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We prove tha t  every measurable positive definite generalized Toeplitz Kernel, 
defined in an (finite or infinite) interval (-a,a), is the  sum of a positive definite generalized 
Toeplitz kernel given by continuous functions and a positive definite generalized Toeplitz 
kernel which vanishes almost everywhere. The proof is based on the theory of local semi- 
groups of contractions developed in former works. In the  case of ordinary Topeplitz kernels 
this result gives theorems of F. Riesz, M. Krein and M. Crum and a special case of a theorem 
of Z. Sasvs 

INTRODUCTION 

Let a be such that  0 < a < +oe  and let I = ( - a ,  a). A kernel on I is a function 

K : I x I ~ C. K is said to be positive definite if for any positive integer n and any 

xl ,  ....,xn in I ,  )h, ..., An in C we have 

K ( x , ,  x~))~iVj >_ 0 
i,j=l 

K is said to be a Toeplitz kernel if there exists a function k : I - I --* C such 

tha t  K ( x ,  y)  = k ( x  - y)  for all x ,  y in I .  

The Bochner theorem says that  if a = +co  and K ( x ,  y)  = k ( x - y )  is a continuous 

positive definite Toeplitz kenel on I = R then K ( x ,  y) = [ t (x  - y)  where # is a positive finite 

measure in R,  and the M. Krein extension theorem says tha t  this is also true for a < +oe .  

F. Riesz [16] extended Bochner's theorem, by proving tha t  every measurable 

positive definite Toeplitz kernel K ( x ,  y) = k ( x  - y)  on R is equal almost everywhere to the 

Fourier transform of a positive finite Borel measure on R.  

That  is, if K : R x R ~ C is a measurable positive definite Toeplitz kernel then 

K = K c + K ~ , where K c and K ~ are Toeplitz kernels, K c is continuous and K ~ = 0 almost 

everywhere. 

M. Crum [10] proved tha t  also the kernel K ~ is positive definite. 

In his book [15] Zolts Sasvs makes the  following comments: According to a 

remark of M. G. Krein [14], already Artjomenko, who lost his life in the second world war, 
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knew that the kernel K ~ is also positive definite, but he never published his proof. In 1943 

Krein [13] announced an analogous result for positive definite kernels defined on the interval 

I = ( - a ,  a). Sasv~ri also proves ( page 101) that if 0 < a < +oo and I = ( - a ,  a) then every 

positive definite Toeplitz kernel K on I can be extended to a positive definite Toeplitz kernel 

F on R. If K is measurable (continuous) on I then F is measurable (continuous) on R and 

( page 81) he gives a generalization of Crum's result for locally compact abelian groups. 

Let 1 = ( - a ,  a), 11 = I A[0, + ~ )  = [0, a),/2 = I A ( - c c ,  0) = ( - a ,  0). A gen- 

eralized Toeplitz kernel on I is a kernel K : I • I ~ C such that there are four functions 

ko~ : I~ - I n ~ C such that  

K(x,  y) = k ~ ( x  - v) for all (x, y) e I~ • I~ 

(cf [1], [2], [7], [8], [9]). We will not suppose that the k~,z functions are continuous. 

The main result of this paper is the following: If K is a measurable positive 

definite generalized Toeplitz kernel on the interval I then K = K c + K ~ where K c and K ~ 

are generalized Toeplitz kernels on I = ( - a ,  a), K c is given by four continuous functions and 

K ~ vanishes almost everywhere. This is a generalization of Crum's result [10] and a partial 

generalization of a result of Sasvs [15, page 101] to generalized Toeplitz kernels. The proof 

is based on the theory of local semigroups of contractions and isometrics developed in [4], 

see also [6], [5] and [12]. 

PRELIMINARIES 

REMARK: The theory of positive definite generalized Toeplitz kernels is closely 

related to the theory of bounded Hankel forms in weighted H 2 spaces and to the theorems of 

Nehari and Helson-SzegS. Therefore the results of this paper provide applications to Hankel 

forms which will be discussed elsewhere. 

Let 0 < a <_ +oo and let I = [0, a). 

A local semigroup of isometrics (L.S.I.) on the Hilbert space (H, ( , ) )  is a family 

(St, Hr)~e[0,~) such that: 

(i) H~ is a closed subspace of H, S~ : H~ ~ H is an isometric operator, Ht C H,, 

for 0 <_ r < t < a and Ho = H ,  So = I H .  

(ii) If r, t E [0, a) are such that r + t < a then StH,-+t C H,. and S~+th = S , . S th  

for all h c H~+t. 

(iii) [.J H~ is dense in H~ for all x C [0, a). 
re(x,a) 
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(iv) If r E [0, a) and f C Hr then the function t --* Sth is continuous on [0,r]. 

A local semigroup of isometries can be associated in a natural way to a positive 

definite generalized Toeplitz kernels given by continuous functions. We shall use the following 

result ( for details see [4]) 

THEOREM A [4] Let (St, Hr)~e[o,a) be a local semigroup of isometries on the 

Hilbert space H.  Then there exists a Hilbert space F,  containing H as a closed subspace and 

a strongly continuous group of  unitary operators (Ut)-~<t<+oo on F such that Sr = U~ IH~ 

for  all r E [0, a). 

THE MAIN RESULT 

We shall use Theorem A to prove the following: 

THEOREM 1 Let I = ( - a ,  a) where 0 < a < +co and let K be a measurable 

positive definite generalized Toeplitz kernel on I .  

Then 

K = K c + K ~ 

where K ~ and K ~ are positive definite generalized ToepIitz kernels on I, K ~ is given by four 

continuous functions and K ~ vanishes almost everywhere. 

The idea of the proof is the following: We are going to construct two Hilbert 

spaces H i ( K )  and H2(K) . In the Hilbert space H2(K) we define a local semigroup of 

isometries and extending this semigroup to an unitary group we will obtain the kernel K c, 

and then with geometrical arguments on H i ( K ) ,  we will show that the kernel K ~ vanishes 

almost everywhere. 

In the sequel I = ( - a ,  a) and K is a measurable positive definite generalized 

Toeplitz kernel on I.  

The proof will be done in several steps. 

Construction of the Hilbert space H i ( K )  

Let E1 (K) be the set of the functions p : I ~ C such that 

p(x) = ~ p i K ( x ,  x~) 
i = 1  

where n E IN, Pl,-..,P,~ C C, xl, ..., x,~ C I. 
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If p and q are elements of El(K) and 

= = qjK( ,y ) 
i=1 j=l 

we define 

j= l  i = 1  

It is clear that  ( , )~ is a non-negative sesquilinear form on El(K). 

For y 6 I let Ky(x) = K(x,y) ,  then we have that for every p C El(K) 

therefore 

p(y) = (p, Ku)l for all y E I 

where II 

(1) 

]p(y) I=t (p, Ky}~ [-<It P ]1111 h~ llt=II p Ill K(0,0) (2) 

II1 denotes the norm associated with the product ( , )1. 

Then El(K) is a pre-Hilbert space and convergence in El(K) implies uniform 

convergence. 

Hi (K)  will denote the completion of El(K). It is clear that  such elements are 

measurable bounded functions and (1) and (2) are valid for Hi(K) elements. Therefore K 

is a reproducing kernel for Hi (K)  in the sense of [3]. 

Construction of the Hilbert space H2(K) 

Let E2(K) be the set of the complex value continuous functions with compact 

support contained in I. 

If f ,g  E E2(K) we define 

/;/~ (f, g)2 = IV(x, y)f(x)g(y)dxdy (3) 
a a 

PROPOSITION 1 The sesquilinear form ( , }2 is non-negative. 

REMARK: This assertion is not immediate since K is not supposed to be con- 

tinuous and the usual argument based on Riemann sums cannot be used here. 

Proof: 

If p ~ El(K) then the function u --* {Ku,pll with domain I is bounded and 

measurable, its value in each u is p(u) and it is bonnded by ]1 P I]1 K(O,O) . 
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Let h : I ~ C be a continuous function of compact support. Then the antilinear 

functional from Hi (K)  to C 

p --4 h(u)(Kmp)ldU 
a 

is continuous. 

Therefore there exists an element A(h) in Hi (K) such that 

/2 (A(h),p}l = h(u)(K~,p}ldu 
a 

for all p in Hi(K) . 

Moreover 

quotient. 

A(h)(y) = (A(h),Ky}~ 

Finally if h E El(K) then 

0 < (A(h),A(h))l 

f_~' h( )(Ku Ky) = u , ldU 
a 

f f  h( )K.( )d = U y U 
a 

= 
a 

= h(u)(K,,, A(h))ldU 
a 

=--- U V t (  U~ V ~1 ?1, 
a a 

H2(K) will be the Hilbert space obtained by completing E2(K), after the natural 

I1112 will denote the norm associated with the product ( , }2. 

The local semigroup of isometrics in the space H2(K). 

We will construct a local semigroup of isometrics (St, Hr)~e[0,a) on H2(K) in the 

following way: 

Let Er be the set of the functions in E2(K) with support contained in 

( - a  + r, 0) U (r, a). For f in E~ we define (S,.f)(x) as f ( x  + r) if x is in ( - a  + r, 0) U (r, a) and 

0 in the rest. It is clear that the operators S~ are isometrics. Let Hr be the closure of E,. in 

H2(K). Then the operators Sr can be extended to isometric operators from H~ in H2(K), 

this extension will be denoted by ST also. We have the following result: 

PROPOSITION 2 The family (St, Hr)re[o,~) is a local semigroup of isometrics on 

the Hilbert space H2( K). 
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Proof: 

(i), (ii) and (iii) are clear. 

(iv) follows from the continuity of the function 

/F  t --* K(x, y)f(x + t)f(y)dxdy 
a a 

f o r f i n E ~ , 0 < t < r  

Relation between K and the associated local semigroup 

For n C N let ~o~ and ~ be the functions defined by 

if0<x<  
x) = 0 in another case 

n i f - ~  < x < 0  
~ ( x )  = 0 in another case 

It  is easy to check that  ~o~ and ~ are H2(K) elements. 

For t E ( - a ,  0) let @,t the function defined by 

For t C (0, a) let ~2,t the function defined by 

For a = 1,2 

By a classical result in measure theory, see for example [11, page 216, Corollary 

7], if F : R 2 --* C is a bounded and measurable function then for a,  f~ = 1, 2 

lim f~ fa F(x, y)T~,t(x)w~,t(y)dxdy = F(t, r) (4) 
n ~ o o  j _ a  d - a  

at almost every point (t, r) C Is  x I 0. 

If we put F(x, y) = K(x, y) we obtain, for a,/3 = 1, 2 

lim fa fa K(x,y)qo~,t(x)~,t(y)dxdy = k~( t  - r) (5) 
n ~ o o  j _ a  J - a  

at almost every point (t, r) C I~ x I O. 
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~,~a l+oo PROPOSITION 3 For a = 1, 2 and for all t E I~ U {0} the sequence tY~,tJ,~--1 is 

weakly convergent in H~(K) 

Proof: 

K is bounded ( because it is positive definite). From the definition of the norm 

on H2(K) it follows that the sequence {1[ %~,t [[2}~=1 is bounded. If f c E2(/~) then 

n ~ o c  J l ~  a 

= /~_ K ( t , y ) f ( y ) d y  
a 

Since E2(K) is dense in H~(K) we have that lim~_~o0(p~,t, f)2 exists for all 

f E H2(K) 

For a,/3 = 1, 2 and t E I~ U {0} let 5~ be the weak limit of the sequence W~,t. 

From the proof of the last proposition it follows that 

PROPOSITION 4 If  f E E2(K) andt E I~U{0} then (6?, f)2 = f~-~ K(t ,  y ) f (y )dy  

It is clear that  we have 

S-t~ = 51t i f  t E ( - a ,  0) 

StSY = ~ i f  t E [0, a) 

From proposition 4 and the definition of ~ we have that for a, /3 = 1, 2 

(St, b~ }2 -- k,~(t - r) at almost every point(t, 7") E I~ • I~ 

Construction of the function K c 

(6) 

(7) 

(8) 

By theorem A there exists a Hilbert space F,  which contains H2(K), and a 

strongly continuous group of unitary operators (Ut)-~<t<+~o such that  St = U~ IH, for all 

t E [0, a). 

From (6), (7) and U_t = U~ -1 it follows that 

Using (8) we obtain 

U_t5~ = 5~ i f  t E ( -a ,  O) (9) 

U_th~ = 5~t i f  t E [0, a) (10) 
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at almost every point (t, r) C I~ x I z. 

It is easy to check that  (see [4]) the generalized Toeplitz kernel on 1, /(~ given 

by the functions k~o(t - r) = (U~5g, Ut(hOO)F is positive definite. It is clear that  the functions 

k~o are continuous. So, we have proved 

K = K ~ + K o 

where K ~ and K ~ are generalized Toeplitz kernels on I , K ~ is positive definite, given by 

four continuous functions and K ~ is null almost ever}m~here. 

It remains only to proof that K ~ is definite positive. 

K ~ is definite positive 

From the proof of the proposition 1 it follows that the function 

h--+ A(h) 

from E2(/( ) to HI( / ( )  is linear and isometric. Therefore it can be extended to an isometric 

operator from H2( / ( )  in H i ( K ) ,  this extension will also be denote by A. 

S ince / (  = K ~ at almost every point we have that 

A(h)(.~) = h(~,.)K~(~,~)& 
�9 a 

for all x C ( - a ,  a). 

Therefore if t E I~ then 

A(e?)(x) = Ir t) 

for all y C ( - a ,  a). 

A ( H 2 ( K ) )  is a closed subspace of H i ( K ) .  So it is clear that  the function 1Q given 

by K [ ( x )  = / ( c ( x , t )  is an Hi( I f )  element. Since K = K C +  K ~ we have that the function 

IQ' given by / (~ (z )  = K ~  t) is an H , ( K )  element also. 

Let x, y E I = ( - a ,  a), then if x c I~ and y C I;3 

c 

Since IC u = K~ + IC~ it must be (I(~,/(~)l = 0 and therefore 

( t~~  = (l(:r - ts l k y ) l  : I ~ ~  
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Finally let n E N, xl, ....,x~ E I, A1, ..., A~ E C 

/~ o o __ 

i,j=l i = 1  j = l  
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