ANEXO A

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA MECÁNICA

Encuesta

Nombres: Apellidos:	
Edad: Sexo: M F Direcc. Hab.:	
Labora Ud. En el área de	l casabe SINO
Direcc. Trab.:	
Desde cuando realiza Ud. Este trabajo:	
Que parte del proceso de la elaboración del casabe le gusta más?	
Pelado Rallado Exprimido Colado o Cernido	Cocina
Qué parte del proceso NO le gusta realizar o es el más difícil para Uo	1.?
Pelado Rallado Exprimido Cernido C	Cocina
Esta Ud. de acuerdo en cambiar la forma con el cual Ud. Labora? S	INO
Estaría Ud. de acuerdo con la idea de realizar una máquina que le fac exprimido de la yuca amarga para la elaboración del casabe? SI	
Encuestador E	ncuestado
Fecha:	

(Fuente: Los Autores)

ANEXO B

Tabla A. Factores de servicio para impulsores de cadena

		Tipo de impuls	sor		
Tipo de carga	Impulsor hidráulico	Motor eléctrico o turbina	Motor de combustión integral con impulsor mecánico		
Ligera (agitadores, ventiladores,			39		
transportadores que se someten a la acción uniforme de cargas ligera	ns 1.0	1.0	1.2		
Choque moderado (herramientas mecánicas, grúas, transportadores pesados, mezcladoras y moledoras					
de alimentos) Choque pesado (prensas de punzón molinos de martillo, transportador		1.3	1.4		
recíprocos, impulsor de molino giratorio)	1.4	1.5	1.7		

Tabla B. Especificaciones de potencia, cadena estándar de tramo único, con rodamientos, número 40, paso de ½".

No. de Sentes en la rueda										Res	olucione	s por mi	nuto-ru	eda dent	ada peq	veña —									
dentada pequeña	10	25	50	100	200	300	400	500	700	900	1 000	1 200	/ 400	1 600	1 800	2 /00	2 400	2 700	3 000	3 500	4 000	5 000	6 000	7 000	N 000
9	0.04	0.10	0.19	0.35	0.65	0.93	1.21	1.48	2.00	2.51	2.75	3.25	3.73	4.12	3.45	2.74	2.24	1.88	1.60	1.27	1.04	0.75	0.57	0.45	0.37
10							1.35				3.09	3.64	4.18	4.71	4.04	3.21	2.63	2.20	1.88	1.49	1.22	0.87	0.66	0.53	0.43
11	0.05	0.12	0.23	0.43	0.80	1.16	1.50	1.83	2.48	3.11	3.42	4.03	4.63	5.22	4.66	3.70	3.03	2.54	2.17	1.72	1.41	1.01	0.77	0.61	0.50
12	0.06	0.14	0.25	0.47	0.88	1.27	1.65	2.01	2.73	3.42	3.76	4.43	5.09	5.74	5.31	4.22	3.45	2.89	2.47	1.96	1.60	1.15	0.87	0.69	0.57
13					0.96		1.80	2.20	2.97	3.73	4.10	4.83	5.55	6.26	5.99	4.76	3.89	3.26	2.79	2.21	1.81	1.29	0.98	0.78	0.64
14	0.07						1.95				4.44	5.23	6.01	6.78	6.70	5.31	4.35	3.65	3.11	2.47	2.02	1.45	1.10	0.87	0.71
15	0.07	0.17	0.32	0.60	1.12	1 62	2.10	2 56	3.47	4.35	4.78	5.64	6.47	7.30	7.43	5.89	4.82	4.04	3.45	2.74	2.24	1.60	1.22	0.97	0.79
16							2.25				5.13	6.04	6.94	7.83	8.18	6.49	5.31	4 45	3.80	3.02	2.47	1.77	1.34	1.07	0.8
17							2.40					6.45	7.41	8.36	8.96	7.11	5.82	4.88	4.17	3.31	2.71	1.94	1.47	1.17	0.96
18	0.09	0.21	0.39	0.73	1.37	1.97	2.55	3.12	4.22	5.30	5.82	6.86	7.88	8.89	9.76	7.75	6.34	5.31	4.54	3.60	2.95	2.11	1.60	1.27	0
19			0.707.00		1.45		2.71	3.31	4.48	5.62	6.17	7.27	8.36	9.42	10.5	8.40	6.88	5.76	4.92	3.91	3.20	2.29	1.74	1.38	0
20	0.10						2.86		4.73	5.94	6.53	7.69	8.83	9.96	11.1	9.07	7.43	6.22	5.31	4.22	3.45	2.47	1 88	1.49	0
21	0.11	0.25	0.46	0.87	1.62	2.33	3.02	3.69	4.99	6.26	6.88	8.11	9.31	10.5	11.7	9.76	7.99	6.70	5.72	4.54	3.71	2.66	2.02	1.60	0
22							3.17					8.52	9.79	11.0	12.3	10.5	8.57	7.18	6.13	4.87	3.98	2.85	2.17	1.72	0
23							3.33					8.94	10.3	11.6	12.9	11.2	9.16	7.68	6.55	5.20	4.26	3.05	2.32	1.84	0
24	0.13	0.29	0.54	1.00	1.87	2.69	3.48	4.26	5.76	7.23	7.95	9.36	10.8	12.1	13.5	11.9	9.76	8.18	6.99	5.54	4.54	3.25	2.47	1.96	0
25							3.64	4.45	6.02	7.55	8.30	9.78	11.2	12.7	14.1	12.7	10.4	8.70	7.43	5.89	4.82	3.45	2.63	0	
26	0.14	0.31	0.58	1.09	2.04	2.93	3.80	4.64	6.28	7.88	8.66	10.2	11.7	13.2	14.7	13.5	11.0	9.23	7.88	6.25	5.12	3.66	2.79	0	
28	0.15	0 34	0.63	1.18	2 20	3.18	4.11	5.03	6.81	8.54	9.39	11.1	12.7	14.3	15.9	15.0	12.3	10.3	8.80	6.99	5.72	4 09	3.11	0	
30							4.43					11.9	13.7	15.4	17.2	16.7	13.6	11.4	9.76	7.75	6.34	4.54	3.45	0	
32	0.17						4.75					12.8	14.7	16.5	18.4	18.4	15.0	12.6	10.8	8.64	6.99	5.00	0		
35	0.19	0.43	0.81	1.50	2.81	4.04	5.24	6.40	8.66	10.9	11.9	14.1	16.2	18.2	20.3	21.0	17.2	14.4	12.3	9.76	7.99	5.72	0		
40							6.05		10.0	12.5	13.8	16.3	18.7	21.1	23.4	25.7	21.0	17.6	15.0	11.9	9.76	6.99	0		
45	0.25		1.06				6.87					18.5	21.2	23.9	26.6	30.5	25.1	21.0	17.9	14.2	11.7	0			
		TIF	10					TI	II O										TIPO I	ш					

Fuente: se reimprime de Chains for Power Transmission and Material Handling, p. 147, por cortesia de Marcel Dekker, Inc.

TIPO I: Lubricación manual o por goteo TIPO II: Lubricación por disco o baño TIPO III: lubricación por flujo de aceite El limite de rpm para cada tipo de lubricación se lee a partir de la columna hacia la izquierda de la linea limite que se ilustra.

ANEXO C

Figura A. Métodos para determinar valores para K y Q para distintos tipos de secciones transversales

Forma de sección transversal	K = para usarse Q = para usarse			Υ			gro (●) i de r _{es}					
Cuadrada	$K = 0.141a^4$											
<u> </u>	$Q=0.208a^3$				en el p ada lad		dio					
Rectangular	$K = bh^{3} \left[\frac{1}{3} - 0.21 \frac{h}{h} \left(1 - \frac{(h \cdot h)^{4}}{12} \right) \right]$											
	$Q = \frac{bh^2}{[3 + 1.8(h/b)]}$ (Aproximado: dentro de + 5%) r _{max} en el punto medio de los lados largos											
Triangular (equilátero)	$K = 0.0217a^4$											
<u> </u>	$Q=0.050a^3$											
Flecha o eje	$K = C_1 r^4$	h/r	0	0.2	0.4	0.6	0.8	1.0				
con un lado plano	$Q = C_2 r^3$	C_1	0.30	0.51	0.78	1.06	1.37	1.57				
X,	$Q = C^{2}$	C_2	0.35	0.51	0.70	0.92	1.18	1.57				
Flecha o eje con	$K = Cyr^4$	h/r	0.5	0.6	0.7	0.8	0.9	1.0				
dos lados planos		C_3	0.44	0.67	0.93	1.19	1.39	1.57				
,	$Q = C_4 r^3$	C_4	0.47	0.60	0.81	1.02	1.25	1.57				
Rectangular hueca (uniforme)	$K = \frac{2t(a-t)^2(b-t)^2}{(a+b-2t)}$ $Q = 2t(a-t)(b-t)$ Da la tensión promedio; buena aproximación de la tensión máxima si t es pequeña Las esquinas tienen chaflanes generosos											
Tubo cortado Radio medio (r)	$K = 2\pi r t^{3/3}$ $Q = \frac{4\pi^{2} r^{2} t^{2}}{(6\pi r + 1.8\epsilon)}$											
(uniforme)	t debe ser peque	ena										

ANEXO D

Figura B. Distribución de tensiones en un eje hueco

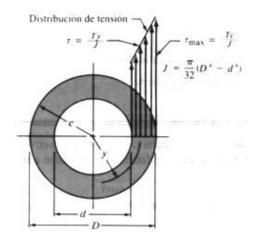
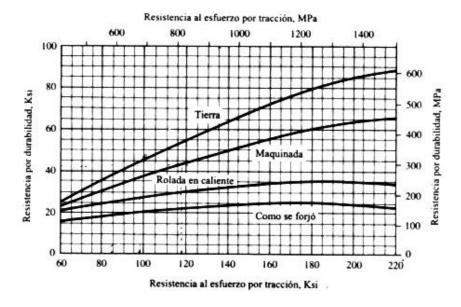



Figura C. Tensión por durabilidad contra resistencia al esfuerzo por tracción para el acero forjado para varias condiciones superficiales

ANEXO E

Figura D. Factor de tamaño para el diseño de ejes

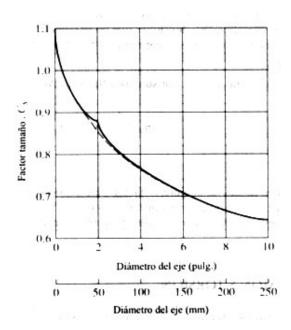


Tabla C. Factor de confiabilidad

Confiabilidad que se desea	Factor de confiabilidad, CR
0.50	1.00
0.90	0.90
0.99	0.81
0.999	0.75

Figura E. Base para la ecuación de diseño de ejes para tensión por esfuerzo de flexión inversa sucesiva y tensión por esfuerzo de corte por torsión

ANEXO FTabla D. Comparación de tipo de cojinetes

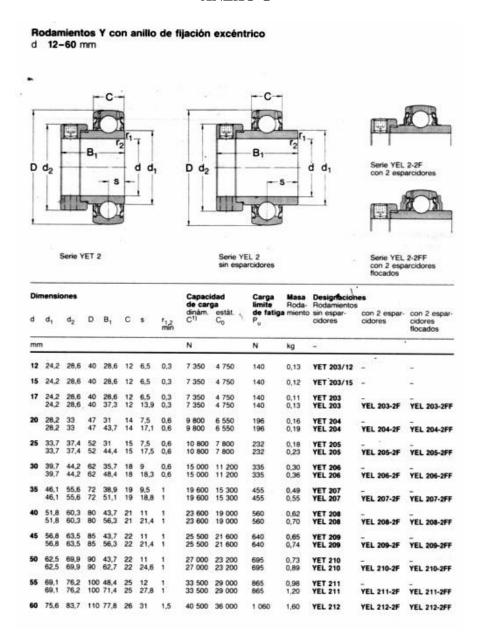
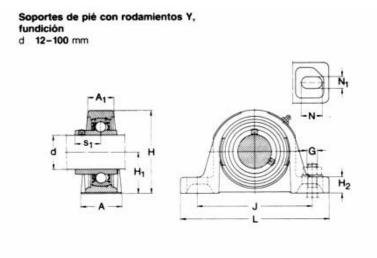

Tipo de cojinete	Capacidad de carga radial	Capacidad de carga de empuje	Capacidad de desalineación
Bola de hilera única, ranura profunda	Buena	Aceptable	Aceptable
Bola de doble hilera, ranura profunda	Excelente	Buena	Aceptable
Contacto angular	Buena	Excelente	Pobre
Rodamiento cilíndrico	Excelente	Pobre	Aceptable
Aguja	Excelente	Pobre	Pobre
Rodamiento esférico	Excelente	Aceptable/buena	Excelente
Rodamiento ahusado	Excelente	Excelente	Pobre

Tabla E. Vida útil de diseño recomendada para cojinetes.


Uso	Vida útil de diseño L ₁₀ , h
Aparatos domésticos	1 000-2 000
Motores para aviones	1 000-4 000
Automotriz	1 500-5 000
Equipo agricola	3 000-6 000
Elevadores, ventiladores industriales, engranes de uso múltiple	8 000-15 000
Motores eléctricos, ventiladores industriales con tolva,	
maquinas industriales en general	20 000-30 000
Bombas y compresoras	40 000-60 000
Equipo crítico en operación continua las 24 horas	100 000-200 000

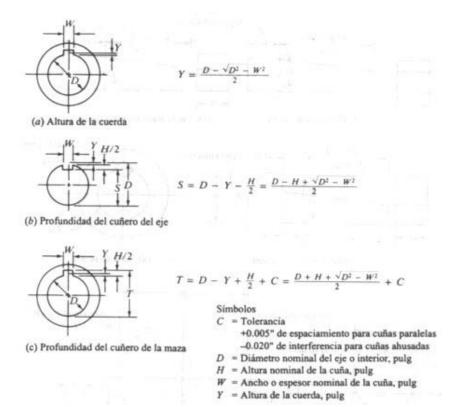
Fuente. Eugene A. Avallone y Theodore Baumeister III, eds. Marks' Standard Handbook for Mechanical Engineers, 9* edición. Nueva York: McGraw-Hill Book Company, 1986.

ANEXO G

ANEXO H

	ensi	1401											Masa	Designacion Unidad ¹⁾ completa	Soporte	Rodamiento Y
d	A	Α,	н	н,	H2	min	máx	L	N	N ₁	G	s,				
mm	Ē.												kg	-		
12	32	18	56	30,2	14	88	106	127	20,5	11,5	10	22,1 15,9	0,54 0,52	SY 12 FM SY 12 TF	SY 503 M SY 503 M	YET 203/12 YAR 203/12-2
15	32	18	56	30,2	14	88	106	127	20,5	11,5	10	22,1 15,9	0,53 0,51	SY 15 FM SY 15 TF	SY 503 M SY 503 M	YET 203/15 YAR 203/15-2
17	32	18	56	30,2	14	88	106	127	20,5	11,5	10	22,1 23,4 15,9	0,52 0,54 0,50	SY 17 FM SY 17 WM SY 17 TF	SY 503 M SY 503 M SY 503 M	YET 203 YEL 203 YAR 203-2F
20	32	20	64	33,3	14	88	106	127	20,5	11,5	10	23,5 26,6 18,3 20,5	0,59 0,62 0,57 0,57	SY 20 FM SY 20 WM SY 20 TF SY 20 KG	SY 504 M SY 504 M SY 504 M SY 504 M	YET 204 YEL 204 YAR 204-2F 362004 BTN
25	36	21	70	36,5	16	94	110	130	19,5	11,5	10	23,5 26,9 19,8 20,5	0,73 0,78 0,73 0,72	SY 25 FM SY 25 WM SY 25 TF SY 25 KG	SY 505 M SY 505 M SY 505 M SY 505 M	YET 205 YEL: 205 YAR 205-2F 362005 BTN
30	40	25	82	42,9	17	108	127	152	23,5	14	12	26,7 30,1 22,2 23	1,10 1,20 1,10 1,15	SY 30 FM SY 30 WM SY 30 TF SY 30 KG	SY 506 M SY 506 M SY 506 M SY 506 M	YET 206 YEL 206 YAR 206-2F 362006 BTN
35	45	27	93	47,6	19	119	133	160	21	14	12	29,4 32,3 25,4 24,5	1,55 1,60 1,45 1,45	SY 35 FM SY 35 WM SY 35 TF SY 35 KG	SY 507 M SY 507 M SY 507 M SY 507 M	YET 207 YEL 207 YAR 207-2F 362007 B
40	48	30	99	49,2	19	125	146	175	24,5	14	12	32,7 34,9 30,2 27	1,85 1,95 1,80 1,80	SY 40 FM SY 40 WM SY 40 TF SY 40 KG	SY 508 M SY 508 M SY 508 M SY 508 M	YET 208 YEL 208 YAR 208-2F 362008 B

ANEXO I

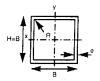

Tabla F. Tamaño de cuña contra tamaño de flecha

Diámetro n	ominal de la fl	lecha	Tamaño nominal de la cuña					
	Hasta		Altura, H					
Más de	(incluso)	Espesor, W	Cuadrada	Rectangular				
¥16	7/16	¥32	¥32	Control of the control				
V16	9/16	Vs	Vs.	¥32				
9/10	7/8	V16	V16	V				
3/8	I 1/4	V4	Va.	¥16				
11/4	1 1/s	Vin	\$/16	V4				
13/8	1 1/4	¥8	Vs.	V4				
13/4	21/4	1/2	V2	Variation of				
244	21/4	%	Y8.	1/10				
244	344	3/4	V4	V2				
344	344	7/8	3/4	3/4				
344	41/2	1	1	¥4				
4 V2	5 V2	11/4	11/4	3/8				
51/2	61/2	1 1/2	11/2	1				
61/2	7 V2	13/4	11/4	1 V2				
71/2	9	2	2	11/2				
9	11	21/2	21/5	134				
11	13	3	Property and the second	2				
13	15	31/2	342	21/2				
15	18	4	STATISTICS OF	3				
18	22	5	The state of the s	3V2				
22	26	6		4				
26	30	7	300	5				

Nota: Se recomiendan los valores que no aparecen en las áreas sombreadas. Las dimensiones están en pulgadas. Fuente: ANSI Standard B17.1-1967, Keys and Keyseats (American Society of Mechanical Engineers, Nueva York).

ANEXO J

Figura F. Dimensiones para cuñeros paralelos


ANEXO K

TUBERIA ESTRUCTURAL C U A D R A D A ASTM-A 500-GRADO C

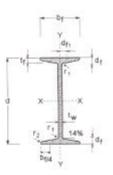
F_y = 3515 Kgf/cm²

	DIMENSIONES NOMINALES	i .	SIONES	SECCION	PESO Kgf/m	PROPIED	PIEZAS POR		
	H x B, mm	е	e R			cm ⁴	S cm³	r cm	ATADO
	60 x70	2.25	2.25	5.07	3.98	27.8	9.26	2.34	36
	70 x70	2.25	2.25	5.97	4.68	45.1	12.9	2.75	25
\cdot	90 x90	2.50	2.50	8.59	6.74	108	24.1	3.55	16
	100 x100	3.00	3.00	11.4	8.96	177	35.4	3.94	9
	110 x110	3.40	3.40	14.2	11.2	266	48.3	4.33	9
	120 x120*	4.00	6.00	18.2	14.3	407	67.3	4.74	9
	135 x135	4.30	8.60	21.7	17.0	604	89.5	5.28	6
	155 x155	4.50	9.00	26.2	20.6	971	125	6.09	6 .
	175 x175	5.50	11.00	36.0	28.3	1690	193	6.85	1
	220 x 220	7.00	14.00	57.5	45.2	4260	387	8.60	1
	260 x260	9.00	18.00	86.9	68.2	8920	686	10.1	1

Fuente: Catálogo LUMETAL

^{*} Dimensiones Reales 121 x 121 mm

Parámetros de evaluación para los gatos hidráulicos portátiles tipo botella


ANEXO L

Fuente: Norma COVENIN 3082-97

ANEXO M

IPN

COVENIN1149

PROPIEDADES

Perfil	Peso			Α	r,	r _x	I_x	S,	Z _x	C,	C ₂
	kgf	b _f	h							kgf	cm 4
IPN	m	21,	tw	cm ²	cm	cm	cm ⁴	cm ³	cm ³	cm ²	kgf ²
60	4.20	3.21	11.7	5.35	0.75	2.38	30.4	10.1	11.9	463790	0.19710 x10 ⁻⁷
80	6.10	3.56	13.8	7.77	0.90	3.18	78.4	19.6	22.0	361520	0.54037 x10 ⁻⁷
100	8.32	3.68	16.4	10.6	1.07	4.01	171	34.2	39.4	337320	0.68712 x10 ⁻⁷
120	11.1	3.77	18.0	14.2	1.23	4.81	328	54.7	63.1	318270	0.88316 x10 ⁻⁷
140	14.3	3.84	18.9	18.2	1.40	5.61	573	81.9	94.5	304030	0.10651 x10 ⁻⁷

DIMENSIONES Y PROPIEDADES

			D	imens	ione	S			Propiedades						
Perfil	d	b _f	t,	t _w	df	d _{f1}	r,	r ₂	Ly	S,	Z,	J	Cw		
				mr	n				cm ⁴	cm ³	cm ³	cm ⁴	cm ⁶		
60	60	34	5.3	3.6	9	7	3.4	1.9	3.04	1.79	3.33	0.490	23		
80	80	42	5.9	4.2	11	7	3.9	2.3	6.29	2.99	4.68	0.772	86		
100	100	50	6.8	4.5	13	7	4.5	2.7	12.2	4.88	8.19	1.50	263		
120	120	58	7.7	5.1	14	8	5.1	3.1	21.5	7.41	12.5	2.55	673		
140	140	66	8.6	5.7	16	8	5.7	3.4	35.2	10.7	18.0	4.07	1510		

Fuente: Norma COVENIN 1149-86.

ANEXO N

	Tracción	(F _v)	
Tipo de conector	(F _t)	Conexión por fricción	
Remaches A502 grado 1 remachados en caliente	1.400		1.050
Remaches A502 grado 2 remachados en caliente	1.900		1.400
Pernos A307	1.400		700
Pérnos A325 (Rosca incluída en los planos de corte)	2.800	1.050	1.050
Pernos A325 (Rosca excluída de los planos de corte)	2.800	1.050	1.550
Pernos A490 (Rosca incluída en los planos de corte)	3.800	1.400	1.580
Fernos A490 (Rosca excluída de los planos de corte)	3,800	1.400	2.250
Partes roscadas de acero	0,6 Fy		0,3 F _v

ANEXO \tilde{N}

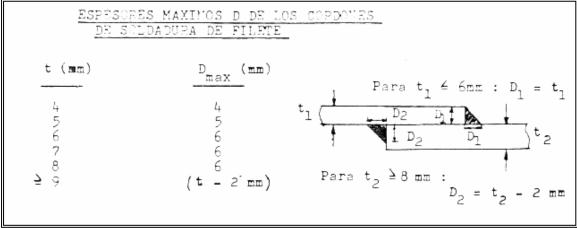
LONGITUDES DE PERNOS DE ALTA RESISTENCIA

A325 y A490

đ		a (minimo)	b (m i ni	mo)
pulg.	mm.	pulg.	mm.	pulg.	mm.
1/2	13	11/16	18	1	25
5/8	16	7/8	22	1 1/4	32
3/4	19	1	25	1 3/8	35
7/8	22	1 1/8	29	1 1/2	40
1	25	1 1/4	32	1 3/4	45
1 1/8	29	1 1/2	40	2	50
1 1/4	32	1 5/8	42	2	50
1 3/8	35	1 3/4	45	2 1/4	55
1 1/2	40	1 7/8	50	2 1/4	55

ANEXO O

	(0671	DIFFICCION		AT	Kg. Kg.	2,850 1,773	4.452 2.770	5.412 3.990	8.727 5.430	7*093	020°6 964		and district						
		PERMOS A490	APLASTAMIENTO	CR SR	er er	Kg.	2,001 2,8	3,126 4,1	4,503 6,4	6,128 8,	8,005 11,400	964°41 621°01					55 F	•		
SONGEO BY OF	90		FRICCION		6	90 84	1,330	2,077	2,00%	4.072	5,320	6.765			orte.		F = 1,35	4	©	
DT 3 T T T	,	PRRTOS 4525	CINEIN	E S	p rt	¥90	1,963	3,067	4.417	6,012	7,853	986*6			plano de corte.	plano de corte.		ſ	# pl.corte	0
α 	A 640	(r)	APLASTANTO	CE CE	n,	R.	1,330	2.077	2,992	4.072	5,320	6,765	ng yar un ang an a	7.00		da plano	corte) = P1v #	A C To Section 2 t
		A307	APLAST.		p. 71	× 89	387	1,385	200:1	 2,715	3,547	4.510	-	and the second	sin rosca incluída en el	la carga admisible por perno, en cada	P14 # p1.	r F	بب ش ••) (1) (1)
					÷	CJ .	1,267	1,979	2,00	3,879	2,067	5,443			sin rosca	por pern	-		os a corte	7
					34	, E	39	77	53	 99	75	87	96			ible	# ₹ c c d d d d		necesarios	
2				덚	5.000	si Fi	19	U)	u)	5	35	38	47	TO.	an co	admis	4 6 6 6 7 6 8 6			
				Of at.	0100 0130 0130 0130	e H	22	0/	W W	38	77.77	Ľ,	52	1,254	nd file	arsa.	11 E		pernos	
Comment Control of the Control of th					ಶ	mm,	pro ent	i io	Ç) H	 22	25	29	32	1,74	R alg		04 F	1		
Tomas may regarda consistente está está está desta de está está está está está está está est					, est	50	2/2	3/8	7	2//8		1/3	1 1/4	17.1.1/4	CR y SR significan con y	ρ τ α	T A T COOR OF THE	2,	Minero de	


Fuente: Mª Fratelli "Proyecto de estructuras metálicas".

ANEXO P

#3	(a)	(b)	(c)	(d)	(e)	m			
La forma pandeada de la columna es mostrada mediante lineas segmentadas	+			***************************************					
Valor teórico de K	0,5	0,7	1,0	1.0	2,0	2.0			
Valor de diseño recomen- dado cuando las condicio- nes reales se aproximan a las ideales	0,65	0.80	1.2	1.0	2,10	2.0			
Código de las condiciones en los extremos	t t	Rotaci	ión fija y ión libre y ión fija y ión libre y	y traslació	ón fija n libre				

ANEXO Q

Tabla #G. Espesores Máximos "D" de los Cordones de Soldadura de Filete.

ANEXO R

Tensiones normales admisibles $F_a(Kg/cm^2)$ para miembros comprimidos con tensión cedente: $F_y = 3.500 \text{ Kg/cm}^2 \qquad \qquad \downarrow_c = 108.9$

MIEME	BROS	PRINCIP	ALES Y	SECUND	ARIOS	MIEMB	ROS F	RINCIPA	LES	MIEMBR		CUNDARI	0.8
KL/r	Fa	KL/r		KL/r		KL/r	Fa	KL/r	Fa	L/r	Fa	L/r	Fa
1	2096	41	1805	81	1336	121	738	161	417	121	741	161	524
	2091	•	1796	82	1322	122	726	162	412	122	733	162	521
	2086		1786	83	1309	123	714	163	406	123	725	163	518
	2081	44	1776	84	1295	124	702	164	402	124	717	164	515
			1766	85	1281	125	691	165	397	125	709	165	512
5	2076	45 46	1756	86	1266	126	680	166	392	126	701	166	509
	2071			87	1252	127	670	167	387	127	694	167	506
7	2066		1745	88	1238	128	659	168	30 3	128	687	168	503
8	2060		1735			129	649	169	378	129	680	169	501
	2055		1724	89	1223 1209	130	639	170	374	130	673	170	498
10	2049		1714	90	1194	131	629	171	369	131	666	171	496
	2043		1703	91		132	620	172	365	132	659	172	493
	2037		1692	92	1179		611	173	361	133	653	173	491
	2031		1681	93	1164	133	601	174	357	134	647	174	489
14	2024	. 54	1670	94	1149	134				135	641	175	486
15	2018		1659	95	1134	135	593	175	353		635	176	484
16.	2011		1648	96	1119	136	584	176	349	136		177	482
17	2005		1637	97	1104	137	575	177	345	137	627		
18	1998	58	1625	98	1088	138	567	178	341	138	623	173	480
	1991		1614	99	1073	139	559	179	337	139	618	179	478
	1983		1602	100	1057	140	551	180	333	140	612	180	476
21	1976		1571	101	1041	141	543	181	330	141	607	181	474
22	1969		1579	102	1025	142	536	182	326	142	602	182	473
	1961		1567	103	1009	143	528	183	322	143	597	183	471
23				104	993	144	521	184	319	144	592	184	469
24	1954		1555			144	514	185	316	145	587	185	467
25	1946		1543	105	977				312	146	582	186	466
26	1938		1531	106	960	146	507	186			578	187	464
27	1930		1518	107	944	147	500	187	309	147	573	138	463
28.	1922		1506	108	927	148	493	188	306	148		189	462
29	1913		1494	109	909	149	486	189	302	149	569		460
30	1905	70	1401	110	893	150	480	190	299	150	565	190	
31	1897	71	1468	111	877	151	474	191	296	151	561	191	-459
32	1883		1456	112	861	152	467	192	293	152	556	192	458
33	1879		1443	113	846	153	461	193	270	153	553	193	457
34	1870	74	1430	114	831	154	455	194	287	154	549	194	455
35	1861		1417	115	817	155	450	195	284	155	545	195	454
36	1852		1404	116	803	156	444	196	281	156	541	196	453
37	1843		1390	117	789	157	438	197	278	157	538	197	452
38	1834		1377	118	776	158	433	198	275	158	534	198	452
	1824		1363	119	763	159	427	199	273	159	531	199	451
40	1815	80	1350	120	750	160	422	200	270	160	527	200	450
40	TRIP	80	1370	150	750	100	422	200	210	100	7-1		77

ANEXO S

	ERZOS EN EL METAL SOLDADURAS DE FI	
ELECTRODOS	F _u Kg/cm ²	F _v = 0,3 F _u Kg/cm ²
E60XX	4.220	1.270
E70XX	4.920	1.480
ESOXX	5.630	1.690
E90XX	6.330	1.900
Elooxx	7.030	2.110
Elloxx	7.730	2.320

ANEXO T

Propiedades típicas de materiales seleccionados usados en ingeniería^{1,5} (Unidades SI)

699

		R	esistencia i	última	Flue	ncia ³	Módulo	Módulo	Coeficiente	Ductilidad,
Material	Densidad kg/m³	Tensión, MPa	Compresion MPa	ón², Cortante, MPa	Tensión, MPa	Cortante, MPa	de elasticidad, GPa	de rigidez, GPa	de expansión térmica 10 ⁻⁶ /°F	n porcentaje de elongación en 50 mm
ACERO:								4.1		
Estructural (ASTM-A36) Alta resistencia	7860	400			250	145	200	77	11.7	23
ASTM-A242	7860	480			345	205	200	77	11.7	22
ASTM-A441	7860	460			320	200	200	77	11.7	21
ASTM-A572 Templado	7860	415			290		200	77	11.7	24
ASTM A-514	7860	760		V. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	690	380	200	77	11.7	18
AISI 302	7000	000				243			11.00	
Laminado en frío	7920	860			520		190	75	17.3	12
Recocido Acero de refuerzo	7920	655			260	150	190	75	17.3	50
Resistencia media	7860	480			275		200	77	11.7	
Alta resistencia	7860	620			415		200	77	11.7	4 4 Y.H.JA
UNDICIÓN: Fundición gris 4.5% C, ASTM A-48	7200	170	655	240			69	28	12.1	0.5
Hierro fundido 2% C, 1% Si, ASTM A-47		345	620	330	230		165 .	65	12.1	10
**・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	PERANGERS AND	TENTENDAT		WENTER STATE	MERRITAN	Terrores sand	energian	TANTANAN	TZ.I	
LUMINIO:										
Aleación 1100-H14 (99% Al	NOT THE LABOUR ASSESSMENT	110		70	100	55	70	26	23.6	9
Aleación 2014-T6 Aleación 2024-T4	2800	455		275	400	230	75	27	23.0	13
Aleacion 5456-H116	2800 2630	470 320		280	325		73		23.2	19
Aleación 6061-T6	2710	260	NAME OF THE	185	230	130	72 70		23.9	16
Aleación 7075-T6	2800	570		165 330	240 500	140	70 72	26 28	23.6 23.6	17 11
OBRE		6.551861.416	1417258473	11614:12411	a Cataloga	0.01853414	AND TENDENT TO	Elet-Salla	斯芒斯人以在北京 市工程	SERVICE SERVICES.
Libre de oxígeno (99.9% Cu)										
Recocido	8910	220		150	70		120	44	16.9	45
Endurecido	8910	390		200	265		120	44	16.9	4
Latón amarillo (65% Cu, 35% Zn)										
Laminado en frío	8470	510		300	410	250	105	39	20.9	8
Recocido	. 8470	320		220	100	60	105	39	20.9	65
Latón rojo (85% Cu, 15% Zn)										
Laminado en frío	8740	585		320	435		120	44	18.7	3
Recocido	8740	270	Water	210	70	44,000	120	44	18.7	48
Estaño bronce (88 Cu, 8Sn, 4Zn)	8800	310			145		95		18.0	30
Manganeso bronce (63 Cu, 25 Zn, 6 Al, 3 Mn, 3	8360 Fe)	655			330		105		21.6	20
(81 Cu, 4 Ni, 4 Fe, 11 Al)	8330	620	900		275		110	42	16.2	6

(Continúa en la nácina 701)

ANEXO U

	Cap. (ton.)	Carrera (mm)	No. de orden	Altura mínima retráctil (mm)	Largo de ext. de tornillo (mm)	Altura con ext. de tornillo (mm)	Carreras de bomba para ext. el pistón 25 mm	del	Tamaño de Base Biselada: † (mm)	Largo de manivela de bomba (mm)	Esfuerzo de manivela a cap. nominal (kg)	Asa de transporte	Peso del producto (kg)
	2	114	9002A	181	49	344	5	25	110X65	311	34		2.2
	3	1114	9003A	191	60	365	10	29	114 X 72	489	20.4	No	2.6
	5	121	9005A	200	70	391	12	35	132 X 76	545	24.9	140	3.6
	8	121	9008A	200	70	391	18	38	152 X 89	605	34		5.5
	12	149	9112A	241	79	470	26	48	165 X 106	003	27.2	Sí	7.9
40WB	15	156	9015B	230	110	495	27	60	130 X 140 †	700	40.8	No	8.3
	20	159	9120A	270	40	429	22	51	183 X 129	800	31.7		12.9
4DWS	22	156	9022B	240	110	505	36	60	165 X 160 †	700	40.8	Sí	10.7
	30	159	9030A	279	_	438	35	60	192 X 141	1,000	22.7		18.7
E(0)0)	33	143	9033B	240	100	483	56	65	184 X 176†	700	39.9	No	14.5
	50	171	9050A	305		476	35	76	237 X 187	1,000	38.6	Sí	35.4
4000)s	110	156	9110B	300		456	40/160 ††	111	339 X 291 †	700	35.8	31	70
Ga	itos de	botella	de perfil	bajo:			†† 2 velocid	ades: Avance	rápido ≈ 40 carreras ≈	módulo de leva	ntamiento ≈ 160 c	алегаѕ.	
	12	95	9012A	171	76	343	26	48	165 X 106	605	27.2		6.4
	20	86	9020A	181	40	305	22	51	183 X 129	800	31.8	Sí	10.1
	30	79	9130A	.51	_	260	35	60	192 X 141	1,000	22.7		13.7

Fuente: Norma COVENIN 3082-97

ANEXO V

	00	VENI	N-	MI	NDUR	2002-	88
--	----	------	----	----	------	-------	----

C- 25

Tab	ola C-4.1	Grupos de Especies de M	adanaa E		1
Gru	upo N o m b Común	estudiadas por el PADT- D r e s	REFORT/J ensidad básica kgf/m³	UNAC [1 Módu Elast mín	l3] :los de :icidad*
A	Algarrobo Mora Perhuétano Zapatero	Hymenaea courbaril Mora gonggrijpii Mouriri barinensis Peltogyne porphyrocardia	770 780 780 890	130000	95000
В	Aceite cabimo Apamate Charo amarillo Chupón rosado Guayabón Pardillo amaril	Pouteria anibifolia Terminalia guianensis	560 540 650 660 640 650	100000	75000
С	Carne asada Mureillo Samán Saqui saqui	Hieronyma laxiflora Erisma uncinatum Pithecell obium saman Bombacopsis quinata	550 470 490 390	90000	55000

^{*} Supone solicitaciones en la dirección paralela a las fibras de la madera. Se usará E mín(imo) en miembros individuales y E prom(edio) sólo cuando exista garantía de la acción conjunta de varios elementos, como en el caso de viguetas y entablados.

Tabla C-4.2 Tensiones admisibles de las Especies de Maderas Estructurales estudiadas por el PADT-REFORT/JUNAC [13]

Tensiones Admisibles Gr kgf/cm²	upo E A	struc	tural
Compresión: Paralela a las fibras* Perpendicular	145 40	110 28	80 15
Corte por flexión	15	12	8
Flexión*	210	150	100
Tracción: Paralela a las fibras*	145	105	75

^{*} En flexocompresión pueden incrementarse en 10 %

Fuente: Norma COVENIN

ANEXO W

Loading	Boundary conditions	Stresses and displacement
(1) Internal pressure p_i	at $r = a$, $\sigma_r = -p_i$ at $r = b$ $\sigma_r = 0$	$\sigma_r = -p_i \frac{a^2}{b^2 - a^2} \left(\frac{b^2}{r^2} - 1 \right) \cdot \max \sigma_r = -p_i \text{ at } r = a$ $\sigma_t = p_i \frac{a^2}{b^2 - a^2} \left(\frac{b^2}{r^2} + 1 \right) \cdot \max \sigma_t = p_i \frac{b^2 + a^2}{b^2 - a^2} \text{ at } r = a$ $u = p_i \frac{r}{E} \frac{a^2}{b^2 - a^2} \left[(1 - v) + (1 + v) \frac{b^2}{r^2} \right]$
(2) External pressure p_o	at $r = a$, $\sigma_r = 0$ at $r = b$ $\sigma_r = -p_o$	$\sigma_{r} = -p_{o} \frac{b^{2}}{b^{2} - a^{2}} \left(1 - \frac{a^{2}}{r^{2}} \right), \max \sigma_{r} = -p_{o} \text{ at } r = b$ $\sigma_{t} = -p_{o} \frac{b^{2}}{b^{2} - a^{2}} \left(1 + \frac{a^{2}}{r^{2}} \right), \max \sigma_{t} = -p_{o} \frac{2b^{2}}{b^{2} - a^{2}} \text{ at } r = a$ $u = -p_{o} \frac{r}{E} \frac{b^{2}}{b^{2} - a^{2}} \left[(1 - v) + (1 + v) \frac{a^{2}}{r^{2}} \right]$
(3) Thin uniform disk. Rotation ω.	at $r = a$, $\sigma_r = 0$ at $r = b$, $\sigma_r = 0$	$\sigma_r = \rho \omega^2 \frac{3+v}{8} \left(b^2 + a^2 - \frac{a^2 b^2}{r^2} - r^2 \right)$ $\max \sigma_r = \rho \omega^2 \frac{3+v}{8} (b-a)^2 \text{ at } r = \sqrt{ab}$ $\sigma_t = \rho \omega^2 \frac{3+v}{8} \left(b^2 + a^2 + \frac{a^2 b^2}{r^2} - \frac{1+3v}{3+v} r^2 \right)$ $\max \sigma_t = \frac{\rho \omega^2}{4} \left[(3+v)b^2 + (1-v)a^2 \right] \text{ at } r = a$ $u = \rho \omega^2 \frac{r}{E} \frac{(3+v)(1-v)}{8} \left(b^2 + a^2 + \frac{1+v}{1-v} \frac{a^2 b^2}{r^2} - \frac{1+v}{3+v} r^2 \right)$
(4) Solid, thin uniform disk. Rotation ω and external pressure p _θ .	at $r = 0$, u = 0 at $r = b$, $\sigma_r = -p_0$	$\sigma_{r} = -p_{o} + \rho \omega^{2} \frac{3+v}{8} (b^{2} - r^{2})$ $\max \sigma_{r} = -p_{o} + \rho \omega^{2} \frac{3+v}{8} b^{2} \text{ at } r = 0$ $\sigma_{t} = -p_{o} + \rho \omega^{2} \frac{3+v}{8} \left(b^{2} - \frac{1+3v}{3+v} r^{2} \right)$ $\max \sigma_{t} = \max \sigma_{r} \text{at } r = 0$ $u = \frac{r}{E} (1-v) \left\{ -p_{o} + \frac{\rho \omega^{2}}{8} \left[(3+v)b^{2} - (1+v)r^{2} \right] \right\}$

Fuente: Burr Arthur & John Cheatham

ANEXO X

Fuerza Mínima a la Tracción en Pernos de Alta Resistencia Tb.

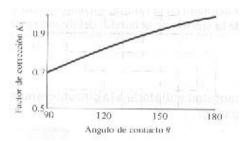
Diámetro	de Pernos	Pernos A325	Pernos A490	
Plg.	mm	kgf	kgf	
1/2	13	5400	6800	
5/8	16	8600	10900	
3/4	19	12700	15900	
7/8	22	17700	22200	
1	25	23100	29000	
1 1/8	29	25400	36300	
1 1/4	32	32200	46300	
1 3/8	35	38600	54900	
1 1/2	38	46700	67100	

Fuente: Fratelli 1991

ANEXO Y

Tabla G

SECCIÓN	ANCHO <i>a</i> ,	ESPESOR b.	MINIMO DIÁMETRO DE POLEA, in	POTENCIAS PARA UNA O MÁS BANDAS, hp		
Λ	1/2	11	3.0	1-10		
В	$\frac{2}{3}\frac{1}{2}$	7.0	5.4	1 25		
C	7.	17	9.0	15-100		
D	11	4	13.0	50-250		
E	1 ½	1	21.6	100 o mayor		


Tabla H

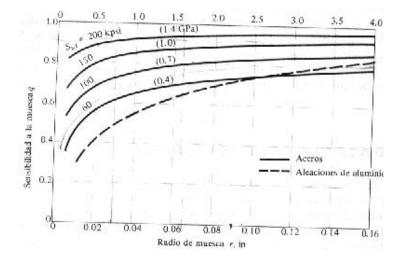
SECCIÓN	CIRCUNFERENCIA, in			
A	26, 31, 33, 35, 38, 42, 46, 48, 51, 53, 55, 57, 60, 62, 64, 66, 68, 71, 75, 78, 80, 85, 90, 96, 105, 112, 120, 128			
В	35, 38, 42, 46, 48, 51, 53, 55, 57, 60, 62, 64, 65, 66, 68, 71, 75, 78, 79, 81, 83, 85, 90, 93, 97, 100, 103, 105, 112, 120, 128, 131, 136, 144, 158, 173, 180, 195, 210, 240, 270, 300			
C	51, 60, 68, 75, 81, 85, 90, 96, 105, 112, 120, 128, 136, 144, 158, 162, 173, 180, 195, 210, 240, 270, 300, 330, 360, 390, 420			
D	120, 128, 144, 158, 162, 173, 180, 195, 210, 240, 270, 300, 330, 360, 390, 420, 480, 540, 600, 660			
Е	180, 195, 210, 240, 270, 300, 330, 360, 390, 420, 480, 540, 600, 660			

Tabla I

Sección de banda	Λ	В	C.	D	Е
Cantidad a sumar	1.3	1.8	2.9	3.3	4.5

Figura G

ANEXO Z


Tabla J

****	LO	LONGITUD DE BANDA NOMINAL. in						
	BANDAS A	BANDAS B	BANDAS C	BANDAS D	BANDAS E			
	Hasta 35	Hasta 46	Hasta 75	Hasta 128				
0.90	38-46	48-60	81-96	144-162	Hasta 195			
0.95	48-55	62-75	105-120	173-210	210-240			
1.00	60-75	78-97	128-158	240	270-300			
1.05	78-90	105 120	162 195	270-330	330-390			
1.10	96-112	128-144	210-240	360-420	420-480			
1.15	120 o más	158-180	270-300	480	540-600			
1.20		195 o más	330 o más	540 o más	660			

Tabla K

ACABADO DE	FAC*	TOR a	EXPONENTE b	
SUPERFICIE	kpsi	MPa		
Esmerilado (rectificado)	1.34	1.58	-0.085	
Maquinado o estirado en frío	2.70	4.51	-0.265	
Laminado en caliente	14.4	57.7	-0.718	
Forjado	39.9	272.	-0.995	

Figura H

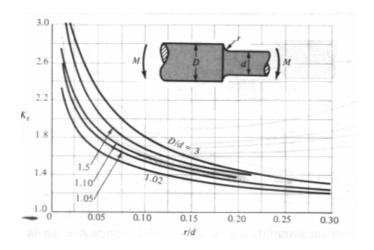

ANEXO AA

Tabla L

SECCIÓN	DIÁMETRO DE	VELOCIDAD DE LA BANDA, ft/min				
DE BANDA	PASO DE POLEA, in	1000	2000	3000	4000	5000
Α	2.6	0.47	0.62	0.53	0.15	
	3.0	0.66	1.01	1.12	0.93	0.38
	3.4	0.81	1.31	1.57	1.53	1.12
	3.8	0.93	1.55	1.92	2.00	1.71
	4.2	1.03	1.74	2.20	2.38	2.19
	4.6	1.11	1.89	2.44	2.69	2.58
1007-00	5.0 o más	- 1.17	2.03	2.64	2.96	2.89
В	4.2	1,07	1.58	1.68	1.26	0.22
	4.6	1.27	1.99	2.29	2.08	1.24
	5.0	1.44	2.33	2.80	2.76	2.10
	5.4	1.59	2.62	3.24	3.34	2.82
	5.8	1.72	2.87	3.61	3.85	3.45
	6.2	1.82	3.09	3.94	4.28	4.(W)
	6.6	1.92	3.29	4.23	4.67	4.48
	7.0 o más	2.01	3.46	4.49	5.01	4.90
C	6.0	1.84	2.66	2.72	1.87	
	7.0	2.48	3.94	4.64	4.44	3.12
	8.0	2.96	4.90	6.09	6.36	5.52
	9.0	3.34	5.65	7.21	7.86	7.39
	10.0	3.64	6.25	8.11	9.06	8.89
	11.0	3.88	6.74	8.84	10.0	10.1
1	12.0 o más	4.09	7.15	9.46	10.9	11.1
D		4.14	6.13	6.55	5.09	1.35
	11.0	5.00	7.83	9.11	8.50	5.62
	12.0	5.71	9.26	11.2	11.4	9.18
	13.0	6.31	10.5	13.0	13.8	12.2
	14.0	6.82	11.5	14.6	15.8	14.8
	15.0	7.27	12.4	15.9	17.6	17.0
	16.0	7.66	13.2	17.1	19.2	19.0
	17.0 o más	8.01	13.9	18.1	20.6	20.7
E	16.0	8.68	14.0	17.5	18.1	15.3
	18.0	9.92	16.7	21.2	23.0	21.5
	20.0	10.9	18.7	24.2	26.9	26.4
	22.0	11.7	20.3	26.6	30.2	30.5
	24.0	12.4	21.6	28.6	32.9	33.8
	26.0	13.0	22.8	30.3	35.1	36.7
	28.0 o más	13.4	23.7	31.8	37.1	39.1

ANEXO BB

Figura I

