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UNITARY EXTENSIONS OF TWO-PARAMETER LOCAL SEMIGROUPS 

OF ISOMETRIC OPERATORS AND THE KREIN EXTENSION 

THEOREM 

Ramon Bruzual 

A notion of two-parameter local semigroups of 
isometric operators in Hilbert space is discussed. It is shown 
that under certain conditions such a semigroup can be extended 
to a strongly continuous two-parameter group of unitary 
operators in a larger Hilbert space. As an application a simple 
proof of the Eskin bidimensional version of the Krein extension 
theorem is given. 

1.-INTRODUCTION 

In several problems of the Analysis, and in Quantum 

Physics a notion of one parameter local semigroups of operator 

appears, and in some basic instances the local semigroup 

extends to a group of unitary operators. In particular local 

semigroups appear in some problems on Fourier representation of 

positive definite functions of a real variable, where the 

unitary extensions of the semigroup provide solutions of the 

problem. To such problems belong also the classical theorem of 

Krein which asserts that every continuous positive definite 

function defined in an interval I c ~ can be extended to a 

continuous positive definite function in ~. The theory of one 

parameter local semigroup of isometries in Pontrjagyn spaces 

was started by Grossman and Langer [12] who proved the 

existence of unitary extensions of such semigroups and derived 

from this result a generalization of Krein's theorem for 

~-indefinite functions. 

In the case of Hilbert space such a theory was 

developed independently by the author in [04] for the more 

general case of local semigroups of contractions, giving 
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several applications to Generalized Toeplitz kernels as well as 

a very simple proof of the Krein extension theorem. The results 

of [04] were developed further in [05] for the Krein-Schwartz 

case. 

In [06] a theory of local semigroups of operators, 

and in particular of isometries in Pontrjagyn spaces was given, 

deriving as a corollary the theorem of Grossman-Langer-Krein 

and a similar result for ~-indefinite generalized Toeplitz 

kernels. 

It is known that the Krein theorem may fail in the 

two-dimensional case, i.e. not every continuous positive 

definite function defined in IixI a c ~z extends to a positive 

definite function in ~z. However Devinatz [07] proved that such 

an extension exists if the positive definite function satisfies 

some additional conditions, which were later relaxed by Eskin 

[09] ( see section 3 ). On the other hand the notion of two 

parameter local semigroups of isometries can be defined in a 

natural way and a pair of infinitesimal generators can be 

attached to it. Pel~ez ([22]) gave a necessary and sufficient 

condition for a two parameter local semigroup in a Hilbert 

space to extend to a two parameter unitary group ( see 

theorem 2.4 below ), and he combined this theorem with some 

results of Devinatz [07] to obtain a new proof of the above 

mentioned theorem of Devinatz. However theorem 2.4 alone 

wouldn't provide a simple proof of Devinatz result, since that 

theorem reduces the problem of the existence of unitary 

extensions of the semigroup to an equally difficult classical 

problem for the associated pair of generators. This last 

problem has been studied by several authors (see [03]), and 

Koranyi [16] gave a particular simple sufficient condition for 

its solution. 

In the present paper we discuss in greater detail the 

problem of unitary extensions for two parameter local 

semigroups in Hilbert spaces. Theorem 2.6 gives a sufficient 

condition for the associated generators of the semigroup to 

satisfy the condition of Koranyi. In particular our sufficient 
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condition assures the existence of unitary extensions of the 

semigroup. In section 3 it is shown that this result provides a 

simple and self-contained proof of the Eskin theorem ( which 

contains that of Devinatz ). Other applications and further 

developments will be discussed elsewhere. 

For an analogue theory of 

symmetric operators related to quantum 

[15]. 

local semigroups of 

theory see [21] and 

2.-TW0 PARAMETERS LOCAL SEMIGROPUS OF ISOMETRIC 

OPERATORS 

Let a, b such that 0 < a, b ~ +~. 

Let I = [0,a) x [0,b) c ~z 

If s, t e I we say that t ~ s if s - t e I (it is, 

for s = (sl,s2) , t = (tl, t 2) t ~ s if t I ~ s I ,t z ~ s z) 

2.1.DEFINITION Let H be a Hilbert space. A 

two-parameter local semigroup of isometric operators ( shortly 

T.L.S.I. ) is a family of pairs (S(t), H(t) )tEl such that 

(i)H(t) is a closed subspace of H , S(t) : H(t) -- H 

is an isometric operator with domain H(t), such that if 

s, t E I and s ~ t then H(t) c H(s), and H(0) = H, So= id H 

(ii)If s, t, s + t ~ I then S(t) H(s+t) c H(s) and 

S(s+t) f = S(s) S(t) f for all f E H(s+t). 

(iii) U H(s) is dense in H(t) for all t e I. 
s>t 

(iv)The function s ~ S(s) f is continuous in 

{ s E I : s ~ t } for all t E I and each f ~ H(t) 

When we speak about local semigroups of isometric 

operators ( shortly L.S.I. ) we understand that they are 

one-parameter local semigroups of isometric operators 

(S(x), H(x) )xE[0,a) as defined in [04], ( se also [06] ), 

i.e. the family (S(x,y), H(x,y) ) where (x,y) E [0,a)x[0,+~) 

and H(x,y) = H(x), S(x,y) = S(x) satisfies (1)-(iv). 

Let (S(t), H(t) )tEI be a T.L.S.I. in the Hilbert 

space H. 
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2.2.REMARK. W (t ,r 2) e I 

because 

U H(sl,r 2) is dense 
a>~s >t 

in H(tl,r2) , 

H(rl,t 2 ) 

U H[s,,r z) = U H(s) 
si>t i s>(tl,r 2 ) 

H(rl, s 2) is dense in AlSo V (rl,t2) E I U 
b~ s >t 

2 

We will use the following notation: 

S (x} = S(x,0) H ~ = H(x,0) x E [0,a) 
i x 

S 2 ( y )  = S ( O , y )  H 2 = H ( O , y )  y ~ [ O , b )  
Y 

It is clear that we have: 

2.3.PROPOSITION The /~L~es ( Si(x) , H i ) 
x xE[0,a) 

a n d  ( Sz(y) H 2 �9 y)ye[0,b) ~e L.S.I. ~n the H ~ b e r ~  space H, 

ca~ed tAe ~ssoc~as L.S.I. 

Also ~/ f e H(x,y) ZAen f E H(x,0) ~ H(0,y) and 

S(x,y) f = S(x,0) S(0,y) f = S(0,y) S(x,0) f 

Thus the T.L.S.I. is determined by the two associated 

L.S.I. and therefore by their infinitesimal generators, 

provided that H(x,y) is known for all (x,y) ( see [06], 

theorem 3.3 ). 

A k will denote the infinitesimal generator of (S k) , 

k =i, 2~ Then ( see [04] ) D k = i A k is a symmetric operator 

in H. 

By the two-parameter case of the Stone theorem every 

strongly continuous group of unitary operators (U(t) )ts , 

in the Hilbert space H, is of the form 

it U(t) = U(t ,t 2) = eitl i e 2 z 

with ~ , a 2 selfadjoint commuting operators. 

From this and the precedents remarks it follows: 

2.4.THEOREM ( [22] ) Let ( S(t), H(t) )tEI be a 

T.L.S.I. ~ s H~lber~ sp~ce H. Then there ex~s a strongly 

cons Ero~p o/ ~ns w oper~Zors ( U(t) )tE~2 . s a 
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~urMer H~ibers space s~cA s163 S(t) = U(t)IH(t ) V t E I ~/ and 

onZN 4/ the s~mnIeZr~c operators D and D Aa~e com;n~tat~e 
s 2 

seL/adI'oZnt exs Zn a farmer H~Zbert space. 

This theorem reduces the problem of unitary extension 

of local semigroups to an equally difficult classical problem 

for the associated pair of generators. This classical problem 

was studied by several authors ( see [03], [16], [22], and for 

related problems see [19] and [01] ). Of these works we shall 

use the following particularly simple result by Koranyi. 

THEOREM ([16]) Let ~ be u dense l~ne~ m~xn~/old ~n 

the Hs space H. Let A and B t~ sNmmstrs operators 
o o 

de/Lned on ~; A and B theft closures. Let A be se~/adjo~nt, and 

let B equal to ~ts ress to the muns 6A + iI)~. 

Suppose taut the domain o/ 5otA products AB and BA contains ~, 

and AB / = BA / Aolds /or al~ f ~n ~. TAen ~n an en~arsed 

H~ Zbers space H ~ H tAeDe exs com2nut s ses 

extenss A, B o~ A and B. 

The following property is immediate. 

2.5.PROPOSITION Let (S(t), H(t) )tEI be a T.L.S.I. 

~n tAe H~bert spc~e H. Then V y E [0,b) 

( S(x,0)IH(x,y ) , H(x,y) )XE[0,a) 

~S a L.S.I. s the Hs163 space H(0,y). 

Also 4/ x E [0,a) tAen 

( S(0,Y)]H(x,y ) , H(x,y) )yE[0,b) 

Zs u L.S.I. s the H(Ibert space H(x,0). 

Our main result is the following: 

2.6.THEOREM Let ( S(t), H(t) )tEI be a T.L.S.I. Zn 

the H ~ l b e r t  space H, I = [0,a) x [0,b). S~ppose tA~t /o~ e~er~ 

y E [O,b) the L.S.I. ( S(x,O)IH(x,y ) , H(x,y) )x~[O,a) Aus a 

~nfq~e exter~o~ to ~ s~ron~l~ cont~n~o~ ~ro~p o/ un~tO2"~ 

operu~ors ~n the H~ert space H(0,y). 

Then the clssoc~ated pc~r o/ operators D and D 
2 

sus163 tAe hWpothests ~n s ~heorea o/ Koran~i. 
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r r 
�9 2 

u~here f g H(r ~ 

o 
0 < r < r , 

�9 s 

TAen: 

TAere/ore the T.L.S.I. ( S(t), H(t) )tEI can be 

extended to a st~onEl }) conttn~otag Ero~p o/ ~n~tar~) operators 

( U(t) )te~Z tn a ~ar~er Hi[bert space. 

The proof of this theorem will use the techniques of 

our previous paper [04]. 

Before starting the proof of this theorem we need 

some lemmas. In theses len~mas we will construct a linear 

manifold :D (I> such that 3) (• is a core of D and D D and D 
2 �9 I Z 

commute in :D (I> and (D + i I)X) (i> is a core of D . This will 
i 2 

allow us to apply the above mentioned result of Koranyi. 

2.7 .LEMMA Let E = U H(x,y) and Let 
O< x<~ 

o<y<b 

~) be tAe l~%ectr mmt;l~/old spot, ned b~ t~e e~enlents o/ tAe /orm 
r r 

1 ~ z ~ " S (x) Sz(y) f dx dy . 

0 0 
0 0 

) c E , (r i , r z) e (O,a)x(O,b) a~zd 

the~ 

o 
�9 r 

2 

0 < r < r ~ 
2 2 

(a) ~ ts a core o/ A and o/ A 
i 2 

(b) 3) c dom (A i A2) , 3) c dom (A 2 Ai) and 

A A h = A A h Vh E :D 
�9 2 2 i 

Moreover, t~ 

r r 

X Si(x) S2(y) f dx dy s 3) 
h - r r z 0 0 

1 
A• A 2 h = A z A h - r r ( Si(r ~) - I ) ( $2(r2) - I ) f 

i 2 

1 
r r ( Sz(rz) Si(rl) f - Si(rl) f - $2(r2) f + f ) 
�9 2 

Proof: 

(a)Let's consider the A case. 
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we have ( see [04] ) 

dom(Ai) = { f E U H(x,0) I lim + (S (t) f - f)/t exists } 
xE(o,a) t-o 

Let f e dom (At). Then there exists s o > 0 such that 

f E H(so,0). 

Let { r (n) } be a sequence of real numbers such that 
I 

0 < ri(n) < s o /2 and lim ri(n) = 0. 
n~+~ 

Then (see [04]) 

r (n) 

lim ri(n ) 
n~+~ 

0 

Ss(x) f dx = f , and 

r (n) 

lim A~ ( 1 ~ i r1(n)- - a Si(x) f dx ) = 
n~+~ 

0 

= lim (Si(r1(n)) f - f)/r (n) = A f 
n-+~ s i 

and a sequence { gn } c H(so/2 ,tn) Such that 

Jl gn- f II < (rs(n) )~ 

Let { r (n) } be such that Z 

0 < r (n) < tn, lim r 2 ( n )  = 0 a n d  

r ( n )  1 ~, 2 
II r2(n ) S2(Y) gn dy - gn II 

0 

and U H(s o /2 ,t) is dense in H(s ~ /2 ,0) 
O<t<b 

Since r1(n) < s o /2 we have that 

St(x) f ~ H(s ~ - rs(n),0 ) c H(s ~ /2 ,0) if 0 ~ x ~ ri(n) 

Therefore there exists a sequence {t } , 0 < t < b, 
n 

< ( ri(n ) )2 

r1(n) 

_ 1 [ (x) f dx Let fn r1(n) J Si 

0 
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then 

II h 
n 

to 

Let h = 
n 

h E :D and 

- f II ~ 

r (n) 

r (n) 
0 

s (x) 
s 

1 
r2(n) 

+ 

r1(n) rz(n) 

rz(n) ri(n) 

~ S.(x) S,(Y) gn dx dY 

0 0 

rz(n) 
[ 1 ~ S (y) g dy _ gn I dx ii + 

r2(n ) 2 
0 

r (n) 

+ II ri(n ) S• ( g~- f ) dx II 

0 
r (n) 

+ II ri(n I Si(x) f dx - f II 

0 

rz(n) 
r 

- - I  Sz(Y) gn dy - g~ II + II gn - f U 
J 
0 

r (n) 

+ II r1(n------- ~ Si(x) f dx - f II 
O 

Clearly these three last terms tend to 0 as n tends 

A h - A f = 

1 1 f r2(n) 
ri(n ) ( Si(ri(n)) - I ) ( r2(n ) S (y) gn dy- f ) 

0 

r2(n) 
1 1 

] Sz(Y) gn dy - gn ) ri(n ) ( S1(ri(n)) - I ) ( rz(n ) 

0 

1 
+ r (n) (Si(ri(n)) - I ) ( gn - f 

I 

II A h 
s n 

Threrefore 

2 + (r (n) (ri(n) ) - A I fn [I ~< (r--q-n-i) ( ri(n) )2 2 
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Since A f ~ A f if n ~ + ~ we have 

h ~ f , A h ~ A f if n ~ + ~ 
n i n i 

So :D is a core of A 
i 

( b )  f o l l o w s  f r o m  t h e  g e n e r a l  t h e o r y  o f  L . S . I .  

( s e e  [ 0 4 1  ) 

2.8 .LEMMA Let :D (i) be the t~neo.~" m~n~Jo~d sNnned 

5 N the e[emsns o/ the /orm 

r r 

Si(x) Sz(y) f dx dy 
rl rz 0 0 

~here f E H(r~ , r~ c JD, (r ~ " r~) ~ (0,alx(0,b) and 

0 < r < r ~ , 0 < r < r ~ . 
i i 2 2 

TAe n: 

(a) X) (t~ ~ s  a core o/ A a n d  o/ A 
2 

( b )  ~ ( i )  c d o r a  ( A  l A ) , .~(i) c d o m  (A z A l )  , 

A i A 2 h = A 2 A i h V h E :D (i) , and the ~o~t cLgsez'tf.or~ o/ the 

precedZn 8 ~enunc~ ~s tr~e. 

Proof: 

(b) Is clear. 

(a) It is sufficient to see that ~(i) is core of 

A i I~)" �9 

Let f e ~D. It is clear that f E E, so f E H(r~ , r~ 

o > 0 Let { r (n) } and { r (n) } be two for some r; , r z �9 z 

sequences of positive real number converging to 0 such that 

ri(n) < r~ , rz(n) < r ~ and let 
Z 

r2(n) ri(n) 

fn = ri(n ) rz(n) Si(x) Sz(y) f dx dy 

0 0 

Then f ~ f and 
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rz(n) 

A i f ra(n ) Sz(y) rl---~-n~( Si(ri(n)) f- f ) dy ~ A i 

0 

if n ~ +~ 

Therefore ~ci> is a core of A 
I 

As already observed (see proposition 2.5), if 

r ~ [0,b) then ( S(x,0)IH(x,r ) , H(x,r) )xe[0,a) is a L.S.I. 

in the Hilbert space H(0,r). 

Let's denote its infinitesimal generator by Ai(r). It 

is clear that 

Ai(r) = A i Idom(Ai(r)) 

whrere 

dora (Ai(r)) = { f E dom(Ai) : f E H(O,r)} 

{ f E U H(x,r) I existe lim (Sl(t) f - f)/t ~ 
xE(o,a) t~o + 

proved. 

In a similar way the following two lemmas can be 

2.9.LEMMA Let ~(r) be s ~6neur ,~xns spcznned by 

the elements o/ the form: 

r r 

1 ; z ~ " S (x) S (y) f dx dy 
r I r 2 

0 0 

wAere f E H(rO , r + r ~ c ~D, un~/ 0 < r 
I 2 i 

rAen :D(r) ~s u core o/ Ai(r) 

2.10. LEMMA ie Z ~D (i> ( r ) be 

spcxnned b w tAe elements el tAe /oral: 

r r 

1 ~ 2 ; * S (x) S2(y) f dx dy 
r I r 2 

0 0 

wAere f c H(r~ r~) < r~ ' �9 r + c X), and 0 < r i 

TAen /D(i~(r) ~s a core el AI(r ) 

o o 
< r , 0 < r < r . 

I 2 2 

~he ~neu~- mun~/o~d 

0 < r < r ~ 
2 2 
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2.11.REMARK By induction and 

the following generalization of lemma 2.8 can be proved: 

Let :D (~ = :D , and for n >i 1 let :D (n) be the 

manifold spanned by the elements of form 

r r 

Si(x) Sz(y) f dx dy 
r r z 0 0 

,~)(n-i) �9 o 
o r ~  F] and 0 < r < r , 0 < r where f e H(r i , z i i 2 

the precedent results 

linear 

< r ~ 
2 

Then: 

(a) ~(n~ is a core of A and of A 
I 2 

(b) ~(n~ c dom (A i A2 ) , ~(n) c dom (A 2 Ai) �9 

A A h V h e ~(n) �9 and the A A h = last assertion of 
i 2 Z i 

lemma 2.7. is also true. 

The corresponding generalization of lemma 2.10 is 

also true. 

2.12.COROLLARY I/ /or some r e [0�9 tAe L.S.I. 

( S(x �9149 ) , H(x �9 )xe[0 �9 ~ a ~n~q~e extension, to a 

s~on~[~ cont~n~otu~ ~ro~p o/ ~n~s N opera~ors ~n s H~bert 

s p ~ c e  H(0 �9 tAen s l~r~ecu- m~xn(/old ( A + I ) (~(1)(r)) (s 
i 

dense ~n H(0 �9 W n ~ 1 

Proof: 

In this case the operator i Ai(r) must have 

selfadjoint closure (see [04] ). Since ~(i>(r) is a core for 

this operator the desired the result follows. 

Proof of the theorem 2.6.: 

We only need to prove that (D + i I)~ (~) is a core 
i 

of D z because then from the above mentioned theorem of Koranyi 

it will follow that D i and D 2 have selfadjoint commutative 

extensions to a larger Hilbert space �9 yielding the desired 

result. 

= + i I)~D (i' and let C = D J~ Let ~ ( Di z 2 " 
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For f c :D = :D (~ and 

sufficiently small let 

for r and r positive and 
i 2 

r r 
2 

M(ri'r2) f - rl r2 0 0 

Then we have 

S (x) S2(y) f dx dy 

< C z g,(D i + i I) M(rl,r2)f > = < g,Dz(D ~ + i I) M(rl,r2)f > 

V g E dom (C 2 ), V f e ~D , r i and r 2 small. 

The first member of this equality is equal to 

r 

< Cz g ' ri r2 0 
S2(y) ( Si(r i) f - f ) dy + 

r r 

0 0 

< g, 

Si(x) S2(Y) f dx dy ] 

r 

= < S z ( y )  Czg d y  , 

0 

The second member is equal to 

> = 

i [ S (rl) f _ f 
r i r 2 

r 

I" 1 + Si(x) f dx > 

0 

r 

(S2(r 2) -I)[(Si(r i) - I)f - ~ i 

0 

= - < ~ (S2 (r 2) g - g) , 
2 

§ 
o we obtain Letting r 2 

Si(x) f dx I > = 

1 [ (Si(rl)f _ f) 
r ,  I 

r 

I" 1 + Sl(x) f dx > 

0 

S 2 (y) C2g dy , i (Aif + f) > = 

r 
2 

rz 0 

r r 
i 2 

= - < 1 * 
r (Sz (r2) g - g) ' (Alf + f) > 
2 
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~)(1) ( 
if f ~ r ) 

2 

or, what is the same 

r 
I r z , , < ] S (y) dy 
r z 2 Czg ' 

0 

if f �9 :D(*>(r 2) 

(Aif + f) > = 

= - < i (S z (rz) g _ g) �9 (A1f + f) > 
r 
2 

Corollary 2.12 implies that 

r 
1 f z , < -~ ] s2 

0 

for all h e H(0,r 2) 

Then 

lim < § 
r ~0 
2 

< C 
2 

* i * 
( y )  C z g  d y  , h > = - < r ( S z  ( r z )  g - g )  ' h > 

2 

i * 
r (Sz (r2) g - g) ' h > = 
2 

r 

= - lim < 1 [ z , , S (y) dy h > 
+ r 2 C2g " 

J r ~o 2 
2 0 

= - < C 2 g, h > V h E U H(0,r) 

Let f E dom (D z) (remember that dom(D z) c U 

r>O 

H ( O , r )  ) 

Then 

* i * 
< C 2 g, f > = lim -- < (S z (rz) g - g) , f > 

+ r 
r ~o 2 
2 

Therefore 

1 
= lim -- < i g , 

+ r 
r ~o 2 
2 

= - < i g , A f > 
2 

= < g , D f > 
2 

(S z (r z) f - f) > 

g, f > = < g , D z f > V g E dom(C 2 ) , V f e dom(D2) 

So C c D ~ D c C = C ~ ~ is a core of D . 
2 2 2 2 2 2 

2.13.REMARK Theorem 2.6 is also true if we only 

suppose that there exists a sequence { Yn } c (0,b) 
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converging to 0, such that for every n the L.S.I. 

(S(x,0) IH(x,yn) , H(x,y ) )xE[0,a) has a unique extension to 

a strongly continuous group of unitary operators in the Hilbert 

space H(0,y ). 

3.-THE KREIN-ESKIN THEOREM 

The function k : (-2a,2a) ~ C ( 0 < a < +~ ) is said 

to be positive definite if for every subset { x } c (-a,a) p p=i 

and every set { c } TM of complex numbers 
p p=i 

(3.0) cp k(x - x ) ~> 0 p= I q= ~ Cq P q 

holds. 

M. G. Krein [17] proved that if k : (-2a,2a) -- C is a 

continuous and positive definite function then k has a 

continuous and positive definite extension to the whole real 

line. 

It is natural to consider the following problem: 

Let Q = (-a,a)x(-b,b) ( 0 < a, b ~ +~ ) be an open 

rectangle in the (x,y)-plane and let k : 2Q - C be a 

continuous and positive definite function ( i.e. (3.0) is 

satisfied in Q ). When does there exists a continuous and 

positive definite extension of k to the whole plane ? 

In 1944 M. Livshitz [18] proved that the answer is 

affirmative if a or b are equal to +~. 

The more general situation where Q = G x (-a,a), G a 

locally compact abelian group was studied in [ii] and [i0]. 

In 1959 A. Devinatz obtained the following result: 

THEOREM ( [07] ). Let k and Q be as be/ore. 1/ k(x,o) 

and k(o,y) eacA Aa~e ~nt~e continuous and posittue definite 

extensions alon M tAe x-axis and the y-axis respecti~e~ w, tAen k 

A ~  a ~ n Z q ~ e  c o n t i n u o z l s  a n d  p o s i t i v e  d e / i n i t e  e x t e n s i o n  t o  t h e  

~ h o t e  p l a n e .  

In 1960 G.I. Eskin ( [09] ) proved the following 

refinement of the existence assertion of the Devinatz theorem: 

THEOREM ( [09] ) Let k and be Q as be/o~e. I/ one o/ 

the /unctton_~ k(x,o) or k(o,y) has a ~niq~e conti~o~Js positive 
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d e f i n i t e  e x t e n s i o n  t o  t h e  r e u L  a x ~ s ,  t A e n  k ~ a ,  no t  

n e c e s s ~ L ~  ~n~que,  r  und p o s i t i v e  d e f i n i t e  e •  

to  t he  ~ o L e  p l a n e .  

A d i f f e r e n t  a p p r o a c h  t o  t h i s  r e s u l t  i s  g i v e n  i n  

B e r e z a n s k i ' s  b o o k  [ 0 3 ] .  

I n  1963  W. R u d i n  ( [ 2 3 ]  ) s h o w e d  t h a t  t h e  a n s w e r  

to the problem is, in general, negative. 

See also [13], [14]. 

In this part of the paper we will apply theorem 2.6. 

to prove the bidimensional version of the Krein theorem due to 

Eskin [09]. Let us recall that we are going to prove the 

following result: 

3.1.THEOREM ( [09] ). Let Q = ( -a, a ) x ( -b, b ) 

( 0 < a,b < +~ ) be an open recs ~n ~Ae (x,y)-ps and 

bet k : 2Q -- C be a conZ~n~o~zs and poss163 de/~n~e /~ncZs 

S~ppose ~Aat one o/ tAe PesLrs162 k(x,o) oD 

k(o,y) A~s onL> one contZn~o~s and pos~tZ~e de/~n~te exs 

to ~Ae ~hoLe Peal ax~s 

Then s /~nctZon k Act~ a cons and pos~s 

de/(n~s exs163 to s u~koLe plane. 

Following the idea in [04] we first introduce a 

T.L.S.I. associated to k and study some of its properties which 

are of independent interest. 

Let K : 2Q x 2Q - C be the function defined by 

K (s,t) = k ( s - t ) 

Then K is a positive definite Toeplitz kernel in Q, 

it is , K is continuous, K (s,t) depends only on the 

difference s - t, and 

(3.2) ~ K (s,t) C(s) C(t) > 0 
s TtEQ 

whenever C : Q - C is a finite support function. 

For t E Q let K t : Q ~ C be the function defined by 

Kt(s) = K(s,t) and let E be the linear space defined by 

E = f:Q - ~ I f = k=x ak K t<k) " n �9 ~, a k �9 ~, t~> �9 Q 

Clearly E elements are continuous functions. 
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m 

I f  a = ~ k=i ak Ktck~ ' b = ~ j : i  bj Kscj> a r e  

elements of E, we define 
m 

(3.3) < a , b > : ~ k:i ~ j=, ak~K (s(j>,t(k)) 

Then < , > is a positive semidefinite sesquilinear 

form in E, and 

(3.4) a(s) = < a , K > V a E E V S e Q 
s 

Therefore we have 

(3.5) la(s) I ~ llall II K s II = UaU (K(o,o) )i/z 

V a~E V sE! 

Let H = H k be the completion of E. Then H elements 

are continuous functions, and if we continue using < , > for 

the product in H, 3.4 and 3.5 remain true for H elements. 

So K is a reproducing kernel for H (see [02]). 

Let I = [0,a) x [0,b) and for t E I let 

E t = h ~ E I h = k=i a k Kt~k~ , n E N, a k e ~, 

If 
n 

h = ~ k=1 ak Kt~k~ E E t we define 

n 

S t h = ~ k=1 ak K t~k~+t 

tck>, tck~ + t E Q 

If h, g E E t then we have 

(S t h , S t g ) = ( h , g) 

Moreover, if H t is the closure of E t in H then it is 

clear that S t can be extended to a lineal isometry from H t in 

H and it is easy to verify that (St,Ht)tE I is a T.L.S.I. in H. 

We will use the notations of section 2. 

Let r e [0,b). As observed in section 2 

( S(x,0)IH(x,r ) , H(x,r) )XE[0,a) is a T.L.S.I. in the Hilbert 

space H(0,r). 

3.6. DEFINITION ie~ W (r) be ~Ae operato~ ~n 
i 

H(0,r) de/s by 
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a h 
dom(Wi(r)) = { h E H(0,r) I a x 

a h 
and W (r) h = - i 

I a x 

We have : 

and 

(x,y) ex~sZs /or x E (-a,a) 

a h 
a x (x,y) = g(x,y) /or some 

g E H(0,r) } 

~/ h ~ dom(Wi(r)). 

3.7.THEOREM ( i A1(rl ) = Wi(r) 

The the proof of this theorem is very similar to the 

analogous theorem for the one dimensional case and we only 

sketch the main steps. 

Given x E (-a,a) and y e (-b,b) let 
k 

_ 1 

fx,y k ~ K(x_k,y ) dk 
o 

for k sucht that x-k E (-a,a). In the same way as in the one 

dimensional case (see lemma 2 of [04]) one proves that 

fx,y E dom(Ai(r)) and Ai(r) fx,y = ( K(k,y ) - K(x_x,y ) )/x 

and also that if h E dom(Ai(r)) then 

ah * ah 
a x (x,y) exists for x E (-a,a) and A (r) h - 

i ax 

Therefore ( i A (r) ) c W (r) 
i i 

Since convergence in H implies uniform convergence we 

have that W(r) is a closed operator. 

Using the same idea of lemma 3 of [04] one proves 

that i At(r) c Wi(r ) . So ( i A,(r) ) = W1(r) 

3.8.COROLLARY Wi(r) ~s a symmetric operator. 

The deficiency indices of iA (r) are 

m = dim kernel ( ( i A�9 ) + z I ) if Im z > o 

n = dim kernel ( ( i Ai(r) ) + z I ) if Im z < o 

It is easy to see that the function J:H(0,r) -- H(0,r) 

defined by J h (x,y) = h(-x,y) is a conjugation ( i.e. 

J(h+g) = Jh + Jg, J(ah) = aJh , j2 = I, and <Jh, Jg> = <g, h>. 

Also it is clear that W�9 J = J W(r) From the general 
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theory of symmetric operators, see [08], it 

deficiency indices of i A (r) are equal. 
i 

is 

follows that the 

a h 
- -  + z h = 0 The general solution of the equation i a x 

izx 
h(x,y) = h(0,y) e 

So by theorem 3.3. of [06] we have 

3.9.THEOREM TAe /o[Lowin~ conditions ~e equivalent: 

CctDTAe L.S.I. ( S(x,0){H(x,r ) ,  , H(x,r) )xe[0,a) Aa~ 

Mro~p o/ ~n~tary 

o/ tAe /orm 

izx 
(Im(z) ~ 0) Ls in H(0,r). 

non z e r o  /~nct~on o/ t h e  /orm 

-X 
ts tn H(0,r). 

a unique extension to a strongly continuous 

operators tn H(0,r). 

C~DAn N no~ zero /unction 

h(x,y) = h(0,y) e 

CcDAn w 

h(x,y) = h(0,y) e 

Let H be the reproducing Hilbert space corresponding 
i 

to K (xl-x z , 0). Since Q is a rectangle (see [02] ), H i is the 

set of the restrictions of the elements of H to any line 

parallel to the x-axis. Therefore if there is some non zero 

function of the form h(x,y) = h(0,y) e -x in H then there will 

exists Yo E (-b,b) such that h(0,y o) ~ 0 and the function 

f(x) = e -x will be in H i . So, if the kernel K (xl-x 2 , 0) has a 

unique positive definite extension to the real line no non zero 

function of the form h(x,y) = h(0,y) e -x can be in H ( see 

[04] ), and therefore can not be in any H(0,r). We have proved: 

3.10.LEMMA Let Q = (-a, a) x (-b, b) ( 0 < a,b < +~ ) 

be ~ open rectangle ~n the (x,y)-p[~e ~d tet k : 2Q ~ ~ be 

a continuous a n d  p o s i t i u e  d e / i n ~ t e  /unction. Let (St,Ht)te I be 

t h e  T.L.S.I. correspond~n@ ~ftA k. I~ the restriction o/ k to 

t h e  X--CD(fS h ~ s  a v n ~ e  c o n t i n u o u s  p o s i t i v e  d e / t n t t e  e x t e n s i o n  

to tAe ~hoLe reas s tAen, each o/ the L.S.I. 

( S(x,0)IH(x,r ) , H(x,r) )XE[0,a) Ln H(0,r) ( r E [0,b) ), Arug 

~n~@~e e x t e r ~ g ~ o n  to a Ss w COntinuous ~roup o/ unitary 
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opera~ors ~n H(0,r). 

Proof of theorem 3.1: 

It is clear that we can suppose that k(x,o) has a 

unique continuous positive definite extension to the real line. 

Let (St,Ht)tE I be the T.L.S.I. in the Hilbert space 

H, associated with k. By lemma 3.10 each of the L.S.I. 

( S(x,0)IH(x,r ) , H(x,r) )xE[0,a) in H(0,r) ( r ~ [0,b) ) has 

a unique extension to a strongly continuous group of unitary 

operators in H(0,r). 

From theorem 2.6. it follows that the T.L.S.I. 

(S(t), H(t) )tEI can be extended to a strongly continuous 

group of unitary operators (U(t) )tE~2 in a larger Hilbert 

space F. 

Let k(x,y) = < K(o,o~ ' U(x,y) K(o,o) >F (x,y) ~ ~2. 

It is clear that k is continuous. 

Let (x,y) E Q. 

If (x,y) E I then 

k(x,y) = < K(o,o ~ , K(x.y ~ > = 

= < K ( o , o  > , S(x,y ~ K(o,o~ > 

= < K , U K > 
(O,O) (x,y) (O,O) 

= k(x,y) 

If x ~> 0 and y < 0. 

k(x,y) = < K , K > = 
(O,--y) (X,O) 

= < S~o,_y ) K~o,o> �9 S(x,o ) K(o,o> > 

= < U~o_w~ K(o.o~ , U(x,o > K(o,o> > 

= < K(o,o > , U(x,y ) K(o,o> 

= k(x,y) 

Continuing in this way we can prove that k is an 

extensi6n of k, and it is straightforward to see that k is 

positive definite. 
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