para trabajos futuros, transformar las unidades de las ecuaciones de estado no convencionales a un sistema de unidades determinado.
- Se recomienda para trabajos futuros, utilizar las ecuaciones desarrolladas como una ayuda útil en el diseño de instrumentos de medición
- En cuanto al uso del programa se recomienda verificar los datos antes de ser introducidos, con la finalidad de evitar errores y por ende tener que reiniciar el programa.

- Implementar en el programa el resto de las ecuaciones desarrolladas, para que el mismo pueda realizar cálculos de propiedades termodinámicas a partir de otras distintas a la presión y temperatura.
- Adicionar dentro del menú de opciones del programa, opciones adicionales en cuanto a las unidades de entrada y de salida.
- Para proyectos futuros se recomienda adaptar el programa a un ambiente de trabajo que sea más amigable con el usuario.

REFERENCIAS BIBLIOGRÁFICAS

- 1. Alamar, M., Roiy, B. y Vidal, A. (2006) Fundamentos Matemáticos de la Ingeniería. Valencia: editorial de la UPV. 323 p.
- 2. Cengel, Y.A. y Boles, M.A. (2007) Termodinámica, 5 ed. México, D.F: Mc Graw Hill. 988 p.
- 3. Felder, R.M. y Rousseau, R.W. (2005) Principios Elementales de los Procesos Químicos, 3 ed. México, D.F: Limusa Wiley. 681 p.
- Gil, S. y Rodríguez, E. (2005) Métodos Cualitativos de Análisis Gráficos [Documento en línea]. Disponible: www.cienciaredcreativa.org/red_partic/guias/analisis_grafico2k5.pdf [Consulta: 2010, Agosto 28].
- 5. Giraldo, S. (2005) Ecuaciones de Estado [Documento en línea]. Disponible: www.fsalazar.bizland.com/Ecuaciones_de_estado.doc [Consulta: 2010, Agosto 15].
- Hyams, D. (2010) CurveExpert 1.4: Data Analysis and Curve Fitting for Windows [Documento en línea]. Disponible: www.curveexpert.net [Consulta: 2010, Agosto 22].
- International Association for the Properties of Water and Steam (IAPWS). (2007) Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam [Documento en línea]. Disponible: http://www.iapws.org/relguide/IF97-rev.pdf [Consulta: 2010, Septiembre 23].
- Keenan, J.H. (1969) Steam Tables, Thermodynamic Properties of water including vapor, liquid and solid phases (International Edition-Metric Units). New York:Wiley. 162 p.

- Microsoft Office. (2010) Ecuaciones para el Cálculo de Líneas de Tendencia [Documento en línea]. Disponible: http://office.microsoft.com/eshn/help/ecuaciones-para-el-calculo-de-lineas-de-tendencia-HP005207807.aspx?CTT=3 [Consulta: 2010, Agosto 22].
- Microsoft Office (2010) Tendencia [Documento en línea]. Disponible: http://office.microsoft.com/es-es/excel_help/tendencia-HP005209320.aspx [Consulta: 2010, Agosto 22].
- 11. Purcell, E.J., Rigdon, S.E. y Varberg, D.E. (2007) Cálculo, 9 ed. México, D.F: Pearson Prentice Hall. 874 p.
- Smith, J.M., Van Ness, H.C. y Abbott, M.M; (2007) Introducción a la Termodinámica en Ingeniería Química, 7 ed. México, D.F: Mc Graw Hill. 816 p.
- 13. UNEFA (2009) Termodinámica: diagramas de propiedades [Documento en línea]. Disponible: http:// unefa-termodinamica.blogspot.com/2009/06/diagramas-de-propiedades.html [Consulta: 2010, Agosto 21].
- 14. Universidad de la República Uruguay (2010) Método de Mínimos Cuadrados para la Aproximación de Datos Experimentales [Documento en línea]. Disponible: http://biolab2.fisica.edu.uy/minc.pdf [Consulta: 2010, Agosto 28].
- 15. Van Wylen, G.J, Sonntag, R.E. y Borgnakk, C. (1999) Fundamentos de Termodinámica, 2 ed. México, D.F: Limusa Wiley. 892 p.

APÉNDICE

A.1 Ruta de cálculo para una ecuación de estado no convencional.

En esta sección se explica paso a paso el procedimiento realizado para la obtención de una ecuación de estado no convencional dependiente de dos variables. Se realiza el ejemplo para la obtención de una ecuación de la forma v(t,p).

Una vez transcrita la data a Microsoft Excel se ordenan con la siguiente disposición:

Tabla Nº 12. Representación del formato de organización de propiedades para realizar el ajuste.

$\mathbf{P} = 1$ bar								
t	v(t) ajuste	V	% error v					

En la columna de temperatura se agrega cada valor presente en todo el rango de temperatura que se tiene en la tabla de propiedades del agua y en la columna de volumen se agregan los valores correspondientes a cada temperatura. Luego de esto se procede a graficar la columna de volumen en función de la temperatura, es decir, la temperatura en el eje de las abscisas y el volumen en el eje de las ordenadas.

Una vez obtenido el grafico se procede a generar la ecuación de tendencia empezando por una línea recta y siguiendo por polinomios, hasta lograr que el r^2 sea mayor a 0.99 una vez obtenida la ecuación se procede a realizar el mismo ajuste con el programa CurveExpert.

Con las dos ecuaciones, las obtenidas con Microsoft Excel y con CurveExpert se procede a programar las ecuaciones en la columna de "v(t) ajuste" para la evaluar cada temperatura y compararla con cada volumen específico. Como se muestra en la figura siguiente.

	Ecuación	А	В	С	D
Excel	v(t)			461.58	126021
curve expert	v(t)			461.58	126021

Tabla Nº 13. Ecuaciones obtenidas para la data del ejemplo.

Cabe destacar que para este ejemplo, tanto Excel como CurveExpert determinaron la misma ecuación de ajuste para el conjunto de datos correspondiente a 1 bar, esto no necesariamente sucede, cuando los programas arrojaron ajustes distintos se escogió la ecuación cuyo error porcentual fuera menor.

A continuación se presenta la gráfica que representa el conjunto de valores de temperatura y volumen específico para una presión de 1 bar, también se presenta el ajuste lineal realizado en Microsoft Excel para este conjunto de puntos:

Figura N° 10. Representación gráfica del conjunto de datos de t y v así como el ajuste matemático realizado para los mismos, para una presión de 1 bar.

Posteriormente se procede a calcular el error relativo porcentual correspondiente a este ajuste en función de una variable, para verificar que el criterio de selección de ajuste mostrado en el Capítulo III, en la figura N°8 se cumpla. A

continuación se presenta una tabla que contiene algunos datos del error porcentual para la ecuación de ajuste obtenida:

	P = 1 bar									
t	v(t) ajuste	v	E _% (%)							
0	126021	125982	0.0309568							
5	128328.9	128294	0.02720314							
10	130636.8	130605	0.02434823							
15	132944.7	132917	0.02084007							
20	135252.6	135228	0.0181915							
25	137560.5	137539	0.01563193							
30	139868.4	139850	0.01315695							
	Error promed	0.00714477								

Tabla Nº 14. Ejemplo de la visualización de los cálculos del error relativo porcentual en Excel.

Al final del cuadro se calcula el error promedio para así ahorrar el tiempo de verificar valor por valor que el error relativo porcentual sea menor a 1 %. Una vez terminado este paso se continúa repitiendo el procedimiento para los distintos rangos presión para así lograr una tabla como la siguiente:

Polinomio de la forma $v(t) = Ft + G$								
P (bar)	F	G						
0.01	461.58	126021						
0.02	230.8	62994						
0.04	115.42	31479						
0.06	76.955	20982						
0.08	57.725	15729						
0.1	46.187	12578						
0.5	9.2672	2492.2						
1	4.6451	1236.9						
1.5	3.1076	816.37						
2	2.3383	606.05						

Tabla Nº 15. Ecuaciones v(t) organizadas para sus distintos valores de presión.

Donde del lado izquierdo se indica el cuadro de presión del cual fueron obtenidas las ecuaciones y se encuentran los valores de los coeficientes para la ecuación mostrada en la franja superior del cuadro.

Se procede a ajustar cada columna de coeficiente en función de la presión, es decir se van a obtener las ecuaciones F(p) y G(p). Para ordenarlas como se indica en la siguiente figura. En este caso se obtuvieron ecuaciones de la forma potencial.

Ecuación $\alpha(p) = Op^Q$							
	0	Q					
F(p)	4.65193522	-0.99772309					
G(p)	1231.53877	-1.00669661					

Tabla N° 16. Ecuaciones F(p) y G(p) para el rango de presión de 0.01 a 2 bar.

Se consigue la ecuación de estado de dos variables que es de la forma:

$$v(t,p) = (O_F * p^{Q_F}) * t + (O_G * p^{Q_G})$$
(A.1)

Es importante destacar que las unidades de p y t en las ecuaciones de estado son bar y °C como se mencionó en el Capítulo IV. Por lo tanto los coeficientes de la ecuación A.1 deben ser consistentes para que el volumen específico tenga unidades de cm³/g. De esta manera las unidades correspondientes a los coeficientes en este ejemplo son: O_F (cm³/ (g °C bar)), O_G (cm³/ (g bar)) y Q_F y Q_G son adimensionales.

Sustituyendo los valores para obtener la ecuación de estado:

$$v(t,p) = (4.65193522 * p^{-0.99772309}) * t + (1231.53877 * p^{-1.00669661})$$
(A.2)

Finalmente se debe verificar si la ecuación de estado no convencional obtenida cumple con los criterios fijados, para esto se debe evaluar la misma en una serie de puntos distintos y verificar que el error relativo porcentual no exceda del 1%. A continuación se presenta una tabla que representa la evaluación de la ecuación A.2.

valor real =	4820
error % =	0.480567493
t=	250
p=	0.5
v=	4796.836647

Tabla N° 17. Evaluación de ecuación de estado obtenida para el rango de presión de 0.01 a 2 bar.

A.2 Ecuaciones de estado no convencionales obtenidas.

A continuación se presentan un conjunto de tablas que representan todas las ecuaciones obtenidas para la fase vapor sobrecalentado y líquido comprimido, las mismas son de la forma: v(t, p), u(t, p), h(t, p), s(t, p), u(v, p), h(v, p), s(v, p), h(u, p), s(u, p) y s(h, p), para ambas fases.

Las unidades en las que se encuentran las propiedades en las ecuaciones presentadas en las tablas a continuación para la fase vapor sobrecalentado y líquido comprimido son las siguientes: t (°C), p (bar), u (cm³/g), h (J/g) y s (J/g K).

Es importante destacar que los coeficientes: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, Y Q poseen unidades distintas para cada ecuación de estado no convencional obtenida en el presente trabajo, esto es así para que se mantenga la igualdad dimensional en las ecuaciones de estado. En el Capítulo IV correspondiente a la sección de resultados y análisis de resultados se presenta un ejemplo que explica el procedimiento para verificar las unidades que posee cada coeficiente.

No es necesario hallar las unidades de los coeficientes, ya que se garantiza que se cumple la igualdad dimensional en las ecuaciones halladas con los valores de los coeficientes obtenidos, de ser necesario conocer sus unidades se determinan como se explicó en el capítulo IV.

	$v(t, p) = A(p)t^3 + B(p)t^2 + C(p)t + D(p) + E(p)1/t + F(p)1/t^2 + G(p)1/t^3$									
N°	Rango	ngo $\alpha(\mathbf{p}) = \mathbf{H}\mathbf{p}^6 + \mathbf{I}\mathbf{p}^5 + \mathbf{J}\mathbf{p}^4 + \mathbf{K}\mathbf{p}^3 + \mathbf{L}\mathbf{p}^2 + \mathbf{M}\mathbf{p} + \mathbf{N}$								
ec	de p(bar)	Coef.	Н	Ι	J	К	L			
1	0.01 0.2	C(p)								
1	0.01 a 2	D(p)								
		C(p)								
2	3 a 6	D(p)								
		E(p)					5.27095025			
		C(p)								
3	7 a 9	D(p)								
		E(p)					-3.7143			
		C(p)								
4	10 a 16	D(p)								
		E(p)			-1.40675906	76.43877161	-1544.545556			
	17 a 22	C(p)								
5		D(p)								
		E(p)			-1.877735812	145.8341684	-4234.273384			
		C(p)								
6	23 a 29	D(p)								
		E(p)		-1.5325	196.225	-10039.40417	256547.975			
		C(p)								
7	30 a 35	D(p)								
		E(p)		1.53083333	-249.2916667	16226.1625	-527671.8583			
		C(p)								
8	36 a 38	D(p)					0.0405			
		E(p)					-2.85			
		C(p)								
9	39 a 42	D(p)				0.141166667	-16.8925			
		E(p)				-29.21666667	3497			
		C(p)								
10	43 a 45	D(p)					-0.0025			
		E(p)					13.3			
		C(p)								
11	46 a 49	D(p)				-0.027	3.808			
		E(p)				8.1833333	-1151.25			

Tabla N° 18. Ecuaciones de estado de la forma v(t,p) obtenidas para la fase VS.

	v	$f(t,p) = A(p)t^3 + B(p)t^2 + 0$	C(p)t + D(p) + E(p)1/t + H	$F(p) 1/t^2 + G(p) 1/t^3$	\$
Nºec				α (p):	=Op ^Q
		М	N	0	Q
1	0.01 - 2			4.651935219	-0.997723092
1	0.01 a 2			1231.538768	-1.006696605
				4.627163825	-1.003007181
2	3 a 6			1240.303411	-0.977498603
		-1.656807453E+02	-2.60411724E+03		
				4.640896463	-1.00419098
3	7 a 9			1205.975882	-0.9643833
		9.8361	-3130.4		
				4.670288085	-1.006725743
4	10 a 16			1148.72921	-0.944274754
		13718.74115	-48448.83854		
				4.734984966	-1.0113719
5	17 a 22			1041.221001	-0.910488384
		54447.64323	-264930.6161		
	-			4.788260866	-1.014867123
6	23 a 29			955.4799431	-0.883480183
		-3274430.563	16695890.5		
				4.882841228	-1.020451585
7	30 a 35			885.251451	-0.861447554
		8573408.057	-55680529.1		
				4.970085607	-1.025287098
8	36 a 38	-3.8585	126.836		
		184.25	-6552.9		
				7.583988391	-1.140086842
9	39 a 42	672.9223333	-8886.54		
		-139511.7833	1851470.6		
				5.026540176	-1.028320291
10	43 a 45	-0.4425	58.588		
		-1168.4	21941.3		
				5.164582883	-1.035316386
11	46 a 49	-179.497	2860.277		
		53950.76667	-845953.7		

N°	Rango	Coof	$\alpha(\mathbf{p}) = \mathbf{H}\mathbf{p}^{6} + \mathbf{I}\mathbf{p}^{5} + \mathbf{J}\mathbf{p}^{4} + \mathbf{K}\mathbf{p}^{3} + \mathbf{L}\mathbf{p}^{2} + \mathbf{M}\mathbf{p} + \mathbf{N}$						
ec	p(bar)	Coel.	Н	Ι	J	K	L		
		C(p)							
12	50 a 53	D(p)				0.053333	-8.233		
		E(p)				-20.11666	3108.85		
		C(p)							
13	54 a 57	D(p)				0.06366667	-10.593		
		E(p)				-23.1666667	3857.45		
		C(p)							
14	58 a 64	D(p)				-2.77778E-04	0.06922619		
		E(p)	-0.34361111	126.4775	-19393.74856	1585705.025	-72915316.66		
		C(p)							
15	65 a 70	D(p)		-0.002475	0.828875	-111.0210417	7434.199128		
		E(p)		0.80666666	-270.008333	36146.41667	-2419181.092		
		B(p)				1.30E-07	-2.79E-05		
16	71 0 74	C(p)							
10	/1 a /4	D(p)				-4.934073E-03	1.07106206		
		E(p)			63.75675	-18488.21325	2010299.52		
		B(p)				-3.905E-09	7.76295E-07		
17	75 a 78	C(p)				1.2997E-05	-2.6687E-03		
1/		D(p)				-0.015855233	3.40415095		
		E(p)				7.201076667	-1597.433471		
		B(p)				1.9582E-07	-4.70197E-05		
18	70 2 82	C(p)				-3.87513E-04	0.0930637		
10	19 a 02	D(p)							
		E(p)				-42.29601033	10155.8765		
		B(p)							
10	83 9 84	C(p)							
1)	05 a 04	D(p)							
		E(p)							
		B(p)			-1.35667E-09	4.73059E-07	-6.18412E-05		
20	85 9 90	C(p)				3.36902E-06	-8.88442E-04		
20	05 a 70	D(p)		0.002968099	-1.300089011	227.7598777	-19948.05492		
		E(p)			0.261700792	-91.10042436	11889.30471		
21		B(p)					5.5445E-08		
	90 2 93	C(p)					-1.37702E-04		
	J0 a J5	D(p)					0.1111163		
		E(p)					-24.1537525		

N°				α (p)	=Op ^Q
ec		М	Ν	0	Q
				4.74576009	-1.0136959
12	50 a 53	423.0466667	-7205.513		
		-160106.533	2744006.8		
				4.915533768	-1.022882878
13	54 a 57	586.9433333	-10801.749		
		-214049.5833	3954449.7		
				5.37579084	-1.044904682
14	58 a 64	-5.652996032	176.8866667		
		1787832471	-18261499922		
				5.608092562	-1.054992723
15	65 a 70 bar	-248872.1486	3332159.756		
		80944328.68	-1083205064		
		0.002000618	-0.047806554		
16	71 . 74			73.66285272	-1.707368847
	/1 a /4	-77.50359631	1901.148219		
		-97142689.08	1760174257		
		-5.0217E-05	1.052243E-03		
17	75 . 79	0.179330567	-3.874306783		
1/	/5 a /8	-242.6637506	5771.342433		
		117965.2454	-2.90530433E+06		
		3.763354E-03	-1.00396811E-01		
10	70 - 82	-7.450611326	198.8913715		
18	79 a 82	-0.62145071	81.60030791		
		-812877.1918	2.168252363E+07		
		-2.2972E-07	2.46564E-05		
10	83 . 81	-8.6063E-05	0.047570115		
17	05 a 04	-0.62145071	81.60030791		
		101.53511	-14186.30171		
		3.592193E-03	-7.8226482E-02		
20	85 . 00	7.7225259E-02	-2.174743043		
20	05 8 90	873459.7068	-15296537.74		
	F	-689497.2333	14987428.84		
		-1.00748E-05	4.63299E-04		
21	00 0 03	2.4475875E-02	-1.051654443		
<i>∠</i> 1	<i>30 a 93</i>	-20.34358002	960.0454057		
	Γ	4380.709162	-204481.2237		

N°	Rango	Coaf	$\alpha(\mathbf{p}) = \mathbf{H}\mathbf{p}^{6} + \mathbf{I}\mathbf{p}^{5} + \mathbf{J}\mathbf{p}^{4} + \mathbf{K}\mathbf{p}^{3} + \mathbf{L}\mathbf{p}^{2} + \mathbf{M}\mathbf{p} + \mathbf{N}$						
ec	p(bar)	Coel.	Н	Ι	J	К	L		
	F (F)	B(p)			-2.39042E-08	9.15689E-06	-1.315342E-03		
22	0.4 00	C(p)				5.98892E-05	-0.017073589		
22	94 a 98	D(p)			-4.2164373E-02	16.14063794	-2316.925631		
		E(p)			9.63835325	-3688.112459	529202.5679		
		B(p)				-1.45478E-08	4.38380E-06		
22	99 a	C(p)				3.57407E-05	-0.010762641		
23	104	D(p)				-2.8044677E-02	8.450666042		
		E(p)				6.888688733	-2076.089354		
24		B(p)							
	105 a 108	C(p)							
		D(p)							
		E(p)							
	109 a 116	A(p)				1.6333E-11	-5.67225E-09		
		B(p)				-4.60417E-08	1.60475E-05		
25		C(p)				5.1333E-05	-0.01791775		
		D(p)				-2.2645833E-02	7.932625		
		E(p)				3.7916666	-1331		
		A(p)				3.59286E-12	-1.296920E-09		
	117 .	B(p)				-1.06629E-08	3.83603E-06		
26	11/a 130	C(p)				1.30983E-05	-0.004718995		
	150	D(p)				-6.915619E-03	2.500121143		
		E(p)				1.297680952	-470.3397571		
		A(p)				-8.15173E-12	3.48761E-09		
	101	B(p)				2.7992E-08	-1.19759E-05		
27	131 a 150	C(p)				-3.44975E-05	0.014760064		
	150	D(p)				1.7857467E-02	-7.638476		
		E(p)				-3.250407867	1390.253264		
		A(p)					6.214E-11		
	1.5.1	B(p)					-2.1214E-07		
28	151 a 165	C(p)					0.000260816		
	105	D(p)					-0.133972		
		E(p)					24.64266		

Nºec				α(p)=Op ^Q
IN CC		М	Ν	0	Q
		8.3971425E-02	-2.010202521		
22	94 a 98	1.62159311	-51.27250407		
22		147810.8199	-3536009.692		
		-33747616.62	807009838.10		
		-4.40183E-04	1.473422E-02		
22	99 a	1.079473786	-36.03219784		
23	104	-848.6183809	28428.65493		
		208481.2842	-6982083.702		
		-1.39220E-07	2.09947E-05		
24	105 a 108	-6.33355E-05	0.033201035		
24		-0.31654885	62.02907252		
		29.7559035	-9436.490513		
	109 a 116	6.56061E-07	-2.52856E-05		
		-1.862436E-03	7.202293E-02		
25		2.081905167	-80.55096		
		-924.9971667	35955.83		
		155484.333	-6054595		
	117 a 130	1.55573E-07	-6.21499E-06		
		-4.58393E-04	1.8242386E-02		
26		0.564452717	-22.440665		
		-300.3815724	12043.48214		
		56644.44962	-2276790.607		
		-4.97171E-07	2.3598E-05		
	131	1.707214E-03	-8.103E-02		
27	a	-2.104474343	99.9421145		
	150	1088.643903	-51639.9674		
		-198145.8352	9398778.266		
		-2.00655E-08	1.59995E-06		
	151	6.85381E-05	-5.464167E-03		
28	a	-8.449507E-02	6.77754184		
	165	43.30048	-3435.4066		
		-7983.1319	633157.685		

Nºaa	Rango	Coef			α(p)	=Hp ⁶ +	Ip ⁵ +Jp ⁴ +Kp ³ +Lp ² +Mp+N
N ec	p(bar)	Coel.	Н	Ι	J	K	L
		A(p)					1.4428E-10
		B(p)					-5.978E-07
20	165 a	C(p)					0.00095834
29	180	D(p)					-0.7381272
		E(p)					273.70838
		F(p)					-38934.65478
		A(p)					-2.0624E-10
		B(p)					8.62E-07
30	181 a	C(p)					1.08452
	195	D(p)					-405.786041
		E(p)					8.62E-07
		F(p)					58301.81285
	196 a 220	A(p)					8.85E-12
		B(p)					-4.88E-08
		C(p)					0.00010007
31		D(p)					-0.10402635
		E(p)					58.66545
		F(p)					-16871.7336
		G(p)					1937531.148
		A(p)					7.39E-11
		B(p)					-3.74E-07
	221 -	C(p)					0.000768028
32	221 a 250	D(p)					-0.816002832
	200	E(p)					473.6699577
		F(p)					-142161.4523
		G(p)					17228404.36
		A(p)					1.73425E-10
		B(p)					-9.77730E-07
	251	C(p)					0.002206775
33	251 a 280	D(p)					-2.545043
	200	E(p)					1579.1978
		F(p)					-499848.9025
		G(p)					63142428.72

NI ⁰ a a				α (p):	=Op ^Q
N°ec		М	N	0	Q
		-5.0281E-08	4.40017E-06		
	165	2.08266E-04	-1.822206E-02		
•		-0.3338989	29.247465		
29	a 180	256.89302	-22454.68932		
	100	-95218.0069	8324216.89		
		13534140.44	-1183505115		
		7.84534E-08	-7.43344E-06		
		-3.27984E-04	3.108216E-02		
20	181	-412.9146	39154.244		
30	a 195	154540.4698	-14653260.80		
	175	-3.27984E-04	3.108216E-02		
		-22213984.57	2105969340		
		-3.9135E-09	4.0495E-07		
		2.1538E-05	-2.2316E-03		
	196	-4.43761E-02	4.634184		
31	a	46.1716905	-4781.24797		
	220	-26181.048	2719064.09		
		7580851.072	-789178428.4		
		-878931612.7	91586489135.00		
		-3.45677E-08	4.00114E-06		
		1.75167E-04	-2.0286637E-02		
	221	-3.60055248E-01	41.75301589		
32	а	382.7406812	-44367.98634		
	250	-222375.73	25797768.88		
		66803990.63	-7755225354		
		-8104768510	941348000000		
		-9.25423E-08	1.23037E-05		
		5.21667E-04	-6.9361446E-02		
	251	-1.17738075	156.581105		
33	а	1357.71727	-180538.2434		
	280	-842503.118	112042953.9		
		266699326.5	-35472354146		
		-33696817385	4482310000000		

Nºac	Rango	Coef			α(p)= I	Hp ⁶ +Ip ⁵ +Jp ⁴ +Kp ³ +Lp ² +Mp	+N
IN CC	p(bar)	COEI.	Н	Ι	J	K	L
		A(p)				1.39567E-12	-1.24515E-09
		B(p)				-7.175E-09	6.3994E-06
		C(p)				1.49646E-05	-0.013342839
34	281 a	D(p)				-1.6291447E-02	14.52283845
	320	E(p)				9.7357675	-8677.44075
		F(p)				-3022.525886	2693666.388
		G(p)				380511.4943	-339088417.9
		A(p)				1.76667E-13	-1.7295E-10
		B(p)				-8.812E-10	8.60136E-07
		C(p)				1.73333E-06	-0.0016845
35	321 a	D(p)				-1.787533E-03	1.729293
	300	E(p)				1.010398917	-972.6109
		F(p)				-296.3662158	283729.0171
		G(p)				35199.08733	-33492869.46
	361 a 400	A(p)				-2.22272E-12	2.53666E-09
		B(p)				1.16797E-08	-1.33296E-05
		C(p)				-2.50217E-05	0.02855775
36		D(p)				2.7904167E-02	-31.84846
		E(p)				-17.05901758	19471.0682
		F(p)				5412.865683	-6178432.709
		G(p)				-695857	794306544.4
		A(p)					3.86337E-12
		B(p)					-2.0275E-08
	101	C(p)					4.35625E-05
37	401 a	D(p)					-0.048683375
	400	E(p)					29.895425
		F(p)					-9526.62965
		G(p)					1229921.719
		A(p)					-4.875E-13
		B(p)					2.82125E-09
		C(p)					-7.19875E-06
38	461 a	D(p)					0.009232925
	520	E(p)					-6.34279
		F(p)					2223.945413
		G(p)					-309614.0488

N ⁰ 00				α (p)	=Op ^Q
N ec		М	N	0	Q
		3.69876E-07	-3.66203E-05		
		-0.00190039	1.8809518E-01		
	281	3.960927582	-391.8805345		
34	a	-4310.225543	426367.1047		
	320	2574848.244	-254646744.2		
		-799166151.8	79022385039		
		100590000000	-9945360000000		
		5.64718E-08	-6.17968E-06		
		-2.79991E-04	3.055383E-02		
	321	5.4580167E-01	-59.294		
35	a	-557.6667767	60344.463		
	360	311958.6364	-33584535.67		
		-90459043.07	9683132675		
		10604894686	-1127950000000		
		-9.64115E-07	1.22026E-04		
		0.005066385	-6.4125875E-01		
	361 a 400	-10.85494133	1374.0118		
36		12106.08648	-1532395.763		
		-7401568.216	936934709.8		
		2348710618	-297325000000		
		-301966000000	3822720000000		
		-2.9787E-09	5.66217E-07		
		1.5598E-05	-2.95307E-03		
	401	-3.347925E-02	6.33412		
37	а	37.2989825	-7005.7609		
	460	-22853.6505	4276653.8		
		7260071.213	-1351493890		
		-933618757	172313000000		
		6.7255E-10	-1.91196E-07		
		-3.83768E-06	1.092325E-03		
	461	9.465225E-03	-2.663545		
38	a	-11.9290835	3367.5705		
	520	8094.4447	-2282074.94		
		-2821075.621	796662347.4		
	ļ	392960583.9	-111824000000		

N ⁰ oo	Rango	Coef			α(p)=H	lp ⁶ +Ip ⁵ +J	Jp ⁴ +Kp ³ +Lp ² +Mp+N
IN EC	p(bar)	Coel.	Η	Ι	J	K	L
		A(p)					-1.075E-12
		B(p)					5.45E-09
		C(p)					-1.22612E-05
39	521 a	D(p)					0.014524625
	360	E(p)					-9.36005
		F(p)					3117.024038
		G(p)					-418015.532
		A(p)					5.11137E-12
		B(p)					-2.67567E-08
		C(p)					5.7085E-05
40	581 a	D(p)					-0.063344942
	040	E(p)					38.53561876
		F(p)					-12159.93991
		G(p)					1553740.856
	641 a 700	A(p)					1.48743E-13
		B(p)					-2.95457E-10
		C(p)					-1.97071E-07
41		D(p)					0.001257642
		E(p)					-1.378140315
		F(p)					630.4618914
		G(p)					-105925.3874
		A(p)					-1.56831E-13
		B(p)					7.12219E-10
		C(p)					-1.08677E-06
42	701 a	D(p)					0.000556397
	/00	E(p)					0.163725869
		F(p)					-226.3638611
		G(p)					50947.83564
		A(p)					
		B(p)					
		C(p)					
43	761 a	D(p)					
	000	E(p)					
		F(p)					
		G(p)					

Nºac				α(p)	=Op ^Q
in cc		М	Ν	0	Q
		1.1855E-09	-2.9836E-07		
		-6.0505E-06	1.52845E-03		
	521	1.3680075E-02	-3.478704		
39	a	-16.3391075	4221.9675		
	580	10609.036	-2769251.27		
		-3565201.139	940754979.3		
		483496894.2	-129424000000		
		-6.46343E-09	2.06332E-06		
		3.38266E-05	-1.0799453E-02		
	581	-7.2151309E-02	23.04808672		
40	a	79.99806661	-25540.26924		
	640	-48623.62955	15524278.36		
		15322581.75	-4891239579		
		-1953865145	623056000000		
		-3.55937E-10	1.87906E-07		
		1.21304E-06	-7.68589E-04		
	641 a 700	-1.47738E-03	1.285878568		
41		0.210513842	-943.653552		
		715.5976145	299077.0671		
		-500202.2465	-4452818.431		
		100638639.4	-11941235424		
		1.0866E-10	1.05092E-08		
		-3.89238E-07	-1.31516E-04		
	701	1.42645E-04	0.569851138		
42	a	0.833620521	-1018.535956		
	760	-1272.794261	926167.618		
		663973.4782	-397096698.70		
		-117008810.3	63295531773		
		-6.38829E-11	4.96428E-08		
		3.64922E-07	-2.86238E-04		
	761	-8.55762E-04	0.686646581		
43	a	1.021163006	-824.7950588		
	800	-671.14735	555015.2603		
		225412.7208	-192057386.2		
	ľ	-29781472.65	26137898961		

Nºaa	Rango	Coof	$\alpha(\mathbf{p}) = \mathbf{H}\mathbf{p}^6 + \mathbf{I}\mathbf{p}^5 + \mathbf{J}\mathbf{p}^4 + \mathbf{K}\mathbf{p}^3 + \mathbf{L}\mathbf{p}^2 + \mathbf{M}\mathbf{p} + \mathbf{N}$					
N ec	p(bar)		Н	Ι	J	K	L	
		A(p)						
		B(p)						
		C(p)						
44	801 a	D(p)						
	840	E(p)						
		F(p)						
		G(p)						
	841 a	A(p)						
		B(p)						
		C(p)						
45		D(p)						
	000	E(p)						
		F(p)						
		G(p)						
		A(p)					-1.0276E-13	
		B(p)					5.4292E-10	
		C(p)					-1.15735E-06	
46	881 a	D(p)					0.001298179	
	1000	E(p)					-0.80138334	
		F(p)					263.6891479	
		G(p)					-36596.28219	

Nºec				α(p)	=Op ^Q			
1, 66		М	N	0	Q			
		-1.61137E-10	1.299710E-07					
		8.63476E-07	-6.98442E-04					
	801	-1.89645E-03	1.548006614					
44	a	2.156093683	-1765.13307					
	840	-1351.957538	1119667.111					
		438918.1093	-369294159.4					
		-57154020.87	48877155711					
	841 a 880	-1.9861E-11	8.98308E-09					
		1.38743E-07	-7.82502E-05					
		-3.82586E-04	0.253532146					
45		0.513630601	-361.866014					
		-374.49299	285255.95					
		137035.2116	-111808562.80					
		-19387788.87	16691705092.00					
		1.35632E-10	-4.19356E-08					
		-7.01028E-07	2.06576E-04					
	881	1.441009E-03	-0.3816136					
46	a	-1.56847066	381.73076					
	1000	930.701619	-190635.5777					
		-298675.0959	50451577.64					
		41907983.17	-6661198500					
				u	$(\mathbf{t},\mathbf{p}) = \mathbf{A}(\mathbf{p})\mathbf{t}^3 + \mathbf{B}(\mathbf{p})\mathbf{t}^2$	$^{2}+ C(p)t + D(p) + E(p)$	1/t	
-------------	----------------	------------	---	--------------	---	---	---------------	--------------
N 10	Rango	a c			α (p)=]	Fp ⁵ +Gp ⁴ +Hp ³ +Ip ² +J	p+K	
N°ec	de p(bar)	Coef.	F	G	Н	Ι	J	K
	0.01	B(p)					-3.38071E-05	0.000328037
1	0.01 a 0.04	C(p)					0.052525929	1.346547154
	0.04	D(p)					-17.25332857	2377.813882
	0 0 -	B(p)					-3.22196E-05	0.000329976
2	0.05 a	C(p)					0.049038878	1.344068625
	0.5	D(p)					-15.61408152	2378.571306
		B(p)				-1.39545E-06	-2.09984E-05	0.000331275
3	0.6 a 4	C(p)				0.002096312	0.033220055	1.342513542
		D(p)				-0.648479977	-11.66698134	2378.654993
		B(p)			3.74607E-05	-6.48789E-04	3.708929E-03	-0.006751940
4	5 a 8	C(p)			0.023562008	-0.46227851	2.971306911	-4.778527765
		D(p)			-8.874761	171.403159	-1088.839392	4601.027875
		B(p)			-5.93783E-06	1.86291E-04	-1.937181E-03	0.006919468
5	9 a 12	C(p)			0.009172588	-0.287783247	2.99443892	-8.836332702
		D(p)			-2.9743565	93.3226525	-972.560603	5680.511575
		B(p)			1.69058E-06	-7.30574E-05	1.042293E-03	-0.004688772
6	13 a 17	C(p)		1.29234E-05	-0.003536543	0.13695569	-1.880809293	10.22956507
		D(p)		-0.027625792	2.537935749	-75.33651669	913.4759416	-1628.740427

Tabla N° 19. Ecuaciones de estado no convencionales obtenidas para u(t,p) para la fase VS.

Nºoo	Rango	Coof	$\alpha(\mathbf{p}) = \mathbf{F}\mathbf{p}^5 + \mathbf{G}\mathbf{p}^4 + \mathbf{H}\mathbf{p}^3 + \mathbf{I}\mathbf{p}^2 + \mathbf{J}\mathbf{p} + \mathbf{K}$								
N ec	p(bar)	Coel.	F	G	Н	Ι	J	K			
		B(p)		1.08217E-09	-1.56747E-07	7.61368E-06	-1.5883E-04	0.001406927			
7	18 a 28	C(p)	3.91046E-06	-4.51E-04	0.02080954	-0.478943129	5.51798805	-23.94620658			
	20	D(p)	-0.0019503	0.224952199	-10.33982614	236.8280791	-2708.641169	14679.08631			
		B(p)			-3.15083E-06	2.88407E-04	-8.798201E-03	0.089596056			
8	29 a 32	C(p)			0.005000599	-0.457693367	57693367 13.96319937 -140.304404 .1929665 -4827.186824 51334.7009 532524E 01 4.040817881 28.672816	-140.3044046			
	52	D(p)			-1.728439	158.1929665	-4827.186824	51334.70099			
		B(p)	5.11992E-07	-9.08882E-05	6.449068E-03	-2.28633534E-01	4.049817881	-28.67281604			
9	33 a	C(p)	-8.22319E-04	1.45978847E-01	-10.35818711	367.2241865	-6504.760535	46056.23814			
	- 38	D(p)	0.2887834	-51.2654896	3637.662775	-128965.4959	2284425.405	-16171916.09			
	39 a 44	B(p)	4.669670E-07	-9.6919E-05	8.042006E-03	-3.334708E-01	6.910187316	-57.24648207			
10		C(p)	-7.99996E-04	1.66038196E-01	-13.77710388	571.2774086	-11837.89975	98070.33699			
	44	D(p)	0.315427183	-65.46607458	5432.039762	-225241.619	4667374.463	-38663343.88			
		B(p)			-1.89167E-08	2.52245E-06	-1.20532E-04	0.002116562			
11	45 a 48	C(p)			3.22658E-05	-0.004305354	0.206611422	-1.705930123			
	40	D(p)			-0.011077333	1.4747005	-72.03145118	3425.875249			
		B(p)			3.5169E-06	-5.28541E-04	2.6464164E-02	-0.441420644			
12	49 a 52	C(p)			-5.519397E-03	0.829300174	-41.51203891	694.1443046			
	52	D(p)			1.816168	-272.748429	13644.66041	-225247.136			
		B(p)		-2.32777E-06	5.10499E-04	-4.1971822E-02	1.533254064	-20.99794336			
13	53 a 57	C(p)		3.791531E-03	-8.31534601E-01	68.36819804	-2497.590986	34207.31472			
	57 -	D(p)		-1.344082917	294.7921903	-24238.94048	885530.7922	-12126139.87			

Nºaa	Rango	Coef.			α(p)= I	Fp ⁵ +Gp ⁴ +Hp ³ +Ip ² +Jp+	-K	
N ec	p(bar)	Coel.	F	G	Н	Ι	J	К
		B(p)		2.2876E-06	-5.5058E-04	4.9680832E-02	-1.991918751	29.94216226
14	58 a	C(p)		-3.777369E-03	9.09143999E-01	-82.03589018	3289.196524	-49441.0415
	02	D(p)		1.379993	-332.1430473	29971.01106	-1201690.665	18066086.64
		B(p)			-7.11323E-06	1.376534E-03	-8.8780245E-02	1.908318569
15	63 a	C(p)			1.1750432E-02	-2.273906664	146.657628	-3150.466307
	00	D(p)			-4.142365667	801.8681865	-51734.20795	1114503.373
		B(p)				-4.66E-08	-2.6963E-06	3.60647E-04
16	67 a 69	C(p)				9.57945E-05	3.335566E-03	1.364164881
		D(p)				-0.039547	-1.778559	2358.678398
		B(p)		-1.25E-09	3.85E-07	-4.41958E-05	2.247681E-03	-0.042381157
17	70 a	C(p)		4.40758E-05	-1.2733276E-02	1.379046546	-66.37254117	1199.025819
17	74	D(p)		-0.052171333	15.04655501	-1626.91844	78174.82975	-1405983.19
		E(p)		13.62131667	-3927.030217	424458.2298	-20388739.26	367171425.7
		B(p)			-1.93033E-06	4.39718E-04	-3.3381759E-02	0.845023737
10	75 a	C(p)			5.218234E-03	-1.189000315	90.28845331	-2283.955195
10	78	D(p)			-4.320700833	984.71118	-74791.48931	1895873.648
		E(p)			1049.631167	-239252.1332	18173839.4	-460186695.4
		B(p)			1.01935E-05	-2.4470640E-03	1.95808622E-01	-5.222095864
10	79 a	C(p)			-2.0283882E-02	4.869594713	-389.6751271	10394.91643
19	82	D(p)			12.37477283	-2970.969398	237756.8298	-6339481.28
		E(p)			-2306.702883	553831.6757	-44325186.8	1182384801

N ¹⁰ aa	Rango	o Coef.			α(p)=	Fp ⁵ +Gp ⁴ +Hp ³ +Ip ² +Jp	p+K	
IN ec	p(bar)	Coel.	F	G	Н	Ι	J	К
		B(p)				7.2105E-06	-1.213347E-03	0.051508717
20	83 a	C(p)				-0.017839662	3.00097878	-125.2587395
20	85	D(p)				13.6760545	-2299.321166	99408.66299
		E(p)				-3231.3631	542496.8733	-22916315.11
	E(p) E(p) E(p) E(p) E(p) E(p) E(p) E(p)			-7.41667E-08	1.9666E-05	-1.732492E-03	0.051193748	
01		C(p)			2.10381E-04	-0.055717211	4.903414763	-142.504029
21		D(p)			-0.181345667	47.987765	-4219.728604	126112.8775
		E(p)			45.0404	-11913.98645	1046561.677	-30691007.5
	90 a 93	B(p)			-2.93367E-06	8.09703E-04	-7.4484962E-02	2.284192065
22		C(p)			7.267206E-03	-2.005777987	184.5115034	-5656.165492
22		D(p)			-5.557184	1533.827918	-141097.4866	4328792.914
		E(p)			1311.774033	-362066.4177	33306378.75	-1021288930
		B(p)			2.55667E-07	-7.3167E-05	6.985235E-03	-0.221959695
22	94 a	C(p)			-7.28644E-04	0.208445902	-19.89178037	634.0441303
23	97	D(p)			0.656641	-187.7933715	17915.07303	-567213.4736
		E(p)			-182.0556	52055.01595	-4965150.284	157801158.9
		B(p)		-8.02333E-08	3.19273E-05	-4.763794E-03	3.15879795E-01	-7.85349192
24	98 a	C(p)		2.00367E-04	-7.9733193E-02	11.8969538	-788.8794703	19615.74116
24	104	D(p)		-0.157540154	62.70504897	-9358.30402	620685.5136	-15433641.88
	104	E(p)		38.64920542	-15388.26648	2297329.325	-152419257	3791785036

Nºaa	Rango	Coof				$\alpha(\mathbf{p}) = \mathbf{F}\mathbf{p}^5 + \mathbf{G}\mathbf{p}^4 + \mathbf{F}^2$	Hp ³ +Ip ² +Jp+K	
IN EC	p(bar)	Coel.	F	G	Н	Ι	J	K
		B(p)			-5.81604E-07	1.88534E-04	-2.0362595E-02	0.733301836
25	105 a	C(p)			1.462955E-03	-0.474257497	51.2234635	-1842.582961
25	112	D(p)			-1.360775187	442.3863181	-47920.23191	1732554.436
		E(p)			281.7946667	-91371.21346	9869757.14	-355378459.10
		B(p)			1.19196E-06	-4.18465E-04	4.8962369E-02	-1.908712169
26	113 a	C(p)			-3.016620E-03	1.059032365	-123.9101136	4832.491864
20	120	D(p)			2.379849813	-835.4545706	97748.83841	-3808628.391
		E(p)			-584.0365438	205019.5467	-23987298.79	935159308.1
		B(p)			6.2924E-08	-2.45793E-05	3.199316E-03	-0.138144007
27	121 a	C(p)			-1.60995E-04	0.062894304	-8.188656039	355.8159994
21	140	D(p)			0.128928937	-50.37250564	6560.55844	-281651.9927
		E(p)			-32.218374	12588.70408	-1640559.84	71020159.03
		B(p)			1.99263E-07	-9.10777E-05	1.3871756E-02	-0.703309544
28	141 a	C(p)			-5.09851E-04	0.233035478	-35.49366101	1801.725284
20	160	D(p)			0.408894184	-186.8855106	28465.30338	-1441457.951
		E(p)			-102.636898	46907.99573	-7145303.38	362397975.1
		B(p)			3.23747E-07	-1.67838E-04	2.8997289E-02	-1.668746802
20	161 a	C(p)			-8.11654E-04	0.420723053	-72.67964952	4184.197391
2)	180	D(p)			0.632078215	-327.5729982	56578.45912	-3253160.855
		E(p)			-152.3652828	78938.15418	-13630954.85	784066073.6
		B(p)				-2.95812E-06	1.128837E-03	-0.106726903
20	181 a	C(p)				0.007532931	-2.876354292	274.1134542
30	195	D(p)				-5.99867422	2292.624288	-215005.8536
	195	E(p)				1490.209898	-570616.53	54065170.28

N°ec	Rango	Coof				$\alpha(p)=Fp^5+Gp^4+$	Hp ³ +Ip ² +Jp+K	
IN EC	p(bar)	Coel.	F	G	Н	Ι	J	K
		B(p)				-7.1255E-08	3.3865E-05	-0.002898686
21	196 a	C(p)				0.000181825	-0.088359641	9.77197094
51	220	D(p)				-0.14405092	72.4147994	-4520.938361
		E(p)				35.150438	-18890.58016	1765888.143
		A(p)			5.43397E-10	-3.96581E-07	9.63497E-05	-7.795675E-03
	221 -	B(p)			-1.87426E-06	1.367867E-03	-3.32320133E-01	26.88797037
32	221 a 260	C(p)			2.325344E-03	-1.697074249	412.2925853	-33356.11147
	200	D(p)			-1.225181482	894.1580983	-217223.7807	17576962.57
		E(p)			230.7970772	-168440.2207	40918462.38	-3310470438
	261 0	A(p)			2.04718E-10	-1.78389E-07	5.17398E-05	-4.998233E-03
	0.01	B(p)			-7.0535E-07	6.14727E-04	-1.78316627E-01	17.2282775
33	261 a 300	C(p)			8.83567E-04	-0.7700755	223.3788583	-21580.2095
	200	D(p)			-0.47107505	410.591403	-119102.1224	11509449.63
		E(p)			90.02836525	-78475.24336	22763206.07	-2199340223
		A(p)				-6.721E-09	4.32515E-06	-6.99379E-04
	201	B(p)				2.3525E-05	-1.513435E-02	2.447234
34	301 a 330	C(p)				-0.0297196	19.111209	-3088.12853
	550	D(p)				16.0157035	-10292.29628	1666007.95
		E(p)				-3101.497415	1990955.64	-321835859
		A(p)			1.91833E-12	-1.6968E-09	4.49806E-07	-3.65867E-05
	221	B(p)			-8.32333E-09	7.6243E-06	-2.157803E-03	0.19567212
35	331 a 370	C(p)			9.55217E-06	-0.008591985	2.343058033	-198.684624
	570	D(p)			-0.005816667	5.35175	-1515.216833	139910.36
	-	E(p)			1.0138345	-918.024075	249716.4088	-21440593.78

Nºaa	Rango	Coof				α(p)=Fp ⁵ +Gp ⁴ +Hp	³ +Ip ² +Jp+K	
N ec	p(bar)	Coel.	F	G	Н	Ι	J	K
		A(p)				5.96E-09	-4.5988E-06	8.8148E-04
	071	B(p)				-2.0905E-05	1.613455E-02	-3.092389
36	371 a 400	C(p)				0.02668185	-20.6001015	3950.1832
	400	D(p)				-14.5626645	11249.05806	-2153970.075
		E(p)				2863.690845	-2214077.97	424341697.4
		A(p)			-5.25E-13	8.69625E-10	-4.60163E-07	7.40726E-05
	401	B(p)			1.66667E-09	-2.83625E-06	1.529958E-03	-0.248198
37	401 a 480	C(p)			-2.31458E-06	0.003888375	-2.085321667	339.3466
	400	D(p)			0.001287396	-2.1688875	1169.828292	424341697.4 7.40726E-05 -0.248198 339.3466 -187672.3 38268728.6 1.91E-06 -7.80E-04 6.1795 -4060.12 2176960.46
	401 a 480 481 a 540	E(p)			-0.253855208	430.713625	-235087.93	38268728.6
	481 0	A(p)				5.525E-11	-3.9905E-08	1.91E-06
		B(p)				-1.775E-07	1.2255E-04	-7.80E-04
38	481 a 540	C(p)				0.000242125	-0.1746175	6.1795
	540	D(p)				-0.147605	113.8681	-3.092389 3950.1832 -2153970.075 424341697.4 7.40726E-05 -0.248198 339.3466 -187672.3 38268728.6 1.91E-06 -7.80E-04 6.1795 -4060.12 2176960.46 0.0041042 -8.8595 11130.02227 -2371640.708
	401 a 480 481 a 540 541 a 580	E(p)				32.57910212	-27311.62	2176960.46
		B(p)					-4.195E-06	0.0041042
20	541 a	C(p)					0.010185	-8.8595
39	580	D(p)					-7.2878915	11130.02227
		E(p)					1123.87314	-2371640.708
		B(p)				2.69695E-07	-3.41216E-04	0.109291848
40	581 a	C(p)				-0.000701559	0.886983072	-282.5366353
40	641	D(p)				0.571687209	-721.8808721	234194.8967
	041	E(p)				-144.5279904	181807.8383	-58776027.82

N°e	Rang	Coof		$\alpha(\mathbf{p}) = \mathbf{F}\mathbf{p}^{5} + \mathbf{G}\mathbf{p}^{4} + \mathbf{H}\mathbf{p}^{3} + \mathbf{I}\mathbf{p}^{2} + \mathbf{J}\mathbf{p} + \mathbf{K}$						
с	p(bar)	Coel.	F	G	Н	Ι	J	К		
		B(p)				8.76555E-11	-5.38446E-06	0.0047932		
41	642 a 700 701 a 760	C(p)				1.89626E-06	0.010962696	-10.02438613		
41	700	D(p)				-0.004152727	-5.061281205	11298.83968		
		E(p)				2.049465475	-538.7266915	-2113442.101		
		B(p)				4.16924E-09	-1.13109E-05	0.006945204		
40	701 a	C(p)				-8.94108E-06	0.026658508	-15.7097919		
42	760	D(p)				0.005101559	-18.42098086	16122.75645		
	760	E(p)				-0.468898437	3084.837296	-3417596.643		
	+	B(p)				4.55113E-09	-1.21155E-05	0.007336829		
12	761 a	C(p)				-4.6701E-06	0.020255531	-13.30542026		
43	820	D(p)				2.57721E-03	-14.6681236	13109E-03 0.000943204 126658508 -15.7097919 3.42098086 16122.75645 84.837296 -3417596.643 21155E-05 0.007336829 020255531 -13.30542026 4.6681236 14725.20242 21.700391 -3211999.313		
		E(p)				-0.082618462	2521.700391	-3211999.313		
		C(p)				-4.75125E-05	0.08167175	-33.75746		
44	821 a 880	D(p)				0.086825	-149.121	67522.59		
	880	E(p)				-36.44021875	62216.58763	-27534119.57		
	001	C(p)				-8E-08	0.001076	0.4734		
45	881 a 1000	D(p)				-1.7888E-04	-1.258812	4710.4216		
	1000	E(p)				0.303825435	-224.7578547	K 0.0047932 -10.02438613 11298.83968 -2113442.101 0.006945204 -15.7097919 16122.75645 -3417596.643 0.007336829 -13.30542026 14725.20242 -3211999.313 -33.75746 67522.59 -27534119.57 0.4734 4710.4216 -1010967.187		

				$\mathbf{h}(\mathbf{t},\mathbf{p})=\mathbf{A}(\mathbf{p})\mathbf{t}^{3}$	$+ B(p)t^2 + C(p)t + D(p)t$	(p)+E(p)1/t+F(p)1	$/x^2$	
N°	Rango	<i>a</i> .			$\alpha(\mathbf{p}) = \mathbf{G}\mathbf{p}^5 + \mathbf{H}\mathbf{p}$	p ⁴ +Ip ³ +Jp ² +Kp+L		
ec	de p(bar)	Coef.	G	Н	Ι	J	К	L
	0.01 -	B(p)			73.74386667	-5.162244	0.103205513	-2.61718E-04
1	0.01 a	C(p)			-78.47221667	5.7428385	-0.052997903	L 05513 -2.61718E-04 97903 1.808784494 8983 2503.647086 5E-05 3.28696E-04 17022 1.807620089 09269 2504.271951 32E-04 4.67975E-04 35087 1.602336285 66077 2565.109374 51E-02 -0.022690643 633225 10.90246314 64926 -238.0886701 24E-03 5.937056E-03
	0.00	D(p)			24961.64166	-1822.458249	15.7758983	2503.647086
	0.07	07 a B(p) 6.03	6.03149E-05	-6.57344E-05	-2.01395E-05	3.28696E-04		
2	0.07 a	C(p)			-0.089938053	0.10111787	0.029817022	1.807620089
	1	D(p)			17.54226486	-18.40326989	-14.36409269	2504.271951
		B(p)		3.73512E-06	-3.93567E-05	1.47079E-04	-2.65082E-04	4.67975E-04
3	1.1 a 5	C(p)		-5.508003E-03	0.058042801	-0.216902301	0.394135087	1.602336285
		D(p)		1.649507714	-17.38028233	64.92592971	-120.3366077	2565.109374
	6 a 11	B(p)	4.2755E-07	-1.8982E-05	3.36628E-04	-2.977601E-03	1.3109851E-02	-0.022690643
4		C(p)		0.001194293	-0.046035152	0.651078974	-3.990633225	10.90246314
		D(p)		-0.353866583	13.72435881	-195.0277492	1197.364926	-238.0886701
		B(p)			-2.307E-06	9.3388E-05	-1.265724E-03	5.937056E-03
5	12 a 15	C(p)			0.003513203	-0.142183118	1.929443282	-6.729234019
		D(p)			-1.130192333	45.7322235	-622.5458862	5249.829871
		B(p)			3.76483E-06	-2.05349E-04	3.716295E-03	-0.022140091
6	16 a 19	C(p)			-6.583219E-03	0.3566893	1.3109851E-02-0.022690643-3.99063322510.902463141197.364926-238.0886701-1.265724E-035.937056E-031.929443282-6.729234019-622.54588625249.8298713.716295E-03-0.022140091-6.41445049940.372693552033.000597-9724.801854.427926E-03-0.031435363-7.55957032356.12624462338.795977-14285.98782	
		D(p)			2.090596	-113.221998	2033.000597	-9724.80185
		B(p)			3.196330E-06	-2.06364E-04	4.427926E-03	-0.031435363
7	20 a 23	C(p)			-5.441475E-03	0.351831642	-7.559570323	56.1262446
		D(p)			1.6909265	-109.144671	2338.795977	-14285.98782

Tabla N° 20. Ecuaciones de estado no convencionales obtenidas para h(t,p) para la fase VS.

N°	Rango	Caaf			α(p)=	Gp ⁵ +Hp ⁴ +Ip ³ +Jp ² +K	p+L	
ec	p(bar)	Coel.	G	Н	Ι	J	К	L
		B(p)		-1.98644E-06	2.06515E-04	-8.043071E-03	1.39075E-01	-0.900693572
8	24 a	C(p)		3.162314E-03	-0.328752839	12.80341687	-221.3791362	1436.018064
	20	D(p)		-1.091339833	113.4503945	-4418.186896	76388.3667	-492368.9284
		B(p)		1.94177E-06	-2.40729E-04	1.1183929E-02	-2.30774886E-01	1.784658668
9	29 a	C(p)		-3.08977E-03	0.383043451	-17.79521661	367.1895323	-2837.19436
	55	D(p)		1.066245583	-132.1777798	6140.350373	-126696.8146	982030.6211
		B(p)			-4.3238E-06	4.60522E-04	-1.6346864E-02	0.193436165
10	34 a	C(p)			0.006958102	-0.74108669	26.30756821	-308.9443514
	57	D(p)			-2.442211	260.110493	-9235.170315	111575.6186
	•	B(p)		-6.43458E-08	1.24551E-05	-8.77019E-04	2.683635E-02	-0.302597054
11	38 a	C(p)		3.01202E-05	-8.417427E-03	0.721308515	-24.98788228	309.4030382
	42	D(p)		0.037439958	-4.638583918	196.9882471	-3088.70793	11632.38438
		B(p)		2.24433E-06	-4.05096E-04	2.740844E-02	-8.238624E-01	9.282932117
12	43 a	C(p)		-3.589506E-03	0.647964484	-43.84528531	1318.072124	-14850.6601
	47	D(p)		1.227317625	-221.6401286	15003.49094	-451211.1122	5088833.63
	10	B(p)		1.20667E-07	-2.09937E-05	1.338728E-03	-3.676814E-02	0.361587422
13	48 a	C(p)		-2.05802E-04	0.036033358	-2.317425709	64.41900842	-642.7931635
	52	D(p)		0.071456375	-12.44574725	794.830028	-21878.88312	218166.829
		B(p)		-2.42212E-06	5.31075E-04	-4.365369E-02	1.594321	-21.82902678
14	53 a 57	C(p)		4.171631E-03	-0.914811874	75.20776668	-2747.15732	37621.51881
	51	D(p)		-1.549435708	339.8010771	-27937.09107	1020533.177	-13973574.63

N°	Rango	C (α(p)	$= \mathbf{Gp}^{5} + \mathbf{Hp}^{4} + \mathbf{Ip}^{3} + \mathbf{Jp}^{2} + \mathbf{K}$	p+L	
ec	de p(bar)	Coef.	G	Н	Ι	J	К	L
		B(p)		-2.95702E-06	7.0771E-04	-6.3501409E-02	2.531768018	-37.84352711
15	58 a	C(p)		-4.98914E-03	1.20045685	-108.2921452	4340.738579	-65229.42145
	02	D(p)		1.813012583	-436.2613705	39356.9905	-1577659.804	23712366.02
	(2)	B(p)				1.47305E-05	-1.884957E-03	0.060165693
16	63 a	C(p)				-0.062299637	7.936880502	-250.0993022
	05	D(p)				8.6892645	-1113.716801	37781.09217
		B(p)					-1.1267E-05	0.000612399
17	66 a 67	C(p)					0.020503779	1.325170699
	07	D(p)					-9.045157	2689.655095
		B(p)				-7.453E-06	1.026759E-03	-0.03487748
10	68 a	C(p)				0.018643861	-2.569804858	L -37.84352711 -65229.42145 23712366.02 0.060165693 -250.0993022 37781.09217 0.000612399 1.325170699 2689.655095 -0.03487748 89.91729919 -65523.00563 16085492.22 -0.027575855 49.06919703 -18372.05088 3008775.86 1.127635624 -2988.382585 2442688.568 -588206797.8
18	70	D(p)				-14.3865095	1984.690583	-65523.00563
		E(p)				3399.383	-469987.1056	16085492.22
		B(p)			7.31667E-08	-1.58655E-05	1.152795E-03	-0.027575855
10	71 a	C(p)			-1.23523E-04	0.026764025	-1.94938271	49.06919703
19	74	D(p)			0.054320833	-11.7342175	859.2563589	-18372.05088
		E(p)			-7.822316668	1677.4907	-124311.8285	3008775.86
		B(p)			-2.56933E-06	5.8579E-04	-4.4510378E-02	1.127635624
20	75 a	C(p)			6.813389E-03	-1.553539763	118.0532497	-2988.382585
20	78	D(p)			-5.559234667	1267.648401	-96332.80522	L -37.84352711 -65229.42145 23712366.02 0.060165693 -250.0993022 37781.09217 0.000612399 1.325170699 2689.655095 -0.03487748 89.91729919 -65523.00563 16085492.22 -0.027575855 49.06919703 -18372.05088 3008775.86 1.127635624 -2988.382585 2442688.568 -588206797.8
		E(p)			1339.955417	-305553.7928	23219770.69	

N°	Rango	Coof		$\alpha(\mathbf{p}) = \mathbf{G}\mathbf{p}^5 + \mathbf{H}\mathbf{p}^4 + \mathbf{I}\mathbf{p}^3 + \mathbf{J}\mathbf{p}^2 + \mathbf{K}\mathbf{p} + \mathbf{L}$									
ec	p(bar)	Coel.	G	Н	Ι	J	К	L					
		B(p)			1.18772E-05	-2.851747E-03	2.2823175E-01	-6.087965158					
21	79 a	C(p)			-0.023129288	5.553073413	-444.4018782	11855.9841					
21	82	D(p)			13.63731117	-3273.671599	261951.268	-6983921.002					
		E(p)			-2440.546683	585762.8164	-46865462.03	1249730634					
		B(p)		6.78958E-07	-2.32202E-04	2.9778313E-02	-1.697182981	36.27191896					
22	83 a	C(p)		-1.713018E-03	0.585915066	-75.14777948	4283.421502	-91551.33844					
22	87	D(p)		1.316184333	-450.2545965	57757.31291	-3292664.027	70389841.36					
		E(p)		-310.7049667	106298.7931	-13636886.78	777485905.2	-16621746924					
		B(p)			-3.573E-06	9.53104E-04	-8.473435E-02	2.511217318					
22	88 a	C(p)			8.531052E-03	-2.274858839	202.1678298	-5986.709641					
23	88 a 91	D(p)			-6.253062167	1666.69545	-148052.5452	4386084.564					
		E(p)			1411.701083	-376127.096	33396763.35	-988432935.5					
		B(p)			5.64117E-06	-1.579434E-03	1.47399272E-01	-4.584569212					
24	92 a	C(p)			-1.0881977E-02	3.046691032	-284.327371	8845.782303					
24	95	D(p)			5.544155667	-1552.149495	144851.2403	-4502990.84					
		E(p)			-810.8254	226978.694	-21183016.26	658846035.4					
		B(p)			8.47233E-06	-2.478241E-03	2.41617E-01	-7.85096848					
25	96 a	C(p)			-0.021043079	6.155331428	-600.120033	19502.67095					
23	99	D(p)			16.223289	-4745.503547	462670.7651	-15031994.09					
		E(p)			-3871.09175	1132342.056	-110400885.9	3587470221					
		B(p)			1.094E-06	-3.38074E-04	3.4818074E-02	-1.194491862					
26	100 a	C(p)			-2.857812E-03	0.883018019	-90.93060944	3121.783366					
20	106	D(p)			2.320954542	-717.0428075	73830.77138	-2530412.732					
		E(p)			-570.5738375	176262.5648	-18148791.97	622572429.4					

N°	Rango	Cash		$\alpha(\mathbf{p}) = \mathbf{G}\mathbf{p}^5 + \mathbf{H}\mathbf{p}^4 + \mathbf{I}\mathbf{p}^3 + \mathbf{J}\mathbf{p}^2 + \mathbf{K}\mathbf{p} + \mathbf{L}$							
ec	p(bar)	Coel.	G	Н	Ι	J	К	L			
		B(p)			1.45558E-06	-4.84771E-04	5.3806961E-02	-1.989777487			
27	107 a	C(p)			-3.753786E-03	1.250232838	-138.7772231	5134.898934			
27	114	D(p)			3.016762354	-1004.788941	111537.7375	-4123180.344			
		E(p)			-740.9293729	246769.0912	-27392777.04	1013175286			
		B(p)		-4.02071E-09	1.6044E-06	-2.27537E-04	1.3105864E-02	-0.234174668			
20	115 a	C(p)		6.42917E-07	0.000549395	-0.259540392	34.07152654	-1433.005302			
28	130	D(p)		9.426086E-03	-5.237607853	1075.49295	-96973.75562	3249151.836			
		E(p)		-4.601821798	2392.038926	-464485.6003	39939238.28	-1283655253			
		B(p)			1.86391E-07	-7.9563E-05	1.1318514E-02	-0.535836989			
20	131 a 150	C(p)			-4.74077E-04	0.202362318	-28.78897842	1365.553981			
29		D(p)			0.377389549	-161.0866682	22918.46987	-1083130.592			
		E(p)			3336.379857	-1434940.748	205516179.5	-9802024027			
		B(p)			4.15077E-07	-2.01715E-04	3.2663438E-02	-1.761511752			
20	151 a	C(p)			-1.050011E-03	0.510356742	-82.65649885	4460.941001			
30	170	D(p)			0.828595857	-402.8321058	65259.17424	-3518863.655			
		E(p)			-203.3101037	98873.58985	-16023905.92	864887156.5			
		A(p)				-1.368E-08	4.9558E-06	-4.46375E-04			
		B(p)				5.784E-05	-2.09596E-02	1.88847			
21	171 a	C(p)				-0.0943	34.1803	-3077.639			
51	185	D(p)				74.109714	-26871.26361	2423904.506			
		E(p)				-27951.036	10139315.97	-913900799.9			
		F(p)				4036155.772	-1465360191	13210000000			

N°	Rango	Coef				$\alpha(\mathbf{p})=\mathbf{G}\mathbf{p}^{5}+\mathbf{H}\mathbf{p}^{5}$	⁴ +Ip ³ +Jp ² +Kp+L	
ec	p(bar)	COCI.	G	Н	Ι	J	K	L
		A(p)			-2.682E-10	1.66465E-07	-3.43362E-05	2.356961E-03
		B(p)			1.70633E-06	-1.044845E-03	2.12836917E-01	-14.436049
20	186 a	C(p)			-0.003774633	2.2944585	-464.1571617	31272.9089
32	210	D(p)			3.800572	-2299.87702	463258.5008	-31076148.48
		E(p)			-1737.581302	1048546.449	-210636352.8	14093085339
		F(p)			290678.9777	-175102586.8	35114589094	-2345400000000
		A(p)			-1.52905E-10	1.05272E-07	-2.41351E-05	1.846552E-03
		B(p)			6.64227E-07	-4.57406E-04	1.0488358E-01	-8.025148131
22	211 a	C(p)			-0.001105634	0.76126724	-174.5222519	13352.63173
33	250	D(p)			0.89368371	-615.3478426	141061.0487	-10787315.97
		E(p)			-348.3845326	239891.562	-54988409.53	4205522218
		F(p)			52301.3816	-36016284.79	8254722598	-631243000000
		A(p)			7.74425E-10	-6.39795E-07	1.7604E-04	-0.01612763
		B(p)			-3.35228E-06	2.769364E-03	-7.61960447E-01	69.8030354
24	251 a	C(p)			0.005637433	-4.657057	1281.324907	-117378.6038
54	290	D(p)			-4.586635833	3788.900505	-1042449.95	95499058.47
		E(p)			1801.441302	-1488077.439	409412661.2	-37505051165
		F(p)			-272817.0419	225351228.6	-61999865003	5679540000000
		A(p)				-1.6175E-08	1.0042E-05	-1.552097E-03
		B(p)				7.0815E-05	-4.397415E-02	6.798033
25	291 a	C(p)				-0.12050135	74.8477235	-11570.70855
55	320	D(p)				99.42487	-61776.2551	9556282.374
		E(p)				-39731.8435	24697080.13	-3820598231
		F(p)				6164676.683	-3834475285	59340000000

N°	Rango	Coef		$\alpha(\mathbf{p}) = \mathbf{G}\mathbf{p}^5 + \mathbf{H}\mathbf{p}^4 + \mathbf{I}\mathbf{p}^3 + \mathbf{J}\mathbf{p}^2 + \mathbf{K}\mathbf{p} + \mathbf{L}$									
ec	p(bar)	COCI.	G	Н	Ι	J	K	L					
		A(p)		8.61667E-13	-1.20873E-09	6.34645E-07	-1.47787E-04	0.012882128					
		B(p)		-3.27167E-09	4.59427E-06	-2.414303E-03	5.62567573E-01	-49.059555					
26	321 a	C(p)		4.38542E-06	-6.162708E-03	3.239579458	-754.7548892	65786.7235					
30	370	D(p)		-0.002809246	3.952255917	-2078.88385	484326.9317	-42189417.21					
		E(p)		0.762794212	-1075.765123	566603.8572	-132001922.6	11486773284					
		F(p)		-64.10080446	90983.88843	-48090814.61	11203598838	-972256000000					
		A(p)			6.66667E-13	-1.2E-09	6.04733E-07	-8.631E-05					
		B(p)			1.08333E-09	5.825E-07	-8.38183E-04	0.144632					
27	380 a	C(p)			9.38E-07	-4.41998E-03	2.8409064	-437.06276					
57	420	D(p)			-4.336875E-03	8.02116875	-4140.390125	609351.66					
		E(p)			2.785615833	-4510.714325	2198044.332	-317361069.1					
		F(p)			-549.5086867	847098.3953	-403925765.60	58003993276					
		A(p)				-1.17905E-09	1.06730E-06	-2.36977E-04					
		B(p)				5.17312E-06	-4.681362E-03	1.0383375					
20	421 a	C(p)				-8.919888E-03	8.07254875	-1786.63923					
30	480	D(p)				7.47120375	-6762.785475	1499379.705					
		E(p)				-3035.024123	2748606.594	-607719292.9					
		F(p)				478083.3136	-433733450.00	95712591735					
		A(p)				-8.03625E-12	-3.7553E-08	2.35416E-05					
		B(p)				2.75E-08	1.7694E-04	-0.1081					
20	481 a	C(p)				-3.4E-05	-0.323625	196.3036					
39	540	D(p)				0.0277375	275.84175	-164327.13					
		E(p)				-15.7699875	-108673.9408	68223578.51					
		F(p)				4564.43613	14705059.35	-10456295963					

N°	Rango	Coef	$\alpha(\mathbf{p}) = \mathbf{G}\mathbf{p}^5 + \mathbf{H}\mathbf{p}^4 + \mathbf{I}\mathbf{p}^3 + \mathbf{J}\mathbf{p}^2 + \mathbf{K}\mathbf{p} + \mathbf{L}$					
ec	p(bar)	COCI.	G	Η	Ι	J	K	L
		A(p)					-3.9814E-08	2.23549E-05
		B(p)					1.80471E-04	-0.101719388
40	541 a	C(p)					-0.3198625	183.92711
40	580	D(p)					276.19436	-156101.4326
		E(p)					-115688.093	67295870.67
		F(p)					18417274.45	-11114815444
		A(p)				3.21233E-09	-3.99954E-06	1.241296E-03
		B(p)				-1.41243E-05	1.7591249E-02	-5.461408028
41	581 a	C(p)				2.4143439E-02	-30.08189053	9346.004877
41	640	D(p)				-20.01272381	24947.49423	-7751362.58
		E(p)				8029.842154	-10015586.26	3115292832
		F(p)				-1245901.306	1554693265	-484166000000
		A(p)				1.05445E-10	-1.60215E-07	5.67155E-05
		B(p)				-4.58193E-07	7.03041E-04	-0.250623792
12	641 a	C(p)				7.73477E-04	-1.201696888	435.0498088
42	700	D(p)				-0.631810117	997.0959649	-361543.5165
		E(p)				248.253468	-399570.534	148383283.9
		F(p)				-37142.76	61051164.26	-23342185576
		A(p)			-4.55957E-13	1.1153E-09	-9.07758E-07	2.41621E-04
		B(p)			2.02432E-09	-4.9469E-06	4.02821E-03	-1.073386156
13	701 a	C(p)			-3.4811E-06	8.502806E-03	-6.932825312	1853.925725
43	780	D(p)			0.002882946	-7.042478254	5755.692393	-1540536.567
		E(p)			-1.141826385	2791.40188	-2289743.26	617143744.1
		F(p)			172.4831223	-422038.14	347568344.40	-94487369188

N°	Rango	C C		$\alpha(\mathbf{p}) = \mathbf{G}\mathbf{p}^5 + \mathbf{H}\mathbf{p}^4 + \mathbf{I}\mathbf{p}^3 + \mathbf{J}\mathbf{p}^2 + \mathbf{K}\mathbf{p} + \mathbf{L}$								
ec	de p(bar)	Coef.	G	Н	Ι	J	K	L				
		A(p)				8.26682E-10	-1.33684E-06	5.36132E-04				
		B(p)				-3.82016E-06	6.182497E-03	-2.481397587				
4.4	781 a	C(p)				6.86982E-03	-11.12885898	4473.442331				
44	840	D(p)				-5.975850313	9692.067293	-3896153.125				
		E(p)				2504.864156	-4068398.306	1638820270				
		F(p)				-401802.69	653547683.50	-263909000000				
		B(p)		-2.92857E-13	1.11874E-09	-1.611370E-06	1.037044E-03	-0.249552828				
	0.14	C(p)		9.12877E-10	-3.50580E-06	5.080753E-03	-3.294522078	801.6206669				
45	841 a	D(p)		-1.04038E-06	0.004001102	-5.813118695	3786.293902	-921508.035				
	1000	E(p)		5.13758E-04	-1.977097923	2877.395551	-1881801.369	461890432.5				
		F(p)		-9.0296096E-02	347.597420	-506501.4096	332404021.80	-82284440355				

					$\mathbf{s}(\mathbf{t},\mathbf{p})=\mathbf{z}$	$\mathbf{A}(\mathbf{p})\mathbf{t}^3 + \mathbf{B}(\mathbf{p})\mathbf{t}^2 + \mathbf{C}(\mathbf{p})\mathbf{t}$	+D(p)+E(p)1/t + F(p)	p)1/t ²	
N°	Rango					$\alpha(\mathbf{p})=\mathbf{G}\mathbf{p}^{6}+\mathbf{H}$	Hp ⁵ +Ip ⁴ +Jp ³ +Kp ² +L	p+M	
ec	de p(bar)	Coet.	G	Н	Ι	J	К	L	М
		A(p)					-8.82E-08	2.916E-09	1.27751E-09
1	0.01 a	B(p)					1.841E-04	-6.114E-06	-3.75454E-06
1	0.04	C(p)					-0.101638333	3.42485E-03	5.576377E-03
		D(p)					542.9688517	-48.34583425	9.400380812
		A(p)					-2.7375E-09	6.0775E-10	1.18529E-09
2	0.05 a	B(p)					7.9E-06	-1.6055E-06	-3.55031E-06
2	0.1	C(p)					-7.1075E-03	1.32395E-03	5.442323E-03
		D(p)					39.1141975	-12.17573195	8.749322469
		A(p)			6.81667E-11	-4.9278E-10	1.2875E-09	-1.24905E-09	1.66908E-09
2	02.2	B(p)			-1.54108E-07	1.12182E-06	-2.94596E-06	2.87409E-06	-4.6689E-06
3	0.2 a 5	C(p)			9.79368E-05	-7.20521E-04	1.90698E-03	-1.86178E-03	6.18027E-03
		D(p)			1.935126E-02	-0.17463742	0.626452823	-1.322833718	7.685163552
		A(p)				-1.79907E-10	2.98885E-09	-1.63832E-08	3.11309E-08
4	4.07	B(p)				3.96765E-07	-6.5822E-06	3.60109E-05	-6.93021E-05
4	4 a /	C(p)				-2.54176E-04	4.206686E-03	-2.293914E-02	4.726277E-02
		D(p)				0.04387748	-0.715044485	3.74477529	-0.335917736
		A(p)			1.76292E-11	-6.86827E-10	9.93665E-09	-6.32691E-08	1.50913E-07
5	8 . 12	B(p)			-4.10475E-08	1.59951E-06	-2.3146E-05	1.47402E-04	-3.52519E-04
5	0 a 1 2	C(p)			2.8664E-05	-1.117311E-03	0.016173823	-0.103029435	0.249520429
		D(p)			-5.818683E-03	0.226753538	-3.279224098	20.80045844	-42.99749316

Tabla N° 21. Ecuaciones de estado no convencionales obtenidas para s(t,p) para la fase VS.

N°	Rang	Coef	$\alpha(\mathbf{p}) = \mathbf{G}\mathbf{p}^6 + \mathbf{H}\mathbf{p}^5 + \mathbf{I}\mathbf{p}^4 + \mathbf{J}\mathbf{p}^3 + \mathbf{K}\mathbf{p}^2 + \mathbf{L}\mathbf{p} + \mathbf{M}$								
ec	p(bar		G	Н	Ι	J	К	L	М		
		A(p)					2.633E-11	-7.0456E-10	6.04868E-09		
6	13 a	B(p)					-6.0465E-08	1.60765E-06	-1.47331E-05		
0	15	C(p)					4.1184E-05	-1.08231E-03	0.013078881		
		D(p)					-6.825407E-03	0.139118456	4.85545699		
	16 .	C(p)				-3.5095E-06	1.88658E-04	-3.380625E-03	0.02195962		
7	10 a 19	D(p)				5.37348E-03	-0.288360253	5.133551482	-23.22008497		
	17	E(p)				-1.55075127	83.55165730	-1502.001471	8772.768304		
		C(p)		-1.7945E-07	2.01837E-05	-9.06917E-04	2.0349088E-02	-0.228000715	1.022325458		
8	20 a 25	D(p)		3.0003E-04	-3.3733138E- 02	1.515102616	-33.97952027	380.5020699	-1694.796614		
		E(p)		-0.114688699	12.894234	-579.075668	12985.07661	-145388.5592	650030.3934		
		C(p)		-2.60583E-07	3.73865E-05	-2.143383E-03	6.1377543E-02	-0.87789372	5.019225297		
9	26 a 31	D(p)		0.001139333	-1.64732766E- 01	9.520640262	-274.9276759	3966.754415	-22870.31009		
		E(p)		-0.055966059	8.068932191	-464.9052142	13380.56582	-192374.7065	1105032.578		
		C(p)		-1.815E-08	3.20373E-06	-2.25987E-04	7.962777E-03	-0.140155962	0.987604422		
10	32 a 38	D(p)	1.68757E-05	-3.515538E-03	3.04859612E- 01	-14.08623552	365.7632062	-5060.476606	29151.70064		
		E(p)	-6.369605E-03	1.327726791	-115.2099413	5326.784047	-138406.6703	1916198.325	-11043690.83		
	20.	C(p)				9.158330E-07	-1.10012E-04	4.399814E-03	-5.692105E-02		
11	39 a 42	D(p)				-1.242909E-03	0.149459621	-5.993514142	87.05553856		
		E(p)				2.57886917E-01	-30.99913645	1238.389707	-16758.4169		

N°	Rango de	Coef		$\alpha(p) = Gp^6 + Hp^5 + Ip^4 + Jp^3 + Kp^2 + Lp + M$					
ec	p(bar)	COEI.	G	Н	Ι	J	K	L	М
		C(p)				-4.0667E-08	5.4505E-06	-2.47661E-04	5.463592E-03
12	43 a 46	D(p)				7.7614E-05	-0.010276114	0.450643482	0.338879499
		E(p)				-1.9217E-02	2.5706906	-118.0654888	1525.8335
		C(p)			3.86417E-07	-7.5731E-05	5.56398E-03	-0.181629815	2.224440596
13	47 a 51	D(p)			-5.57769E-04	0.10932265	-8.032593278	262.2246956	-3202.157885
		E(p)			0.14311	-28.058047	2062.250993	-67348.82069	824282.0047
		C(p)				7.27233E-07	-1.19506E-04	6.539621E-03	-0.117557901
14	52 a 55	D(p)				1.34456E-03	-0.215106	11.46752328	-196.8536329
		E(p)				-0.3194576	51.03177585	-2720.181227	48021.0542
		C(p)			1.39375E-07	-3.20742E-05	2.767544E-03	-0.106121592	1.527466439
15	56 a 60	D(p)			-2.47147E-04	5.6896638E-02	-4.91105661	188.3683996	-2702.083784
		E(p)			0.095077725	-21.89282175	1890.108801	-72517.46463	1042914.965
		C(p)				3.7E-08	-7.0045E-06	4.37226E-04	-7.419939E-03
16	61 a 64	D(p)				-3.83053E-05	7.34852E-03	-0.468479834	16.78799565
		E(p)				0.008215017	-1.5784236	97.18615177	-2306.880585
		C(p)			-4.64583E-08	1.23219E-05	-1.225333E-03	5.4142692E-02	-0.895270598
17	65 a 69	D(p)			1.68216E-05	-4.302937E-03	0.412072762	-17.50614371	285.167852
		E(p)			0.029574829	-7.999613642	811.0956492	-36539.80289	616772.5531
		C(p)			7.16667E-09	-2.06567E-06	2.23193E-04	-0.010719162	0.194697793
18	70 a 74	D(p)			-1.1536E-05	3.326085E-03	-0.359442653	17.25791428	-303.794583
		E(p)			0.002622529	-0.757325291	81.96604029	-3944.553273	70864.18675
		C(p)				1.8415E-06	-4.19942E-04	0.031915128	-0.806809442
19	75 a 78	D(p)				-2.988314E-03	0.681483348	-51.79844495	1319.09476
		E(p)				1.031885167	-235.3081053	17881.38866	-453255.008

N°	Rango de	Coef					$\alpha(\mathbf{p}) = \mathbf{G}\mathbf{p}^6 + \mathbf{H}\mathbf{p}^5 + \mathbf{I}\mathbf{p}^4 + \mathbf{J}\mathbf{p}^3$	+Kp ² +Lp+M	
ec	p(bar)	0001.	G	Н	I	J	K	L	М
	100	C(p)				9.67587E-08	-4.27428E-05	6.285669E-03	-0.306459105
28	136 a 155	D(p)				-1.70593E-04	7.5401402E-02	-11.09729326	550.9162343
	155	E(p)				6.7116332E-02	-29.6641596	4363.807167	-214346.5909
	150	C(p)					-1.55516E-06	5.08069E-04	-0.040277902
29	156 a 170	D(p)					2.652315E-03	-0.868642644	78.22984145
	170	E(p)					-1.011310368	329.4711278	-27563.48412
		A(p)				3.288670E-12	-1.79866E-09	3.27822E-07	-1.99069E-05
		B(p)				-1.38916E-08	7.5976E-06	-1.384726E-03	8.4086629E-02
20	171 a	C(p)				2.2685E-05	-1.2406568E-02	2.2611596	-137.3037402
50	190	D(p)				-1.7816219E-02	9.743468	-1775.751486	107833.8908
		E(p)				6.721479733	-3675.750892	669888.9586	-40676567.93
		F(p)				-971.779364	531409.1657	-96844483.5	5880343226
		A(p)					-1.26067E-11	5.215830E-09	-5.336070E-07
		B(p)					5.348E-08	-2.21374E-05	2.265152E-03
21	191 a	C(p)					-8.75927E-05	3.6280183E-02	-3.71184
51	210	D(p)					6.910873E-02	-28.64854967	2940.1526
		E(p)					-26.18521333	10865.10807	-1113632.086
		F(p)					3802.732127	-1580353.448	162030698
		A(p)				5.15915E-15	-4.06631E-12	1.0594E-09	-8.51595E-08
		B(p)				-1.85424E-11	1.48972E-08	-3.95323E-06	3.19644E-04
32	211 a	C(p)				3.25521E-08	-2.5983E-05	6.87795E-03	-0.555766609
52	250	D(p)				-2.49406E-05	1.9998538E-02	-5.337461649	441.5103461
		E(p)				8.783265E-03	-7.1122351	1924.746986	-158593.2754
		F(p)				-1.180559517	966.0117445	-266417.932	22132780.42

N°	Rango de	Coef	$\alpha(\mathbf{p}) = \mathbf{G}\mathbf{p}^6 + \mathbf{H}\mathbf{p}^5 + \mathbf{I}\mathbf{p}^4 + \mathbf{J}\mathbf{p}^3 + \mathbf{K}\mathbf{p}^2 + \mathbf{L}\mathbf{p} + \mathbf{M}$										
ec	p(bar)	0001.	G	Η	Ι	J	K	L	М				
		A(p)					-1.882E-11	1.01498E-08	-1.36063E-06				
		B(p)					8.161E-08	-4.40226E-05	5.90196E-03				
22	251 a	C(p)					-1.3709E-04	7.3968112E-02	-9.91617608				
33	280	D(p)					1.11424E-01	-60.1405935	8071.58929				
		E(p)					-43.700415	23596.55995	-3165519.493				
		F(p)					6606.148282	-3569450.786	478897173.7				
		A(p)					1.265E-11	-7.4635E-09	1.10762E-06				
		B(p)					-5.614E-08	3.31197E-05	-4.915365E-03				
34	281 a	C(p)					9.6935E-05	-5.719165E-02	8.489791				
54	310	D(p)					-8.16657E-02	48.182763	-7144.97376				
		E(p)					33.381317	-19694.97703	2922800.287				
		F(p)					-5360.56198	3162731.568	-469510670				
		A(p)			-1.0917E-15	1.48733E-12	-7.60406E-10	1.72958E-07	-1.47635E-05				
		B(p)			4.275E-12	-5.82233E-09	2.97605E-06	-6.76908E-04	5.778903E-02				
35	311 a	C(p)			-7.0958E-09	9.65808E-06	-4.93376E-03	1.121608292	-95.708743				
55	360	D(p)			5.2192E-06	-7.10075E-03	3.626470083	-824.428305	70373.578				
		E(p)			-0.001898646	2.580033227	-1316.285858	299000.3989	-25505979.87				
		F(p)			0.250416058	-339.8144122	173178.7908	-39314450.18	3352884733				
		A(p)			7.83333E-18	-6.68E-15	-7.43833E-14	1.21148E-09	-2.36573E-07				
		B(p)			-1.225E-13	1.67983E-10	-8.13947E-08	1.60548E-05	-1.055311E-03				
36	361 a	C(p)			4.43333E-10	-6.5615E-07	3.57163E-04	-8.4622065E-02	7.4224255				
50	420	D(p)			-2.72917E-07	3.95858E-04	-2.09148708E-01	47.44854418	-3921.744601				
		E(p)			9.76183E-05	-0.140586517	73.39292768	-16325.95885	1312795.727				
		F(p)			-1.3594013E-02	19.44294104	-10025.67535	2181926.582	-169668454.6				

N°	Rango	Coof	$\alpha(p)=Gp^6+Hp^5+Ip^4+Jp^3+Kp^2+Lp+M$						
ec	p(bar)	Coel.	G	Н	Ι	J	К	L	М
		A(p)					1.31208E-12	-1.17904E-09	2.71305E-07
		B(p)					-5.52737E-09	4.96659E-06	-1.145579E-03
37	421 a	C(p)					8.76625E-06	-7.874715E-03	1.8242283
57	480	D(p)					-6.48425E-03	5.819635	-1347.9296
		E(p)					2.226623725	-1995.199552	467693.5699
		F(p)					-281.494525	250888.6106	-59709093.79
		A(p)					-1.00663E-13	4.02463E-11	9.2962E-09
		B(p)					3.31112E-10	-5.85847E-08	-7.37188E-05
38	481 a	C(p)					-4.7945E-07	4.489E-06	0.156659
50	540	D(p)					3.40875E-04	0.059723	-143.28317
		E(p)					-0.127158375	-36.2701575	65049.5325
		F(p)					21.07500875	4103.774025	-10289233.69
		A(p)						-5.665E-11	3.238E-08
		B(p)						2.55678E-07	-1.47285E-04
30	541 a	C(p)						-4.5049E-04	0.2631377
57	580	D(p)						0.38529	-220.1187
		E(p)						-160.2154895	95058.24591
		F(p)						25364.50965	-15649096.19
		A(p)					2.54612E-12	-3.14224E-09	9.65086E-07
		B(p)					-1.12038E-08	1.38345E-05	-4.252207E-03
40	581 a	C(p)					1.91642E-05	-2.367966E-02	7.2861015
40	640	D(p)					-1.5892788E-02	19.65180387	-6045.773876
		E(p)					6.378774893	-7894.400469	2434027.965
		F(p)					-989.7010077	1225649.443	-378717873.7

APÉNDICES

N°	Rango	Coof		$\alpha(p) = Gp^6 + Hp^5 + Ip^4 + Jp^3 + Kp^2 + Lp + M$							
ec	p(bar)	Coel.	G	Н	Ι	J	К	L	М		
		A(p)					8.30919E-14	-1.35696E-10	4.96131E-08		
		B(p)					-3.68802E-10	6.09305E-07	-2.25474E-04		
11	641 a	C(p)					6.3642E-07	-1.066553E-03	0.401635861		
41	700	D(p)					-5.31374E-04	0.905502957	-339.3418011		
		E(p)					0.214213733	-372.8032815	144890.8763		
		F(p)					-32.98698671	58619.63143	-23642778.2		
		A(p)					6.49906E-13	-9.80359E-10	3.64E-07		
	701 a 760	B(p)					-3.00031E-09	4.53283E-06	-1.69E-03		
12		C(p)					5.45714E-06	-8.258345E-03	3.083563728		
42		D(p)					-4.860139E-03	7.36722947	-2750.491906		
		E(p)					2.13069373	-3235.448451	1213761.348		
		F(p)					-356.2275445	541711.6758	-204122375		
		A(p)						-2.1505E-11	1.15907E-08		
		B(p)						1.18187E-07	-6.93344E-05		
13	761 a	C(p)						-2.44616E-04	0.152719671		
45	800	D(p)						0.237845441	-146.4560848		
		E(p)						-109.347783	71703.46862		
		F(p)						18749.92053	-12932540.25		

N°	Rango	Coof				α(p)= Gp ⁶	$+Hp^5+Ip^4+Jp^3+Kp^2+L_1$	p+M	
ec	de p(bar)	COEI.	G	Η	Ι	J	K	L	М
		A(p)						1.50663E-12	-6.85457E-09
		B(p)						-5.35833E-10	2.57931E-05
4.4	801 a	C(p)						-1.22989E-05	-0.033383359
44	840	D(p)						0.023438336	25.27879763
		E(p)						-16.5678248	-2606.827168
		F(p)						3691.022968	-871699.8931
		B(p)			-2.30952E-16	9.6531E-13	-1.50023E-09	1.03062E-06	-2.62565E-04
	0.41	C(p)			4.72817E-13	-2.13176E-09	3.51607E-06	-2.538596E-03	0.674384628
45	841 a 1000	D(p)			-1.81548E-10	1.15861E-06	-2.321373E-03	1.909822352	-548.0094651
	1000	E(p)			-2.94649E-08	-1.55895E-04	0.605472832	-637.2340237	210143.3324
		F(p)			0.0000415214	-0.101723595	64.93117657	11982.81686	-15725095.59

			u(v,p	$= \mathbf{A}(\mathbf{p})\mathbf{t}^4 + \mathbf{B}(\mathbf{p})$	$t^3 + C(p)t^2 + D(p)$)t+E(p)	
N°	Rango	Coof		α(p	o)=Fp ⁴ +Gp ³ +Hp	o ² +Ip+J	
ec	p(bar)	Coef.	F	G	Н	Ι	J
	0.01	C(p)			1.53981E-05	3.45E-10	-1.96E-12
1	0.01 a 0.04	D(p)			1.7E-03	0.2529	-6.00E-07
		E(p)			106.5716667	-11.92965	2034.613154
		C(p)			1.54575E-05	-2.13E-09	1.71E-10
2	0.05 a 0.1	D(p)			-2E-03	0.2531	-3.00E-05
	0.1	E(p)			95.5425	-22.81715	2036.679369
		C(p)	9.6488E-08	-8.9376E-07	1.68102E-05	-8.1793E-07	1.36892E-07
3	0.2 a 3	D(p)	-5E-04	2.7E-03	-1.3E-03	0.2516	1.2E-03
		E(p)	-0.43907867	4.509659997	-15.82737433	17.008961	2027.6413
	4 a 7	C(p)		6.75017E-06	-9.27055E-05	5.6545E-04	-9.80426E-04
4		D(p)		-0.0111	0.1799	-0.7044	1.6991
		E(p)		4.385573667	-72.242205	393.1959653	1318.49507
		C(p)		4.5765E-06	-1.07361E-04	1.083179E-03	-3.162686E-03
5	8 a 11	D(p)		-3.60E-03	0.0958	-0.5804	2.4004
		E(p)		0.6211	-16.1018445	137.4698805	1646.834353
		C(p)			1.6158E-05	-3.3245E-05	2.66178E-04
6	12 a 14	D(p)			-2.40E-03	0.3198	-4.524E-01
		E(p)			0.5434315	-14.4555455	2131.649488
		C(p)		-2.02864E-05	1.01315E-03	-1.6304883E-02	8.8477303E-02
7	15 a 18	D(p)		0.0115	-0.5645	9.4767	-50.042
		E(p)		-1.437529233	70.699714	-1154.277027	8293.41872

Tabla N° 22. Ecuaciones de estado no convencionales obtenidas para u(v,p) para la fase VS.

N°	Rango	Coef			$\alpha(p)=Fp^4+G_1$	p ³ +Hp ² +Ip+J	
ec	p(bar)	COCI.	F	G	Н	Ι	J
		C(p)			3.8055E-05	-9.28582E-04	9.391051E-03
8	19 a 21	D(p)			-0.0109	0.6916	-4.4119
		E(p)			1.0910735	-43.7126595	2475.51617
		C(p)		9.43908E-05	-6.650173E-03	1.56660562E-01	-1.225613
9	22 a 25	D(p)		-0.0301	2.1276	-49.845	392.69
		E(p)		2.756304833	-195.0599055	4595.430365	-34000.8812
		C(p)			-5.00E-05	3.55E-03	-4.84E-02
10	26 a 28	D(p)			0.0177	-0.7075	13.01
		E(p)			-1.4	76.1	1006.4
		C(p)			1.00E-04	-5.10E-03	7.65E-02
11	29 a 31	D(p)			-0.021	1.52	-19.037
		E(p)			1.4	-83.8	3294.6
		C(p)			-1.00E-04	7.60E-03	-1.26E-01
12	32 a 34	D(p)			0.0227	-1.2515	24.936
		E(p)			-1.35	89.75	551.4
		C(p)			-5.00E-05	4.65E-03	-8.32E-02
13	35 a 37	D(p)			0.0257	-1.5995	33.396
		E(p)			-1.35	97.65	277.6
		C(p)			-5.00E-05	5.05E-03	-9.82E-02
14	38 a 40	D(p)			0.0219	-1.4569	33.406
		E(p)			-1.35	105.75	-27.2
		C(p)			-1.00E-04	9.70E-03	-2.05E-01
15	41 a 43	D(p)			0.0305	-2.3195	54.274
		E(p)			-1.55	131.05	-725.6

N°	Rango	Coef			$\alpha(p)=Fp^4+Gp^3+I$	Hp ² +Ip+J	
ec	p(bar)	Coci.	F	G	Н	Ι	J
		C(p)			1.50E-04	-1.25E-02	2.87E-01
16	44 a 46	D(p)			-0.044	4.267	-91.491
		E(p)			2.4	-219	7039.8
		C(p)			5.00E-05	-3.45E-03	8.43E-02
17	47 a 49	D(p)			-0.025	2.654	-57.544
		E(p)			1.45	-138.55	5352.4
		C(p)			4.50E-04	-4.44E-02	1.1293
18	50 a 52	D(p)			-0.0715	7.5345	-185.24
		E(p)			2.65	-269.45	8891.7
		C(p)				1.40E-03	-3.29E-02
19	53 a 55	D(p)			-1.00E-14	2.79E-01	-1.285
		E(p)				-0.7	2082.1
		C(p)		-3.33333E-05	5.80E-03	-3.348667E-01	6.4638
20	56 a 59	D(p)		0.0035	-6.10E-01	3.5715E+01	-687.53
		E(p)		-0.133333333	23.15	-1340.516667	27932.9
		C(p)				1.60E-03	-4.34E-02
21	60 a 62	D(p)			-5.00E-03	8.92E-01	-20.233
		E(p)			0.15	-19.05	2649.7
		C(p)			4.50E-04	-5.565E-02	1.7773
22	63 a 65	D(p)			-6.35E-02	8.3595	-258.48
		E(p)			2.2	-280.5	10984.3
		C(p)			-8.88178E-16	1.70E-03	-0.0492
23	66 a 69	D(p)		0.0005	-1.01E-01	7.0875	-154.69
		E(p)		-0.066666667	13.5	-911.9333333	22594.2

N°	Rango	Coef	Coef. $\alpha(\mathbf{p}) = \mathbf{F}\mathbf{p}^4 + \mathbf{G}\mathbf{p}^3 + \mathbf{H}\mathbf{p}^2 + \mathbf{I}\mathbf{p} + \mathbf{J}$				
ec	p(bar)	0001.	F	G	Н	Ι	J
		C(p)		3.33333E-05	-7.15E-03	5.12916667E-01	-12.2318
24	70 a 73	D(p)		0.0015	-3.21E-01	23.185	-546.62
		E(p)		-0.05	10.7	-763.95	20243.8
		C(p)			-4.5E-04	7.015E-02	-2.6491
25	74 a 76	D(p)			6.55E-02	-9.6375	373.56
		E(p)			-2.15	324.65	-10206.7
		C(p)			-7.5E-04	1.1965E-01	-4.682
26	77 a 79	D(p)			9.75E-02	-15.013	597.73
		E(p)			-2.55	399.55	-13599.7
		C(p)			-5.5E-04	9.065E-02	-3.6402
27	80 a 82	D(p)			5.45E-02	-8.5025	351.85
		E(p)			-1.25	201.05	-6034.7
		C(p)			-7.5E-04	1.2865E-01	-5.4135
28	83 a 85	D(p)			8.25E-02	-13.645	585.48
		E(p)			-2.25	379.35	-13938.9
		C(p)		-4.44089E-16	-5.00E-05	1.075E-02	-0.4496
29	86 a 89	D(p)		0.003	-7.82E-01	68.151	-1967.2
		E(p)		-0.05	13	-1127.35	34655.7
		C(p)			-1.2E-03	2.214E-01	-10.093
30	90 a 92	D(p)			1.24E-01	-22.367	1031.9
		E(p)			-2.95	538.55	-22529.7
		C(p)		-5E-05	1.435E-02	-1.3704	43.6734
31	93 a 96	D(p)		0.0035	-1.008	97.041	-3097.9
		E(p)		-0.05	14.55	-1411.2	47664.59999

N°	Rango	Coof			α(Ι	$\mathbf{p} = \mathbf{F}\mathbf{p}^4 + \mathbf{G}\mathbf{p}^3 + \mathbf{H}\mathbf{p}^2 + \mathbf{I}\mathbf{p} + \mathbf{F}\mathbf{p}^4 $	-J
ec	p(bar)	Coel.	F	G	Н	Ι	J
		C(p)			-1.15E-03	2.2875E-01	-11.2389
32	97 a 99	D(p)			1.18E-01	-22.94	1140.1
		E(p)			-2.75	540.85	-24544.1
	100	C(p)			3.625E-04	-7.1125E-02	3.6259
33	100 a 104	D(p)			-3.66E-02	7.7212	-379.99
	104	E(p)			0.8625	-175.525	10973.7
	107	C(p)			5.5E-04	-1.167E-01	6.3447
34	105 a 110	D(p)			-2.89E-02	6.5637	-343.81
	110	E(p)			0.3375	-74.075	6105.8
	111 -	C(p)			3.13E-04	-6.9075E-02	3.9871
35	111 a 116	D(p)			-2.71E-02	6.5132	-360.09
	110	E(p)			0.5375	-123.675	9154.8
	117	C(p)			1.42857E-05	-1.5E-03	1.67285714E-01
36	11/a 125	D(p)			-1.80E-03	7.875E-01	-37.391
	123	E(p)			0.074285714	-19.58	3323.685714
	100	C(p)			-1.56E-04	0.04498	-2.9909
37	126 a 140	D(p)			0.0121	-2.9716	215.87
	140	E(p)			0.012	-2.74	2190.3
	1.4.1	C(p)			3.14E-04	-9.105E-02	6.8678
38	141 a 155	D(p)			-1.96E-02	6.1662	-444.22
	155	E(p)			0.288	-86.72	8556.4
	150	C(p)			-1.16E-03	3.8508E-01	-31.6113
39	156 a 170	D(p)			6.81E-02	-22.146	1843.3
	170	E(p)			-0.876	288.62	-21730.4

N°	Rango	Coaf			α (p)=	= Fp ⁴ +Gp ³ +Hp ² +Ip+J	
ec	p(bar)	Coel.	F	G	Н	Ι	J
		C(p)			7.24E-04	-2.5784E-01	23.3051
40	171 a 185	D(p)			-3.66E-02	13.497	-1194.3
	165	E(p)			0.422	-152.55	15796.7
	106	C(p)				7.94E-03	-1.1378
41	186 a 195	D(p)				9.32E-02	36.688
	195	E(p)				2.06	1609.7
	10.0	C(p)			2.9E-05	-9.6E-03	1.1483
42	196 a 220	D(p)			-1.1E-03	8.176E-01	-60.514
	220	E(p)			0.012	-5.56	2623.9
	221	C(p)				3.43E-03	-3.139E-01
43	221 a 240	D(p)				3.226E-01	-5.897
	240	E(p)				-0.25	2037.1
	241	C(p)			-5.61E-04	2.90E-01	-36.9063
44	241 a 270	D(p)			1.92E-02	-9.4917	1246
	270	E(p)			-0.1455	74.035	-7439.5
	200	C(p)			-1.87E-04	1.0186E-01	-13.1978
45	280 a 300	D(p)			5.9E-03	-2.7978	402.99
	500	E(p)			-0.034	17.29	-208.8
	201	C(p)			-1.519E-03	9.7845E-01	-156.9209
46	301 a 330	D(p)			4.4E-02	-27.916	4530.4
	550	E(p)			-0.2845	182.525	-27352.9
	221	C(p)			-5.10E-05	2.31E-02	-1.5174
47	351 a 360	D(p)			-9.60E-03	7.4905	-1314.4
	500	E(p)			0.004	-5.19	3175.9

N°	Rango	Coef		$\alpha(\mathbf{p}) = \mathbf{F}\mathbf{p}^4 + \mathbf{G}\mathbf{p}^3 + \mathbf{H}\mathbf{p}^2$		⁴ +Gp ³ +Hp ² +Ip+J	
ec	p(bar)	COEI.	F	G	Н	Ι	J
		B(p)				0.00359	-1.0955
10	361 a	C(p)				-0.103	30.8432
48	380	D(p)				1.301	-274.78
		E(p)				-2.81	2675.5
		B(p)				0.00398	-1.2456
40	381 a	C(p)				-1.08E-01	32.598
49	400	D(p)				1.28	-266.74
		E(p)				-2.57	2583.3
		B(p)				0.00509	-1.7011
50	401 a 440	C(p)				-1.26E-01	40.056
50		D(p)				1.33	-286.97
		E(p)				-2.41	2517.5
		B(p)				0.00569	-2.1081
51	441 a	C(p)				-1.3335E-01	47.423
51	480	D(p)				1.345	-330.31
		E(p)				-2.39	2607
		B(p)				0.007205	-2.8506
50	481 a	C(p)				-1.558E-01	58.419
52	520	D(p)				1.409	-361.88
		E(p)				-2.305	2565.5
		B(p)			2.4625E-05	-0.0183525	3.7854
52	521 a	C(p)			-3.4875E-04	2.07925E-01	-36.506
33	580	D(p)			1.20E-03	1.625E-01	-30.92
		E(p)			-1.25E-04	-2.0875	2485.7

N°	Rango	Coef			$\alpha(\mathbf{p}) = \mathbf{F}\mathbf{p}^4 + \mathbf{G}\mathbf{p}^3$	³ +Hp ² +Ip+J	
ec	p(bar)	COCI.	F	G	Н	Ι	J
	_	B(p)				0.011587939	-5.314165895
54	581 a	C(p)				-2.12565529E-01	90.27590111
54	620	D(p)				1.55904206	-446.1872602
		E(p)				-2.19348525	2504.834867
		A(p)		2.66386E-07	-5.50669E-04	0.374282531	-84.33371455
	(21	B(p)		-7.7655E-06	1.5903745E-02	-10.73970841	2410.20324
55	621 a 700	C(p)		7.67934E-05	-1.56286432E-01	105.0934716	-23536.58445
	700	D(p)		-3.12265E-04	6.32815218E-01	-424.0855725	95020.26931
		E(p)		4.40423E-04	-8.90164477E-01	596.1084259	-131694.1566
		A(p)		7.59092E-07	-1.731551E-03	1.308886267	-328.9964283
	701	B(p)		-1.86877E-05	4.2481167E-02	-32.02854623	8037.563225
56	701 a 780	C(p)		1.57815E-04	-3.57865116E-01	269.331469	-67535.08128
	700	D(p)		-5.2519E-04	1.188900295	-893.287207	224063.6012
		E(p)		5.41882E-04	-1.225199591	919.6752641	-228876.3234
		A(p)		7.59092E-07	-1.731551E-03	1.308886267	-328.9964283
	701	B(p)		-1.86877E-05	4.2481167E-02	-32.02854623	8037.563225
57	/01 a 780	C(p)		1.57815E-04	-3.57865116E-01	269.331469	-67535.08128
	700	D(p)		-5.2519E-04	1.188900295	-893.287207	224063.6012
		E(p)		5.41882E-04	-1.225199591	919.6752641	-228876.3234
		A(p)			-1.98453E-05	0.023464602	-7.54339407
	701	B(p)			2.93792E-04	-0.307343711	93.60899384
58	/81 a 840	C(p)			-1.424255E-03	1.17104488	-337.7436379
	040	D(p)			2.555819E-03	-0.63732123	340.164119
		E(p)			-1.226531E-03	-1.226874709	1911.808347

N°	Rango	Coef			α(p) :	=Fp ⁴ +Gp ³ +Hp ² +Ip+J	
ec	p(bar)	C001.	F	G	Н	Ι	J
		A(p)				-0.010965	7.3893
	841 a 880	B(p)				0.20025	-125.67
59		C(p)				-1.275	712.85
		D(p)				3.705	-1505.30
		E(p)				-3.25835	2753.308
		A(p)			-2.32557E-05	0.029656852	-10.35438398
	001	B(p)			2.72483E-04	-0.272495131	79.38960222
60	881 a 1000	C(p)			-8.86453E-04	0.235914055	69.6657262
	1000	D(p)			2.46522E-04	3.42023943	-1446.412455
		E(p)			1.644687E-03	-6.318599548	4174.516128

				h	$\mathbf{h}(\mathbf{v},\mathbf{p}) = \mathbf{A}(\mathbf{p})\mathbf{t}^4 + \mathbf{B}(\mathbf{p})\mathbf{t}^4$	$^{3}+ C(p)t^{2}+D(p)t+2$	E(p)	
N°	Rango	Coof			α(p) =	Fp ⁵ +Gp ⁴ +Hp ³ +Ip ²	²+Jp+K	
ec	de p(bar)	Coel.	F	G	Н	Ι	J	K
	0.01 a	C(p)			5.86783E-06	1.49837E-05	8.68597E-09	-4.9776E-11
1	0.01 a	D(p)			-0.987616667	7.18115E-02	0.351528487	7.4256E-06
	0.00	E(p)			35331.4	-2394.333	37.27291	2034.34789
	0.07	C(p)					2.78369E-06	-1.23772E-07
2	0.07 a	D(p)					0.35233205	1.3281E-05
	0.1	E(p)					1.4703	2035.29717
		C(p)			-4.12827E-07	1.59935E-05	-2.46473E-07	1.38E-09
3	0.2 a 2	D(p)			2.77793E-04	0.002819722	0.348576453	1.926094E-03
		E(p)			2.507524	-12.821882	15.471804	2027.845164
	3 a 6	C(p)			-4.11033E-06	7.10575E-05	-2.4695E-04	3.44996E-04
4		D(p)			8.88622E-03	-0.121689301	0.892643681	-7.45851735E-01
		E(p)			-4.3135445	58.988528	-258.4968475	2383.520356
		C(p)		-9.50833E-08	4.19233E-06	-5.06339E-05	4.36711E-04	-1.03537E-03
5	7 a 11	D(p)		-5.99467E-04	1.9220897E-02	-0.229114876	1.56295286	-2.394088133
		E(p)		8.13270E-02	-2.477478416	27.95145903	-139.4886235	2296.437958
		C(p)			-5.214E-06	2.23854E-04	-2.779904E-03	1.2327498E-02
6	12 a 15	D(p)			0.003423039	-0.137669095	2.196104706	-8.202093506
		E(p)			-0.530015667	21.390052	-286.9747333	3315.849398
		C(p)			1.14547E-05	-6.0741E-04	1.1242066E-02	-6.7421377E-02
7	16 a 19	D(p)			-6.4108860E-03	0.348341854	-5.936685083	37.7369717
		E(p)			0.830678833	-45.0646035	812.8675897	-2835.768208

Tabla N° 23. Ecuaciones de estado no convencionales obtenidas para h(v,p) para la fase VS.

N°	Rango	Coef		$\alpha(\mathbf{p}) = \mathbf{F}\mathbf{p}^5 + \mathbf{G}\mathbf{p}^4 + \mathbf{H}\mathbf{p}^3 + \mathbf{I}\mathbf{p}^2 + \mathbf{J}\mathbf{p} + \mathbf{K}$								
ec	p(bar)	C001.	F	G	Н	Ι	J	K				
		C(p)			2.45455E-05	-1.548938E-03	3.3195308E-02	-0.234655204				
8	20 a 23	D(p)			-1.0325546E-02	0.65793373	-13.61204434	98.75150909				
		E(p)			0.969119833	-61.752612	1311.1618	-7237.497203				
		C(p)			5E-05	-3.8E-03	9.695E-02	-0.8206				
9	24 a 27	D(p)			-1.3566667E-02	1.03605	-25.99668333	223.2072				
		E(p)			1.083333333	-82.75	2105.366667	-15802.8				
		C(p)			5E-05	-4.4E-03	0.12985	-1.272				
10	28 a 31	D(p)			-1.506667E-02	1.3365	-39.13743333	388.69				
		E(p)			0.916666667	-81.3	2402.283333	-21607.7				
		C(p)		-8.3333E-06	1.166667E-03	-6.1141667E-02	1.4226833333	-12.3927				
11	32 a 36	D(p)		1.6916667E-02	-2.292333333	116.4165833	-2625.774167	22202.297				
		E(p)		-8.333333E-03	1.633333334	-108.7916669	3042.266672	-28692.00004				
		C(p)			-3.3333E-05	3.85E-03	-1.47016667E-01	1.87780				
12	37 a 40	D(p)			1.5E-02	-1.7305	66.8715	-851.888				
		E(p)			-0.91666667	105.75	-4064.433333	54086.7				
		C(p)			1.50E-04	-1.9E-02	8.0335E-01	-11.3116				
13	41 a 44	D(p)			-3.85E-02	4.882	-205.9655	2905.947				
		E(p)			2.1166666667	-268.3	11334.58333	-157546.5				
		C(p)		2.50E-05	-4.716667E-03	3.33625E-01	-10.48433333	123.5251				
14	45 a 49	D(p)		-7.916667E-03	1.4885	-104.9210833	3286.3845	-38582.466				
		E(p)		0.3625	-68.05833334	4790.3875	-149817.5917	1758640.9				
		C(p)			-1.5E-04	2.32E-02	-1.19425	20.49930				
15	50 a 53	D(p)			2.7E-02	-4.175	215.484	-3693.96				
		E(p)			-1.1	170.1	-8765	152544.2				
N°	Rango	Coef		($\alpha(\mathbf{p}) = \mathbf{F}\mathbf{p}^5 + \mathbf{G}\mathbf{p}^4 + \mathbf{H}$	Ip ³ +Ip ² +Jp+K						
----	---------	-------	------------------	----------------	---	--	---------------	---------------				
ec	p(bar)	0001.	F	G	Н	Ι	J	K				
		C(p)	-1E-05	2.8375E-03	-3.21975E-01	18.2628125	-517.8093651	5871.087401				
16	54 a 59	D(p)	2.2E-03	-0.624291667	70.84324999	-4018.501708	113942.2095	-1291946.7230				
		E(p)	-9.666666667E-02	27.42916667	-3112.408334	176537.6209	-5005337.746	56753058.1				
		C(p)		-3.75E-05	9.225E-03	-8.508125E-01	34.869125	-535.769				
17	60 a 64	D(p)		5.041667E-03	-1.237916667	113.9534583	-4660.519583	71470.01199				
		E(p)		-0.1125	27.52499999	-2524.537499	102872.625	-1569375.7				
		C(p)		-4.16667E-06	1.108333E-03	-1.10545833E-01	4.901641667	-81.48770001				
18	65 a 69	D(p)		1.25E-03	-0.3355	33.76425	-1509.658	25320.32				
		E(p)		-2.9166667E-02	7.808333333	-783.8208327	34965.44164	-582784.2995				
	70 a 75	C(p)	-2.75E-05	9.929167E-03	-1.433770833	103.5009208	-3735.138252	53908.5904				
19		D(p)	-1.6166667E-03	0.5825	-83.94408332	6048.016999	-217853.1828	3138591.642				
		E(p)	5E-02	-18.02083331	2597.75833	-187219.7289	6745798.732	-97213091.56				
		C(p)			-6.16667E-04	1.4345E-01	-11.119533333	287.3023				
20	76 a 79	D(p)			7.75E-02	-18.028	1398.0565	-36116.181				
		E(p)			-1.9666666667	457.45	-35462.88333	918315.9				
		C(p)		-1.083333E-04	3.5616667E-02	-4.390241667	240.46833333	-4938.228				
21	80 a 84	D(p)		7.666667E-03	-2.524666667	311.6933333	-17098.35433	351662.116				
		E(p)		-8.75E-02	28.975	-3596.4625	198314.075	-4096916.3				
		C(p)			1.83333E-04	-4.725E-02	4.06116667	-116.3045				
22	85 a 88	D(p)			-1.85E-02	4.768	-409.2165	11726.18				
		E(p)			0.4	-103	8839.9	-250816.9				
		C(p)			-8.33333E-04	2.2625E-01	-20.47111667	617.3884				
23	89 a 92	D(p)			8.45E-02	-22.94	2076.0605	-62599.659				
	07 a 72	E(p)			-2	543	-49136.3	1484011.7				

N°	Rango	Coef			α(p)= I	Fp ⁵ +Gp ⁴ +Hp ³ +Ip ² +Jp	→+K	
ec	p(bar)	0001.	F	G	Н	Ι	J	K
		C(p)			-6.333333E-04	1.7995E-01	-17.03961667	537.8444
24	93 a 96	D(p)			6.9E-02	-19.602	1856.475	-58581.87
		E(p)			-1.4	397.75	-37665.65	1190913.7
	07	C(p)			4.00E-04	-1.1875E-01	11.75315	-387.6765
25	97 a 100	D(p)			-4.0666667E-02	12.076	-1194.878333	39430.388
	100	E(p)			0.55	-163.45	16189.9	-532443.8
	101	C(p)			-2.91667E-05	8.7125E-03	-8.62458333E-01	28.4203
26	101 a 108	D(p)			-6E-03	1.922875	-204.90575	7298.784
	108	E(p)			0.158333333	-50.5	5366.466667	-187958.9
	100	C(p)		-3.20313E-05	1.4711458E-02	-2.532959375	193.7689792	-5556.8731
27	109 a 118	D(p)		2.880208E-03	-1.322520833	227.6546042	-17410.96217	499208.942
		E(p)		-0.0609375	27.96666667	-4811.65625	367817.6833	-10538638.3
	110	C(p)		-2.93333E-07	1.43467E-04	-2.6168667E-02	2.11161333	-63.4565
28	119 a 140	D(p)		3.56E-05	-1.7909333E-02	3.37123	-281.0302667	8786.62
	140	E(p)		-5.8E-04	0.291266667	-54.7235	4558.508334	-139998.8
	1.4.1	C(p)			-4.46667E-05	2.0424E-02	-3.1079233333	157.6735
29	141 a 160	D(p)			2.965333E-03	-1.3547	206.5731667	-10457.598
	100	E(p)			-4.186667E-02	19.134	-2913.463333	149832.8
	1.61	C(p)			-1.07E-04	5.5654E-02	-9.62493	554.8396
30	161 a 180	D(p)			5.76E-03	-2.99116	518.0168	-29853.093
	100	E(p)			-7.0E-02	36.366	-6295.92	365257.6
	101	C(p)			-1.51867E-04	8.762E-02	-16.84188333	1078.9002
31	181 a 200	D(p)			7.006667E-03	-4.04448	778.3450333	-49865.16
51	200	E(p)			-7.36E-02	42.504	-8179.4	526515.1

N°	Rango	Coef			$\alpha(\mathbf{p})=\mathbf{F}\mathbf{p}^5+\mathbf{G}\mathbf{p}^4+\mathbf$	-Hp ³ +Ip ² +Jp+K		
ec	p(bar)	0001.	F	G	Н	Ι	J	K
	201	C(p)		6.45833E-08	-5.95083E-05	2.0547542E-02	-3.147569167	180.7586
32	201 a	D(p)		-2.29167E-06	2.114E-03	-0.730570833	112.5204	-6449.221
	230	E(p)		1.8333333E-05	-1.695E-02	5.871166667	-903.2349999	54065.49999
	0.5.1	C(p)		2.21875E-06	-2.5085580E-03	1.062315625	-199.7005292	14061.4561
33	251 a 300	D(p)		-7.27083E-05	8.2129167E-02	-34.75012917	6527.977083	-459304.16
	300	E(p)		5.56667E-04	-6.28566667E-01	265.8673333	-49925.96333	3513947.3
	201	C(p)	2.02833E-08	-3.46075E-05	2.3608058E-02	-8.048636748	1371.373446	-93420.95098
34	301 a 360	D(p)	-6.25E-07	1.065375E-03	-0.726091667	247.3191124	-42101.11207	2865470.769
	300	E(p)	4.38333E-06	-7.46125E-03	5.078016666	-1727.274375	293635.7195	-19956211.3
	361 a	B(p)		5.41667E-09	-8.35833E-06	4.843958E-03	-1.245759167	119.8833
25		C(p)		-1.28417E-07	1.97812E-04	-1.14316258E-01	29.269357830	-2800.1398
55	420	D(p)		2.91667E-07	-4.275E-04	0.233570833	-54.94425002	4784.95
		E(p)		1.58333E-06	-2.571667E-03	1.568241668	-428.0688337	45917.5003
		B(p)		3.32552E-08	-6.5201E-05	4.7922198E-02	-15.64278458	1913.2743
26	421 a	C(p)		-1.0125E-06	1.985292E-03	-1.4590	476.1484333	-58223.903
50	520	D(p)		9.36198E-06	-1.8355104E-02	13.48630521	-4399.631958	537896.59
		E(p)		-2.60677E-05	5.1088542E-02	-37.51932292	12234.88958	-1493036.9
		B(p)		1.70909E-09	-4.04302E-06	3.606890E-03	-1.427330861	211.3507412
27	521 a	C(p)		-2.11759E-09	5.98201E-06	-6.44772E-03	2.898457854	-472.8381668
37	620	D(p)		4.33201E-08	-1.06961E-04	9.9509116E-02	-39.67233393	6018.757494
		E(p)		-2.67924E-08	6.85341E-05	-6.491389E-02	24.82150448	-1666.297644

N°	Rango	Coef.			α(p)=	Fp ⁵ +Gp ⁴ +Hp ³ +Ip ² +Jp	+K	
ec	p(bar)	Coel.	F	G	Н	Ι	J	K
		A(p)		-5.91322E-09	1.61939E-05	-1.6632632E-02	7.588411944	-1297.42802
38		B(p)		1.63167E-07	-4.46992E-04	4.59116668E-01	-209.4346637	35800.82034
	621 a	C(p)		-1.58566E-06	4.344071E-03	-4.461150701	2034.484224	-347686.156
	720	D(p)		6.37281E-06	-1.7457175E-02	17.92333615	-8171.006047	1396170.732
		E(p)		-8.86917E-06	2.429298E-02	-24.93698621	11366.62058	-1940048.141
		A(p)			5.62594E-07	-1.296138E-03	0.987190905	-249.7455613
39		B(p)			7.86486E-06	-1.8178773E-02	14.15564435	-3681.139754
	721 a 800	C(p)			-6.5465E-05	1.52157948E-01	-118.93105	30969.34392
		D(p)			2.17535E-04	-5.07479329E-01	398.0693884	-103500.50
		E(p)			-2.25409E-04	0.527207255	-414.1657447	109474.372
		A(p)					-9.478974E-03	6.126638286
	0.01	B(p)					1.80344702E-01	-108.7545493
40	801 a 840	C(p)					-1.19284722	643.0016648
	040	D(p)					3.70161	-1417.2524
		E(p)					-3.258000899	2752.612755
		A(p)		-1.07976E-09	3.99424E-06	-5.557E-03	3.432690666	-794.1179252
	0.41	B(p)		1.86752E-08	-6.93539E-05	9.6752784E-02	-59.85996691	13865.25649
41	841 a 1000	C(p)		-1.04473E-07	3.89667E-04	-5.45404261E-01	338.1050579	-78475.7528
	1000	D(p)		2.175E-07	-8.16984E-04	1.150146399	-715.2500888	166907.5808
		E(p)		-1.03224E-07	3.97592E-04	-0.57201608	361.159641	-84009.77655

	$s(v,p) = A(p)t^{B(p)} // s(v,p) = C(p)t^4 + D(p)t^3 + E(p)t^2 + F(p)t + G(p)$										
N°	Rango	Coef			$\alpha(p) = Hp^5 + Ip^4 + J$	Jp ³ + Kp ² +Lp+M					
ec	p(bar)	C001.	Н	Ι	J	K	L	М			
1	0.01 a	A(p)	25785.38358	-8438.740075	1167.328041	-91.00744041	4.861681215	0.849198413			
1	0.1	B(p)	13740.07936	-4486.607142	571.3293649	-36.58630951	1.380698412	0.18582381			
2	0.2 . 2	A(p)		-6.906667E-03	5.9096667E-02	-0.191433333	0.340133333	0.99104			
2	0.2 a 3	B(p)		-3.46667E-04	3.2E-03	-1.2633333E-02	0.0302	0.22448			
2	4 - 7	A(p)			5.133333E-03	-8.72E-02	0.523266667	0.3356			
3	4 a /	B(p)			-4.833333E-04	7.80E-03	-3.9316667E-02	0.3276			
4	9 o 12	A(p)		4.049167E-03	-0.157955	2.292640833	-14.655955	36.3187			
4	0 a 1 2	B(p)		4.583330E-05	-1.791667E-03	2.5954167E-02	-0.163908333	0.6504			
5	13 a 17	A(p)		-4.1667E-06	3.75E-04	-1.1395833E-02	0.162425	0.7334			
5	13 a 17	B(p)			-1.66667E-05	7.00E-04	-8.983333E-03	0.3114			
6	18 2 23	A(p)	-8.33333E-06	8.875E-04	-0.0375	0.7864125	-8.175391672	35.35090003			
0	10 a 23	B(p)	3.33333E-06	-3.45833E-04	1.4308333E-02	-0.295154166	3.036688323	-12.19129995			
7	24 a 29	A(p)	-1.1E-04	1.4608333E-02	-0.775216667	20.54784167	-272.0231234	1440.584801			
/	24 a 27	B(p)	1.33333E-05	-1.770833E-03	9.3975E-02	-2.490879164	32.97636196	-174.1623998			
8	30 a 35	A(p)	-6.66667E-06	1.020833E-03	-6.2158334E-02	1.879829196	-28.19848547	169.380603			
0	50 a 55	B(p)	8.33333E-07	-1.33333E-04	8.5125E-03	-0.271066666	4.305386625	-27.00469971			
9	36 a 41	A(p)	-3.00E-05	5.804167E-03	-4.48841668E-01	17.34159587	-334.743729	2584.374805			
	50 a +1	B(p)	1.66667E-06	-3.16667E-04	2.4041666E-02	-0.911683325	17.2680565	-130.4091987			
10	42 a 45	A(p)			-4.666667E-04	6.055E-02	-2.608283333	39.3105			
10	τ <i>2</i> α τJ	B(p)			6.66677E-05	-8.65E-03	0.374083333	-5.1054			
11	46 a 50	A(p)		1.6250E-04	-3.115833E-02	2.2394375	-71.49554166	857.4223999			
11	-0 a 30	B(p)		4.16667E-06	-8.08333E-04	5.8795833E-02	-1.900291668	23.31240002			

Tabla N° 24. Ecuaciones de estado no convencionales obtenidas para s(v,p) para la fase VS.

N°	Rango	Coef			$\alpha(\mathbf{p})=\mathbf{H}\mathbf{p}^{5}$	+ Ip^4 + Jp^3 + Kp^2 + Lp	p+M	
ec	p(bar)	0001.	Η	Ι	J	K	L	М
10	51 . 54	A(p)			-6.83333E-04	0.1085	-5.732516667	102.8769
12	51 a 54	B(p)			5E-05	-7.95E-03	0.4213	-7.1535
12	55 - 59	A(p)			-4.66667E-04	7.98E-02	-4.53933333	88.0257
15	4 59 a 63	B(p)			5.00E-05	-8.55E-03	0.4873	-8.9689
14	50 ~ (2	A(p)		4.58333E-05	-1.1341667E-02	1.052454166	-43.39695832	672.936
14	59 a 65	B(p)		-1.25E-05	3.058333E-03	-0.2805875	11.44054166	-174.6294
15	(1, 0)	A(p)		4.58333E-05	-1.2458333E-02	1.269254166	-57.43484164	976.0738995
15	64 a 68	B(p)		-2.08333E-05	5.541667E-03	-0.552729167	24.49960834	-406.8977
16	(0, 72)	A(p)			-6.6667E-04	0.14195	-10.06608333	239.9659
10	09 a 72	B(p)			8.33333E-05	-1.775E-02	1.260066667	-29.5246
17	73 a 75	A(p)				-3E-03	0.449	-14.5372
17	/5 a /5	B(p)				3.50E-04	-5.155E-02	2.186
10	76 - 70	A(p)			-1.45E-03	0.3371	-26.11075	676.1135
10	70 a 79	B(p)			1.50E-04	-3.49E-02	2.70605	-69.6355
10	<u> 20 a 24</u>	A(p)		-1.79167E-04	5.8341667E-02	-7.123670835	386.5692084	-7864.003501
19	oU a o4	B(p)		8.33333E-06	-2.6833333E-03	0.323941667	-17.37736667	349.7833
20	95 a 90	A(p)		-4.79167E-04	1.6729167E-01	-21.90132084	1274.276008	-27799.2804
20	05 8 09	B(p)		2.5E-05	-8.6833333E-03	1.130925	-65.45906665	1421.0113
21	00 - 04	A(p)		1E-04	-3.736667E-02	5.235100001	-325.9107334	7609.333601
21	90 a 94	B(p)		-8.3333E-06	3.133333E-03	-0.441641667	27.65641666	-648.9435999
22	05 0 09	A(p)			-9.50E-04	0.273	-26.14205	836.586
	<i>95</i> a 98	B(p)			1.00E-04	-0.0287	2.7453	-87.2375
22	99 a	A(p)			7.25833E-04	-0.2202425	22.27728167	-748.6968
23	104	B(p)			1.16667E-05	-3.495E-03	0.34879333	-11.3102

N°	Rango	Coef			$\alpha(\mathbf{p}) = \mathbf{H}$	$\mathbf{Ip^5} + \mathbf{Ip^4} + \mathbf{Jp^3} + \mathbf{Kp^2} + \mathbf{I}$	∠p+M	
ec	p(bar)	COEI.	Η	Ι	J	K	L	М
24	105 a	A(p)			-1.97917E-04	6.4275E-02	-6.950108333	252.7163
24	112	B(p)			1.66667E-05	-5.4E-03	0.582933333	-20.6815
25	113 a	A(p)				-1.5125E-03	0.356925	-18.5127
23	118	B(p)				1.625E-04	-3.7825E-02	2.4852
26	119 a	A(p)		4.66667E-08	-7.4E-06	-1.867167E-03	0.454495	-21.9855
20	140	B(p)		2.66667E-08	-1.57333E-05	3.429333E-03	-0.328236667	11.9478
27	141 a	A(p)			6.18667E-05	-2.8294E-02	4.315463333	-216.7816
27	160	B(p)			-7.06667E-06	3.2320E-03	-0.492523333	25.2886
20	161 a	A(p)			5.12E-05	-2.6382E-02	4.53353	-256.9705
20	180	B(p)			-6.26667E-06	3.23E-03	-0.554773333	32.0285
20	181 a	A(p)			9.90667E-05	-5.719E-02	11.00523333	-702.998
29	200	B(p)			-1.13333E-05	6.542E-03	-1.258406667	80.9387
20	201 a	A(p)			-2E-07	1.16E-04	-1.867E-02	3.68
30	240	240 B(p)			5E-08	-3.20E-05	6.765E-03	-0.203
21	241 a	A(p)			-1.725E-05	1.36145E-02	-3.57556	315.6565
51	280	B(p)			2.08333E-06	-1.645E-03	0.432521667	-37.6014
20	281 a	A(p)			-8.86667E-06	7.9595E-03	-2.376678333	239.3437
52	320	B(p)			1.05E-06	-9.425E-04	0.28166	-27.7585
22	321 a	A(p)			3.33E-08	-5.45E-05	2.827167E-02	-1.2422
33	360	B(p)			-8.67E-19	2.00E-06	-1.46E-03	0.5294
		D(p)		-1.41667E-11	2.25833E-08	-1.34716E-05	3.569612E-03	-0.354604
24	361 a	E(p)		-1.29167E-10	1.96917E-07	-1.12652E-04	2.8496758E-02	-2.689959
54	420	F(p)		1.10833E-09	-1.7185E-06	9.98719E-04	-0.25595485	24.63387001
		G(p)		7E-09	-1.11133E-05	6.6162E-03	-1.754189667	178.6751

N°	Rango	Coef				$\alpha(\mathbf{p}) = \mathbf{H}\mathbf{p}^5 + \mathbf{I}\mathbf{p}^4 + \mathbf{J}\mathbf{I}$	p ³ + Kp ² +Lp+M	
ec	p(bar)	C0C1.	Η	I	J	K	L	М
		D(p)			-1.90833E-09	2.846E-06	-1.404042E-03	0.2300675
25	421 a	E(p)			6.69583E-08	-9.86838E-05	4.8209442E-02	-7.837975
33	500	F(p)			-7.27958E-07	1.061965E-03	-0.514045017	83.107396
		G(p)			2.29525E-06	-3.326288E-03	1.60248885	-253.24581
		D(p)			-2.08333E-10	3.7375E-07	-2.09492E-04	3.8372E-02
26	501 a	E(p)			7.08333E-09	-1.20875E-05	6.583417E-03	-1.19018
30	580	F(p)			-5.77083E-08	9.59625E-05	-5.1000667E-02	9.30879
		G(p)			1.41458E-07	-2.32112E-04	0.123634667	-18.14958
		D(p)				3.92305E-07	-4.76353E-04	0.14712058
27	541 a	E(p)				-8.40794E-06	1.0243273E-02	-3.187843989
57	640	F(p)				5.51676E-05	-6.7199776E-02	21.29859057
57		G(p)				-1.10008E-04	0.135502326	-38.77443407
		C(p)			-2.02744E-09	4.12924E-06	-2.809567E-03	0.637705959
	641	D(p)			5.32574E-08	-1.08641E-04	7.4016304E-02	-16.81479188
38	641 a 720	E(p)			-4.91548E-07	1.003969E-03	-0.684665042	155.6178214
	720	F(p)			1.81348E-06	-3.707654E-03	2.530827835	-575.1646503
		G(p)			-1.65263E-06	3.384281E-03	-2.314420113	530.6632035
		C(p)			4.98272E-09	-1.14694E-05	8.784619E-03	-2.240499156
	701	D(p)			-1.12471E-07	2.58693E-04	-0.198007605	50.47771664
39	/21 a 800	E(p)			8.54428E-07	-1.963984E-03	1.502342075	-382.846369
	000	F(p)			-2.48576E-06	5.710119E-03	-4.364645803	1112.132757
	-	G(p)			2.3474E-06	-5.389377E-03	4.117218334	-1044.900746

N°	Rango	Coef			$\alpha(\mathbf{p}) = \mathbf{H}\mathbf{p}^5 + \mathbf{I}\mathbf{p}^4 +$	Jp ³ + Kp ² +Lp+M	
ec	p(bar)	COEI.	Ηl	J	K	L	М
		C(p)		3.78246E-11	-1.28837E-07	1.21985E-04	-3.655754E-02
40	001	D(p)		-2.71160E-09	7.33944E-06	-6.314293E-03	1.792775508
	801 a 880	E(p)		1.70980E-08	-4.54692E-05	3.8332897E-02	-10.77719838
		F(p)		-3.64747E-08	9.56324E-05	-7.7970935E-02	22.03146827
		G(p)		2.12708E-08	-5.47412E-05	4.2061967E-02	-7.966584
		C(p)			-9.82E-09	-1.877E-06	6.083E-03
	001	D(p)			-6.10640E-08	4.64406E-04	-0.2901022
41	881 a 1000	E(p)			1.81849E-06	-5.552428E-03	2.8791865
	1000	F(p)			-8.69672E-06	2.2043568E-02	-10.061868
	-	G(p)			1.07394E-05	-2.4815907E-02	14.68808232

		$h(u,p) = A(p)t^2 + B(p)t + C(p)$										
Nº ec	Rango de p(bar)	Coef			$\alpha(\mathbf{p}) = \mathbf{D}\mathbf{p}^4 + \mathbf{E}\mathbf{p}^3 +$	Fp ² + Gp+ H						
	Rango de p(bar)	C001.	D	Е	F	G	Н					
1	0.01 0.006	A(p)		-70	4.9	-0.098	1.27136					
1	0.01 a 0.00	B(p)		175833.3333	-12325	244.6666667	-507.01					
2	0.07 0.0 5	A(p)			5.95238E-04	-1.07143E-04	1.268904762					
2	0.07 a 0.3	B(p)			-22.79761905	12.60357143	-499.622381					
2	0602	A(p)				2E-04	1.2683					
3	0.0 a 5	B(p)		-0.38666667	2.2	-4.40333333	-492.7					
4	1 . 6	A(p)			1.45E-03	-1.58E-02	1.3086					
4	4 a 6	B(p)			-4.995	54.325	-633.41					
5	7 a 10	A(p)		-3.33333E-05	7.50E-04	-5.42E-03	1.2762					
3		B(p)		0.02833333	-0.285	-1.5233333	-462.88					
6	11 0 14	A(p)		1.666667E-05	-6.5E-04	8.533330E-03	1.2258					
0	11 à 14	B(p)		1.8333333E-02	-0.585	5.516666667	-490.81					
7	15 0 17	A(p)			-3E-05	7.60E-04	1.25885					
/	15 a 17	B(p)			0.485	-14.385	-371.11					
0	19 0 21	A(p)		1.17E-04	-7E-03	0.139583333	0.3384					
0	18 a 21	B(p)		-0.37	22.2	-442.59	2455.53					
0	22 - 25	A(p)		-8.33E-05	5.85E-03	-0.136866667	2.3304					
9	22 a 23	B(p)		0.286666667	-19.965	463.3683333	-4059.53					
10	26 . 20	A(p)		5E-05	-3.85E-03	0.0984	0.4285					
10	26 a 29	B(p)		-4.83E-02	3.01	-56.53166667	-190.57					

Tabla N° 25. Ecuaciones de estado no convencionales obtenidas para h(u,p) para la fase VS.

N° ec	Rango de	Coef		$\alpha(\mathbf{p}) = \mathbf{D}\mathbf{p}$	4 + Ep ³ + Fp ² + Gp	+ H	
IN CC	p(bar)	COEI.	D	Е	F	G	Н
11	20 - 22	A(p)		-1.50E-04	1.42E-02	-0.4447	5.9198
11	50 a 55	B(p)		4.47E-01	-42.16	1325.793333	-14367.71
12	24 0 27	A(p)		1.5E-04	-1.595E-02	0.565	-5.4037
12	54 a 57	B(p)		-5.0333333E-01	53.595	-1901.191667	21990.23
12	28 0 12	A(p)	-1.66667E-05	2.58E-03	-1.50E-01	3.861566667	-35.9723
15	38 a 42	B(p)	4.75E-02	-7.2883333335	418.4625001	-10653.91167	100992.01
14	12 0 16	A(p)		1.83E-04	-2.45E-02	1.090916667	-14.9214
14	43 a 46	B(p)		2.60E-01	-34.275	1505.325	-22503.23
15	47 0 50	A(p)		2.11667E-04	-3.083E-02	1.496478333	-22.94328
15	47 a 30	B(p)		-6.35E-01	92.615	-4501.43	72431.27
16	51 0 55	A(p)	4.16667E-06	-8.91667E-04	7.1645833E-02	-2.561558323	35.64479987
10	51 a 55	B(p)	-2.4583333E-02	5.3125	-430.6854167	15523.1975	-210346.05
17	56 0 50	A(p)		1.66667E-05	-2.85E-03	0.16253333	-1.8275
17	JU a J9	B(p)		-6.666667E-03	1.155	-67.20833333	835.28
18	60 0 64	A(p)	-1.25E-05	3.125E-03	-2.93E-01	12.196975	-189.1598
10	00 a 04	B(p)	5.5833333E-02	-13.91666667	1300.529167	-54005.44834	840344.76
10	65 0 60	A(p)	8.33333E-06	-2.233333E-03	2.2439167E-01	-10.01746668	168.9182002
19	05 a 09	B(p)	1.166667E-02	-3.13166667	315.2183334	-14101.19834	236079.6301
20	$70 \circ 72$	A(p)		-3.33333E-05	7.15E-03	-0.511016667	13.4333
20	10 a 15	B(p)		-5.45697E-12	-0.029999999999	3.789999992	-596.129998
21	74 0 77	A(p)		-1.50E-04	3.415E-02	-2.5913	66.7988
21	/+ a / /	B(p)		4.41667E-01	-100.68	7649.148333	-194167.03
22	78 0 81	A(p)		5E-05	-1.185E-02	0.9362	-23.3898
	78 a 81	B(p)		-1.933333E-01	45.925	-3636.601667	95509.16

Nº ec	Rango de	Coef		$\alpha(\mathbf{p}) = \mathbf{D}$	$p^4 + Ep^3 + Fp^2 + Gp$)+H	
IN CC	p(bar)	0001.	D	E	F	G	Н
22	9 2 ~ 95	A(p)		-6E-04	1.514E-01	-12.7339	358.2579
23	82 a 83	B(p)		1.705	-430.45	36222.875	-1016512.64
24	86 a 89	A(p)		2.66667E-04	-6.985E-02	6.098283333	-176.1902
24	80 a 89	B(p)		-9.55E-01	250.165	-21842.06	635143.58
25	00 a 03	A(p)		-1.116667E-03	3.0815E-01	-28.34393333	870.262
23	90 a 95	B(p)		3.316666667	-915.445	84221.24833	-2583164.58
26	$04 \circ 07$	A(p)		-1.83333E-04	5.265E-02	-5.039666667	162.0546
20	94 a 97	B(p)		5.88333333E-01	-168.81	16144.21167	-515101.11
27	$08 \circ 104$	A(p)	1.66667E-06	-6.85833E-04	1.05730834E-01	-7.237631692	186.8887006
21	98 a 104	B(p)	1.075E-02	-4.288416666	641.4695	-42641.87633	1062420.12
20	105 a 112	A(p)		-1.66667E-05	5.4E-03	-0.582983333	22.2394
20	103 å 112	B(p)		5.6041667E-02	-18.15875	1960.543333	-71022.07
20	112 0 120	A(p)		1.875E-05	-6.5625E-03	0.7654	-28.4803
29	115 å 120	B(p)		-6.166666667E-02	21.5825	-2517.103333	97333.33
20	$121 \circ 140$	A(p)		2.93333E-06	-1.174E-03	0.156556667	-5.6882
30	121 a 140	B(p)		-8.706667E-03	3.4808	-463.6603333	20086.29
21	141 0 160	A(p)		1.86667E-06	-8.56E-04	0.130773333	-5.3874
51	141 å 100	B(p)		-5.813333E-03	2.6616	-405.9886667	20138.16
22	161 0 190	A(p)		4.26667E-06	-2.238E-03	0.391223333	-21.5204
52	101 å 160	B(p)		-1.6013333E-02	8.397	-1467.394667	84952.36
22	181 o 200	A(p)		-2.5333E-06	1.444E-03	-0.274296667	18.6359
33	101 a 200	B(p)		7.40E-03	-4.2114	798.726	-50988.82
34	$201 \circ 240$	A(p)		4.16667E-06	-2.818E-03	0.633823333	-46.1448
	201 a 240	B(p)		-1.3823333E-02	9.3489	-2102.709667	156794.83

Nº ec	Rango de	Coef		$\alpha(\mathbf{p}) = \mathbf{D}\mathbf{p}^4 + \mathbf{E}\mathbf{p}^3 + \mathbf{F}\mathbf{p}^2 + \mathbf{G}\mathbf{p} + \mathbf{H}$					
	p(bar)	COCI.	D	E	F	G	Н		
25	241 a 200	A(p)	1.66667E-09	-1.8167E-06	7.42333E-04	-0.134933333	10.4665999		
55	241 a 290	B(p)	1.83333E-06	-1.96E-03	0.783016667	-137.955	8567.61		
26	$201 \circ 240$	A(p)	8.333333E-10	-1.066667E-06	5.11917E-04	-0.109303333	10.0146		
30	291 a 540	B(p)	1.125E-06	-1.4425E-03	0.6925875	-147.1067501	11216.03001		
27	241 0 270	A(p)			1.33E-04	-9.4195E-02	17.9766		
57	541 a 570	B(p)			-0.43775	311.2325	-55701.82		
		A(p)			-3.35E-10	3.2295E-07	-4.8427E-05		
38	371 a 400	B(p)			7.5E-06	-6.285E-03	2.3914		
		C(p)			-2.575E-03	2.78865	-866.637		
		A(p)			-6.96429E-11	1.16021E-07	-8.12771E-06		
39	401 a 500	B(p)	-5.46875E-10	1.01563E-06	-7.05531E-04	0.21690875	-23.8054		
		C(p)	7.29948E-08	-1.35418E-04	0.093299302	-27.60881292	2751.120001		
		A(p)			-6.25E-12	4.6925E-08	1.07875E-05		
40	501 a 580	B(p)		8.33333E-09	-1.4E-05	0.007546667	-0.2784		
		C(p)		-1.20833E-05	0.01984	-10.29856667	1609.36		
		A(p)		-1.34E-12	2.45311E-09	-1.46179E-06	3.20002E-04		
41	581 a 660	B(p)		9.3339E-09	-1.71386E-05	0.010238066	-0.97894626		
		C(p)		-1.50882E-05	0.02780046	-16.57709103	3160.019181		
		A(p)	1.09531E-14	-3.11893E-11	3.32428E-08	-1.56935E-05	2.804243E-03		
42	661 a 760	B(p)	-7.10703E-11	2.02337E-07	-2.15604E-04	0.101728897	-16.9140718		
		C(p)	7.26331E-08	-2.05744E-04	0.217975008	-101.9706612	17710.82207		

Nº ec	Rango de	Coef	$\alpha(\mathbf{p})=\mathbf{D}\mathbf{p}^{4}+\mathbf{E}\mathbf{p}^{3}+\mathbf{F}\mathbf{p}^{2}+\mathbf{G}\mathbf{p}+\mathbf{H}$					
	p(bar)	0001.	D	E	F	G	Н	
		A(p)	2.41911E-15	-7.94043E-12	9.73235E-09	-5.2617E-06	1.097066E-03	
43	761 a 860	B(p)	3.34229E-11	-1.1007E-07	1.36094E-04	-7.5005202E-02	16.54188601	
		C(p)	-1.01562E-07	3.32908E-04	-0.409422426	224.2216512	-46151.7735	
		A(p)				1.29E-08	3.1718E-05	
44	861 a 900	B(p)				-1.005E-04	1.05085	
		C(p)				0.268	-167.353	
		A(p)				1.062E-08	3.3841E-05	
45	901 a 1000	B(p)				-8.046E-05	1.032217	
		C(p)				0.2409334	-141.91473	

	$\mathbf{s}(\mathbf{u},\mathbf{p}) = \mathbf{A}(\mathbf{p})\mathbf{t}^4 + \mathbf{B}(\mathbf{p})\mathbf{t}^3 + \mathbf{C}(\mathbf{p})\mathbf{t}^2 + \mathbf{D}(\mathbf{p})\mathbf{t} + \mathbf{E}(\mathbf{p})$											
N 10	Rango	Coef.		$\alpha(\mathbf{p}) = \mathbf{F}\mathbf{p}^4 + \mathbf{G}\mathbf{p}^3 + \mathbf{H}\mathbf{p}^2 + \mathbf{I}\mathbf{p} + \mathbf{J}$								
N° ec	de p(bar)		F	G	Н	Ι	J					
		A(p)			1.91467E-11	-5.794E-13	-2.16021E-13					
	0.01	B(p)			-2.81817E-07	8.5545E-09	3.32764E-09					
1	0.01 a	C(p)			1.5215E-03	-4.6045E-05	-1.93517E-05					
	0.00	D(p)			-3.587223333	1.081667E-01	5.1438055E-02					
		E(p)			3651.6447	-141.857451	-41.33059					
		A(p)			-1.1E-12	1.665E-13	-2.02064E-13					
	0.07 a 0.1	B(p)			1.4625E-08	-2.234E-09	3.12492E-09					
2		C(p)			-7.075E-05	1.094E-05	-1.82552E-05					
		D(p)			0.14597	-2.294845E-02	4.8829915E-02					
		E(p)			-70.165325	5.450546	-39.71286135					
		A(p)			-3.51E-14	9.3624E-14	-2.30787E-13					
		B(p)			5.0638E-10	-1.35417E-09	3.54493E-09					
3	0.2 a 1.5	C(p)			-2.6948E-06	7.2346E-06	-2.05246E-05					
		D(p)			6.30774E-03	-1.6974538E-02	5.4223992E-02					
		E(p)			-5.17612294	13.66262801	-45.55247995					
		A(p)		6.03645E-15	-6.20159E-14	2.11119E-13	-3.88363E-13					
		B(p)		-7.91612E-11	8.07948E-10	-2.7505E-09	5.50448E-09					
4	1.6 a 5	C(p)		3.81641E-07	-3.86564E-06	1.3165E-05	-2.93766E-05					
		D(p)		-8.04736E-04	8.082289E-03	-2.7550129E-02	7.1477948E-02					
		E(p)		6.23412E-01	-6.18039359	20.89340814	-58.27123984					

Tabla N° 26. Ecuaciones de estado no convencionales obtenidas para s(u,p) para la fase VS.

Rango		<i>a</i> .	$\alpha(\mathbf{p}) = \mathbf{F}\mathbf{p}^4 + \mathbf{G}\mathbf{p}^3 + \mathbf{H}\mathbf{p}^2 + \mathbf{I}\mathbf{p} + \mathbf{J}$							
N° ec	de p(bar)	Coef.	F	G	Н	Ι	J			
	5 6a9	A(p)		2.2209E-15	-5.30684E-14	4.22812E-13	-1.23031E-12			
		B(p)		-3.24191E-11	7.74568E-10	-6.17184E-09	1.81385E-08			
5		C(p)		1.75217E-07	-4.18587E-06	3.33579E-05	-9.94258E-05			
		D(p)		-4.15456E-04	9.92403E-03	-7.9100429E-02	2.4137327E-01			
		E(p)		3.64220E-01	-8.695557393	69.238196	-210.7203035			
	6 10 a 13	A(p)		6.99974E-16	-2.4965E-14	2.97898E-13	-1.28367E-12			
		B(p)		-1.01224E-11	3.61178E-10	-4.31319E-09	1.8786E-08			
6		C(p)		5.4252E-08	-1.93661E-06	2.31465E-05	-1.0231E-04			
		D(p)		-1.29403E-04	4.616743E-03	-5.5174313E-02	2.49250117E-01			
	E(p)		1.11433E-01	-3.979556535	47.59320583	-215.24679				
		A(p)	-7.42327E-17	4.62263E-15	-1.07488E-13	1.10876E-12	-4.37809E-12			
	14 .	B(p)	1.06691E-12	-6.63983E-11	1.54266E-09	-1.58978E-08	6.29011E-08			
7	14 a 18	C(p)	-5.67069E-09	3.52719E-07	-8.18856E-06	8.43114E-05	-3.34736E-04			
	10	D(p)	1.32367E-05	-8.22994E-04	1.9094368E-02	-1.9645917E-01	7.85183725E-01			
		E(p)	-1.1468911E-02	7.1288216E-01	-16.53081467	169.9418535	-678.5570508			
		A(p)		7.45037E-17	-4.56249E-15	9.45716E-14	-7.39785E-13			
	10 -	B(p)		-1.14623E-12	7.01961E-11	-1.45485E-09	1.14776E-08			
8	19 a 22	C(p)		6.54426E-09	-4.00789E-07	8.30609E-06	-6.63937E-05			
		D(p)		-1.62911E-05	9.97782E-04	-2.0682077E-02	1.69641624E-01			
		E(p)		1.4910668E-02	-0.912755093	18.89394109	-153.6245554			
		A(p)		-6.07163E-16	4.42382E-14	-1.07143E-12	8.55539E-12			
	22 .	B(p)		8.51896E-12	-6.21014E-10	1.50471E-08	-1.19997E-07			
9	23 a 26	C(p)		-4.35423E-08	3.17595E-06	-7.69866E-05	6.12563E-04			
	20	D(p)		9.57398E-05	-6.987736E-03	1.6946355E-01	-1.3422533			
		E(p)		-7.6352733E-02	5.5773266	-135.3516669	1071.004345			

N° ec	Rango	Coef	$\alpha(\mathbf{p}) = \mathbf{F}\mathbf{p}^4 + \mathbf{G}\mathbf{p}^3 + \mathbf{H}\mathbf{p}^2 + \mathbf{I}\mathbf{p} + \mathbf{J}$						
	p(bar)	0.001.	F	G	Н	Ι	J		
10	27.	A(p)			3.67138E-15	-2.0441E-13	2.77563E-12		
		B(p)			-5.01839E-11	2.79203E-09	-3.76679E-08		
	27 a 29	C(p)			2.53318E-07	-1.4083E-05	1.88228E-04		
	27	D(p)			-5.52929E-04	3.0705746E-02	-4.03415382E-01		
		E(p)			0.44252795	-24.55567965	320.7852561		
		A(p)			5.11744E-15	-3.1617E-13	4.81651E-12		
	20 -	B(p)			-7.4386E-11	4.59492E-09	-6.9831E-08		
11	30 a 32	C(p)			3.98864E-07	-2.46326E-05	3.73013E-04		
	52	D(p)			-9.34555E-04	5.7697773E-02	-8.6817752E-01		
		E(p)			0.807971715	-49.8788475	750.3669473		
	33 a 35	A(p)			-8.23785E-17	7.08293E-15	-2.04179E-13		
		B(p)			1.14322E-12	-1.00266E-10	3.09063E-09		
12		C(p)			-5.87828E-09	5.27241E-07	-1.77391E-05		
		D(p)			1.32731E-05	-1.221168E-03	4.687837E-02		
		E(p)			9.13171507	-629.8069603	10839.19165		
		A(p)		-1.63843E-16	1.80844E-14	-6.63704E-13	8.04342E-12		
	26 0	B(p)		2.43465E-12	-2.68766E-10	9.86467E-09	-1.19424E-07		
13	30 a 39	C(p)		-1.33999E-08	1.47943E-06	-5.43047E-05	6.56366E-04		
	57	D(p)		3.23770E-05	-3.57512E-03	1.31238659E-01	-1.5815324		
		E(p)		-2.89855E-02	3.201248133	-117.5390517	1417.32736		
		A(p)			-5.09936E-16	4.25228E-14	-9.37095E-13		
	40.0	B(p)			7.78614E-12	-6.4952E-10	1.44264E-08		
14	40 a 42	C(p)			-4.40804E-08	3.67906E-06	-8.26720E-05		
	12	D(p)			1.09646E-04	-9.157439E-03	2.10126239E-01		
		E(p)			-0.100964432	8.4285265	-192.2981882		

N° ec	Rango	Coef	$\alpha(\mathbf{p})=\mathbf{F}\mathbf{p}^{4}+\mathbf{G}\mathbf{p}^{3}+\mathbf{H}\mathbf{p}^{2}+\mathbf{I}\mathbf{p}+\mathbf{J}$						
	p(bar)	C0C1.	F	G	Н	Ι	J		
15	43 a 45	A(p)			-6.23305E-16	5.55473E-14	-1.28544E-12		
		B(p)			9.27674E-12	-8.27178E-10	1.92780E-08		
		C(p)			-5.11829E-08	4.56693E-06	-1.07541E-04		
		D(p)			1.23755E-04	-1.1052306E-02	2.65084283E-01		
		E(p)			-0.11132594	9.94175128	-237.8111376		
		A(p)		-5.66687E-16	8.01383E-14	-3.77563E-12	5.92188E-11		
		B(p)		8.04937E-12	-1.13822E-09	5.36206E-08	-8.40752E-07		
16	46 a 49	C(p)		-4.23068E-08	5.98193E-06	-2.81775E-04	4.416321E-03		
		D(p)		9.75743E-05	-1.3795381E-02	6.49752946E-01	-10.17708056		
		E(p)		-8.3391083E-02	11.78928425	-555.218065	8695.250570		
		A(p)			3.54929E-15	-3.59590E-13	9.06325E-12		
	50 a 52	B(p)			-4.97020E-11	5.03308E-09	-1.26635E-07		
17		C(p)			2.56178E-07	-2.59271E-05	6.50672E-04		
		D(p)			-5.75573E-04	5.8211745E-02	-1.454421		
		E(p)			0.4755941	-48.0686923	1199.572093		
		A(p)		-9.05762E-17	1.45861E-14	-7.81558E-13	1.38943E-11		
		B(p)		1.43506E-12	-2.31117E-10	1.23858E-08	-2.20160E-07		
18	53 a 56	C(p)		-9.16900E-09	1.47822E-06	-7.9318E-05	1.41154E-03		
		D(p)		2.44903E-05	-3.950097E-03	2.1206948E-01	-3.773175087		
		E(p)		-2.404924E-02	3.880520411	-208.440839	3712.946547		
		A(p)			2.33869E-16	-2.57909E-14	6.72924E-13		
		B(p)			-3.26769E-12	3.58909E-10	-9.16481E-09		
19	57 a 59	C(p)			1.67530E-08	-1.83043E-06	4.51687E-05		
		D(p)			-3.73816E-05	4.05681E-03	-9.3829641E-02		
		E(p)			3.060701E-02	-3.300388921	74.95490685		

Nº ec	Rango	Coef	$\alpha(\mathbf{p}) = \mathbf{F}\mathbf{p}^4 + \mathbf{G}\mathbf{p}^3 + \mathbf{H}\mathbf{p}^2 + \mathbf{I}\mathbf{p} + \mathbf{J}$						
	p(bar)	le Coef. bar) F G H		Н	Ι	J			
		A(p)			-2.45557E-16	3.13828E-14	-1.03481E-12		
		B(p)			3.56307E-12	-4.56153E-10	1.51951E-08		
20 6	60 a 62	C(p)			-1.90958E-08	2.44996E-06	-8.28498E-05		
		D(p)			4.47987E-05	-5.763049E-03	2.00099331E-01		
		E(p)			-0.038699949	4.988383778	-173.3740003		
		A(p)				1.47028E-15	-1.24604E-13		
		B(p)				-2.21571E-11	1.99036E-09		
21	63 a 64	C(p)				1.24305E-07	-1.2099E-05		
		D(p)				-3.07850E-04	3.4168565E-02		
		E(p)				2.76997374E-01	-30.10594666		
	65 a 67	A(p)			-8.03938E-17	1.09935E-14	-4.06549E-13		
		B(p)			1.19444E-12	-1.63799E-10	6.18894E-09		
22		C(p)			-6.41787E-09	8.8416E-07	-3.45836E-05		
		D(p)			1.46021E-05	-2.0268E-03	8.470967E-02		
		E(p)			-1.1524125E-02	1.614453525	-68.79907905		
		A(p)			-2.48736E-15	3.43269E-13	-1.18687E-11		
		B(p)			3.57253E-11	-4.93065E-09	1.70623E-07		
23	68 a 70	C(p)			-1.89636E-07	2.61754E-05	-9.06965E-04		
		D(p)			4.40693E-04	-6.0836841E-02	2.11301566		
		E(p)			-3.7806173E-01	52.19342424	-1812.834629		
		A(p)			4.96864E-15	-7.09301E-13	2.52868E-11		
		B(p)			-6.55399E-11	9.35439E-09	-3.33264E-07		
24	71 a 73	C(p)			3.15545E-07	-4.5023E-05	1.602179E-03		
		D(p)			-6.63669E-04	9.465710E-02	-3.36153979		
		E(p)			5.108702E-01	-72.8272286	2583.889342		

N° ec de		Coef		$\alpha(\mathbf{p})=\mathbf{F}\mathbf{p}^{4}+\mathbf{G}\mathbf{p}^{3}+\mathbf{H}\mathbf{p}^{2}+\mathbf{I}\mathbf{p}+\mathbf{J}$						
	p(bar)	COEI.	F	G	Н	Ι	J			
		A(p)			1.4033E-15	-2.10688E-13	7.88366E-12			
		B(p)			-2.1127E-11	3.17148E-09	-1.18544E-07			
25	74 a 76	C(p)			1.16342E-07	-1.74616E-05	6.51604E-04			
20		D(p)			-2.767E-04	4.15217E-02	-1.54464			
		E(p)			2.41955E-01	-36.305205	1350.8135			
		A(p)			1.08E-15	-1.688E-13	6.57242E-12			
		B(p)			-1.625E-11	2.53935E-09	-9.87446E-08			
26	77 a 79	C(p)			8.85E-08	-1.38275E-05	5.36623E-04			
-		D(p)			-2.2E-04	3.4362E-02	-1.328978			
		E(p)			2E-01	-31.24	1209.08			
	80 a 82	A(p)			2.264E-15	-3.65633E-13	1.47398E-11			
		B(p)			-3.36E-11	5.42625E-09	-2.18632E-07			
27		C(p)			1.825E-07	-2.9468E-05	1.186127E-03			
		D(p)			-4.384E-04	7.07798E-02	-2.844284			
		E(p)			3.87E-01	-62.477	2510.92			
		A(p)			1.64029E-15	-2.76114E-13	1.15999E-11			
		B(p)			-2.42851E-11	4.0871E-09	-1.71555E-07			
28	83 a 85	C(p)			1.33618E-07	-2.24823E-05	9.42531E-04			
		D(p)			-3.23825E-04	5.44741E-02	-2.27893988			
		E(p)			2.88051E-01	-48.448568	2027.088805			
		A(p)			-3.70E-15	6.42635E-13	-2.79578E-11			
		B(p)			5.29E-11	-9.2013E-09	4.00462E-07			
29	86 a 88	C(p)			-2.82E-07	4.91272E-05	-2.139443E-03			
		D(p)			6.55E-04	-1.13965E-01	4.96846			
		E(p)			-5.7E-01	99.19	-4324.6			

Nº oc	N° ec de			$\alpha(\mathbf{p}) = \mathbf{F}\mathbf{p}^4 + \mathbf{G}\mathbf{p}^3 + \mathbf{H}\mathbf{p}^2 + \mathbf{I}\mathbf{p} + \mathbf{J}$						
IN EC	p(bar)	Coel.	F	G	Н	Ι	J			
		A(p)			-2.24439E-15	4.0343E-13	-1.81413E-11			
		B(p)			3.28998E-11	-5.91364E-09	2.66031E-07			
30	89 a 91	C(p)			-1.781E-07	3.20155E-05	-1.441334E-03			
		D(p)			4.231E-04	-7.606499E-02	3.43E+00			
		E(p)			-3.731423E-01	6.71E+01	-3.02E+03			
		A(p)		2.2E-17	-6.238E-15	5.90762E-13	-1.86968E-11			
		B(p)		-4.83333E-13	1.364E-10	-1.2849E-08	4.04302E-07			
31	92 a 95	C(p)		2E-09	-5.665E-07	5.35855E-05	-1.695056E-03			
		D(p)		-8.333333E-06	2.35E-03	-2.211417E-01	6.95			
		E(p)		6E-03	-1.6935	159.5515	-5026.025			
	96 a 98	A(p)			-3.2395E-15	6.28579E-13	-3.04984E-11			
		B(p)			4.695E-11	-9.11155E-09	4.42277E-07			
32		C(p)			-2.515E-07	4.88165E-05	-2.370912E-03			
		D(p)			5.935E-04	-1.152185E-01	5.6012			
		E(p)			-5.1880E-01	100.7284	-4896.9046			
		A(p)			-6.30908E-17	1.388E-14	-7.65072E-13			
	00.0	B(p)			9.142E-13	-2.01638E-10	1.12479E-08			
33	99 a 102	C(p)			-4.58048E-09	1.02E-06	-5.83518E-05			
	102	D(p)			1.07572E-05	-2.405766E-03	1.42419E-01			
		E(p)			-8.92208E-03	2.01	-119.72			
		A(p)		3.03483E-17	-9.56738E-15	1.00602E-12	-3.52905E-11			
	103 9	B(p)		-1.60417E-13	4.89000E-11	-4.97196E-09	1.68847E-07			
34	103 a 110	C(p)		-4.58333E-10	1.61375E-07	-1.86839E-05	7.11155E-04			
		D(p)		3.8125E-06	-1.26E-03	1.38E-01	-5.024945			
		E(p)		-5.35625E-03	1.7495875	-190.1629	6870.844			

N° ec de		Coef		$\alpha(\mathbf{p})=\mathbf{F}\mathbf{p}^{4}+\mathbf{G}\mathbf{p}^{3}+\mathbf{H}\mathbf{p}^{2}+\mathbf{I}\mathbf{p}+\mathbf{J}$						
N° ec de p(ba	p(bar)	COEI.	F	G	Н	Ι	J			
		A(p)			7.5E-18	-4.3150E-16	-4.8653E-14			
		B(p)			-1.5125E-13	1.5628E-11	2.9311E-10			
35	111 a 116	C(p)			1.375E-09	-2.1025E-07	4.615E-06			
	110	D(p)			-4.375E-06	7.4725E-04	-2.0629E-02			
		E(p)			5.125E-03	-9.4675E-01	35.128			
		A(p)		-9.92452E-18	3.62842E-15	-4.41122E-13	1.783790E-11			
	117 -	B(p)		1.42890E-13	-5.22133E-11	6.34364E-09	-2.562190E-07			
36	11/a 130	C(p)		-7.73705E-10	2.82662E-07	-3.43314E-05	1.385187E-03			
	150	D(p)		1.85133E-06	-6.76284E-04	8.2121897E-02	-3.3082093			
		E(p)		-1.655143E-03	6.0468257E-01	-73.4312629	2958.814571			
	131 a 150	A(p)		-3.132E-18	1.39922E-15	-2.06953E-13	1.01527E-11			
		B(p)		2.04227E-14	-9.54178E-12	1.46144E-09	-7.36777E-08			
37		C(p)		2.66373E-11	-7.3792E-09	5.49417E-07	-5.87654E-06			
		D(p)		-4.096E-07	1.6634E-04	-2.260494E-02	1.03E+00			
		E(p)		5.72667E-04	-2.3788E-01	3.30E+01	-1.54E+03			
		A(p)			-2.0756E-16	6.68612E-14	-5.35651E-12			
	151 .	B(p)			3.0104E-12	-9.69998E-10	7.78181E-08			
38	151 a 165	C(p)			-1.61728E-08	5.21303E-06	-4.19155E-04			
	105	D(p)			3.8170E-05	-1.230909E-02	9.940337E-01			
		E(p)			-3.3376E-02	10.7668	-869.0310			
		A(p)			3.1676E-16	-1.1029E-13	9.63143E-12			
	166 0	B(p)			-4.522E-12	1.57417E-09	-1.37365E-07			
39	180 a	C(p)			2.3884E-08	-8.31222E-06	7.24424E-04			
		D(p)			-5.52754E-05	1.923072E-02	-1.671672545			
		E(p)			4.7304843E-02	-16.45318338	1430.596271			

N° ec Rango de p(bar)	Rango	Coof		$\alpha(\mathbf{p})=\mathbf{F}\mathbf{p}^{4}+\mathbf{G}\mathbf{p}^{3}+\mathbf{H}\mathbf{p}^{2}+\mathbf{I}\mathbf{p}+\mathbf{J}$						
	p(bar)	Coel.	F	G	Н	Ι	J			
		B(p)			1.3131E-13	-5.04812E-11	4.90267E-09			
40	181 a	C(p)			-1.69588E-09	6.51094E-07	-6.33395E-05			
	195	D(p)			6.812E-06	-2.6137E-03	0.2560248			
		E(p)			-8.6832E-03	3.32898	-322.51378			
		B(p)			1.386E-14	-6.1926E-12	7.2143E-10			
41	196 a	C(p)			-1.48055E-10	6.65337E-08	-8.08854E-06			
41	220	D(p)			5.084E-07	-2.30433E-04	3.05686E-02			
		E(p)			-5.7975E-04	2.633675E-01	-32.3818			
		B(p)			1.57645E-13	-7.42425E-11	8.68596E-09			
42	221 a 250	C(p)			-1.50101E-09	7.07307E-07	-8.30506E-05			
42		D(p)			4.5695E-06	-2.155235E-03	2.55563E-01			
		E(p)			-4.4311E-03	2.09127	-245.85999			
		B(p)		2.666667E-18	-1.36E-15	6.7933E-14	-2.7336E-11			
12	251 a	C(p)		3.3333E-14	-3.65E-11	1.35327E-08	-1.35768E-06			
43	290	D(p)		-1.633333E-11	4.558E-08	-2.6114E-05	5.363278E-03			
		E(p)		2.833333E-08	-5.695E-05	3.0575667E-02	-3.62208			
		B(p)		3.86667E-17	-3.5565E-14	1.08845E-11	-1.16585E-09			
44	291 a	C(p)		-3.56667E-13	3.274E-10	-9.97153E-08	1.03951E-05			
44	330	D(p)		3.21833E-09	-3.0226E-06	9.432E-04	-9.663056E-02			
		E(p)		-1.02667E-06	9.415E-04	-2.841143E-01	29.4093			
		B(p)		2.33333E-17	-2.495E-14	8.93117E-12	-1.12696E-09			
45	331 a	C(p)		-1.65E-13	1.7525E-10	-6.2181E-08	7.6954E-06			
45	370	D(p)		1.66667E-11	-9.5E-09	-2.96667E-07	1.648E-03			
		E(p)		5E-07	-5.5E-04	2.03050E-01	-23.802			

N° ec de p(ba	Rango	Coef		$\alpha(\mathbf{p}) = \mathbf{F}\mathbf{p}^4 + \mathbf{G}\mathbf{p}^3 + \mathbf{H}\mathbf{p}^2 + \mathbf{I}\mathbf{p} + \mathbf{J}$						
	p(bar)	Coel.	F	G	Н	Ι	J			
46		B(p)		-9.08333E-18	1.11275E-14	-4.47082E-12	5.3493E-10			
	371 a 420	C(p)		8.49167E-14	-1.04352E-10	4.2239E-08	-5.32296E-06			
		D(p)		-2.49167E-10	3.07875E-07	-1.26305E-04	1.829225E-02			
		E(p)		2.08333E-07	-2.6125E-04	1.09416667E-01	-13.9185			
		B(p)			-1.925E-15	1.8145E-12	-4.7704E-10			
17	421 a	C(p)			1.6125E-11	-1.50825E-08	3.8042E-06			
47	480	D(p)			-4.6125E-08	4.23075E-05	-8.5784E-03			
		E(p)			4.0375E-05	-3.64025E-02	9.5894			
		B(p)		9.39792E-17	-1.48558E-13	7.82653E-11	-1.37873E-08			
10	481 a 560	C(p)		-7.29079E-13	1.15224E-09	-6.06905E-07	1.06782E-04			
40		D(p)		1.325E-09	-2.0945E-06	1.10346E-03	-1.9257E-01			
		E(p)		-5.19792E-07	8.19625E-04	-4.307221E-01	76.80375			
		B(p)		1.30252E-18	-2.40397E-15	1.55228E-12	-3.86133E-10			
40	561 a	C(p)		-1.32474E-14	2.43661E-11	-1.553E-08	3.6006E-06			
49	640	D(p)		3.85599E-11	-7.03359E-08	4.39311E-05	-8.091328E-03			
		E(p)		-3.46111E-08	6.26619E-05	-3.846194E-02	9.315980093			
		B(p)		1.33765E-16	-2.7349E-13	1.86415E-10	-4.23934E-08			
50	641 a	C(p)		-1.36704E-12	2.79426E-09	-1.90396E-06	4.32612E-04			
50	720	D(p)		4.39848E-09	-8.98807E-06	6.12191E-03	-1.388467227			
		E(p)		-3.97387E-06	8.119432E-03	-5.529260536	1256.248788			
		B(p)			3.37738E-15	-5.00229E-12	1.82331E-09			
51	721 a	C(p)			-2.85616E-11	4.23111E-08	-1.5558E-05			
51	780	D(p)			7.43541E-08	-1.10387E-04	4.24133E-02			
		E(p)			-6.03332E-05	8.9748E-02	-32.15681			

Nº ec	Rango	Coef	$\alpha(\mathbf{p}) = \mathbf{F}\mathbf{p}^4 + \mathbf{G}\mathbf{p}^3 + \mathbf{H}\mathbf{p}^2 + \mathbf{I}\mathbf{p} + \mathbf{J}$				
in ee	p(bar)	COEI.	F	G	Н	Ι	J
52		B(p)			1.38919E-16	-1.65597E-13	1.85921E-11
	781 a	C(p)			-1.72404E-13	-2.13226E-10	3.61278E-07
	840	D(p)			-2.22537E-10	1.43151E-06	5.08552E-04
		E(p)			-7.47487E-07	4.93488E-04	1.256637512
	0.44	C(p)			-6.25E-14	1.3875E-10	-2.108E-07
53	841 a 900	D(p)			1.25E-09	-2.575E-06	3.383E-03
	700	E(p)			-7.525E-07	1.84695E-03	-3.455E-01
	001	C(p)				2.5020E-11	-1.59064E-07
54	901 a 1000	D(p)				-3.2066E-07	2.366627E-03
	1000	E(p)				4.75187E-04	2.7890273E-01

	$\mathbf{s}(\mathbf{h},\mathbf{p}) = \mathbf{A}(\mathbf{p})\mathbf{t}^4 + \mathbf{B}(\mathbf{p})\mathbf{t}^3 + \mathbf{C}(\mathbf{p})\mathbf{t}^2 + \mathbf{D}(\mathbf{p})\mathbf{t} + \mathbf{E}(\mathbf{p})$								
Nº ec	Rango de	Coef		$\alpha(p)=Fp^3+$	Gp ² + Hp+I				
IN CC	p(bar)	COEI.	F	G	Н	Ι			
		A(p)		6.89783E-12	-2.07215E-13	-7.6896E-14			
		B(p)		-1.14677E-07	3.4443E-09	1.34504E-09			
1	0.01 a 0.04	C(p)		7.026E-04	-2.1091E-05	-8.90617E-06			
		D(p)		-1.863626667	5.59054E-02	2.735196E-02			
		E(p)		2344.850517	-102.2831865	-21.35092587			
		A(p)		-1.85E-13	2.285E-14	-7.0154E-14			
	0.05 a 0.1	B(p)		4.55637E-09	-6.32892E-10	1.24747E-09			
2		C(p)		-1.05825E-05	1.23155E-06	-8.24188E-06			
		D(p)		2.79625E-02	-3.41475E-03	2.5654220E-02			
		E(p)		35.5	-12.12	-20.31			
		A(p)		-1.30098E-14	3.41373E-14	-8.263600E-14			
		B(p)		2.1068E-10	-5.5426E-10	1.43947E-09			
3	0.2 a 1.5	C(p)		-1.25616E-06	3.315E-06	-9.478700E-06			
		D(p)		3.26476E-03	-8.64832E-03	2.886347E-02			
		E(p)		-2.85439718	7.26471389	-24.59746165			
		A(p)	3.07099E-15	-3.14512E-14	1.04734E-13	-1.68065E-13			
		B(p)	-4.60006E-11	4.68196E-10	-1.55519E-09	2.67296E-09			
4	1.6 a 5	C(p)	2.53171E-07	-2.55877E-06	8.47686E-06	-1.59837E-05			
		D(p)	-6.09243E-04	6.111587E-03	-2.0196308E-02	4.3800167E-02			
		E(p)	5.38025608E-01	-5.3325876	17.36777451	-37.70150215			

Tabla N° 27. Ecuaciones de estado no convencionales obtenidas para s(h,p) para la fase VS.

N° ec Rango de		Coef.		$\alpha(\mathbf{p})=\mathbf{F}\mathbf{p}^{3}$	+ Gp ² + Hp+I	
	p(bar)	Coel.	F	G	Н	Ι
		A(p)	1.03508E-15	-2.47603E-14	1.96985E-13	-5.5985E-13
		B(p)	-1.70009E-11	4.06687E-10	-3.23618E-09	9.28203E-09
5	6 a 9	C(p)	1.03091E-07	-2.4661E-06	1.96287E-05	-5.70657E-05
		D(p)	-2.73426E-04	6.540797E-03	-5.20760080E-02	1.55172455E-01
		E(p)	2.6722513E-01	-6.388733836	50.7959164	-149.1677743
		A(p)	3.42774E-16	-1.22338E-14	1.45718E-13	-6.13362E-13
		B(p)	-5.61194E-12	2.00367E-10	-2.38818E-09	1.0141E-08
6	10 a 13	C(p)	3.39591E-08	-1.21293E-06	1.44674E-05	-6.222E-05
		D(p)	-9.0023E-05	3.216663E-03	-3.8397503E-02	1.6894147E-01
		E(p)	8.8136253E-02	-3.14886228	37.56246653	-163.2425391
		A(p)	2.05065E-17	-6.51372E-16	6.30297E-15	-4.91748E-14
		B(p)	-3.73002E-13	1.23433E-11	-1.28968E-10	1.01794E-09
7	14 a 17	C(p)	2.46431E-09	-8.40820E-08	9.26374E-07	-7.65234E-06
		D(p)	-7.08511E-06	2.48207E-04	-2.855401E-03	2.6047319E-02
		E(p)	7.468195E-03	-0.26662556	3.130503142	-25.2087217
		A(p)	-7.213E-17	4.39163E-15	-8.82848E-14	5.58098E-13
		B(p)	1.34667E-12	-8.17483E-11	1.63965E-09	-1.03336E-08
8	18 a 21	C(p)	-9.05465E-09	5.48507E-07	-1.09832E-05	6.87749E-05
		D(p)	2.54924E-05	-1.542328E-03	3.08453640E-02	-1.89986965E-01
		E(p)	-2.691087E-02	1.627039605	-32.54363463	203.4499806
		A(p)	6.77045E-16	-4.78208E-14	1.12518E-12	-8.84486E-12
		B(p)	-1.17434E-11	8.29518E-10	-1.95189E-08	1.53488E-07
9	22 a 25	C(p)	7.14704E-08	-5.05146E-06	1.18936E-04	-9.36504E-04
		D(p)	-1.95182E-04	1.380084E-02	-3.25070699E-01	2.563838834
		E(p)	1.96484583E-01	-13.8984628	327.4840605	-2581.536788

N° ec Rango de		Coef.		$\alpha(\mathbf{p}) = \mathbf{F}\mathbf{p}^3$	+ Gp ² + Hp+I	
1, 60	p(bar)	Coel.	F	G	Н	Ι
		A(p)		-8.81811E-16	4.72646E-14	-6.57562E-13
		B(p)		1.36212E-11	-7.30929E-10	1.0274E-08
10	26 a 28	C(p)		-7.76167E-08	4.17164E-06	-5.95573E-05
		D(p)		1.91426E-04	-1.0310137E-02	1.51564819E-01
		E(p)		-0.17237119	9.29271925	-136.0121922
		A(p)		-9.64195E-16	5.73699E-14	-8.7625E-13
		B(p)		1.58341E-11	-9.4261E-10	1.44731E-08
11	29 a 31	C(p)		-9.55072E-08	5.68935E-06	-8.80782E-05
		D(p)		2.50501E-04	-1.4935255E-02	2.3491219E-01
		E(p)		-0.240901352	14.36373747	-224.4496123
		A(p)	-1.19250000E-17	1.19199E-15	-3.92725E-14	4.0475E-13
		B(p)	1.95516E-13	-1.95683E-11	6.45138E-10	-6.58163E-09
12	32 a 35	C(p)	-1.19227E-09	1.19483E-07	-3.94153E-06	3.95837E-05
		D(p)	3.20821E-06	-3.219E-04	1.062366E-02	-1.03416209E-01
		E(p)	-3.218643E-03	0.323518728	-10.70085442	106.51792380
		A(p)	-2.71851E-17	2.98378E-15	-1.08678E-13	1.29317E-12
		B(p)	4.45326E-13	-4.88581E-11	1.77837E-09	-2.10736E-08
13	36 a 39	C(p)	-2.69001E-09	2.94995E-07	-1.07291E-05	1.26352E-04
		D(p)	7.12025E-06	-7.80506E-04	2.8364926E-02	-3.3026678E-01
		E(p)	-6.984333E-03	0.765530134	-27.81808625	325.5804685
		A(p)		6.53653E-16	-5.33312E-14	1.06835E-12
		B(p)		-1.06271E-11	8.66621E-10	-1.72839E-08
14	40 a 42	C(p)		6.35718E-08	-5.18079E-06	1.02604E-04
		D(p)		-1.659E-04	1.3508782E-02	-2.63878008E-01
		E(p)		0.159309113	-12.96935847	254.7690824

N° ec Rango de		Coef.		$\alpha(p) = Fp^3 +$	- Gp ² + Hp+I	
1, 66	p(bar)	Coel.	F	G	Н	Ι
		A(p)		-1.24616E-16	1.1206E-14	-2.69527E-13
		B(p)		2.10119E-12	-1.89209E-10	4.61155E-09
15	43 a 45	C(p)		-1.30915E-08	1.18089E-06	-2.93731E-05
		D(p)		3.57155E-05	-3.228631E-03	8.350119E-02
		E(p)		-3.5867956E-02	3.241219594	-81.84278957
		A(p)		3.29806E-16	-3.0743E-14	6.9943E-13
		B(p)		-5.09212E-12	4.74258E-10	-1.0701E-08
16	46 a 48	C(p)		2.9148E-08	-2.71187E-06	6.0409E-05
		D(p)		-7.3586E-05	6.837334E-03	-1.48512924E-01
		E(p)		6.921512E-02	-6.43008064	140.9487114
		A(p)		-6.48045E-16	6.49223E-14	-1.64198E-12
		B(p)		1.01851E-11	-1.02084E-09	2.5903E-08
17	49 a 51	C(p)		-5.87605E-08	5.89324E-06	-1.50318E-04
		D(p)		1.47305E-04	-1.4786266E-02	3.81050305E-01
		E(p)		-0.1354243	13.6007907	-349.564246
		A(p)	-4.12763E-17	7.07206E-15	-4.02142E-13	7.5783E-12
		B(p)	8.85727E-13	-1.49554E-10	8.39402E-09	-1.56344E-07
18	52 a 55	C(p)	-6.74341E-09	1.1275E-06	-6.27178E-05	1.158393E-03
		D(p)	2.15817E-05	-3.584552E-03	1.98162308E-01	-3.636954482
		E(p)	-2.4720377E-02	4.08647236	-224.9119111	4113.968884
		A(p)	2.58457E-17	-4.43706E-15	2.54265E-13	-4.87756E-12
		B(p)	-4.16052E-13	7.1446E-11	-4.09582E-09	7.86728E-08
19	56 a 59	C(p)	2.44993E-09	-4.20839E-07	2.41366E-05	-4.64524E-04
		D(p)	-6.23042E-06	1.070598E-03	-6.1436531E-02	1.186683613
		E(p)	5.750201E-03	-0.988410326	56.74864759	-1095.654465

N° ec	Rango de	Coef		$\alpha(\mathbf{p})=\mathbf{F}\mathbf{p}^{3}$	+ Gp ² + Hp+I	
1, 66	p(bar)	Coer.	F	G	Н	Ι
		A(p)	1.0586E-17	-1.76763E-15	9.78865E-14	-1.80981E-12
		B(p)	-4.61967E-14	5.58473E-12	-1.72747E-10	5.179E-10
20	60 a 63	C(p)	-4.94823E-10	1.08345E-07	-7.64826E-06	1.73471E-04
		D(p)	3.2854E-06	-6.4906E-04	4.2378693E-02	-9.06610631E-01
		E(p)	-5.012852E-03	0.964516987	-61.57980087	1298.07638
		A(p)		1.29209E-16	-1.68423E-14	5.36703E-13
		B(p)		-2.12137E-12	2.76286E-10	-8.74009E-09
21	64 a 66	C(p)		1.28589E-08	-1.67292E-06	5.23019E-05
		D(p)		-3.41497E-05	4.436527E-03	-1.35403974E-01
		E(p)		3.3612653E-02	-4.365676886	134.985322
		A(p)		-1.5805E-16	2.24286E-14	-8.05361E-13
		B(p)		2.87003E-12	-4.05866E-10	1.45645E-08
22	67 a 69	C(p)		-1.91654E-08	2.70223E-06	-9.71172E-05
		D(p)		5.58177E-05	-7.850122E-03	2.84045525E-01
		E(p)		-5.9663477E-02	8.367143926	-299.499301
		A(p)		-2.950E-17	4.526E-15	-1.83183E-13
		B(p)		4.7554E-13	-7.33817E-11	3.04071E-09
23	70 a 72	C(p)		-2.83893E-09	4.4101E-07	-1.89275E-05
		D(p)		7.28233E-06	-1.14255E-03	5.2570586E-02
		E(p)		-6.80653E-03	1.076213456	-48.33693134
		A(p)		-3.7155E-16	5.49951E-14	-2.04447E-12
		B(p)		6.1473E-12	-9.10144E-10	3.38967E-08
24	73 a 75	C(p)		-3.7742E-08	5.58966E-06	-2.08763E-04
		D(p)		1.0119E-04	-1.4992765E-02	5.63158625E-01
		E(p)		-0.100564	14.9015678	-557.909835

\mathbf{N}° ec Rango de		Coef.			$\alpha(\mathbf{p})=\mathbf{F}\mathbf{p}^{3}+\mathbf{G}\mathbf{p}^{2}+\mathbf{H}\mathbf{p}+\mathbf{I}$	
1, 60	p(bar)	0001.	F	G	Н	Ι
		A(p)		-3.76E-16	5.7927E-14	-2.24015E-12
		B(p)		6.25E-12	-9.6305E-10	3.73006E-08
25	76 a 78	C(p)		-3.80E-08	5.857E-06	-2.27445E-04
		D(p)		1.03E-04	-1.5879E-02	6.19666E-01
		E(p)		-0.1025	15.8015	-614.734
		A(p)		-2.645E-16	4.26745E-14	-1.72969E-12
		B(p)		4.7E-12	-7.581E-10	3.076E-08
26	79 a 81	C(p)		-2.5E-08	4.039E-06	-1.64815E-04
		D(p)		6.59E-05	-1.06541E-02	4.38055E-01
		E(p)		-6.375E-02	10.31125	-422.457
		A(p)		-4.17715E-16	6.9299E-14	-2.88193E-12
		B(p)		6.863E-12	-1.1387E-09	4.74112E-08
27	82 a 84	C(p)		-4.25065E-08	7.05476E-06	-2.94323E-04
		D(p)		1.13795E-04	-1.88920930E-02	7.91338367E-01
		E(p)		-0.11237655	18.65843075	-779.7773993
		A(p)		7.5E-16	-1.2849E-13	5.49494E-12
		B(p)		-1.285E-11	2.20145E-09	-9.41005E-08
28	85 a 87	C(p)		7.65E-08	-1.31045E-05	5.59553E-04
		D(p)		-2.005E-04	3.4345E-02	-1.463429
		E(p)		0.2035	-34.8635	1487.813
		A(p)		-2.189E-15	3.92495E-13	-1.75996E-11
		B(p)		3.602E-11	-6.45876E-09	2.89673E-07
29	88 a 90	C(p)		-2.185E-07	3.91815E-05	-1.757882E-03
		D(p)		5.795E-04	-1.039225E-01	4.67
		E(p)		-0.5665	101.60	-4559.63

N° ec Rango de		Coef.		$\alpha(\mathbf{p})=\mathbf{F}\mathbf{p}^{3}$	+ Gp ² + Hp+I	
1, 66	p(bar)	0001.	F	G	Н	Ι
		A(p)		8.7E-17	-1.5655E-14	6.97382E-13
		B(p)		-1.15E-12	2.0565E-10	-9.0302E-09
30	91 a 93	C(p)		6E-09	-1.066E-06	4.5838E-05
		D(p)		-2.75E-05	4.9505E-03	-2.15919E-01
		E(p)		1.95E-02	-3.48	150.256
		A(p)		-8.709E-16	1.66192E-13	-7.93383E-12
		B(p)		1.51E-11	-2.87155E-09	1.37109E-07
31	94 a 96	C(p)		-8.96E-08	1.70985E-05	-8.17056E-04
		D(p)		2.39E-04	-4.5613E-02	2.182703
		E(p)		-0.2324	44.356	-2120.8986
		A(p)		4.45465E-16	-8.76197E-14	4.30323E-12
		B(p)		-6.13341E-12	1.20702E-09	-5.92492E-08
32	97 a 99	C(p)		3.62645E-08	-7.13548E-06	3.49693E-04
		D(p)		-8.7705E-05	1.7257375E-02	-8.42590E-01
		E(p)		7.9257E-02	-15.597115	762.986042
		A(p)		-1.1325E-17	2.5448E-15	-1.45937E-13
		B(p)		2.0125E-13	-4.508E-11	2.6203E-09
33	100 a 104	C(p)		-1.4275E-09	3.1696E-07	-1.8669E-05
		D(p)		4.5325E-06	-9.9688E-04	6.0536E-02
		E(p)		-5.3525E-03	1.16441	-67.128
		A(p)	-2.90208E-17	9.48E-15	-1.03184E-12	3.7418E-11
		B(p)	4.02771E-13	-1.31393E-10	1.42811E-08	-5.17057E-07
34	105 a 112	C(p)	-2.09375E-09	6.81825E-07	-7.39702E-05	2.672363E-03
		D(p)	4.73542E-06	-1.539163E-03	1.66644183E-01	-6.0042236
		E(p)	-4.11875E-03	1.3360625	-144.3484	5190.406

N° ec	Rango de	Coef.		$\alpha(p)=Fp^3+$	- Gp ² + Hp+I	
	p(bar)	C001.	F	G	Н	Ι
		B(p)		-3.89E-14	1.43765E-11	-1.30054E-09
40	176 - 100	C(p)		5.456E-10	-2.01044E-07	1.80053E-05
40	176 a 190	D(p)		-2.404E-06	8.836E-04	-7.74363E-02
		E(p)		3.35248E-03	-1.23158	111.57567
		B(p)		4.55533E-14	-1.88576E-11	1.97071E-09
41	101 - 210	C(p)		-5.49573E-10	2.27721E-07	-2.39951E-05
41	191 a 210	D(p)		2.15867E-06	-8.95673E-04	9.6204E-02
		E(p)		-2.762446E-03	1.14611017	-119.824074
		B(p)		1.1519E-13	-5.41751E-11	6.36184E-09
12	$211 \circ 240$	C(p)		-1.35745E-09	6.38602E-07	-7.51873E-05
42	211 a 2 4 0	D(p)		5.1845E-06	-2.440145E-03	2.891436E-01
		E(p)		-6.4305E-03	3.026483	-355.46754
		B(p)	-1.84E-17	1.49945E-14	-4.08352E-12	3.65625E-10
13	241 0 280	C(p)	1.91667E-13	-1.5645E-10	4.28593E-08	-4.0373E-06
43	241 a 200	D(p)	-6.5E-10	5.325E-07	-1.4747E-04	1.58465E-02
		E(p)	8.365E-07	-6.84435E-04	1.893007E-01	-17.0869
		B(p)	-1.13167E-17	1.06315E-14	-3.3191E-12	3.38287E-10
11	281 0 320	C(p)	1.25367E-13	-1.17954E-10	3.70274E-08	-3.96849E-06
44	201 a 320	D(p)	-4.275E-10	4.03725E-07	-1.28098E-04	1.5639E-02
		E(p)	4.13333E-07	-3.9235E-04	1.25558167E-01	-12.85373
		B(p)	-1.21667E-17	1.2925E-14	-4.55443E-12	5.26884E-10
15	221 o 260	C(p)	1.2E-14	-1.458E-11	5.7116E-09	-8.1921E-07
45	521 a 500	D(p)	6.666667E-10	-6.85E-07	2.33883E-04	-2.4569E-02
		E(p)	-1.7E-06	1.765E-03	-6.0955E-01	70.7389

N° ec	Rango de	Coef		$\alpha(\mathbf{p}) = \mathbf{F}\mathbf{p}^3$	+ Gp ² + Hp+I	
11 00	p(bar)	0001.	F	G	Н	Ι
		B(p)	6.3333333E-18	-7.3E-15	2.82827E-12	-3.72941E-10
1.0	261 400	C(p)	-8.3333333E-14	9.57E-11	-3.67757E-08	4.6327E-06
46	6 361 a 400	D(p)	3.3333E-11	-3.5E-08	1.19867E-05	6.22E-04
		E(p)	-2.03333E-07	2.3095E-04	-8.6973167E-02	11.59797
		B(p)		3.75E-18	2.4125E-14	-1.4541E-11
47	401 a 460	C(p)		-3.75E-13	1.225E-10	-8.82E-08
47	401 a 400	D(p)		4.25E-09	-3.605E-06	2.7154E-03
		E(p)		-2.8125E-06	2.51525E-03	1.9042E-01
		B(p)		-1.007500E-15	1.05475E-12	-2.77112E-10
18	461 0 520	C(p)		1.08125E-11	-1.12537E-08	2.80435E-06
40	401 a 520	D(p)		-3.425E-08	3.523500E-05	-7.091E-03
		E(p)		3.30625E-05	-3.395375E-02	9.46065
		B(p)			2.25E-14	-1.2778E-11
40	521 2 560	C(p)			-1.86E-10	-2.684E-08
49	521 a 500	D(p)			2.55E-07	1.8353E-03
		E(p)			-2.22E-04	8.6402E-01
		C(p)	-1.5947E-15	2.87727E-12	-1.69784E-09	1.95982E-07
50	560 a 640	D(p)	4.40176E-12	-7.28295E-09	3.57577E-06	1.491501E-03
		E(p)	-6.44302E-09	1.05646E-05	-5.307321E-03	1.525821979
		C(p)		2.04875E-14	-7.03275E-12	-1.33832E-07
51	641 a 700	D(p)		1.90942E-10	-5.56424E-07	2.227593E-03
		E(p)		-7.06167E-07	1.211575E-03	2.81894755E-01
		C(p)		-7.6045E-12	1.14202E-08	-4.41463E-06
52	701 a 760	D(p)		5.15969E-08	-7.76204E-05	3.1105451E-02
	·	E(p)		-5.4195E-05	8.143369E-02	-29.79142923

Nº ec	Rango de	Coef	$\alpha(\mathbf{p}) = \mathbf{F}\mathbf{p}^3 + \mathbf{G}\mathbf{p}^2 + \mathbf{H}\mathbf{p} + \mathbf{I}$				
	p(bar)	0001.	F	G	Н	Ι	
		C(p)		8.53444E-13	-1.37166E-09	4.23968E-07	
53	761 a 820	D(p)		-6.71984E-09	1.06928E-05	-2.345854E-03	
		E(p)		1.02603E-05	-1.6527E-02	7.455225671	
		C(p)	5E-15	-1.3075E-11	1.14015E-08	-3.4418E-06	
54	821 a 900	D(p)	-8.333333E-12	2.275E-08	-2.08117E-05	8.2686E-03	
		E(p)	1.27917E-08	-3.37475E-05	2.971143E-02	-7.92344	
		C(p)			6.2E-12	-1.3189E-07	
55	901 a 1000	D(p)			-1.474E-07	2.02413E-03	
		E(p)			5.49362E-05	7.5461861E-01	

	$v(t,p)=A(p)t^{6}+B(p)t^{5}+C(p)t^{4}+D(p)t^{3}+E(p)t^{2}+F(p)t+G$									
N°	Rango	Cast		$\alpha(\mathbf{p}) = \mathbf{H}\mathbf{p}$	3 + Ip ² + Jp+ K					
ec.	p(bar)	Coel.	Н	Ι	J	K				
		C(p)		3.128E-14	-1.582E-12	1.51E-10				
		D(p)		-1.85216E-11	8.8704E-10	-7.4196E-08				
1	0 a 50	E(p)		3.58968E-09	-1.66586E-07	1.56171E-05				
		F(p)		-2.5204E-07	1.13517E-05	-6.3688E-04				
		G(p)		4.78720E-06	-2.5618E-04	1.010931				
		C(p)			1.292E-12	7.71E-11				
	51	D(p)			-8.7E-10	-2.725E-08				
2	51 a 100	E(p)			1.8716E-07	5.663E-06				
	100	F(p)			-1.4316E-05	1.141E-04				
		G(p)			2.416E-04	0.99604				
		B(p)			2.673E-14	-1.77163E-12				
		C(p)			-2.30166E-11	1.69711E-09				
2	101 a	D(p)			7.03129E-09	-5.50626E-07				
3	150	E(p)			-9.22665E-07	7.80901E-05				
		F(p)			4.90162E-05	-3.937546E-03				
		G(p)			-8.10066E-04	1.062360015				
		B(p)			2.154E-14	-1.9215E-12				
		C(p)			-2.09352E-11	2.13754E-09				
4	151 a	D(p)			7.39524E-09	-8.18487E-07				
4	200	E(p)			-1.16597E-06	1.39122E-04				
		F(p)			7.9668E-05	-9.487607E-03				
		G(p)			-1.867952E-03	1.2229616				
		A(p)		5.46895E-18	-3.15784E-15	4.60992E-13				
		B(p)		-6.27707E-15	3.6178E-12	-5.26613E-10				
	201 a	C(p)		2.80431E-12	-1.61385E-09	2.34395E-07				
5	201 a 300	D(p)		-6.1668E-10	3.54378E-07	-5.13642E-05				
	500	E(p)		6.90743E-08	-3.96445E-05	5.738732E-03				
		F(p)		-3.62997E-06	2.082575E-03	-0.300923892				
		G(p)		6.67155E-05	-3.8422133E-02	6.561943604				
		A(p)	-2.7644E-22	4.4564E-19	-2.4293E-16	4.54389E-14				
		B(p)	3.09278E-19	-4.96696E-16	2.69356E-13	-4.99479E-11				
	201 a	C(p)	-1.35765E-16	2.17267E-13	-1.17307E-10	2.1621E-08				
6	600	D(p)	2.94515E-14	-4.69711E-11	2.52576E-08	-4.63059E-06				
	000	E(p)	-3.27191E-12	5.20135E-09	-2.78747E-06	5.11276E-04				
		F(p)	1.72815E-10	-2.738650E-07	1.46265E-04	-2.6373367E-02				
		G(p)	-3.2976E-09	5.2188E-06	-2.820584E-03	1.498347				

Tabla N° 28. Ecuaciones de estado no convencionales de la forma v(t,p) obtenidas para la fase LC.
N°	Rango	Coef. $\alpha(\mathbf{p}) = \mathbf{H}\mathbf{p}^3 + \mathbf{I}\mathbf{p}^2 + \mathbf{J}\mathbf{p} + \mathbf{K}$					
ec.	p(bar)	0001.	Н	Ι	J	K	
		B(p)	-1.69417E-21	4.81815E-18	-4.6886E-15	1.61236E-12	
		C(p)	1.63717E-18	-4.59667E-15	4.38239E-12	-1.45462E-09	
7	601 a	D(p)	-5.89638E-16	1.64356E-12	-1.54894E-09	5.03944E-07	
/	1000	E(p)	9.51864E-14	-2.64297E-10	2.46548E-07	-7.67755E-05	
		F(p)	-6.58264E-12	1.83334E-08	-1.71008E-05	5.682658E-03	
		G(p)	1.43438E-10	-4.01914E-07	3.4095E-04	0.871429388	
	1100 a 1200	B(p)			-2.685E-17	6.887E-14	
		C(p)			4.079E-16	-2.66798E-11	
0		D(p)			4.5976E-12	2.25788E-09	
0		E(p)			-1.99965E-09	3.02268E-06	
	1200	F(p)			1.8775E-07	1.15579E-04	
		G(p)			-3.9463E-05	0.9941556	
		B(p)			-7.982E-18	3.99908E-14	
	1001	C(p)			-7.05336E-15	-1.15153E-11	
0	1201	D(p)			4.59698E-12	-1.25278E-10	
9	1400	E(p)			-1.59194E-09	2.95627E-06	
	1.00	F(p)			1.53088E-07	1.22286E-04	
		G(p)			-3.80466E-05	0.99343654	

	$u(t,p)=A(p)t^4 + B(p)t^3 + C(p)t^2 + D(p)t + E(p)$										
N°	Rango	Coof		$\alpha(\mathbf{p}) = \mathbf{F}\mathbf{p}^3 + \mathbf{G}\mathbf{p}^2 + \mathbf{H}\mathbf{p} + \mathbf{I}$							
ec.	p(bar)	Coel.	F	G	Н	Ι					
		B(p)		1.57912E-09	-8.2794E-08	1.19329E-05					
1	0 a	C(p)		-6.73048E-07	3.21166E-05	-3.49336E-03					
1	50	D(p)		0.000078672	-3.8084E-03	4.50744					
		E(p)		-2.117152E-03	9.03304E-02	-7.39052					
		B(p)			5.87794E-08	8.22155E-06					
2	51 a	C(p)			-3.05473E-05	-1.76208E-03					
-	100	D(p)			3.763315E-03	4.291542528					
-		E(p)			-0.119218594	-1.284953803					
		A(p)		-7.84897E-11	2.34136E-08	-1.61326E-06					
	101 a	B(p)		5.86911E-08	-1.75473E-05	1.228/36E-03					
3	175	C(p)		-1.50123E-05	4.493585E-03	-0.317617602					
	175	D(p)		1.518799E-03	-0.45525813	36.63044303					
		E(p)		-4.9174902E-02	14.74045392	-1060.561304					
	176 a 250	A(p)		-6.76239E-11	3.00741E-08	-3.19676E-06					
		B(p)		5.02734E-08	-2.24087E-05	2.399257E-03					
4		C(p)		-1.25283E-05	5.593371E-03	-0.601130988					
		D(p)		1.189565E-03	-0.532028488	61.49600421					
-		E(p)	4 2001 5 1 5	-3.4382128E-02	15.38267762	-1661.359902					
		A(p)	-4.3001E-15	5.9305E-12	-2.83627E-09	4.93786E-07					
	251 a	B(p)	3.0814E-12	-4.22995E-09	2.0038E-06	-3.40411E-04					
5	500	C(p)	-7.4026E-10	1.01371E-06	-4.78134E-04	8.0689108E-02					
		D(p)	6.7967E-08	-9.29140E-05	4.3476703E-02	-3.170201					
		E(p)	-1.9092E-06	2.610456E-03	-1.228677759	205.923893					
		A(p)	-8.4867E-17	2.6467E-13	-2.8293E-10	1.08005E-07					
	501 -	B(p)	4.9951E-14	-1.61783E-10	1.74433E-07	-6.49288E-05					
6	900 g	C(p)	-9.7983E-12	3.39239E-08	-3.79523E-05	1.4527986E-02					
	700	D(p)	7.719E-10	-2.80254E-06	3.023702E-03	2.898282872					
		E(p)	-1.7055E-08	6.99414E-05	-0.086745785	34.4411104					
		A(p)		1.45595E-14	-4.3781E-11	3.28491E-08					
	001 a	B(p)		-8.61594E-12	2.52745E-08	-1.78051E-05					
7	1200	C(p)		2.07789E-09	-6.09306E-06	4.36035E-03					
	1200	D(p)		-1.734E-07	3.4753E-04	3.75442					
		E(p)		5.9018E-06	-1.863922E-02	12.143564					
		A(p)			-5.41873E-12	7.41928E-09					
	1201	B(p)			2.5259E-09	-2.65437E-06					
8	a	C(p)			-6.1365E-07	7.07443E-04					
	1400	D(p)			-1.0855E-04	4.058788					
		E(p)			-2.945065E-03	1.579469					

Tal	$h_{\rm a} N^{\circ} 20$	Ecuaciones de estado	no convencionales	e de la forma u	(t n) obtenidas	nara la fase I C
1 4	Jan 27	. Leuaciones de estade	no convencionales	s uc la forma u	((,p) obtenituas	para la rase LC.

	$h(t,p)=A(p)t^4 + B(p)t^3 + C(p)t^2 + D(p)t + E(p)$										
N°	Rango	Cast		$\alpha(\mathbf{p}) = \mathbf{F}\mathbf{p}^3 + \mathbf{q}$	Gp ² + Hp+ I						
ec.	p(bar)	Coel.	F	G	Н	Ι					
		B(p)		1.5752E-09	-8.02E-08	1.193E-05					
1	0 50	C(p)		-6.73536E-07	3.15784E-05	-3.4933E-03					
1	0 a 50	D(p)		7.79392E-05	-3.65428E-03	4.507					
		E(p)		-2.082319E-03	0.18567558	-7.39052					
		B(p)			5.12E-08	9.160E-06					
	51 a	C(p)			-2.848E-05	-2.044E-03					
2	100	D(p)			4.028E-03	4.2881					
		E(p)			-3.9476E-02	-0.1567					
	101 a 175	A(p)		-6.84656E-11	2.07777E-08	-1.43723E-06					
		B(p)		4.98384E-08	-1.51997E-05	1.07177E-03					
3		C(p)		-1.23178E-05	3.774172E-03	-0.26939825					
	175	D(p)		1.194605E-03	-0.36813144	30.78163					
		E(p)		-3.679484E-02	11.496872	-835.664625					
	176 a 250	A(p)		-7.36971E-11	3.28174E-08	-3.49524E-06					
		B(p)		5.48605E-08	-2.44827E-05	2.625874E-03					
4		C(p)		-1.36697E-05	6.110064E-03	-0.657697574					
		D(p)		1.298928E-03	-0.581497333	66.92545428					
		E(p)		-3.7553987E-02	16.91606621	-1818.85619					
		A(p)	-3.5804E-15	5.24702E-12	-2.64141E-09	4.83221E-07					
	051	B(p)	2.23418E-12	-3.34795E-09	1.71223E-06	-3.13194E-04					
5	251 a 500	C(p)	-6.13763E-10	8.95271E-07	-4.44765E-04	7.884066E-02					
	500	D(p)	5.5952E-08	-8.16516E-05	4.0329568E-02	-2.9830026					
		E(p)	-1.56451E-06	2.283747E-03	-1.038336475	200.42374					
		A(p)		5.95375E-13	-8.76593E-10	3.3008E-07					
	501 -	B(p)		-6.28232E-10	9.04795E-07	-3.26382E-04					
6	501 a 800	C(p)		2.31945E-07	-3.30321E-04	0.117093236					
	000	D(p)		-3.28091E-05	4.627289E-02	-12.103358					
		E(p)		1.182347E-03	-1.5771851	583.72164					

Tabla N° 30. Ecuaciones de estado no convencionales de la forma h(t,p) obtenidas para la fase LC.

N°	Rango	Coef		α()		
ec.	p(bar)	C001.	F	G	Н	Ι
		A(p)		1.01391E-14	-3.6995E-11	3.2381E-08
	0.01	B(p)		-3.702E-12	1.6295E-08	-1.48421E-05
7	801 a 1100	C(p)		7.302E-10	-3.45842E-06	3.48272E-03
		D(p)		1.130E-07	-1.828E-04	4.00435
		E(p)		-6.3065E-06	0.09743965	4.35425
		A(p)		-1.2197E-15	-6.44146E-12	1.22426E-08
	1101	B(p)		3.7563E-12	-4.50991E-09	-7.21619E-07
8	а	C(p)		-1.33652E-09	2.2765E-06	-3.87846E-04
	1400	D(p)		1.7041E-07	-4.5321E-04	4.2385718
		E(p)		-7.13235E-06	0.103508852	-1.49100296

	$s(t,p)=A(p)t^{3}+B(p)t^{2}+C(p)t+D(p)t$							
NIO	Rango	Conf		$\alpha(\mathbf{p}) = \mathbf{E}\mathbf{p}^3 +$	+ Fp ² + Gp + H			
N° ec.	de p(bar)	Coer.	Е	F	G	Н		
		A(p)		2.12E-12	-1.274E-10	3.783E-08		
1	0 - 50	B(p)		-8.9344E-10	4.9212E-08	-2.572E-05		
1	0 a 30	C(p)		1.044E-07	-0.000006054	1.5289E-02		
		D(p)		-2.81716E-06	1.27946E-04	-7.3762E-04		
		A(p)	1.14027E-14	-2.8852E-12	2.96773E-10	2.6872E-08		
2	51 a	B(p)	-5.74933E-12	1.44E-09	-1.52607E-07	-0.000020345		
2	150	C(p)	7.09333E-10	-1.748E-07	1.82467E-05	1.4633E-02		
		D(p)	-1.89292E-08	4.53495E-06	-5.12875E-04	1.66658E-02		
		A(p)		3.29054E-12	-1.12515E-09	1.36319E-07		
2	151 a	B(p)		-1.74303E-09	5.91797E-07	-7.79491E-05		
5	220.88	C(p)		2.47007E-07	-8.42718E-05	2.269146E-02		
		D(p)		-7.87148E-06	2.653752E-03	-0.237058324		
	220.89 a 400	A(p)	-2.57867E-15	2.9864E-12	-1.21175E-09	1.9927E-07		
4		B(p)	1.38613E-12	-1.59704E-09	6.40979E-07	-1.12134E-04		
4		C(p)	-2.10859E-10	2.42062E-07	-9.69644E-05	2.8353964E-02		
		D(p)	8.20267E-09	-9.40981E-06	3.720133E-03	-0.510534914		
		A(p)		-3.49E-14	2.532E-11	1.8403E-08		
5	401 a	B(p)		1.8635E-11	-1.54135E-08	-1.72145E-05		
5	700	C(p)		-4.96E-10	-9.672E-07	1.509488E-02		
		D(p)		-4.00587E-07	5.40522E-04	-0.174059935		
		A(p)		1.365E-14	-3.4445E-11	3.6385E-08		
6	701 a	B(p)		-6.439E-12	1.57423E-08	-2.67174E-05		
0	1000	C(p)		1.01E-09	-2.7442E-06	1.559926E-02		
		D(p)		-3.95709E-08	6.51442E-05	-1.814305E-02		
		A(p)			-1.68024E-11	3.44579E-08		
7	1001 a	B(p)			8.77305E-09	-2.73876E-05		
/	1200	C(p)			-1.75197E-06	1.5822571E-02		
		D(p)			-274.6001843	329520.226		
		A(p)			-3.34708E-13	1.45901E-08		
Q	1201 a	B(p)			-8.5205E-10	-1.58072E-05		
0	1400	C(p)			-4.682E-09	1.3722529E-02		
		D(p)			-6.18667E-05	8.0876854E-02		

Tabla N° 31. Ecuaciones de estado no convencionales de la forma s(t,p) obtenidas para la fase LC.

	$u(v,p) = A(p)t^3 + B(p)t^2 + C(p)t + D(p) + E(p)1/t + F(p)1/t^2 + G(p)1/t^3$									
N ^o aa	Rango	Coof		$\alpha(\mathbf{p})=\mathbf{H}\mathbf{p}^3+1$	Ip ² + Jp+ K					
in ec.	p(bar)	Coel.	Н	Ι	J	K				
		A(p)		392.7273766	-13045.32432	-1208489.462				
		B(p)		-2809.644106	92374.76246	9072513.863				
		C(p)		8349.426354	-271530.3617	-28316727.8				
1	0 a 50	D(p)		-13192.3916	424075.8417	47036006.22				
		E(p)		11689.19255	-371134.3921	-43851545.34				
		F(p)		-5507.147896	172557.5929	21760519.93				
		G(p)		1077.837685	-33297.70073	-4492179.373				
		A(p)	0.12313152	-80.7026	17912.3776	-1368015.8				
		B(p)	-0.767409707	542.422576	-126845.3929	10101369.25				
	- 1	C(p)	1.926476053	-1500.823792	372351.9413	-31002836.35				
2	51 a 150	D(p)	-2.461999787	2185.712016	-580071.7541	50638886.03				
	150	E(p)	1.650263595	-1764.73722	505942.9378	-46432560.65				
		F(p)	-0.522245082	747.7630023	-234338.2138	22671174.35				
		G(p)	5.1792034E-02	-129.6369174	45048.84005	-4607925.72				
		A(p)		-66.63031822	29634.86833	-3322447.638				
		B(p)		533.4140396	-237570.19	26697932.96				
	151 a 220 88	C(p)		-1769.824872	789224.104	-88900496.91				
3		D(p)		3115.163142	-1390703.313	157017742.9				
	220.00	E(p)		-3067.910831	1370940.643	-155138818.1				
		F(p)		1602.863149	-716856.1371	81305060.48				
		G(p)		-347.0850714	155334.9926	-17659356				
		A(p)	7.750228E-03	-9.0284486	2777.88446	-268855.88				
		B(p)	-6.703115E-02	75.89089482	-22982.53806	2214103.95				
	220.80	C(p)	0.23666258	-261.60957	78079.95595	-7499968.175				
4	220.89 a 400	D(p)	-0.43732508	473.617425	-139427.7613	13376339.87				
	u 100	E(p)	0.446654741	-475.1283568	138025.6069	-13242924.7				
		F(p)	-0.239321271	250.5367687	-71829.3577	6905315.761				
		G(p)	5.260918E-02	-54.27779018	15356.12826	-1483836.064				
		A(p)	1.7965151E-02	-36.83797521	23235.33027	-4857861.889				
		B(p)	-0.133915133	273.2528325	-171820.1502	35953409.74				
	401 o	C(p)	0.41341233	-839.7516087	526531.4279	-110323790.1				
5	401 a 800	D(p)	-0.676633466	1368.668843	-855929.3407	179675813.1				
	200	E(p)	0.619318167	-1247.862215	778523.5168	-163817632				
		F(p)	-0.30060149	603.4894976	-375697.7963	79291974.2				
		G(p)	6.0454273E-02	-120.9591023	75157.13834	-15921754.56				

Tabla N° 32. Ecuaciones de estado no convencionales de la forma u(v,p) obtenidas para la fase LC.

N° ec.	Rango de	Coef.	$\alpha(\mathbf{p}) = \mathbf{H}\mathbf{p}^3 + \mathbf{I}\mathbf{p}^2 + \mathbf{J}\mathbf{p} + \mathbf{K}$				
IN CC.	p(bar)	C001.	Η	Ι	J	K	
		A(p)		57.45841955	-116697.3252	57914433.61	
		B(p)		-406.0799503	824414.5266	-408814389.3	
	001	C(p)		1191.963995	-2418918.611	1198502528	
6	801 a 1100	D(p)		-1859.976462	3772991.488	-1867756310	
	1100	E(p)		1627.269509	-3299536.575	1631857415	
		F(p)		-756.814703	1533880.011	-757860338.2	
		G(p)		146.1789359	-296132.7791	146156577.6	
		A(p)		203.28819860	-515287.2601	324819706	
		B(p)		-1381.747498	3502478.458	-2207563836	
	1101	C(p)		3903.982105	-9896031.534	6236430811	
7	1101 a 1400	D(p)		-5868.830156	14876742.09	-9373712282	
	1400	E(p)		4950.821748	-12549681.66	7905988082	
		F(p)		-2222.06449	5632571.79	-3547639490	
		G(p)		414.5499613	-1050791.349	661676992.3	

	$h(v,p)=A(p)t^{3}+B(p)t^{2}+C(p)t+D(p)+E(p)1/t+F(p)1/t^{2}+G(p)1/t^{3}$									
N ^o co	Rango	Coof		$\alpha(p) = Hp^3 +$	Ip ² + Jp+ K					
N° ec.	p(bar)	Coel.	Н	Ι	J	K				
		A(p)		397.7803136	-13357.73183	-1208489.462				
		B(p)		-2845.068071	94579.03247	9072513.863				
		C(p)		8452.593997	-277990.3419	-28316727.8				
1	0 a 50	D(p)		-13352.19157	434143.1659	47036006.22				
		E(p)		11828.06319	-379934.4672	-43851545.34				
		F(p)		-5571.359901	176649.3145	21760519.93				
		G(p)		1090.182455	-34088.4572	-4492179.373				
		A(p)		-128.920064	31520.1194	-2074647.295				
		B(p)		977.6718176	-238958.9811	15812524.64				
	51 a 125	C(p)		-3077.574272	751917.4676	-50038276.74				
2		D(p)		5146.603132	-1256873.047	84148290.4				
		E(p)		-4821.674656	1176975.281	-79306674.52				
		F(p)		2399.187309	-585374.7929	39718728.74				
		G(p)		-495.2951078	120794.8427	-8259861.183				
		A(p)		70.54856	-24298.622	1976570.1				
		B(p)		-558.3631528	192224.9101	-15585604.83				
	126 a 200	C(p)		1829.126263	-629404.5331	50852021.05				
3		D(p)		-3174.50685	1091818.547	-87872105.02				
		E(p)		3078.547462	-1058282.161	84819198.86				
		F(p)		-1581.784724	543471.2621	-43359333.42				
		G(p)		336.4340448	-115529.525	9169414.675				
		A(p)		-9.542702964	4825.41883	-627595.8823				
		B(p)		79.47853352	-40218.7166	5252405.062				
	201 a	C(p)		-273.43656	138473.8655	-18164474.76				
4	300	D(p)		497.5451682	-252170.2793	33239214.66				
		E(p)		-505.1469299	256244.0486	-33948687.8				
		F(p)		2/1.3/46022	-13/78/.0506	18356482.49				
		G(p)	9 154027E 02	-00.27398402	30634.04709	-410/333.13				
		A(p) P(n)	0.062026224	-12.03141627	4691.404731	-030040.3708				
		$\mathbf{D}(\mathbf{p})$	-0.002920334	91.6302733	-30804.48192	4920820.47				
5	301 a	D(p)	0.200013027	-207.203/291	114404./033	-13320302.02				
	600	D(p)	-0.336324222	402.2394490	-100400.3098	23204213.93				
		E(p)	0.31042/013	-++0.720/703	1/32/3.1703 8/3/0 05260	11/21520.21				
		$\frac{\Gamma(p)}{G(p)}$	-0.130034099 3 269098F_02	-45 13510324	16992 596/8	_2324787.12				
		F(p) G(p)	-0.158634099 3.269098E-02	221.2838151 -45.13510324	-84349.05368 16992.59648	-2324787.13				

Tabla N° 33. Ecuaciones de estado no convencionales de la forma h(v,p) obtenidas para la fase LC.

N ⁰ aa	Rango	Coof	f $\alpha(\mathbf{p}) = \mathbf{H}\mathbf{p}^3 + \mathbf{I}\mathbf{p}^2 + \mathbf{J}\mathbf{p} + \mathbf{K}$				
IN ec.	p(bar)	Coel.	Н	Ι	J	К	
	-	A(p)		8.039545	-12906.5395	4530060.2	
		B(p)		-56.432643	90150.6796	-31173822.56	
	60.1	C(p)		163.895629	-260395.0382	88504559	
6	601 a	D(p)		-251.9975856	397926.947	-132546040.3	
	900	E(p)		216.2574685	-339129.0769	110293464.3	
		F(p)		-98.17051605	152728.3405	-48263442.6	
		G(p)		18.40814127	-28375.0463	8655411.911	
	901 a	A(p)		-11.73093664	28463.95304	-18036424.1	
		B(p)		83.81480009	-203387.2616	128944541.4	
		C(p)		-248.6113919	603383.6451	-382791659.2	
7		D(p)		391.87182	-951298.0747	604013164.5	
	1200	E(p)		-346.1919282	840666.9507	-534299585	
		F(p)		162.5260051	-394823.0322	251231056.3	
		G(p)		-31.67836956	76994.12809	-49060905.63	
		A(p)			33412.99269	-44922778.77	
		B(p)			-226992.6431	305519011	
	1001	C(p)			641086.4589	-863868740.6	
8	1201 a 1400	D(p)			-963468.0276	1299888869	
	1400	E(p)			812642.2807	-1097839569	
		F(p)			-364739.9991	493435552.9	
		G(p)			68059.20843	-92212109.23	

	$s(v,p) = A(p)t^2 + B(p)t + C(p) + D(p)1/t + E(p)1/t^2 + F(p)1/t^3$								
N°	Rango	Coof		$\alpha(\mathbf{p})=\mathbf{G}\mathbf{p}^3+\mathbf{l}$	Hp ² + Ip+ J				
ec.	p(bar)	Coel.	G	Н	Ι	J			
	1 . /	B(p)		3.30757E-02	-1.242304	-106.996			
		C(p)		-0.159273046	5.95742632	555.5673			
1	0 a 50	D(p)		0.286374448	-10.6569844	-1065.5042			
		E(p)		-0.227864735	8.42999476	915.7401			
		F(p)		6.77054E-02	-2.488092	-298.29			
		B(p)		-3.608E-03	1.38228	-146.05			
		C(p)		1.68144E-02	-6.69508	746.21			
2	51 a	D(p)		-2.91136E-02	12.09264	-1411.808			
	125	E(p)		2.2197166E-02	-9.65244644	1193.17228			
		F(p)		-6.294239E-03	2.874907502	-381.076389			
		A(p)		-4.45384E-02	15.37622	-1243.752			
		B(p)		0.2953496	-101.9149	8203.016			
2	126 a	C(p)		-0.77729616	268.090136	-21455.0898			
3	200	D(p)		1.014810704	-349.8387108	27828.3052			
		E(p)		-0.657278968	226.4714728	-17886.19884			
		F(p)		0.168968304	-58.1884924	4554.66932			
		A(p)		1.0972017E-02	-5.589549569	724.9493048			
		B(p)		-7.869106E-02	40.1366151	-5224.539113			
4	201 a	C(p)		0.223075975	-113.905405	14889.64399			
4	300	D(p)		-0.312346133	159.654196	-20954.77965			
		E(p)		0.215977816	-110.5063736	14575.22941			
		F(p)		-5.8999046E-02	30.21669611	-4010.6348			
		A(p)		1.103067E-03	-0.32765	37.98333333			
		B(p)		-6.574977E-03	1.6748215	-199.9165833			
5	301 a	C(p)		1.5573305E-02	-3.2604148	436.1970667			
5	500	D(p)		-1.83282E-02	2.95683	-496.389			
		E(p)		1.0733607E-02	-1.199521	316.2545333			
		F(p)		-2.505318E-03	0.15525469	-93.269315			
		A(p)	6.12017E-08	4.2095E-04	0.123997233	-28.57772			
		B(p)	-4.38397E-07	-1.929201E-03	-1.426493533	270.36216			
6	501 a	C(p)	1.35804E-06	2.912739E-03	5.1921399	-869.83412			
0	900	D(p)	-2.13677E-06	-1.15559E-03	-8.448523333	1286.3128			
		E(p)	1.65636E-06	-8.37493E-04	6.421808837	-882.672816			
		F(p)	-5.00709E-07	5.89235E-04	-1.862771912	225.1178676			

Tabla N° 34. Ecuaciones de estado no convencionales de la forma s(v,p) obtenidas para la fase LC.

N°	Rango	Coef		α(p)=	\mathbf{Gp}^{3} + \mathbf{Hp}^{2} + \mathbf{Ip} + \mathbf{J}		
ec.	p(bar)	C0C1.	G	Н	Ι	J	
	901 a 1200	A(p)		1.4019055E-02	-29.74737148	16293.13526	
		B(p)		-7.7759696E-02	164.9224312	-90607.15521	
7		C(p)		0.170410801	-361.167259	199152.7584	
/		D(p)		-0.184073265	389.7185534	-215856.4652	
		E(p)		0.097753064	-206.6615908	115116.5191	
		F(p)		-2.034937E-02	42.93447799	-24097.3871	
		A(p)			8.917744	-10726.9536	
		B(p)			-50.66652226	60741.94394	
0	1201	C(p)			114.8195588	-137144.4428	
0	a 1400	D(p)			-129.720927	154326.1601	
	1100	E(p)			73.0586703	-86529.60632	
	·	F(p)			-16.40796688	19333.5719	

				b ()	A (
	$\mathbf{n}(\mathbf{u},\mathbf{p})=\mathbf{A}(\mathbf{p})\mathbf{l}+\mathbf{D}(\mathbf{p})$									
N°	Rango de	Coef		$\alpha(\mathbf{p}) = \mathbf{C}\mathbf{p}^4 + \mathbf{D}\mathbf{p}^3 + \mathbf{E}\mathbf{p}^2 + \mathbf{F}\mathbf{p} + \mathbf{G}$						
ec.	p(bar)	0001.	С	D	Е	F	G			
1	1 0 a 100	A(p)	3.2E-11	-5.86667E-09	3.8E-07	2.56667E-05	1			
1		B(p)	7.58507E-08	-1.28251E-05	6.23153E-04	8.1895667E-02	-1.1198E-11			
2	101 a	A(p)			-7.2E-07	2.62E-04	9.835E-01			
2	² 175	B(p)			2.856E-04	-1.42E-03	6.511			
3	176 a	A(p)			-1.44468E-07	1.4701E-04	9.8527662E-01			
5	250	B(p)			2.9233E-05	4.2725159E-02	7.094648983			
1	251 a	A(p)		-3E-10	3.55E-07	-1.135E-04	1.0237			
4	500	B(p)		2.86667E-08	-4.33E-05	1.13303333E-01	-6.058			
5	501 a	A(p)				1E-06	1.0219			
5	700	B(p)				1.2328E-01	-22.501			
6	701 a	A(p)	4.16667E-14	-1.58333E-10	2.19583E-07	-1.13417E-04	1.0388			
0	1200	B(p)	8.625E-11	-3.60417E-07	5.58388E-04	-2.89700833E-01	94.35			
_	1201	A(p)				1.6E-05	1.0126			
7	а 1400	B(p)				8.88E-02	3.20E-01			

Tabla N° 35. Ecuaciones de estado no convencionales de la forma h(u,p) obtenidas para la fase LC.

	$\mathbf{s}(\mathbf{u},\mathbf{p})=\mathbf{A}(\mathbf{p})\mathbf{t}^{3}+\mathbf{B}(\mathbf{p})\mathbf{t}^{2}+\mathbf{C}(\mathbf{p})\mathbf{t}+\mathbf{D}(\mathbf{p})$							
N°	Rango	Coef		$\alpha(\mathbf{p}) = \mathbf{E}\mathbf{p}^3 +$	+ Fp ² + Gp + H			
ec.	p(bar)	0001.	E	F	G	Н		
		A(p)		-6.8376E-15	2.1374E-13	2.54825E-10		
1	0 - 50	B(p)		1.32E-11	-4.136E-10	-1.16564E-06		
1	0 a 50	C(p)		-6.9296E-09	2.1672E-07	3.536148E-03		
		D(p)		8.21346E-07	-2.58802E-05	1.0487676E-02		
		A(p)	-8.4192E-18	4.72912E-15	-1.01751E-12	2.97323E-10		
2	51 a	B(p)	-4.992E-14	1.2552E-11	-2.866E-10	-1.17206E-06		
2	150	C(p)	9.92213E-11	-3.07016E-08	2.70425E-06	3.451489E-03		
		D(p)	-1.99045E-08	6.36137E-06	-6.12959E-04	3.0732411E-02		
		A(p)	5.18345E-17	-3.18929E-14	6.2296E-12	-1.67849E-10		
2	151 a	B(p)	-1.27025E-13	7.85638E-11	-1.54712E-08	-1.20157E-07		
3	250	C(p)	8.29373E-11	-5.15236E-08	1.02163E-05	2.847184E-03		
		D(p)	-1.23605E-08	7.69455E-06	-1.535462E-03	1.13879581E-01		
		A(p)		-1.80E-16	1.5382E-13	1.77716E-10		
1	251 a	B(p)		4.78E-13	-4.143E-10	-9.8572E-07		
4	400	C(p)		-3.202E-10	2.8055E-07	3.42488E-03		
		D(p)		3.8531E-08	-3.98764E-05	2.5601036E-02		
		A(p)		5.5565E-16	-5.718550E-13	3.452250E-10		
5	401 a	B(p)		-2.1325E-12	2.319950E-09	-1.673240E-06		
5	700	C(p)		2.6605E-09	-3.060390E-06	4.337959E-03		
		D(p)		-1.067540E-06	1.283195E-03	-3.6326656E-01		
		A(p)	7.98167E-19	-2.18455E-15	2.0005E-12	-3.92046E-10		
6	701 a	B(p)	-5.41667E-16	1.4755E-12	-1.38313E-09	-6.5969E-07		
0	1100	C(p)	-7.68667E-13	2.1236E-09	-1.91032E-06	4.06555E-03		
		D(p)	1.95986E-10	-5.41839E-07	4.81778E-04	-1.2842926E-01		
		A(p)		-3.936E-16	1.02676E-12	-4.40337E-10		
7	1101	B(p)		1.1465E-12	-3.00535E-09	8.3738E-07		
/	a 1400	C(p)		-9.725E-10	2.55045E-06	1.856897E-03		
	1400	D(p)		1.36651E-07	-3.71598E-04	2.5330953E-01		

Tabla N° 36. Ecuaciones de estado no convencionales de la forma s(u,p) obtenidas para la fase LC.

	$\mathbf{s}(\mathbf{h},\mathbf{p}) = \mathbf{A}(\mathbf{p})\mathbf{t}^3 + \mathbf{B}(\mathbf{p})\mathbf{t}^2 + \mathbf{C}(\mathbf{p})\mathbf{t} + \mathbf{D}(\mathbf{p})$							
Nº ec	Rango de	Coef		$\alpha(\mathbf{p}) = \mathbf{E}\mathbf{p}^2 + \mathbf{F}\mathbf{p} + \mathbf{F}\mathbf{p}$	G			
IN CC.	p(bar)	Coel.	F	G	Н			
		A(p)	-6.4E-15	1.6E-13	2.55E-10			
1	0 • 50	B(p)	8E-12	-2E-10	-1.17E-06			
1	0 a 50	C(p)	1.35525E-20	-4.33681E-19	3.54E-03			
		D(p)	7.12E-07	-3.682E-04	1.05E-02			
		A(p)	-6.4E-15	1.6E-13	2.55E-10			
2	51 0 125	B(p)	8E-12	-2E-10	-1.17E-06			
2	JI a 125	C(p)	1.35525E-20	-4.33681E-19	3.54E-03			
		D(p)	7.12E-07	-3.682E-04	1.05E-02			
		A(p)	-4.96E-14	1.67E-11	-1.153E-09			
3	126 a 200	B(p)	1.76E-10	-6.04E-08	3.96E-06			
		C(p)	-1.76E-07	6.12E-05	-1.68E-03			
		D(p)	6.48E-05	-2.34E-02	2.0442			
	201 a 300	A(p)	5.09331E-15	-2.69092E-12	5.42878E-10			
4		B(p)	-1.28846E-11	6.71134E-09	-1.91379E-06			
4		C(p)	9.39594E-09	-4.76777E-06	4.104695E-03			
		D(p)	-1.55474E-06	4.71107E-04	-8.4905462E-02			
		A(p)	3.218E-14	-2.7413E-11	5.8495E-09			
5	301 a 500	B(p)	-7.41333E-11	6.308E-08	-1.40667E-05			
5	301 a 300	C(p)	5.53333E-08	-4.69E-05	1.3166667E-02			
		D(p)	-1.72867E-05	1.4327E-02	-2.99883333			
		A(p)	2.3E-15	-3.13E-12	1.24E-09			
6	501 a 800	B(p)	-6.5E-12	8.75E-09	-3.97E-06			
0	501 û 000	C(p)	5.5E-09	-7.25E-06	5.92E-03			
		D(p)	-7.5E-07	6.35E-04	-2.89E-01			
		A(p)	1.274E-16	-2.2206E-13	3.0566E-10			
7	801 a 1100	B(p)	-3.975E-13	6.5525E-10	-1.40775E-06			
,	001 u 1100	C(p)	1.924E-10	-1.6556E-07	3.65316E-03			
		D(p)	1.89608E-08	-3.86026E-04	3.506472E-02			
		A(p)	-3.37E-16	8.82E-13	-3.59E-10			
8	1101 a 1400	B(p)	1.34E-12	-3.55E-09	1.15E-06			
	1101 a 1400	C(p)	-9.02E-10	2.56E-06	1.96E-03			
		D(p)	2.84E-07	-1.09E-03	4.95E-01			

Tabla N° 37. Ecuaciones de estado no convencionales de la forma s(h,p) obtenidas para la fase LC

A.3 Tablas de error de cada una de las ecuaciones obtenidas

A continuación se presentan una serie de tablas que representan el E% de cada ecuación obtenida en el presente trabajo. Empezando con las ecuaciones de vapor sobrecalentado, luego con las de líquido comprimido y finalizando con las de la mezcla líquido-vapor. Cada cuadro indica el número de ecuación que es el mismo que apareció en los cuadros donde se mostraron las ecuaciones. El valor real de la propiedad, el valor calculado con la ecuación de la propiedad y el error relativo porcentual.

El cuadro presentado a continuación contiene los errores obtenidos con las ecuaciones v(t,p) y u(t,p) para la fase vapor sobrecalentado:

		v(t,p)			u(t,p)	
N° de ecuación	Vteo (cm ³ /g)	Vexp (cm ³ /g)	E _% (%)	Vteo (J/g)	Vexp (J/g)	E _% (%)
1	4820	4796.83665	0.48056749	3132.4	3133.10787	0.02259821
2	875	874.793217	0.02363233	2905.5	2905.03004	0.01617481
3	419	419.720721	0.17200986	2646.8	2632.39651	0.54418517
4	272.5	272.484318	0.00575492	3229.1	3230.61359	0.04687357
5	169.75	169.572966	0.10429126	3475.3	3481.51287	0.1787723
6	171.41	171.488846	0.04599836	2950.1	2942.61759	0.25363246
7	82.43	82.1507204	0.3388082	2761.6	2753.39425	0.29713746
8	77.57	77.3079145	0.33786971	3466.1	3473.27248	0.20693224
9	85.78	85.4100152	0.43131821	3102.9	3127.70236	0.79932827
10	100.74	100.805279	0.0647993	3079.9	3063.9002	0.519491
11	46.43	46.4469939	0.03660113	3458.5	3468.01685	0.27517271
12	94.3	94.386436	0.09166068	3091	3081.78555	0.29810579
13	68.79	68.7791298	0.01580205	2683.1	2685.31483	0.08254731
14	63.08	62.9221229	0.25028082	2892.9	2884.0976	0.30427598
15	48.8	48.7282207	0.14708866	3151.6	3144.91367	0.21215668
16	46.72	46.5443008	0.37606856	2635.9	2658.5401	0.85891338

Tabla N° 38. Errores obtenidos para ecuaciones dependientes de dos variables para la fase VS.

		v(t,p)		u(t,p)		
N° de ecuación	Vteo (cm ³ /g)	Vexp (cm ³ /g)	E _% (%)	Vteo (J/g)	Vexp (J/g)	E _% (%)
17	39.8	39.8282468	0.07097193	3447.2	3450.11196	0.08447325
18	27.48	27.4848404	0.01761421	2909	2903.49634	0.18919417
19	46.63	46.690155	0.12900496	3329.6	3330.90345	0.03914744
20	44.93	45.0533943	0.27463686	2656.5	2665.0739	0.32275172
21	29.17	28.9502046	0.75349822	3017.7	3014.69626	0.09953739
22	40.05	40.074551	0.06130092	3419.2	3420.91953	0.05029042
23	35.27	35.2717797	0.005046	3827.2	3825.20588	0.05210401
24	35.27	35.076459	0.54874105	2829.1	2835.26723	0.21799275
25	35.58	35.7450537	0.46389474	3430	3434.25843	0.12415259
26	26.8	26.7977696	0.00832227	3028.6	3026.71803	0.06213978
27	16.408	16.2717763	0.83022743	3418.1	3422.45712	0.12747213
28	23.23	23.314003	0.36161429	2730.2	2712.17843	0.66008244
29	21.06	21.0746121	0.06938328	3520.8	3526.94057	0.17440846
30	21.71	21.6831666	0.12359917	3071	3072.1443	0.03726156
31	21.61	21.6122612	0.01046376	3275.5	3287.0265	0.35190038
32	19.735	19.7210169	0.07085421	3574.3	3567.69142	0.18489145
33	10.038	10.1100024	0.71729831	2820.7	2802.6647	0.63939093
34	13.661	13.7800027	0.87111253	3315	3321.23678	0.18813816
35	11.179	11.0797959	0.88741497	2472.4	2460.02506	0.50052331
36	7.227	7.18921495	0.52283177	3283.6	3293.041	0.2875198
37	6.127	6.1193532	0.12480501	2842.7	2838.42717	0.15030891
38	7.581	7.61038539	0.38761886	2802.5	2796.46969	0.21517604
39	3.259	3.29049844	0.96650634	3198.5	3210.66339	0.38028412
40	2.075	2.06190577	0.63104702	3015.9	3014.74141	0.03841621
41	3.624	3.61930767	0.12947926	1971.2	1972.81261	0.08180861
42	7.472	7.46956058	0.03264744	2753.9	2747.31275	0.23919705
43	9.957	9.954266	0.02745807	3365.6	3365.41426	0.00551877
44	7.274	7.2728185	0.01624281	3604.8	3612.47778	0.21298775
45	2.075	2.06190577	0.63104702	2143.5	2164.24161	0.96765161
46	4.573	4.57215461	0.01848655			

A continuación se presenta el siguiente cuadro que contiene los errores obtenidos con las ecuaciones h(t,p) y s(t,p) para la fase vapor sobrecalentado:

		h(t,p)			s(t,p)	
N° de ecuación	Vteo (J/g)	Vexp (J/g)	E _% (%)	Vteo (J/g*K)	Vexp (J/g*K)	E _% (%)
1	3928	3930.53596	0.06456109	10.3506	10.3670655	0.15907807
2	3488.7	3490.39778	0.04866509	8.1272	8.16091494	0.41484077
3	3069.3	3060.13573	0.29857849	8.027	8.02059206	0.07982981
4	2833.6	2833.13101	0.01655093	6.7105	6.69782948	0.18881628
5	3259.1	3251.15996	0.24362662	7.4651	7.46262904	0.03310016
6	3558	3555.89884	0.05905449	7.871	7.88736052	0.20785824
7	2893.7	2895.16957	0.05078498	6.8226	6.8347605	0.17823851
8	3914	3918.85381	0.12401148	7.657	7.66078333	0.04941002
9	3455.4	3452.17586	0.09330723	6.3106	6.29239785	0.28843778
10	4383.8	4398.18628	0.32816923	7.7311	7.72194972	0.11835675
11	3330.3	3315.99906	0.42941888	7.0653	7.07677671	0.16243763
12	3555	3547.93902	0.19862099	7.7838	7.77561527	0.10515083
13	3433.8	3420.966	0.37375502	6.223	6.20618424	0.27021943
14	3944.4	3951.90589	0.19029224	8.0167	8.0073179	0.11703188
15	4132.7	4119.16048	0.32761923	6.3889	6.39776562	0.13876592
16	3584.2	3579.03403	0.1441318	6.9746	6.98198594	0.10589769
17	4081.9	4102.0993	0.49485033	7.6034	7.5948401	0.11257985
18	3650.3	3653.25999	0.08108908	6.6165	6.61201368	0.06780502
19	4126.9	4127.61288	0.01727403	5.8334	5.85540324	0.37719405
20	3401.9	3401.83126	0.00202069	7.2751	7.27834055	0.04454301
21	3761.6	3772.19526	0.28166894	6.8748	6.8802825	0.07974772
22	3126.1	3135.77748	0.30957028	7.8875	7.92371158	0.45910087
23	3411.3	3410.64845	0.01909983	6.5588	6.55668368	0.03226688
24	3111.5	3099.59298	0.38267769	7.0398	7.01314962	0.37856735
25	3872.9	3873.78966	0.02297138	6.5166	6.50832203	0.12702899
26	3598.9	3601.00684	0.05854131	6.4622	6.44609389	0.2492357
27	4608.1	4602.77766	0.11549957	7.0331	7.04147076	0.11901953
28	3341.8	3340.25641	0.04619025	6.6776	6.67658588	0.01518684
29	4044.5	4048.60702	0.1015457	7.155	7.16739166	0.17318886

Tabla N° 39. Errores obtenidos pa	ara ecuaciones dependientes	de dos variables para la fase V	/S.
-----------------------------------	-----------------------------	---------------------------------	-----

		h(t,p)		s(t,p)		
N° de ecuación	Vteo (J/g)	Vexp (J/g)	E _% (%)	Vteo (J/g*K)	Vexp (J/g*K)	E _% (%)
30	3128.7	3106.27838	0.71664323	5.6558	5.70501282	0.87013014
31	3821.5	3818.8017	0.0706083	6.4741	6.47710707	0.04644771
32	3238.2	3236.2046	0.06162065	6.3875	6.39472545	0.11311854
33	2973.1	2962.45279	0.35811806	6.6029	6.62157222	0.2827882
34	4033.4	4059.65733	0.65099746	7.0718	7.11401309	0.59692138
35	3064.1	3066.74895	0.086451	5.9282	5.8691523	0.99604771
36	3075.4	3085.60421	0.33180107	6.2054	6.19560949	0.15777407
37	3969.7	3963.19575	0.1638475	6.5251	6.52344263	0.02539995
38	3642.5	3641.88221	0.0169607	5.0676	5.07067214	0.06062317
39	3208.5	3206.02092	0.07726611	6.4563	6.45700508	0.01092087
40	4198	4196.93278	0.02542218	5.827	5.83397939	0.11977671
41	2543.4	2553.42323	0.39408766	6.3066	6.31054184	0.06250335
42	2789.7	2786.47791	0.1154994	5.6254	5.62090552	0.07989619
43	3457.2	3456.61372	0.01695817	5.385	5.37659621	0.15605921
44	3963.1	3962.96883	0.00330968	4.6042	4.61434494	0.22034099
45	4097.7	4105.36861	0.18714416	5.7073	5.70086815	0.11269507

El siguiente cuadro contiene los errores obtenidos con las ecuaciones u(v,p) y h(v,p) para la fase vapor sobrecalentado:

	u(v,p)			h(v,p)		
N° de ecuación	Vteo (J/g)	Vexp (J/g)	E _% (%)	Vteo (J/g)	Vexp (J/g)	E _% (%)
1	2559.4	2543.89461	0.60582126	2726.2	2725.14897	0.038553
2	2969	2969.16696	0.00562356	2783.1	2782.22079	0.03159088
3	2966.7	2966.228	0.01590979	3278.2	3277.88391	0.0096423
4	3476.6	3480.16519	0.10254824	3483.9	3484.61286	0.02046166
5	2793.2	2797.30302	0.14689306	3923.1	3925.02036	0.04895008
6	3473.6	3474.36042	0.0218913	3149.5	3147.82391	0.05321759
7	2948.9	2971.26837	0.75853264	2846.7	2848.09664	0.04906176
8	3290.9	3288.37912	0.07660151	3222.1	3220.38418	0.05325168
9	2855.1	2856.82257	0.06033299	3685.5	3686.03224	0.01444133
10	2754.7	2749.07233	0.20429327	4145.9	4147.1891	0.03109344
11	3653.5	3662.121	0.23596564	3104	3093.95782	0.32352389
12	3282.7	3283.69794	0.03039999	3675.2	3676.76856	0.04267971
13	2833.6	2830.36402	0.11420025	2950.2	2948.80426	0.04731007
14	3010.2	3008.99957	0.03987876	3460.5	3459.87854	0.01795868
15	3186.9	3187.9097	0.0316828	3898.9	3900.95576	0.05272676
16	3648.3	3649.6129	0.03598668	3182.8	3179.2586	0.11126696
17	3091.8	3091.7826	0.00056272	3631.5	3636.59075	0.14018299
18	3645.9	3647.16775	0.03477196	3290.1	3287.28342	0.08560759
19	2899.8	2876.84904	0.79146706	3406.7	3422.97352	0.47769169
20	3268.7	3268.35324	0.01060853	3859.6	3860.99688	0.03619227
21	2967.8	2965.26614	0.08537843	3130.2	3128.11183	0.06671041
22	3171.7	3172.64758	0.029876	3756.7	3758.12623	0.03796509
23	3640.6	3642.59909	0.05491108	3510	3510.49246	0.01403017
24	3165.8	3168.09109	0.07237009	3248.8	3244.93577	0.11894343
25	3143.9	3144.36406	0.01476055	3724.5	3726.8458	0.06298283
26	3349.5	3353.47692	0.11873184	3841.1	3843.976	0.07487443
27	2965.5	2962.38866	0.1049178	3353.4	3341.48629	0.35527249
28	3251.9	3251.28391	0.01894545	3574	3576.39566	0.06703027
29	2828.9	2821.16427	0.27345354	3708.6	3712.08253	0.09390424

Tabla Nº 40 Errores obtenid	os para ecuaciones	s dependientes de o	dos variables para la	fase VS
Tabla IV 40. Litores obtenia	os para ecuaciones	s dependiences de v	uos variabies para la	iuse vo.

		u(v,p))	h(v,p)			
N° de ecuación	Vteo (J/g)	Vexp (J/g)	E _% (%)	Vteo (J/g)	Vexp (J/g)	E _% (%)	
30	3304.8	3306.2608	0.04420231	4081.1	4086.04202	0.12109531	
31	3591.7	3595.4218	0.10362225	3542.1	3544.39604	0.06482142	
32	3027.7	3024.71518	0.09858382	2973.1	2957.70313	0.51787247	
33	3588.3	3563.42131	0.69332795	4033.4	4051.93098	0.45943829	
34	3823	3809.7016	0.3478526	3719.9	3693.93784	0.69792623	
35	3329.4	3343.92844	0.43636811	3719.9	3707.74462	0.32676633	
36	3021.7	3012.72833	0.29690807	3616.8	3636.31154	0.53946957	
37	3298.9	3288.12723	0.32655641	3897.9	3900.6457	0.07044048	
38	3208.6	3188.40198	0.62949636	3061.7	3044.92792	0.54780299	
39	2884.5	2869.09221	0.53415811	4425.2	4426.30206	0.02490425	
40	3293.1	3269.55443	0.71499725	3197.4	3208.12159	0.33532222	
41	3798.9	3802.72061	0.10057137	4406	4406.34342	0.00779447	
42	3044.7	3057.58928	0.42333499				
43	3257.6	3264.39416	0.20856344				
44	3884.3	3852.47357	0.81936065				
45	3221	3194.53252	0.82171635				
46	3548	3559.87302	0.33463982				
47	2751.9	2774.10139	0.80676582				
48	3745.3	3728.56924	0.44671341				
49	2869.7	2872.9744	0.1141026				
50	3510.2	3506.66638	0.10066727				
51	2958.2	2967.12715	0.30177631				
52	3219.8	3234.4695	0.45560294				
53	2414.8	2402.84015	0.49527309				
54	2658.8	2642.44652	0.61506996				
55	2813.9	2823.62058	0.34544856				
56	3093.5	3096.88876	0.10954449				
57	3358.1	3345.55491	0.37357716				
58	2195.8	2204.765	0.40827944				
59	1923	1927.46463	0.23217011				
60	3328	3316.30337	0.35146124				

A continuación se presenta el siguiente cuadro que contiene los errores obtenidos con las ecuaciones s(v,p) y h(u,p) para la fase vapor sobrecalentado:

		s(v,p)		h(u,p)			
N° de ecuación	Vteo (J/g*K)	Vexp (J/g*K)	E _% (%)	Vteo (J/g)	Vexp (J/g)	E _% (%)	
1	9.8435	9.84302754	0.00479976	2631.5	2637.37964	0.22343302	
2	8.5892	8.59701377	0.09097208	2783	2785.19631	0.0789188	
3	7.7079	7.70103258	0.08909589	3704	3692.68618	0.3054487	
4	8.9119	8.91377803	0.02107333	3064.2	3062.09169	0.06880458	
5	7.1017	7.10023833	0.02058204	3480.6	3471.83884	0.25171397	
6	6.74	6.73881952	0.01751447	3921	3911.71901	0.23669956	
7	7.8071	7.7988696	0.10542197	2919.2	2924.15336	0.16968207	
8	7.0352	7.05101015	0.2247292	3690.1	3681.46181	0.23409084	
9	7.472	7.46213956	0.13196523	3352.2	3347.42617	0.14240886	
10	6.1575	6.15088686	0.10739974	3119.7	3120.84631	0.03674415	
11	6.7046	6.71350687	0.1328471	3680.8	3672.27644	0.23156813	
12	7.2299	7.23917057	0.12822537	3171.7	3171.28375	0.01312373	
13	6.1089	6.09838842	0.17206991	3581.7	3573.65502	0.22461338	
14	6.7011	6.70826559	0.1069315	3080.6	3082.58356	0.06438886	
15	7.1272	7.15727932	0.42203553	3458.3	3452.92891	0.15531007	
16	7.5822	7.5776601	0.05987579	4087.5	4080.6546	0.1674716	
17	6.6007	6.61163566	0.16567429	3181	3181.63711	0.02002848	
18	7.2938	7.30062982	0.09363868	3656	3648.30557	0.21046038	
19	6.7102	6.67847114	0.47284521	4080.9	4074.4154	0.15890116	
20	6.0547	5.99826023	0.93216452	3284.1	3282.84932	0.03808287	
21	7.0774	7.0863766	0.12683474	3693.3	3686.00452	0.1975328	
22	7.8462	7.81276924	0.42607578	3246.1	3245.47168	0.01935603	
23	6.5735	6.59225085	0.28524916	3101.3	3104.57365	0.10555735	
24	6.9995	7.01161764	0.17312158	3853.5	3846.87385	0.17195153	
25	7.1427	7.14907986	0.08931995	3509	3502.80901	0.17643188	
26	6.6156	6.64090299	0.38247468	3970.2	3964.22952	0.15038222	
27	6.3233	6.34800797	0.39074482	3574	3569.92243	0.11408969	
28	6.5866	6.6149855	0.43095827	3490.7	3485.29007	0.15498116	
29	7.0814	7.06996435	0.1614886	3350.8	3348.31049	0.07429584	

Tabla N° 41. Errores obtenidos para ecuaciones dependientes de dos variables para la fase VS.

		s(v,p)			h(u,p)			
N° de ecuación	Vteo (J/g*K)	Vexp (J/g*K)	E _% (%)	Vteo (J/g)	Vexp (J/g)	E _% (%)		
30	6.4155	6.45254371	0.57740954	3621.2	3614.50729	0.18482028		
31	6.1181	6.16654813	0.79188192	3301.8	3300.76097	0.03146851		
32	6.8147	6.79717594	0.25715084	3824.6	3816.80934	0.20369857		
33	6.4321	6.45765209	0.39725894	3542.1	3535.56283	0.18455636		
34	6.0114	6.02696557	0.25893416	2995.8	3008.38969	0.42024455		
35	6.2189	6.23413091	0.24491319	3614.4	3609.6061	0.13263331		
36	6.4563	6.45636688	0.0010359	3955.1	3944.00061	0.280635		
37	5.3069	5.28362423	0.43859454	2289.2	2308.82048	0.85708894		
38	6.3066	6.35727946	0.80359407	2903.3	2917.32207	0.48297016		
39	5.385	5.4070089	0.40870749	3942.5	3927.02298	0.39256866		
40	6.1115	6.09574042	0.25786766	2623	2642.31705	0.73644872		
41	5.4726	5.49188932	0.35247092	3334.5	3329.00823	0.16469546		
42				3262.8	3258.84195	0.12130848		
43				3956.1	3941.14137	0.37811565		
44				3161.6	3160.50411	0.03466238		
45				2043.8	2046.69567	0.14168048		

A continuación se presenta el siguiente cuadro que contiene los errores obtenidos con las ecuaciones s(u,p) y s(h,p) para la fase vapor sobrecalentado:

		s(u,p)		s(h,p)		
N° de ecuación	Vteo (J/g*K)	Vexp (J/g*K)	E _% (%)	Vteo (J/g*K)	Vexp (J/g*K)	E _% (%)
1	11.6836	11.6812033	0.02051354	11.6836	11.6807565	0.02433794
2	10.0008	10.0092351	0.08434413	8.5514	8.50480775	0.54484944
3	8.0333	8.0301805	0.03883208	8.5435	8.55053386	0.08232991
4	7.9598	7.96624422	0.08095957	7.3789	7.37785164	0.01420749
5	8.377	8.37479743	0.02629308	8.377	8.37786154	0.01028455
6	7.892	7.89931279	0.09266077	6.7158	6.71513927	0.00983848
7	7.0389	7.0164061	0.31956562	7.808	7.80892652	0.01186631
8	7.9039	7.91337751	0.11990932	7.1271	7.11735301	0.13675951
9	7.7957	7.83842098	0.54800703	6.4343	6.47547377	0.63991065
10	6.9388	6.94067468	0.02701734	7.7898	7.78956901	0.00296527
11	6.5006	6.48824083	0.19012346	6.7428	6.74325989	0.00682042
12	7.9134	7.92285917	0.11953353	7.1422	7.1425709	0.00519304
13	6.7967	6.74458902	0.76670998	7.5961	7.61132393	0.20041769
14	7.2093	7.20830262	0.01383462	6.7425	6.73791095	0.0680615
15	6.5131	6.51552228	0.03719087	7.311	7.30867369	0.03181933
16	7.2524	7.22584158	0.36620176	6.8404	6.86011439	0.28820516
17	6.9351	6.94037049	0.0759973	7.2589	7.2700863	0.15410465
18	7.6984	7.68012244	0.23742031	7.0828	7.08843868	0.07961095
19	7.1491	7.14934598	0.00344068	6.3556	6.34108054	0.22845147
20	6.3225	6.32317333	0.01064971	6.0399	6.04964287	0.16130847
21	7.5879	7.58958314	0.02218192	7.3348	7.33564778	0.01155839
22	7.6034	7.60698638	0.0471681	6.8053	6.80397145	0.01952225
23	7.909	7.88341508	0.32349118	6.9044	6.90334004	0.01535198
24	6.7756	6.75059033	0.36911375	6.4132	6.41968458	0.10111299
25	7.0471	7.07414811	0.38381901	6.5776	6.57636593	0.01876177
26	7.4841	7.49502153	0.14592974	6.8712	6.87803586	0.09948571
27	6.3553	6.35836861	0.0482843	7.0014	6.99166771	0.13900487
28	6.8152	6.83641952	0.31135572	7.245	7.25422397	0.12731499
29	6.505	6.49431408	0.16427248	6.0361	6.03667564	0.00953661

Tabla N° 42. Errores obtenidos para ecuaciones dependientes de dos variables para la fase VS.

		s(u,p)		s(h,p)		
N° de ecuación	Vteo (J/g*K)	Vexp (J/g*K)	E _% (%)	Vteo (J/g*K)	Vexp (J/g*K)	E _% (%)
30	6.6512	6.58598716	0.9804673	6.471	6.50088072	0.46176362
31	7.0981	7.14358195	0.64076234	7.433	7.41072938	0.29961812
32	7.1842	7.18626508	0.02874469	6.6025	6.62179703	0.29226847
33	6.7451	6.74872401	0.05372801	6.3677	6.36739672	0.00476271
34	7.1793	7.21830667	0.54332137	6.9898	7.02850343	0.55371295
35	7.4552	7.45337456	0.02448541	6.9526	6.95186782	0.01053098
36	6.4618	6.47316768	0.1759213	6.606	6.60419727	0.02728932
37	6.8411	6.88405264	0.62786154	6.6971	6.7025737	0.08173237
38	6.9744	6.96662069	0.11154099	6.4799	6.4808494	0.01465146
39	6.4571	6.46810318	0.17040444	6.0422	6.03865372	0.05869186
40	6.6436	6.6376744	0.08919261	6.7037	6.70284271	0.01278834
41	6.4412	6.43445236	0.10475754	7.0544	7.05509668	0.00987589
42	6.5483	6.53694246	0.17344255	6.6947	6.7089722	0.21318648
43	5.5366	5.54035879	0.06788985	6.3077	6.29783028	0.15647101
44	4.3239	4.33877812	0.34409022	6.5102	6.50737982	0.04331944
45	5.1455	5.16027255	0.28709645	6.368	6.35975368	0.12949616
46	6.2757	6.26598702	0.1547713	5.5013	5.50099459	0.00555153
47	5.287	5.29391418	0.13077699	6.2763	6.26946886	0.10884026
48	5.795	5.79687363	0.03233186	4.2734	4.27456844	0.02734222
49	5.8101	5.8026024	0.1290442	4.4699	4.47277378	0.06429179
50	3.9609	3.95256802	0.21035576	5.3069	5.30742538	0.00990001
51	5.8722	5.86476275	0.12665189	6.0595	6.05910461	0.0065251
52	5.336	5.34067977	0.08770186	4.2743	4.27123411	0.07172855
53	5.7716	5.76056718	0.1911571	5.0323	5.02999035	0.04589643
54	5.5225	5.51970315	0.05064463	5.4905	5.48855564	0.03541321
55				6.0193	6.02609986	0.11296762

A continuación se presenta el siguiente cuadro que contiene los errores obtenidos con las ecuaciones v(t,p) y u(t,p) para la fase líquido comprimido:

		v(t,p)		u(t,p)		
N° de ecuación	Vteo (cm ³ /g)	Vexp (cm ³ /g)	E _% (%)	Vteo (J/g)	Vexp (J/g)	E _% (%)
1	1.2264	1.22425222	0.17512851	761.16	759.07408	0.27404488
2	1.0737	1.07932861	0.52422539	1073	1073.0156	0.00145387
3	1.0233	1.02279874	0.04898491	1212.5	1208.02959	0.36869388
4	1.0199	1.02506964	0.50687667	578.76	580.427309	0.28808297
5	1.2856	1.29513706	0.7418376	1184.4	1183.06456	0.11275207
6	1.1146	1.11399692	0.0541073	479.57	479.517907	0.01086248
7	1.1146	1.11483764	0.02132047	1116.8	1116.58845	0.0189427
8	1.0531	1.05312218	0.00210582	387.67	387.486774	0.04726345
9	1.2481	1.2480356	0.00515962			

Tabla N° 43. Errores obtenidos para ecuaciones dependientes de dos variables para la fase LC.

A continuación se presenta el siguiente cuadro que contiene los errores obtenidos con las ecuaciones h(t,p) y s(t,p) para la fase líquido comprimido:

		h(t,p)			s(t,p)		
N° de ecuación	Vteo (J/g)	Vexp (J/g)	E _% (%)	Vteo (J/g*K)	Vexp (J/g*K)	E _% (%)	
1	853.9	851.449462	0.28698191	2.3294	2.32711631	0.09803791	
2	1183.9	1187.3936	0.29509249	3.1404	3.13755612	0.09055793	
3	430.28	427.879325	0.55793321	2.6674	2.64573154	0.81234397	
4	773.2	776.717319	0.45490421	1.2809	1.28379009	0.22562932	
5	1324.6	1324.10123	0.03765439	3.4224	3.42332197	0.02693925	
6	892	888.39114	0.40458072	2.2176	2.2188815	0.05778774	
7	1552.7	1551.48702	0.07812073	2.9905	2.98947304	0.03434075	
8	921.9	922.011596	0.01210495	3.266	3.26502954	0.02971414	

Tabla Nº 44. Errores obtenidos para ecuaciones dependientes de dos variables para la fase LC.

A continuación se presenta el siguiente cuadro que contiene los errores obtenidos con las ecuaciones u(v,p) y h(v,p) para la fase líquido comprimido:

		u(v,p)		h(v,p)		
N° de ecuación	Vteo (J/g)	Vexp (J/g)	E _% (%)	Vteo (J/g)	Vexp (J/g)	E _% (%)
1	418.24	418.738885	0.11928194	422.72	422.771599	0.01220647
2	1212.5	1212.8091	0.02549273	900.7	901.616279	0.10172968
3	750.95	753.643436	0.35867055	600.38	602.382785	0.33358623
4	575.04	576.022669	0.17088699	862.8	866.112568	0.38393235
5	976.7	975.30491	0.1428371	790.25	791.988623	0.22000925
6	1421.8	1423.18839	0.09765051	1461.6	1461.34141	0.01769245
7	546.31	546.452432	0.02607168	1076.3	1075.91902	0.035397
8				518	518.452368	0.08732965

Tabla N° 45. Errores obtenidos para ecuaciones dependientes de dos variables para la fase LC.

A continuación se presenta el siguiente cuadro que contiene los errores obtenidos con las ecuaciones s(v,p) y h(u,p) para la fase líquido comprimido:

		s(v,p)			h(u,p)		
N° de ecuación	Vteo (J/g*K)	Vexp (J/g*K)	E _% (%)	Vteo (J/g)	Vexp (J/g)	E _% (%)	
1	2.4238	2.4288043	0.20646492	1085.3	1085.43439	0.01238241	
2	3.1495	3.14489408	0.146243	1337.3	1338.01356	0.05335826	
3	1.5123	1.50065912	0.76974691	437.85	437.039988	0.18499768	
4	2.2961	2.30157813	0.23858409	957.3	959.959672	0.27783057	
5	2.9537	2.95200587	0.05735616	464.53	464.117325	0.0888371	
6	1.2503	1.23949253	0.86438987	1331.8	1333.37183	0.11802289	
7	2.839	2.83727037	0.06092402	921.9	925.11888	0.34915718	
8	1.2189	1.21461745	0.3513456				

Tabla Nº 46. Errores obtenidos para ecuaciones dependientes de dos variables para la fase LC.

A continuación se presenta el siguiente cuadro que contiene los errores obtenidos con las ecuaciones s(u,p) y s(h,p) para la fase líquido comprimido:

		s(u,p)		s(h,p)		
N° de ecuación	Vteo (J/g*K)	Vexp (J/g*K)	E _% (%)	Vteo (J/g*K)	Vexp (J/g*K)	E _% (%)
1	2.1375	2.13906135	0.07304581	2.7034	2.69929067	0.15200592
2	2.6821	2.68237188	0.0101367	1.0688	1.07229801	0.32728375
3	1.2917	1.28905047	0.20511925	3.2163	3.2164683	0.00523267
4	3.4947	3.49256598	0.06106447	1.2881	1.28437642	0.28907541
5	3.4947	3.49380183	0.02570095	2.9751	2.98208413	0.23475287
6	2.2071	2.20961587	0.11398985	3.076	3.0739994	0.06503893
7	1.2189	1.21737666	0.1249766	2.2071	2.21016469	0.13885585
8				1.428	1.42422511	0.26434836

Tabla N° 47. Errores obtenidos para ecuaciones dependientes de dos variables para la fase LC.

A.4 Tablas de resultados que contienen las ecuaciones obtenidas para la mezcla líquido-vapor.

A continuación se presentan una serie de cuadros que contienen todas las ecuaciones obtenidas para el agua como mezcla líquido-vapor, cabe destacar que cada cuadro corresponde a un rango de temperatura distinto en el que son válidas cada tipo de ecuaciones obtenidas, se señala en la parte superior del mismo.

Las unidades en las que se encuentran todas las propiedades presentes en cada tabla son: t (°C), p (bar), v_f y v_g (cm³/g), u_f y u_g (J/g), h_f y h_g (J/gr) y s_f y s_g (J/g*°C)

<u>APÉNDICES</u>

	Válidas en el rango (0-90) °C.									
$\alpha(t) = At^4 + Bt^3 + Ct^2 + Dt + E + F(1/t) + G(1/t^2)$										
Ecuación	Α	В	С	D	Ε	F	G			
v _f (t)		-1.6481E-08	6.2532E-06	-3.128E-05	1.000096					
v _g (t)	8.32012E-04	-0.26272577	30.9607038	-1487.19149	3098.89977	1807831.1749	-6577837.9246			
u _f (t)				4.1831	0.1899					
u _g (t)			-9E-04	1.4147	2375.1					
h _f (t)				4.1844	0.1914					
h _g (t)			-1.2E-03	1.8816	2501.1					
s _f (t)			-2E-05	0.0151	2.4E-03					
s _g (t)		-3E-07	1E-04	-0.0266	9.1556					

Tabla N° 48. Ecuaciones en función de la temperatura para el equilibrio L-V.

Válidas en el rango (91-200) °C.									
$\alpha(t) = At^5 + Bt^4 + Ct^3 + Dt^2 + Et + F$									
Ecuación	Α	В	С	D	Ε	F			
v _f (t)			7E-09	7E-07	4E-04	0.9859			
v _g (t)	-2.67199E-07	2.239318E-04	-0.07576017052	13.02308647	-1149.865135	42469.64665			
u _f (t)					4.3031	-12.578			
u _g (t)				-3.3E-03	1.8855	2350.8			
h _f (t)					4.3041	-12.459			
h _g (t)				-4.5E-03	2.5405	2467			
s _f (t)				-1E-05	0.0131	0.0946			
s _g (t)			-1E-07	7.0E-05	-0.0226	9.0333			

Tabla N° 49. Ecuaciones en función de la temperatura para el equilibrio L-V.

Válidas en el rango (201-299) °C.									
$\alpha(t) = At^4 + Bt^3 + Ct^2 + Dt + E$									
Ecuación	Α	В	С	D	Ε				
v _f (t)		6.25E-08	-3.55E-05	8.35E-03	0.406				
v _g (t)	5.03063E-07	-5.7789E-04	0.25325705	-50.58226732	3931.599				
u _f (t)				4.7932	-114.26				
u _g (t)		-3.17834E-05	0.0146072	-1.58674528	2582.81288				
h _f (t)				4.9222	-142				
h _g (t)		-4.02552E-05	0.018087	-1.8363946	2759.2286				
s _f (t)				9.2E-03	0.4982				
s _g (t)				-7.2E-03	7.8706				

Tabla N° 50. Ecuaciones en función de la temperatura para el equilibrio L-V.

	Válidas en el rango (300-374) °C.									
	$\alpha(t) = At^5 + Bt^4 + Ct^3 + Dt^2 + Et + F$									
Ecuación	Α	В	С	D	Ε	F				
v _f (t)	3.71699E-09	-6.11564E-06	4.021968E-03	-1.321492418	216.9238904	-14230.19405				
v _g (t)			-2.29257E-05	0.024136986	-8.667697061	1068.721676				
u _f (t)		4.8968E-05	-0.064463783	31.80094378	-6961.215506	571495.0016				
u _g (t)		-6.75996E-05	0.088830604	-43.75309784	9570.456773	-781673.4483				
h _f (t)			1.63561E-03	-1.586653761	518.6312672	-55618.93754				
h _g (t)		-7.84185E-05	0.1030336	-50.74477008	11099.18118	-906704.814				
s _f (t)			2.48589E-06	-0.00242002	0.794355	-84.38706				
s _g (t)			-3.8064E-06	3.691664E-03	-1.201123E+00	136.58835				

Tabla N° 51. Ecuaciones en función de la temperatura para el equilibrio L-V.

Válidas en el rango (1.0002-1.0099) cm^3/g .								
$\alpha(v_{f}) = Av_{f}^{5} + Bv_{f}^{4} + Cv_{f}^{3} + Dv_{f}^{2} + Ev_{f} + F$								
Ecuación A B C D								
$v_g(v_f)$	-8228471815608320	41392432396863300	-83287959912527200	83794020854282100				
$u_{\rm f}(v_{\rm f})$	2676454391904	-13469732573414.3	27115510017199.8	-27292686032130.5				
$u_{g}(v_{f})$		-6604898000.75	26589788070.2	-40141679873.43				
$h_{f}(v_{f})$		-19773636128.86	79605730772.88	-120180502031.43				
$h_g(v_f)$			49149980.54	-148561134.36				
$s_{f}(v_{f})$			411092.94	-1242512.2				
$s_g(v_f)$			-702156.2	2122230.43				

Tabla N° 52. Ecuaciones en función del volumen específico de la fase líquida para el equilibrio L-V.

Ecuación	Ε	F
$v_g(v_f)$	-42151532537104300	8481511014212110
u _f (v _f)	13735500385810.2	-2765046189336.25
u _g (v _f)	26933599180.53	-6776806989.88
h _f (v _f)	80638391593.03	-20289984171.13
h _g (v _f)	149685162.08	-50271490.29
s _f (v _f)	1251847.86	-420428.46
$S_{g}(V_{f})$	-2138156.79	718091.48

Válidas en el rango (1.01-1.036) cm^3/g .								
$\alpha(v_f) = Av_f^4 + Bv_f^3 + Cv_f^2 + Dv_f + E$								
Ecuación	uación A B C D							
$v_g(v_f)$	36766444576.3	-151368582755.72	233702859557.62	-160370042641.42	41269363500.98			
u _f (v _f)			-63760	137563	-73706			
u _g (v _f)			-23868	51007	-24732			
h _f (v _f)			-63473	136969	-73398			
h _g (v _f)			-31702	67759	-33513			
s _f (v _f)			-240	512.71	-271.9			
s _g (v _f)			400.59	-845.18	453.14			

Tabla N° 53. Ecuaciones en función del volumen específico de la fase líquida para el equilibrio L-V.

Válidas en el rango (1.0361-1.1565) cm^3/g .								
	$\alpha(v_f) = Av_f^6 + Bv_f^5 + Cv_f^4 + Dv_f^3 + Ev_f^2 + Fv_f + G$							
Ecuación	ción A B C D E							
v _g (v _f)	6504375262.41	-43325658252.48	120238104932.38	-177954557696.15	148140185917.01			
u _f (v _f)					-11019			
ug(vf)					-5314.6			
h _f (v _f)					-11182			
h _g (v _f)					-7159.3			
$s_f(v_f)$					-36.37			
$S_g(V_f)$					44.944			

I abla N° 54. Ecuaciones en funcion del volumen especifico de la fase liquida para el equilibrio L
--

Ecuación	F	G
$v_g(v_f)$	-65767729211.79	12165292681.42
u _f (v _f)	28016	-16817
$u_g(v_f)$	12460	-4707.7
h _f (v _f)	28375	-17013
h _g (v _f)	16763	-7019.4
$s_f(v_f)$	88.903	-51.855
$s_g(v_f)$	-106.77	69.822

Válidas en el rango (1.1566-2.88) cm^3/g .								
$\alpha(v_f) = Av_f^4 + Bv_f^3 + Cv_f^2 + Dv_f + E$								
Ecuación	ón A B C D E							
v _g (v _f)	55587.6741	-295201.2638	588461.9636	-522050.1255	173994.0935			
u _f (v _f)			-3023.4	9659.7	-6273.5			
$u_g(v_f)$			-1290.7	3152.5	678.18			
h _f (v _f)			-3094.8	9894.7	-6451.2			
h _g (v _f)			-1675.1	4081.3	316.81			
$s_f(v_f)$			-7.216	22.114	-13.582			
$s_g(v_f)$			5.3073	-16.45	18.348			

Tabla N° 55. Ecuaciones en función del volumen específico de la fase líquida para el equilibrio L-V.

Válidas en el rango (206278-15258) cm ³ /g.								
$\alpha(v_g) = Av_g^5 + Bv_g^4 + Cv_g^3 + Dv_g^2 + Ev_g + F$								
Ecuación	Ecuación A B C D E F							
u _f (v _g)	-8.57224E-24	4.68627E-18	-1.01071E-12	1.111111E-07	-7.059971E-03	268.9069526		
$u_g(v_g)$	-2.74364E-24	1.49977E-18	-3.23568E-13	3.56294E-08	-2.275847E-03	2462.8613520		
h _f (v _g)	-8.59237E-24	4.69567E-18	-1.01234E-12	1.11241E-07	-7.064599E-03	268.9695026		
h _g (v _g)	-3.59819E-24	1.97336E-18	-4.27283E-13	4.72196E-08	-3.025095E-03	2617.8446640		
s _f (v _g)	-2.60927E-26	1.42936E-20	-3.09468E-15	3.43058E-10	-2.234630E-05	0.8961095		
s _g (v _g)	3.34979E-26	-1.84495E-20	4.02948E-15	-4.54211E-10	3.097560E-05	7.8016599		

Tabla N° 56. Ecuaciones en función del volumen específico de la fase vapor para el equilibrio L-V.

Tabla N° 57. Ecuaciones en función del volumen específico de la fase vapor para el equilibrio L-V.

Válidas en el rango (15257-2361) cm ³ /g.								
	$\alpha(v_g) = Av_g^4 + Bv_g^3 + Cv_g^2 + Dv_g + E$							
Ecuación	Ecuación A B C D E							
u _f (v _g)	7.0081E-15	-3.56583E-10	6.90592E-06	-6.7729023E-02	499.9459141			
u _g (v _g)	1.93216E-15	-9.90492E-11	1.94398E-06	-1.9621427E-02	2530.511623			
h _f (v _g)	7.17716E-15	-3.63669E-10	7.00316E-06	-6.8216663E-02	500.7719856			
h _g (v _g)	2.5975E-15	-1.32916E-10	2.60328E-06	-2.6216757E-02	2708.163051			
s _f (v _g)	1.8328E-17	-9.38435E-13	1.83923E-08	-1.861E-04	1.533969346			
s _g (v _g)	-1.85821E-17	9.6138E-13	-1.92267E-08	2.05807E-04	7.095259822			
	Válidas en el rango (2360-127.36) cm^3/g .							
----------------------------------	--	-------------------	---	----------------------	--------------	-------------		
		$\alpha(v_g) = A$	$v_{g}^{5} + Bv_{g}^{4} + Cv_{g}^{3} +$	$-Dv_g^2 + Ev_g + F$				
Ecuación	Α	В	С	D	Ε	F		
u _f (v _g)	-1.25167E-13	8.40041E-10	-2.15626E-06	2.687864E-03	-1.779990393	1025.63818		
u _g (v _g)	-1.05847E-14	7.46938E-11	-2.06857E-07	2.92465E-04	-0.246393908	2622.028073		
h _f (v _g)	-1.23062E-13	8.27038E-10	-2.12691E-06	2.65861E-03	-1.767968977	1024.478367		
h _g (v _g)	-1.33120E-14	9.42914E-11	-2.62568E-07	3.74324E-04	-0.31965878	2828.023164		
s _f (v _g)	-2.54723E-16	1.71661E-12	-4.43661E-09	5.60504E-06	-0.003849212	2.714795592		
s _g (v _g)	1.89729E-16	-1.28158E-12	3.32825E-09	-4.25624E-06	0.003060578	6.122674024		

Tabla N° 58. Ecuaciones en función del volumen específico de la fase vapor para el equilibrio L-V.

Tabla N° 59. Ecuaciones en función del volumen específico de la fase vapor para el equilibrio L-V.

Válidas en el rango (127.35-3.322) cm ³ /g.							
		α($(v_g) = Av_g^6 + Bv_g^5 +$	$Cv_{g}^{4}+Dv_{g}^{3}+Ev_{g}^{2}+$	$Fv_g + G$		
Ecuación	Α	В	С	D	E	F	G
u _f (v _g)		-5.478E-07	1.98494E-04	-2.7437412E-02	1.835522153	-64.9155779	2108.185085
u _g (v _g)	-1.64125E-08	6.81544E-06	-1.111096E-03	9.0209314E-02	-3.822292963	80.48300204	1922.779786
h _f (v _g)	1.16714E-08	-4.96306E-06	8.37101E-04	-7.1671804E-02	3.342200907	-88.3848186	2249.528341
h _g (v _g)	-1.9552E-08	8.13365E-06	-1.329074E-03	1.08285101E-01	-4.614355094	98.12884678	1958.679548
s _f (v _g)	1.67239E-11	-7.09082E-09	1.19337E-06	-1.02202E-04	4.802658E-03	-0.131724686	4.650817125
s _g (v _g)	-2.7706E-11	1.15816E-08	-1.9085E-06	1.57972E-04	-6.976569E-03	0.16720508	4.138427699

Válidas en el rango (4.15-376.85) J/g.						
	$\alpha(u_f) = A u_f^2$	$2 + Bu_f + C$				
Ecuación	Ecuación A B C					
$u_{g}(u_{f})$		0.3173	2376.40			
h _f (u _f)		1.0003	1.2E-03			
h _g (u _f)		0.4227	2502.8			
s _f (u _f) -1.18434E-06 3.602166E-03 1.948E-03						
s _g (u _f)	4.2443E-06	-5.997438E-03	9.144369358			

Tabla Nº 60. Ecuaciones en función de la energía interna específica de la fase líquida para el equilibrio L-V.

Tabla N° 61. Ecuaciones en función de la energía interna específica de la fase líquida para el equilibrio L-V.

Válidas en el rango (376.87-846.19) J/g.						
	$\alpha(u_f) =$	$Au_{f}^{2}+Bu_{f}+C$				
Ecuación	Ecuación A B C					
$u_g(u_f)$		0.3173	2376.4			
h _f (u _f)		1.0003	1.2E-03			
h _g (u _f)		0.4227	2502.8			
$s_f(u_f)$	-1.18434E-06	3.602166E-03	1.948035E-03			
s _g (u _f)	4.2443E-06	-5.997438E-03	9.144369358			

Válidas en el rango (846.2-1985.9) J/g.						
	$\alpha(u_f) =$	$Au_f^2 + Bu_f + C$				
Ecuación	Ecuación A B C					
$u_g(u_f)$	-6.03E-04	1.278292308	1931.129506			
h _f (u _f)		1.037487029	-32.00692073			
h _g (u _f)	-0.000738164	1.549871277	1995.047139			
s _f (u _f)	-2.29E-07	2.397687E-03	0.465538828			
s _g (u _f)	-2.88893E-07	-8.18644E-04	7.308185599			

Tabla Nº 62. Ecuaciones en función de la energía interna específica de la fase líquida para el equilibrio L-V.

Tabla N° 63. Ecuaciones en función de la energía interna específica de la fase vapor para el equilibrio L-V.

Válidas en el rango (2376.7-2494.5) J/g y (0-90) °C.						
	$\alpha(u_g) = A u_g^2 + B u_g + C$					
Ecuación	Ecuación A B C					
$h_{f}(u_{g})$	1.676626E-03	-5.019849991	2464.977318			
$h_g(u_g)$		1.331883059	-662.3480498			
s _f (u _g)	-6.49078E-06	0.041549724	-62.06774649			
s _g (u _g)	3.50615E-05	-0.184638353	249.8969282			

Válidas en el rango (2494.6-2595.3) J/g y (91-200) °C.						
	$\alpha(\mathbf{u}_{g}) = A\mathbf{u}_{g}^{2} + B\mathbf{u}_{g} + C$					
Ecuación	Ecuación A B C					
h _f (u _g)	1.8436292E-02	-89.364184850	108584.7099			
h _g (u _g)	-1.94924E-04	2.31531916	-1902.7			
s _f (u _g)	3.02021E-05	-0.142883622	169.701134			
$S_{g}(u_{g})$	-9.54592E-06	0.038574283	-29.36056078			

Tabla Nº 64. Ecuaciones en función de la energía interna específica de la fase vapor para el equilibrio L-V.

Tabla N° 65. Ecuaciones en función de la energía interna específica de la fase vapor para el equilibrio L-V.

Válidas en el rango (2595.4-2604.10) J/g y (201-233) °C.						
$\alpha(u_g) = Au_g^4 + Bu_g^3 + Cu_g^2 + Du_g + E$						
Ecuación	ción A B C D E					
h _f (u _g)	8.575349E-08	-2.00052498E-04	-0.404527843	147.323315	1949863.41347	
h _g (u _g)			-0.007041615	37.86562935	-48050.1323	
s _f (u _g)	s _f (u _g) 1.68288665345E-10 -3.93128625418E-07 -7.93744752539E-04 0.300579585405 3805.88251353					
s _g (u _g)	-1.26615E-10	2.945249037E-07	5.9609038225E-04	-0.195951427669	-2904.30548605	

Válidas en el rango (2604.15-2053.7) J/g y (234-374) °C.						
	$\alpha(u_g) = Au_g^{7} + Bu_g^{6} + Cu_g^{5} + Du_g^{4} + Eu_g^{3} + Fu_g^{2} + Gu_g + H$					
Ecuación	Ecuación A B C D E					
h _f (u _g)	-2.46237061842E-17	9.80172043507E-14	5.14378169356E-10	-2.78836565686E-06	-1.33138960418E-03	
h _g (u _g)						
s _f (u _g)	7.21343931203E-22	-2.37654540634E-16	1.75930779223E-12	-1.14247874404E-09	-2.54487081314E-05	
s _g (u _g)		1.76287554361E-16	-1.3313181614E-12	9.08473867112E-10	1.91821796591E-05	

Tabla N° 66. Ecuaciones en función de la energía interna específica de la fase vapor para el equilibrio L-V.

Ecuación	F	G	Н
h _f (u _g)	27.2379390641	-52769.9599616	32279692.0186
h _g (u _g)		1.2542	-464.68
s _f (u _g)	0.096574934091	-139.906020489	74212.8585798
s _g (u _g)	-0.0732	106.288788297	-56450.2612834

Válidas en el rango (4.16-376.92) J/g.					
$\alpha(h_f) = A h_f^2 + B h_f + C$					
Ecuación	Ecuación A B C				
hg(hf)		0.422528394	2502.754566		
s _f (h _f)	-1.17632E-06	3.59814E-03	2.145424E-03		
sg(hf)	4.23297E-06	-5.991972E-03	9.144108936		

Tabla N° 67. Ecuaciones en función de la entalpía específica de la fase líquida para el equilibrio L-V.

Tabla N° 68. Ecuaciones en función de la entalpía específica de la fase líquida para el equilibrio L-V.

Válidas en el rango (376.93-939.01) J/g.					
$\alpha(h_f) = Ah_f^2 + Bh_f + C$					
Ecuación A B C					
h _g (h _f)	-2.84324E-04	0.632578298	2460.448254		
s _f (h _f)	-6.17415E-07	3.155255E-03	0.093841136		
$s_{g}(h_{f})$	1.2459E-06	-3.716606E-03	8.690426866		

Válidas en el rango (939.02-2049.4) J/g.					
$\alpha(\mathbf{h}_{\mathrm{f}}) = \mathbf{A}\mathbf{h}_{\mathrm{f}}^{2} + \mathbf{B}\mathbf{h}_{\mathrm{f}} + \mathbf{C}$					
Ecuación A B C					
$h_g(h_f)$	-6.85419E-04	1.463000269	2023.080038		
$s_f(h_f)$	-2.4853E-07	2.376181E-03	0.506849676		
s _g (h _f)	-2.83676E-07	-7.30973E-04	7.204158565		

Tabla N° 69. Ecuaciones en función de la entalpía específica de la fase líquida para el equilibrio L-V.

Tabla N° 70. Ecuaciones en función de la entalpía específica de la fase vapor para el equilibrio L-V.

Válidas en el rango (2505-2660.1) J/g y (2-90) °C.						
	$\alpha(h_g) = Ah_g^2 + Bh_g + C$					
Ecuación	Ecuación A B C					
s _f (h _g) -3.70863E-06 0.026605501 -43.34133678						
s _g (h _g) 1.98308E-05 -0.112786771 167.186391						

	Válidas en el rango (2660.2-2801.8) J/g y (91-219) °C.						
	$\alpha(h_g) = Ah_g^3 + Bh_g^2 + Ch_g + E$						
Ecuación	EcuaciónABCD						
s _f (h _g)	s _f (h _g) 2.65873E-05 -0.136683585 176.6890848						
s _g (h _g)	s _g (h _g) -2.6281E-07 2.143694E-03 -5.835412562 5308.1460110						

Tabla N° 71. Ecuaciones en función de la entalpía específica de la fase vapor para el equilibrio L-V.

Tabla N° 72. Ecuaciones en función de la entalpía específica de la fase vapor para el equilibrio L-V.

	Válidas en el rango (2127-2804) y (220-374)°C.					
$\alpha(h_g) = Ah_g^{6} + Bh_g^{5} + Ch_g^{4} + Dh_g^{3} + Eh_g^{2} + Fh_g + G$						
Ecuación	n A B C D					
s _f (h _g)	s _f (h _g) 1.22387E-17 -1.90574401467E-13 3.3165146607E-10 5.23578585389E-06					
s _g (h _g)	s _g (h _g) -9.53544715399E-18 1.4754097946E-13 -2.5540513578E-10 -4.04675983447E-06					

Ecuación	Ε	F	G
s _f (h _g)	-2.91760615818E-02	57.033258124	-39370.3401208
s _g (h _g)	2.25210809242E-02	-43.9959253946	30365.2089996

Válidas en el rango (0.0305-1.1925) J/g K.					
$\alpha(s_f) = As_f^2 + Bs_f + C$					
EcuaciónA(sf2)B(sf)C					
s _g (s _f)	0.262996016	-1.716571723	9.1539015		

Tabla N° 73. Ecuaciones en función de la entropía específica de la fase vapor para el equilibrio L-V.

Tabla N° 74. Ecuaciones en función de la entropía específica de la fase vapor para el equilibrio L-V.

Válidas en el rango (1.1926-2.5085) J/g K.						
$\alpha(s_f) = As_f^2 + Bs_f + C$						
Ecuación A(s _f ²) B(s _f) C						
s _g (s _f) 0.1282 -1.3669 8.921						

Tabla N° 75. Ecuaciones en función de la entropía de la fase vapor para el equilibrio L-V para el rango (220-374) °C.

Válidas en el rango (2.5086-4.3529) J/g K.					
$\alpha(s_f) = As_f^2 + Bs_f + C$					
Ecuación A(s _f ²) B(s _f) C					
s _g (s _f) -0.180424044 0.284657184 6.691103816					

A.5 Tablas de error correspondiente a las ecuaciones desarrolladas para la mezcla líquido-vapor.

En esta sección se presentan todas las tablas que contienen los errores relativos porcentuales obtenidos para cada ecuación desarrollada. Estos errores se calculan utilizando puntos correspondientes a las tablas de propiedades del agua utilizadas para la mezcla líquido-vapor.

A continuación se presentan un conjunto de tablas que contiene los errores obtenidos con las ecuaciones $v_f(t)$, $v_g(t)$, $u_f(t)$, $u_g(t)$, $h_f(t)$, $h_g(t)$, $s_f(t)$, $s_g(t)$ para la fase L-V, el valor teórico y experimental esta en unidades de v_f y v_g (cm³/g), u_f y u_g (J/g), h_f y h_g (J/g) y s_f y s_g (J/g*K):

Rango (°C)	Ecuación	Vteo	Vexp	E _% (%)
	v _f (t)	1.0009	1.0009781	0.007807
	v _g (t)	77926	78199.85	0.3514232
	u _f (t)	50.41	50.3871	0.0454275
(0,00)	u _g (t)	2404.3	2404.4118	0.00465
(0-90)	h _f (t)	79.77	79.695	0.0940203
	h _g (t)	2527.1	2527.1502	0.0019872
	s _f (t)	0.239	0.2383055	0.2905828
	s _g (t)	8.645	8.6452676	0.0030958
	v _f (t)	1.0451	1.0414113	0.3529561
	v _g (t)	1789.1	1791.2056	0.1176906
	u _f (t)	448.47	447.8537	0.1374228
(01.200)	u _g (t)	2512.4	2512.395	0.000199
(91-200)	h _f (t)	444.37	443.7756	0.1337624
	h _g (t)	2693	2693.551	0.0204605
	s _f (t)	1.3751	1.37084	0.3097957
	s _g (t)	7.2614	7.2830088	0.2975845

 $\begin{array}{l} \mbox{Tabla N}^{\circ} \mbox{ 76. Errores obtenidos para las ecuaciones de la forma } v_f(t), v_g(t), u_f(t), u_g(t), h_f(t) \ , h_g(t), s_f(t), s_g(t) \ en \ la fase \ L-V. \end{array}$

Rango (°C)	Ecuación	Vteo	Vexp	E _% (%)
	v _f (t)	1.1777	1.1779253	0.0191316
	v _g (t)	98.51	98.576887	0.0678984
	u _f (t)	940.87	940.244	0.0665342
(200, 200)	u _g (t)	2603.2	2603.0857	0.0043909
(200-299)	h _f (t)	945.43	945.8062	0.0397914
	h _g (t)	2804.2	2804.098	0.0036366
	s _f (t)	2.5824	2.5866	0.1626394
	s _g (t)	6.2646	6.265	0.0063851
	v _f (t)	1.4522	1.4501607	0.1404312
	v _g (t)	16.867	16.826724	0.2387849
	u _f (t)	1415.5	1408.1917	0.5163045
	u _g (t)	2527.8	2526.7182	0.0427959
	h _f (t)	1407.2	1412.1748	0.3535224
(300-374)	h _g (t)	2706.1	2704.1065	0.0736656
	s _f (t)	3.359	3.366736	0.2303073
	s _g (t)	5.6314	5.6225	0.1580431

A continuación se presenta una tabla que contiene los errores obtenidos con las ecuaciones en función de v_f para la fase L-V, el valor teórico y experimental esta en unidades de v_g (cm³/g), u_f y u_g (J/g), h_f y h_g (J/g) y s_f y s_g (J/g*K):

Rango (°C)	Ecuación	Vteo	Vexp	E _% (%)
	$v_{g}(v_{f})$	48574	48342	0.4776218
	u _f (v _f)	92.32	92.519531	0.21613
	$u_g(v_f)$	2413.9	2413.8026	0.0040366
(0-45)	h _f (v _f)	92.33	92.391163	0.0662438
	h _g (v _f)	2550.8	2551.3876	0.0230369
	s _f (v _f)	0.3251	0.3247038	0.1218829
	s _g (v _f)	8.5794	8.5768522	0.0296967
	$v_g(v_f)$	7671	7632.1994	0.5058086
	u _f (v _f)	238.57	238.15417	0.1743026
	u _g (v _f)	2473.4	2473.2321	0.0067894
(46-90)	h _f (v _f)	288.8	289.22857	0.1483957
	h _g (v _f)	2620	2619.9547	0.0017277
	s _f (v _f)	0.9181	0.9154196	0.2919495
	s _g (v _f)	7.9747	7.9769385	0.0280703
	$v_g(v_f)$	1514.9	1516.7974	0.1252509
	u _f (v _f)	444.24	443.03129	0.272086
	$u_g(v_f)$	2519.2	2519.1686	0.0012451
(91-200)	h _f (v _f)	444.37	444.24492	0.0281468
	h _g (v _f)	2693	2692.8982	0.0037809
	s _f (v _f)	1.4842	1.4787201	0.369219
	s _g (v _f)	7.2053	7.2130249	0.1072112
	$v_g(v_f)$	84.58	84.87672	0.3508163
	u _f (v _f)	927.21	926.96209	0.0267372
	u _g (v _f)	2603	2602.2992	0.0269238
(201-374)	h _f (v _f)	931.76	931.80194	0.0045009
	h _g (v _f)	2799.4	2799.7957	0.0141353
	s _f (v _f)	2.4621	2.4619085	0.0077796
	$s_g(v_f)$	6.3022	6.3085553	0.100843

 $\begin{array}{l} \mbox{Tabla N}^{\circ} \mbox{ 77. Errores obtenidos para las ecuaciones de la forma } v_g(v_f), u_f(v_f), u_g(v_f), h_f(v_f), h_g(v_f), s_f(v_f), s_g(v_f) \mbox{ or } s_g(v_f) \mbox{ en la fase L-V. } \end{array}$

A continuación se presenta la siguiente tabla que contiene los errores obtenidos para las ecuaciones en función de v_g , el valor teórico y experimental esta en unidades de $u_f y u_g (J/g)$, $h_f y h_g (J/g) y s_f y s_g (J/g^*K)$:

Rango (°C)	Ecuación	Vteo	Vexp	E _% (%)
	u _f (v _g)	54.6	55.001457	0.7352688
	u _g (v _g)	2398.8	2398.8547	0.0022805
(2, 40)	h _f (v _g)	50.41	50.70347	0.5821666
(2-40)	h _g (v _g)	2541.7	2541.5378	0.0063829
	$s_{f}(v_{g})$	0.4093	0.4093528	0.0129042
	s _g (v _g)	8.5794	8.5809566	0.0181432
	u _f (v _g)	226.03	226.65165	0.2750297
	u _g (v _g)	2452.7	2452.6277	0.0029489
(41.00)	h _f (v _g)	226.04	226.93	0.393737
(41-90)	h _g (v _g)	2609.6	2609.2391	0.0138314
	$s_{f}(v_{g})$	0.806	0.8044322	0.1945128
	s _g (v _g)	7.9419	7.9435163	0.0203512
	u _f (v _g)	440.02	436.77627	0.7371768
	u _g (v _g)	2521.5	2521.7891	0.0114673
(91-200)	h _f (v _g)	457.06	458.20009	0.2494405
(* • • •)	h _g (v _g)	2694.5	2694.836	0.0124684
	$s_f(v_g)$	1.3518	1.3436447	0.6032943
	$s_g(v_g)$	7.2958	7.3006501	0.0664784
	u _f (v _g)	986.74	984.92624	0.1838137
	u _g (v _g)	2603.8	2614.0208	0.3925331
(201, 274)	h _f (v _g)	959.15	957.22391	0.2008125
(201-374)	h _g (v _g)	2803.3	2809.5665	0.2235394
	$s_{f}(v_{g})$	2.4807	2.4922356	0.4650155
	s _g (v _g)	6.2861	6.2763576	0.1549828

Tabla N° 78. Errores obtenidos para las ecuaciones de la forma $u_f(v_g)$, $u_g(v_g)$, $h_f(v_g)$, $h_g(v_g)$, $s_f(v_g)$, $s_g(v_g)$ en la fase L-V.

A continuación se presenta una tabla que contiene los errores obtenidos para las ecuaciones en función de u_f, el valor teórico y experimental esta en unidades de u_g (J/g), h_f y h_g (J/g) y s_f y s_g (J/g^*K) :

Rango (°C)	Ecuación	Vteo	Vexp	E _% (%)
	u _g (u _f)	2383.6	2384.3928	0.03326007
	h _f (u _f)	46.2	46.21506	0.0325974
(2-90)	h _g (u _f)	2528.9	2529.4259	0.02079454
	s _f (u _f)	0.2966	0.2960031	0.20124304
	$s_g(u_f)$	8.6011	8.6050888	0.04637536
	u _g (u _f)	2499.4	2497.5169	0.07534131
	h _f (u _f)	410.61	410.74135	0.03198972
(91-199)	h _g (u _f)	2679.2	2672.0217	0.26792561
	s _f (u _f)	1.3751	1.3739147	0.08619454
	$s_g(u_f)$	7.2499	7.2519925	0.02886293
	u _g (u _f)	2599.8	2593.193	0.2541357
	h _f (u _f)	913.61	911.15179	0.26906584
(200-374)	h _g (u _f)	2800.9	2796.6531	0.15162462
	s _f (u _f)	2.4528	2.4559434	0.12815609
	S _a (U _f)	6 3512	6 3373491	0 21808284

Tabla N° 79. Errores obtenidos para las ecuaciones de la forma $u_g(u_f)$, $h_f(u_f)$, $h_g(u_f)$, $s_f(u_f)$, $s_g(u_f)$ en la fase L-V.

A continuación se presenta la siguiente tabla que contiene los errores obtenidos para las ecuaciones en función de u_g , el valor teórico y experimental esta en unidades de $h_f y h_g (J/g) y s_f y s_g (J/g^*K)$:

Rango (°C)	Ecuación	Vteo	Vexp	E _% (%)
	h _f (u _g)	42.01	42.196749	0.4445354
(2,00)	$h_g(u_g)$	2527.1	2527.1123	0.0004872
(2-90)	s _f (u _g)	0.2535	0.2522162	0.506435
	s _g (u _g)	8.7582	8.7618502	0.0416777
	h _f (u _g)	410.61	412.93352	0.5658696
(01.200)	$h_g(u_g)$	2677.6	2677.6347	0.0012967
(91-200)	s _f (u _g)	1.363	1.3606212	0.1745296
	s _g (u _g)	7.331	7.3309083	0.0012513
	h _f (u _g)	886.52	879.76709	0.7617324
(201 222)	$h_g(u_g)$	2798.9	2798.9365	0.0013034
(201-233)	s _f (u _g)	2.4621	2.46166	0.0178714
	s _g (u _g)	6.3512	6.3647512	0.2133651
	h _f (u _g)	1075.68	1085.7434	0.9355405
(234 347)	$h_g(u_g)$	2802.5	2800.0026	0.0891133
(234-347)	s _f (u _g)	2.7836	2.7925174	0.3203558
	$s_{\sigma}(u_{\sigma})$	6.0659	6.0665936	0.0114351

Tabla N° 80. Errores obtenidos para las ecuaciones de la forma $h_f(u_g)$, $h_g(u_g)$, $s_f(u_g)$, $s_g(u_g)$ en la fase L-V.

A continuación se presenta la siguiente tabla que contiene los errores obtenidos para las ecuaciones en función de h_g , el valor teórico y experimental esta en unidades de h_g (J/g) y s_f y s_g (J/g*K):

Rango (°C)	Ecuación	Vteo	Vexp	E _% (%)
	h _g (h _f)	2525.3	2525.8246	0.0207744
(2-90)	s _f (h _f)	0.2823	0.2816838	0.2182677
	s _g (h _f)	8.6897	8.6930648	0.0387216
	$h_g(h_f)$	2674.5	2673.9331	0.0211958
(91-219)	s _f (h _f)	1.3294	1.3298237	0.0318678
	$s_g(h_f)$	7.3192	7.3181337	0.014569
	$h_{g}(h_{f})$	2804.2	2801.7894	0.0859636
(220-374)	s _f (h _f)	2.6924	2.69544	0.1129106
	$s_{g}(h_{f})$	6.1508	6.1469222	0.0630455

Tabla N° 81. Errores obtenidos para las ecuaciones de la forma $h_g(h_f)$, $s_f(h_f)$, $s_g(h_f)$ en la fase L-V.

A continuación se presenta la siguiente tabla que contiene los errores obtenidos para las ecuaciones en función de h_g , el valor teórico y experimental esta en unidades de $s_f y s_g (J/g^*K)$:

Rango (°C)	Ecuación	Vteo	Vexp	E _% (%)
(2,00)	s _f (h _g)	0.2245	0.2233827	0.49769308
(2-90)	s _g (h _g)	8.7123	8.7164632	0.04778478
(01.210)	s _f (h _g)	1.3518	1.3512372	0.0416367
(91-219)	s _g (h _g)	6.2933	6.3248375	0.5011289
(220, 274)	s _f (h _g)	2.6832	2.6749335	0.30808375
(220-374)	$s_{a}(h_{a})$	6.1508	6.1477049	0.05032039

Tabla N° 82. Errores obtenidos para las ecuaciones de la forma $s_f(h_g)$, $s_g(h_g)$ en la fase L-V.

A continuación se presenta la siguiente tabla que contiene los errores obtenidos para las ecuaciones en función de s_f :

	Ecuac	ión s _g (s _f)	
Rango (°C)	valor real (J/g*K)	valor calculado (J/g*K)	E _% (%)
(2-90)	8.6011	8.601746	0.0075106
(91-219)	7.2163	7.2180007	0.0235676
(220-374)	6.165	6.1621274	0.0465955

Tabla N° 83. Errores obtenidos para las ecuaciones de la forma $s_g(s_f)$ en la fase L-V.

A.6 Imágenes correspondientes a las tablas de propiedades del agua utilizadas.

A continuación se presentan dos imágenes correspondientes a las tablas de propiedades del agua utilizadas en el presente trabajo especial de grado, inicialmente la que corresponde a la fase vapor sobrecalentado y posteriormente la que corresponde a la fase mezcla líquido-vapor:

p(t S	at.)	.06	(36.16)			.08	(41.51)			.10	(45.81)	
t		u	h	5		u.	h	s	ν.	u	h	8
Saí.	23 739	2425.0	2567.4	8.3304	18 103.	2432.2	2577.0	8.2287	14 674.	2437.9	2584.7	8.150
25	22 873	2409.2	2546 4	8.2614	17 140.	2408.8	2545.9	8.1272	13 705.	2400 3	2545.3	8 022
30	23 261	2416.2	2555.8	8.2926	17 432.	2415.8	2555.3	8.1585	13 934.	2415.4	2554.8	8.054
35	23 649	2423.3	2565.2	8.3233	17.724.	2422.9	2564.7	8.1893	14 168.	2422.5	2564.2	8.085
45	24 037	2430.4	2584.0	8.3834	18 306.	2430.0	2583.6	8.2196	14 402.	2429.6 2436.8	2573.7 2583.1	8.115
50	24 812	2444.6	2593.4	8.4128	18 598.	2444.2	2593.0	8.2790	14 869.	2443.9	2592.6	8.174
55	25 199	2451.7	2602.9	8.4417	18 889.	2451.3	2692.5	8.3080	15 102.	2451.0	7602.1	8,204
69	25 586	2458.8	2612.3	8,4702	19 179.	2458.5	2611.9	8.3356	15 336.	2458.2	2611.5	8.232
70	26 359	2403.9	2631.2	8.5261	19 761.	2472.7	2621.4	8.3925	15 801.	2465.5	2621.0 2630.5	8.260
75	26 746	2480.1	2640.6	8.5534	20 051	2479.9	2640.5	8.4199	16 034.	2479.6	2640.0	8.316
80	27 132	2487.3	2650.1	8.5804	20 341	2487.0	2649.8	8.4469	16 267.	2486.8	2649.5	8.343
85	27 518	2494.4	2659.5	8.6070	20 631	2494.2	2659 2	8.4736	16 499.	2494.0	2659.0	8.369
90 95	27 904 28 291	2501.6 2508.7	2669.0	8.6332 8.6591	20 921 21 211	2501.4 2508.5	2558.7	8.4999	16 731.	2501.1 2508.3	2668.5	8.396
196	28 676	2515.9	2682.0	8.6847	21 501	2515.7	2687.7	8.5514	17 196	2525.5	2687.5	8 4 4 7
110	29 4 4 8	2530.3	2707.0	8.7350	22 080	25301	2706.7	8,6017	17 660.	2529.9	2706.5	8.498
120	30 219	2544.7	2726.0	8.7840	22 659	2544.5	2725.8	8.6500	18 123.	2544.4	2725.6	8.547
130 140	30 990 31 761	2559.1 2573.6	2745.0 2764.1	8.8318 8.8787	23 238 23 816	2559.0 2573.5	2744.9 2764.0	8.6987	18 586. 19 050	2558.8	2744.7 2763.8	8.595
150	32 532	2588.1	2783.3	8 9244	24 395	2588.0	2783.1	8 7914	19 512	2587.0	2782.0	0 4 0 0
160	33 302	2602.7	2802.5	8.9693	24 973	2602.6	2802.3	8.8363	19 975.	2602.5	2802.2	8,733
170	34 072	2617.3	2821.7	9.0132	25 551	2617.2	2821.6	8.8802	20.438.	2617,1	2821.5	8.777
180	34 843 35 613	2631.9 2646.7	2841.0 2860.3	9.0562 9.0984	26 129 26 706	2631.9 2646.6	2840.9 2860 2	8.9232 8.9655	20 900. 21 363.	2631.8 2616 5	2840.8 2860.1	8.820
200	36 383	2661.4	2879 7	9 1398	27 284	2661.4	2879.6	9 0069	21 825	2661.7	7970.5	\$ 602
210	37 153	2676.2	2399.2	9.1805	27 862	2676.2	2899.1	5.0476	22 287	2676.1	2899.0	8.944
226	37 922	2691.1	2918.6	9.2204	28 439	2691.1	2918.6	9.0875	22 749	2691.0	2918.5	8.984
230 240	38 692 39 462	2706.0	2938.2 2957.8	9.2596 9.2982	29 017 29 394	2706.0	2938.1 2957.7	9.1268 9.1653	23 212 23 674	2705.9	2938.0 2957.7	9.020
250	40 232	2736.1	2977 5	9.3362	30 172	2736.0	2977.4	9 2033	24 136	2736.0	2977 3	9 100
260	41 001	2751.2	2997.2	9.3735	30 749	2751.1	2997.1	9.2406	24 598	2751.1	2997.0	9 137
270	41 771	2766.3	3016.9	9.4102	31 326	2766.3	3016.9	9.2774	25 059	2766.2	3016.8	9.174
280	42 540	2781.5 2796.8	3036.8 3056.7	9.4464 9.4821	31 903 32 481	2781.5	3036.7 3056.6	9.3136 9.3492	25 521 25 983	2781.5 2796.7	3036.7 3056.6	9.210
300	44 079	2812.2	3076.6	9 5172	33 058	2812.1	3076.6	9 3844	26 445	28121	3076 5	0.781
320	45 618	2843.0	3116.7	9.5859	34 212	2843.0	3116.7	9.4531	27 369	2842.9	3115.6	9.350
340	47 157	2874.1	3157.1	9.6528	35 367	2874.1	3157.0	9.5200	28 292	2874.1	3157.0	9.417
360	48 696 50 235	2905.5 2937.1	3197.7 3238.5	9.7180 9.7815	36 521 37 675	2905.5 2937.1	3197.6 3238.5	9.5852	29 216 30 139	2905.4	3197,6	9.482
400	51 774	2969.0	3279.6	9 8435	38 829	2969.0	3279 6	9 7107	31.063	2068.0	3270 6	0.607
420	53 312	3061.1	3321.0	9.9041	39 983	3001.1	3321.0	9,7713	31 986	3001.1	3320.9	9.668
440	54 851	3033.5	3362.6	9.9633	41 137	3033.5	3362.6	9.8305	32 909	3033.5	3362.6	9,727
460	57 928	3065.2 3099.1	3404.5	10.0212 10.0780	42 291 43 445	3066.2 3099.1	3404.5	9.8884 9.9452	33 832 34 756	3066.1 3099.1	3404.5 3446.6	9.785
506	59 467	3132.3	3489.1	10.1336	44 599	3132.3	3489.1	10.0008	35 679	3132 3	3489.1	9 897
550	63 313	3216.5	3596.4	10.2680	47 484	3216.5	3595.4	10.1352	37 937	3216.5	3596.4	10.032
650	07 159	3302.5	3705.4	10.3966	50 369	3302.5	3705.4	10.2638	40 295	3302.5	3705.4	10.160
700	74 852	3479.6	3928 7	10.6386	56 138	3479.6	3928.7	10.5058	42 603 44 911	3390.1 3479.6	3928.7	10.284
750	78 698	3570.8	4043.0	10.7531	59 023	3570.8	4043.0	10.6203	47 218	3570.8	4043.0	10.517
800	82 544	3663.8	4159.0	10.8639	61 908	3663.8	4159.0	10.7311	49 526	3663.8	4159.0	10.628
900	90 236	3855.1	4396 5	11 0753	67 677	38550	42/0.9	10.8384	54 141	3/38.6	4276.9	10.735
950	94 082	3953.2	45177	11.1765	70 561	3953.2	4517.7	11.0438	56 449	3953.2	4517.7	10.839
1000	97 928	4053.0	4640.6	11.2750	73 446	4053.0	4640.6	11.1422	58 757	4053.0	4540.6	11.039
1100	105 620	4257.5	4891.2	11.4645	79 215	4257.5	4891.2	11.3317	63 372	4257.5	4891.2	11.228
1300	121 004	4683.7	5409.7	11.8158	84 984 90 753	4683.7	5409.7	11.6841	67 987 72 602	4467.9 4683.7	5147.8 5409.7	11.409
			1 B	ar = 1.019	72 kg./sq.	cm.; 1	Joule =	1/4.1868	I.T.Cal.			
			1 B	ar = 1.019	72 kg./sq.	cm.; I	Joule =	1/4.1868	I.T.Cal.			

Figura Nº 11. Ejemplo de la distribución de las tablas de propiedades del agua en físico para el VS

	Temp	Press.	Specific Sat.	Volume Sat.	Inte Sat.	rnal En	ergy Sat.	Sat,	Enthalp	Sat	Sat	Entropy	e.,
	· · ·	Bars	Liquid	Vapor	Liquid	Evap.	Vapor	Liquid	Evap.	Vapor	Liquid	Evap.	Vap
	2	p	•4	1	u/	u ₁₎	u.,	п,	n _{fw}	n _o	S/	Sia	S,
17/122	55	.15758	1.0146	9568.	230.21	2219.9	2450.1	230 23	2370.7	2600.9	.7679	7 2234	7.99
	56	.16529	1.0151	9149.	234.39	2217.0	2451.1	234.41	2368.2	2602.6	.7807	7.1940	7.97
	57	.17331	1.0156	8751.	238.57	2214.2	2452.7	238.59	2365 8	2604.4	.7933	7.1649	7 95
	59	18166	1.0161	8013.	242.75	2208.4	2454.0	242.77	2363.4	2606.1	.8060	7.1359	7.94
										1001.7	30139	1.0071	1.72
	60	.19940	1.0172	7671.	251.11	2205.5	2456.6	251.13	2358.5	2609.6	.8312	7.0784	7.90
	62	21860	: 0182	7037	200.29	2199 8	2450 3	255.31	2350.0	2611.3	.8437	7.0499	7.89
	53	.22877	1.0188	6743.	253.66	2196.9	2460.6	263.68	2351.1	2614.8	8686	6 9934	7.86
	64	,23934	1.0194	6463	267.84	2194.0	2461.8	267.85	2348.7	2616.5	.8811	6.9654	7.84
	65	.2503	1.0199	6197.	272 02	2191.1	2463.1	277.06	2346.2	2618 3	8935	6 9375	7 83
	56	.2617	1.0205	5943.	276.21	2188.2	2464.4	276.23	2343.7	2620.0	.9058	6.9098	7.81
	67	.2735	1.0211	\$701.	280.39	2185.3	2465.7	280.42	2341.3	2621.7	9181	6.8822	7.80
	69	2859	1.0217	5252	284.58	2182.4	2467.0	284.01	2318.8	2623.4	.9304	6.8548	7.78
	70	2110	1.0220	60.02	202.05	2124.4	24/07	202.00					
	71	3256	1.02.28	4843	292.95	2175.6	2469.6	292.98	2333.8	2626.8	.9549	6.8004	7.75
	72	.3399	1.0240	1652.	301.33	2170.8	2472.1	361.36	2328.9	2630.2	9792	6.7466	7.72
	73	.3546	1.0247	4470.	305.51	2167.9	2473.4	305.56	2326.4	2631.9	.9914	6.7199	7.71
	74	.3699	1.0253	4297.	309.70	2165.0	24/4./	309.74	2323.9	2633.6	1.0034	6.6934	7.69
2	75	.3858	1.0259	4131.	313.90	2162.0	2475 9	313.93	2321.4	2635.3	1.0155	6.6669	7.68
	76	.4022	1.0265	3973.	318.09	2159.1	2477.2	318.13	2318.2	2637.0	1.0275	6.6407	7.65
	78	4368	1.0272	3677	322.28	2150.2	2476.4	326.51	2318.3	2638.7	1.0395	6.6145	7.65
	79	4550	1.0285	3539.	330 66	2150.3	2481.0	350.72	2311.3	2642.0	1.0634	6.5627	7.62
	80	4739	1.0291	14.37	114 86	2147.4	7487.7	334.01	2305.8	2642 7	1.0753	6 5263	7 6 -
	81	4934	1.0298	3281	339.05	2144.4	2483.5	339.10	2306.2	2645.3	1.0871	6.5113	7.59
	82	.5136	1.0305	3160.	343.25	2141.5	2484.7	343.30	2303.7	2647.0	1.0990	6.4858	7.58
	83	5560	1.0313	2934	347.45	2138.5	2485.9	347.50	2301.1	2648.6	1.1108	6.4605	7.57
		10000	110,010	27.04	221.01			321.70	2270.0		1.1225	0.4333	1.00
	85	.5783	1.0325	2828.	355.54	2132.6	2488.4	355,90	2296.0	2651.9	1.1343	6.4102	7.54
	87	6252	1.0339	2629	364.74	2129.0	2489.0	364 30	2293.5	2655.2	1.1400	6 3604	7.51
	88	.6498	1.0346	2536.	368.44	2123.7	2492.1	368.51	2288.3	2656.9	1.1693	6.3356	7.50
	89	.6752	1.0353	2446.	372.64	2120.7	2493.3	372.71	2285.8	2658.5	1.1809	6.3110	7.49
	90	.7014	1.0360	2361.	376.85	2117.7	2494.5	376.92	2283.2	2660.1	1.1925	6.2866	7.47
	91	.7284	1.0367	2278.	381.05	2114.7	2495.8	381.12	2280.6	2661.7	1.2041	6.2622	7.46
	93	7857	1.0375	2200.	383.20	2111.7	2497.0	385.33	2278.0	2663.3	1.2156	6.2379	7.45
	94	8149	1.0389	2052.	393.67	2105.7	2499.4	393.75	2272.8	2666.5	1.2386	6.1898	7.42
	95	8455	1.0207	1091.0	207 99	2102.7	7500 6	207.06	2270.2	2000	1.2600	6.1660	
	96	.8771	1.0404	1915.0	402.09	2099.7	2501.8	402.17	2267.6	2669.1	1.2500	6.1421	7.40
199	97	.9097	1.0412	i850.8	406.30	2096.7	2503.0	406.39	2264.9	2671.3	1,2728	6.1184	7.39
	98	.9433	1.0420	1789.1	410.51	2093.6	2504.1	410.61	2262.3	2672.9	1.2842	6.0948	7.37
		.7//0	1.0427	1729.9	414.72	2090.0	2303.5	414.03	2239.1	2014.5	1.2956	0.0714	1.35
	100	1.0135	1.6435	1672.9	418.94	2037.6	2506.5	419.04	2257.0	2675.1	1.3069	6.0480	7.35
	102	1.0880	1.0443	1565.5	423.15	2084.5	2508.9	423.20	2254.4	2677.0	1.3181	6.0248	7.34
	103	1.1269	1.0459	1514.9	431.58	2078.5	2510.0	431.71	2249.0	2680.7	1.3406	5.9786	7.31
	104	1.1669	1.0467	1466.2	435.80	2075.4	2511.2	435.92	2246.4	2682.3	1.3518	5.9557	7.30
-	105	1.2082	1.0475	1419.4	440.02	2072.3	2512.4	440.15	2243.7	2683.8	1.3630	5.9328	7.29
	106	1.2506	1.0483	1374.3	444.24	2069.3	2513.5	444.37	2241.0	2685.4	1.3741	5.9101	7.28
	107	1 3391	1.0491	1330.9	448.47	2066.2	2514.7	448.60	2238.3	2686.9	1.3853	5.8875	7.27
	109	1.3853	1.0508	1248.9	456.92	2060.0	2517.0	457.06	2232.9	2690.0	1.4074	5.8425	7.25
	110	1 4327	1.0516	1210.2	461.14	2057.0	25181	461 30	2230.2	3601 5	1 4195	6 9202	2.22
	111	1.4815	1.0525	1172.8	465.37	2053.9	2519.2	465.53	22227.5	2693.0	1.4295	5.7980	7.22
	112	1.5317	1.0533	1136.9	469.60	2050.8	2520.4	469.76	2224.7	2694.5	1.4405	5.7758	7.21
	113	1.5832	1.0542	1102.2	473.84	2047.7	2521.5	474.01	2222.0	2696.0	1.4515	5.7538	7.20
	114					A 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		28 2 C		C		the second se	
	114	1.0302	1.0330	1000.0	4/0.07	2044.5	2322.0	4/0.24	2219.2	2697.5	1.4624	5./318	1-13

.....

Figura N° 12. Ejemplo de la distribución de las tablas de propiedades del agua en físico para la mezcla L-V.

2