REPRESENTATION OF MEASURABLE POSITIVE DEFINITE GENERALIZED TOEPLITZ KERNELS IN ${f R}$

Ramón Bruzual

We prove that every measurable positive definite generalized Toeplitz Kernel, defined in an (finite or infinite) interval (-a,a), is the sum of a positive definite generalized Toeplitz kernel given by continuous functions and a positive definite generalized Toeplitz kernel which vanishes almost everywhere. The proof is based on the theory of local semi-groups of contractions developed in former works. In the case of ordinary Topeplitz kernels this result gives theorems of F. Riesz, M. Krein and M. Crum and a special case of a theorem of Z. Sasvári.

INTRODUCTION

Let a be such that $0 < a \le +\infty$ and let I = (-a, a). A kernel on I is a function $K: I \times I \to \mathbf{C}$. K is said to be positive definite if for any positive integer n and any $x_1, ..., x_n$ in $I, \lambda_1, ..., \lambda_n$ in \mathbf{C} we have

$$\sum_{i,j=1}^{n} K(x_i, x_j) \lambda_i \overline{\lambda_j} \ge 0$$

K is said to be a Toeplitz kernel if there exists a function $k:I-I\to {\bf C}$ such that K(x,y)=k(x-y) for all x, y in I.

The Bochner theorem says that if $a = +\infty$ and K(x, y) = k(x - y) is a continuous positive definite Toeplitz kenel on $I = \mathbf{R}$ then $K(x, y) = \hat{\mu}(x - y)$ where μ is a positive finite measure in \mathbf{R} , and the M. Krein extension theorem says that this is also true for $a < +\infty$.

F. Riesz [16] extended Bochner's theorem, by proving that every measurable positive definite Toeplitz kernel K(x,y) = k(x-y) on \mathbf{R} is equal almost everywhere to the Fourier transform of a positive finite Borel measure on \mathbf{R} .

That is, if $K: \mathbf{R} \times \mathbf{R} \to \mathbf{C}$ is a measurable positive definite Toeplitz kernel then $K = K^c + K^o$, where K^c and K^o are Toeplitz kernels, K^c is continuous and $K^o = 0$ almost everywhere.

M. Crum [10] proved that also the kernel K^o is positive definite.

In his book [15] Zoltán Sasvári makes the following comments: According to a remark of M. G. Krein [14], already Artjomenko, who lost his life in the second world war,

knew that the kernel K^o is also positive definite, but he never published his proof. In 1943 Krein [13] announced an analogous result for positive definite kernels defined on the interval I=(-a,a). Sasvári also proves (page 101) that if $0 < a < +\infty$ and I=(-a,a) then every positive definite Toeplitz kernel K on I can be extended to a positive definite Toeplitz kernel F on \mathbb{R} . If K is measurable (continuous) on I then F is measurable (continuous) on \mathbb{R} and (page 81) he gives a generalization of Crum's result for locally compact abelian groups.

Let $I=(-a,a), I_1=I\cap [0,+\infty)=[0,a), I_2=I\cap (-\infty,0)=(-a,0).$ A generalized Toeplitz kernel on I is a kernel $K:I\times I\to \mathbb{C}$ such that there are four functions $k_{\alpha\beta}:I_{\alpha}-I_{\beta}\to \mathbb{C}$ such that

$$K(x,y) = k_{\alpha\beta}(x-y)$$
 for all $(x,y) \in I_{\alpha} \times I_{\beta}$

(cf [1], [2], [7], [8], [9]). We will not suppose that the $k_{\alpha,\beta}$ functions are continuous.

The main result of this paper is the following: If K is a measurable positive definite generalized Toeplitz kernel on the interval I then $K = K^c + K^o$, where K^c and K^o are generalized Toeplitz kernels on I = (-a, a), K^c is given by four continuous functions and K^o vanishes almost everywhere. This is a generalization of Crum's result [10] and a partial generalization of a result of Sasvári [15, page 101] to generalized Toeplitz kernels. The proof is based on the theory of local semigroups of contractions and isometries developed in [4], see also [6], [5] and [12].

PRELIMINARIES

REMARK: The theory of positive definite generalized Toeplitz kernels is closely related to the theory of bounded Hankel forms in weighted H^2 spaces and to the theorems of Nehari and Helson-Szegö. Therefore the results of this paper provide applications to Hankel forms which will be discussed elsewhere.

Let
$$0 < a \le +\infty$$
 and let $I = [0, a)$.

A local semigroup of isometries (L.S.I.) on the Hilbert space (H, \langle , \rangle) is a family $(S_r, H_r)_{r \in [0,a)}$ such that:

- (i) H_r is a closed subspace of H, $S_r: H_r \to H$ is an isometric operator, $H_t \subset H_r$ for $0 \le r < t < a$ and $H_0 = H$, $S_0 = I_H$.
- (ii) If $r, t \in [0, a)$ are such that r + t < a then $S_t H_{r+t} \subset H_r$ and $S_{r+t} h = S_r S_t h$ for all $h \in H_{r+t}$.
 - (iii) $\bigcup_{r \in (x,a)} H_r$ is dense in H_x for all $x \in [0,a)$.

(iv) If $r \in [0, a)$ and $f \in H_r$ then the function $t \to S_t h$ is continuous on [0,r].

A local semigroup of isometries can be associated in a natural way to a positive definite generalized Toeplitz kernels given by continuous functions. We shall use the following result (for details see [4])

THEOREM A [4] Let $(S_r, H_r)_{r \in [0,a)}$ be a local semigroup of isometries on the Hilbert space H. Then there exists a Hilbert space F, containing H as a closed subspace and a strongly continuous group of unitary operators $(U_t)_{-\infty < t < +\infty}$ on F such that $S_r = U_r \mid_{H_r}$ for all $r \in [0,a)$.

THE MAIN RESULT

We shall use Theorem A to prove the following:

THEOREM 1 Let I=(-a,a) where $0 < a \le +\infty$ and let K be a measurable positive definite generalized Toeplitz kernel on I.

Then

$$K = K^c + K^o$$

where K^c and K^o are positive definite generalized Toeplitz kernels on I, K^c is given by four continuous functions and K^o vanishes almost everywhere.

The idea of the proof is the following: We are going to construct two Hilbert spaces $H_1(K)$ and $H_2(K)$. In the Hilbert space $H_2(K)$ we define a local semigroup of isometries and extending this semigroup to an unitary group we will obtain the kernel K^c , and then with geometrical arguments on $H_1(K)$, we will show that the kernel K^o vanishes almost everywhere.

In the sequel I = (-a, a) and K is a measurable positive definite generalized Toeplitz kernel on I.

The proof will be done in several steps.

Construction of the Hilbert space $H_1(K)$

Let $E_1(K)$ be the set of the functions $p:I\to {\bf C}$ such that

$$p(x) = \sum_{i=1}^{n} p_i K(x, x_i)$$

where $n \in \mathbb{N}, p_1, ..., p_n \in \mathbb{C}, x_1, ..., x_n \in I$.

If p and q are elements of $E_1(K)$ and

$$p(x) = \sum_{i=1}^{n} p_i K(x, x_i)$$
 $q(x) = \sum_{j=1}^{m} q_j K(x, y_j)$

we define

$$\langle p, q \rangle_1 = \sum_{i=1}^m \sum_{i=1}^n p_i \overline{q_j} K(y_j, x_i)$$

It is clear that \langle , \rangle_1 is a non-negative sesquilinear form on $E_1(K)$.

For $y \in I$ let $K_y(x) = K(x, y)$, then we have that for every $p \in E_1(K)$

$$p(y) = \langle p, K_y \rangle_1 \text{ for all } y \in I$$
 (1)

therefore

$$|p(y)| = |\langle p, K_y \rangle_1| \le ||p||_1 ||K_y||_1 = ||p||_1 K(0, 0)$$
(2)

where $\| \ \|_1$ denotes the norm associated with the product $\langle \ , \ \rangle_1$.

Then $E_1(K)$ is a pre-Hilbert space and convergence in $E_1(K)$ implies uniform convergence.

 $H_1(K)$ will denote the completion of $E_1(K)$. It is clear that such elements are measurable bounded functions and (1) and (2) are valid for $H_1(K)$ elements. Therefore K is a reproducing kernel for $H_1(K)$ in the sense of [3].

Construction of the Hilbert space $H_2(K)$

Let $E_2(K)$ be the set of the complex value continuous functions with compact support contained in I.

If $f, g \in E_2(K)$ we define

$$\langle f, g \rangle_2 = \int_{-a}^a \int_{-a}^a K(x, y) f(x) \overline{g(y)} dx dy \tag{3}$$

PROPOSITION 1 The sesquilinear form $\langle \ , \ \rangle_2$ is non-negative.

REMARK: This assertion is not immediate since K is not supposed to be continuous and the usual argument based on Riemann sums cannot be used here.

Proof:

If $p \in E_1(K)$ then the function $u \to \langle K_u, p \rangle_1$ with domain I is bounded and measurable, its value in each u is $\overline{p(u)}$ and it is bounded by $\parallel p \parallel_1 K(0,0)$.

Let $h: \mathbf{I} \to \mathbf{C}$ be a continuous function of compact support. Then the antilinear functional from $H_1(K)$ to \mathbf{C}

$$p \longrightarrow \int_{-a}^{a} h(u) \langle K_u, p \rangle_1 du$$

is continuous.

Therefore there exists an element A(h) in $H_1(K)$ such that

$$\langle A(h), p \rangle_1 = \int_{-a}^a h(u) \langle K_u, p \rangle_1 du$$

for all p in $H_1(K)$.

Moreover

$$A(h)(y) = \langle A(h), K_y \rangle_1 = \int_{-a}^a h(u) \langle K_u, K_y \rangle_1 du$$
$$= \int_{-a}^a h(u) K_u(y) du$$
$$= \int_{-a}^a h(u) K(y, u) du$$

Finally if $h \in E_1(K)$ then

$$0 \le \langle A(h), A(h) \rangle_1 = \int_{-a}^a h(u) \langle K_u, A(h) \rangle_1 du$$
$$= \int_{-a}^a h(u) \left(\int_{-a}^a \overline{h(v)K(u, v)} dv \right) du$$

 $H_2(K)$ will be the Hilbert space obtained by completing $E_2(K)$, after the natural quotient.

 $\| \ \|_2$ will denote the norm associated with the product $\langle \ , \ \rangle_2$.

The local semigroup of isometries in the space $H_2(K)$.

We will construct a local semigroup of isometries $(S_r, H_r)_{r \in [0,a)}$ on $H_2(K)$ in the following way:

Let E_r be the set of the functions in $E_2(K)$ with support contained in $(-a+r,0)\cup(r,a)$. For f in E_r we define $(S_rf)(x)$ as f(x+r) if x is in $(-a+r,0)\cup(r,a)$ and 0 in the rest. It is clear that the operators S_r are isometries. Let H_r be the closure of E_r in $H_2(K)$. Then the operators S_r can be extended to isometric operators from H_r in $H_2(K)$, this extension will be denoted by S_r also. We have the following result:

PROPOSITION 2 The family $(S_r, H_r)_{r \in [0,a)}$ is a local semigroup of isometries on the Hilbert space $H_2(K)$.

Proof:

(i), (ii) and (iii) are clear.

(iv) follows from the continuity of the function

$$t \to \int_{-a}^{a} \int_{-a}^{a} K(x,y) f(x+t) \overline{f(y)} dx dy$$

for f in E_r , $0 \le t \le r$

Relation between K and the associated local semigroup

For $n \in \mathbb{N}$ let φ_n^1 and φ_n^2 be the functions defined by

$$\varphi_n^1(x) = \begin{cases} n & \text{if } 0 < x < \frac{1}{n} \\ 0 & \text{in another case} \end{cases}$$

$$\varphi_n^2(x) = \begin{cases} n & \text{if } -\frac{1}{n} < x < 0 \\ 0 & \text{in another case} \end{cases}$$

It is easy to check that φ_n^1 and φ_n^2 are $H_2(K)$ elements.

For $t \in (-a,0)$ let $\varphi_{n,t}^1$ the function defined by

$$\varphi_{n,t}^1(x) = \varphi_n^1(x+t)$$

For $t \in (0, a)$ let $\varphi_{n,t}^2$ the function defined by

$$\varphi_{n,t}^2(x) = \varphi_n^2(x+t)$$

For $\alpha = 1, 2$

$$\varphi_{n,0}^{\alpha} = \varphi_n^{\alpha}$$

By a classical result in measure theory, see for example [11, page 216, Corollary 7], if $F: \mathbf{R}^2 \to \mathbf{C}$ is a bounded and measurable function then for $\alpha, \beta = 1, 2$

$$\lim_{n \to \infty} \int_{-a}^{a} \int_{-a}^{a} F(x, y) \varphi_{n,t}^{\alpha}(x) \varphi_{n,t}^{\beta}(y) dx dy = F(t, r)$$

$$\tag{4}$$

at almost every point $(t,r) \in I_{\alpha} \times I_{\beta}$.

If we put F(x,y) = K(x,y) we obtain, for $\alpha, \beta = 1, 2$

$$\lim_{n \to \infty} \int_{-a}^{a} \int_{-a}^{a} K(x, y) \varphi_{n,t}^{\alpha}(x) \varphi_{n,t}^{\beta}(y) dx dy = k_{\alpha\beta}(t - r)$$
 (5)

at almost every point $(t,r) \in I_{\alpha} \times I_{\beta}$.

PROPOSITION 3 For $\alpha = 1, 2$ and for all $t \in I_{\alpha} \cup \{0\}$ the sequence $\{\varphi_{n,t}^{\alpha}\}_{n=1}^{+\infty}$ is weakly convergent in $H_2(K)$

Proof:

K is bounded (because it is positive definite). From the definition of the norm on $H_2(K)$ it follows that the sequence $\{\|\varphi_{n,t}^\alpha\|_2\}_{n=1}^{+\infty}$ is bounded. If $f \in E_2(K)$ then

$$\lim_{n \to \infty} \langle \varphi_{n,t}^{\alpha}, f \rangle_{2} = \lim_{n \to \infty} \int_{I_{\alpha}} \int_{-a}^{a} K(x, y) \varphi_{n,t}^{\alpha}(x) \overline{f(y)} dx dy$$
$$= \int_{-a}^{a} K(t, y) \overline{f(y)} dy$$

Since $E_2(K)$ is dense in $H_2(K)$ we have that $\lim_{n\to\infty} \langle \varphi_{n,t}^{\alpha}, f \rangle_2$ exists for all $f \in H_2(K)$

For $\alpha, \beta = 1, 2$ and $t \in I_{\alpha} \cup \{0\}$ let δ_t^{α} be the weak limit of the sequence $\varphi_{n,t}^{\alpha}$. From the proof of the last proposition it follows that

PROPOSITION 4 If $f \in E_2(K)$ and $t \in I_{\alpha} \cup \{0\}$ then $\langle \delta_t^{\alpha}, f \rangle_2 = \int_{-a}^a K(t, y) \overline{f(y)} dy$

It is clear that we have

$$S_{-t}\delta_0^1 = \delta_t^1 \text{ if } t \in (-a, 0)$$
 (6)

$$S_t \delta_t^2 = \delta_0^2 \ if \ t \in [0, a) \tag{7}$$

From proposition 4 and the definition of δ_t^{α} we have that for α , $\beta = 1, 2$

$$\langle \delta_t^{\alpha}, \delta_r^{\beta} \rangle_2 = k_{\alpha\beta}(t-r)$$
 at almost every point $(t, r) \in I_{\alpha} \times I_{\beta}$ (8)

Construction of the function K^c

By theorem A there exists a Hilbert space F, which contains $H_2(K)$, and a strongly continuous group of unitary operators $(U_t)_{-\infty < t < +\infty}$ such that $S_t = U_t \mid_{H_t}$ for all $t \in [0, a)$.

From (6), (7) and $U_{-t} = U_t^{-1}$ it follows that

$$U_{-t}\delta_0^1 = \delta_t^1 \text{ if } t \in (-a, 0)$$
(9)

$$U_{-t}\delta_0^2 = \delta_t^2 \ if \ t \in [0, a) \tag{10}$$

Using (8) we obtain

$$k_{\alpha\beta}(t-r) = \langle U_{-t}\delta_0^{\alpha}, U_{-r}\delta_0^{\beta} \rangle_2 = \langle U_r\delta_0^{\alpha}, U_t\delta_0^{\beta} \rangle_F$$
 (11)

at almost every point $(t, r) \in I_{\alpha} \times I_{\beta}$.

It is easy to check that (see [4]) the generalized Toeplitz kernel on I, K^c given by the functions $k_{\alpha\beta}^c(t-r) = \langle U_r \delta_0^{\alpha}, U_t \delta_0^{\beta} \rangle_F$ is positive definite. It is clear that the functions $k_{\alpha\beta}^c$ are continuous. So, we have proved

$$K = K^{c} + K^{o}$$

where K^c and K^o are generalized Toeplitz kernels on I, K^c is positive definite, given by four continuous functions and K^o is null almost everywhere.

It remains only to proof that K^o is definite positive.

 K^o is definite positive

From the proof of the proposition 1 it follows that the function

$$h \to A(h)$$

from $E_2(K)$ to $H_1(K)$ is linear and isometric. Therefore it can be extended to an isometric operator from $H_2(K)$ in $H_1(K)$, this extension will also be denote by A.

Since $K = K^c$ at almost every point we have that

$$A(h)(x) = \int_{-a}^{a} h(u)K^{c}(x, u)du$$

for all $x \in (-a, a)$.

Therefore if $t \in I_{\alpha}$ then

$$A(\delta_t^{\alpha})(x) = K^c(x,t)$$

for all $y \in (-a, a)$.

 $A(H_2(K))$ is a closed subspace of $H_1(K)$. So it is clear that the function K_t^c given by $K_t^c(x) = K^c(x,t)$ is an $H_1(K)$ element. Since $K = K^c + K^o$ we have that the function K_t^o given by $K_t^o(x) = K^o(x,t)$ is an $H_1(K)$ element also.

Let $x, y \in I = (-a, a)$, then if $x \in I_{\alpha}$ and $y \in I_{\beta}$

$$\langle K_x^c, K_y^c \rangle_1 = \langle A(\delta_x^\alpha), A(\delta_y^\beta) \rangle_1 = \langle \delta_x^\alpha, \delta_y^\beta \rangle_2 = K^c(x, y)$$

$$\langle K_x^c, K_y \rangle_1 = K^c(x, y)$$

Since $K_y = K_y^c + K_y^o$ it must be $\langle K_x^c, K_y^o \rangle_1 = 0$ and therefore

$$\langle K_x^o, K_y^o \rangle_1 = \langle K_x - K_x^c, K_y^o \rangle_1 = K^o(x, y)$$

Finally let $n \in \mathbb{N}, x_1, ..., x_n \in I, \lambda_1, ..., \lambda_n \in \mathbb{C}$

$$\sum_{i,j=1}^n K^o(x_i,x_j) \lambda_i \overline{\lambda_j} = \langle \sum_{i=1}^n \lambda_i K^o_{x_i}, \sum_{j=1}^n \lambda_j K^o_{x_j} \rangle_1 \geq 0$$

REFERENCES

- [1] Arocena, R. and Cotlar, M. Continuous generalized Toeplitz kernels in R. Portugaliae Math. 39, 419-434 (1980)
- [2] Arocena, R. and Cotlar, M. Generalized Toeplitz kernels and Adamjam Arov Krein moment problems. Op. theory: Advances and applications 4, 37-55 (1982).
- [3] Aronszan, N. Theory of reproducing kernels. Trans. Amer. Math. Soc. 68, 337-404 (1950).
- [4] Bruzual, R. Local semigroups of contractions and some applications to Fourier representation theorems. Int. Eq. and Op. Theory, Vol. 10, 780-801 (1987).
- [5] Bruzual, R. Unitary extensions of two parameter local semigroups of isometric operators and the Krein extension theorem. Int. Eq. and Op. Theory, Vol. 17, 301-322 (1993).
- [6] Bruzual, R. and Marcantognini, S. Local semigroups of isometries in Π_{κ} spaces and related continuation problems for κ indefinite Toeplitz kernels.. Int. Eq. and Op. Theory, Vol. 15, 527-550 (1992).
- [7] Cotlar, M. and Sadosky, C.: On the Helson-Szegö theorem and a related class of modified Toeplitz kernels. Proc. Symp. Pure Math. AMS, 35.1, 383-407 (1979).
- [8] Cotlar, M. and Sadosky, C. Prolongements des formes de Hankel generalisess en formes de Toeplitz. C. R. Acad. Sci. Paris, t. 305, Serie I ,167-170 (1987)
- [9] Cotlar, M. and Sadosky, C. Two-parameter lifting theorems and double Hilbert transforms in commutative and non commutative settings. J. Mathematical Analysis and Applications 150, 439-480 (1990).
- [10] Crum, M.: On positive definite functions. Proc. London Math. Soc. (3) 6, 548-560 (1956).
- [11] Dunford, N. and Schwartz, J. Linear Operators. Part I. Interscience 1957
- [12] Grossmann, M. and Langer, H.: Uber indexerhaltende Erweiterungen eines hermiteschen operators in Pontrjaginraum. Math. Nachrichten 64, 289-317 (1974).
- [13] Krein, M. G.: On the representation of functions by Fourier Stieltjes integrals. (Russian). Učenije Zapiski Kuibishevskogo Gosud. Pedag. i Učitelskogo Inst. 7, 123-148 (1943)
- [14] Krein, M. G.: On measurable hermitian positive functions. (Russian) Mat. Zametki 23, 79-89 (1978). English translation: Math. notes 23, 45-50 (1978)

- [15] Sasvári, Z.:Positive definite and definitizable functions. Akademie Verlag (1994)
- [16] Riesz, F.: Über Sätze von Stone und Bochner. Acta Sci. Math. 6, 184-198 (1932-1934).

MSC numbers: Primary 42A82, Secondary 47D03

Dpto. de Matemática. Facultad de Ciencias. Universidad Central de Venezuela. Mailing address:
Apartado 47686
Los Chaguaramos
Caracas 1041-A

VENEZUELA

e-mail : rbruzual@reacciun.ve , rbruzual@euler.ciens.ucv.ve

Submitted: April 13, 1997 Revised: August 14, 1997