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UNITARY EXTENSIONS OF TWO-PARAMETER LOCAL SEMIGROUPS
OF ISOMETRIC OPERATORS AND THE KREIN EXTENSION
THEOREM

Ramén Bruzual

A notion of two~-parameter 1local semigroups of
isometric operators in Hilbert space is discussed. It is shown
that under certain conditions such a semigroup can be extended
to a strongly continuous two-parameter group of unitary
operators in a larger Hilbert space. As an application a simple
proof of the Eskin bidimensional version of the Krein extension
theorem is given.

1.-INTRODUCTION
In several problems of the Analysis, and in Quantum
Physics a notion of one parameter local semigroups of operator
appears, and In some basic instances the 1local semigroup
extends to a group of unitary operators. In particular local
semigroups appear in some problems on Fourier representation of
positive definite functions of a real variable, where the
unitary extensions of the semigroup provide solutions of the
problem. To such problems belong also the classical theorem of
Krein which asserts that every continuous positive definite
function defined in an interval I € R can be extended to a
continuous positive definite function in R. The theory of one
parameter local semigroup of isometries in Pontrjagyn spaces
was started by Grossman and Langer [12] who proved the
existence of unitary extensions of such semigroups and derived
from this result a generalization of Krein's theorem for
#-indefinite functions.
In the case of Hilbert space such a theory was
. developed independently by the author in [04] for the more

general case of local semigroups of contractions, giving
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several applications to Generalized Toeplitz kernels as well as
a very simple proof of the Krein extension theorem. The results
of [04) were developed further in [05] for the Krein-Schwartz
case.

In {061 a theory of local semigroups of operators,
and in particular of isometries in Pontrjagyn spaces was given,
deriving as a corollary the theorem of Grossman-Langer-Krein
and a similar result for =-indefinite generalized Toeplitz
kernels.

It is known that the Krein theorem may £fail in the
two-dimensional case, 1.e. not every continuous positive
definite function defined in 11XI2 c R® extends to a positive
definite function in R®. However Devinatz [07] proved that such
an éxtension exists 1f the positive definite function satisfies
some additional conditions, which were later relaxed by Eskin
[09] ( see section 3 }. On the other hand the notion of two
parameter local semigroups of isometries can be defined in a
natural way and a pair of infinitesimal generators can be
attached to it. Peldez ([22]) gave a necessary and sufficient
condition for a two parameter 1local semigroup in a Hilbert
space to extend to a two parameter unitary group ( see
theorem 2.4 below ), and he combined this theorem with some
results of Devinatz [07] to obtain a new proof of the above
mentioned theorem of Devinatz. However theorem 2.4 alone
wouldn't provide a simple proof of Devinatz result, since that
theorem reduces the problem of the existence of unitary
extensions of the semigroup to an equally difficult classical
problem for the associated pair of generators. This 1last
problem has been studied by several authors (see [031), and
Koranyi [16] gave a particular simple sufficient condition for
its solution.

In the present paper we discuss in greater detail the
Problem of wunitary extensions for two parameter local
semigroups in Hilbert spaces. Theorem 2.6 gives a sufficient
condition for the associated generators of the semigroup to
satisfy the condition of Koranyi. In particular our sufficient
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condition assures the existence of unitary extensions of the
semigroup. In section 3 it is shown that this result provides a
simple and self-contained proof of the Eskin theorem ( which
contains that of Devinatz ). Other applications and further
developments will be discussed elsewhere.

For an analogue theory of 1local semigroups of
symmetric operators related to guantum theory see [21) and
(151.

2.-TWO PARAMETERS LOCAL SEMIGROPUS OF ISOMETRIC
OPERATORS

Let a, b such that 0 < a, b € +o,

Let I = [0,a) x [0,b) € R® .

If s, t € 1 we say that it 3 -te I (it is,

t €£s
for s = (51'52)’ t = (ti,tz) t £s if t1 £ 5, ,t2

€ s5)

2
2.1.DEFINITION Let H be a Hilbert space. A
two-parameter local semigroup of isometric operators ( shortly

T.L.5.I. ) is a family of pairs ( s(t), H(t) )teI such that

(1)H(t) is a closed subspace of H , S(t) : H(t}) —~ H
is an isometric operator with domain H(t), such that if
s, t eI and s < t then H{t) © H{(s), and H(0) = H, So= idH .

(ii)If s, t, s + t € I then S(t) H(s+t) C H(s) and
S(s+t) £ = S(s) S8(t) £ for all f € H(s+t).

(iii) J H(s) 1is dense in H(t) for all t e I.
s>t

(iv)The function s » S(s}) £ |is continuous in
i{s €1 : s <t} for all t € I and each £ e H(t)

When we speak about 1local semigroups of isometric
operators ( shortly L.S.I. ) we understand that they are
one-parameter local semigroups of isometric operators

( S(x), H(x) ) as defined in [04], ( se also [06] ),

xe{0,a)
i.e. the family ( S(x,y), H(x,y) ) where (x,y) € [0,a)x[0,+w)
and H(x,y) = H{x), S(x,y) = S(x) satisfies (i)~-(iv).

Let ( s{(t), H(t) )teI be a T.L.S.I. in the Hilﬁert
space H.
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2.2.REMARK. ¥ (t ,r_ ) € I U H(s ,r) is dense
1 2 i 2
azs >t
1 i
in H(t ,r.), because U H(s,zr ) 2 U H(s)
vz s >t s>(t ,z.)
1 1 1 2
Also ¥ (r ,t_} e I U H(r ,s_) is dense in
1 2 1 2
bz s_>t
2 2z

H(z,,t,)

We will use the following notation:

8,(x) = §(x,0) H, = H(x,0) x € [0,a)

8,(y) = 5(0,y) H. = H(0,y)  y € [0,b)

It is clear that we have:

. . 1
2.3.PROPOSITION The families ( Si(x) v Hx )XE[O,a)
2 . N

and ( S_(y) , Hy)YE[O,b) are L.S.1. in the Hilbert space H,

called the associated L.S.1I.

Also if f € H(x,y) then £ € H(x,0) 1 H(0,y) and
S(x,y) £ = 8(x,0) 5(0,y) £ = 8(0,y) 8(x,0) £

Thus the T.L.S.I. is determined by the two associated
L.S5.I. and therefore by their infinitesimal generators,
provided that H(x,y) is known for all (x,y) ( see [061,
theorem 3.3 ).

Ak will denote the infinitesimal generator of (Sk) ’
k =1, 2. Then ( see [04] )} D = i Ak is a symmetric operator
in H.

By the two-parameter case of the Stone theorem every
strongly continuous group of unitary operators ( U(t) )
in the Hilbert space H, is of the form

ita it Q
11 8" 722

te®® 7

Uty = U(tl,tz) = e
with 01' Qz selfadjoint commuting operators.

From this and the precedents remarks it follows:

2.4.THEOREM ( [22] ) Let ( 5(t), H(t) ), be a

T.L.S.I. in the Hilbert space H. Then there exits a strongly

continuous group of unitary operators ( U(t) ) z in o

telR
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larger Hilbert space such that S(t) = U(t)IH(t) ¥te lif and
only if the symmetric operators D1 and Dz have commutative

sel fadjoint extensions itn a larger Hilbert space.

This theorem reduces the problem of unitary extension
of local semigroups to an equally difficult classical problem
for the associated pair of generators. This classical problen
was studled by several authors ( see [03], [161, [22]1, and for
related problems see [(19] and [01l] ). Of these works we shall
use the following particularly simple result by Koranyi.

THEOREM ([16}]) Let M be a dense linear manifold 1in
the Hilbert space H. Let Ao and Bo two symmetric operators

defined on M; A and B their closures. Let A be selfadjoint, and
let B egual to its restriction to the manifold <A + 1IDOM.
Syppose that the domain of both products AB and BA contains M,
and AB f = BA f holds for all £f in M. Then in an enlarged.
Hilbert space ﬁ 2 H there exists commuting seljfadjoint
extensions ;, ﬁ of A and B.

The following property is immediate.

2.5.PROPOSITION Let ( S(t), H(t) )tEI be a T.L.S.I.
in the Hilbert space H. Then ¥ v € [0,b)

( S(x,O)IH(x y) ’ H{xX,y) )

xel[0,a)}
ts a L.S.I. in the Hilbert space H(0,y).
Also tf x € [0,a) then
s(0
¢ s ’Y)IH(x,y) ¢+ H(X,y) )ytlo,b)

s a L.S.I. in the Hilbert space H(x,0}.

Our main result is the following:

2.6.THEOREM Let ( 3(t), H(t) )tEI be a T.L.S.I. 1in

the Hilbert space H, I = [0,a) x [0,b). Suppose that for every
€ [0,b) the L.S.I. S

Y ’ S0 iy, y) » BOGY) Dyorg,qy hos @

unigue extension to a strongly continuous group of unitary

operators in the Hilbert space H(0,y).

Then the associated pair of operators Di and D
2

satisfaies the hypothesis in the theorem of Koranyti.
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Therefore the T.L.S.I. ( 8(t), H(t) )tEI can be

extended to a sirongly continuous group of unitary operalors

( U(t) )tERZ in a larger Hilbert space.

The proof of this theorem will use the techniques of
our previous paper [04].
Before starting the proof of this theorem we need

some lemmas. In theses lemmas we will construct a linear

manifold 2 such that 2 is a core of D1 and D2 ’ D1 and Dz

commute in 2% and (D, + i 1)2® is a core of D_. This will
allow us to apply the above mentioned result of Koranyi.

2.7.LEMMA let E = U H(x,y} and let
o <x<a
o<y<b

D be the linear manifold spanned by the elements of the form
r r

l 2 1
—‘i—‘T J- J S’.(X) Sz(y) f dx dy .
i 2 0 0
where f € H(r: , r: ) € E , (r: , r:) € (0,a)x(0,b) and

o

©
0 < r, < r, 0 < L < r,

Then:

(a) 2 is a core of A1 and of A2
(b) 2 © dom (A1 Az), D € dom (A2 Ai) and
A1A2h=AzA1h ¥hed

Moreover, if

r r
1 2 1
h = ?}: J J- Sl(x) SZ(Y) f dx dy E D
0 0
then
= - 1 _
A A h = A A1 h = T, I, ( S1(r1) Iy | Sz(rz) - 13 £
= 1
- rr, € 8,(r)) s (xr) £~ 8(x) £ - Sp,(ry) £+ £)
Proof:

(a)Let's consider the A1 case.
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We have ( see [04] )
dom(Aa) = { fe U H(x,0) | lim + (Si(t) £ - £)/t exists }
xe(o,a) t-o
Let £ € dom (Ai). Then there exists Sy 2 0 such that
fe H(so,O).
Let { ri(n) } be a sequence of real numbers such that

0 < ri(n) < S¢ /2 and liT+m r1(n) = 0.
Then (see [041])

r {n)
1 * '
lim S (x) £dx = f , and
nete  L,(0) .
0
r (n)
. 1 ¢
lim A { ) Sitx) f dx ) =
n-++oo 1
0
= 1lim (51(r1(n)) £ - f)/rt(n) = A1 f .
n-+oo
1 ri(n)
Let fn = —?—(-ﬁ J- St(x) f dx
* 0

Since zl(n) < S, /2 we have that

Si(x) fe H(s° - r‘(n),O) e H(So /2 ,0) if 0 < x < ri(n)

and U H(s_ /2 ,t) is dense in H(s_ /2 ,0}
o<t<b °

Therefore there exists a sequence {th} , 0 <t < b,

and a sequence { g, } = H(s /2 +t ) such that

g, ~ €10 <(r(n))?

™

Let { rz(n) } be such that

0 < rz(n) < tn, lim rz(n} = 0 and
n-++a

rz(n)

EREY S,ly) g dy - g I < (r(n))?
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rz(n) ri(n)

1
= d
Let b, = rmy r(n) S,(x) 8,(¥) g, dx dy
1 2
0 0
then hh € & and
' h - £ <
N
. ri(n) L rz(n)
< | I—Tﬁj 81()() (WJ‘ Sz(y) gh dy - gn] dx 1 +
1 2 0
L r (n)
+ T S:(X} ( 9, - £ ) dx |
0
L ri(n)
+ T Si(x) £dx - £ 1l
0
L rz(n)
< | T Sz(y) g, dy - g, o+ i g, - £
2
0
L ritn)
+ ) S1(X) fdx - £ 1
1
0
Clearly these three last terms tend to 0 as n tends
to + o
A h - A f =
] 1 n
rz(n)
=1 (s(r(n) -1 (2 S.(y) g_dy - £ )
T (n) AR T_(n) 2'Y) 9. dy
1 2
0
r (n)
==X _(s(r(n) -1) (—2— S(y) g dy - g_ )
r (n) 174 r (n) 2\Y 9, 9y 9,
1 2
1]
—1 _ (s(r(m)) - I
r,(n) Jr(m)) ) g - £
Threrefore
- ‘ 2 2 2 2
] A1 hh A1 fn ||$(I——1(n))(r1(n)) +(;':(T)' (Ii(n))
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Since A1 £ - A1 f if n - + = we have
n

h «f , A h =+ A f if n-++e

n 1 n

So & is a core of A1

(b) follows from the general theory of L.S.I.
(see [04] )

2.8.LEMMA Let D be the linear manifold spanned
by the elements of the form .

r X
1 2 1
ﬁ' J- J- Si(x) Sz(y) f dx dy
2T 0

where f € H(z° , r’) € o, (r‘: , r:) € (0,a)x(0,b) and

Then:

(a) .Dm is a core of A1 and of Az .

(1) (1)
(b) 27 © dom (A1 Az) ; D7 € dom (Az A1)'

A A2 h = Az A h v he oV ; and the last assertion of the

preceding lemma (s true.
Proof:
(b) Is clear.

(a) It is sufficient to see that 2% is core of

Algy -
Let £ € ». It is clear that £ € E, so f € H(r: ’ r:)

for some r: ’ r: > 0 . Let { ri(n) } and ¢ rz(n) } be two
sequences of positive real number converging to 0 such that

o o
rl(n) < r1 ’ rz(n) < rz and let
rz(n) ri(n)

_ 1
fn = W Si(X) Sz(y) f dx dy

Then fh - £ and
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r_(n)
1 z 1 £ d A f
A £ = E:TET I Sz(y)[ f:THT( Si(ri(n)) - f )] y -+ A
0

if n » +e

{1>

Therefore D is a core of A,1

As already observed (see proposition 2.5), if

r e 10,b) then ( S(x,0) |y, ., HOG,X) ) (g oy is a L.S.I.
r b4

in the Hilbert space H(O0,r).
Let's denote its infinitesimal generator by Ai(r). It
Is clear that

Afdr) = A idom(Ai(r))
whrere
dom (Ai(r)) ={fe dom(Ai) : £ e H(D,r) 3}
= { f e U H{x,r} | existe lim + (Sl(t) £ - £)/t }
Xe{0,a) t-o
In a similar way the following two lemmas can be
proved.

2.9.LEMMA Let D(r) be the linear manifold spanned by

the elements of the form:
r

1 rz 1
e J .[ Si(x) Sz(y) £f dx dy
1 2 0 0

where £ &£ H(r° , T+ 1) € D, and 0 < r < x° ; D0 < x <.
1 2 1 1 4
Then D(r) is a core of Ai(r)

2.10.LEMMA Let 2%(r) be the linear manifold

spanned by the elements of the form:

r I
l 2 i
—I;——I: J- I Si(X) Sz(Y) £ dx dy
0 Q
where f € H(r: , T+ r:) €D, and 0 <1 < r: ;0 <z, <x

Then .Dm(r) s @ core of A‘(r) .
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2.11.REMARK By induction and the precedent results
the following generalization of lemma 2.8 can be proved:

Let 2 =2 , and fer n = 1 let 2™ be the linear

manifold spanned by the elements of form

T2 Ty
1
-5 j J 8,(x) s, (y) £ dx dy
1 T2 0 0

= o
where f € H(r: ’ r:)[ﬁif"’), and 0 < r, < r: , 0« r, < r,.

Then:

(a) o™ is a core of A1 and of Az

{n}

v
(b) " © dom (A1 Az) , D € dom (A2 Ai),

A1 A2 h = Az A1 h vhe o , and the last assertion of

lemma 2.7. is also true.

The corresponding generalization of lemma 2.10 is
also true.

2.12.COROLLARY If for some r € [0,b) the L.S.I.

( S(X'O)‘H(x £y ¢ H(x,z) ) has a unigue extension, to a
’

x€[0,a)

strongly continuous group of unitary operators in the Hilbert

space H(0,r) then the linear manifold ( A + I ) (2%(r)) is
dense in H(O0,r) ¥n=1

Proof:

In this case the operator i Ai(r) must have
selfadjoint closure (see [04] ). Since D“Wr) is a core for

this operator the desired the result follows.
Proof of the theorem 2.6.:
We only need to prove that (D1 + 1 )2 is a core

of D2 because then from the above mentioned theorem of Koranyi
it will follow that D1 and D2 have selfadjoint commutative

extensions to a larger Hilbert space, yielding the desired
result,

3 . > _
Let ® = (D1 + i I)D and let c, = Dz IG .
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For £ e & =2 and for r, and r, positive and

sufficiently small let
1 2 1
M(ri,rz) f = —;:—;; I I Sl(x) Sz(y) £ dx dy

Then we have
* -
< C2 g,(D1 + 1 I) M(ri,rz)f > =< q,Dz(D1 + 1 1) M(rl,rz)f >
*
¥ g € dom (C2 Yy, ¥ fe D, r, and r, small.

The first member of this equality is equal to

r
* s 2
<€, 9, - [I s,ly) ( S,(r,) £-f)dy +

r r
0
X r
2 i
I I 5,(x) S,(y) £ axay | >
o o

1 2

T
Y c’g a L
= 2 (y) .9 4y —;:—;; [ 31(11) f ~ £

0
rl
+ J- 81(X) hd dx] >
0
The second member is equal to
r
1 1
< g, — —rz (sz(rz) - I)[(S1(r1) - I)Ef - J Si(x) £ dx] > =
0]
_ 1 * 1
= - <5, ) a9, 4 [(65,8 - 6)
2 1
I
1
+ J Si(x) £ dx] >
0]

Letting r, -~ 0" we obtain

r
1 2 % * .
< < Sz (y) ng dy , i (A1f + £) > =
2
0
= “;; (Sz (rz) g - 4qg), (Aaf + £) >
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it £e 2%(r)

or, what is the same

X
2
1 * * =
< ——I——J Sz (y) ng dy . (A1f + £) >
2%

i * _
= - < —;; (SZ (rz) g g) ., (A1f + £) >

if £ e 2¥(r))

Corollary 2.12 implies that

r
2 =
1 * % o i * ~
<—r_J s, y) C,gdy , h > = <I2(sz(r2)g g) , h>
2
0

for all h e H(O,rz) .

Then
s i * - h > =
lim < —/ (8, (xr,) g g) , =
r2-o 2
I
. 1 2 % *
= - 1im L S < S2 (y) ng dy , h >
Y -0 2
2 0
. *
=-<C,9,h>V¥he U H(0,r)
r>0Q
Let £ £ dom (D,) (remember that dom(D)) © U H(0,r) )
Then

3 _ . i * :
<C, g, f > = 1lim L, — < - (Sz (rz) g-g9), £>
r, -~o 2

: : 1
1lim , —<ig, = (Sz (rz) £ - £ >
r -o 2

-<1ig, Az £ >

I

< g, Dz £ >

Therefore

* *
< C2 g, £>=<gqg, Dz £f> ¥ge dom(C2 ) , ¥ fe dom(Dz)
* * %

* — —
So Cz c D2 - D2 [ C2 = C2 » & is a core of Dz.

2.13.REMARK Theorem 2.6 is also true if we only
suppose that there exists a segquence { ¥y ¥ c (0,b)

n
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converging to 0, such that for every n the L.S.I.

( S(x,0)|H(x has a unigque extension to

4 H(x,yh) )xs[O,a)

'Y )
n
a strongly continuous group of unitary operators in the Hilbert

space H(O,yn).

3.~-THE KREIN-ESKIN THEOREM

The function k : (-2a,2a) =€ ( 0 < a < += ) is said

n

to be positive definite if for every subset {x 1 (=a,a)

p p=i
and every set { cp } ?1 of complex numbers

P
1) n _
(3.0) E: 2: c ¢ ki(x -x)= 0
_ P q P Q
p=1 q=1

M. 6. Krein [17] proved that if k : (-2a,2a) - € is a

continuous and positive definite function then Kk has a

holds.

continuous and positive definite extension to the whole real

line.

It is natural to consider the following problem:

Let ¢ = (-a,a)x(-b,b) ( 0 < a, b < +2 } be an open
rectangle in the (x,y)-plane and let k : 290 - C be a

continuous and positive definite function ( 1i.e. (3.0} is
satisfied in Q ). When does there exists a continuous and
positive definite extension of k to the whole plane ?

In 1944 M. Livshitz [18] proved that the answer is
affirmative if a or b are equal to +e,

The more general situation where Q = G x (-a,a), G a
locally compact abelian group was studied in [11]1 and {10]).

In 1959 A. Devinatz obtained the following result:

THEOREM ( [07]1 ). Let k and Q be as before. If k(x,0)
and k(o0,y) each have unigue continuous and positive definite
extensions along the x—axis and the y—-axis respectively, then k
has a unigue continuous and positive definite extension to the

whole plane.

In 1960 G.I. Eskin ( ({091 ) proved the following
refinement of the existence assertion of the Devinatz theorem:
THEOREM ( [09] )} Let k and be Q as before. If one of

the functions k(x,0) or k(o,y) has a unigue continuous positive
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definite extension to the real axis, then k has a, not
necessarily unigue, continuous and positive definite extension
to the whole plane.

A different approach to this result 1is given in
Berezanski's book [03].

In 1963 W. Rudin ( [23} ) showed that the answer
to the problem is, in general, negative.

See also [13], [14}.

In this part of the paper we will apply theorem 2.6.
to prove the bidimensional version of the Krein theorem due to
Eskin [09]. Let us recall that we are going to prove the
following result:

3.1.THEOREM ( [09] ). Llet Q =( -a, a ) x ( -b, b )
( 0 <a,b < +» ) be an open rectangle in the (x,y)-plane and
let k : 20 = € be a continuous and positive definite function.

Suppose that one of the restrictions k(X,0) or
k{o,y) has only one continuous and positive definite extension
to the whole real axis

Then the function k has a continuous and positive
definite extension to the whole plane.

Following the idea in {[04] we first introduce a
T.L.S.I. associated to k and study some of its properties which
are of independent interest.

Let K : 20 x 20 -~ € be the function defined by

K (s,t) =k (s -t )

Then K is a positive definite Toeplitz kernel in g,

it is , K 1is continuous, K (s,t) depends only on the
difference s - t, and
(3.2) ) K (s,t) C(s) T(E) = 0
s, teQ

whenever € : 0 - € is a finite support function.
For t € Q let Kt : Q - € be the function defined by
Kt(s) = K{(s,t) and let E be the linear space defined by

n
E={f:Q—~C]f:Zkuath(k),nE[N,akEC,tck)u-:Q}

Clearly E elements are continuous functions.
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n ™m
1£ a = zk=1 t Kt(h ’ b = z j=t bj qu> are
elements of E, we define
n m __
(3.3) <a,b> = zku 2 1o 3B, K (56, ta0)

Then < , > is a positive semidefinite sesguilinear
form in E, and
(3.4) a(s) = < a, KS> ¥Y¥ae E ¥s e Q

Therefore we have

(3.5) lats)| < Bal I K, # = Hall ( K(o,0) )*®

¥ aeE ¥ sel
Let H = Hk

are continuous functions, and if we continue using < , > for

be the completion of E. Then H elements

the product in H, 3.4 and 3.5 remain true for H elements.
So K is a reproducing kernel for H (see [02]).
Let I = [0,a) x {0,b) and for t € I let

n
E, = { hEE|h=2k=1ak}(t(k),nsm,akec,

tdo, tao + t € Q}

n

If h = 2 et 3 Kig, € Eg we define

n
St ho = 21::1 a K tdo+t

I£f h, g€ Et then we have

(St h , St g)=1(h, g)

is the closure of E_ in H then it is

Moreover, if Ht t

clear that St can be extended to a lineal isometry from Ht in.
H and it is easy to verify that (St,Ht)tEI is a T.L.S.I. in H.
We will use the notations of section 2.
Let r € [0,b). As observed in section 2

( S(x,O)lH(x gy » HOX,1) ) is a T.L.S.I. in the Hilbert
4

xe[0,a)
space H(O,r).

3.6. DEFINITION Let Wi(r) be the operator in
H(O,r) defined by
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dom(Wl(r)) = { h e H(O,r) | z 2 (x,y) exists for x € (-a,a)
and g—%— (%,¥) = 4g(x,y) for some

g € H(O,r) }

_ . @ h )
and Wi(r) h=-1 7 x if h e dom(wi(r)).
We have:
*
3.7.THEOREM ( i Ai(r) ) = Wi(r)

The the proof of this theorem is very similar to the
analogous theorem for the one dimensional case and we only
sketch the main steps.

Given x £ (~-a,a) and y € (-b,b) let
A

= = b
fx,y A fo K(x-K,y) d

for N sucht that x-A &€ (-a,a). In the same way as in the one

dimensional case (see lemma 2 of [04]) one proves that

fx,y € dom(A (r)) and A (r) fx,y = | K(k,y) - K(k—x,y) }/x
and also that if h e dom(Ai(r)) then
8 h s * 3 h
7 x (x,y) exists for x € (-a,a) and Ai(r) h = 7 x

*
Therefore ( i A1(r) ) € Wi(r)

Since convergence in H implies uniform convergence we

have that h&(r) is a closed operator.
Using the same idea of lemma 3 of 1[04) one proves
= * ] * —_
that i Ai(r) c K&(r) . So (1 Ai(r) ) = W&(r)
*
3.8.COROLLARY Wi(r) is a symmrelric operator.
The deficiency indices of iAl(r) are

m = dim kernel ( ( i A(zx) )" +z1) if Imz > o

o]
]

dim kernel ( ( i A (r) Y+ 2zI) if Imz <o

It is easy to see that the function J:H(O0,r) -~ H(O,r)
defined by J h (x,y)
J(h+g) = Jh + Jg, J(ah) = aJh , J® = 1, and <Jh, Jg> = <g, h>.
Also it is clear that Wi(r) J =J Wu(r) . From the general

h{-x,y}) is a conjugation ( 1i.e.
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theory of symmetric operators, see [08], it follows that the
deficiency indices of 1 Ai(r) are equal.

2 h

X + 2 h =0

The general solution of the equation i
is  h(x,y) = h(0,y) e'%¥

50 by theorem 3.3. of [06] we have

3.9.THEOREM The following conditions are eguivalent:

CadThe L.S.T. ( S(x,0){y(y oy » HIX,2) ) pg oy has
7 r

a unigue extension to a strongly continuous group of unitary

operators in H(O0,r).

CboAny non zero function of the form
izx , ‘
hi{x,y} = h(0,y} e (Im{(z) # 0} is in H(O,x}.
CelAny non zero function of the Form
hix,y) = h(0,y) e * ts in H(0,r).
Let H1 be the reproducing Hilbert space corresponding
to K (x‘—x2 , 0). Since Q is a rectangle (see {021 ), H1 is the

set of the restrictions of the elements of H to any line
parallel to the x-axis. Therefore if there 1is some non 2zero

function of the form h(x,y) = h(0,y) e X in H then there will

exists Y, € (-b,b) such that h(O,yo) # 0 and the function
£(x) = e * will be in H,. So, if the kernel K (x,-x, , 0) has a
unique positive definite extension to the real line no non zero

function of the form h{(x,y) = h{(0,y) e ® can be in H ( see

{04] ), and therefore can not be in any H(0,r). We have proved:

3.10.LEMMA Let Q = (~a, a) x {(~b, b) ( 0 < a,b < += )
be an open rectangle in the (X,y)-plane and let k : 20 - C be

a continuous and positive definite function. Let (St,H ) be

t tel

the T.L.S.I. corresponding with k. If the restriction of k to
the x-axis has a unigue continuous positive definite extension
to the wvhole reat line then, each of the L.S.I.

{ S(x,O)IH(x py ¢ H(X, 1)) in H(O,x) ( r € (0,b) ), has

x€[(0,a)

a unigue extension to & strongly continuous group of unitary
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operators in H(0,r).

Proof of theorem 3.1:
that k(x,0) has a

unique continuous positive definite extension to the real 1line.

It is clear that we can suppose

Let (st,Ht)tEI be the T.L.S.I. in the Hilbert space
H, associated with k. By lemma 3.10 each of the L.S.I.
{ S(X’O)lH(x,r) ; H(x,r) )XE[O,a) in H(0,z) ( r € {0,b) } has
a unigue extension to a strongly continuous group of unitary
operators in H(O0,x).
From theorem 2.6. it follows that the T.L.S.I.
{ 8(t}), H{t) }tEI can be extended to a strongly continuous
group of unitary operators ( U(t)} )tst in a 1larger Hilbert
space F.
~ _ 2
Let k(x,y) = <« K<o,o> ’ U(x,y) K(0,0) >F (x,y) e R
It is clear that k is continuous.
Let (x,y) € Q.
If (x,y) € I then
kix,y) = <« Kzo,o; , K(x’y’ > =
= <K , S
(0,0) (x,y} (0,0}
= < K(o,m ’ U(x,y) K(o,m
= k{(x,y)
If x > and y < 0.
k(x,y) = K« K«L—y)' K0g°)> =
= < S(o,—y) 0,05 7 S<x,0) (0,03 >
= < U(o,—y> K(o,m ’ U(x,O) (0,0) ’
= < K<0,o> ’ U(x,y) K(o,o;
= kix,y)
Continuing in this way we can prove that E is an
extensién of k, and it is straightforward to see that ; is

positive definite.
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