TRABAJO ESPECIAL DE GRADO

CARACTERIZACIÓN QUÍMICA Y RADIOMÉTRICA DE SECCIONES ESTRATIGRÁFICAS DE LAS FORMACIONES BARCO Y MIRADOR, SAN PEDRO DEL RÍO, EDO. TÁCHIRA.

TUTOR ACADÉMICO: Prof. Franco Urbani COTUTOR: Prof. Manuel Martínez

> Presentado ante la Ilustre Universidad Central de Venezuela para optar por el Título de Ingeniero Geólogo. Por los Brs. Martínez, Nahysa y Camposano, Luis.

CARACAS, 2000

© Martínez Guevara Nahysa Carolina 2000 © Camposano Franco Luis Alberto 2000

Hecho el Depósito de Ley. Depósito legal lft.48720016205.

© Copyright. Información confidencial. Prohibida su reproducción total o parcial y por cualquier medio, sin la expresa autorización de "CONICIT – Agenda Petróleo"

A nuestros padres

ÍNDICE

1 RESUMEN	.1
2 INTRODUCCIÓN	2
2.1. OBJETIVOS	2
2.2. LOCALIZACION DEL AREA DE ESTUDIO	3
2.3. AGRADECIMIENTOS	5
3 ASPECTOS GEOLÓGICOS	. 7
3.1 GEOLOGÍA REGIONAL	7
3.1.1. Generalidades	7
3.1.2. Formación Barco	7
3.1.3. Formación Mirador	8
3.1.4. Marco estructural	10
3.1.5. Geología histórica	13
3.2. GEOLOGÍA LOCAL	17
3.2.1. Trabajos Previos	17
3.2.2. Formación Barco	. 19
3.2.3. Formación Mirador	23
4 MÉTODOS DE TRABAJO	27
4.1. BASES TEÓRICAS	27
4.1.1. Métodos analíticos	27
a) Radiometría	28
b) Difracción de rayos X	36
c) Fluorescencia de rayos X por dispersión de energía	39
4.1.2. Caracterización geoquímica	43
a) Generalidades	43
b) Trabajos previos	48
4.1.3 Procesamiento de datos	52
a) Análisis básicos y gráficos exploratorios	52
b) Estadística multivariante	58

4.2. FASE DE CAMPO	64
4.2.1 Primera salida de campo	64
4.2.2. Segunda salida de campo	64
4.3. FASE DE LABORATORIO	66
4.3.1. Radiometría	66
a) Características del equipo	66
b) Preparación de muestras	68
c) Establecimiento de condiciones óptimas de medición	70
4.3.2. Fluorescencia de rayos X por dispersión de energía	74
a) Características del equipo	74
b) Preparación de muestras	75
c) Establecimiento de condiciones óptimas de medición	76
d) Calibración del equipo	78
- Corrida manual de muestras para la visualización de los espectros	78
- Creación de la aplicación	82
e) Pruebas de repetibilidad	88
4.3.3. Difracción de rayos X	90
a) Características del equipo	90
b) Preparación de muestras y condiciones de medición	90
5 RESULTADOS E INTERPRETACIONES	91
5.1. RESULTADOS ANALÍTICOS	91
5.1.1. Formación Barco	91
a) Fluorescencia de rayos x	91
b) Radiometría	95
c) Difracción de rayos x	99
5.1.2. Formación Mirador	100
a) Fluorescencia de rayos x	. 100
b) Radiometría	. 102
c) Difracción de rayos x	. 104
5.2. PROCESAMIENTO DE DATOS	. 105
5.2.1 Formación Barco	105

a)	Estadística general y gráficos exploratorios	105
	- Estadística general	105
	- Variabilidad de datos	106
	 Diagramas de dispersión	109
b)	Estadística multivariante	111
0)		111
	- Análisis de agrupaciones	.111
	- Componentes principales	115
	- Funciones discriminantes	119
c)	Discusión	122
	- Unidades químico-radiométricas	123
5.2.2.	Formación Mirador	129
a)	Estadística general y gráficos exploratorios	129
	- Estadística general	129
	- Variabilidad de datos	130
	- Diagramas de dispersión	132
b)	Estadística multivariante	133
	- Análisis de agrupaciones	133
	- Componentes principales	137
	- Funciones discriminantes	141
c)	Discusión	144
	- Unidades químico-radiométricas	145
5.2.3.	Análisis comparativo entre las dos formaciones	181
a)	Estadística general	181
b)	Gráficos exploratorios	182
c)	Estadística multivariante	184
5.3. INT	ERPRETACIÓNES GENERALES	188
6 CONCLU	JSIONES	197
6.1. MET	ſODOLOGÍA	197
6.1.1.	Radiometría	197

6.1.2. Fluorescencia de rayos X por dispersión de energía 19) 7
6.2. CARACTERIZACIÓN QUÍMICA Y RADIOMÉTRICA 19	98
7 BIBLIOGRAFÍA)2
8 ANEXOS 20)9
ANEXO 1 Gráficos de calibración de radiometría 20)9
ANEXO 2 Curvas de calibración FRX 21	12
ANEXO 3 Pruebas de repetibilidad FRX 21	17
ANEXO 4 Perfiles químicos y radiométricos sin promedio móvil 22	21
ANEXO 5 Unidades químico-radiométricas según componentes principales 22	26
ANEXO 6 Tablas de análisis multivariantes 22	29
ANEXO 7 Tabla de coeficientes de correlación crítico 24	41
ANEXO 8 Difractogramas DRX 24	13
ANEXO 9 Perfiles químicos radiométricos 24	16
ANEXO 10 Columna estratigráfica Formación Barco 24	17
ANEXO 11 Columna estratigráfica Formación Mirador 24	18

1.- RESUMEN

MARTÍNEZ G, Nahysa; CAMPOSANO F, Luis

CARACTERIZACIÓN QUÍMICA Y RADIOMÉTRICA DE SECCIONES ESTRATIGRÁFICAS DE LAS FORMACIONES BARCO Y MIRADOR, SAN PEDRO DEL RÍO, ESTADO TÁCHIRA.

Tutor: Prof. Franco Urbani. Cotutor: Prof. Manuel Martínez. Tesis. Caracas, U.C.V. Facultad de Ingeniería. Escuela de Geología. 2000, 248 p.

Se realizó el estudio geoquímico, mineralógico y radiométrico, de dos secciones estratigráficas en el occidente venezolano, correspondientes a las formaciones Barco y Mirador, ambas ubicadas en las cercanías de la población de San Pedro del Río en el estado Táchira.

Tres métodos analíticos fueron empleados para realizar la caracterización de las formaciones antes nombradas, estos son fluorescencia de rayos x por energía dispersiva, difracción de rayos x y espectrometría de rayos gamma. Un total de 246 muestras fueron preparadas y analizadas, obteniendo como resultado: concentraciones de elementos mayoritarios (SiO₂, TiO₂, Al₂O₃, CaO, K₂O, MgO, Fe₂O₃ y V), conteos en 8 ventanas de radioactividad gamma natural (γ total, γ F1, γ^{40} K, γ F2, γ^{214} Bi, γ F3, γ^{208} Tl, γ F4) y la composición mineralógica para algunas muestras selectas.

Las respuestas radiométricas y químicas de las rocas estudiadas resultaron acordes con lo esperado para las litologías presentes, mostrando la Formación Barco (más lutítica) los mayores valores de todas las variables radiométricas y de la mayoría de las variables químicas a excepción del SiO₂, la cual es mayor en la Formación Mirador (más arenosa).

El procesamiento estadístico de los datos, así como la elaboración de perfiles con las variaciones verticales de las variables utilizadas, permitieron establecer la presencia de "Unidades químico-radiométricas" que al ser integradas con la información sedimentológica, muestra que tales unidades representan posibles cambios en los ambientes de depositación, dentro de los que fue posible identificar superficies de máxima inundación y cuyos límites constituyen a su vez límites de unidades sedimentarias.

2.- INTRODUCCIÓN

2.1. OBJETIVOS

a) Objetivo General

El principal objetivo de este trabajo es llevar a cabo la caracterización química y radiométrica de sendas secciones estratigráficas de las formaciones Barco y Mirador en el estado Táchira.

b) Objetivos específicos

- Dentro del proyecto CONICIT Agenda petróleo 97-003547 titulado "Caracterización química y radioisotópica de secciones estratigráficas como herramienta de correlación geológica", está previsto la realización de Trabajos Especiales de Grado, con el fin de caracterizar químicamente y por espectrometría gamma, diversas secciones estratigráficas de formaciones del occidente y oriente de Venezuela. Por tanto este tema es una contribución parcial que se enmarca dentro del tema general de disponer del perfil químico y de radioactividad gamma de las principales formaciones involucradas en los sistemas petroleros de Venezuela.

- Las razones de escoger estas unidades fueron dos, primero la prohibición de PDVSA de usar muestras de la Formación La Luna de un proyecto en curso la cual era la idea original, tanto por la confidencialidad de la información, como por la imposibilidad de obtener muestras de 250 gr c/u. Al fallar el tema anterior, se tomó la decisión de trabajar en las formaciones Barco y Mirador en la sección de San Pedro del Río, en el estado Táchira, decisión sustentada por ser éstas secciones donde los aspectos estratigráficos y sedimentológicos han sido bien estudiados, por tanto los resultados químicos y de radioactividad natural pueden potencialmente correlacionarse con dicha información.

- Siendo este trabajo junto con el de los Brs. Alí Ruíz, Norelis Rodríguez y Ernesto Tundidor, los dos primeros del proyecto CONICIT, otro de los objetivos fundamentales es la puesta a punto de la metodología analítica a ser utilizada en el proyecto general, en el caso del presente trabajo el de espectrometría de fluorescencia de rayos x por dispersión de energía y espectrometría gamma, donde se tendrá que realizar los ensayos correspondientes utilizando patrones, algoritmos de cálculo, condiciones óptimas de preparación de muestras, etc. para finalmente determinar la precisión y exactitud del método.

2.2 LOCALIZACIÓN DEL ÁREA DE ESTUDIO

El área de estudio comprende una zona ubicada al oeste del estado Táchira, más específicamente a los márgenes de un tramo del río Lobaterita entre las poblaciones de San Pedro del Río y Lobatera, donde se trabajó con dos afloramientos terciarios (Fig. 1)

El primero de ellos se encuentra pocos metros río arriba a partir de la confluencia de la quebrada La Cortada y el río Lobaterita, y corresponde a una sección de la Formación Barco. El segundo se ubica aproximadamente a 250 m río arriba desde la confluencia de éste con la Quebrada Honda, en un corte de la autopista en construcción Lobatera - La Fría situado a pocos metros del margen este del mismo río, correspondiendo a un afloramiento de la Formación Mirador.

Fig. 1. Mapa de ubicación del área de San Pedro del Río, edo. Táchira

Tornado y simplificado de la hoja 5739 de la Dirección de Cartografía Nacional, 1977.

2.3 AGRADECIMIENTOS

Los autores del presente TEG queremos agradecer a las siguientes personas e instituciones:

A la ilustre Universidad Central de Venezuela por permitirnos crecer de una manera muy especial y cobijarnos en sus jardines y rincones todos estos años.

A la Escuela de Geología, Minas y Geofísica por permitir el desarrollo del presente Trabajo Especial de Grado, en especial al Laboratorio de Difracción de rayos X.

Al CONICIT por el financiamiento, equipos y demás servicios prestados, enmarcados dentro del Proyecto Agenda Petróleo 97-003547.

A todo el profesorado de la Escuela de Geología, Minas y Geofísica por habernos impartido la formación académica necesaria para el desempeño de nuestras carreras, en especial a los profesores y preparadores Nuris Orihuela, Ricardo Alezones, Sebastián Grande, Omar Rojas, Lilian Navarro, Herbert Fournier, Ramón González y Aitor Ichaso, por toda la ayuda y la influencia ejercida en el transcurso de nuestros estudios.

A todo el personal de la Biblioteca de Geología Minas y Geofísica, especialmente a Eduardo Castillo por la paciencia y ayuda prestada.

A los profesores Manuel Martínez e Iván Estévez por facilitarnos las muestras y el levantamiento realizado en campo así como por toda la colaboración, información y material suministrado. Igualmente queremos agradecer a Alejandro Martínez por la ayuda en campo y las conversaciones sostenidas.

A nuestros amigos: Lorena Moscardelli, Marien Parra, Solange Angulo, Raymi Castilla, Norelis Rodríguez y Alí Ruíz por haber recorrido con nosotros todo este camino en el que siempre se recordaran las risas y los trasnochos compartidos, así como todas las experiencias que han hecho más ligera la carga.

A Gilberto, Lenin y Luis Melo por toda la ayuda y empeño puestos en este y otros proyectos.

A las familias Moscardelli, Parra y Angulo por soportar y compartir toda esta etapa de nuestras vidas y por tratarnos en cada momento como uno mas de sus familias.

Nahysa

A toda mi familia y en especial a mis Tías Silvia, Reina y Gloria quienes siempre jugaron un papel muy importante en mi educación y en mi formación personal. Un agradecimiento muy especial a mis padres, a quienes dedico este trabajo, por darme siempre el ejemplo a seguir, y por toda la comprensión el apoyo y el aliento que me han brindado a lo largo de toda mi carrera y mi vida.

A Luis por ser mi gran apoyo en todo este tiempo a pesar de mis despistes y desesperos. Gracias por compartir conmigo tus momentos y por ofrecerme todo lo bello que hay en ti.

Al profesor Franco Urbani, por permitirme trabajar en este proyecto, por confiar y creer en nosotros en cada momento y especialmente por compartir con todos nosotros muchos de sus conocimientos tanto del área geológica como de la vida diaria.

Al deporte universitario y específicamente a mis compañeras y entrenadores del fútbol y fútbol sala femenino, por permitirme alternar mis estudios con estas disciplinas que me han otorgado muchos logros personales y que han hecho más confortable mi permanencia en este recinto de estudio.

Luis

A Nahysa, por todos los instantes compartidos, por soportarme y por ser la luz que venció todas las sombras de estos años....espero que lo sigas haciendo.

A mis padres por la paciencia y el apoyo que me brindaron durante todos mis estudios.

Al Profesor Franco Urbani, por ser un verdadero amigo, ejemplo y maestro. Por enseñarnos el difícil camino hacia la verdad y la excelencia. Por todos las experiencias y conocimientos ofrecidos durante este tiempo. Y sobre todo por brindarme una de las mejores oportunidades de mi vida.

Al Profesor Ricardo Alezones por la conversación de aquella tarde, descubrí que usted tenia razón, ahora soy geólogo.

A mis compañeros del Judo, por todas las tardes de tatami y al Sensei Víctor Urbina. Porque el camino no termina. Siempre estarás presente.

3.- ASPECTOS GEOLÓGICOS

3.1. GEOLOGÍA REGIONAL

3.1.1 Generalidades

La zona de estudio se encuentra en la Cuenca de Maracaibo, dentro de la provincia del flanco norandino. Anteriormente la cuenca era parte de otra mayor, que abarcó el área entre la Cordillera Central colombiana al oeste, el arco del Baúl al este y el Escudo de Guayana al sureste (PESTMAN *et al.* 1998).

3.1.2 Formación Barco

Esta Formación fue definida por NOTESTEIN *et al.* (1944), para designar la unidad intermedia del Grupo Orocué, en la Concesión Barco, frontera colombo - venezolana. SUTTON (1946) extendió el uso del nombre a los distritos Colón y Perijá del estado Zulia. BOESI *et al.* (1989) la describen brevemente en el flanco norandino, en el sector Lobatera - El Vigía, estados Táchira y Mérida.

Según CIEN (1990) su localidad tipo se encuentra en el flanco oriental del anticlinal de Petrólea, en la Concesión Barco, en la zona denominada Sierra Barco Este, Santander, Colombia. En Venezuela, la Formación ha sido reconocida en el suroeste del Zulia y en los estados Táchira y Mérida.

La litología representa un ambiente deltaico bajo en su parte inferior, a deltaico alto en la parte superior (BOESI *et al.*, 1989; KISER, 1989), y está compuesta esencialmente por intercalaciones de areniscas, lutitas y limolitas. Las areniscas son generalmente de color gris, arcillosas, de grano muy fino a medio, bien escogidas y con estratificación cruzada o laminada. Las lutitas y arcilitas, son grises a grises oscuras, parcialmente limosas, micáceas y carbonáceas, con esferulitas diminutas de siderita. Son frecuentes masas lenticulares y nódulos de ferrolita arcillosa. En la parte superior de la Formación, se presentan capas

delgadas de carbón. Según TRUMP & SALVADOR (1964) esta Formación posee en el suroeste del Táchira espesores de 82 a 165 m.

El contacto inferior se define concordantemente sobre la Formación Catatumbo, debido al paso de las lutitas oscuras de Catatumbo, a las primeras areniscas gris claro de Barco. La Formación pasa transicionalmente a la Formación Los Cuervos, en el contacto entre la arenisca superior a las capas de carbón de esta Formación.

NOTESTEIN *et al.* (1944) le asignaron una edad Eoceno Temprano, pero dataciones palinológicas más recientes (KUYL *et al.*, 1955, BOESI *et al.*, 1989) indican una edad Paleocena.

3.1.3. Formación Mirador

GARNER (1926) publicó por primera vez el nombre ("areniscas" de Mirador) y NOTESTEIN *et al.* (1944) la elevo al rango de Formación y la describió con mayor detalle. COLMENARES *et al.* (1988); AZPIRITXAGA & CASAS (1989) y PAPARONI (1993) estudian la Formación en el estado Táchira. TORO (1992) estudia la secuencia sedimentaria comprendida por el Grupo Orocué y las formaciónes Mirador y Carbonera, ubicadas en el río Lobaterita entre las poblaciones San Pedro del Río y Lobatera, en el mismo estado.

Según CIEN (1990) su localidad tipo se encuentra en el cerro El Mirador, en la parte suroccidental del distrito Colón, estado Zulia. Muchos autores, coinciden en que la litología predominante de la Formación son las areniscas cuarzosas de colores claros con tamaños de grano muy variables (de fino a conglomerático) y marcada estratificación cruzada, las mismas se presentan en capas gruesas y se encuentran intercaladas con intervalos menos espesos de lutitas o limolitas, siendo común la presencia de capas delgadas de carbón. En la sección del Río Lobaterita, AZPIRITXAGA & CASAS (1989) identifican dos unidades sedimentarias: la primera, en la base de la Formación, de crecimiento del tamaño de grano hacia el tope. La segunda, de litología homogénea, caracterizada por la repetición cíclica de una facies de areniscas de grano fino con estratificación cruzada y por la presencia de restos de plantas.

Dependiendo del área de afloramiento el espesor de la Formación es muy variable, estando señalados espesores mínimos de 50 m en el noreste (NOTESTEIN *et al.*,1944) y espesores máximos de 650 m en el anticlinal de Río de Oro (VAN VEEN, 1969), por su parte en la sección tipo se reconocieron 250 m (GONZÁLEZ DE JUANA *et al.*, 1980), mientras que en el río Lobaterita en el estado Táchira, AXPIRITXAGA & CASAS (1989) midieron 109,4 m y TORO (1992) midió 87,5 m.

Según los diferentes autores (NOTESTEIN *et al.*, 1944; LIDDLE, 1946; SUTTON, 1946, STAFF OF CARIBBEAN PETROLEUM CO, 1948; BRONDIJK, 1967-b), ambos contactos han sido considerados tanto como concordantes como discordantes. Según CIEN (1990) el contacto basal está definido por las areniscas de la unidad, que suprayacen las arcilitas o limolitas de la Formación Los Cuervos y el contacto superior se marca entre la última arenisca de la unidad superior de la Formación y las lutitas carbonosas de ambiente deltaico de la Formación Carbonera.

La edad de esta Formación ha sido muy discutida, autores como GONZÁLEZ DE JUANA (1951), RAMÍREZ & CAMPOS (1960), VAN DER HAMMEN (1957-a, b), ALBRIZZIO (1969) y BRONDIJK (1967), indican una edad de Eoceno Medio y Tardío, por evidencias estructurales y palinológicas, a la vez que KUYL *et al.* (1955) y BRONDIJK (1967-b) mencionan un hiatus considerable en, o cerca, del tope de la Formación.

La interpretación del ambiente de depositación de esta Formación varía dependiendo el autor y el área de estudio, pero en general se han establecido para la misma, ambientes de transición con cierta influencia de la acción de las mareas, dentro de los cuales se han propuestos ambientes de marismas, fluviales de ríos con meandros y/o ríos trenzados, estuarios y llanura deltaica. En la zona del Río Lobaterita, AZPITITXAGA & CASAS (1989) determinaron que la Formación fue depositada en un ambiente fluvial, presentando depósitos de río de meandro (barras de meandro y canal abandonado) en su base, y depósitos de río entrelazado en el tope, por su parte PAPARONI (1993) determina un ambiente de estuario dominado por olas, mientras que TORO (1992) interpreta ambientes de canal estuarino y relleno de canal.

3.1.4. Marco Estructural

Estructuralmente la zona de estudio se encuentra enmarcada en una depresión conocida como Depresión del Táchira, la cual está relacionada con la Cordillera Oriental de Colombia, por encontrarse entre sus dos ramales: El macizo de Santander y los Andes de Mérida. Es posible distinguir en esta depresión una serie de elementos estructurales entre los que se pueden mencionar bloques deprimidos y levantados limitados por fallas, pliegues, disarmonías, estructuras en flor e inconformidades (MEIER *et al.*, 1987). Dentro de los bloques mencionadas se encuentran los de Mucujún, Angaraveca, La Cuja, Rubio, El Oso y Uribante, estando los cuatro primeros levantados, y siendo las fallas limitantes del tipo compresional con tendencia norte-sur. Otros sistemas de falla caracterizan esta depresión, entre los que resaltan, un sistema de fallas transcurrentes sinestrales con tendencia aproximada NW-SE y un sistema transcurrente dextral con tendencia SW-NE (MEIER *et al.*, 1987).

Localmente y mediante la visualización del mapa de geología de superficie G-2-D, realizado por la Creole Petroleum Corporation a escala 1:50 000, y el mapa geológico en detalle del sector Puente Angostura en el Río Lobaterita a escala 1:2.500, realizado por TORO (1992), puede observarse que en el área de estudio las estructuras más resaltantes son un conjunto de fallas inversas de orientación aproximada NE-SW, algunas de las cuales se muestran subparalelas a la estratificación. Adicionalmente, sobre la franja de afloramiento del Grupo Orocué, se reconocen un anticlinal y un sinclinal cuyos ejes siguen la misma orientación antes mencionada (Fig. 2 y 3).

Fig. 2. Mapa geológico estructural del área de San Pedro del Río - Lobatera, edo. Táchira

 Qal
 Aluviàn
 Tele
 FM. Las Cuervas
 Ksel
 Cretácioa sin diferenciar
 Carrimienta

 Teca
 FM. Carbonera
 Teb
 FM. Barco
 Poblaciones
 Anticlinal
 Sinclinal

 Temr
 FM. Mirador
 JRq
 FM. La Quinta
 Falla
 Zona de estudio (detalle en la Fig.0)

Fig. 3. Mapa geológico estructural del área de San Pedro del Río - Lobatera, edo Táchira.

Tomado y simplificado de la hoja G-2-D. geología de superíicie de Creole Petroleum Corporation. escala 1:50.000. 1958 y de Torro (1992).

LEYENDA

3.1.5. Geología Histórica

Hacia finales del Cretácico, período caracterizado por una depositación de márgen pasivo, la parte occidental de Venezuela sufrió una fase de evolución tectónica determinada por la colisión del arco volcánico del pacífico con la placa de Sudamérica. Según ERLICH & BARRET (1990) el inicio de esta fase es evidenciado por la depositación de un flysch Paleoceno-Eoceno en el tope de la secuencia de margen pasivo, en el occidente del país.

Muchos autores han propuesto sus hipótesis acerca de los procesos ocurridos en esta zona debido al choque de las placas tectónicas (ZAMBRANO *et al.*, 1971; JUANA *et al.*, 1980; PINDELL *et al.*, 1990; LUGO & MANN, 1995; PARNAUD *et al*, 1995; GHOSH *et al.*, 1997; BOESI *et al.*, 1998; PESTMAN *et al.*, 1998, etc.). PARNAUD *et al.* (1995) proponen una evolución tectónica-depositacional para el oeste de Venezuela durante el Paleógeno, que puede sintetizarse de la siguiente manera:

A- Entre el Cretácico Tardío y el Paleoceno la colisión antes mencionada transforma el margen pasivo desarrollado, en un cinturón activo, creando una cuenca *foreland*, con un *foredeep* asociado en el área de Perijá y un *forebulge* en el área de Barinas, estando esta fase transicional caracterizada por una regresión. A finales del Cretácico el *foredeep* de Perijá fue rellenado y el área entera afectada por erosión. Un pulso transgresivo dentro de un episodio regresivo permitió la depositación de dos secuencias paleocenas en el área. La primera secuencia posee características marinas y está representada por las formaciones Guasare en el lago de Maracaibo, Trujillo al Noreste del Lago y Catatumbo al sur. La segunda secuencia es esencialmente deltaica y esta constituida por las formaciones Barco y Los Cuervos al sur de la cuenca y Marcelina al norte, de estas formaciones la primera es una secuencia de areniscas que puede representar el avance del frente arenoso del delta con facies de barreras litorales, playas y canales distributivos, que representa una fase más avanzada del complejo deltaico progradante (GONZALEZ DE JUANA *et al.*,1980). De esta manera se establecen en esta área tres dominios sedimentarios; uno deltaico al sur

representado por el Grupo Orocué (Formación Barco y Los Cuervos) y la Formación Marcelina, otro en el área central de características marino someras con sedimentos bioclásticos y calcáreos, representados por la Formación Guasare y un tercero hacia el norte, de condiciones batiales y turbidíticas, constituido por la Formación Trujillo (Fig.4).

Fig. 4 Paleogeografía del Maastrichtiense – Paleoceno Inferior. Leyenda: 1, napas de Lara; 2, áreas positivas; 3, clásticos continentales a deltaicos; 4, plataforma carbonática interna a externa y lutitas; 5, areniscas batiales, turbiditas y lutitas; 6, curvas de nivel. Tomado y modificado de PARNAUD *et al.*(1995).

B- Hacia finales del Paleoceno y aproximadamente hasta el Eoceno Medio el área se comporta como una cuenca colisional, cuando el emplazamiento de las napas de Lara por el norte de la cuenca del Lago de Maracaibo, y su desplazamiento gradual hacia el sureste permite la formación de nuevas cuencas *foreland*. Esta deformación flexural origina un conjunto de pulsos regresivos y transgresivos en el Eoceno. Durante la fase temprana de disminución del nivel del mar, la erosión estuvo seguida por la depositación de sedimentos

continentales en el sur de la cuenca representados por la Formación Mirador (GARNER, 1926), la cual según VAN VEEN (1972: 1101) "forma parte de un enorme complejo fluviodeltaico con una fuente de sedimentos al sur o al suroeste". Las condiciones marinas más profundas existentes al norte permitieron la sedimentación de turbiditas pertenecientes a la Formación Trujillo. Una segunda fase, de características transgresivas, originada por la flexura generada en la parte central de la cuenca debido a la carga litostática de las napas (cuenca *foreland*), permite la depositación de las areniscas y lutitas de la Formación Misoa, persistiendo las condiciones continentales hacia el sur. Se establecen de esta manera tres dominios sedimentarios en el área; el primero y más meridional caracterizado por sedimentación continental, una zona de plataforma interna a costera en la parte central de la cuenca y un dominio marino profundo hacia el norte (Fig. 5).

Fig. 5 Paleogeografía del Paleoceno Superior – Eoceno Inferior. Leyenda: 1, napas de Lara; 2, áreas positivas; 3, clásticos continentales a deltaicos; 4, plataforma carbonática interna a externa y lutitas; 5, areniscas batiales, turbiditas y lutitas; 6, curvas de nivel. Tomado y modificado de PARNAUD *et al.* (1995).

C- A partir del Eoceno Medio el desplazamiento de las napas de Lara hacia el sureste genera una subsidencia flexural de la cuenca Barinas-Apure, generando una inundación marina en esa área y permitiendo la depositación de las areniscas basales de la Formación Gobernador, de las lutitas de agua profunda de la Formación Paguey (PIERCE, 1960) y de la Formación Paují (TOBLER, 1922). A finales del Eoceno se generan relieves positivos al este y noreste dividiendo la zona en una cuenca marina en Falcón y una cuenca continental en el Lago de Maracaibo, estando la cuenca Barinas-Apure todavía afectada por circulación marina proveniente del este, mientras que en el suroeste se establecen condiciones fluvio-deltaicas cuyos aportes provienen de las áreas levantadas de la Serranía de Perijá y de la Cordillera de Colombia. Para este período se deposita al este, en una zona abierta al océano, la Formación Guafita (ORTEGA *et al.*,1987) y al oeste con influencias deltaicas, las formaciones Carbonera (NOTESTEIN, 1944) y La Sierra (HEDBERG *et al.*, 1937) (Fig. 6 y 7).

Fig. 6 Paleogeografía del Eoceno Medio. Leyenda: 1, napas de Lara; 2, áreas positivas; 3, areniscas y lutitas de plataforma interna a media; 4, lutitas batiales de plataforma externa; 5, curvas de nivel. Tomado y modificado de PARNAUD *et al.* (1995).

Fig. 7 Paleogeografía del Eoceno Superior -Oligocenoo. Leyenda: 1, napas de Lara; 2, áreas positivas; 3, areniscas, lutitas y carbones lacustrinos a salobres; 4, areniscas y lutitas deltaicas con influencia marina;. Tomado y modificado de PARNAUD *et al.* (1995).

3.2 GEOLOGÍA LOCAL

3.2.1 Trabajos Previos

En esta sección se resúmen los resultados de algunos trabajos previos, realizados en la zona de estudio.

Autor: AZPIRITXAGA (1989).

Título: Estudio sedimentológico de las formaciones Mirador y Carbonera en el río Lobaterita, estado Táchira, Venezuela.

El autor identifica para la Formación Mirador una serie de facies sedimentarias, las cuales permitieron establecer dos unidades sedimentarias. *La unidad I*, ubicada en la base de la Formación, se caracteriza por presentar areniscas y lutitas con un comportamiento general de decrecimiento del tamaño de grano hacia el tope, las areniscas presentan tamaños de grano variable desde fino hasta conglomerático y abundantes estratificaciones cruzadas. Para esta unidad se interpretaron ambientes de río de meandro (canal abandonado, barra de meandro y dique natural). *La unidad II* es de litología homogénea, integrada por areniscas con estratificación cruzada y grano medio, interpretándose para ésta, ambientes de canales entrelazados. En general se estableció un ambiente fluvial para la Formación.

Autor: TORO (1992).

Título: Facies y ambientes sedimentarios de una secuencia del Terciario en el río Lobaterita, edo. Táchira, Venezuela.

El autor estudia el Grupo Orocué y las formaciónes Mirador y Carbonera, donde se reconocen un total de ocho litofacies, utilizadas para un posterior establecimiento de ambientes sedimentarios. Para el *Grupo Orocué* de tope a base, se establecieron ambientes de canal estuarino (areniscas de tamaño de grano variable con estratificación cruzada), llanuras de marea (intercalaciones de areniscas y lutitas con estructuras flaser, y areniscas con estructuras como rizaduras, flaser, "hummocks", convolutas, estratificación y otras) y

llanuras de lodo (lodolitas, limonitas, areniscas y dolomías caracterizadas por la presencia de material ferruginoso, bioturbaciones y nódulos o concreciones). Para la *Formación Mirador* se definieron ambientes de canal estuarino y relleno de canal (lutitas marinas y lagunares).

Autor: BRICEÑO, CALLEJÓN, & LANDER (1996).

Título: Caracterización de quimiofacies en rocas cretáceas del área sur del estado Táchira, Venezuela Occidental.

Para este trabajo se determinaron para las formaciones La Luna y Navay, una serie de elementos trazas, por espectroscopia de emisión de plasma y porcentajes de óxidos mayoritarios por fluorescencia de rayos X, entre otros análisis. Mediante técnicas estadísticas de análisis multivariantes se establecieron tres asociaciones; la asociación clástica a partir de elementos que comúnmente se encuentran en la fracción siliciclástica (Ti, Nb, Ce, La, Th, Al₂O₃, K₂O, Fe₂ O₃ y SiO₂), la asociación orgánica constituida por metales fijados por compuestos orgánicos durante su alteración (V, Ni, Cu, Zn, Mo, Cd, COT y U) y la asociación carbonática (Ca, Sr, MgO, Mn, P₂O₅, LO). Los análisis factoriales se utilizaron para establecer discontinuidades geoquímicas asociadas a procesos geológicos relevantes. Las tasas de acumulación de los elementos fueron utilizadas para establecer quimiofacies (grupo de rocas con características geoquímicas similares). La combinación de estos análisis (tasas de acumulación, análisis factoriales y relaciones entre pares de elementos) permitieron además establecer correlaciones, patrones de sedimentación y condiciones del ambiente (fuentes, condiciones redox, energía del medio y otros).

Autor: PAPARONI (1993)

Título: Análisis y caracterización de litofacies pertenecientes a parasecuencias de edad Eoceno (ambientes de transición), Formación Mirador de Venezuela Occidental.

Por medio del estudio del afloramiento de la Formación Mirador en el Río Lobaterita, se determinó que el ambiente de sedimentación de dicha Formación, en esta localidad,

corresponde a un estuario dominado por olas, del tipo somero y lateralmente extenso, donde coexisten facies costeras, facies mixtas y facies fluviales. La sedimentación de la unidad se inicia luego de un aumento en el nivel del mar, identificándose varias secuencias cíclicas que reflejan pulsos discretos sucesivos, los cuales hacia el tope de la unidad dejan de observarse, evolucionando el estuario a una planicie costera, la cual degenerará, en forma transicional, a una llanura de mareas. En la columna tectonoestratigráfica se identifica de tope a base la siguiente división de ambientes: fluvial con influencia marina, frente proximal deltaico, prodelta, porción fluvial del estuario, estuario medio, delta de cabecera con influencia mareal y depósitos de llanura costera.

3.2.2. Formación Barco (Anexo 10)

La base inicialmente definida para esta sección presentaba complejidades estructurales que sugerían posibles repeticiones de la secuencia. Para garantizar que este hecho no afectara el estudio de las variaciones verticales de los elementos químicos e isótopos radiométricos se decidió redefinir la misma y ubicarla estratigráficamente por encima de la zona más afectada. Como resultado el espesor total levantado para esta sección fue de 169,7 m.

En general las litologías observadas consisten de areniscas cuyo tamaño de grano varía desde fino hasta grueso o conglomerático, intercalaciones de areniscas y lutitas con una característica laminación flaser (Fig. 8) y presencia de materia orgánica, y capas lutíticas gris a gris oscuro. De acuerdo a la predominancia de uno u otro tipo litológico, la secuencia total puede ser dividida en tramos o intervalos, cada uno de los cuales posee características específicas y distintivas del resto.

Intervalo 1: Desde la base de la sección hasta los 52,6 m

La parte inferior de este intervalo, la cual representa poco más de ¹/₄ de todo este tramo, está compuesta por intercalaciones de areniscas grises a pardas con lutitas, limolitas y materia orgánica, es común la presencia de restos de plantas, minerales opacos y estratificación cruzada.

El resto, se caracteriza por la presencia de cuerpos arenosos estratificados con espesores de 1 a 2 metros, con tamaños de grano desde medio a conglomerático. Algunas de estas areniscas poseen láminas de materia orgánica, óxidos de hierro y minerales opacos. Entre las estructuras más comunes se observan estratificación cruzada y paralela, estructuras tipo flaser y convoluta. En el tope del intervalo se observan rizaduras (Fig. 9) que indican un ambiente de llanuras de mareas

Intervalo 2: Desde los 52,6 hasta 119 m

La parte inferior del intervalo se caracteriza por presentar intercalaciones de láminas de arenisca de 2 mm de espesor con lutitas de colores oscuros de 3 mm aproximadamente y con laminación lenticular y/o flaser (Fig. 8), las cuales han sido clasificadas por TORO (1992) como litofacies Mfl que representan ciclos mareales de poca energía.

Hacia la parte superior continúan las intercalaciones donde las capas arenosas con laminación paralela pasan a tener estratificación paralela. Contrariamente a la parte inferior del intervalo, las capas arenosas superan en espesor a las láminas más oscuras. Adicionalmente, el tamaño de grano de las areniscas disminuye considerablemente a medida que se incrementa la altura estratigráfica, lo que ha sido considerado por TORO (1992) como litofacies Mfa que representan ciclos mareales de mayor energía que los anteriores. Al final de este tramo se identifican superficies ferruginosas de color rojo oscuro.

Las características más resaltantes de este cuerpo de rocas son la laminación lenticular y flaser, estratificación cruzada y paralela y presencia de materia orgánica.

Intervalo 3: De los 119 a los 150,5 m

En este intervalo predomina la presencia de lutitas con algunas capas más competentes de areniscas y limolitas, las cuales representan aproximadamente un 30% del total del intervalo y poseen espesores desde 30 cm hasta 3 m.

Las lutitas se muestran de color gris a gris muy oscuro, en ocasiones abigarradas, algunas de las cuales presentan bioturbaciones y estratos carbonosos al igual que peloticas de hierro, barro u otro mineral. Las areniscas se caracterizan por ser más limosas en el tope y en la base de las capas, además poseen abundantes restos orgánicos y algunos niveles ferruginosos.

Según PAPARONI (1993), la presencia de superficies ferruginosas, colores abigarrados y restos de plantas, pueden indicar eventos de exposición subaérea ocasional debido a condiciones de poco transporte y/o a un medio sedimentario de baja energía. Según TORO (1992) estas rocas pueden corresponder con litofacies Fr y Fra asociadas a llanuras de lodo y/o depósitos lagunales o de bahía expuestos subareamente por cierto tiempo.

Intervalo 4: desde los 150,5 m al tope de la sección

Está compuesto básicamente por cuerpos arenosos, acompañados por una menor proporción de lutitas que no superan los 4,3 m de espesor.

Las areniscas se presentan principalmente estratificadas, de color gris claro a oscuro, y su tamaño de grano varía de grano medio en la parte inferior del intervalo, donde también es característica la estratificación cruzada, a grano fino hacia el tope del mismo donde muestran estratificación paralela. Las lutitas por su parte, son gris oscuras y muestran en ocasiones intervalos o niveles ferruginosos.

Fig. 8 (arriba). Característica laminación lenticular y/o flaser muy abundante a lo largo de la sección de la Formación Barco. Tomado de PAPARONI (1993).

Fig. 9 (Izquierda). Rizaduras encontradas hacia la base de la sección, asociadas a ambientes mareales. Tomado de PAPARONI (1993).

3.2.3. Formación Mirador (Anexo 11)

Debido al previo y muy completo levantamiento estratigráfico realizado por PAPARONI (1993), la geología local de esta sección comprende en buena parte información tomada de dicho trabajo, así como del levantamiento y observaciones adicionales propias, realizadas durante la fase de campo referente al presente TEG.

Es de hacer notar que las muestras recolectadas en campo, así como la columna levantada, pudieron ser amarradas con bastante precisión a la columna estratigráfica de PAPARONI (1993), por lo que las interpretaciones y descripciones realizadas por este autor, pueden ser utilizadas con un amplio rango de confiabilidad.

El espesor total levantado para esta sección fue de 93,5 m y se caracteriza por ser predominantemente arenosa, donde las litologías lutíticas y limosas se presentan principalmente como cuñas, lentes, clástos y/o láminas delgadas. Las areniscas poseen tamaños de grano muy variados donde predomina el grano medio a grueso o conglomerático y están acompañadas a lo largo de casi toda la sección por abundantes láminas y restos carbonosos.

A continuación se expondrán las características litológicas más importantes de los 6 intervalos en los que ha sido dividida la sección, así como las relaciones ambientales establecidas previamente para cada uno de estos intervalos.

Intervalo 1: desde la base hasta los 24 m

Está compuesto en su totalidad por areniscas cuyo tamaño de grano varía de fino a grueso, éstas presentan glauconita, óxido de hierro y granos apreciables de cuarzo, así como también, lentes o clástos de lutitas oscuras. Dentro de las estructuras sedimentarias son comúnes la estratificación cruzada y paralela. Las características presentadas por estas rocas han sido interpretadas por PAPARONI (1993), como resultantes de un ambiente de poca profundidad y gran extensión lateral, con cierta influencia del mar que podría

corresponder con canales fluviales sobre los que se depositan mantos de arena, ocurriendo dicha sedimentación en un frente de prodelta.

Intervalo 2: desde los 24 hasta los 38 m

La parte inferior y media de este tramo está constituida por areniscas verdosas de grano grueso a conglomerático que en algunos sectores presentan inyecciones de materia orgánica y que se caracterizan por poseer estratificación cruzada. Verticalmente continúan unas intercalaciones de limo rojizo y gris, y areniscas grises, que presentan laminación paralela. La interpretación ambiental de este intervalo corresponde, ya sea a condiciones de circulación restringida por una posible desactivación del canal fluvial, o a una profundización y estabilización del ambiente resultado de una superficie de inundación PAPARONI (1993).

Intervalo 3: desde los 38 hasta los 51,5 m

Es común en este intervalo la presencia de niveles conglomeráticos de centímetros de espesor como los que se observan en la base y el tope del mismo, este tramo está compuesto básicamente por areniscas de grano medio a grueso con estratificación cruzada, las cuales hacia la parte superior presentan abundantes clástos de lodo. A los 47 m aproximadamente puede reconocerse una zona donde existe una mezcla de litologías arenosas y lutíticas que muestran tonos rojizos de meteorización. En este caso PAPARONI (1993), interpreta los intervalos conglomeráticos como superficies erosivas, donde flujos de mayor energía erosionaron las litologías más finas, prevaleciendo una invasión fluvial sobre los sedimentos previamente depositados.

Intervalo 4: desde los 51,5 hasta los 61,5 m

Este intervalo representa una intercalación de litologías arenosas con otras más lutíticas y de color más oscuro, donde las areniscas poseen un espesor promedio de 20 cm el cual aumenta hacia el tope (Fig. 10). Es común la laminación paralela y flaser, rizaduras, óxido de hierro y abundante materia orgánica. Este tramo ha sido interpretado (PAPARONI, 1993)

como correspondiente a la facie Alc (arenisca lodosa-carbonosa), correspondiente a la zona de menor energía de un estuario medio, dominado por olas donde ocurre inversión de las corrientes y que evidencia una importante fuente de materia orgánica vegetal. Adicionalmente la base del intervalo puede constituir una superficie de inundación.

Intervalo 5: desde los 61,5 hasta los 71,9 m

Este comienza con un nivel conglomerático de aproximadamente 2 cm de espesor, el cual es seguido por areniscas de grano grueso a conglomerático que presentan lentes de carbón en su base. Infrayacente a estas capas se encuentra una capa delgada donde hay mezcla de litologías, las cuales se consideran facies Alc desmembradas. Hacia la parte superior del intervalo se observan areniscas estratificadas de aproximadamente 20 cm de espesor, de grano medio a grueso entre cuyas capas se encuentran láminas de lodo y/o materia orgánica señaladas por PAPARONI (1993), como " Tidal bundles" (Fig. 11). El mismo autor señala para este tramo una nueva influencia mareal evidenciada por las estructuras antes señaladas, con una erosión parcial de las litologías infrayacentes dando como resultado el desmembramiento de las facies Alc.

Intervalo 6: desde los 71,9 hasta el tope de la sección.

Su parte inferior está formada por capas de areniscas de grano grueso a conglomerático hacia el tope, siendo común en éstas, láminas de carbón y de lutitas grises. El tope del intervalo también se caracteriza por la presencia de areniscas con láminas de carbón, pero en estas últimas se observa mayor presencia de óxido de hierro y el tamaño de grano es mucho más variable pasando desde grano fino a grueso, e inclusive presentando niveles conglomeráticos. La zona intermedia por su parte, muestra un lente o cuña de litologías arcillosas que posiblemente puedan también corresponder a la facie Alc. La primera parte de este intervalo puede ser asociada a una profundización de las aguas que permitió la depositación de las facies Alc, las cuales pueden haber sufrido un proceso erosivo. A partir de este punto los sedimentos indican ambientes próximo costeros aparentemente someros (PAPARONI, 1993).

Fig. 10. Intercalación de areniscas y limolitas , asociadas a la facies Alc. Tomada de PAPARONI (1993).

Fig. 11. Areniscas con láminas muy delgadas de lodo, donde puede apreciarse estratificación cruzada. Tomada de PAPARONI (1993).

4.- MÉTODOS DE TRABAJO

4.1. BASES TEÓRICAS

4.1.1. Métodos Analíticos

En esta sección se discutirán los aspectos teóricos más importantes acerca de los métodos analíticos empleados en el presente trabajo. La importancia de cada uno de estos radica en la calidad de los datos geoquimicos que permiten obtener, ya que de estos últimos dependen las inferencias que se hagan acerca de los procesos geológicos o geoquimicos que tuvieron lugar al momento de la formación de las rocas.

La calidad de los datos puede ser medida en términos de su precisión, exactitud y limite de detección (ROLLINSON, 1993).

Precisión: Se refiere a la repetibilidad de las mediciones. Es una medida de la reproducibilidad del método y se determina al hacer repetidamente análisis de una misma muestra. La precisión puede ser definida por el coeficiente de variación. Cuando se habla de precisión en una sesión de análisis, se hace referencia a la repetibilidad, mientras que si se trata de precisión en un periodo de días o semanas, se esta hablando de reproducibilidad.

Exactitud: Se refiere a cuan correcta es la respuesta del método. Es un estimado de que tanto se acercan nuestras medidas al valor verdadero. Muchas veces es complicado conocer ese valor verdadero, pero en ocasiones para obtener la exactitud de algún método se utilizan los patrones o muestras estándar. En algunos casos es posible obtener resultados precisos pero inexactos. En la mayoría de los estudios geológicos la precisión es más importante que pequeñas diferencias en concentraciones absolutas, esto se debe a que usualmente lo verdaderamente importante para inferir procesos geoquimicos son las variaciones en la composición química y no sus valores absolutos.

Limite de detección: Es la mínima concentración que puede ser observada por un método particular y es función del grado de ruido de fondo, relacionado a la señal de un elemento (NORRISH & CHAPPEL, 1967).

A continuación se presentan las bases teóricas de los tres métodos utilizados.

a) RADIOMETRÍA

La radiometría es aquella parte de la geofísica que estudia la corteza terrestre por medio de la detección de las radiaciones que provienen de los elementos radioactivos naturales.

Los métodos radiométricos pueden tener diversas finalidades:

1) Búsqueda, prospección y exploración de yacimientos minerales radioactivos.

2) Aplicación de la radiometría al levantamiento geológico.

3) Prospección de minerales no radioactivos que estén vinculados de una u otra forma a elementos radioactivos.

4) Aplicación de los métodos radiométricos a la prospección de hidrocarburos, a la resolución de problemas hidrogeológicos o geotécnicos u otros.

Más específicamente en geoquímica, los isótopos radiogénicos son usados principalmente de dos maneras. En primer lugar en la determinación de edades de rocas o minerales (geocronología), y más recientemente en estudios petrogénicos para la determinación de procesos geológicos y fuentes de aporte (geología o geoquímica isotópica) (ROLLINSON, 1994). Convencionalmente los perfiles de rayos gamma total, han sido utilizados en pozos, para la interpretación de litologías y ambientes. En la actualidad este tipo de análisis pueden realizarse en afloramientos, utilizando en este caso técnicas de rayos gamma espectral en las que las variaciones en las concentraciones de los diferentes isotópos radioactivos, proveen información acerca de eventos genéticos, discriminación de litofacies, etc y permiten realizar correlaciones, al ser utilizados junto a otras herramientas (NORTH & BOERING, 1999)
La Radioactividad es la propiedad que poseen los núcleos de algunos elementos de desintegrarse emitiendo o absorbiendo radiaciones radioactivas. Los elementos radioactivos son aquellos que se desintegran en el transcurso del tiempo, convirtiéndose en otros elementos sin importar las condiciones externas. Los elementos radioactivos naturales son aquellos que poseen números atómicos entre Z = 81 hasta Z =92 (Fig. 12) y otros que se encuentra en la parte central de la tabla.

IA H	IIA											IIIA	IVA	VA	VIA	VIIA	
the second	8=											B	G	N	0	F	144
屯	Mg	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	A	101	0.7	-ini	G	Ħ
	Ca	Sc	T	V	Cr	Min	Fe	Co	N	Cu	Zn	Ga	Ge	AL	Se	Br	Kt
20.	Sr	Y US SEE	Zr	Nb	Mo	P.L.	Ru	Rh	Pd	Âg	Cd	In	Sh	Sb	Te.	1	Xe
CS.	Ba.	Lu	HI 170.85	Ta 100.95	W 101.05	Re	OS.	Ir.	Pt	Au	Hg	T	Pb	Bi	Pos	A	Rn
Te	Ra:	101	(201)	(202)	(203)												
				21	22						-22	24					
			La	CE	Pr	Nd	200	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm.	Yb	
			Ag	Th	Pa	Ü	11p	FU	Am	Sm	Sin a	SI	E.	Fri	NIH.	110	

Fig. 12. Tabla periódica, mostrando los elementos radioactivos naturales en los recuadros rojos.

Cuando los elementos radioactivos naturales se desintegran emiten radiación, la cual puede ser de tres tipos: α , β y γ .

La radiación α es el flujo de partículas compuesta por dos protones y dos neutrones (partículas equivalentes a los núcleos de Helio) y ocurre principalmente en los elementos de Z> 82. A consecuencia de esta emisión de partículas del núcleo, el número atómico del elemento disminuye en dos unidades y su peso atómico disminuye en cuatro por lo que el mismo se desplaza dos unidades a la izquierda de la tabla periódica de los elementos. Generalmente esta desintegración va acompañada de la emisión de radiación γ de poca energía.

La Radiación β consiste en un flujo de electrones. Puede ser de dos tipos electrónica o positrónica.

La electrónica es la más común para cualquier valor de Z y consiste en la transformación de un neutrón a protón, acompañado por la emisión de un electrón y una partícula neutra de masa pequeña y alto poder de concentración (antineutrino). A consecuencia de esta transformación el número atómico del elemento aumenta en una unidad, por lo que el mismo se desplaza una posición a la derecha en la tabla periódica de los elementos, sin variar prácticamente su peso atómico.

La positrónica es característica para los isótopos en los cuales el numero de protones es superior al de neutrones. Se produce cuando un protón se convierte en neutrón, acompañado por la emisión de un positrón y un neutrino. Como consecuencia de la transformación el número atómico del nuevo elemento formado disminuye en una unidad, por lo que el elemento se desplaza una posición a la izquierda en la tabla periódica de los elementos. Ambas radiaciones (positrónica y electrónica) van acompañadas de emisiones de radiación γ .

La Radiación γ está constituida por ondas electromagnéticas de mayor frecuencia y menor longitud de onda que los rayos X, y que no altera la carga nuclear.

-Series de desintegración

Los átomos de elementos pesados sufren transformaciones que dan lugar a las series de desintegración, en las cuales existen hasta 19 elementos. Las series radiactivas producidas en la naturaleza son tres: la serie del uranio, la del torio (Fig. 13) y la del actinio – uranio FRIEDLANDER *et all.* (1964). El primer elemento de cada una de estas series posee una existencia muy larga, estando su período de semidesintegración entre los 10^8 y 10^{10} años, mientras que el último de ellos es un isótopo estable de plomo. Los isótopos de subíndices B, C, C¹ y C^{II} son los principales emisores γ de todas las series radiactivas, razón por la cual fueron escogidos los isótopos Bi²¹⁴ y Tl²⁰⁸ para ser medidos en el presente TEG. El ⁴⁰K no forma series radiactivas ya que al desintegrarse pasa a ser un isótopo estable, pero debido a su gran abundancia en la

corteza terrestre (2,7 %) brinda un gran aporte a la radioactividad total de las rocas, por lo que también es utilizado en las mediciones de este trabajo. En general, en rocas con un contenido normal de elementos radioactivos, cerca del 42 % de la energía radiada se debe al $^{40}\mathrm{K},$ 32 % al Th, 25 % a las series del U y AcU y el 1 % a los demás elementos radioactivos de la parte central de la tabla de Mendeleev.

de

у

- Espectrometría

Los espectros energéticos son los rangos de energía que presentan los distintos tipos de radiaciones. Debido a que cada tipo de radiación posee espectros distintos y característicos es posible diferenciar un tipo de radiación de otra. Los espectros energéticos también permiten determinar los elementos emisores, ya que cada uno de estos emite radiaciones (α , β y γ) con energías específicas. Por ejemplo el Torio emite partículas α de aproximadamente 3,993 mev y cuantos γ de aproximadamente 60 kev.

- Interacción de la radiación con la materia

Todos los tipos de radiaciones antes mencionados tienen la particularidad de que pueden atravesar la materia, y al hacerlo interaccionar con la misma provocando una serie de fenómenos, que permiten registrar y caracterizar la radiación emitida.

Uno de estos fenómenos es la ionización, la cual permite registrar la radiación, siendo la relación aproximada de ionización entre las radiaciones α , β y γ de 100.000:100:1 respectivamente. Como consecuencia del fenómeno anterior es posible que se produzcan reacciones químicas como las que ocurren en las placas fotográficas, las cuales permiten detectar dichas radiaciones. Otro efecto importante, por medio del cual la radiación es detectada en los contadores modernos, es la luminiscencia.

A pesar de lo antes mencionado, las radiaciones α y β rara vez pueden ser detectadas ya que al atravesar la materia y debido a su alto poder de ionización, pierden la casi totalidad de su energía, por lo que unos pocos centímetros de arena son suficiente para detenerlas. Los rayos γ , por su parte pueden ser detectados a través de cualquier espesor de materia, pero la sensibilidad de los equipos de medición y el ruido de fondo de radiación puede afectar este hecho.

Debido a lo mencionado anteriormente (facilidad en su detección) los rayos γ son los más comúnmente usados para la búsqueda de elementos radioactivos.

- Equipos (esquema básico de funcionamiento)

Los equipos más utilizados en radiometría son aquellos que detectan las radiaciones γ . Estos pueden medir la intensidad total de radiación sin importar su energía (integrales) o la intensidad de radiación para rangos de energías fijas (espectrómetros). Actualmente los contadores más comúnmente usados son los de **centelleo o escintilómetros**.

Contadores de centelleo: se basa en que ciertos cristales emiten destellos (radiaciones luminosas) al absorber rayos γ . Consta de un centelleador y un fotomultiplicador (Fig. 14).

En el centelleador las partículas radioactivas cargadas, al pasar a través de la materia pierden parte de su energía cinética al ionizarse o excitar los átomos y las moléculas de éstas. La energía perdida es transformada primeramente en energía de movimiento térmico y posteriormente en cuantos de luz con longitudes de onda características para la sustancia dada. Sólo en algunas sustancias (centelleadoras) los fotones de luz pueden salir de la misma y centellear.

Entre el centelleador y el fotomultiplicador existe un fotocátodo el cual permite que los fotones de luz que provienen del centelleador sean transformados en electrones por medio de un efecto fotoeléctrico que se da lugar en el mismo.

Los tubos fotomultiplicadores permiten detectar los destellos a través de artificios especiales. Este es un tubo de vidrio al vació dentro del cual se encuentran electrodos. Los electrones provenientes del fotocátodo inciden en cada uno de los electrodos permitiendo la aparición de electrones secundarios y multiplicando así la cantidad de electrones recibidos de una manera proporcional.

Lo importante de este proceso es que gracias a sus características la amplitud del impulso eléctrico que sale del contador es proporcional a la energía que se transmite al centelleador por la radiación, lo que permite medir la radiación.

En general a partir de los contadores de radiación se puede obtener: cantidad de sustancias radioactivas, concentración e intensidad de las mismas.

- Radioactividad de las rocas

Todos lo tipos de rocas poseen trazas de elementos radioactivos (U, Th y sus productos de desintegración), también estos se pueden encontrar en las aguas de océanos y ríos, así como en los suelos y en el petróleo. La mayor abundancia de los mismos la presentan las rocas ígneas félsicas debido a la presencia en éstas de potasio ⁴⁰K, pero en general la cantidad de elementos radioactivos en suelos y rocas va a depender de la cantidad presente en el material parental (a partir del cual se formó) y de la influencia de los procesos que intervienen en su formación (CALZADILLA, 1983).

Métodos de análisis mediante la utilización de rayos X

Los rayos X constituyen un tipo de radiación electromagnética que ocupa sólo una pequeña parte del espectro electromagnético (Fig. 15), cuyas longitudes de onda varían entre 100 Å y 0,02 Å aproximadamente, teniendo longitudes de onda cercanas a 1 Å, aquellos rayos utilizados para el estudio de cristales (HURLBUT & KLEIN, 1991)

Longitud de onda en cm

3 x	x 10 ⁵	3 x ₁ 10 ¹	3 x	10-2 3	x	10-5	3 x 1	0-8	3 x	10-11
	Ondag	do rodio		Infuquação		Ultra	Rayos	Rayos		Rayos
	Olluas	ue raulo		mirarrojo		violeta	x	gamma		cósmicos

Fig. 15. Espectro electromagnético. Tomado y modificado de HURLBUT & KLEIN (1991).

Existen diversas formas de generar rayos X, éstas son las siguientes:

a) Por bombardeo de un blanco metálico, por un haz de electrones de alta energía. La fuente de rayos X más común funciona de esta manera y se le conoce con el nombre de tubo Coolidge (Fig. 16), éste contiene un cátodo o emisor de electrones (filamento de tungsteno) y un blanco metálico o ánodo (generalmente de Cu, Mo, W o Ru). Los rayos X se generan cuando los electrones bombardeados, poseen suficiente energía como para liberar los electrones de las capas más internas de los atómos del metal del ánodo. Cuando esto sucede los electrones de las capas más próximas ocupan el lugar de los liberados, estas transiciones electrónicas son las que permiten la emisión de radiación X, de longitudes de onda específica (ésta depende del tipo de metal con que este hecho el ánodo y del voltaje aplicado para el bombardeo de electrones) y se le conoce como radiación X monocromática.

b) Por exposición de una sustancia a un haz primario de rayos X, para generar un haz secundario de rayos fluorescentes. En este caso una fuente primaria, como el tubo Coolidge, genera rayos X, los cuales son dirigidos a la muestra que quiere ser analizada. Ésta absorbe parte de los rayos, lo que genera una serie de transiciones electrónicas idénticas a las explicadas anteriormente. De la misma manera se generan rayos X, cuyas longitudes de onda serán ahora características de los elementos presentes en la muestra analizada.

c) Por empleo de una fuente radioactiva de rayos γ, la cual al interaccionar con los elementos de la muestra permite la emisión de rayos X (SKOOG & WEST, 1984).

Los métodos de análisis que emplean rayos X son tres:

- Absorción de rayos X
- Difracción de rayos X
- Fluorescencia de rayos X

Para el interés de este trabajo sólo se explicarán los dos últimos métodos

b) Difracción de rayos x

Para este método se utiliza un equipo llamado difractómetro de rayos X, el cual cuenta con un tubo generador de dichos rayos (Fig. 16), un goniómetro o sistema mecánico de funcionamiento y un detector y medidor de la radiación.

Fig. 16. Tubo generador de rayos X. Tomado y modificado de CULLITY (1967).

El efecto de difracción ocurre cuando la longitud de onda de los rayos X es proporcional a la distancia interplanar o espaciamiento (d) entre los átomos que conforman la red cristalina de las especies analizadas, según la Ley de Bragg $(n\lambda = 2d Sen \theta)$, siendo *n* un número entero, λ la longitud de onda de los rayos X, *d* la distancia interplanar del cristal y θ el ángulo de incidencia y de reflexión de los rayos X.

La muestra a ser analizada es pulverizada finamente y se coloca sobre un porta muestras. El instrumento está constituido de tal forma que el porta muestra gira según la trayectoria de un haz de rayos X, manteniendo entre ellos en cada momento un ángulo θ , a medida que un detector,

montado sobre un brazo, gira a su alrededor para captar las señales difractadas de rayos X. El porta muestra y el detector se mueven mediante engranajes que permiten que mientras el primero gira un ángulo θ , el segundo gira un ángulo 2 θ (Fig.17).

Fig.17. Esquema de funcionamiento del difractómetro de rayos x. Tomado y modificado de CULLITY (1967).

Si la muestra ha sido preparada adecuadamente, la orientación de las partículas cristalinas en la muestra es realmente al azar, para cada familia de planos atómicos con su característico espaciado d, por lo que existen muchas partículas cuya orientación es tal que hacen el ángulo apropiado θ con el rayo incidente para que se satisfaga la Ley de Bragg. Aunque todas las "reflexiones posibles" ocurren al mismo tiempo, éstas no son detectadas en el mismo momento ya que el detector mantiene la relación geométrica adecuada para recibir separadamente cada máximo de difracción.

Luego de que el rayo ha sido difractado es registrado por un detector, siendo el más común es el de ionización de gas, el cual mide corrientes de iones producidos cuando el haz es absorbido por un gas.

Lo que se obtiene finalmente es un difractograma (registro en papel del proceso de difracción), cuya abcisa es 2 θ y ordenada I (intensidad), en este caso cada pico del gráfico representa la misma longitud de onda, difractada por un diferente set de planos de la muestra

cristalina. De esta manera conociendo la longitud de onda (la cual depende del tubo generador) y el ángulo θ (el cual puede leerse del difractograma), puede calcularse la distancia *d* característica para la sustancia cristalina (Fig.18).

de los minerales presentes. El eje x representa el ángulo 2θ y el eje la intensidad en cuentas por segundo (cps).

Una vez que se tienen todos los datos respectivos de la muestra se puede proceder a la identificación utilizando fichas de compilados por la Comisión Internacional para datos de difracción de rayos X (ICDD, 1974), disponibles en libros o de manera computarizada.

El procedimiento es el siguiente:

- Se toman los picos de mayor porcentaje relativo de intensidad con su respectiva distancia interplanar "d".

- Se ordenan los picos en orden de intensidad según los porcentajes relativos.

- Las distancias interplanares respectivas a los mayores porcentajes de intensidad son comparadas con las tablas o patrones existentes. En dichas tablas pueden ser objetos de comprobación todos los picos del difractograma de acuerdo a su distancia interplanar y a su intensidad relativa. Si no se logra identificar la muestra con el ordenamiento construido deben permutarse los valores y repetirse el mismo procedimiento hasta conseguir el ordenamiento que se ajuste con los picos de alguno de los patrones.

c) Fluorescencia de rayos x por dispersión de energía

La espectrometría o fluorescencia de rayos x es actualmente la técnica analítica mas ampliamente usada en la determinación de elementos mayoritarios y traza en muestras de rocas. Constituye una herramienta muy versátil que permite analizar más de 80 elementos bajo un amplio rango de sensibilidades, detectando concentraciones desde 100 % hasta pocas partes por millón (ppm). Consiste de un método rápido que puede llevar a cabo una gran cantidad de mediciones precisas, utilizando un espacio de tiempo relativamente corto. Sin embargo, la principal limitación de este método es que los elementos más livianos que el Na (número atómico 11), son de dificil detección (ROLLINSON, 1993)

Esta técnica analítica es muy utilizada y se basa tanto en la emisión de rayos x como en la absorción espectral de los mismos. Puede catalogarse como un método no destructivo ya que el material utilizado no es destruido ni afectado por la interacción de los rayos, aunque al pulverizarlo se cambie su forma y estructura original. Los análisis pueden ser cualitativos o cuantitativos basándose ya sea en la medición de rangos de energía o de longitudes de onda, midiéndose en ambos casos las intensidades de las líneas espectrales que son emitidas por excitación secundaria (BERTIN, 1975).

Cuando un material es irradiado por un rayo proveniente de un tubo emisor de rayos x, sus átomos constituyentes son excitados y producen una emisión secundaria de rayos x denominada *fluorescencia*. Cada elemento en la muestra emite su propia, única y característica radiación fluorescente, con una intensidad directamente proporcional a la concentración del elemento en el material.

La radiación secundaria emitida por una muestra puede ser analizada de dos formas: por longitud de onda, caso en el cual los elementos son identificados por sus longitudes de onda características y por las concentraciones calculadas a partir de la intensidad de sus líneas; o por *dispersión de energía*, siendo este último el de mayor interés en este trabajo, por lo que se describirá con más detalle.

La energía dispersiva, se basa en el hecho de que la fluorescencia o emisión secundaria, está compuesta por fotones discretos de rayos x, emitidos con distintos y característicos niveles de energía. Estos fotones, son recibidos simultáneamente por el detector del espectrómetro y convertidos en una serie de señales eléctricas, las cuales a su vez son electrónicamente amplificadas, procesadas y transformadas en valores digitales. Posteriormente los valores digitales son almacenados en un analizador multicanal donde se separan de acuerdo a sus niveles de energía, permitiendo de esta manera generar un espectro de la muestra. Finalmente el espectro resultante es procesado por el software y son calculados directamente los resultados en términos de concentraciones de elementos o cualquier otro valor de concentración derivado.

Los espectros obtenidos por este método son un ejemplo del *análisis cualitativo*, donde los elementos en una muestra han sido detectados mediante el reconocimiento de los rangos de energía emitidos (Fig. 19).

Fig. 19. Espectro obtenido con un instrumento dispersor de energía, donde el eje x representa la energía expresada en keV, el eje y muestra la intensidad o cps. Pueden observarse los elementos detectados por el equipo con sus correspondientes tipos de energía. La conversión de las intensidades mostradas por cada elemento, a alguna medida de concentración, es la base de los *análisis cuantitativos* para los que son necesarios la calibración o comparación de las intensidades de las muestras a ser analizadas, con intensidades de muestras patrones o estándar, siendo necesario que ambos tipos muestren composición química y física similar (Fig. 20).

Como se muestra en la Figura 21 un espectrómetro dispersor de energía consiste básicamente, en una fuente policromática que puede ser un tubo Coolidge o un material radioactivo, un porta muestra, un detector de silicio desplazado por litio y varios componentes electronicos necesarios para la discriminacion energética.

Fig. 21. Esquema básico de un espectrómetro por dispersión de energía.

Una ventaja evidente de los sistemas dispersores de energía, es su simplicidad y la falta de componentes móviles en los sistemas de excitación y detección del espectrofotómetro. Además, la ausencia de colimadores y de un difractor de cristal así como la mayor proximidad entre el detector y la muestra, tienen como consecuencia, que la energía que llega al detector sea 100 veces mayor o aun más. Estas características permiten el uso de fuentes más débiles, como tubos de rayos x de bajo poder, cuyo costo es menor y que producen generalmente a la muestra menor daño por radiación. Otra ventaja importante de este tipo de aparato, es que la medición simultanea de las líneas de emisión de rayos x, permite aumentar la sensibilidad y mejorar la relación señal – ruido, todo esto sin mencionar el hecho de que la muestra no es destruida, y que se pueden realizar análisis en muestras cuyos tamaños varíen desde una partícula apenas visible hasta objetos de tamaño considerable (SKOOG & WEST, 1984).

Por otro lado, la principal desventaja de estos sistemas, cuando se comparan con espectrómetros de cristal por longitud de onda, es que para longitudes de onda mayores a 1Å la resolución es menor. De igual manera y como se mencionó anteriormente este método resulta poco conveniente para la detección de elementos livianos.

4.1.2 Caracterización Geoquímica

a) Generalidades

Geoquímica de rocas sedimentarias

El término *geoquímica* se refiere al estudio o análisis de los procesos químicos que se dan en los diferentes sistemas naturales de La Tierra, y esta relacionado con las leyes que gobiernan la distribución de los elementos químicos y sus isótopos, en el planeta. El estudio de la geoquímica puede tener una gran cantidad de propósitos, razón por lo cual esta Ciencia se ha dividido a través de los años en una serie de subáreas entre las que se pueden mencionar a la geoquímica inorgánica, orgánica, isotópica, prospectiva y de la contaminación entre otras.

La geoquímica de rocas sedimentarias, por su parte, comprende el estudio de la distribución y abundancia de elementos químicos en estas rocas, y su relación con los diversos procesos que intervienen en su formación (Fig. 22). Existen una serie de factores geológicos que controlan la composición química de una roca sedimentaria y que dejan impresos en las mismas evidencias de cómo fueron esos procesos y cual fue su intensidad y duración, este hecho permite utilizar el estudio geoquímico como una fuente adicional de información para una mejor comprensión de los procesos de formación de estas rocas.

Entre los principales parámetros o factores que controlan la distribución de los elementos químicos en éstas, se encuentran: composición de la roca fuente, procesos tectónicos y condiciones climáticas o ambiente de depositación (ESTÉVEZ, 2000) así como procesos diagenéticos.

Fig. 22. Procesos que intervienen en la formación de una roca sedimentaria Tomado de ROLLINSON, 1997.

Sin embargo la relación composición química – procesos geológicos puede verse sustancialmente modificada por varios procesos, de manera que es posible generar interpretaciones erróneas acerca de los mismos. Una gran cantidad de cambios químicos entre los que pueden mencionarse la alteración diagenética de feldespatos y arcillas, así como también la disolución del cuarzo, pueden tener lugar principalmente durante los procesos de meteorización y transporte (ROLLINSON, 1997) lo que constituye la principal razón por la cual deben tenerse presentes estos factores al momento de realizar los análisis correspondientes.

Quimioestratigrafía

Convencionalmente los estudios estratigráficos y correlativos han estado basados principalmente en caracterizaciones litológicas, paleontológicas, paleomagnéticas y paleoambientales. El conocimiento de que las heterogeneidades geoquímicas pueden ser usadas para obtener información acerca de procesos geológicos no es nuevo, pero los altos

costos y la lenta obtención de datos multielementales de alta calidad, habían tenido limitados este tipo de estudios (PEARCE & JARVIS, 1995).

A partir de los años 80 avances significativos en la geoquímica analítica, permitieron por primera vez la adquisición rápida y a menor costo de un conjunto de datos de alta calidad, permitiendo así la obtención de cuatro tipos de datos geoquímicos, como lo son: componentes mayoritarios, elementos traza, isótopos radioactivos e isótopos estables.

Estos avances analíticos impulsaron el desarrollo de la geoquímica como una herramienta poderosa de caracterización y correlación de estratos a partir del uso de datos inorgánicos y en base a variaciones geoquímicas en la secuencia estratigráfica. Esto ultimo es conocido actualmente como *quimioestratigrafía* y permite dividir una secuencia estratigráfica en distintas unidades con comportamientos geoquímicos diagnósticos, denominadas *quimiofacies*. De los cuatro tipos de datos mencionados anteriormente, en este trabajo sólo se manipularan dos, los cuales son: elementos mayoritarios e isótopos radioactivos

Elementos mayoritarios: son los elementos predominantes en la roca. Estos son Si, Ti, Al, Fe, Mn, Ca, Na, K, y P, y las concentraciones son expresadas como sus componentes en forma de óxidos, a saber SiO₂, TiO₂, Al₂O₃, Fe₂O₃, MnO, CaO, Na₂O, K_2O y P₂O₅. La determinación de los elementos mayoritarios es usualmente hecha solo para cationes, asumiendo que estos van acompañados por las cantidades apropiadas de oxigeno. Los elementos pueden ser mayoritarios o trazas dependiendo el tipo de roca que se estudie.

Isótopos radioactivos: incluyen aquellos isótopos cuyo decaimiento espontáneo es debido a su radioactividad natural. Incluyen los pares de elementos padre-hijo Rb-Sr, Sm-Nd, U-Pb, Th-Pb y K-Ar (ROLLINSON, 1997). En el caso específico del U y Th, se producen una serie de cambios entre sus extremos que generan otro grupo de elementos químicos.

Para una mejor comprensión y análisis de la respuesta geoquímica de las rocas es necesario tratar los datos geoquímicos por medio de diversas técnicas estadísticas, las cuales son discutidas más ampliamente en el Capítulo 4.1.3 denominado "Procesamiento de datos". Uno de los beneficios estadísticos más importantes es la obtención de perfiles, los cuales permiten visualizar de la mejor manera el comportamiento de una sección en cuanto a composición de elementos mayoritarios y trazas, relaciones entre elementos, y/o concentraciones de isótopos radioactivos o estables (Fig. 23), facilitando a su vez el establecimiento de unidades o quimiofacies con características químicas y radiométricas específicas, y la comparación entre perfiles de distintas secciones para el establecimiento de posibles correlaciones (WINCHESTER & MAX, 1996) (Fig. 24).

(a)

Fig. 23. Perfiles geoquímicos de elementos mayoritarios, donde se observa el comportamiento de 6 óxidos a lo largo de una sección estratigráfica, la cual se ha subdividido en 4 quimiofacies: H, UE, LE y CM. Tomado y modificado de PEARCE & JARVIS (1995).

Los eventos geoquímicos que definen el patrón de los perfiles, pueden reflejarse como máximos, mínimos y deflexiones de las curvas, los cuales definen a su vez, a los marcadores quimioestratigráficos de primero y segundo orden (ESTÉVEZ, 2000). Los marcadores de primer orden representan eventos geoquímicos caracterizados por más de un elemento o por una deflexión excepcional de las curvas. Por su parte los marcadores de segundo orden se definen a partir de un solo elemento o por fluctuaciones elementales menos significativas (JORGENSEN, 1986).

Para el caso particular de este TEG los perfiles construidos para la visualización de las variaciones verticales de las variables fueron suavizados utilizando un promedio móvil de 5, con la finalidad de mejorar la visualización de los mismos.

Fig. 24. Correlación realizada entre dos pozos, utilizando como herramienta la caracterización geoquímica y el establecimiento de quimiofacies. Tomado de PEARCE & JARVIS (1995).

b) Trabajos Previos

En esta sección se resumen los resultados de algunos trabajos previos, pertinentes al tema tratado. Todos ellos fueron realizados en el exterior del país.

Autor: PEARCE & JARVIS (1995).

Título: High-resolution chemostratigraphy of Quaternary distal turbidites: a case study of new methods for the analysis and correlation of barren sequences.

En este trabajo se realizó un estudio geoquímico inorgánico de las turbiditas distales del Cuaternario, ubicadas al NE del plano abisal de Madeira. La investigación geoquímica comprendió la determinación de 22 elementos mayoritarios, minoritarios y trazas, por medio de análisis de ICP-AE y ICP-MS, de un total de 528 muestras de núcleos, espaciadas entre 1 y 80 cm. La construcción de perfiles de elementos químicos y sus relaciones, así como el empleo de diversas técnicas estadísticas entre las que se encuentran representaciones binarias y ternarias de los datos y análisis multivariantes (análisis de agrupaciones y componentes principales), permitieron establecer correlaciones a distancias mayores de 500 km. De la misma manera los patrones geoquímicos verticales y laterales permitieron clasificar a las turbiditas en cuatro grupos composicionales y confirmar y elucidar interpretaciones acerca de procesos depositacionales, paleoflujos y patrones de paleotransporte. Los cuatro grupos composicionales fueron interpretados y a partir de estos se establecieron cuatro posibles fuentes de aporte para estas rocas.

Autor: PEARCE, BESLY, WRAY & WRIGHT (1997).

Título: Chemostratigraphy: a method to improve interwell correlation in barren sequences — a case study using onshore Duckmantian/Stephanian sequences (West Midlands, U.K.)

El estudio geoquímico realizado en este trabajo comprendió la determinación de un total de 19 variables, entre componentes mayoritarios y elementos trazas, de dos pozos y algunos afloramientos, pertenecientes a las secciones Duckmantian/Stephanian, ubicadas al

oeste de las Tierras medias (U.K), para lo cual se analizaron un total de 175 muestras de núcleos y ripios, mediante el empleo de análisis de ICP-AES. Fueron construidos, para ambos pozos, perfiles de elementos mayoritarios, trazas y relaciones entre elementos, los cuales permitieron entre otras cosas caracterizar geoquímicamente cada uno de los pozos, establecer quimiofacies y realizar correlaciones entre los mismos. Las variaciones geoquímicas observadas fueron usadas igualmente para el análisis de cambios en la mineralogía de las arcillas y cambios en las asociaciones de minerales pesados, lo cual junto a datos y estudios previos, permitió deducir aspectos como proveniencia de los sedimentos, diagénesis y condiciones del ambiente de depositación. La correlación y otras interpretaciones fueron confirmadas mediante el uso de funciones discriminantes, y otras técnicas estadísticas se emplearon para la visualización y comprensión de los datos.

Autor: GAILANI (1980).

Título: Geochemical identification of unconformities using semi-quantitative x-ray fluorescence analysis.

Un análisis semicuantitativo de fluorescencia de rayos x fue llevada a cabo en muestras de rocas, ubicadas a lo largo de discordancias en Inglaterra e Irak, con la finalidad de investigar variaciones composicionales producidas en estas superficies. Para este estudio muestras de núcleos de 7 pozos fueron analizadas por medio de un espectrómetro multicanal, determinando finalmente 8 elementos mayoritarios (Si, Al, Fe, Ca, Mg, Na, K y P) reportados como óxidos. Los resultados obtenidos reflejaron alteraciones diagenéticas y transformaciones minerales, que evidencian y ratifican las transformaciones producto de los períodos de exposición de los paleosuelos y las subsecuentes fase de desintegración y meteorización, seguidas por enterramiento, que resultan en cambios en la fábrica y la composición mineral de las mismas.

Autor: REYMENT & HIRANO (1999).

Título: Exploratory multivariate statistical analysis of geochemical data from the Cenomanian-Turoniam transition of the Yezo Supergroup, Hokkaido, Japan.

Un conjunto de 38 muestras pertenecientes al Grupo Yezo, en Japón, y correspondientes al límite Cenomaniense-Turoniense, fue analizado químicamente. Se determinaron 8 elementos mayoritarios (TiO₂, Al₂O₃, Fe₂O₃, MnO, MgO, CaO, Na₂O y K₂O), 2 elementos minoritarios (SrO y BaO) y 14 tierras raras (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb y Lu). Para el procesamiento de los datos se utilizaron técnicas de estadística multivariante entre las que se pueden mencionar: componentes principales, coordenadas principales y correlaciones canónicas. Los estudios de correlación canónica evidenciaron un alto nivel de segregación química entre el Turoniense y Cenomaniense, y en general se evidenciaron significativas diferencias en las propiedades de la estadística multivariante, entre las muestras del Cenomaniense tardío y el Turoniense temprano. Estas relaciones sugirieron que posiblemente el límite Cenomaniense-Turoniense, marca una disparidad en algunos factores sedimentarios como reflejo de la composición química de los sedimentos. Una de las posibles razones de este hecho fue interpretada como un aumento brusco en el proceso de deflexión de la oxigenación que venía observándose, debido al establecimiento de condiciones sedimentarias más abiertas.

Autor: JORGENSEN (1986).

Título: Chemostratigraphy of Upper Cretaceous Chalk in the Danish Subbasin.

En este trabajo se realizó un estudio geoquímico en la parte central de la subcuenca danesa, a partir del análisis de ripios y núcleos tomados de seis pozos, que atraviesan secuencias de calizas del Cretácico Superior. Para éste, se determinaron las concentraciones de Mg, Sr, Ca, Mn, y Zn, mediante la utilización de un espectrómetro de absorción atómica. Los resultados analíticos se utilizaron para construir perfiles de contenido de carbonato y distribuciones elementales, los cuales mostraron patrones bien definidos que hicieron posible comparar las diversas secciones. La comparación de dichos resultados, con aquellos obtenidos previamente en análisis de núcleos, evidenció la poca o

nula influencia del lodo de perforación y de derrumbes, en los datos geoquímicos observados, así como la aplicabilidad de los datos geoquímicos tomados de ripios para secuencias de calizas, en el análisis de cuencas. Además de lo antes expuesto, la consistencia de este estudio, con estudios bioestratigráficos, litoestratigráficos, y otros, enfatizó el valioso aporte de la quimioestratigrafía a estas otras técnicas, como métodos de exploración del subsuelo.

4.1.3. Procesamiento de datos

a) Análisis básicos y gráficos exploratorios

- Análisis básicos

La estadística es la ciencia de la recopilación, clasificación, presentación e interpretación de datos. Ésta maneja la información y utiliza ciertas medidas numéricas para resumirla e interpretarla (JOHNSON, 1988).

La aplicación de técnicas estadísticas para la resolución o visualización de un problema geológico, se conoce con el nombre de geoestadística. En este ámbito la utilización de técnicas estadísticas se basa en la premisa de que la información acerca de un fenómeno puede deducirse a partir del examen de un conjunto de muestras que forman parte de un gran número de observaciones de dicho fenómeno (DAVIS, 1973).

En el tratamiento de datos, de este trabajo se utilizarán frecuentemente algunas medidas de estadística descriptiva, como lo son:

Media aritmética: constituye una de las medidas de tendencia central, las cuales tienden a localizar en algún sentido, la parte central de un conjunto de datos (JOHNSON, 1988). Representa el promedio de los datos, correspondientes a una misma variable y se expresa como la sumatoria de cada uno de los datos u observaciones entre el número total de las mismas.

La ecuación que permite calcular la media aritmética es la siguiente

 \overline{X} = media aritmética o promedio. x_i = cada uno de los valores. n = número total de observaciones. **Desviación estándar**: constituye una medida de dispersión, las cuales dan idea de cómo se distribuyen los datos alrededor de las medidas de tendencia central. Es una medida que representa el grado de dispersión que muestran los datos de una misma variable. Se calcula como la raíz cuadrada de la varianza.

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}}$$

$$S = desviación estándar$$

$$x_i = cada una de las observaciones$$

$$\overline{x} = media aritmética$$

$$n = numero de observaciones$$

Coeficiente de correlación: es un número que indica que tanto están relacionadas dos variables, o lo que es lo mismo, es la medida de la intensidad de la relación lineal entre dos variables. Este puede ser visualizado como el grado al cual las observaciones de dos variables, pueden ser aproximadas a una línea recta, cuando son representadas como puntos en un diagrama *x*-*y*, o diagrama de dispersión (HARBAUGH & MERRIAN, 1968). Su valor varía entre -1 y +1, si este valor es igual a -1 o +1 se dice que existe una relación lineal perfecta entre las variables, si por el contrario el valor es igual a cero, se dice que no existe relación lineal (HOWARD & CHRISTENSEN, 1983). La correlación lineal puede ser positiva o negativa. (Fig. 25).

Fig. 25. Diagramas de dispersión, mostrando diferentes correlaciones entre las variables. Tomado de HARBAUGH & MERRIAN (1968).

- a) correlación perfecta r = 1.0
- b) correlación, r = -0.9
- c) completa disociación, r = 0.0
- d) correlación indefinida, r = 0.0/0.0

La ecuación que permite determinar el coeficiente de correlación de Pearson es la siguiente:

$$r = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\sum (x - \overline{x})^2 \sum (y - \overline{y})^2}}$$

r = coeficiente de correlación de Pearson x, y = valores correspondientes a las dos variables $\overline{x}, \overline{y}$ = medias aritméticas de las dos variables

Para saber cuando un coeficiente de correlación resulta estadísticamente representativo de una buena combinación lineal, se usa el *coeficiente de correlación crítico* (Rc), el cual indica a partir de que valor los coeficientes de correlación expresan correlaciones lineales con un 95 % de confiabilidad. Para conseguir este valor es necesario primeramente calcular el valor F, a partir del cual se buscan los coeficientes de correlación críticos en las respectivas tablas estadísticas (Tables of the correlation Coefficient, CROW, 1960; SNEDECOR, 1946).

$$F = n - 2$$

Donde n es el número de muestras que se están analizando.

- Gráficos exploratorios

Como su nombre lo indica, son gráficos que se construyen luego de la obtención total de datos y tienen como finalidad visualizar de forma global el comportamiento de los mismos y/o las relaciones entre las distintas variables. Resultan ser de suma utilidad ya que permiten manipular o asimilar fácilmente un conjunto de datos brutos o sin ningún tipo de análisis, de los cuales resultaría complicada hacer algún tipo de interpretación.

Diagramas de caja: este tipo de gráfico constituye una de las diversas técnicas disponibles, que permiten estudiar la distribución de un conjunto de números, observaciones o medidas. Más específicamente a partir de éste es posible conocer el centro de los valores, valores extremos, valores anómalos y en general la distribución de los datos respecto al valor central.

Gráficamente los diagramas de caja representan un rectángulo o cualquier otra figura geométrica, con distintas líneas y puntos (Fig. 26). El ancho del rectángulo es arbitrario. El tope y el fondo del mismo representan los percentiles 75 y 25 respectivamente, mientras que el alto corresponde al rango intercuartil, por lo que constituye el 50 % de los datos. Por otro lado, la línea situada en el medio del rectángulo es la mediana (percentil 50), mientras que los valores superior e inferior representados en forma de T constituyen la mayor observación (menor o igual al percentil 25 más 1,5 veces el rango intercuartil) y la menor observación (mayor o igual al percentil 25 menos 1,5 veces el rango intercuartil) respectivamente. Aquellos valores que se encuentran por encima del valor superior o por debajo del inferior se denominan valores anómalos y se representan como un punto, estos se consideran "anómalos suaves" si su valor está por encima o por debajo de tres veces el rango intercuartil a partir de los percentiles 75 y 25 respectivamente, o "anómalos severos" si van mas allá de tres veces el rango intercuartil.

Fig. 26. Ejemplo de diagrama de caja. Elaborado utilizando el programa estadístico NCSS 2000.

Histogramas: es un tipo particular de gráfica de barras que representa a todo un conjunto de datos, referidos a una sola variable (JOHNSON, 1988). Se utilizan para mostrar la distribución de los datos a lo largo de una línea de números reales. Resultan sumamente útiles al momento de estudiar un conjunto amplio de observaciones que no pueden ser analizados a simple vista. En este método se dividen las observaciones en intervalos de datos y se contabiliza el número de observaciones que entran en cada intervalo. El eje vertical de este gráfico representa la frecuencia o cantidad (ya sea en porcentaje o numero de muestras) correspondiente a cada intervalo de datos, estos últimos representados en el eje horizontal.

Dependiendo la forma que muestran los histogramas, o los polígonos de frecuencia, obtenidos a partir de los mismos, puede decirse que las distribuciones de frecuencia se comportan de las maneras siguientes (Fig. 27):

Fig.27. Clases de distribuciones de frecuencia. Tomado de JONSON (1988).

a = *distribución normal o simétrica*, donde los lados tienen una distribución idéntica respecto a una línea eje.

 $\mathbf{b} = sesgado \ o \ asimétrico$, en el que una extremidad o cola esta mas extendida que la otra. El sesgo corresponde a la mayor extensión de la extremidad.

 $\mathbf{c} = en forma \ de \ J$, donde no existe extremidad o cola en el lado de la clase con la frecuencia mayor.

d = *bimodal*, en el que las dos clases con mayor frecuencia están separadas por una o más clases, suelen indicar la presencia de dos poblaciones.

Gráficos de dispersión: constituyen una representación simple entre dos o más variables por lo que permite observar relaciones lineales entre las mismas. Cada dato representado por un punto, indica una sola unidad de observación sobre la cual han sido hechas dos mediciones (variables), representadas en cada uno de los ejes X y Y (HOWARD & CHRISTENSEN, 1983) (Fig. 28).

b) Estadística Multivariante

Cuando para cada muestra se dispone de valores correspondientes a dos o más variables que las caracterizan, el análisis estadístico se realiza utilizando todas las variables disponibles. Estos métodos resultan muy poderosos ya que permiten manipular más variables de las que pueden ser asimiladas, sin esta clase de tratamiento o mediante la simple observación de una tabla de resultados, sin embargo su estructura teórica y operacional resulta más complicada que aquellas empleadas para datos correspondientes a una sola variable.

Los análisis químicos y radiométricos constituyen un buen ejemplo geológico de datos multivariantes, donde las variables pueden ser concentraciones de un conjunto de elementos químicos, en unidades de porcentajes o partes por millón, en el primero de los casos, o el numero de átomos de radioisótopos que se desintegran por unidad de tiempo, para el segundo caso.

Análisis de agrupaciones: constituye una de las técnicas de clasificación estadística que ordenan o clasifican un conjunto de objetos u observaciones, en diversos grupos en base a las similitudes internas de las mismas (KENDALL, 1980). Este tipo de análisis, de fácil interpretación, busca convertir un conjunto heterogéneo de datos en grupos que reflejen adecuadamente las relaciones originales entre esos objetos, de esta manera, agrupa las distintas observaciones o variables que son objeto de estudio, de acuerdo a la similaridad entre ellas.

Uno de los resultados de este análisis es un diagrama de árbol llamado dendrograma (Fig. 29), en éste uno de los ejes representa la distancia o disimilaridad entre muestras y el otro eje indica las observaciones o variables concentradas en los diversos grupos.

La distancia o disimilaridad entre grupos u objetos depende del tipo de variable que se utilice, y del tipo de escala y de distancia con el que se quieran trabajar. En el caso específico del presente trabajo y debido al tipo de variable utilizado para el mismo, la distancia utilizada es la euclidiana y el tipo de escala es furthest neighbor o máxima distancia entre dos observaciones en un agrupamiento.

La distancia euclidiana se basa en el concepto de que una medida cuantitativa del grado de similaridad entre dos muestras esta dado por la distancia que las separa, en un sistema de coordenadas rectangular (HARBAUGH & MERRIAN, 1968).

La distancia, D, entre dos puntos localizados en un eje cartesiano, en el que el eje x representa una variable y el eje y otra variable, es una adaptación del teorema de Pitágoras (Fig. 30).

Fig. 30. Cálculo de la distancia D entre dos puntos. Cada punto representa una muestra, caracterizada por dos variables: *x* y *y*. Tomado de HARBAUGH & MERRIAN (1968).

y se expresa por la siguiente ecuación:

$$D = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Donde X_1, X_2, y_1, y_2 son los valores coordenados de los dos puntos, es decir, los valores correspondientes a cada variable.

El teorema de Pitágoras es igualmente valido en tres (Fig. 31) o más dimensiones del espacio y puede ser aplicado en el caso de que se trabaje con un numero mayor de variables.

Fig. 31. Cálculo de la distancia D entre dos puntos A y B. Cada punto representa una muestra, caracterizada por tres variables: *x*, *y*, y *z*.. Tomado de HARBAUGH & MERRIAN (1968). En este caso, si se trabaja en un espacio n-dimensional, la ecuación puede ser generalizada de la siguiente manera:

$$D_{ij} = \sqrt{\frac{\sum_{i=1}^{N} \left(x_{ik} - x_{jk}\right)^{2}}{N}}$$

 D_{ij} = distancia medida entre las muestras *i* y *j* N = numero de variables

 x_{ik} = valores correspondientes a cada variable, medidos en la muestra *i*.

 x_{jk} = valores correspondientes a cada variable, medidos en la muestra *j*

Es importante señalar que debido a que los datos no siempre poseen la misma escala (%, ppm, etc), este método primeramente transforma e uniformiza los datos de cada variable para evitar distorsiones debidas a las diferencias absolutas en las mismas.

Componentes principales: es una técnica que envuelve relaciones entre grupos de variables. Constituye una herramienta de análisis de datos que permite reducir el número de variables a partir de un gran número de variables interrelacionadas, tratando de conservar la mayor información posible. De esta manera, las nuevas variables (componentes) representan la estructura del conjunto original y a su vez constituyen simples combinaciones lineales de las variables originales (KENDALL, 1980). Los cálculos se realizan de manera que con el menor numero de nuevos componentes se explique el mayor grado posible del porcentaje de la varianza. En las ecuaciones que definen los componentes principales, los valores de las variables son estandarizados y corresponden al valor verdadero de la misma menos su promedio y el resultado es dividido entre su desviación estándar.

Funciones discriminantes: los análisis de discriminación permiten encontrar un conjunto de ecuaciones a partir de variables independientes. En geoquímica, los análisis discriminantes han sido aplicados fructíferamente en la investigación de relaciones entre

elementos mayoritarios, elementos traza y en el estudio tectónico de rocas volcánicas y sedimentarias (ROLLINSON, 1993). Estos análisis tienen dos posibles objetivos: hallar una ecuación que permita clasificar observaciones nuevas, dentro de grupos predeterminados; o interpretar dichas ecuaciones para mejorar la comprensión de las relaciones existentes entre el conjunto de variables con el que se cuenta.

La función que se busca es aquella combinación lineal de un conjunto de variables, que produzca la máxima diferencia entre dos o más grupos previamente definidos por el usuario.

Cuando se calculan funciones lineales discriminantes, que representen la mejor discriminación posible entre grupos establecidos con anterioridad, se utilizan un conjunto de manipulaciones matemáticas, como lo son: suma de variables, suma de cuadrados de las variables, y suma de los productos cruzados de las variables. De esta manera se obtiene finalmente una ecuación del tipo:

$$F_m = a_1 x_1 + b_1 x_2 + c_1 x_3 + d_1 x_4 \dots p_1 x_n$$

Donde F_m es una de las funciones; a_1, b_1, c_1, d_1, p_1 . representan los coeficientes de la función; x_1, x_2, x_3, x_4, x_n son las mediciones correspondientes a cada variable utilizada, las cuales pueden ser SiO₂, Al₂O₃, Fe₂O₃, MnO entre otras; *m* es el numero funciones o grupos, y *n* constituye el numero de variables.

La magnitud del coeficiente, asociado a su variable muestra la importancia relativa de dicha variable en la separación de los grupos a lo largo de la función, así la visualización de los factores permite observar el efecto que produce una o más variables en la separación de los grupos.

Cuando las funciones ya han sido determinadas y muestran que clasifican bien las muestras de los grupos definidos, entonces una muestra desconocida puede ser clasificada en uno u otro de los grupos, simplemente sustituyendo los valores correspondientes a las variables $(x_1, x_2, x_3, x_4, x_{n.})$ en cada una de las funciones. Una muestra se clasifica como perteneciente a un grupo si su función da un valor mayor que el obtenido en cualquiera de las otras funciones. Esta técnica se puede extender a cualquier numero de grupos definidos y a tantas variables como se tengan, y se calculara una nueva función para cada grupo adicional (URBANI, 1976).

Una manera gráfica de representar estas funciones puede observarse en la Figura 32. En esta se evidencia que para un caso bidimensional, en el cual intervienen dos variables, no puede hacerse una separación adecuada entre grupos utilizando únicamente dichas variables, sin embargo es posible encontrar una orientación a lo largo de la cual la separación entre los grupos esta mejor definida. En este caso los ejes coordenados de la orientación definen cada función discriminante (DAVIS, 1973).

Estas funciones constituyen uno de los procedimientos multivariantes más ampliamente usados en las Ciencias de la Tierra sobre todo para localizar muestras de origen desconocido en grupos previamente establecidos, los cuales pueden ser ambientes, fuentes de aporte, categorías taxonómicas, unidades litoestratigráficas y otros.

4.2. FASE DE CAMPO

La fase de campo realizada para este Trabajo Especial de Grado comprendió dos salidas de campo.

4.2.1 Primera salida

Realizada por los Profesores Manuel Martínez e Iván Estévez, en el mes de febrero del 2000, como parte de su trabajo de maestría, la cual comprendió ubicación de afloramientos, levantamiento de columnas estratigráficas y recolección de muestras. Las secciones estudiadas fueron escogidas por haber sido estudiadas previamente en detalle por varios autores.

Inicialmente se realizó un reconocimiento general del área para la evaluación de los mejores afloramientos, los cuales resultaron ser para la Formación Mirador, el ubicado en la autopista, y para la Formación Barco, el del río Lobaterita (Fig. 33 y 34). Posteriormente se procedió al levantamiento detallado de las columnas estratigráficas de las secciones seleccionadas, lo cual comprendió la descripción litológica de las rocas observadas y la búsqueda y reconocimiento de estructuras sedimentarias. De manera simultánea al levantamiento estratigráfico, se recolectaron muestras con un espaciamiento entre cada una de ellas de aproximadamente 1 m de distancia. En la Formación Barco se tomaron un total de 89 muestras, mientras que para la Formación Mirador se recolectaron 155 muestras. Cada una de las muestras fue identificada debidamente, empaquetada en bolsas plásticas y registrada en la columna estratigráfica.

4.2.2 Segunda salida

Ésta se realizó en marzo del 2000. En esta oportunidad se contó con la presencia tanto de los profesores antes mencionados como del tutor y de los bachilleres concernientes a este trabajo. La misma tuvo como objetivo principal el reconocimiento de ambos afloramientos y la comprobación de la ubicación de las muestras, para finalmente afinar la información obtenida en la primera. Adicionalmente fueron tomadas fotos de los afloramientos y de aquellos aspectos específicos que se consideraron importantes.

Fig. 33. Afloramiento de la Formación Mirador en la autopista Lobatera- La Fría (Tomado de TORO, 1992)

Fig. 34. Afloramiento de la Formación Barco en el río Lobaterita (Tomado de TORO, 1992).

4.3. FASE DE LABORATORIO

4.3.1. Radiometría

a) Características del equipo

El equipo utilizado en la medición del número de radioisótopos desintegrados por unidad de tiempo fue un espectrómetro de rayos gamma Exploranium GR-256. Este es un equipo que abarca 256 canales del espectro de los rayos gamma.

A diferencia de equipos convencionales limitados a una o cuatro ventanas, permanentemente localizadas en el espectro, para realizar mediciones de radioactividad gamma de isótopos de uranio, potasio y torio, el GR-256 permite seleccionar ocho ventanas con el ancho de canal deseado y ubicarlas en cualquier lugar del espectro, permitiendo así establecer las regiones de interés (ROI) y separarlas del resto de los 256 canales (Fig.35).

El uso básico de este instrumento es la medición en campo, de la radioactividad natural, que fundamentalmente procede de la desintegración de los elementos K, U, Th. Sin embargo, nuestra propia experiencia muestra que debido a su tamaño resulta más práctico como instrumento de laboratorio. En la adquisición de datos la "ganancia" es controlada de manera automática por el instrumento. Los datos pueden ser presentados de distintas maneras, ya sea en cuentas / período de tiempo, ppm, eU, eth y/o en % K. A su vez el tiempo de medición para cada objeto de análisis puede ser seleccionado desde 1 hasta 999 segundos, dependiendo de las necesidades del usuario.

Para los efectos de este trabajo se han escogido, dentro del espectro total de las radiaciones gamma, 8 ventanas con rangos de energía específicas. Éstas se identifican como γ Total, γ F1, γ^{40} K, γ F2, γ^{214} Bi, γ F3, γ^{208} Tl y γ F4, puede ser visualizados en la Figura 35 y representarán las variables radiométricas utilizadas en este estudio.

Fig. 35. Espectro energético γ donde se muestran los canales utilizados. Los números del 1 al 8 rodeados por un círculo representan la identificación de las regiones de interés utilizadas en el Exploranium.

El exploranium cuenta con:

- Detector (GPS-21), el cual posee un cristal de NaI (Tl) de 7 x 7 x 7 cm que está unido a su vez a un tubo fotomultiplicador, un preamplificador y a una fuente de alto voltaje.

- Amplificador y controlador automático de ganancia
- Convertidor analógico a digital
- Analizador de canales
- Estabilizador digital del espectro
- Memoria interna de datos
- Sistema de salida de datos, o de transferencia de los mismos a un computador externo.

Como parte del desarrollo de este trabajo, y con la finalidad de realizar las mediciones en el laboratorio, se diseño un dispositivo o escudo, que permitiera reducir el efecto producido por la radioactividad ambiental, en el conteo de las radiaciones.

El mismo consiste de 2 cilindros de plomo de 5 cm de espesor, que rodean el sensor y cubren el área donde son colocadas las muestras al momento de ser medidas (Fig. 36).

Espectrómetro

Fig 36. Foto del dispositivo de medición, donde se observa la disposición de los anillos de plomo.
Dimensiones :
Anillo 1 (Escudo viejo): altura 13.5 cm, diámetro interno 12 cm, diámetro externo 20 cm.
Anillo 2 (Escudo nuevo): altura 24 cm, diámetro externo 22 cm, interno 12 cm.
Sensor del espectrómetro.

Las dimensiones del equipo son de 230 x 90 x 235 mm, y su peso es de 2,8 kg sin baterías y de 3,5 kg con baterías.

b) Preparación de muestras

Las muestras analizadas por radiometría gamma, fluorescencia de rayos x y difracción de rayos x fueron sometidas previamente a un proceso de molienda y pesado. Cabe destacar que la molienda fue la misma para todas las muestras, sin importar el tipo de análisis al cual fueron sometidas. Para ésta se utilizó un molino automático Spex Shatterbox con una cámara de carburo de tungsteno.

La molienda de cada una de las muestras se llevó a cabo en las siguientes etapas:

1) Disgregación previa: fue colocada una fracción de la muestra de aproximadamente 200 grs, sobre una plancha de acero de 15x15 cm. La misma se cubrió con hojas limpias de papel con la finalidad de evitar el contacto directo de ésta con la plancha de acero y la piqueta.

Proporcionándole pequeños golpes con la piqueta y procurando no romper el papel, se disgrego la muestra, hasta alcanzar fragmentos de aproximadamente 1 cm³. El material resultante fue colocado sobre hojas de papel limpio para ser introducido en la cámara del molino.

2) *Limpieza de la cámara de tungsteno con agua y lija:* cada una de las partes de la cámara de tungsteno fueron lavadas con agua hasta eliminar posibles residuos. Estando aún húmedas, las mismas se lijaron con una lija fina nº 200, eliminando posteriormente con agua los residuos resultantes del proceso anterior.

3) *Limpieza de la cámara de tungsteno con cuarzo*: en esta etapa se colocaron algunos en trozos de cuarzo de aproximadamente 1cm³ en el interior de la cámara y se puso en funcionamiento el molino por un lapso no mayor de 30 seg., luego de transcurrido este tiempo se desecho el cuarzo molido del contenedor usando una brocha pequeña. A continuación se realizó nuevamente la limpieza con agua y lija.

4) *Curación del molino*: después de eliminar cualquier residuo de cuarzo contenido en la cámara de tungsteno, se molieron varios trozos de la muestra por un lapso de tiempo similar al empleado en el paso anterior. El polvo resultante se desechó y se limpió nuevamente la cámara con agua y lija.

5) *Molienda:* seguidamente se molieron entre 150 y 200 grs de muestra, por un lapso de tiempo de aproximadamente 10 minutos.

El polvo resultante, de este último paso, fue el utilizado para los distintos análisis realizados. El mismo se colocó en bolsas tipo clip debidamente identificado.

c) Establecimiento de condiciones óptimas de medición

Las condiciones óptimas para realizar mediciones correspondientes a un determinado método analítico, son aquellas que permiten obtener la mayor exactitud en el menor tiempo posible. Las condiciones establecidas en el espectrómetro de rayos gamma fueron: tiempo de medición y peso o cantidad de muestra.

Debido a la naturaleza de la radiación gamma, la respuesta de sus mediciones obedece a un proceso estadístico (decaimiento exponencial) por lo que mientras mayor es el tiempo de medición, mayor número de cuentas por segundo son registradas. Sin embargo debido a las limitaciones de tiempo y disponibilidad del equipo fue necesario establecer un tiempo de medición que permitiera obtener un número suficientemente alto de cuentas por segundo.

Para tal fin se escogió una muestra, de la que se tomaron en forma sucesiva, fracciones de 50, 100, 150, 200, 250 y 300 gr, realizando 10 mediciones de cada una, y manteniendo fijo el tiempo de medición en 240 seg. El procedimiento anterior abarcó un total de 60 mediciones (Tabla 1 y Anexo 1).

PESO gr	γΤΟΤΑL	γ F1	γ40-К	γF2	γ214-Bi	γF3	γ208-Tl	γF4
300	2729,8	1989,0	340,5	55,9	110,1	149,2	62,6	22,5
250	2716,4	2000,3	323,0	56,4	116,4	141,2	60,3	18,8
200	2683,4	1965,5	329,5	54,7	113,4	139,5	59,1	21,7
150	2685,2	1963,4	324,4	55,0	109,6	146,1	64,4	22,3
100	2584,8	1921,7	305,8	50,4	106,3	126,8	57,7	22,1
50	2529,8	1878,9	301,6	50,0	97,8	129,0	52,3	20,2

Tabla 1. Promedio de las cuentas por segundo obtenidas en las 60 mediciones.

Con los valores resultantes se construyeron gráficos de dispersión, con la finalidad de visualizar la relación existente entre las dos variables, es decir, observar la variación de las cuentas en 240 seg, respecto a la cantidad de muestra (Fig. 37).

Fig. 37. Ejemplos de gráficos realizados para obtener las condiciones óptimas en las mediciones radiométricas

Los gráficos anteriores evidencian un aumento constante del número de cuentas por segundo, para pesos entre los 0 - 150 gr aproximadamente, a partir del cual las mismas comienzan a estabilizarse. Debido al comportamiento observado, se escogió la cantidad de 150 gr como peso óptimo para la medición y se decidió aumentar el tiempo de conteo a 480 seg para mejorar aún más la estadística del conteo.

Corrección por peso

En algunas oportunidades fue imposible contar con los 150 gr necesarios. En este caso las muestras fueron medidas, y su peso anotado, para posteriormente corregir las cuentas por segundo obtenidas bajo estas condiciones.

Las gráficas mostradas en la Figura 37 fueron modificadas y permitieron la visualización del comportamiento de las radiaciones, para cantidades entre 0 y 150 gr (Anexo 1), por lo que posteriormente se usaron para inferir el número de cuentas en muestras con pesos inferiores a 150 gr. (Fig. 38).

Fig.38. Ejemplo de gráfico modificado que en este caso corresponde a la ventana de cuentas totales. La información referente a los canales restantes se encuentra en la sección de anexos.

La curva A es la obtenida mediante las mediciones hechas para la determinación del peso óptimo de medida, y modificada posteriormente, tomando en cuenta pesos hasta los 150 gr. La curva B representa una curva con la misma pendiente de A (asumiendo igual comportamiento), sobre la cual se buscaron las cuentas en 240 seg Y_{BF} , correspondientes a un peso de 150 gr. La misma se construyó a partir de las cuentas obtenidas Y_{BO} con el peso disponible o peso real X_{BO} (menor a 150 gr).

La ecuación de la curva B se consiguió a partir de:

ec. 1
$$Y_{BO} = (1,5188 \times X_{BO}) + b$$

ec. 2
$$Y_{RF} = (1,5188 \times X_{RF}) + b$$

Luego se sustituye b de ec.1 en ec.2 y se obtiene

$$Y_{BF} = (1,5188 \times X_{BF}) + (\frac{Y_{BO}}{2} - 1,5188 \times X_{BO})$$

Métodos de trabajo

Cabe recordar que en este caso Y_{BF} representa cuentas medidas en 240 seg, por lo que es necesario dividir este valor entre 240.

Una ecuación generalizada sería:

$$Y_{BF} = \frac{P \times 150 + \left(\frac{Y_{BO}}{2} - P \times X_{BO}\right)}{240}$$

Donde P es la pendiente de las curvas A para cada ventana de medición (Anexos 1). Los valores de P para otras ventanas se muestran en la Figura 39.

Ventana	Valor de P para la corrección por peso
F1	0.875
40 – K	0.229
F2	0.030
214 – Bi	0.105
F3	0.169
208 – Tl	0.107
F4	0.016

Fig. 39. Valores de coeficientes (P) para la corrección por peso

Escudo viejo vs nuevo

La Formación Mirador se midió por primera vez, contando solo con uno de los cilindros de plomo (cilindro 1). El segundo (cilindro 2) fue introducido como parte del dispositivo (Fig.36), antes de realizar las mediciones de la Formación Barco.

Los resultados obtenidos de esta manera, no mostraron una respuesta lógica ya que la Formación Mirador (predominantemente arenosa), totalizó un número de cuentas por segundo mayor que la Formación Barco (predominantemente lutítica), en todos los canales medidos. Lo anterior se interpretó como una mayor influencia del fondo (efecto del medio) en las cuentas obtenidas a partir de la configuración anterior, en la cual se contaba con menor protección de plomo, en las mediciones.

Como resultado de estas observaciones, se decidió medir nuevamente las muestras de la Formación Mirador, resultando en una disminución considerable en el número de cuentas por segundo (Fig. 40). Lo anterior evidencia la importancia de un escudo que cubra el sensor del instrumento, ya que de esta manera puede ser eliminado parte del efecto de la radioactividad ambiental, garantizándose en mayor medida que las cps obtenidas provienen exclusivamente de la muestra en estudio.

Fig.40. Cuentas totales. Escudo viejo vs nuevo. Aquí pueden observarse las variaciones en las mediciones de radiaciones gamma para la Formación Mirador, antes y después de ser incluido en la configuración del área de medición, el segundo cilindro de plomo.

4.3.2. Fluorescencia de Rayos X por dispersión de energía

a) Características del equipo

El equipo utilizado fue un espectrómetro de rayos x Philips, Minipal PW4025. Este es un espectrómetro compacto de rayos x por dispersión de energía, diseñado para la detección y cuantificación de elementos químicos, desde Na hasta U, en una muestra con un amplio rango de formas físicas: sólida, líquida o en polvo.

El Minipal cuenta con un tubo de emisión de rayos X de 9W, el cual posee un ánodo de Rodio y es enfriado a través de una corriente de aire. En su interior posee 5 filtros (Kapton, Al delgado, Al, Mo, Ag) que pueden ser seleccionados de acuerdo a las características del análisis y que permiten lograr condiciones óptimas de medición. También cuenta con una muestra de referencia compuesta por una aleación de Al y Cu que se coloca sobre el detector cuando se encuentra en la posición inicial, y que permite al equipo hacer la corrección automática de la ganancia o autocalibración. Además posee un cargador removible que permite analizar hasta 12 muestras de forma sucesiva.

Posee un detector de Si, enfriado por corrientes termoeléctricas, sellado herméticamente y que posee una delgada ventana de Berilio. Este componente presenta un analizador de 2048 canales que permite detectar los fotones de rayos X.

El medio en el cual las mediciones son hechas es normalmente el aire, adicionalmente este equipo cuenta con un sistema de flujo de Helio que permite mejorar la sensibilidad de las mediciones de los elementos de bajo número atómico como lo son aquellos que se encuentran entre el Na y el K.

La operación del espectrómetro y la información obtenida del mismo es controlada por un Software específicamente diseñado para este equipo, el cual es compatible con IBM y PC, bajo el sistema operativo Microsoft Windows (Windows 95 o NT). El mismo lleva por nombre Minipal Software V 1.0 A (1999). Las dimensiones del espectrómetro son de 215 x 530 x 495 mm.

b) Preparación de muestras

Luego de la molienda previa realizada a todas las muestras, se separó una porción de aproximadamente 5 cm^3 de cada una de ellas para ser analizadas por fluorescencia de rayos x. Las muestras en forma de polvo sin prensar, fueron montadas en los distintos portamuestras de plástico. Éstos constan de dos cilindros de diferente diámetro, el cilindro de diámetro menor es introducido dentro del cilindro de diámetro mayor colocando entre ambos una película de Maylar de 0.02 µ de espesor, la cual impide el contacto de la sustancia con el detector del equipo a la vez que protege la muestra de una posible contaminación (Fig.41). Se preparó un

portamuestra por cada muestra analizada, desechando el Maylar utilizado después de cada análisis y limpiando con alcohol isopropílico y papel absorbente los cilindros usados.

Fig. 41. Ejemplo de preparación de portamuestras para el análisis del polvo uutilizando Maylar

Después de colocado el polvo en el portamuestras, el mismo se compactó propinándole 40 pequeños golpes al depósito sobre una mesa, utilizando el mismo número de golpes para todas las muestras y procurando no contaminar la base del deposito. De esta forma, se logró distribuir uniformemente el polvo sobre el Maylar sin necesidad de elaborar pastillas prensadas.

c) Establecimiento de condiciones óptimas de medición.

Las condiciones de medición son la combinación de los parámetros con que cuenta el espectrómetro para realizar un análisis o corrida de muestras. Los mismos son: voltaje (kv), intensidad de corriente (mA), tiempo de conteo y filtros. En este trabajo se establecieron las condiciones optimas de medición procurando un tiempo de conteo corto debido a la cantidad de muestras analizadas y a la disponibilidad del equipo. Se establecieron en el software las condiciones de medición necesarias para garantizar buenos resultados, realizando varias corridas de una misma muestra en las que se variaron los parámetros de medición.

Al hacer estas pruebas se observó que al aumentar el voltaje (kv), el amperaje (mA) y el tiempo de conteo, se incrementaba significativamente el número de cuentas por segundo totales, pero debido al alto número de muestras por ser analizadas, resultaba inconveniente el establecimiento de tiempos de medición superiores a los 480 seg por muestra. Igualmente pudo observarse, que con los parámetros estándard del espectrómetro, es decir, 13 kv y 30 mA, el

número de cuentas por segundo (cps) totales no varió significativamente para tiempos entre 120 y 600 seg. Se tomó como referencia el canal del Fe, por ser el que mostraba mayor número de cps, observándose que con las condiciones estándard y sin filtro, para tiempos entre 100 y 400 seg el conteo se mantenía muy estable cercano a las 60 cps.

Respecto a los filtros, se determinó que la utilización de éstos en la corrida de muestras influía significativamente en los resultados. De los cuatro tipos disponibles para nuestra tipo de muestras, ninguno favoreció el incremento total del conteo, por el contrario, en algunos casos el uso de un filtro hecho de un material de peso atómico elevado, eliminó totalmente el conteo de algunos elementos y en otros casos disminuyó drásticamente la intensidad de algún canal en particular.

Debido a estas observaciones se decidió utilizar las condiciones estándar del equipo (13 kv y 30 mA), no utilizar ningún filtro en el análisis de las muestras y emplear 240 seg por ser éste un tiempo razonablemente corto, en el que las cps obtenidas mostraron poca variación respecto a las conseguidas en tiempos mayores (Tabla 2).

Medición	Tiempo (seg)	Voltaje (kv)	Intensidad corriente (mA)	Filtro	cps	cps Fe
1	100	13	30	no	2942	60
2	100	13	30	Al	1824	36
3	240	12	40	no	4235	63
4	240	13	30	no	3898	60
5	300	12	40	Kapton	3493	53
6	300	12	40	no	4832	63
7	300	10	50	no	3247	39
8	300	13	30	no	3934	61
9	400	12	40	no	4234	62
10	400	13	30	no	3939	60
11	600	13	30	no	5400	79
12	600	13	40	no	4984	79
13	600	20	30	no	8106	132

 Tabla 2. Pruebas realizadas para establecer las condiciones óptimas de medición, en negritas se muestran las condiciones finalmente escogidas

d) Calibración del equipo

El proceso de calibración, puesta a punto de la metodología y el establecimiento de condiciones óptimas para la medición con este equipo, constituye uno de los objetivos de este Trabajo Especial de Grado. Esto se debe a que, tanto a nivel de este trabajo e inclusive a nivel nacional, es la primera vez que se utiliza un equipo de fluorescencia de rayos x con las características mencionadas anteriormente.

La espectrometría de rayos x por energía dispersiva llevada a cabo por el "Minipal" es una técnica de medición comparativa. Así, los análisis realizados por el equipo no son más que comparaciones de intensidades medidas a muestras desconocidas (aquellas a ser analizadas) con líneas de regresión establecidas durante el proceso de calibración, las cuales se construyen usando muestras certificadas como estándard, de composición conocida.

De esta manera el proceso de calibración puede dividirse en varias etapas:

1) Corrida manual de muestras para visualización de los espectros.

En esta etapa inicial se seleccionaron un grupo no mayor de 4 muestras por cada Formación, que fueran litológicamente representativas, para ser corridas manualmente (sin la utilización de ninguna aplicación) y observar sus espectros. Los mismos mostraron los elementos presentes en las muestras, permitiendo definir los canales de medición (elementos a ser medidos) de acuerdo a la presencia y a la intensidad de los elementos detectados por el equipo (Figs. 42, 43, 44 y 45).

Fig.42. Espectro de la muestra tspm 120.

Fig.43. Espectro de la muestra tspm 355.

Fig.44. Espectro de la muestra tspm 275.

Fig. 45. Espectro de la muestra tspm 375.

Los espectrogramas anteriores corresponden a la Formación Mirador y en ellos se observa que los elementos detectados son fundamentalmente Al, Si, Mn, K, Fe, V, Ca, Ti, Sn, Mo, Pb, Br y Pb. De todos estos se escogieron únicamente los 8 primeros para determinar sus concentraciones, debido a que sus intensidades (cps), como era de esperarse fueron muy significativas, este es el caso del Fe y el Si, quienes resultaron ser los elementos que obtuvieron mayor número de cuentas por segundo en las cuatro muestras analizadas. Los elementos Al, K, Mn, Ti, V y Ca mostraron menor número de cuentas por segundo que el Fe y el Si, pero sin embargo su presencia está bien clara y sus intensidades son apreciables. Contrariamente el Sn y el Pb y Br no se reportaron en todas las muestras utilizadas para realizar la corrida manual, y sus intensidades no estaban muy claras en el espectro por lo que se decidió no medir sus concentraciones.

Una vez que se escogieron los elementos y sabiendo el tipo de muestras a ser analizadas, se seleccionaron 12 patrones o estandares internacionales para emplearlos en la elaboración de las curvas de calibración. La selección de estos patrones se realizó tomando en cuenta la disponibilidad en el laboratorio de las muestras y de sus tablas de datos. De los patrones disponibles se escogieron aquellos que permitían elaborar una curva con concentraciones variadas, es decir, se consideraron muestras de bajas y altas concentraciones para cada elemento (Tabla .3).

NDAR %Al2O3 %CaO %Fe2O3 %K2O %MnO %SiO2 %TiO2 ppr

Tabla 3. Composición química de patrones internacionales usados en la aplicación.

ESTANDAK	%AI2O3	%CaO	%Fe2O3	%K2O	%MnO	%S1O2	%T1O2	ppm v	
AGV1	17,15	4,94	6,77	2,920	0,09	58,84	1,050	121	
BCR1	13,64	6,95	13,41	1,690	0,18	54,11	2,240	407	
BR	10,20	13,80	12,88	1,400	0,20	38,20	2,600	235	
DRN	17,52	7,05	9,70	1,700	0,22	52,85	1,090	220	
DTS1	0,19	0,17	8,68	0,001	0,12	40,41	0,005	11	
G2	15,39	1,96	2,66	4,480	0,03	69,14	0,480	36	
GA	14,50	2,45	2,83	4,030	0,09	69,90	0,380	38	
JB1	14,53	9,29	8,97	1,430	0,16	52,17	1,340	212	
MICAMG	15,20	0,08	9,46	10,000	0,26	38,30	1,630	90	
SGR1	6,52	8,38	3,03	1,660	0,03	28,24	0,264	128	
SYENITE1	12,04	7,96	6,31	4,450	0,32	60,11	0,150	50	
UBN	2,90	1,20	8,34	0,020+	0,12	39,43	0,110	75	

2) Creación de la aplicación :

Una aplicación consiste de un conjunto de parámetros y especificaciones instrumentales que pueden ser definidas como una configuración del análisis. Cada aplicación contiene toda la información y requerimientos necesarios para que el Minipal pueda llevar a cabo las mediciones de un tipo específico de muestra.

El Minipal obtiene las concentraciones elementales de muestras de composición desconocida por un proceso comparativo utilizando curvas de calibración. Es por esta razón que estas últimas constituyen el elemento principal en la creación de una aplicación y en la determinación de las concentraciones de los elementos presentes. Para crear la aplicación utilizada en los análisis fue necesario, en primer lugar, introducir en el software las concentraciones de las muestras patrón, correspondientes únicamente a los canales de interés (establecidos anteriormente). Posteriormente se midieron dichas muestras y se procedió a realizar el procesamiento matemático que permitió generar las curvas de regresión. Este procesamiento consta principalmente de dos partes, la deconvolución del espectro y el cálculo de las líneas de regresión.

- Introducción de los valores de las concentraciones de los patrones

En este primer paso se definieron los canales o elementos dentro del programa y se llenaron las celdas diseñadas para tal fin con los datos correspondientes a los valores de las concentraciones de cada uno de los patrones. De igual manera se definieron las unidades en que se reportarían los datos, en porcentaje en peso (%) ó partes por millón (ppm) en el caso del vanadio (V), así como también la calidad de los valores de los datos: baja o alta calidad.

-Introducción de las condiciones de medición

Como segundo paso se introdujeron en la ventana de *condition system set* las condiciones bajo las cuales trabajaría la aplicación. Éstas son:

Voltaje: 13 kv. Intensidad: 30 mA. Tiempo de conteo: 240 seg. Filtro: ninguno. Medio: aire.

-Medición de patrones.

Las muestras patrón fueron identificadas en la ventana del programa diseñada para tal fin, indicando para cada una de ellas su ubicación dentro del cargador y las composiciones teóricas de cada uno de los óxidos a ser analizados. En la Tabla 4 se observan los valores obtenidos por el equipo después de correr las muestras patrón y la comparación de los mismos con los valores teóricos, permitiendo apreciar que las concentraciones obtenidas y certificadas muestran diferencias muy pequeñas, lo que verifica la confiabilidad del método de medición.

Tabla 4. Reporte de valores certificados (T) y obtenidos (O) mediante la aplicación generada.

	%S	6iO₂	%T	ïO₂	%A	I2O3	%Fe	e ₂ O ₃	%N	InO	%C	aO	%	(₂O	рр	mV
PATRON	Т	0	Т	0	Т	0	Т	0	Т	0	Т	0	Т	0	Т	0
AGV1	58,84	58,84	1,05	0,62	17,15	15,71	6,77	6,36	0,09	0,09	4,94	5,05	2,92	2,56	121	182
BCR1	54,11	55,55	2,24	1,08	13,64	14,80	13,41	12,57	0,18	0,17	6,95	6,53	1,69	1,41	407	321
BR	38,20	39,55	2,60	1,25	10,20	9,57	12,88	11,76	0,20	0,17	13,8	13,75	1,40	1,18	235	300
DRN	52,85	55,16	1,09	0,61	17,52	17,17	9,70	9,47	0,22	0,21	7,05	7,18	1,70	1,45	220	149
DTS1	40,41	36,07	0,01	0,01	0,19	0,34	8,68	9,53	0,12	0,14	0,17	0,16	0,00	0,03	11	230
G2	69,14	68,62	0,48	0,46	15,39	15,75	2,66	3,29	0,03	0,02	1,96	2,11	4,48	5,28	36	146
GA	69,90	70,36	0,38	0,34	14,50	15,61	2,83	2,03	0,09	0,08	2,45	2,63	4,03	3,96	38	66
JB1	52,17	51,13	1,34	0,71	14,53	13,91	8,97	8,62	0,16	0,15	9,29	8,95	1,43	1,23	212	195
MICAMG	38,30	39,39	1,63	1,06	15,20	11,01	9,46	9,83	0,26	0,25	0,08	0,07	10	9,96	90	400
SGR1	28,24	37,36	0,26	0,30	6,52	6,79	3,03	3,32	0,03	0,04	8,38	13,33	1,66	2,12	128	153
SY2	60,11	56,60	0,15	0,18	12,04	12,23	6,31	6,02	0,32	0,32	7,96	8,19	4,45	4,11	50	22
UBN	39,43	37,23	0,11	0,07	2,90	1,14	8,34	9,37	0,12	0,14	1,20	1,17	0,02	0,03	75	164

-Procesamiento matemático

En esta fase, el software del equipo realiza inicialmente un ajuste automático de los espectros obtenidos, mediante la integración del área bajo su curva con la finalidad de obtener las intensidades relativas de cada elemento. De esta forma se corrige el espectro para un mejor resultado cuantitativo. Este proceso se conoce como *deconvolución*.

Seguidamente son calculadas las líneas de regresión, donde se convierten las intensidades medidas para cada canal en concentraciones, utilizando un procedimiento matemático que emplea las siguientes ecuaciones:

$$C = L + D + E(R \times M) + F(R \times M)^{2} \qquad M = 1 + \sum \frac{(\alpha_{i} \times C_{i})}{100} \qquad L = \sum (L_{i} \times Y_{i})$$

Donde:

C: concentración del análisis (%)

R: intensidad (kcps) del análisis

M: factor de corrección de la matrix.

L: corrección de la línea de solapamiento.

αi: factor alpha para cada componente i, corrección para el efecto de la matrix, usado para calcular los valores de M.

Ci: concentración de cada componente i.

Li: factor de la línea de solapamiento por número de canal de interferencia i.

Yi: concentración o intensidad de cada canal de interferencia i.

D: constante de intensidad calculado por el software

E: coeficiente del término lineal de la ecuación (ángulo de la línea de regresión), calculado por el software

F: coeficiente del término cuadrático de la ecuación, igualmente calculado por el software.

Cada curva de calibración obtenida mediante este procedimiento, esta caracterizada por tres valores estadísticos, los cuales definen la calidad de la misma y por tanto la exactitud de la aplicación, éstos parámetros son:

Factor K: raíz cuadrada de la suma de los cuadrados de los residuales ponderados dividos por el número de grados de libertad.

$$K = \sqrt{\frac{\sum \left(\frac{X_{i}}{W_{i}}\right)^{2}}{Nstd - Ncal}}$$

Valor RMS: raíz cuadrada de la suma de los cuadrados de los residuales ponderados dividido por el número de grados de libertad.

$$\mathbf{RMS} = \sqrt{\frac{\sum (x_i)^2}{\mathbf{Nstd} - \mathbf{Ncal}}}$$

Correlación: correlación lineal entre las concentración calculada por el software y la concentración verdadera de la muestra patrón.

$$Cor = \frac{Nstd \times \sum (C_i \times R_i) - \sum (C_i) \times \sum (R_i)}{\sqrt{\left[\left(Nstd \times \sum (C_i)^2\right) \times \left(Nstd \times \sum (R_i)^2 - \sum (R_i)^2\right)\right]}}$$

Donde:

Nstd: número de estatandares de alta calidad utilizado en el análisis.

Ncal: número de parámetros a ser calculados por el análisis.

Ci: concentración química obtenida por el análisis para cada estándard.

Ri: Intensidad corregida por el análisis para cada estándard, definida por:

$$C_i = D + E \times R_i + F \times R_i^2$$

Xi: Diferencia entre el valor químico verdadero (estándard) y el valor calculado por el análisis.

~

Wi: Error ponderado por el análisis para cada estándard, definido como:

$$W_i = \sqrt{(C_i + 0.1)}$$

Finalmente se obtuvieron 8 curvas de calibración y 8 reportes correspondientes a cada elemento con los valores de las concentraciones verdaderas (Anexos 2), concentraciones calculadas, las diferencias entre estas, el número de cuentas obtenidas por cada muestra, el valor de la relación D/RMS y el valor de M. En las tablas de reportes se puede corroborar que con excepción del V ($r^2 = 0.87$), los coeficientes de correlación de las curvas se encuentran entre 0,98 y 0,99, por lo que consideramos que las mismas son confiables y aptas para usarlas en la determinación de las concentraciones. En el caso de los valores de K y RMS, con excepción del V (RMS = 61,72 y K= 0,06), se mantuvieron bastante bajos o cercanos a cero, por lo que se puede decir que la dispersión de los valores estándard con respecto a la línea de regresión es mínima. En el caso de haber sido necesario, las curvas se manipularon, cambiando la calidad de los estándard, para ajustar y obtener el mayor coeficiente de correlación posible.

Un ejemplo de los valores de los coeficientes de correlación, RMS, D, E, F, K y demás cálculos realizados por el software para cada uno de los elementos analizados, así como la curva de calibración obtenida para el K₂O pueden ser observados en las Fig. 46 y 47 respectivamente.

D value	0,097036
E value	0,012978
F value	0,0000000
Ratio channel	None
K factor	0,217671
RMS value	0,364602
Correlation coefficient	0,992333
Nr Standards - Coefficients	12-2
Concentration unit	%

Ident	Qual	I (cps)	Calc	Chem	Diff	D/RMS	L.Ov	Matrix
AGV1	High	200,094	2,558	2,920	-0,362	-0,99	0.000	0,947595
BCR1	High	110,440	1,406	1,690	-0,284	-0,78	0,000	0,913162
BR	High	94,624	1,185	1,400	-0,215	-0,59	0,000	0,886365
DRN	High	112,619	1,450	1,700	-0,250	-0,69	0,000	0,925856
DTS1	High	-5,383	0,029	0,001	0,028	0,08	0.000	0,973666
G2	High	407,004	5,278	4,480	0,798	2,19	0.000	0,980948
GA	High	304,111	3,958	4,030	-0,072	-0,20	0,000	0,978195
JB1	High	94,588	1,226	1,430	-0,204	-0,56	0,000	0,919364
MICAMG	High	776,641	9,957	10,000	-0,043	-0,12	0,000	0,978289
SGR1	High	163,186	2,117	1,660	0,457	1,25	0,000	0,953765
SYENITE2	High	326,227	4,114	4,450	-0,336	-0,92	0,000	0,948755
UBN	High	-5,386	0.029	0.020	0.009	0.03	0.000	0.967494

Fig.46. Parámetros que definen la curva de calibración del K₂O.

Fig.47. Curva de calibración del K₂O.

e) Pruebas de repetibilidad:

Con la finalidad de determinar el error acarreado, tanto por el equipo como por la manipulación y montaje de las muestras, se realizaron dos pruebas de repetibilidad, en las cuales se utilizaron 5 muestras de la Formación Mirador (Anexos 3).

La primera prueba consistió en realizar mediciones repetitivas de las muestras sin ser retiradas del cargador. De esta forma se pudo determinar principalmente el error analítico arrojado por el equipo (Tabla 5).

En la segunda prueba se realizaron mediciones repetitivas, retirando las muestras del cargador y mezclando el polvo utilizado antes de cada medición con el resto. En este caso, para cada corrida las muestras fueron montadas y desmontadas, para así determinar el error producido por este procedimiento donde también influye el operador (Tabla 6).

Los resultados de estas pruebas se muestran a continuación.

Muestra		% SiO ₂	% TiO ₂	% Al ₂ O ₃	% Fe ₂ O ₃	% MnO	% CaO	% K ₂ O	ppm V
	Promedio	69,45	0,386	14,87	3,85	0,024	0,115	0,636	248
tspm 20	Desv. estand.	0,51	0,002	0,26	0,01	0,003	0,003	0,004	25
	Coef. var.	0,74	0,518	1,72	0,29	12,500	2,609	0,629	10
	Promedio	59,00	0,989	26,15	1,19	0,004	0,047	0,423	789
tspm 170	Desv. estand.	0,26	0,002	0,27	0,01	0,001	0,010	0,004	21
	Coef. var.	0,44	0,202	1,05	0,67	25,000	21,280	0,946	2
	Promedio	66,50	0,525	18,77	8,98	0,062	0,131	0,871	215
tspm 275	Desv. estand.	0,35	0,001	0,20	0,01	0,003	0,005	0,009	12
	Coef. var.	0,52	0,190	1,08	0,17	4,840	3,817	1,030	6
	Promedio	89,06	0,557	5,01	1,01	0,019	0,035	0,097	21
tspm 310	Desv. estand.	0,46	0,003	0,29	0,01	0,008	0,004	0,007	15
	Coef. var.	0,52	0,539	5,86	1,49	42,110	11,430	7,220	72
	Promedio	69,68	0,681	23,23	0,70	0,006	0,054	1,197	292
tspm 375	Desv. estand.	0,32	0,005	0,18	0,01	0,001	0,005	0,012	15
	Coef. var.	0,45	0,734	0,76	0,99	16,670	9,260	1,000	5

Tabla 5. Prueba de repetibilidad sin cambiar la muestra.

En la prueba realizada sin cambio de la muestra, se encontró que los coeficientes de variación obtenidos eran bastante razonables. En general, éstos se encontraron por debajo del 5% con excepción de algunos casos como el Mn, Ca y V, que reportaron los valores más altos de este coeficiente sobre todo en muestras con concentraciones muy bajas (< 0,05%) de dichos elementos. En base a lo anterior, se estableció que el análisis hecho sin cambiar la muestra resultó confiable y lo suficientemente exacto dentro de los alcances de este trabajo.

Muestra		% SiO ₂	% TiO ₂	% Al ₂ O ₃	% Fe ₂ O ₃	% MnO	% CaO	% K ₂ O	ppm V
	Promedio	69,51	0,387	14,58	3,80	0,026	0,119	0,614	180
tspm 20	Desv estand.	0,83	0,008	0,29	0,08	0,008	0,007	0,010	31
	Coef var.	1,19	2,067	2,00	2,16	30,770	5,880	1,630	17
	Promedio	57,53	0,984	25,36	1,18	0,006	0,047	0,426	789
tspm 170	Desv estand.	0,92	0,005	0,61	0,01	0,002	0,004	0,003	24
	Coef var.	1,59	0,508	2,41	0,51	33,330	8,510	0,704	3
	Promedio	65,53	0,529	18,17	8,97	0,059	0,129	0,865	210
tspm 275	Desv estand.	1,49	0,007	0,86	0,02	0,005	0,008	0,021	15
	Coef var.	2,28	1,323	4,73	0,22	8,475	6,200	2,430	7
	Promedio	88,81	0,552	4,97	0,97	0,012	0,032	0,109	75
tspm 310	Desv estand.	0,56	0,026	0,26	0,10	0,016	0,007	0,011	51
	Coef var.	0,63	4,710	5,30	10,74	133,330	21,880	10,090	68
	Promedio	67,75	0,678	22,35	0,68	0,008	0,045	1,195	302
tspm 375	Desv estand.	0,78	0,004	0,69	0,01	0,003	0,004	0,014	18
	Coef var.	1,15	0,590	3,12	1,91	37,500	8,890	1,170	6

Tabla 6. Prueba de repetibilidad cambiando la muestra

En la segunda prueba y como era de esperarse, se observó que los valores de los coeficientes de variación resultaron ser más altos que en el caso anterior. El incremento del error se infirió como la suma del efecto producido por el error analítico del equipo y el producido por la manipulación de las muestras, sin embargo este error sigue siendo lo suficientemente confiable para los alcances de este trabajo. Las tablas anteriores evidencian que las mediciones resultan ser más confiables para valores de MnO y $Fe_2O_3 > 0,01 \%$ y V > 150 ppm, por lo que muestras con estos valores menores a estos niveles se sustituyeron en las tablas de resultados por "<0,01 o <150".

4.3.3. Difracción de rayos x

a) Características del equipo

El equipo utilizado fue un difractómetro de rayos x Philips, diseñado para la determinación de la mineralogía de una muestra dada. Éste permite determinar la distancia interplanar existente entre las celdas de la estructura cristalina en un mineral. El difractómetro cuenta con un tubo generador de rayos x, el cual posee un ánodo de Cu, enfriado a través de un flujo continuo de agua. Posee un goniómetro tipo "step scanning" PW 3020 que permite hacer un barrido de la muestra a lo largo de un amplio rango de valores 20. Posee también, un detector de ionización de gas PW 1711/90 encargado de recibir las señales provenientes de la muestra. Adicionalmente, cuenta con una cámara de plomo dentro de la cual se encuentra un dispositivo donde son colocadas las muestras para su medición. La operación del difractómetro es controlada por un Software diseñado para este equipo, el cual es compatible con PC, bajo el sistema operativo MS-DOS y lleva por nombre APD ("Automated Powder Diffraction"), versión 3.5B (1992).

b) Preparación de muestras y condiciones de medición.

Para cada una de las muestras que fueron analizadas por este método, se utilizó una cantidad de aproxidamente 1 cm³ de material previamente pulverizado, según el proceso general de molienda. El polvo fue colocado sobre portamuestras de aluminio diseñados específicamente para este equipo, los cuales poseen una cavidad de 1,5 x 2 x 0,2 cm. Una vez sobre el portamuestra y como paso final, el polvo es compactado hasta conseguir una superficie uniforme, al ras de la lámina de aluminio. Para determinar la mineralogía presente en las muestras, las mismas fueron analizadas utilizando radiación de Cu desde un ángulo inicial igual a 2,5° 20 hasta un ángulo de 70° 20 con un tamaño de paso de 0,010° 20 y un tiempo por paso de 1,25 seg, estas condiciones estas registradas en el software con el nombre de DESCO30. Adicionalmente fueron analizadas un grupo de muestras de ambas formaciones para corroborar la presencia del mineral ilita/esmectita, por lo cual las mismas se montaron de forma orientada en un portamuestra de vidrio y se corrieron desde 2,5 20 hasta 50° 20 con el programa ESTANDAR.IP3, el cual es especifico para la determinación de minerales de arcillas.

5.- RESULTADOS E INTERPRETACIONES

5.1. RESULTADOS ANALÍTICOS

Un total de 245 muestras han sido analizadas tanto por fluorescencia de rayos x como por radiometría, de éstas 155 corresponden a la Formación Barco y 89 a la Formación Mirador. Es de hacer notar que los análisis de difracción de rayos x han sido hechos de manera selectiva, escogiendo para esto aquellas muestras en las que se consideró importante la determinación de su mineralogía, con la finalidad de mejorar algunos aspectos interpretativos.

Las tablas contentivas de los resultados obtenidos a partir de los métodos analíticos empleados en ambas formaciones, se muestran a continuación.

5.1.1. Formación Barco

a) Fluorescencia de rayos x

MUESTRA	METROS	%SiO ₂	%TiO ₂	%Al ₂ O ₃	%Fe ₂ O ₃	%MnO	%CaO	%K₂O	ppmV
(tsp)									••
835	169	75,75	0,381	15,44	4,99	0,051	0,149	0,748	<150
830	167,5	80,19	0,488	10,34	1,57	0,019	0,163	0,553	<150
825	166	69,53	0,597	20,73	2,23	0,089	0,299	1,71	<150
820	165	63,35	0,552	19,33	2,66	0,025	0,474	1,17	<150
815	164	62,40	0,558	16,06	2,28	0,028	0,532	1,20	<150
810	163	70,03	0,376	6,73	5,71	0,083	0,336	0,186	<150
805	161,5	83,82	0,255	12,28	3,74	0,084	0,068	0,260	<150
800	160,5	93,41	0,205	9,06	7,00	0,132	0,054	0,224	295
795	159	93,09	0,239	8,73	1,20	0,024	0,067	0,241	<150
790	158	78,65	0,281	14,23	5,63	0,03	0,408	0,434	304
785	157	82,38	0,282	10,93	10,24	0,083	0,163	0,431	308
780	156	70,83	0,276	13,26	3,88	0,041	0,064	0,305	258
775	155	84,63	0,282	10,20	7,85	0,058	0,073	0,314	327
770	154	84,41	0,458	12,48	3,55	0,026	0,129	0,524	<150
765	153	77,91	0,318	11,77	1,41	0,020	0,119	0,499	<150
760	152	83,20	0,268	10,02	3,48	0,032	0,092	0,405	242
755	151	79,20	0,368	11,90	2,46	0,024	0,099	0,581	<150
750	150	85,70	0,526	9,94	3,20	0,032	0,079	0,361	<150
745	148	79,29	0,591	12,22	4,06	0,031	0,092	0,683	240
740	147	69,53	0,538	18,49	3,77	0,041	0,209	1,45	<150
735	146	74,82	0,584	17,06	3,56	0,028	0,176	1,37	<150

Tabla 7. Análisis químicos por fluorescencia de rayos x de la Formación Barco

MUESTRA	METROS	%SiO ₂	%TiO ₂	%Al ₂ O ₃	%Fe ₂ O ₂	%MnO	%CaO	%K ₂ O	Vmqq
(tsp)									P P · · · ·
730	145	77,37	0,656	20,40	2,49	0,030	0,227	1,52	<150
725	144	90,07	0,719	9,97	1,70	0,025	0,079	0,427	<150
720	143	64,28	0,592	22,15	3,74	0,029	0,254	1,44	<150
715	142	62,09	0,574	23,76	4,67	0,043	0,229	1,87	295
710	141	78,76	0,548	17,80	2,71	0,028	0,116	1,26	<150
705	140	86,76	0,373	10,74	3,07	0,054	0,161	0,400	<150
700	139	86,37	0,359	12,88	0,51	0,010	0,109	0,613	<150
695	138	85,98	0,282	7,28	<0.01	0,014	0,048	0,215	<150
690	137	76,40	0,639	21,98	<0.01	0,022	0,246	1,50	<150
685	136	64,37	0,580	20,61	<0.01	<0.01	0,360	1,40	<150
680	135	67,52	0,595	19,90	<0.01	0,012	0,335	1,26	<150
675	134	66,32	0,600	19,98	4,97	0,028	0,354	1,34	488
670	133	70,48	0,513	18,76	4,60	0,042	0,232	1,47	<150
665	132	84,83	0,294	9,72	4,50	0,028	0,094	0,414	<150
660	131	54,37	0,284	8,32	4,36	0,060	0,521	0,250	<150
655	130	72,26	0,592	19,41	0,50	0,018	0,229	1,13	<150
650	129	67,87	0,576	18,77	0,11	0,013	0,275	1,25	<150
645	128	65.41	0,508	17.84	1,58	0,011	0,367	1,20	<150
640	127	60.75	0.471	17.46	1.54	< 0.01	0.295	1.02	<150
635	126	67.56	0.517	19.65	1.00	< 0.01	0.205	1.25	<150
630	125	88,15	0.316	13.64	3.87	0.030	0.046	0.586	<150
625	124	65,93	0.627	19.86	1.46	0.021	0.215	1.43	<150
620	123	66,50	0.608	19.94	6.07	0.049	0.298	1 70	308
615	122	69.49	0.621	17 72	3 27	0.032	0.319	1 22	<150
610	120.5	67.02	0.616	19.40	2.53	0.021	0.328	1 71	<150
605	119	68.25	0,606	19.87	1 92	0.028	0.308	1.96	<150
600	118	71.57	0.478	15.64	1 99	0.014	0 169	1 22	<150
595	117	74 27	0.487	15,66	1,00	0.015	0,100	1 20	<150
590	116	66 30	0,407	17 71	2 79	0,010	0,100	1 31	<150
585	115	68.08	0,502	14 59	2 32	0.027	0,412	1 36	<150
580	114	69.49	0,531	17 58	3.88	0,027	0.344	1.48	<150
575	113	67 78	0,535	15.45	5,00	0,023	0,344	1 38	262
575	112	70.85	0,535	16.82	3 72	0,100	0,324	1,50	<150
565	112	66.88	0,520	15.00	3.16	0,037	0,310	1,45	216
560	110	82.03	0,340	10.84	2 72	0,030	0,301	0.678	<150 <150
555	100	70 56	0,343	12 19	4.28	0,027	0,100	0,070	<150
550	103	84.05	0,403	0.25	5.57	0,000	0,210	0,001	250
545	103	04,00	0,320	3,23	5,57	0,092	0,212	0,511	200
545	107	68.33	0,309	16 17	5,50 4 75	0,037	0,179	1 15	<150
525	105	72.91	0,007	1/ /0	5.94	0,037	0,303	1,40	224
535	105	72,01 56.57	0,400	7.00	5,04	0,173	0,273	0.452	224
530	104,5	05.01	0,290	7,99	5,20	0,002	24,04	0,452	217
520	103,5		0,320	9,29	5,70	0,304	0,199	1.04	204
520	102	10,01	0,400	10,40	4,10	0.027	0.219	1,04	231
515		11,13	0,432	13,39	5,01	0,235	0,247	1,09	<150
510	99,5	69,74	0,460	14,20	2,51	0,023	0,268	1,22	<150
505	98,5	69,69	0,440	13,24	1,58	0,018	0,270	1,09	<150
500	97	69,60	0,499	15,65	4,66	0,033	0,316	1,43	233
495	95,5	03,87 74,00	0,506	14,49	4,95	0,045	0,322	1,45	<150
490	94	71,08	0,476	14,81	5,04	0,048	0,258	1,26	214
485	92,5	69,21	0,504	14,89	5,64	0,115	0,301	1,31	229
480	91	86,38	0,285	8,02	6,81	0,307	0,138	0,352	249

MUESTRA	METROS	%SiO	%TiO	%ALO	%Fe ₂ O ₂	%MnO	%CaO	%K.O	nnmV
(tsp)		700102	/01102	7041203	701 0203	/011110	/0000	701120	PPIII
475	89,5	66,96	0,491	14,09	5,66	0,152	0,326	1,29	244
470	88,5	70,66	0,512	16,41	4,85	0,060	0,347	1,37	<150
465	87	70,11	0,479	14,48	5,54	0,136	0,281	1,27	214
460	86	62,67	0,561	15,13	5,05	0,086	0,364	1,59	205
455	85	70,44	0,472	14,67	5,62	0,128	0,300	1,21	207
450	83,5	74,06	0,481	15,59	4,95	0,130	0,328	1,34	<150
445	82,5	66,33	0,522	15,39	5,26	0,091	0,368	1,47	201
440	81,5	74,96	0,488	17,46	5,36	0,129	0,305	1,34	208
435	80	67,32	0,569	18,36	5,10	0,099	0,437	1,71	208
430	78,5	75,08	0,427	12,89	5,17	0,110	0,216	0,961	<150
425	77	64,04	0,601	18,82	4,76	0,096	0,465	1,87	204
420	76	62,95	0,528	15,73	2,03	0,067	0,518	1,58	<150
415	75	65,46	0,537	15,55	4,76	0,096	0,323	1,51	<150
410	74	67,10	0,494	13,52	4,34	0,062	0,266	1,31	<150
405	72,5	69,28	0,506	13,78	4,61	0,085	0,272	1,22	239
400	71	66,09	0,540	16,46	4,42	0,066	0,320	1,71	223
395	70	84,69	0,263	7,14	4,74	0,099	0,095	0,301	<150
390	69	83,27	0,308	7,85	4,67	0,080	0,081	0,519	<150
385	68	72,18	0,347	10,42	3,77	0,027	0,204	0,839	<150
380	66,5	63,81	0,543	16,45	3,55	0,022	0,276	1,76	<150
375	65,5	66,59	0,457	13,33	3,37	0,123	0,377	1,17	<150
370	64	64,16	0,498	15,09	2,09	0,551	0,292	1,49	<150
365	63	64,94	0,549	16,85	4,01	0,045	0,405	1,69	<150
360	62	67,58	0,471	14,76	4,34	0,059	0,227	1,34	211
355	61	64,13	0,532	16,23	2,81	0,033	0,306	1,64	<150
350	60	63,58	0,556	15,47	3,41	0,111	0,392	1,58	<150
345	59	69,30	0,477	14,16	3,49	0,033	0,317	1,21	<150
340	58	76,06	0,391	12,84	3,12	0,025	0,242	0,801	<150
335	57	70,35	0,527	14,33	4,83	0,074	0,184	0,989	238
330	56	71,46	0,422	12,52	4,32	0,052	0,166	1,05	<150
325	55	56,49	0,597	16,82	4,24	0,062	0,343	2,12	229
320	54	72,30	0,406	12,01	4,55	0,072	0,179	0,876	225
315	53	79,99	0,386	T1,83	3,58	0,032	0,091	0,605	212
310	52	03,31	0,370	5,55	2.59	0,141	0,099	0,014	ZZ I 150
305	50	04,04 97.66	0,200	4,40	0.92	0,012	0,321	0,200	275
205	10	86 70	0,323	6.00	0,03		0,144	0,334	215
295	45	81 11	0,207	12.65	1 0/	0.012	0,273	0,312	286
285	40	72.65	0,313	14.05	4 11	0.037	0,100	1 13	268
280	46	58 18	0,676	19 14	1 25	<0.01	0,200	2 20	315
275	45	80.02	0.287	6 53	0.72	<0.01	0,100	0 371	374
270	40	70.18	0.345	11 91	0.91	0.011	0 175	0.534	<150
265	43	91.07	0 198	3.33	4 40	0.032	0.042	0 103	270
260	42	82.93	0.179	2.64	10.29	0.057	0.039	0.096	292
255	41	75.31	0.349	9,31	4.76	0.029	0.244	0.498	324
250	40	88.17	0.314	10.82	3.94	0.041	0.238	0.722	310
245	39	70.38	0.281	4.33	22.57	0.419	0,223	0.083	<150
240	38	71.78	0.283	6.04	1.58	0.012	0.131	0.066	<150
235	37	63.94	0.356	16.92	3.22	0.025	0.070	0.517	285
230	36	48.91	1.025	26.98	1.11	0.010	0.158	2.91	334
225	34,5	89,01	0,252	5,08	1,69	0,014	0,064	0,202	296

MUESTRA	METROS	%SiO ₂	%TiO ₂	%Al ₂ O ₃	%Fe ₂ O ₃	%MnO	%CaO	%K₂O	ppmV
(tsp)	22	00.66	0.220	5 50	0.70	-0.01	0 1 1 7	0.104	251
220	33	90,00	0,220	5,52	0,79	<0.01	0,117	0,194	264
215	32	90,29	0,250	6.20	1,01	0,015	0,145	0,141	<150
210	20.5	97.00	0,370	7 1 1	1,95	<0.01	0,095	0,190	<150
205	29,5	01,00	0,301	5.09	0,73	<0.01	0,100	0,197	<150
200	20	74.40	0,175	12.65	0,01	<0.01	0,102	0,001	267
195	21	61 44	0,379	12,00	0,54	<0.01	0,117	0,034	207
190	20	62.49	0,005	16.24	0,58	<0.01	0,171	1,01	407
100	25	72.00	0,519	10,34	0,57	<0.01	0,171	1,10	427
100	24	73,00	0,390	9,01	0,34	0,014	0,002	0,711	201
173	23	72,00	0,358	10,07	1,00	0,010	0,103	0,743	3/0
170	22	72,00	0,380	12,29	1,40	0,017	0,148	0,909	241
100	21	09,79	0,377	10,34	2,37	0,010	0,192	0,000	374
160	20	60.20	0,450	14,50	<0.01	<0.01	0,135	1,10	227
155	19	79,29	0,412	14,50	2.07	0,012	0,134	0,994	210
150	10	10,30	0,327	16.04	2,27	0,010	0,071	0,017	<150
140	17	00,01	0,430	10,94	1,22	0,019	0,119	0,951	<150
140	10	03,01	0,375	12,03	1,31	<0.01	0,107	0,000	<150
130	13	00,74 76.07	0,199	0.15	1,55	<0.01	0,043	0,293	<150
130	14	70,07	0,203	0,10	2,04	0,010	0,100	1.60	<150
120	13	55,00 65,96	0,030	10.00	0,55	0,022	0,351	1,09	<150
120	12	00,00 56 45	0,021	19,09	3,54	0,013	0,190	1,00	<150
110	10	50,45	0,572	10.90	1,00	<0.01	0,340	1,37	<150
105	10	95 59	0,000	10,30	1,71	0,017	0,201	0.204	<150
105	9	55.62	0,270	16.63	0,59	0,011	0,040	1 80	<150
95	0 7	55,02 66 16	0,041	10,03	0,12	0,010	0,337	0.567	<150
95	6	62.02	0,309	12.63	7.53	0,011	0,724	0,307	<150
90	5	77.50	0,300	12,03	7,55	0,000	0,271	0,000	274
80	5	76.67	0,200	8 70	0,04	0,222	0,150	0,204	2/4
75	4	78.21	0,390	10.70	9,01	<0.01	0,133	0,300	<u> </u>
70	2	87.04	0,412	8 25	2.02	0.072	0,210	0,441	4J4 <150
65	1	62.08	0,230	15.8/	2,02	0.072	0,179	1 16	<150
05		02,00	0,497	13,04	2,01	0,021	0,300	1,10	<130
Prom	edio	73,01	0,443	13,58	3,40	0,056	0,381	0,969	201
Míni	mo	48,91	0,175	2,64	0,01	0,010	0,039	0,066	150
Máxi	mo	93,41	1,025	26,98	22,57	0,551	24,040	2,913	488

Abreviaturas:

MUESTRA: Identificación de la muestra. La tsp 65 está en la base de la sección y la tsp 835 está en el tope. METROS: Posición de la muestra en la columna estratigráfica, en metros desde la base.

b) Radiometría

MUESTRA	METROO	γTOTAL	γ F1	ν ⁴⁰ Κ	γ F2	γ ²¹⁴ Bi	γ F3	γ ²⁰⁸ ΤΙ	γF4
(tsp)	METROS	(cps)	(cps)	(cps)	(cps)	(cps)	(cps)	(cps)	(cps)
835	169	8,836	6,592	0,974	0,161	0,381	0,479	0,183	0,066
830	167,5	8,884	6,713	0,928	0,177	0,324	0,466	0,185	0,092
825	166	8,893	6,703	1,004	0,160	0,346	0,387	0,201	0,092
820	165	9,029	6,898	0,958	0,190	0,323	0,375	0,171	0,115
815	164	8,970	6,823	0,912	0,150	0,367	0,436	0,177	0,105
810	163	8,738	6,724	0,822	0,161	0,336	0,425	0,182	0,088
805	161,5	8,594	6,590	0,888	0,148	0,288	0,433	0,152	0,096
800	160,5	8,500	6,483	0,858	0,167	0,285	0,427	0,171	0,108
795	159	8,534	6,575	0,807	0,162	0,327	0,408	0,182	0,075
790	158	8,706	6,644	0,892	0,152	0,315	0,408	0,185	0,110
785	157	8,540	6,477	0,933	0,144	0,323	0,404	0,165	0,094
780	156	8,650	6,581	0,873	0,158	0,348	0,435	0,171	0,083
775	155	8,523	6,467	0,831	0,140	0,327	0,450	0,188	0,121
770	154	8,539	6,464	0,893	0,153	0,369	0,402	0,188	0,071
765	153	8,612	6,532	0,918	0,131	0,333	0,458	0,163	0,078
760	152	8,694	6,673	0,870	0,146	0,321	0,469	0,133	0,082
755	151	8,725	6,562	0,951	0,157	0,343	0,436	0,184	0,093
750	150	8,660	6,629	0,846	0,175	0,329	0,429	0,181	0,071
745	148	8,928	6,848	0,928	0,161	0,314	0,398	0,172	0,106
740	147	8,815	6,615	0,979	0,148	0,335	0,425	0,200	0,113
735	146	9,104	6,985	0,879	0,165	0,325	0,450	0,223	0,077
730	145	8,790	6,629	0,963	0,160	0,358	0,377	0,227	0,075
725	144	8,886	6,776	0,876	0,147	0,379	0,459	0,175	0,074
720	143	9,098	6,740	1,013	0,198	0,338	0,510	0,219	0,081
715	142	8,866	6,685	1,001	0,163	0,374	0,403	0,167	0,073
710	141	9,148	6,925	0,983	0,181	0,342	0,460	0,190	0,067
705	140	8,909	6,768	0,908	0,166	0,339	0,430	0,195	0,103
700	139	8,498	6,440	0,830	0,151	0,353	0,466	0,184	0,074
695	138	8,450	6,498	0,841	0,137	0,302	0,399	0,181	0,094
690	137	9,160	6,916	1,024	0,178	0,340	0,415	0,197	0,091
685	136	9,146	6,911	0,998	0,156	0,328	0,463	0,218	0,073
680	135	9,101	6,817	1,013	0,196	0,328	0,470	0,195	0,084
675	134	9,120	7,007	0,935	0,128	0,311	0,434	0,219	0,086
670	133	8,821	6,690	0,931	0,150	0,396	0,413	0,158	0,083
665	132	8,847	6,729	0,898	0,158	0,345	0,454	0,165	0,100
660	131	8,748	6,679	0,867	0,152	0,317	0,440	0,196	0,098
655	130	8,783	6,756	0,883	0,181	0,344	0,388	0,160	0,071
650	129	9,181	6,932	1,000	0,174	0,355	0,446	0,188	0,086
645	128	8,921	6,760	0,894	0,169	0,356	0,479	0,188	0,075
640	127	8,729	6,575	0,902	0,152	0,356	0,415	0,238	0,092
635	126	9,039	6,882	0,938	0,155	0,397	0,434	0,176	0,057
630	125	8,436	6,417	0,890	0,161	0,330	0,400	0,178	0,059
625	124	8,991	6,771	0,918	0,187	0,317	0,515	0,215	0,068
620	123	9,025	6,808	0,996	0,165	0,342	0,460	0,165	0,090

Tabla 8. Análisis radiométricos de la Formación Barco.

MUESTRA	METROS	γΤΟΤΑL	γF1	γ ⁴⁰ Κ	γ F2	γ ²¹⁴ Bi	γ F3	γ^{208} TI	γF4
(tsp)	METRUS	(cps)	(cps)	(cps)	(cps)	(cps)	(cps)	(cps)	(cps)
615	122	8,952	6,742	0,999	0,183	0,302	0,431	0,209	0,086
610	120,5	9,013	6,807	0,937	0,187	0,315	0,511	0,184	0,073
605	119	8,844	6,619	1,031	0,181	0,300	0,423	0,198	0,092
600	118	8,818	6,663	0,978	0,172	0,306	0,447	0,183	0,070
595	117	8,628	6,540	0,917	0,187	0,313	0,453	0,159	0,059
590	116	8,802	6,600	0,967	0,177	0,373	0,421	0,188	0,077
585	115	8,850	6,882	0,903	0,173	0,344	0,423	0,200	0,093
580	114	8,840	6,681	0,915	0,177	0,350	0,452	0,171	0,094
575	113	8,727	6,594	0,915	0,177	0,327	0,421	0,204	0,090
570	112	8,904	6,642	1,027	0,142	0,404	0,425	0,198	0,067
565	111	8,998	6,965	0,858	0,181	0,342	0,392	0,173	0,088
560	110	8,456	6,388	0,925	0,154	0,300	0,419	0,179	0,092
555	109	8,652	6,710	0,819	0,135	0,325	0,421	0,167	0,075
550	108	8,731	6,753	0,827	0,138	0,364	0,376	0,206	0,068
545	107	8,769	6,732	0,876	0,148	0,352	0,419	0,175	0,070
540	106	8,952	6,890	0,904	0,131	0,323	0,435	0,184	0,086
535	105	8,902	6,782	0,952	0,179	0,298	0,460	0,153	0,079
530	104,5	8,588	6,594	0,823	0,140	0,294	0,442	0,227	0,069
525	103,5	8,559	6,584	0,822	0,148	0,323	0,423	0,165	0,095
520	102	8,760	6,596	1,034	0,145	0,332	0,399	0,168	0,086
515	101	8,975	6,838	0,881	0,190	0,360	0,425	0,213	0,069
510	99,5	8,747	6,553	0,965	0,156	0,365	0,424	0,192	0,092
505	98,5	8,759	6,595	0,891	0,154	0,373	0,439	0,234	0,075
500	97	9,147	6,950	0,961	0,163	0,346	0,418	0,206	0,104
495	95,5	9,052	6,832	0,948	0,185	0,374	0,479	0,166	0,070
490	94	8,918	6,738	0,889	0,209	0,378	0,407	0,207	0,092
485	92,5	8,846	6,688	0,960	0,148	0,356	0,431	0,177	0,085
480	91	8,756	6,679	0,890	0,146	0,333	0,417	0,206	0,085
475	89,5	9,341	7,064	0,896	0,189	0,375	0,495	0,197	0,128
470	88,5	8,722	6,548	0,958	0,163	0,369	0,424	0,190	0,071
465	87	8,904	6,746	0,910	0,185	0,319	0,477	0,190	0,077
460	86	8,904	6,719	0,969	0,163	0,388	0,431	0,173	0,063
455	85	9,185	6,973	0,944	0,171	0,410	0,415	0,192	0,081
450	83,5	8,873	6,728	0,881	0,158	0,330	0,492	0,205	0,081
445	82,5	8,960	6,717	0,945	0,177	0,366	0,472	0,200	0,085
440	81,5	9,197	6,952	0,944	0,154	0,399	0,442	0,206	0,106
435	80	9,154	6,888	0,996	0,175	0,340	0,521	0,151	0,086
430	78,5	8,988	6,904	0,952	0,160	0,342	0,394	0,167	0,069
425	77	9,502	7,172	1,007	0,174	0,384	0,474	0,188	0,104
420	76	9,149	6,904	0,999	0,145	0,376	0,479	0,176	0,070
415	75	8,904	6,781	0,992	0,163	0,335	0,394	0,177	0,063
410	74	9,238	7,010	0,910	0,154	0,390	0,458	0,215	0,100
405	72,5	9,063	7,006	0,890	0,154	0,331	0,427	0,179	0,075
400	71	9,415	6,938	1,090	0,181	0,404	0,467	0,231	0,104
395	70	8,985	6,900	0,877	0,150	0,346	0,410	0,202	0,100
390	69	8,798	6,838	0,877	0,146	0,285	0,408	0,179	0,065
385	68	8,975	6,923	0,831	0,167	0,348	0,419	0,194	0,094

MUESTRA	METROS	γΤΟΤΑL	γF1	γ ⁴⁰ Κ	γ F2	γ ²¹⁴ Bi	γ F3	γ ²⁰⁸ TI	γ F4
(tsp)	METRUS	(cps)	(cps)	(cps)	(cps)	(cps)	(cps)	(cps)	(cps)
380	66,5	9,069	6,902	0,879	0,185	0,400	0,452	0,177	0,073
375	65,5	8,798	6,815	0,856	0,160	0,319	0,410	0,160	0,077
370	64	8,773	6,627	1,017	0,140	0,313	0,433	0,160	0,083
365	63	9,163	6,927	0,935	0,181	0,354	0,477	0,204	0,083
360	62	8,977	6,844	0,894	0,163	0,333	0,475	0,192	0,077
355	61	9,152	6,990	0,910	0,173	0,342	0,413	0,219	0,106
350	60	9,250	7,069	0,965	0,156	0,396	0,406	0,169	0,090
345	59	8,767	6,696	0,956	0,152	0,346	0,369	0,177	0,071
340	58	8,863	6,777	0,917	0,158	0,317	0,438	0,160	0,096
335	57	8,806	6,702	0,921	0,148	0,329	0,446	0,165	0,096
330	56	8,973	6,875	0,942	0,171	0,315	0,390	0,185	0,096
325	55	8,971	6,673	1,023	0,175	0,396	0,431	0,194	0,079
320	54	8,775	6,783	0,896	0,165	0,285	0,404	0,156	0,085
315	53	8,942	6,806	0,883	0,175	0,373	0,410	0,208	0,085
310	52	8,808	6,683	0,921	0,171	0,346	0,429	0,175	0,083
305	51	8,429	6,455	0,804	0,142	0,330	0,402	0,207	0,088
300	50	8,848	6,892	0,823	0,146	0,352	0,360	0,198	0,077
295	49	8,679	6,606	0,883	0,144	0,375	0,444	0,156	0,071
290	48	8,665	6,580	0,940	0,174	0,326	0,416	0,149	0,082
285	47	8,815	6,619	0,929	0,175	0,319	0,467	0,208	0,098
280	46	9,167	6,869	0,998	0,167	0,344	0,508	0,198	0,083
275	45	8,735	6,746	0,869	0,133	0,315	0,402	0,179	0,092
270	44	8,696	6,604	0,927	0,163	0,285	0,450	0,188	0,079
265	43	8,917	6,848	0,904	0,163	0,304	0,435	0,185	0,077
260	42	8,335	6,525	0,760	0,123	0,308	0,377	0,154	0,088
255	41	8,606	6,617	0,819	0,154	0,315	0,425	0,192	0,094
250	40	9,025	6,988	0,860	0,150	0,319	0,450	0,163	0,096
245	39	8,590	6,602	0,860	0,140	0,340	0,421	0,156	0,071
240	38	8,450	6,523	0,823	0,148	0,298	0,423	0,160	0,075
235	37	8,877	6,790	0,892	0,133	0,308	0,477	0,175	0,102
230	36	9,656	7,268	1,065	0,170	0,362	0,476	0,216	0,099
225	34,5	8,578	6,605	0,870	0,128	0,290	0,427	0,178	0,080
220	33	8,671	6,648	0,948	0,125	0,335	0,375	0,154	0,085
215	32	8,888	6,956	0,856	0,148	0,315	0,381	0,163	0,069
210	31	8,656	6,621	0,877	0,146	0,327	0,444	0,171	0,071
205	29,5	8,531	6,535	0,823	0,135	0,342	0,456	0,175	0,065
200	28	8,594	6,531	0,988	0,142	0,279	0,417	0,154	0,083
195	27	8,646	6,638	0,902	0,156	0,310	0,396	0,160	0,083
190	26	9,206	6,956	1,010	0,146	0,367	0,429	0,204	0,094
185	25	9,096	6,958	0,894	0,167	0,371	0,423	0,185	0,098
180	24	8,762	6,665	0,933	0,146	0,371	0,406	0,165	0,076
175	23	8,896	6,773	0,915	0,140	0,356	0,469	0,169	0,075
170	22	8,915	6,808	0,896	0,181	0,323	0,429	0,188	0,090
165	21	8,898	6,783	0,913	0,166	0,332	0,438	0,178	0,089
160	20	8,948	6,742	0,913	0,192	0,385	0,419	0,190	0,108
155	19	8,879	6,788	0,919	0,160	0,306	0,413	0,175	0,119
150	18	8,806	6,788	0,877	0,138	0,342	0,402	0,183	0,077

MUESTRA	METROS	γ ΤΟΤΑ L	γF1	γ ⁴⁰ Κ	γ F2	γ ²¹⁴ Bi	γF3	γ ²⁰⁸ TI	γF4
(tsp)	METROS	(cps)	(cps)	(cps)	(cps)	(cps)	(cps)	(cps)	(cps)
145	17	8,996	6,975	0,900	0,158	0,317	0,438	0,140	0,069
140	16	8,735	6,588	0,873	0,167	0,352	0,469	0,188	0,100
135	15	8,827	6,754	0,913	0,138	0,329	0,431	0,171	0,092
130	14	8,685	6,538	0,978	0,153	0,333	0,447	0,169	0,068
125	13	9,263	6,971	0,925	0,190	0,404	0,450	0,229	0,094
120	12	9,108	6,883	0,960	0,163	0,373	0,427	0,208	0,094
115	11	8,911	6,776	0,879	0,167	0,371	0,429	0,190	0,098
110	10	9,042	6,908	0,908	0,165	0,335	0,435	0,192	0,098
105	9	8,804	6,683	0,967	0,165	0,340	0,417	0,163	0,071
100	8	9,006	6,707	1,063	0,167	0,343	0,395	0,233	0,102
95	7	8,616	6,671	0,813	0,158	0,296	0,416	0,182	0,082
90	6	8,895	6,794	0,849	0,168	0,386	0,422	0,198	0,080
85	5	9,008	6,859	0,861	0,165	0,341	0,486	0,202	0,095
80	4	8,736	6,703	0,865	0,172	0,357	0,400	0,179	0,062
75	3	8,876	6,806	0,885	0,147	0,326	0,434	0,191	0,090
70	2	8,918	6,803	0,874	0,135	0,361	0,468	0,201	0,079
65	1	8,958	6,789	0,934	0,179	0,322	0,448	0,208	0,078
Promedio		8,860	6,740	0,917	0,160	0,341	0,433	0,185	0,085
Mínimo		8,330	6,380	0,760	0,120	0,279	0,360	0,133	0,057
Máximo		9,650	7,260	1,090	0,200	0,410	0,521	0,238	0,128

Abreviaturas:

MUESTRA: Identificación de la muestra. La tsp 65 está en la base de la sección y la tsp 835 está en el tope. METROS: Posición de la muestra en la columna estratigráfica, en metros desde la base. cps: Cuentas por segundo

c) Difracción de rayos x

En la Formación Barco fueron analizadas mediante este método analítico un total de 11 muestras (Tabla 9).

MUESTRA (tsp)	LITOLOGÍA	MINERALOGÍA Y PORCENTAJE SEMICUANTITATIVO
185	Limolita	Cuarzo(82%), arcillas (16%) (clorita, muscovita, caolinita), siderita (1%), Yeso(1%)
230	Lutita	Cuarzo (11%), arcillas (78%) (muscovita, caolinita, clorita), plagioclasa (4%), calcita(3%), anatasa/rutilo/esfena (<1%), siderita (4%)
245	Arenisca	Cuarzo (98%), clorita(1%), caolinita (1%)
280	Limolita	Cuarzo (68%), arcillas(31%) (ilita/esmectita, muscovita, caolinita, clorita, plagioclasa (1%), anatasa (<1%)
305	Arenisca	Cuarzo (95%), caolinita (4%), yeso (1%)
310	Limolita	Cuarzo (88%),muscovita (8%), Oxidos y sulfuro de hierro (4%) (pirita, ilmenita, hematita)
335	Arenisca/Interc.	Cuarzo (81%), (18%) (caolinita, muscovita), calcita (1%).
350	Limolita/Interc.	Cuarzo (61%), arcillas(36%) (caolinita, clorita), plagioclasa (1%) calcita (1%)
370	Limolita/Interc.	Cuarzo (76%), arcillas (24%) (illita/smectita, muscovita, caolinita), calcita (1%), siderita (2%), anatasa (<1%)
530	Arenisca/ Interc.	Cuarzo (55%), caolinita (11%), calcita (34%).
695	Arenisca	Cuarzo (89%), caolinita (11%).

Tabla 9. Análisis mineralógico por difracción de rayos x de la Formación Barco.

Nota: los valores entre paréntesis indican los porcentajes de cada mineral determinado de manera semicuantitativa por difracción de rayos x.

5.1.2. Formación Mirador

a) Fluorescencia de rayos x

Tabla 10. Análisis químicos por fluorescencia de rayos x de la Formación Mirador.

MUESTRA	METROS	%Si0	%TiO	% ^ 1 0	%Eo O	%MnO	%CaO	%K 0	nnm\/
(tspm)	WIL TROS	70 3 10 ₂	7011O2	70A12U3	701 C2O3		/0CaU	70K20	ppinv
445	93	97,84	0,252	4,19	0,219	0,014	0,041	0,089	<150
440	92	93,65	0,227	3,58	0,590	0,012	0,053	0,071	<150
435	91	91,59	0,234	6,24	0,274	0,014	0,044	0,087	<150
430	90	87,28	0,330	5,86	<0,01	0,011	0,039	0,108	<150
425	89	94,27	0,321	8,36	<0,01	0,018	0,021	0,210	<150
420	88	87,58	0,250	11,71	<0,01	0,014	0,016	0,244	<150
415	87	90,37	0,263	8,31	<0,01	<0,01	0,020	0,164	<150
410	86	89,64	0,270	5,18	0,939	0,023	0,035	0,100	<150
405	85	93,61	0,429	4,87	<0,01	<0,01	0,039	0,058	<150
400	84	88,57	0,265	3,77	0,315	0,017	0,042	0,058	<150
395	83	91,22	0,265	3,84	1,036	<0,01	0,035	0,073	<150
390	82	92,78	0,332	3,81	<0,01	<0,01	0,048	0,073	<150
385	81	90,78	0,183	4,20	<0,01	0,016	0,045	0,074	<150
380	80	81,96	0,458	11,60	0,067	<0,01	0,039	0,106	<150
375	79	70,28	0,683	23,96	0,708	<0,01	0,042	1,18	271
370	78	89,96	0,222	8,42	0,267	<0,01	0,032	0,079	<150
365	77	87,53	0,366	5,98	0,121	<0,01	0,035	0,128	<150
360	76,5	86,72	0,311	10,21	<0,01	0,018	0,036	0,151	<150
355	75	94,73	0,311	9,43	<0,01	<0,01	0,015	0,173	<150
350	73,5	92,29	0,239	5,85	<0,01	0,016	0,028	0,080	<150
345	72	78,09	0,495	16,72	<0,01	0,013	0,011	0,410	<150
340	71,5	80,63	0,376	16,86	<0,01	<0,01	0,027	0,377	<150
335	70	81,56	0,301	16,56	<0,01	0,021	0,021	0,317	<150
330	68,5	93,15	0,388	10,38	<0,01	0,021	0,026	0,284	<150
325	67	90,23	0,216	6,70	0,526	0,019	0,038	0,210	<150
320	66	95,43	0,267	4,69	<0,01	0,021	0,037	0,062	<150
315	65,5	91,33	0,303	5,16	0,227	0,014	0,031	0,157	<150
310	65	89,81	0,553	5,14	1,02	0,011	0,039	0,097	<150
305	64	86,38	0,477	6,29	1,487	0,013	0,034	0,094	<150
300	63	89,29	0,269	6,48	<0,01	<0,01	0,035	0,150	<150
295	62	90,31	0,347	8,53	<0,01	0,019	0,023	0,278	<150
290	61	67,35	0,616	18,57	1,87	0,014	0,052	0,986	236
285	60	61,39	0,606	17,77	6,50	0,040	0,062	1,07	257
280	59	63,66	0,539	15,70	8,15	0,051	0,084	0,883	<150
275	58	67,17	0,529	18,71	8,99	0,060	0,134	0,856	<150
270	57	60,89	0,539	16,23	9,70	0,064	0,163	0,959	237
265	56,5	58,43	0,536	18,15	9,53	0,060	0,136	0,866	249
260	56	61,30	0,581	17,74	7,77	0,049	0,064	1,10	237
255	55	64,17	0,638	22,20	6,57	0,044	0,063	1,20	291
250	54	69,11	0,401	16,52	2,81	0,027	0,042	0,718	<150
245	53	54,76	0,689	21,61	7,09	0,050	0,053	1,38	349
240	52	54,17	0,657	21,07	6,84	0,042	0,055	1,29	303
235	51	80,27	0,409	16,12	<0,01	0,015	0,021	0,894	<150
230	50	78,66	0,452	17,29	<0,01	0,015	0,076	0,863	<150
MUESTRA	METROS	%SiO₂	%TiO₂	%Al ₂ O ₃	%Fe ₂ O ₃	%MnO	%CaO	%K₂O	ppmV
----------------	--------	--------	--------	---------------------------------	---------------------------------	-------	-------	-------	-------------
(tspin) 225	40	00.20	0.424	15.64	0.422	-0.01	0.041	0.796	-150
225	49	00,00	0,434	15,04	0,432	<0,01	0,041	0,700	<150
220	40	67.04	0,430	24.05	<0,01	<0,01	0,055	0,079	<150
215	47	77.04	0,552	24,95	1,00	<0,01	0,045	0,040	244 -150
210	40	01.50	0,425	19,70	<0,01	0,018	0,040	0,787	<150
205	40	07.50	0,309	13,12	<0,01	0,016	0,052	0,437	<150
200	44	87,54	0,355	13,10	<0,01	<0,01	0,028	0,428	<150
195	43	79,43	0,453	10,23	<0,01	<0,01	1,10	0,599	<150
190	42	85,49	0,387	13,57	<0,01	0,017	0,068	0,528	<150
185	41	85,71	0,259	8,71	1,50	<0,01	0,032	0,162	<150
180	40	93,78	0,272	8,41	<0,01	0,015	0,030	0,287	<150
175	39	92,99	0,217	5,20	<0,01	0,012	0,035	0,143	<150
1/0	38	59,81	0,994	26,39	1,17	<0,01	0,053	0,427	805
165	36	62,61	0,633	18,46	5,34	<0,01	0,052	1,61	410
160	35	58,69	0,542	14,65	10,97	0,077	0,114	1,16	269
155	33,5	60,86	0,464	14,04	9,74	0,083	0,104	0,887	256
150	32	60,60	0,616	16,82	1,15	0,060	0,141	1,52	367
145	31	57,74	0,514	15,20	15,17	0,175	0,114	1,15	242
140	29	66,69	0,280	10,53	4,24	0,061	0,102	0,510	<150
135	28	68,92	0,378	12,84	3,31	0,059	0,039	0,671	<150
130	27	70,75	0,207	12,88	1,88	0,034	0,046	0,152	<150
125	26	72,82	0,310	17,49	2,53	0,058	0,035	0,744	<150
120	25	69,85	0,266	13,62	3,59	0,057	0,018	0,603	<150
115	24	76,78	0,217	9,01	1,85	0,041	0,038	0,320	<150
110	23	69,74	0,245	13,12	2,71	0,038	0,144	0,420	244
105	22	63,97	0,378	15,65	3,52	0,046	0,137	0,786	<150
100	21	75,77	0,248	13,56	2,38	<0,01	0,031	0,475	<150
95	20	77,00	0,258	12,67	1,83	0,029	0,042	0,478	<150
90	19	75,34	0,252	10,88	1,24	0,026	0,052	0,435	<150
85	18	74,43	0,294	13,16	2,71	0,038	0,054	0,622	<150
80	17	74,52	0,297	14,10	2,26	0,027	0,069	0,610	<150
75	16	76,62	0,313	14,87	2,17	0,037	0,061	0,665	<150
70	15	70,65	0,408	15,76	3,39	0,034	0,166	0,870	205
65	14	65,81	0,420	17,30	3,71	0,042	0,076	1,13	239
60	12	67,72	0,375	14,41	3,11	0,054	0,053	0,778	<150
55	11	65,30	0,403	15,90	4,74	0,048	0,248	0,780	221
50	10	54,85	0,455	15,75	12,83	0,111	0,162	1,04	351
45	9	66,67	0,477	16,34	5,36	0,038	0,089	1,10	221
40	8	70,66	0,349	15,01	3,41	0,032	0,092	0,779	<150
35	7	66,24	0,393	16,00	3,80	0,028	0,072	0,902	<150
30	6	81,29	0,284	10,44	0,92	0,025	0,044	0,256	<150
25	5	//,/0	0,279	10,82	1,43	0,021	0,029	0,338	<150
20	4	69,67	0,383	14,79	3,84	0,015	0,118	0,623	<150
15	3	69,91	0,333	14,04	3,10	0,029	0,033	0,514	<150
10	2	15,24	0,267	11,16	2,24	0,024	0,039	0,413	<150
5	1	/1,/2	0,441	14,82	2,63	0,020	0,029	0,512	<150
Promedio		77 09	0.387	12 76	2 56	0.029	0.071	0.548	186
Mínimo		54, 69	0, 830	3, 58	0.01	0,010	0.011	0,058	150
Máximo		97.84	0.994	26.38	15, 17	0.175	1,180	1,607	804
			1 1		,	1 1 1	.,	.,	

Abreviaturas: MUESTRA: Identificación de la muestra. La tspm 5 está en la base de la sección y la tspm 445 está en el tope. METROS: Posición de la muestra en la columna estratigráfica, en metros desde la base.

b) Radiometría

MUESTRA	METROO	γΤΟΤΑL	γ F1	γ ⁴⁰ Κ	γ F2	γ ²¹⁴ Bi	γ F3	γ ²⁰⁸ TI	γ F4
(tspm)	MEIROS	(cps)	(cps)	(cps)	(cps)	(cps)	(cps)	(cps)	(cps)
445	93	8,419	6,473	0,769	0,167	0,319	0,440	0,152	0,100
440	92	8,469	6,652	0,758	0,156	0,296	0,363	0,160	0,083
435	91	8,340	6,535	0,756	0,158	0,317	0,342	0,156	0,075
430	90	8,344	6,529	0,731	0,154	0,315	0,390	0,160	0,065
425	89	8,146	6,273	0,790	0,154	0,290	0,398	0,177	0,065
420	88	8,365	6,396	0,840	0,152	0,335	0,385	0,169	0,088
415	87	8,317	6,369	0,815	0,125	0,325	0,385	0,217	0,081
410	86	8,340	6,506	0,810	0,148	0,258	0,365	0,173	0,079
405	85	8,371	6,438	0,815	0,169	0,329	0,400	0,142	0,079
400	84	8,283	6,333	0,910	0,152	0,250	0,383	0,146	0,092
395	83	8,227	6,408	0,758	0,142	0,315	0,385	0,165	0,054
390	82	8,385	6,423	0,808	0,179	0,325	0,390	0,185	0,075
385	81	8,175	6,427	0,744	0,121	0,283	0,379	0,144	0,077
380	80	8,635	6,696	0,873	0,113	0,313	0,406	0,135	0,100
375	79	8,938	6,852	0,931	0,177	0,344	0,392	0,179	0,063
370	78	8,329	6,350	0,796	0,131	0,338	0,423	0,213	0,079
365	77	8,173	6,273	0,802	0,113	0,325	0,410	0,192	0,058
360	76,5	8,458	6,538	0,802	0,144	0,300	0,404	0,146	0,083
355	75	8,150	6,344	0,813	0,135	0,294	0,344	0,160	0,060
350	73,5	8,685	6,656	0,858	0,175	0,342	0,390	0,179	0,085
345	72	8,456	6,506	0,840	0,179	0,288	0,388	0,169	0,088
340	71,5	8,292	6,356	0,806	0,142	0,308	0,452	0,150	0,088
335	70	8,373	6,440	0,885	0,169	0,265	0,392	0,156	0,067
330	68,5	8,223	6,360	0,819	0,144	0,313	0,390	0,142	0,056
325	67	8,535	6,529	0,829	0,121	0,338	0,452	0,190	0,077
320	66	8,213	6,304	0,808	0,152	0,298	0,400	0,156	0,094
315	65,5	8,479	6,519	0,813	0,140	0,350	0,398	0,156	0,104
310	65	8,542	6,640	0,815	0,142	0,277	0,431	0,150	0,088
305	64	8,258	6,502	0,700	0,152	0,298	0,392	0,148	0,067
300	63	8,358	6,400	0,783	0,150	0,335	0,433	0,160	0,096
295	62	8,602	6,548	0,892	0,177	0,298	0,425	0,177	0,085
290	61	8,696	6,660	0,850	0,169	0,363	0,400	0,171	0,083
285	60	8,819	6,694	0,929	0,146	0,338	0,440	0,192	0,081
280	59	8,773	6,825	0,840	0,150	0,313	0,381	0,169	0,096
275	58	8,754	6,633	0,888	0,138	0,338	0,490	0,196	0,073
270	57	8,804	6,788	0,817	0,160	0,310	0,456	0,192	0,081
265	56,5	8,856	6,750	0,977	0,138	0,331	0,400	0,183	0,077
260	56	8,623	6,540	1,002	0,140	0,292	0,400	0,165	0,085
255	55	9,044	6,840	0,983	0,154	0,342	0,425	0,188	0,113
250	54	8,631	6,627	0,813	0,194	0,373	0,410	0,146	0,050
245	53	8,790	6,665	0,967	0,183	0,333	0,415	0,160	0,067
240	52	8,708	6,590	0,963	0,156	0,321	0,423	0,200	0,056

Tabla 11. Análisis radiométricos de la Formación Mirador.

MUESTRA	METROS	γTOTAL	γF1	γ ⁴⁰ Κ	γ F2	γ ²¹⁴ Bi	γ F3	γ ²⁰⁸ TI	γ F4
(tspm)	METROS	(cps)	(cps)	(cps)	(cps)	(cps)	(cps)	(cps)	(cps)
235	51	8,615	6,698	0,777	0,152	0,313	0,429	0,177	0,069
230	50	8,673	6,673	0,842	0,173	0,344	0,417	0,158	0,067
225	49	8,648	6,629	0,823	0,150	0,338	0,448	0,177	0,083
220	48	8,579	6,567	0,875	0,123	0,304	0,413	0,202	0,096
215	47	8,542	6,479	0,852	0,160	0,346	0,446	0,179	0,079
210	46	8,338	6,385	0,808	0,169	0,310	0,417	0,152	0,096
205	45	8,335	6,413	0,800	0,148	0,319	0,408	0,171	0,077
200	44	8,673	6,731	0,840	0,085	0,315	0,483	0,144	0,075
195	43	8,438	6,504	0,783	0,150	0,323	0,415	0,192	0,071
190	42	8,546	6,604	0,806	0,181	0,323	0,383	0,167	0,081
185	41	8,596	6,588	0,815	0,171	0,333	0,431	0,175	0,083
180	40	8,544	6,629	0,858	0,133	0,298	0,383	0,158	0,083
175	39	8,452	6,542	0,729	0,173	0,340	0,396	0,188	0,085
170	38	9,310	6,990	0,925	0,152	0,377	0,540	0,217	0,110
165	36	9,158	6,860	0,988	0,181	0,406	0,415	0,204	0,104
160	35	8,525	6,481	0,919	0,148	0,340	0,404	0,160	0,073
155	33,5	8,602	6,548	0,898	0,173	0,352	0,417	0,148	0,067
150	32	8,879	6,704	0,948	0,185	0,352	0,431	0,196	0,063
145	31	8,723	6,663	0,904	0,156	0,290	0,467	0,175	0,069
140	29	8,658	6,640	0,821	0,194	0,338	0,425	0,158	0,083
135	28	8,577	6,640	0,835	0,125	0,290	0,444	0,171	0,073
130	27	8,438	6,529	0,813	0,142	0,323	0,375	0,165	0,092
125	26	8,210	6,338	0,790	0,154	0,317	0,365	0,169	0,079
120	25	8,410	6,363	0,881	0,169	0,298	0,419	0,183	0,098
115	24	8,365	6,417	0,825	0,171	0,340	0,356	0,192	0,065
110	23	8,531	6,531	0,917	0,123	0,323	0,402	0,171	0,065
105	22	8,565	6,573	0,898	0,123	0,300	0,427	0,146	0,098
100	21	8,748	6,652	0,923	0,177	0,304	0,431	0,179	0,081
95	20	8,481	6,567	0,846	0,129	0,298	0,365	0,206	0,071
90	19	8,354	6,517	0,750	0,156	0,296	0,379	0,175	0,081
85	18	8,417	6,560	0,863	0,142	0,273	0,394	0,119	0,067
80	17	8,642	6,681	0,852	0,150	0,340	0,398	0,152	0,069
75	16	8,388	6,423	0,846	0,142	0,342	0,392	0,158	0,085
70	15	8,548	6,600	0,794	0,160	0,319	0,394	0,198	0,083
65	14	8,227	6,246	0,915	0,146	0,319	0,352	0,169	0,081
60	12	8,396	6,538	0,854	0,106	0,288	0,373	0,152	0,085
55	11	8,721	6,631	0,950	0,175	0,331	0,388	0,169	0,077
50	10	8,729	6,725	0,833	0,129	0,294	0,465	0,196	0,088
45	9	8,731	6,656	0,871	0,158	0,346	0,431	0,177	0,092
40	8	8,288	6,310	0,865	0,156	0,283	0,425	0,169	0,079
35	7	8,544	6,606	0,808	0,167	0,308	0,394	0,163	0,098
30	6	8,658	6,633	0,890	0,144	0,296	0,435	0,183	0,077
25	5	8,613	6,604	0,875	0,119	0,298	0,431	0,177	0,108
20	4	8,540	6,575	0,829	0,152	0,319	0,431	0,167	0,067
15	3	8,656	6,656	0,863	0,148	0,321	0,406	0,165	0,098
10	2	8,533	6,535	0,858	0,150	0,327	0,431	0,158	0,073
5	1	8,844	6,792	0,869	0,160	0,317	0,450	0,167	0,090

MUESTRA (tspm)	METROS	γTOTAL (cps)	γF1 (cps)	γ ⁴⁰ K (cps)	γF2 (cps)	γ ²¹⁴ Bi (cps)	γF3 (cps)	γ ²⁰⁸ TI (cps)	γF4 (cps)
Promedio		8,530	6,550	0,846	0,152	0,318	0,410	0,170	0,080
Mínimo		8,140	6,240	0,700	0,085	0,250	0,340	0,119	0,050
Máximo		9,310	6,990	1,000	0,194	0,406	0,540	0,217	0,113

Abreviaturas:

MUESTRA: Identificación de la muestra. La tspm5 está en la base de la sección y la tspm 445 está en el tope. METROS: Posición de la muestra en la columna estratigráfica, en metros desde la base. cps: Cuentas por segundo

c) Difracción de rayos x

Para esta formación se analizaron por este método analítico un total de 13 muestras

MUESTRA (tspm)	LITOLOGÍA	MINERALOGÍA Y PORCENTAJE SEMICUANTITATIVO
50	Arenisca	Cuarzo(67%), arcillas (30%), (clorita, muscovita, caolinita), anatasa (<1%),
		plagioclasa (1%), hematita (2%).
100	Arenisca	Cuarzo (95%), arcillas(5%) (muscovita, caolinita, clorita), anatasa (<1%)
145	Limolita	Cuarzo (72%), arcillas (28%) (clorita, muscovita, caolinita).
165	Limolita	Cuarzo (43%), arcillas (53%) (muscovita, caolinita), plagioclasa (2%), hematita
		(2%), calcita (1%).
170	Limolita/lutita	Cuarzo (15%), arcillas (84%) (caolinita, ilita/esmectita), hematita (1%).
195	Arenisca	Cuarzo (89%), arcillas(9%) (muscovita, caolinita), calcita(1%), siderita (1%),
235	Arenisca	Cuarzo (85%), arcillas (14%) (muscovita, caolinita), siderita (1%).
255	Limolita/Interc	Cuarzo (63%), arcillas (30%) (clorita, muscovita, caolinita), goetita (1%),
		plagioclasa (1%), anatasa (<1%).
260	Limolita/Interc	Cuarzo (57%.), arcillas (42%) (caolinita, muscovita), calcita (2%).
290	Arenisca	Cuarzo (81%), arcillas (19%) (caolinita, muscovita).
305	Arenisca	Cuarzo (98%), caolinita (1%), hematita (1%)
375	Aren/lutita	Cuarzo (59%), arcillas(39%) (muscovita, caolinita), goetita (1%), calcita (1%)
420	Arenisca	Cuarzo (94%), caolinita (6%).

1 abia 12. Resultados de diffacción de rayos x i ormación minador.	Tabla 12.	Resultados	de difracción	de rayos x	Formación Mirador.
--	-----------	------------	---------------	------------	--------------------

Nota: los valores encerrados entre paréntesis indican los porcentajes de cada mineral determinado de manera semicuantitativa por difracción de rayos x.

5.2. PROCESAMIENTO DE DATOS

El procesamiento estadístico de los datos geoquímicos, constituye la herramienta principal, a través de la cual se establecieron diversas comparaciones con la finalidad de caracterizar las secciones estudiadas y realizar interpretaciones acerca de algunos procesos geológicos que pudieron afectar la zona de estudio.

5.2.1. Formación Barco

a) Estadística general y gráficos exploratorios

- Estadística general

Las tablas que se presentan a continuación muestran el promedio, valores mínimos y máximos y desviación estándar para cada una de las variables, tanto para la composición química como para radiometría.

En la Tabla 13 se muestran los resultados para los datos radiométricos y al observar el comportamiento de las distintas variables se tiene que las mayores variaciones de los datos pertenecen a las ventanas γ F2, γ^{208} Tl, γ F4, γ^{214} Bi, mientras que la menor variación de los datos corresponde con las variables γ Total y γ F1.

	γTOTAL	γF1	$\gamma^{40}\mathbf{K}$	γF2	γ^{214} Bi	γF3	γ^{208} Tl	γF4
Promedio	8,86	6,74	0,92	0,16	0,34	0,43	0,18	0,08
Mín.	8,33	6,38	0,76	0,12	0,28	0,36	0,13	0,06
Máx.	9,65	7,26	1,09	0,20	0,41	0,52	0,24	0,13
Desv. Est.	0,22	0,16	0,06	0,01	0,03	0,03	0,02	0,01

Tabla 13. Formación Barco. Valores estadísticos de variables radiométricas en cps.

En el caso de concentraciones elementales (Tabla 14), la variabilidad de los datos, respecto a la observada con los datos radiométricos, aumenta considerablemente en todas las variables, registrándose más baja en el caso del SiO₂. Por su parte la variabilidad registrada por el TiO₂, Fe₂O₃ y CaO se debe en parte a la presencia en estas rocas de valores anómalos en las variables o a valores un tanto alejados al promedio, más aún en el CaO donde el valor anómalo se encuentra muy distante del promedio registrado para dicha variable. En el caso del V gran parte de la variabilidad se debe a la inestabilidad de las mediciones en este canal y a la saturación producida por el TiO₂. En general estos valores (a excepción de los anómalos) se encuentran dentro del rango esperado para rocas sedimentarias como las estudiadas.

	ppin).										
	%SiO ₂	%TiO ₂	%Al ₂ O ₃	%Fe ₂ O ₃	% MnO	%CaO	%K ₂ O	ppmV			
Promedio	73,01	0,443	13,58	3,40	0,056	0,381	0,969	201			
Min.	48,91	0,175	2,63	0,01	0,010	0,039	0,066	150			
Máx.	93,41	1,020	2,97	22,57	0,551	24,040	2,910	488			

2,65

0,074

1,910

0,551

73

Tabla 14. Formación Barco. Valores estadísticos de composiciones elementales en % en peso (en el V

- Variabilidad de los datos

9,32

0,135

4,53

La variabilidad y dispersión de los datos químicos y radiométricos puede apreciarse más claramente mediante la utilización de algunos gráficos exploratorios como lo son los diagramas de caja e histogramas.

Radiometría

desv. Est

Para las variables radiométricas, los histogramas se muestran en general bastante simétricos, con una clase modal ubicada hacia el centro del gráfico en cuyos extremos se encuentran aproximadamente el mismo número de intervalos de clase, que muestran una disminución progresiva de sus frecuencias a medida que se alejan de la parte central del gráfico (Fig. 67). Esta característica resulta evidente, entre otras, en las variables γ^{40} K, γ F2, γ^{214} Bi y γ^{208} Tl, las cuales particularmente presentan diagramas de caja muy simétricos en los que los valores extremos equidistan de la mediana o valor central (Fig.65).

La unión de ambos aspectos permite afirmar para las ventanas antes mencionadas que el 50 % de los datos que se encuentran por encima y por debajo de la mediana muestran una dispersión similar, o lo que es lo mismo, que los valores de cps presentan una distribución bastante uniforme a partir del valor central, el cual en estos suele coincidir con la moda o valor de mayor frecuencia. El resto de las variables aún cuando muestran una tendencia simétrica en su distribución, ésta es menor que la mostrada por los histogramas ya mencionados y/o presentan valores de cps que registran respecto a la mediana, mayor dispersión hacia uno de los extremos que hacia el otro (Fig.67).

Adicionalmente, la visualización de los diagramas de caja indica respuestas correspondientes al espectro radiométrico, donde se aprecia una disminución de las cuentas por segundo a medida que las ventanas presentan rangos mayores de energía o lo que es lo mismo, a medida que nos desplazamos a la derecha del espectro (Fig. 64). Estos gráficos permiten también observar las diferencias de valores reportados por las variables γ total y γ F1 (superiores a 6,5 cps) respecto al resto (inferiores a 1,2 cps) que en el primero de los casos se explica, por ser el γ Total, la suma de las 7 ventanas restantes, y en el segundo caso por la influencia de γ Total y γ^{40} K, y por el alto rango de energía que representa. γ F1. Es importante destacar que en esta Formación no se reportaron valores anómalos en las mediciones radiométricas.

Fluorescencia de rayos x

Los diagramas de caja construidos a partir de concentraciones elementales evidencian una diferencia significativa en las concentraciones de SiO₂ (48 a 96 % aproximadamente) y Al₂O₃ (2 a 28% aproximadamente), respecto a las otras variables (en general menores a 3 % a excepción de Fe₂O₃ y CaO), lo cual es la respuesta esperada para rocas sedimentarias como las estudiadas (Fig. 66). En este caso la distribución de las concentraciones tiende a ser bastante diferente en cada uno de los componentes analizados. La variable que muestra la distribución más simétrica es el Al_2O_3 , (Fig. 68). cuyo diagrama de caja también expresa una dispersión, respecto a la mediana, similar en ambos extremos (Fig. 66).

El SiO₂ y K_2O poseen una distribución bimodal, donde las clases modales pueden coincidir con dos poblaciones litológicas (Fig. 68). En el caso del SiO₂, la primera población parece responder a la gran abundancia en esta Formación de intercalaciones de lutitas, limolitas y areniscas, mientras que la segunda puede deberse a los intervalos arenosos, menos frecuentes en la sección. Para el K₂O ambas poblaciones podrían referirse a un primer grupo de muestras de litologías arcillosas en las que coexisten arcillas potásicas, y a un segundo grupo de muestras más arenosas con presencia de feldespato potásico.

Por su parte los histogramas de MnO y V muestran una distribución muy peculiar en forma de J, donde no existe extremidad o cola en el lado de la clase de mayor frecuencia (situada en ambos casos en el extremo izquierdo del gráfico o extremo de menores concentraciones) (Fig. 68). Esto responde a que la mayoría de las muestras presenta concentraciones bajas de estas variables y un menor porcentaje de las mismas registra observaciones máximas muy distantes al valor central, lo que puede observarse en los diagramas de caja (Fig. 66), y que resulta en una dispersión mucho menor de los valores situados por debajo de la mediana, que de aquellos ubicados por encima de la misma.

El Fe₂O₃ y TiO₂ poseen una distribución en la que no se observa ningún patrón definido, aunque tiende a ser bimodal asimétrica (Fig. 68)., mientras que para el CaO los diagramas de caja registran un valor anómalo superior con concentraciones para esta variable de 24 %, estando el resto de los valores por debajo del 0,75 % (Fig. 66). En este último caso al excluir dicho valor anómalo, la variable presenta una distribución bastante homogénea en la que la mayoría de los intervalos de clases poseen porcentajes similares de muestras.

- Diagramas de dispersión

A partir de las variables radiométricas y de elementos mayoritarios se elaboraron diagramas de dispersión para comprobar la existencia de relaciones lineales significativas entre las mismas (Fig. 69 y 70). Para ello se tomaron en cuenta los datos de la tabla de valores críticos absolutos de coeficientes de correlación publicada por SNEDECOR (1946), donde en el caso de la Formación Barco, para gráficos de 2 variables, se considera el valor de "f" igual a 150, de tal forma que el valor absoluto crítico (Rc) para esta formación tiene un valor de 0,159 (Anexo 7). Con este valor se garantiza que todos los coeficientes de correlación de las representaciones realizadas que posean valores superiores o iguales al crítico cuentan por lo menos con 95% de confiabilidad o con 5% de posibilidad de error.

De los diagramas de dispersión realizados con los elementos mayoritarios se obtuvieron 28 coeficientes de correlación de los cuales 14 poseen valores que indican relaciones lineales significativas, es decir, poseen coeficientes superiores a R = 0,159 (Fig. 70).

Los diagramas de dispersión con relaciones lineales significativas con 95% de confiabilidad son: Al_2O_3 -SiO₂ (R=0,649), Al_2O_3 - CaO (R=0,440), Al_2O_3 -K₂O (R=0,874), Al_2O_3 -TiO₂ (R=0,843), Al_2O_3 -Fe₂O₃ (R=0,220), SiO₂-TiO₂ (R=0,661), SiO₂-CaO (R=0,6287), SiO₂-K₂O (R=0,734), CaO-K₂O (R=0,544), CaO-V (R=0,185), CaO-TiO₂ (R=0,463), K₂O-TiO₂ (R=0,881), TiO₂-Fe₂O₃ (R=0,195) y MnO-Fe₂O₃ (R=0,3768), como se puede apreciar de las ocho variables analizadas el Al_2O_3 , SiO₂, CaO, K₂O y el TiO₂ son las variables más representativas de esta formación, debido a que están involucradas en la mayoría de relaciones lineales (Fig. 70).

De los diagramas de dispersión realizados con la variable Al_2O_3 , específicamente con el K_2O (R=0,874), TiO₂ (R=0,843), CaO (R=0,440) y SiO₂ (R=0,649), donde la correlación con el SiO₂ es inversa, se infiere que en las rocas estudiadas existe una clara dependencia de las variables antes mencionadas con el Al_2O_3 , donde con excepción de la relación con el SiO₂, el incremento de las concentraciones de las variables es proporcional, lo cual puede deberse a una alta proporción de arcillas potásicas presentes en las lutitas y a la existencia

de feldespatos en las areniscas. Las muestras que poseen bajas concentraciones de Al_2O_3 registran concentraciones altas de SiO_2 y viceversa, manteniéndose un rango considerable de dispersión (el cual se hace mayor para concentraciones menores al 10 % de Al_2O_3). Esto puede ser explicado principalmente por la presencia, a lo largo de la sección de laminaciones de lutita en areniscas así como por limolitas y mezclas de estas dos litologías.

La existencia de relaciones lineales significativas entre Al₂O₃–SiO₂ (R=0,649), Al₂O₃–TiO₂ (R=0,843), Al₂O₃–K₂O (R=0,874), K₂O–TiO₂ (R=0,881), SiO₂–TiO₂ (R=0,661) y SiO₂–K₂O (R=0,734) (Fig. 54), sugiere una dependencia entre minerales de arcilla con contenido de TiO₂ (EARLICH *et al.*,2000), minerales pesados (rutilo, anatasa, esfena), materia orgánica y carbón, los cuales son muy notorios en la formación.

La relación SiO₂–CaO (R=0,628) muestra que a medida que aumentan las concentraciones de SiO₂ disminuyen las de CaO, lo cual parece corresponder con bajas concentraciones de carbonato de calcio en rocas arenosas. La mayor dispersión respecto a la línea de regresión, observada para valores de SiO₂ inferiores a 70 %, puede deberse también a la influencia del CaO en la mineralogía de las arcillas presentes, lo que se aprecia en los gráficos de CaO contra las variables (K₂O) (R= 0,544), (TiO₂) (R= 0,4637) y Al₂O₃ (R=0,440).

Con lo que respecta a las variables radiométricas se obtuvo que las relaciones más significativas pertenecen a las representaciones realizadas con las ventanas γ Total y γ F1 (Fig. 69) de las que resultó ser la de mayor confiabilidad γ Total – γ F1(R=0,904).

El comportamiento de los diagramas de dispersión de los datos radiométricos que expresan la variación de los isótopos de γ^{214} Bi, γ^{40} K y γ^{208} Tl a lo largo de la sección muestran que las zonas de menores cps representan muestras con poca proporción de arcillas o muestras de areniscas mientras que las de mayores cps representan muestras de lutitas.

b) Estadística multivariante

El software utilizado para realizar los análisis multivariante es el Statgraphics Plus 4.0. De éstos, se escogieron los análisis de agrupaciones, componentes principales y funciones discriminantes, para tratar tanto las variables radiométricas, como las de composición química. Para esta Formación, se trabaja con una matriz de datos de 8 variables en 155 muestras, en el caso de los análisis radiométricos, mientras que para tratar los datos obtenidos por fluorescencia de rayos X, la matriz es 8 variables en 154 muestras, ya que no se toma en cuenta la muestra tsp 530, por presentar valores anómalos de CaO.

- Análisis de agrupaciones.

Los resultados de estos análisis comprenden dendrogramas, que definen las características numéricas de las agrupaciones. Para cada método analítico (radiometría y fluorescencia de rayos X) se han construido dos dendrogramas, uno de ellos en base a las observaciones y el otro en base a las variables.

Radiometría

La Fig.48 muestra la relación existente entre las variables radiométricas, donde se aprecia que aquellas que se encuentran unidas entre sí son las que poseen características más similares.

Fig. 48. Dendrograma construido a partir de las variables radiométricas de la Formación Barco.

De esta forma se aprecia como las variables se dividen en tres grupos, el primero reúne a las ventanas Total, γ F1, γ F3 y γ ²⁰⁸Tl, el segundo a γ ⁴⁰K y γ F2, mientras que el tercero corresponde a γ ²¹⁴Bi y γ F4.

La Fig. 60 muestra el agrupamiento realizado para las observaciones radiométricas de la Formación Barco. En este dendrograma se pueden establecer cinco grupos principales que están conformados por un número similar de muestras con excepción del cuarto grupo que reúne aproximadamente una mitad más que el resto de las agrupaciones. El primer grupo reúne 25 muestras, el segundo 28, el tercero 32, el cuarto 42 y el quinto 28.

En la Tabla 15 se presentan las muestras de la Formación Barco que pertenecen a cada uno de los grupos.

Grupo				Mues	stras (tsp)			
	835	725	715	670	655	635	590	570	550
1	470	460	430	420	415	390	375	345	325
	300	295	215	180	175	80	70		
	790	755	740	735	675	665	660	615	605
2	600	575	540	510	485	480	405	340	335
2	285	275	270	265	255	250	235	140	135
	75								
	825	820	815	745	730	705	690	650	585
2	565	515	500	490	455	440	410	395	385
3	355	350	330	315	190	185	170	160	155
	120	115	110	100	90				
	810	805	800	795	785	780	775	770	765
	760	750	700	695	640	635	595	560	555
4	545	535	530	525	520	505	370	320	305
	290	260	245	240	225	220	210	205	200
	195	150	145	130	105	95			
	830	720	710	685	680	645	625	620	610
5	580	495	475	465	450	445	435	425	400
Э	380	365	360	310	280	230	165	125	85
	65								

 Tabla 15. Distribución de muestras en los grupos determinados por el análisis de agrupaciones. Radiometría de Formación Barco.

Los grupos establecidos en el análisis de agrupaciones no corresponden a una clasificación de las muestras de acuerdo a los tipos litológicos, ya que en estos se observa la coexistencia de diferentes litologías, en las que no es obvio el establecimiento de algún patrón discriminante. Por lo anterior se puede sugerir que ya sea que: exista otro factor distinto al litológico que posea marcada influencia en la respuesta radiométrica de las muestras y por tanto en la separación de los grupos, o que las diferencias mineralógicas entre las muestras no sean lo suficientemente significativas para discriminar por medio de las variables radiométricas. La Tabla 16 muestra el promedio de las variables radiométricas para cada grupo.

GRUPO	#Muestras	γTOTAL	γ F1	γ 40K	γ F2	γ 214 Bi	γ F3	γ 208 Tl	γ F4
1	25	8,850	6,750	0,930	0,155	0,362	0,420	0,180	0,070
2	28	8,841	6,732	0,916	0,155	0,323	0,437	0,188	0,091
3	32	9,020	6,866	0,928	0,169	0,356	0,416	0,196	0,096
4	42	8,642	6,606	0,885	0,150	0,324	0,425	0,173	0,081
5	28	9,083	6,854	0,950	0,177	0,349	0,475	0,194	0,085

Tabla 16. Promedio por variable de cada grupo. Radiometría de Formación Barco.

La tabla anterior no evidencia un patrón específico para cada grupo, aunque los grupos 5 y 3, parecen comprender las muestras que poseen los promedios más altos de la mayoría de las variables.

Fluorescencia de rayos X

El dendrograma construido a partir de las variables de concentraciones elementales, muestra dos grupos en los que han sido divididas las mismas. El primero de ellos concentra a las variables Al₂O₃, K₂O, TiO₂ y CaO, mientras que en el segundo se encuentran el SiO₂, V, MnO y Fe₂O₃ (Fig. 49).

Fig. 49. Dendrograma por variables. Fluorescencia de rayos x de Formación Barco.

El segundo dendrograma presenta las agrupaciones realizadas para las muestras de esta Formación, en las que han sido considerados los valores de concentraciones elementales que éstas registran (Fig.61). En este caso se aprecian 4 grupos principales que se caracterizan por presentar distancias euclidianas entre 5 y 9. El 1^{ro}, 2^{do}, 3^{ro} y 4^{to} grupo reúnen respectivamente 40, 49, 63, y 2 muestras. La Tabla 17 presenta la ubicación de cada una de las muestras.

Grupo				Mues	stras (tsp)			
	835	830	810	780	770	750	745	725	600
	595	575	555	535	520	515	490	485	475
1	465	455	440	430	405	385	360	340	335
	330	320	310	285	270	235	195	180	170
	160	155	145	90					
	805	800	795	790	785	775	765	760	755
	705	700	695	665	630	560	550	545	525
2	480	395	390	315	305	300	295	290	275
2	265	260	255	250	240	225	220	215	210
	205	200	175	165	150	140	135	130	105
	85	80	75	70					
	825	820	815	740	735	730	720	715	710
	690	685	680	675	670	660	655	650	645
	640	635	625	620	615	610	605	590	585
3	580	570	565	540	510	505	500	495	470
	460	450	445	435	425	420	415	410	400
	380	375	370	365	355	350	345	325	280
	190	185	125	120	115	110	100	95	65
4	245	230							

Tabla 17. Distribución de muestras en los diferentes grupos. Fluorescencia de rayos x de Formación Barco.

Al observar la separación de las muestras en los grupos se observa que la distribución de las mismas en los 4 grupos corresponde en buena medida a la litología presenta en la sección. Los dos primeros, corresponden a litologías arenosas donde hay abundancia de materia orgánica especialmente en el primero de ellos. El tercero por su parte representa un conjunto de muestras de grano más fino constituidas mayormente por lutitas, limos, e intercalaciones de lutitas y areniscas. El último grupo comprende únicamente dos muestras que posiblemente se encuentran separadas del resto por presentar valores relativamente altos de Fe₂O₃ y TiO₂. En la tabla 18 se observan los promedios de cada grupo.

Tabla 18. Promedio por variable de cada grupo. Fluorescencia de rayos x de Formación Barco.

GRUPO	# MUESTRAS	%SiO ₂	%TiO ₂	%Al ₂ O ₃	%Fe ₂ O ₃	%MnO	%CaO	%K ₂ O	ppmV
1	40	72,56	0,454	13,36	3,72	0,061	0,195	0,958	199
2	49	83,26	0,299	9,15	3,41	0,053	0,134	0,401	230
3	63	65,98	0,549	17,26	2,86	0,048	0,322	1,437	178
4	2	59,64	0,653	15,65	11,84	0,214	0,190	1,498	242

En este caso los grupos que representan las litologías más arenosas, presentan también los promedios más altos de SiO_2 y promedios relativamente bajos del resto de las variables, lo que se hace más evidente en el segundo grupo. El tercer grupo, que representa litologías más finas coincide a su vez con los promedios más bajos de SiO_2 y los más altos de TiO_2 , Al_2O_3 y CaO.

- Componentes principales.

Los componentes principales obtenidos en ambas formaciones permiten realizar perfiles que representan la variabilidad vertical de los datos y que resumen el comportamiento general de las variables (tanto radiométricas como de composición química). Esto será discutido en la secciones 5.2.1.c y 5.2.2.c. (Anexo 5).

Radiometría

A partir de las 8 variables radiométricas se obtuvieron 8 combinaciones lineales, de las cuales han sido extraídas 2 por ser estas las que representan la mayor variabilidad de los

datos. Los dos componentes principales escogidos son aquellos que muestran autovalores superiores a uno y que en este caso representan un bajo valor del 52 % de la variabilidad. (Tabla 19).

Componentes	Autovalores	% de Varianza
<u>1</u>	<u>3,03</u>	<u>37,9</u>
<u>2</u>	<u>1,08</u>	<u>13,8</u>
3	0,97	12,1
4	0,87	10,9
5	0,78	9,8
6	0,66	8,3
7	0,57	7,21
8	0,00	0,03

 Tabla 19. Autovalores y porcentaje de varianza de los componentes principales. Radiometría de

 Formación Barco. En cursivas los componentes significativos.

Las ecuaciones que definen los componentes principales (CP1 y CP2) son las siguientes:

CP $I = 0,551 \text{ x } \gamma \text{Total} + 0,446 \text{ x } \gamma \text{F1} + 0,339 \text{ x } \gamma^{40}\text{K} + 0,341 \text{ x } \gamma \text{F2} + 0,311 \text{ x } \gamma^{214}\text{Bi} + 0,245 \text{ x } \gamma \text{ F3} + 0,295 \text{ x } \gamma^{208}\text{T1} + 0,144 \text{ x } \gamma \text{ F4}$

CP 2 = 0,036 x γ Total + 0,167 x γ F1 - 0,243 x γ ⁴⁰K - 0,159 x γ F2 - 0,226 x γ ²¹⁴Bi - 0,322 x γ F3 + 0,249 x γ ²⁰⁸Tl + 0,817 x γ F4

El componente principal 1 representa un 38 % del total de la variación y está dominado principalmente por la variable γ total y γ F1, mientras que el segundo componente representa un 14 % de la variación de los datos, estando dominado en este caso por las variables γ F4 y γ 208Tl (Fig. 50). Los valores para cada muestra, correspondientes a los dos componentes establecidos, pueden observarse en el Anexo 6: Tabla 56.

)

Fig. 50. Peso de las variables, donde se aprecia el peso de cada una en el establecimiento de los componentes principales de la Formación Barco.

Fluorescencia de rayos X

A partir de los datos obtenidos por este método analítico, han sido extraídos 3 componentes principales con autovalores superiores a 1 y que juntos representan un 81 % de la variabilidad total de los datos originales (Tabla 20).

Tabla 20. Autovalores y porcentaje de varianza de los componentes principales. Fluorescencia de rayos xde Formación Barco. En cursivas los componentes seleccionados.

Componentes	Autovalores	% de Varianza
<u>1</u>	<u>3,81</u>	<u>47,6</u>
<u>2</u>	<u>1,631</u>	<u>20,3</u>
<u>3</u>	<u>1,00</u>	<u>12,5</u>
4	0,63	7,9
5	0,38	4,8
6	0,28	3,5
7	0,15	1,9
8	0,10	1,2

Las ecuaciones de los distintos componentes principales (CP1, CP2 y CP3) son las siguientes:

 $\label{eq:cp_1} \textit{CP 1} = 0.463 \text{ x } \text{Al}_2\text{O}_3 - 0.436 \text{ x } \text{SiO}_2 + 0.343 \text{ x } \text{CaO} + 0.483 \text{ x } \text{K}_2\text{O} + 0.466 \text{ x } \text{TiO}_2 - 0.056 \text{ x } \text{V} - 0.056 \text{ x } \text{MnO} - 0.114 \text{ x } \text{Fe}_2\text{O}_3$

 $CP 2 = -0,066 \text{ x } Al_2O_3 - 0,135 \text{ x } SiO_2 + 0,218 \text{ x } CaO + 0,041 \text{ x } K_2O - 0,020 \text{ x } TiO_2 - 0,019 \text{ x } V + 0,689 \text{ x } MnO + 0,672 \text{ x } Fe_2O_3$

 $CP 3 = -0,091 \text{ x } Al_2O_3 + 0,051 \text{ x } SiO_2 + 0,166 \text{ x } CaO - 0,107 \text{ x } K_2O - 0,087 \text{ x } TiO_2$ $- 0,966 \text{ x } V + 0,019 \text{ x } MnO - 0,097 \text{ x } Fe_2O_3$

El componente principal 1 representa un 47,6 % del total de la variación y está dominado por las variables Al_2O_3 , TiO_2 y K_2O principalmente, el segundo componente representa un 20,4 % de la variación de los datos, estando dominado en este caso por las variables Fe_2O_3 y MnO, mientras que el tercer componente representa el 12,5 % de la variación y está dominado por SiO₂, CaO y MnO (Fig. 51).

Fig.51. Peso de cada una de las variables de concentraciones elementales en el establecimiento de los componentes principales de la Formación Barco.

- Funciones discriminantes

A partir de los grupos establecidos mediante el análisis de agrupación, se han establecidos las funciones discriminantes que representan la mayor discriminación posible entre estos grupos. En esta Formación al igual que en la Formación Mirador, y para ambos métodos analíticos se establecen tantas funciones discriminantes como grupos hayan sido determinados mediante el análisis de agrupaciones. Esto se debe a que cada función representa la combinación lineal que produce la máxima diferencia entre ese y los grupos restantes, y ha sido establecida mediante los datos de las muestras pertenecientes a cada grupo.

Radiometría

Se establecen 5 funciones discriminantes, de las cuales las tres primeras son las más representativas, teniendo un 95 % de nivel de confiabilidad, o lo que es lo mismo un 5 % de posibilidad de error cuando son usadas para clasificar muestras.

A continuación se presentan los coeficientes con los que se construyen las funciones referentes a cada grupo (Tabla 21).

		Coeficientes de las funciones										
Variables	1	2	3	4	5							
γTotal	58,4	65,2	35,1	63,6	71,8							
$\dot{\gamma}$ F1	423,4	416,7	457,9	407,8	419,8							
γ^{40} K	149,1	140,6	169,5	133,9	137,4							
γF2	1300,8	1309,6	1438,7	1270,5	1429,3							
γ^{214} Bi	255,7	169,5	260,1	184,7	194,4							
γF3	490,1	531,3	511,2	510,8	584,5							
γ^{208} Tl	655,3	706,0	749,6	651,0	711,5							
γF4	932,5	1100,3	1185,0	1003,2	1075,9							
Constante	-2098,6	-2119	-2214,8	-2010,2	-2245,6							

 Tabla 21. Coeficientes de funciones discriminantes de los 5 grupos separados por el análisis de agrupaciones. Radiometría de Formación Barco

Para generar las ecuaciones se procede de la siguiente manera, donde aparece un ejemplo de la primera función discriminante:

FD 1 = - 2098,6 + 58,4 x γ TOTAL + 423,4 x γ F1 + 149,1 x γ^{40} K + 1300,8 x γ F2 + 255,7 x γ^{214} BI + 490,1 x γ F3 + 655,3 x γ^{208} TL + 932,5 x γ F4

La Tabla 22, presenta un resumen de la clasificación, mientras que la realizada para cada una de las muestras, mediante tales funciones discriminantes puede ser visualizada en el Anexos 6: Tabla 55.

Tabla 22. Porcentaje de muestras correctamente clasificadas según las funciones discriminantes de los 5grupos obtenidos por el análisis discriminante. Radiometría de Formación Barco.

G	Tamaño		Grupo							
Grupo	de	Funciones discriminantes								
	grupo	1	2	3	4	5				
1	25	22	1	0	2	0				
-	-0	(88 %)	(4 %)		(8 %)					
2	28	2	24	0	1	1				
-		(7,1 %)	(85,7 %)		(3,6 %)	(3,6 %)				
3	32	1	1	29	0	1				
•		(3,1 %)	(3,1 %)	(90,6 %)		(3,1 %)				
4	42	5	6	0	30	1				
-		(11,9 %)	(14,3 %)		(71,4 %)	(2,4 %)				
5	28	1	1	1	0	25				
-		(3,6 %)	(3,6%)	(3,6 %)		(89,3 %)				

Total de aciertos: 83,9 %

Fluorescencia de rayos x

De las 4 funciones discriminantes determinadas para este método analítico en la Formación Barco, las dos primeras son las que estadísticamente representan un 95 % de confiabilidad. Los coeficientes de estas funciones se muestran a continuación (Tabla 23).

	Coeficientes de las funciones									
Variables	1	2	3	4						
SiO ₂	3,30	3,68	3,19	2,70						
TiO ₂	41,37	14,06	50,09	106,14						
Al ₂ O ₃	1,80	1,64	2,03	1,45						
Fe ₂ O ₃	0,58	0,12	0,66	2,49						
MnO	5,02	5,89 0,84		9,46						
CaO	88,57	86,05	104,94	73,88						
K ₂ O	4,67	5,86	6,70	1,97						
\mathbf{V}	0,06	0,08	0,15	0,05						
Constante	-161,11	-181,56	-165,83	-159,41						

Tabla 23. Coeficientes de funciones discriminantes establecidas según los grupos determinados por elanálisis de agrupaciones. Fluorescencia de rayos x de Formación Barco.

La Tabla 24 presenta un resumen de la clasificación. La clasificación de cada una de las muestras aparece en el Anexo 6: Tabla 55.

Tabla 24. Porcentaje de muestras correctamente clasificadas según las funciones discriminantes de los 5 grupos obtenidos por el análisis discriminante. Fluorescencia de rayos X de la Formación Barco.

Cmmo	Tamaño	Grupo							
Grupo	de]]	s						
	grupo	1	2	3	4				
1	40	34	2	4	0				
I	40	(85 %)	(5%)	(10 %)					
2	40	2	47	0	0				
2	49	(4,1 %)	(95,2 %)						
3	63	1	0	62	0				
5	05	(4,8 %)		(95,2 %)					
4	2	0	0	0	2				
-	2				(100 %)				

Total de aciertos: 93 %

c) Discusión

Los perfiles construidos a partir de los datos geoquímicos obtenidos en la Formación Barco, muestran las variaciones que presentan los elementos mayoritarios y variables radiométricas analizadas en este trabajo (Anexo 9). La visualización de estos perfiles, permite establecer el comportamiento de las distintas variables a lo largo de la columna estratigráfica de dicha Formación y dividir la misma en unidades que presentan características específicas.

Los criterios utilizados para establecer los marcadores que permiten definir las unidades químico radiométricas tanto de la Formación Barco como de la Formación Mirador son los siguientes:

- Estos marcadores se sitúan en aquellos lugares, donde para un mismo tipo de análisis, las curvas de la mayoría de las variables involucradas muestran valores mínimos de las mismas.

- Se encuentran encerrando tramos en los que los valores de las diversas variables para un mismo tipo de análisis, van de un valor mínimo a un valor máximo retornando nuevamente a un valor mínimo o cercano al inicial.

 Finalmente fueron localizados en aquellas posiciones en las cuales tomando en cuenta los dos aspectos anteriores, dichos marcadores coincidían en altura estratigráfica tanto en las variables químicas como en las radiométricas.

Composición química

Los perfiles realizados con los datos químicos (Fig. 53), muestran en esta Formación un comportamiento característico en el cual pueden identificarse mínimos y máximos consistentes a lo largo de las 8 variables analizadas, y que definen un patrón en el comportamiento de estas especies. A partir de este patrón pueden inferirse 3 unidades químicas limitadas por marcadores que cumplen los criterios antes mencionados.

Radiometría

Al igual que en el caso anterior, los perfiles construidos a partir de la información radiométrica (Fig. 52), muestran un comportamiento similar en la mayoría de las ventanas analizadas, evidenciando nuevamente 3 unidades radiométricas. En este caso se observa que la segunda y tercera unidad poseen un comportamiento similar entre ellas, mientras que la primera difiere considerablemente del comportamiento de las anteriores.

Los perfiles realizados con los componentes principales establecen las mismas unidades obtenidas mediante las variables radiométricas y químicas, demostrando que utilizando un máximo de tres variables (CP1, CP2 y CP3) es posible resumir el comportamiento de los datos expresado con 8 variables en cada caso (Anexo 5: Fig. 89).

Unidades químicas – radiométricas

La combinación de la información obtenida de los perfiles de composición química y radiometría permiten definir tres unidades claramente diferenciadas, ya que los límites utilizados para establecerlas coinciden entre sí.

Unidad B1

Esta unidad comprende un tramo de aproximadamente 37 m de espesor, el cual va de desde la base de la sección (0 m) a los 37 m.

Los perfiles radiométricos (Fig. 52 y Anexo 9: Fig. 95), muestran un comportamiento muy parecido para los canales γ Total, γ F1, γ^{40} K, γ F2, γ^{214} Bi y γ^{208} Tl, en los que se observa una disminución de las cuentas por segundo desde el límite inferior al superior. En los canales restantes no se aprecia ningún patrón característico.

En los perfiles correspondientes a Al₂O₃, K₂O, CaO y TiO₂ (Fig. 53 y Anexo 9: Fig. 96), se aprecia un comportamiento similar en el que pueden establecerse tres valores

máximos y en donde las concentraciones disminuyen paulatinamente hacia el límite superior de la unidad, el mayor de estos valores se ubica aproximadamente a los 10 m de altura estratigráfica. El SiO₂ y V poseen un comportamiento similar entre ellos y opuesto al resto de los canales. Por su parte el MnO y Fe₂O₃ presentan sus valores máximos en los límites tanto inferior como superior de la unidad, mientras que hacia el centro revelan valores bajos sin variaciones significativas. Aproximadamente a los 6 m el CaO muestra uno de los valores más altos en toda la columna estratigráfica.

Al observar la columna estratigráfica (Anexo 10), se nota una buena correspondencia entre las litologías y los perfiles geoquímicos (Figs. 52, 53 y Anexo 9), ya que la base de la unidad está caracterizada por intercalaciones de lutitas y areniscas, mientras que hacia el tope se hace básicamente arenosa por lo que resultan lógicas las disminuciones de las variables antes mencionados, en la parte superior de la unidad, donde la cantidad de arcillas disminuye. Las concentraciones reportadas por el MnO y Fe₂O3 parecen estar asociadas a niveles ferruginosos, donde al menos uno de ellos (40 m), fue identificado y descrito en el campo.

Unidad B2

Posee un espesor de 70 m, comprendidos entre los 37 y 107 m de espesor acumulado, en este caso la gran mayoría de las variables analizadas, tanto radiométricas como de composición química, evidencian una unidad muy bien definida, que alcanza los valores máximos hacia el centro y los mínimos hacia los límites de la misma, estando localizado el mayor de los valores entre los 65 y 70 m. Esta unidad definida por la mayoría de los canales no resulta tan evidente para el MnO, Fe₂O₃, γ^{208} Tl y γ F4, los cuales parecieran tener un comportamiento propio en el que su límite superior se encuentra 30 m por arriba del límite de la unidad. El SiO₂ muestra nuevamente un comportamiento opuesto al observado en el resto de las variables (Figs. 52, 53 y Anexo 9).

En esta unidad los valores corresponden significativamente con la litología, ya que en general, la presencia de intercalaciones de cuerpos de lutitas y espesores arenosos se ve manifestado en los aumentos y descensos que se registran en el SiO₂, Al₂O₃, K₂O, γ Total,

 γ F1, γ^{40} K, γ F2, γ^{214} Bi y γ F3. Desde el límite inferior hasta la zona central de la unidad, la litología corresponde a una intercalación de lutitas y areniscas que se manifiesta en la mayoría de las variables como un aumento progresivo de los valores hasta llegar a la zona central donde se tienen las mayores concentraciones y cps. Desde aquí hasta el tope de la unidad, se encuentra otra intercalación de lutitas y areniscas donde el comportamiento es similar, pero esta vez con una disminución progresiva de los mismos. Podría inferirse entonces que de base a tope, en la primera intercalación la proporción de lutitas aumenta progresivamente, mientras que en la segunda intercalación, la proporción de lutitas disminuye de la misma manera (Figs. 52, 53 y Anexo 9).

Unidad B3

Posee un espesor de aproximadamente 50 m, esta se ubica desde los 107 hasta los 157 m. En esta unidad existen distintos comportamientos para los perfiles de concentraciones elementales y los de radiometría. Variables como γ Total, γ F1, γ^{40} K, γ^{214} Bi y Al₂O₃ manifiestan sus valores máximos en la zona central de la unidad, mientras que el K₂O, CaO, TiO₂, γ F2 y γ F3 manifiestan los mismos cercanos a la base y disminuyen progresivamente hacia el tope, además de presentar tres valores máximos notables. De igual manera el Fe₂O₃ y MnO muestran sus valores máximos en la zona central. Por su parte el SiO₂, V y γ F4 inicialmente poseen un decrecimiento homogéneo hasta la parte central donde se aprecia un alza de sus valores, posteriormente los valores se incrementan progresivamente hasta el tope donde presentan sus valores máximos (Figs. 52, 53 y Anexo 9).

Litológicamente esta unidad se caracteriza por tener grandes espesores de lutitas y limolitas alternadas con capas de areniscas. La misma posee en la base una capa de aproximadamente 12 m de intercalaciones de areniscas y lutitas que justifican la conducta homogénea de canales como el K₂O, Al₂O₃, γ Total y γ F1 aunque los mismos muestran pequeños picos sectorizados que podrían indicar la existencia de una mayor proporción de minerales de arcilla. En el resto de la unidad se observan espesores de hasta 5 m de lutitas y limos alternadas con areniscas que disminuyen su espesor de base a tope desde los 3 m hasta 40 cm, esto se evidencia en el comportamiento del K₂O, Al₂O₃, γ Total y γ F1, los

cuales presentan valores altos que se incrementan paulatinamente y que podrían corresponder a las capas de lutitas presentes. Esto sucede hasta la zona central de la unidad, donde se aprecian los mayores registros. En este sector el SiO₂ comienza a incrementarse progresivamente hasta el tope donde encuentra su mayor expresión en una arenisca de aproximadamente 9 m de espesor, mientras que el K₂O y el Al₂O₃ comienzan a decrecer considerablemente. Este comportamiento podría atribuirse a la mayor presencia de limos que de lutitas hacia el tope de la unidad (Figs. 52, 53 y Anexo 9).

Por encima del límite superior de la tercera unidad se reconoce un tramo de la sección el cual posee respuestas radiométricas y de concentraciones elementales que parecieran indicar el comienzo de un nuevo ciclo, pero que debido al poco espesor que representa (9 m), no se reportará en este trabajo como otra unidad geoquímica, para lo cual sería necesario contar con información de las capas suprayacentes. Dicha información no fue posible obtenerla debido a la poca continuidad del afloramiento aún cuando la Formación puede ser reconocida por encima de la sección levantada.

Resultados e interpretaciones

Nahysa Martínez/Luis Camposano

Resultados e interpretaciones

Nahysa Martínez/Luis Camposano

5.2.2. Formación Mirador

- a) Estadística general y gráficos exploratorios
- Estadística general.

En la Tabla 25 correspondiente a las variables radiométricas puede observarse que al igual que la Formación Barco la mayor variabilidad de los datos se registra en las ventanas γ F2, γ 214Bi, γ F3, γ 208Tl y γ F4, mientras que los canales con menor variabilidad resultaron ser el γ Total y γ F1.

Tabla 25. Formación Mirador. Algunos valores estadísticos de las variables radiométricas en cps

	γTOTAL	γF1	γ^{40} K	γF2	γ ²¹⁴ Bi	γF3	γ ²⁰⁸ Tl	γF4
Promedio	8,53	6,55	0,85	0,15	0,32	0,41	0,17	0,08
Mínimo.	8,14	6,24	0,70	0,08	0,25	0,34	0,12	0,05
Máximo.	9,31	6,99	1,00	0,19	0,41	0,54	0,22	0,11
Desv. est.	0,22	0,15	0,06	0,02	0,03	0,03	0,02	0,01

Con respecto a los componentes químicos (Tabla 26) se tiene que en general todas las variables muestran variaciones considerables en los datos, siendo mayores específicamente en los casos del Fe_2O_3 , MnO, CaO y K_2O y disminuyendo en el resto de las variables. La variación de los datos puede estar incrementada por la presencia de valores anómalos como en el caso del CaO y del Fe_2O_3 los cuales tienden a dispersar aún más todo el conjunto de datos con respecto a la tendencia o al comportamiento general de los valores obtenidos en una variable.

Al igual que en la Formación Barco el comportamiento general de los valores es el esperado para rocas sedimentarias como las estudiadas (lutitas y areniscas), donde las mayores variaciones pueden estar relacionadas a la materia orgánica, carbón, conglomerados y otras litologías presentes.

	%SiO ₂	%TiO ₂	%Al ₂ O ₃	%Fe ₂ O ₃	%MnO	%CaO	%K ₂ O	ppmV
Promedio	77, 09	0, 387	12, 76	2, 56	0,029	0,071	0, 548	186
Mínimo.	54, 69	0, 830	3, 58	0, 01	0,010	0,011	0,058	150
Máximo.	97, 84	0, 994	26, 38	15, 17	0,175	1,180	1,607	804
Desv Est	11, 98	0,430	5, 35	3, 31	0,026	0,126	0, 398	88

Tabla 26. Formación Mirador. Valores estadísticos de las composiciones elementales en % en peso.

- Variabilidad de los datos

Radiometría

Los datos radiométricos de esta Formación muestran un comportamiento que expresa una distribución de datos con tendencia a ser uniforme. De esta manera en los histogramas elaborados se observó que en su mayoría los mismos tienden a ser simétricos, con un intervalo de clase modal ubicada hacia el centro del gráfico, siendo esta asimetría menor que en el caso de las variables radiométricas de la Formación Barco (Fig. 67).

La mayor simetría en las distribuciones así como la presencia de diagramas de caja con extremos bastantes equidistantes a partir de la mediana, hacen que las variables γ^{214} Bi y γ^{208} Tl sean las que muestran la distribución de datos más uniformes, con una variabilidad de sus datos (respecto a la mediana) similar a ambos extremos (Figs. 65 y 67).

En el resto de las ventanas a excepción de γ F4, las muestras evidencian mayor dispersión o variabilidad de sus cps para las mayores concentraciones registradas por los mismos. Lo anterior se aprecia en los histogramas referentes a estos canales, como una asimetría o cola incipiente de los datos hacia valores altos, y en los diagramas de caja como un extremo superior (desde la mediana hasta los valores máximos) de mayor longitud que el inferior (Figs. 65 y 67).

Al igual que en el caso de la Formación Barco, se observa un comportamiento general de las variables que coincide con el espectro radiométrico en el que a medida que aumentan los rangos de energía, disminuye el número de cps (Fig. 64). De la misma forma las ventanas de cuentas γ Totales y γ F1 registran el mayor número de cuentas por segundo, mientras que en el resto disminuyen considerablemente su intensidad (Fig. 65).

Fluorescencia de rayos x

La mayoría de las variables químicas a excepción del SiO₂ muestran una mayor dispersión de los valores que se encuentran por debajo de la mediana que de aquellos situados por encima (Fig. 66). Esta característica aunada a la presencia de histogramas asimétricos con cola de valores hacia el extremo derecho de los gráficos, evidencian una distribución heterogénea de los datos, donde la mayoría de las muestras posee los valores más bajos registrados por estos canales, sobre todo en las variables Fe₂O₃, CaO, V y MnO (Fig. 68).

En esta Formación las distribuciones bimodales la presentan el SiO₂ y Al₂O₃ (Fig. 68), cuyas clases modales podrían estar asociadas a los dos tipos litológicos de los que está constituida principalmente la Formación, donde la clase de mayor frecuencia para el SiO₂ corresponde a las areniscas y la de menor frecuencia a los limos y lutitas.

En esta Formación la muestra tspm195 presenta un valor anómalo de CaO de 1,118 %, que en este caso, aún cuando ha sido calificado como anómalo muestra una dispersión respecto al resto de los valores mucho menor que la registrada por la anomalía de la Formación Barco (Fig. 66).

-Diagramas de dispersión

Para la Formación Mirador, con 89 muestras, el valor crítico de coeficientes de correlación según SNEDECOR (1946) es de Rc=0,205. Del análisis inicial de los gráficos se tiene que de un total de 28 representaciones, 21 de ellas poseen coeficientes superiores al valor crítico calculado para esta Formación (Fig.69 y 70).

Se observa que existe una relación lineal significativa entre los elementos químicos involucrados en los minerales de arcillas, lo que es corroborado en los altos valores de los coeficientes de correlación de los diagramas $Al_2O_3-K_2O$ (R=0,811), $Al_2O_3-TiO_2$ (R=0,720) (EARLICH *et al.*,2000) y la correlaciones inversas de $Al_2O_3-SiO_2$ (R=0,802) y SiO_2-K_2O (R=0,855). Además existen evidencias en sección fina (TORO, 1992; PAPARONI, 1993) y DRX (Tabla 12) de la presencia de minerales pesados, glauconita y óxidos de hierro en la Formación que se encuentran indicados en las relaciones significativas existentes entre las variables, $SiO_2-Fe_2O_3$ (R=0,850), $K_2O-Fe_2O_3$ (R=0,790) y MnO-Fe_2O_3 (R=0,874) (Fig. 70).

La combinación de las variables SiO_2 -TiO₂ (R=0,634), Al₂O₃-TiO₂, (R=0,720), Al₂O₃-V (R=0,547), TiO₂-V (R=0,752), TiO₂-Fe₂O₃ (R=0,478), K₂O-V (R=0,476) concuerdan con la existencia de materia orgánica preservada dentro de las areniscas y lutitas , así como la presencia de láminas de carbón intercaladas con las areniscas y lutitas de la formación (Fig. 59).

Al igual que con la Formación Barco en este caso las variables radiométricas poseen las relaciones más significativas en las representaciones realizadas con las ventanas γ Total y γ F1 (Fig. 69) e éstas la de mayor confiabilidad resulta ser la γ Total – γ F1 (R=0,923).

En general, los diagramas de dispersión construidos para estas variables muestran relaciones lineales proporcionales donde se aprecia el incremento de ambas variables, de igual forma las variaciones litológicas están controlando el comportamiento de las variables radiométricos en donde es fácil apreciar que las variaciones verticales de los isótopos de γ^{214} Bi, γ^{40} K y γ^{208} Tl a lo largo de toda la sección dependen casi exclusivamente de las lutitas presentes, aunque es posible que la presencia de materia orgánica, así como de capas de carbón puedan estar afectando dicho comportamiento (Fig.58).

b) Estadística multivariante

Los análisis multivariantes realizados en esta Formación se llevaron a cabo utilizando el mismo software empleado en la Formación Barco, y de la misma manera ambos métodos analíticos (radiometría y fluorescencia de rayos X) se analizaron mediante componentes principales, análisis de agrupaciones, y funciones discriminantes. En este caso, se trabaja con una matríz de datos de 8 variables en 89 muestras, en el caso tanto de los análisis radiométricos como de los de composición química.

- Análisis de agrupaciones.

Radiometría

Las variables radiométricas muestran una relación entre ellas que permite separarlas en dos grupos. El primero concentra las variables γ Total, γ Fi, γ F3 y γ F4, y el segundo a γ^{40} K, γ F2, γ^{214} Bi y γ^{208} Tl (Fig. 54).

Fig. 54. Dendrograma por variables. Radiometría de Formación Mirador.

El dendrograma con las muestras, presenta una discriminación entre 5 grupos distintos (Fig.62). Los grupos del 1 al 5 reúnen un total de 29, 24, 22, 11 y 3 muestras respectivamente.

Grupo			Muestras			
1	tspm 445	tspm 420	tspm 405	tspm 390	tspm 350	tspm 340
	tspm 320	tspm 315	tspm 300	tspm 290	tspm 230	tspm 225
	tspm 215	tspm 210	tspm 205	tspm 195	tspm 190	tspm 185
	tspm 175	tspm 155	tspm 140	tspm 130	tspm 115	tspm 80
	tspm 75	tspm 70	tspm 45	tspm 20	tspm 10	
	tspm 380	tspm 360	tspm 310	tspm 295	tspm 280	tspm 270
•	tspm 260	tspm 235	tspm 220	tspm 180	tspm 160	tspm 145
2	tspm 135	tspm 110	tspm 105	tspm 100	tspm 85	tspm 60
	tspm 50	tspm 35	tspm 30	tspm 25	tspm 15	tspm 5
	tspm 440	tspm 435	tspm 430	tspm 425	tspm 415	tspm 410
3	tspm 400	tspm 395	tspm 385	tspm 370	tspm 365	tspm 355
3	tspm 345	tspm 335	tspm 330	tspm 305	tspm 125	tspm 120
	tspm 95	tspm 90	tspm 65	tspm 40		
4	tspm 375	tspm 325	tspm 285	tspm 275	tspm 265	tspm 250
	tspm 245	tspm 240	tspm 200	tspm 150	tspm 55	
5	tspm 255	tspm 170	tspm 165			

Tabla 27. Distribución de muestras en los diferentes grupos. Radiometría de Formación Mirador.

Al contrario de lo que ocurre con la Formación Barco, en esta Formación las respuestas radiométricas de las muestras analizadas permiten establecer un patrón más definido, en el que las litologías de grano grueso se encuentran separadas de las de grano más fino.

Los tres primeros grupos son básicamente areniscas, cuya separación corresponde a factores como la presencia de materia orgánica, láminas de lodo y mantos carbonosos. El cuarto grupo comprende litologías de grano más fino como lutitas, limolitas e intercalaciones de éstas últimas con areniscas. El quinto sólo agrupa 3 muestras que representan intercalaciones de varios tipos litológicos (Tabla 27).

Los promedios obtenidos para cada grupo (Tabla 28) corroboran lo expuesto anteriormente, donde se aprecia que los dos grupos que representan las litologías más finas son los que presentan mayores cps para todas las ventanas, mientras que los tres primeros representantes de litologías más arenosas poseen los valores más bajos de cps. Estos tres grupos se observan claramente diferenciados, siendo el grupo 2 el que presenta mayor influencia de material arcilloso, carbonoso u otro.

Grupo	# muestras	γTOTAL	γF1	γ40K	γF2	γ214Bi	γF3	γ 208T l	γF4
1	29	8,49	6,52	0,82	0,16	0,33	0,41	0,17	0,08
2	24	8,61	6,63	0,87	0,14	0,30	0,42	0,17	0,08
3	22	8,30	6,42	0,81	0,15	0,30	0,38	0,17	0,07
4	11	8,75	6,67	0,91	0,15	0,34	0,43	0,18	0,07
5	3	9,17	6,90	0,97	0,16	0,38	0,46	0,20	0,11

Tabla 28. Promedio por variable de cada grupo. Radiometría de Formación Mirador.

Fluorescencia de rayos x

La composición química en esta Formación, muestra un comportamiento distinto al de la Formación Barco. En este caso, las variables están divididas en tres grupos, ubicándose en el primero de ellos las variables Al_2O_3 y TiO₂, en el segundo SiO₂, CaO, V y MnO, y en el tercero K₂O y Fe₂O₃ (Fig. 55).

Fig. 55. Dendrograma por variables. Fluorescencia de rayos x. Formación Mirador.

El análisis de agrupaciones realizado con las muestras permite distinguir cinco grupos cuya distribución de muestras aparece en la Tabla 29.

Grupo		Muestras (tspm)									
	445	440	435	430	425	420	415				
4	410	405	400	395	390	385	370				
1	365	360	350	330	325	320	315				
	310	305	300	295	185	175					
	380	345	340	335	250	235	230				
	225	220	210	205	200	190	140				
2	135	130	125	120	115	110	100				
	95	90	85	80	75	60	40				
	35	30	25	20	15	10	5				
	375	290	285	280	275	270	265				
3	260	255	245	240	215	165	160				
	155	150	105	70	65	55	45				
4	145	50									
5	170	195									

Tabla 29. Distribución de muestras en los diferentes grupos. Fluorescencia de rayos x de Formación Mirador.
Al observar la distribución de las muestras en los cinco grupos se nota una buena correlación con la litología. Los dos primeros grupos están conformados principalmente por areniscas, lo que se evidencia en la tabla de promedios por grupo (Tabla 30), por ser estos los que poseen mayores valores de SiO₂, y menores valores del resto de las variables. La diferencia entre ambos radica en que el primero, presenta mayor abundancia de areniscas de grano grueso a conglomeráticas y mayor abundancia de mantos carbonosos y clástos de lodo, que los reportados para las areniscas del segundo grupo. El tercero agrupa litologías de grano más fino como lutitas, limolitas e intercalaciones de areniscas y lutitas, siendo la proporción de areniscas en este grupo mucho menor a la del anterior, lo que se observa como una disminución de SiO₂ para este y un aumento del resto de las variables. Los grupos 4 y 5 presentan los valores más bajos en las variables distintas al SiO₂, pero las pocas muestras que los componen hacen que los promedios sean poco representativos (Tabla 30).

Tabla 30. Promedio por variable de cada grupo. Fluorescencia de rayos x de Formación Mirador.

GRUPO	# Muestras	%SiO ₂	%TiO ₂	%Al ₂ O ₃	%Fe ₂ O ₃	%MnO	%CaO	%K ₂ O	ppmV
1	29	91,63	0,295	6,19	0,35	0,014	0,036	0,120	150
2	35	76,56	0,340	14,07	1,73	0,027	0,050	0,547	153
3	21	63,13	0,547	18,17	6,19	0,044	0,099	1,070	253
4	2	56,30	0,485	15,47	14,00	0,143	0,138	1,090	297
5	2	70,62	0,724	21,81	0,59	0,010	0,616	0,513	477

- Componentes Principales

Radiometría

A partir de las 8 variables radiométricas, sólo 2 componentes principales presentan autovalores superiores a 1 y que representan un 55% de la variabilidad de los datos (Tabla 31).

Componentes	Autovalores	% de Varianza
<u>1</u>	<u>3,19</u>	<u>39,8</u>
<u>2</u>	<u>1,27</u>	<u>15,8</u>
3	0,94	11,7
4	0,84	10,5
5	0,73	9,2
6	0,53	6,6
7	0,50	6,3
8	0,00	0,0

 Tabla 31. Autovalores y porcentaje de varianza de los componentes principales. Radiometría de

 Formación Mirador. En cursivas los componentes seleccionados.

Las ecuaciones correspondientes a ambos componentes principales (CP1 y CP2) son las siguientes:

$$\label{eq:cp1} \begin{split} \textit{CP1} = 0,547 \ x \ \gamma Total + \ 0,469 \ x \ \gamma F1 \ + \ 0,357 \ x \ \gamma^{40} K \ + \ 0,130 \ x \ \gamma F2 \ + \ 0,332 \ x \ \gamma^{214} Bi \ + \ 0,353 \ x \ \gamma F3 \ + \ 0,265 \ x \ \gamma^{208} T1 \ + \ 0,179 \ x \ \gamma F4 \end{split}$$

 $CP2 = -0.015 \text{ x } \gamma \text{Total} - 0.069 \text{ x } \gamma \text{F1} - 0.066 \text{ x } \gamma^{40}\text{K} + 0.697 \text{ x } \gamma \text{F2} + 0.433 \text{ x } \gamma^{214}\text{Bi} - 0.307 \text{ x } \gamma \text{F3} + 0.080 \text{ x } \gamma^{208}\text{T1} - 0.465 \text{ x } \gamma \text{F4}$

Los valores de los componentes principales calculados para cada muestra se pueden observar en el Anexo 6: Tabla 59.

De todas estas variables las de mayor peso en el establecimiento del primer componente son las correspondientes a las ventanas γ Total y γ F1, mientras que para el segundo componente son γ F2 y γ^{214} Bi (Fig. 56).

Fig. 56. Peso de cada una de las variables radiométricas en el establecimiento de los componentes principales de la Formación Mirador.

Fluorescencia de rayos x

Mediante este método analítico también se han extraído 2 componentes principales con autovalores mayores a 1, de un total de 8 combinaciones lineales, que en este caso representan un 75% de la variabilidad de los datos (Tabla 32)

Tabla 32. Autovalores y porcentaje de varianza de los componentes principales. Variables químicas deFormación Mirador. En cursivas los componentes seleccionados.

Componentes	Autovalores	% de Varianza
<u>1</u>	<u>4,67</u>	<u>58,4</u>
<u>2</u>	<u>1,26</u>	<u>17,7</u>
3	0,97	12,1
4	0,58	7,2
5	0,23	2,8
6	0,14	1,7
7	0,11	1,4
8	0,05	0,6

Las ecuaciones de estos componentes (CP1 y CP2) se muestran a continuación:

 $CP1 = 0,384 \text{ x } Al_2O_3 - 0,436 \text{ x } SiO_2 + 0,101 \text{ x } CaO + 0,419 \text{ x } K_2O + 0,366 \text{ x } TiO_2 + 0,315 \text{ x } V + 0,309 \text{ x } MnO + 0,384 \text{ x } Fe_2O_3$

 $CP2 = -0.287 \text{ x } Al_2O_3 - 0.912 \text{ x } SiO_2 + 0.070 \text{ x } CaO - 0.002 \text{ x } K_2O - 0.422 \text{ x } TiO_2 - 0.418 \text{ x } V + 0.606 \text{ x } MnO + 0.428 \text{ x } Fe_2O_3$

Los valores de los componentes calculados a cada muestra se presentan en el Anexo 6: Tabla 58.

La Fig. 57 así como las ecuaciones antes expuestas, muestran que el primer componente posee una influencia considerable de todas las variables a excepción del SiO₂, mientras que el segundo se ve influenciado principalmente por el MnO y el Fe₂O₃.

F

Fig. 57. Peso de cada una de las variables químicas en el establecimiento de los componentes principales de la Formación Mirador.

- Funciones discriminantes

Radiometría

Los coeficientes a partir de los cuales se construyen las 5 funciones, establecidas a partir de los grupos determinados en el análisis de agrupaciones se muestran Tabla 33. De todas las funciones, las tres primeras son las más representativas estadísticamente con un 95 % de nivel de confiabilidad.

 Tabla 33. Coeficientes de funciones discriminantes establecidas según los grupos determinados por el análisis de agrupaciones. Radiometría de Formación Mirador

	Coeficientes de las funciones						
Variables	1	2	3	4	5		
γTotal	2651	2827	2665	2869	2943		
γF1	-1953	-2110	-1975	-2149	-2203		
$\gamma^{40}K$	-1965	-2112	-1993	-2128	-2171		
γF2	-3228	-3485	-3274	-3519	-3586		
γ^{214} Bi	-1716	-1993	-1863	-1930	-1851		
γ F 3	-2058	-2232	-2124	-2246	-2279		
γ ²⁰⁸ Tl	-2837	-2995	-2788	-3039	-3108		
γF4	-1915	-2123	-2037	-2269	-1973		
Constante	-2801	-2909	-2681	-2990	-3268		

Como ejemplo se muestra la primera función discriminante:

 $FD \ 1 = -2801 + \ 2651 \ x \ \gamma Total \ - \ 1953 \ x \ \gamma F1 \ - \ 1965 \ x \ \gamma^{40} K \ - \ 3228 \ x \ \gamma F2 \ - \ 1716 \ x \ \gamma^{214} Bi \ - \ 2058 \ x \ \gamma F3 \ - \ 2837x \ \gamma^{208} T1 \ - \ 1915 \ x \ \gamma F4$

Al aplicar las funciones discriminantes a cada una de las muestras, tomando en cuenta el grupo al cual pertenecen (para así determinar cual de las 5 funciones debe ser aplicada), se obtiene un 86 % de aciertos (Tabla 34). La tabla completa de asignación a los diversos grupos aparece en el Anexo 6: Tabla 54.

	Tamaño			Grupo		
Grupo	de		Funciones discriminantes			
	grupo	1	2	3	4	5
1	29	22	0	5	0	0
		(75,9 %)		(17,2 %)		
2	24	1	21	0	2	0
		(4,1 %)	(87,5 %)		(8,3 %)	
3	22	1	0	21	0	0
		(4,5 %)		(95,5 %)		
4	11	1	1	0	9	0
		(9,1 %)	(9,1 %)		(81,8 %)	
5	3	0	0	0		3
		Ĩ				(100%)

Tabla 34. Porcentaje de muestras correctamente clasificadas según las funciones discriminantes. Grupos determinados por el análisis de agrupaciones. Radiometría Formación Mirador.

Total de aciertos: 86 %

0

Fluorescencia de rayos x

Al igual que en el caso anterior se han establecido, a partir de los datos obtenidos por este método analítico, 5 funciones discriminantes, siendo todas éstas estadísticamente representativas con 95 % de nivel de confiabilidad (Tabla 35).

	Coeficientes de las funciones					
Variables	1	2	3	4	5	
SiO ₂	10,59	9,63	9,62	10,66	10,09	
TiO ₂	15,98	8,22	31,01	40,07	134,73	
Al ₂ O ₃	6,66	7,86	8,74	9,93	12,18	
Fe ₂ O ₃	15,67	14,73	16,19	17,01	11,31	
MnO	728,25	763,49	781,69	1384,12	1419,37	
CaO	179,35	188,64	252,64	307,58	685,81	
K ₂ O	-22,84	-18,84	-19,05	-30,12	-110,67	
V	0,47	0,44	0,51	0,62	1,06	
Constante	-552,01	-478,56	-527,79	-702,54	-974,27	

Tabla 35. Coeficientes de funciones discriminantes establecidas según los grupos determinados por el análisis de agrupaciones. Fluorescencia de rayos x de Formación Mirador

De esta manera se establece una función para cada grupo, donde por ejemplo, la primera función discriminante resulta de la siguiente manera:

 $FD1 = -552,01 + 6,66 \text{ x } Al_2O_3 + 10,59 \text{ x } SiO_2 + 179,35 \text{ x } CaO - 22,84 \text{ x } K_2O + 15,98 \text{ x } TiO_2 + 0,47 \text{ x } V + 728,25 \text{ x } MnO + 15,67 \text{ x } Fe_2O_3.$

Al aplicar las funciones discriminantes a cada una de las muestras, se obtiene un 98 % de aciertos (Tabla 36). La tabla completa de clasificación se encuentra en el Anexo 6: Tabla 54.

Grupo	Tamaño	Grupo Funciones discriminantes				
	ae grupo	1	2	3	4	5
1	29	29 (100 %)	0	0	0	0
2	35	1 (2.9.%)	34 (97.1.%)	0	0	0
3	21	0	1 (4.8 %)	20 (95.2.%)	0	0
4	2	0	0	0	2 (100 %)	
5	2	0	0	0	0	2 (100%)

Tabla 36. Porcentaje de muestras correctamente clasificadas según las funciones discriminantes.Fluorescencia de rayos x. Formación Mirador.

Total de aciertos: 98%

c) Discusión

El análisis y el entendimiento de los perfiles construidos con los datos químicos y de radiometría obtenidos, permiten establecer el comportamiento de las 16 variables medidas en dicha Formación (Figs.59, 58 y Anexo 9).

Composición química

Se reconocen cuatro unidades mayores correspondientes a variaciones verticales en las concentraciones elementales para la sección estudiada (Fig.59 y Anexo 9: Fig. 98). Las tres primeras, de base a tope, muestran un comportamiento muy similar entre ellas, mientras que las características de la última, difieren de las mostradas en las unidades anteriores.

Radiometría

Al igual que en el caso de la Formación Barco, los perfiles construidos a partir de los valores de radioisótopos radioactivos presentes en esta sección, muestran un comportamiento similar en la mayoría de las ventanas analizadas, evidenciando nuevamente cuatro unidades radiométricas (Fig.58 y Anexo 9: Fig. 97). En este caso se observa que la segunda y tercera unidad poseen un comportamiento similar entre ellas, mientras que la primera y cuarta difieren considerablemente del comportamiento de las anteriores.

Los perfiles realizados con los componentes principales establecen las mismas unidades obtenidas mediante las variables radiométricas y químicas, demostrando que utilizando un máximo de dos variables (CP1 y CP2) es posible resumir el comportamiento de los datos expresado con 8 variables en cada caso (Anexos 5: Fig. 90).

Los criterios que permitieron dividir la sección en unidades químicas - radiométricas son exactamente los mismos que los empleados para la Formación Barco.

Unidades químicas - radiométricas

Al comparar los perfiles obtenidos en ambos métodos, puede observarse que los límites de las unidades establecidas, coinciden en altura estratigráfica, por lo que se pueden establecer cuatro unidades de características químicas - radiométricas distintivas que se diferencian entre sí (Fig. 58, 59 y Anexo 9).

Unidad M1:

Abarca un tramo de aproximadamente 24 m, el cual va desde la base (0 m), a los 24 m de la columna estratigráfica.

Los perfiles radiométricos muestran a lo largo de las ventanas del γ Total, γ F1, γ K⁴⁰, γ F3 y γ^{208} Tl, un comportamiento similar entre ellas, en el que se observan dos picos de incremento de las concentraciones, estando estos ubicados cerca de los 10 y 21 m. Las ventanas restantes presentan un comportamiento ligeramente distinto a las mencionadas anteriormente, donde no se aprecia ningún patrón característico (Fig. 58 y Anexo 9: Fig. 97).

Los perfiles de concentraciones químicas evidencian un comportamiento similar entre todas las variables analizados, a excepción del SiO₂. En esta unidad la mayoría de las variables reportan hacia la base valores bajos en las concentraciones, los cuales muestran su máximo en la zona central de la unidad, aproximadamente a los 10 m, para luego disminuir nuevamente hacia el tope. Cerca del límite superior, entre los 21 y 24 m, se aprecia un pico menor al anterior, el cual se hace más evidente en el Al₂O₃, K₂O, CaO, V y Fe₂O₃. Por su parte el SiO₂ presenta un comportamiento opuesto, en el que se observa una disminución considerable de sus valores entre los 5 y 15 m, siendo esta última, la zona en el resto de las variables presentan sus valores máximos (Fig. 59 y Anexo 9: Fig. 98).

Litológicamente la unidad se muestra bastante homogénea constituida básicamente por areniscas, dentro de las cuales se reportan clástos de lutita, tiras de lodo y laminaciones lutíticas (PAPARONI, 1993), siendo éstas posiblemente las responsables del pico obtenido cerca de los 10 m, observado tanto en radiometría como en concentraciones elementales. El segundo de los picos, donde las concentraciones de radioisótopos radioactivos aumentan, el Al_2O_3 no evidencia valores considerablemente altos y el SiO₂ no muestra una disminución tan clara como en el pico anterior, puede corresponder adicionalmente a la presencia de arcillas, con láminas o clástos de materia orgánica en poca proporción, la cual ha fijado algunos elementos como V, Ca, U y Th.

Unidad M2:

Abarca un espesor de 15 m, estando ubicada entre los 24 y 40 m aproximadamente. Su límite superior se encuentra a pocos metros de una zona reportada como límite erosivo de unidad sedimentaria, mientras que el inferior coincide con un límite no erosivo de unidad sedimentaria (PAPARONI, 1993).

Es una unidad bien diferenciada y que muestra un patrón muy definido la mayoría de las variables analizadas muestra un comportamiento similar, tanto en radiometría como en concentraciones elementales. Se caracteriza por presentar sus valores más bajos en la base y tope, y concentrar los valores máximos en la zona central, este comportamiento es observado en todas las ventanas radiométricas y de concentraciones elementales a excepción del SiO₂. Estos valores máximos constituyen a su vez las concentraciones más altas a lo largo de toda la columna, para γ Total, γ F1, γ F2, γ^{214} Bi, γ F3, γ^{208} Tl, Al₂O₃, K₂O, TiO₂, V, Fe₂O₃ y MnO. El SiO₂ por su parte muestra un comportamiento opuesto en el que se encuentran las concentraciones más bajas en la parte central de la unidad y las más altas hacia el tope (Figs. 58, 59 y Anexo 9).

El aumento de la respuesta en la zona central de la unidad posiblemente se debe a una capa de lutita de aproximadamente 2 m de espesor que se encuentra entre capas de areniscas y limos, reportada por PAPARONI (1993) como una lutita fétida gris oscura que presenta una fuerte radioactividad, la cual justifica el incremento considerable, con excepción del SiO₂, de los valores de todos las variables.

Unidad M3:

Posee un espesor de 24 m, comprendido entre los 40 y 63 m. Los dos límites que hemos establecido para esta unidad en forma objetiva e independiente, coinciden con límites erosivos de unidades sedimentarias de PAPARONI (1993).

Muestra una respuesta muy similar a la unidad anterior, en la que la mayoría de las variables presentan concentraciones elevadas, principalmente en la zona central y que disminuyen hacia el tope y la base de la misma. Las ventanas radiométricas que muestran este comportamiento son γ Total, γ F1, γ^{40} K, y γ F2, al contrario de γ^{208} Tl y γ F4 las cuales disminuyen sus concentraciones hacia el centro de la unidad. Por su parte γ^{214} Bi y γ F3 presentan un comportamiento más uniforme donde no se observan variaciones significativas. En esta unidad se registran las concentraciones más altas de γ^{40} K, a lo largo de toda la columna estratigráfica (Figs. 58, 59 y Anexo 9).

Los perfiles químicos que difieren del comportamiento anterior son SiO₂ y CaO. En el primer caso el SiO₂ disminuye sus valores, mostrando una respuesta opuesta al resto de las variables, mientras que el CaO registra dos picos de concentraciones elevadas, siendo el situado hacia la base de la unidad (entre los 39 y 43 m aproximadamente), el de máxima concentración a lo largo de toda la sección estudiada. Por su parte MnO y Fe₂O₃ presentan sus picos un poco desplazados hacia el tope de la unidad.

Los picos característicos de esta unidad muestran su valor máximo entre los 51 y 54 m lo que corresponde con una zona donde coexisten litologías finas y gruesas, reportada por PAPARONI (1993) y que comienza con un nivel conglomerático en el que se encuentran embebidos fragmentos y capas de lutitas y lodolitas, acompañado por un manto lutítico/lodolítico y en general una abundante presencia de fragmentos y clástos de lodo, donde también abundan materia orgánica y nódulos de hierro. Esto último puede verificarse como aumentos en las curvas de cuentas totales, γ^{40} K, Al₂O₃, K₂O y V, los cuales tienden a presentar valores altos en lutitas y lodolitas debido a los minerales de arcilla que las constituyen. Los valores altos en las cuentas de γ Total coinciden igualmente con la presencia de intervalos conglomeráticos, los cuales generalmente presentan este tipo de respuestas radiométricas, así como el Fe₂O₃ y el MnO pueden deber sus altas concentraciones a la abundancia de nódulos de hierro (Figs. 58, 59 y Anexo 9).

Las altas concentraciones de SiO_2 hacia la base y tope de la unidad, así como la disminución de los valores mostrados por las otras variables en estas zonas, concuerdan con una litología básicamente arenosa hacia la base y de intercalaciones de areniscas y limolitas en el tope, hacia donde aumenta el espesor de las primeras.

Unidad M4:

Presenta un espesor de 30 m, ocupando el tramo desde los 63 a los 93 m, donde se encuentra el tope de la sección. Esta unidad al igual que la anterior se encuentra limitada por dos superficies erosivas.

Se caracteriza por presentar concentraciones bajas respecto a las otras unidades en todas las variables, que en el caso del Fe₂O₃, MnO, V, CaO y K₂O, resultan ser los más bajos de toda la sección, mientras que el resto de las variables reportan concentraciones similares a las observadas en la primera unidad. Por su parte y de forma contraria a lo anteriormente expuesto, el γ^{208} Tl y SiO₂ evidencian en este tramo los valores más altos observados a lo largo de toda la columna estratigráfica (Figs. 58, 59 y Anexo 9).

El comportamiento general muestra para las variables γ Total, γ F1, γ^{40} K, Al₂O₃, K₂O y TiO₂ dos sectores donde se incrementan los valores de concentraciones y cuentas por segundo, los cuales se ubican aproximadamente a los 69 y 78 m. El γ^{214} Bi, γ F3, CaO y V sólo presentan el incremento ubicado a los 78 m, mientras que el MnO, Fe₂O₃ y γ F4 no registran ninguna variación significativa, manteniéndose a lo largo de la unidad en un valor casi constante. De manera similar a las unidades anteriores y como era de esperarse, en el SiO₂ se registra un comportamiento totalmente opuesto al comportamiento general, evidenciándose valores mínimos a los 69 y 78 m. La litología presente en esta unidad está constituida fundamentalmente por areniscas, areniscas conglomeráticas y en menor proporción por capas o mantos lutíticos/carbonosos. Inicialmente en la base de la unidad pueden observarse un nivel conglomerático y areniscas de grano grueso, lo que justifica los valores altos de SiO₂ y un incremento leve en las cuentas totales así como valores bajos para la mayoría de las otras variables. El primer aumento significativo a los 69 m está relacionado con láminas lutíticas/carbonosas dentro de capas arenosas, denominadas "Tidal bundles" (PAPARONI, 1993), mientras que el situado a los 78 m responde a un intervalo de aproximadamente 2 m de espesor representado por un lente de lutita donde las cantidades de Al₂O₃, K₂O, TiO₂, y en general las concentraciones de isótopos radioactivos se ven incrementadas respecto a las de las areniscas circundantes (Figs. 58, 59 y Anexo 9).

El hecho de que esta unidad presente valores bajos de concentraciones e isótopos radioactivos, que en algunos de los casos resultan ser los más bajos a lo largo de toda la sección, pueden ser explicado por la presencia más abundante y continua de mantos carbonosos en toda su extensión, los cuales reducen las respuestas que se deberían esperar en una secuencia arenosa.

Resultados e interpretaciones

Nahysa Martínez/Luis Camposano

151

5.2.3. Análisis comparativo entre las dos formaciones

a) Estadística general

En primer lugar, se tiene que los valores de los promedios y de los máximos de las variables radiométricas son mayores en la Formación Barco, debido a que esta posee mayor contenido de lutitas que la Formación Mirador, como era de esperarse, en litologías más lutíticas se registra un mayor número de cps que en litologías arenosas (Tabla 37 y Fig. 65). Las mayores variaciones de los datos se registran en ambas formaciones en las mismas variables radiométricas, es decir, γ F2, γ^{214} Bi, γ F3, γ^{208} Tl y γ F4, mientras que de la misma manera, las menores variaciones se presentan en los canales γ Total y γ F1. Con lo que respecta a las concentraciones de elementos mayoritarios, se tiene que los valores del SiO₂ son mayores en la Formación Mirador, mientras que en la Formación Barco, son mayores los datos del TiO₂, Al₂O₃, Fe₂O₃, MnO, CaO, K₂O y V (Tabla 37 y Fig. 66). Este hecho, se debe en primer lugar a algunos valores anómalos existentes en Barco, como por ejemplo el Fe₂O₃ y el CaO, sin embargo, en general dicho comportamiento refleja muy bien el carácter más arenoso de la Formación Mirador, al compararla con la Formación Barco donde es mayor la proporción de lutitas, materia orgánica, capas de carbón y óxidos de hierro.

Variable		Fm. Barco	Fm. Mirador
LITOLOGÍA	Lutitas	+	-
	Areniscas	-	+
	γTotal	+	-
	γF1	+	-
	γ^{40} K	+	-
RADIOMÉTRICAS	γF2	+	-
	γ^{214} Bi	+	-
	γF3	+	-
	γ^{208} Tl	+	-
	γF4	+	-
	SiO ₂	-	+
	TiO ₂	+	-
	Al ₂ O ₃	+	-
OUÍMICAS	Fe ₂ O ₃	+	-
Quintens	MnO	+	-
	CaO	+	-
	K ₂ O	+	-
	V	+	-

Tabla 37. Tabla comparativa de las variables de las formaciones Barco y Mirador

- b) Gráficos exploratorios
- Variabilidad de los datos

Radiometría

Aún cuando el comportamiento general de las respuestas radiométricas en ambas formaciones resulta muy similar (Fig. 65), es fácil observar que la Formación Barco registra mayor número de cps en todas las ventanas analizadas. Lo anterior puede responder lógicamente a la mayor presencia en esa Formación, de litologías finas como lutitas y limolitas, las cuales como es bien sabido, presentan mayor cantidad de isótopos radioactivos que los que pueden tener otras litologías de grano más grueso, como las que caracterizan a la Formación Mirador. La distribución de los datos en las dos formaciones tiende a ser uniforme, sin embargo este aspecto resulta más evidente para la Formación Barco donde las curvas de frecuencia muestran un comportamiento más simétrico que en el caso de la Formación Mirador (Fig. 67). La visualización de diagramas de caja (Fig. 65) e histogramas (Fig. 67) muestra que los canales que presentan un comportamiento más similar entre estas formaciones son γ^{40} K, γ^{214} Bi, γ F3 y γ^{208} Tl, siendo estos a su vez los que muestran en cada Formación una distribución más uniforme de datos y una variabilidad más simétrica de los mismos respecto a la mediana.

Fluorescencia de rayos x

Los porcentajes más altos registrados en ambas formaciones corresponden a las variables SiO_2 , Al_2O_3 y Fe_2O_3 (Fig. 66). Las distribuciones de los datos varían significativamente de una formación a otra a excepción de las variables MnO y V que muestran curvas de frecuencias (Fig. 68) y diagramas de caja similares (Fig. 66), en los que se evidencia una distribución asimétrica de los datos con una cola de valores hacia el extremo derecho de los gráficos y mayor dispersión de los mismos desde el valor central hasta el valor superior. De la misma forma el SiO₂ muestra para ambas formaciones

distribuciones bimodales con una variabilidad de los datos bastante simétrica a ambos lados de la mediana (Figs. 66 y 68).

El SiO₂ reporta en la Formación Mirador concentraciones más altas que en la Formación Barco, lo que corresponde a la abundancia de litologías más arenosas en la primera y mayor presencia de litologías de grano más fino así como de materia orgánica, para la segunda (Fig. 66).

Por su parte las variables K_2O , Fe_2O_3 , MnO, CaO y V (sin tomar en cuenta las anomalías de las dos últimas), presentan concentraciones significativamente mayores en la Formación Barco, mostrándose el Al₂O₃ en cantidades similares en ambas formaciones (Tabla 37 y Fig. 66).

- Diagramas de Dispersión

En primer lugar se destaca que de los valores críticos para coeficientes de correlación calculados según SNEDECOR (1946), en ambas formaciones, el mayor de ellos corresponde a la Formación Mirador con Rc = 0,205 mientras que en la Formación Barco el mismo coeficiente obtuvo un valor de Rc = 0,159.

De los 28 diagramas de dispersión realizados con los elementos mayoritarios de cada Formación (Fig.70), se tiene que en la Formación Barco se obtuvieron 14 representaciones y en la Formación Mirador 21 representaciones con 95% de confiabilidad o 5% de posibilidad de error en cada caso. En ambas formaciones a pesar de la diferencia en el número de representaciones lineales de confiabilidad, 7 más en Mirador, el comportamiento de las variables tiende a ser similar, salvo algunas excepciones. Se puede observar que en la Formación Barco, el CaO se encuentra vinculado a otras variables como, el Al₂O₃, SiO₂, K₂O, TiO₂ y V lo que no sucede en la Formación Barco. En la Formación Mirador existen más relaciones lineales significativas con el Fe₂O₃ que en la Formación Barco, lo que indica la mayor influencia y presencia de óxidos de hierro en Mirador. En el caso de las variables radiométricas en ambas formaciones los diagramas de dispersión (Fig.69) con mayor confiabilidad resultaron ser los realizados con las variables γ Total y γ F1, de las cuales la mejor fue γ Total - γ F1 con un coeficiente R= 0,904 en la Formación Barco y R=0,923 en la Formación Mirador.

En la Formación Barco se obtuvieron 23 representaciones lineales significativas con 95% de confiabilidad, mientras que en la Formación Mirador solo se obtuvieron 16. Esto puede deberse a la diferencia entre ambas formaciones, en la proporción de lutitas con respecto a otras litologías como areniscas y conglomerados, al contenido de lentes de lutitas o estructuras tipo flaser en areniscas (abundantes en Barco) y a la falta de materiales arcillosos dentro de la matriz de las areniscas, como sucede en la Formación Mirador, que se caracteriza por poseer areniscas muy cuarzosas. De igual manera dicho comportamiento debe estar influenciado por la presencia de materia orgánica y capas de carbón, más abundantes en la Formación Barco.

Por lo dicho anteriormente se asume que la variación de las cps de los isótopos de γ^{214} Bi, γ^{40} K y γ^{208} Tl en ambas secciones, están controladas por las características de las rocas de cada una de las Formaciones, sobre todo por la presencia de lutitas (Figs. 52, 58 y Anexo 9). De igual manera, es posible que la presencia de materia orgánica y capas de carbón, más abundantes en la Formación Barco estén afectando las mediciones de las variables radiométricas.

c) Estadística multivariante

Los análisis multivariantes resultan en general más representativos para la Formación Mirador que para la Formación Barco. De esta manera los componentes principales establecidos para la primera representan en un mayor porcentaje la variabilidad de los datos, así como las funciones discriminantes establecidas a partir de los grupos determinados por el análisis de agrupaciones, clasifican mejor en dichos grupos a las muestras de la misma Formación. Adicionalmente se han establecido funciones discriminantes para discriminar una Formación de la otra, partiendo en cada caso de un tipo distinto de variable. Los resultados obtenidos se muestran en la Tabla 38.

 Tabla 38. Porcentaje de aciertos obtenido mediante funciones discriminantes entre la Formación Barco y la Formación Mirador.

Tipo de variable	# de variables	% de aciertos
Radiométricas	8	79
Composición química	8	84
Radiométricas + concentraciones químicas	16	91

Estos resultados evidencian que la mejor discriminación entre las formaciones se consigue al utilizar conjuntamente ambos tipos de variables ya que de esta manera se cuenta con mayor cantidad de información en cada una de las formaciones, lo que resulta en una discriminación más acertada.

A continuación se muestran los coeficientes que permiten clasificar muestras de origen desconocido en una de las dos formaciones, tomando en cuenta ya sean las variables radiométricas, químicas o ambas (Tablas 39, 40 y 41). Para la construcción de las distintas funciones se procede de igual manera como se muestra en el capítulo 5.2.1. b donde se ejemplifican algunas de las mismas.

	Coef. de funciones		
Variables	В	Μ	
Al ₂ O ₃	2,8	3	
SiO ₂	3,1	3	
CaO	52,8	42,8	
K ₂ O	17,2	12,6	
TiO ₂	20,9	24,4	
V	0,05	0,04	
MnO	-8,6	-12,1	
Fe ₂ O ₃	3,1	3.1	

-163,1

-154,6

Constante

Tabla 39. Coeficientes de funciones discriminantes entre las dos formaciones usando las variables químicas. La letra B se refiere a la Formación Barco y la M a la Formación Mirador.

	Coef. de funciones			
Variables	В	М		
γTotal	186,8	197,3		
γ F1	90,5	75,2		
$\gamma^{40}K$	-143,5	-166,4		
γ F2	-234,8	-246,1		
γ ²¹⁴ Bi	-269,1	-289,2		
γ F 3	-127,5	-146,4		
γ ²⁰⁸ Tl	-178	-202,4		
γ F4	-382	-397,4		
Constante	-943,4	-890,6		

Tabla 40. Coeficientes de funciones discriminantes entre las dos formaciones usando las variables radiométricas. La letra B se refiere a la Formación Barco y la M a la Formación Mirador.

Tabla 41. Coeficientes de funciones discriminantes entre las dos formaciones usando las variables radiométricas y químicas. La letra B se refiere a la Formación Barco y la M a la Formación Mirador.

	Coef. de funciones			
Variables	В	М		
γTotal	83,4	93,9		
γ F1	267,9	251,3		
$\gamma^{40}K$	227,7	-62,5		
γ F2	70,2	53,9		
γ ²¹⁴ Bi	-41,7	-62,5		
γ F 3	104,8	75,6		
γ ²⁰⁸ Tl	111,1	87,5		
γ F4	-210	-228,2		
Al ₂ O ₃	2,6	2,9		
SiO ₂	4,9	4,7		
CaO	53,5	43,1		
K ₂ O	3,7	-0,29		
TiO ₂	-99,4	-93,1		
V	-0,07	-0,07		
MnO	-6,7	-10,2		
Fe ₂ O ₃	4,2	4,1		
Constante	-1584	-1498		

La Fig. 71 representa un ejemplo de cómo son separadas las muestras de cada Formación al tomar en cuenta las funciones discriminantes establecidas al utilizar variables químicas y radiométricas a la vez.

Fig.71. Diagramas de dispersión con funciones discriminantes donde se observa la separación de las muestras de cada Formación. Leyenda: 1 y 2, Formación Barco; 3 y 4 Formación Mirador.

5.3. INTERPRETACIONES GENERALES

Luego de analizar la información obtenida de los perfiles radiométricos y químicos, los análisis estadísticos y las interpretaciones ambientales realizadas por otros autores, se presenta a continuación la interpretación general obtenida para las Formaciones Barco y Mirador.

Formación Mirador

En el capítulo 5.2. se definieron a partir de los perfiles generados con los datos químicos y radiométricos, 4 unidades basadas en las variaciones verticales que presentaban los datos. Estas unidades posteriormente son confirmadas como Unidades Geoquímicas que pueden representar ciclos geológicos asociados a ambientes de sedimentación específicos.

Partiendo de estudios ambientales detallados, existentes para la Formación Mirador, y en específico el realizado por PAPARONI (1993), se estableció la correlación existente entre los datos geoquímicos y los ambientes definidos por este autor.

En primer lugar todos los límites establecidos en forma objetiva e independiente y en base a los ciclos observados en los perfiles, corresponden con límites de unidades sedimentarias (erosivos o no) definidos en la Formación por los análisis ambientales previos (A,B y D en Anexo 11), coincidiendo de esta manera cada una de las unidades con un ambiente determinado.

La unidad **M1** está asociada a un ambiente fluvial con influencia de mareas, específicamente a un frente proximal deltaico. En ésta, los perfiles revelan una secuencia básicamente arenosa, donde las cuentas radiométricas son más bajas que las registradas en las unidades **M2** y **M3**, y las concentraciones de elementos mayoritarios corresponden con la litología presente. Los valores máximos reportados en este tramo (muestras tspm50 y tspm100), con excepción del SiO₂, revelan por DRX (Tabla 12) la presencia de minerales de arcilla y un contenido de cuarzo mayor que la siguiente unidad, lo que demuestra que ésta es más arenosa que la suprayacente. La unidad **M2** está asociada a un ambiente más profundo que el anterior, específicamente del tipo prodelta. En este caso los valores de casi todas las variables a excepción del SiO₂ se muestran en la parte media de la unidad como los más altos a lo largo de toda la sección (Figs. 58 y 59 y Anexo 9), evidenciando que en ésta se encuentra la zona más lutítica y que a su vez representa la mayor profundidad de la localidad. Dentro de esta zona se han analizado por DRX (Tabla 12) las muestras tspm165 y tspm170, las cuales presentan una disminución de cuarzo y aumento de minerales de arcilla, respecto a la muestra tspm145 que se ubica estratigráficamente por debajo de las anteriores. Dicha zona de mayor proporción lutítica ha sido reportada por LECKIE *et al.* (1990) como una lutita rica en materia orgánica y muy radioactiva, lo que aunado a las otras características mencionadas sugiere la existencia de una superficie de máxima inundación, también señalada como tal por PAPARONI (1993). Cabe destacar que mediante los análisis multivariantes, la muestra tspm170 está ubicada en grupos que poseen un máximo de tres muestras (grupos 5 de análisis multivariantes, establecidos por radiometría y composición química) demostrando las características especiales de la misma.

Respecto a la unidad **M3**, el ambiente asociado es el de estuario medio. Los perfiles en este tramo indican para la mayoría de las variables un comportamiento similar a la presentada por la unidad anterior (Figs. 53 y52). De esta manera la zona intermedia representa un tramo lutítico, donde se ha analizado por DRX la muestra tspm255 que presenta características mineralógicas similares a la tspm170 (Tabla 12) y que ha sido discriminada junto a ésta, en el mismo grupo. Todos estos aspectos hacen pensar en un proceso geológico similar al ocurrido en la unidad anterior, representando la zona intermedia de la unidad una profundización de los ambientes y las cercanías de la tspm255 otra superficie de inundación, también interpretada de esta manera por PAPARONI (1993).

En la unidad **M4**, se tienen las concentraciones más altas de SiO_2 y más bajas de las otras variables químicas de toda la sección, de igual forma las cuentas radiométricas más bajas pertenecen a esta unidad. Estos elementos combinados con una mayor proporción de cuarzo que las unidades anteriores determinado por DRX (tspm 305 y tspm 375) (Tabla 12), establecen que éste es el tramo más arenoso de toda la sección, lo que corresponde con

los ambientes establecidos por PAPARONI (1993): delta de marea y llanura costera, en la base y el tope respectivamente.

Al observar los resultados de la estadística multivariante, se aprecia una estrecha relación entre los grupos establecidos y los ambientes a los que han sido asociadas cada unidad ya que la mayoría de las muestras pertenecientes a cada uno de estos se ubican en grupos específicos (Tabla 42).

 Tabla 42. Relaciones existentes entre los grupos establecidos por análisis multivariantes y los ambientes determinados y asociados a cada unidad. Formación Mirador.

A h 4	Grupo	Grupo
Ambiente	(Variables radiométricas)	(Variables químicas)
Fluvial	G2 (48%), G1 (35%)	G2 (74%) G3 (21%)
Prodelta	G1 (31%), G2(31%)	G2 (45%), G3 (36%)
Estuario Medio	G1 (73% Porción fluvial)	G2 (70 % Porción fluvial)
	G4 (55% Estuario Medio)	G3 (100% Estuario Medio)
Delta de Marea-Llanura Costera	G3 (52%)	G1 (83%) G2 (13%)

G(1,2,3,4): grupos establecidos por análisis de agrupaciones.

Los porcentajes indicados en la tabla anterior representan la proporción del total de las muestras pertenecientes a cada unidad que han sido ubicadas en los grupos respectivos. Nótese que las variables químicas discriminan mejor las muestras representativas de los ambientes, adicionalmente las porciones con mayor influencia fluvial están asociadas según las variables radiométricas al grupo G1 y según las variables químicas al G2.

De esta manera las funciones discriminantes podrían ubicar inicialmente muestras de ambientes desconocidos en los previamente establecidos con cierto grado de confiabilidad. La separación de los distintos ambientes puede ser observada de una mejor manera cuando se plotean las muestras en un gráfico que tiene como ejes, dos de las funciones discriminantes establecidas (Fig.72), evidenciando así que los ambientes establecidos para la Formación Mirador son discriminados con un alto porcentaje de acierto, cuando se utilizan variables químicas y radiométricas a la vez, siendo menor el acierto obtenido con variables químicas o radiométricas, cuando son tratadas por separado

Variables Químicas y Radiométricas (81%)

Fig. 72 Discriminación de ambientes según funciones discriminantes, utilizando: sólo variables radiométricas, sólo químicas, y químicas más radiométricas. Leyenda: 1 y 2, Delta de cabecera con influencia mareal y depósitos de llanura costera y tormenta; 3, estuario medio; 4, porción fluvial del estuario; 5, prodelta; 6, frente proximal deltaico

El ploteo de muestras utilizando funciones discriminantes ha sido utilizado en la anterioridad por diversos autores como BHATIA (1983), ROSER & KORSCH (1988) y otros (Fig 73), para establecer campos de clasificación de distintos aspectos geológicos en rocas ígneas, sedimentarias y metamórficas, como lo son proveniencia de areniscas y marco tectónico (ROLLINSON, 1993).

Fig. 73. Campos establecidos para determinar marcos tectónicos (izquierda) y proveniencia de rocas sedimentarias (derecha), (ROLLINSON, 1993).

De igual manera en este TEG se pueden establecer mediante funciones discriminantes, campos referentes a los ambientes sedimentarios establecidos con anterioridad en la Formación Mirador (Fig. 74). Lo anterior resulta en una contribución importante ya que este gráfico permite ubicar una muestra de la Formación Mirador que no haya sido clasificada ambientalmente, en uno de los ambientes definidos con anterioridad, siempre y cuando se utilice la misma metodología desarrollada en este trabajo, y se determinen los valores de las funciones discriminantes.

Fig. 74. Campos de clasificación ambiental determinados para la Formación Mirador

Las funciones determinadas en este caso son:

FD1: $-2316 + 11,3 \ge Al_2O_3 + 11,9 \ge SiO_2 + 68,6 \ge CaO + 11,7 \ge K_2O - 107,3 \ge TiO_2 - 0,20 \ge V + 1236 MnO + 3,1 \ge Fe_2O_3 + 229,5 \ge \gamma Total + 247,6 \ge \gamma F1 + 120,9 \ge \gamma^{40}K + 15,1 \ge \gamma F2 + 55,4 \ge \gamma^{214}Bi - 252,7 \ge \gamma F3 + 177,7 \ge \gamma^{208}T1 - 693,8 \ge \gamma F4$

FD2: $-2308 + 11,3 \ge Al_2O_3 + 11,9 \ge SiO_2 + 68,8 \ge CaO + 11,9 \ge K_2O - 101,1 \ge TiO_2 - 0,21 \ge V + 1267$ MnO + 2,8 $\ge Fe_2O_3 + 30,8 \ge \gamma$ Total + 442,3 $\ge \gamma F1 + 321,6 \le \gamma^{40}K + 243,4 \le \gamma F2 + 247,2 \le \gamma^{214}Bi - 11,3 \le \gamma F3 + 339,3 \le \gamma^{208}T1 - 457,7 \le \gamma F4$

Formación Barco

En el caso de esta Formación la información existente es menor, debido a que la mayoría de los autores han estudiado el Grupo Orocué sin diferenciar por lo que el amarre ambiental de esta sección no es tan bueno como el de la Formación Mirador. Debido a lo anterior gran parte de las interpretaciones se han hecho comparando el comportamiento de ambas formaciones y partiendo de las características observadas en la Formación Mirador y de las interpretaciones realizadas por otros autores.

Se asume entonces que las 4 unidades químico-radiométricas interpretadas para la Formación Barco constituyen también ciclos geológicos que pueden representar ambientes de sedimentación específicos. Igualmente los límites de cada uno de estos constituirían límites de unidades sedimentarias ya sean erosivos o no.

La unidad **B1** carece de información previa concerniente al ambiente de sedimentación de la misma. Considerando las características ambientales definidas para las unidades suprayacentes, el comportamiento general de los perfiles en este intervalo (Figs. 52 y 53) y las características litológicas entre otras, podría inferirse dentro de una secuencia progradacional que la sedimentación de esta zona ocurrió dentro de un delta de marea lagunal, donde son comunes las arenas con laminaciones cruzadas, cuyo tamaño de grano disminuye hacia la base, material orgánico oscuro y restos de plantas (CREOLE,1976) como los que caracterizan esta unidad (Anexo 10). La presencia de valores altos de MnO y Fe₂O₃ en el límite superior de la misma (Fig. 53) parece evidenciar en este caso un límite erosivo en el que se desarrollaron superficies de meteorización.

La unidad **B2** ha sido asociado por TORO (1992) a un ambiente representado por ciclos mareales que corresponden posiblemente a llanuras de marea. El comportamiento de la

mayoría de los perfiles resulta similar al de las unidades M2 y M3, donde la zona central presenta los mayores valores y constituye las zonas más lutíticas del intervalo (Figs. 52 y 53). La DRX de las muestras tsp245, tsp310 y tsp370 reflejan una disminución de cuarzo y aumento de minerales de arcilla hacia este sector (Tabla 9). Haciendo una analogía de este comportamiento con el de la Formación Mirador, podría decirse que la zona central de la unidad representa una profundización del ambiente y posiblemente una superficie de máxima inundación.

En el caso de la unidad **B3**, ésta según TORO (1992) corresponde a un ambiente de llanuras de lodo o depósitos lagunales o de bahía. Aún cuando el comportamiento general de los perfiles es similar al de la unidad anterior y las unidades M2 y M3 a excepción de variables como Fe_2O_3 , MnO y K_2O (Figs. 52 y 53), se sugiere de igual modo una profundización del ambiente hacia la parte media de la unidad.

Respecto a los grupos determinados por los análisis multivariantes, puede observarse que del total de muestras pertenecientes a cada ambiente, una pequeña proporción de las mismas puede ser ubicada en un grupo específico (Tabla 43), lo que quiere decir que en este caso los grupos establecidos no representan los ambientes con el mismo grado de confiabilidad que en la Formación Mirador. La razón se debe probablemente a que las rocas pertenecientes a esta sección no presentan características lo suficientemente distintivas (mineralógicas o radiométricas) entre ellas como para ser clasificadas en un ambiente específico.

Ambiente	Grupo	Grupo
Ambiente	(Variables radiométricas)	(Variables químicas)
Delta de marea lagunal	G3 (29%), G4 (29%)	G2 (49%)
Llanura de marea	G2, G4 ,G5 (22%)	G3 (40%)
Llanuras de lodo o depósitos de laguna o bahía	G4 (30%)	G3 (54 %)

 Tabla 43. Relaciones existentes entre los grupos establecidos por análisis multivariantes y los ambientes determinados y asociados a cada unidad. Formación Barco.

G(1,2,3,4 y 5): grupos establecidos por análisis de agrupaciones

Formaciones Barco y Mirador

En ambas formaciones, por lo general las zonas más lutíticas están acompañadas por un incremento de los valores de la mayoría de las variables a excepción del SiO₂, siendo los valores de las mismas más altos en la Formación Barco que en la Formación Mirador (Figs. 52, 53, 58 y 59).

El análisis de los gráficos exploratorios, principalmente de los diagramas de dispersión e histogramas (Figs. 52, 53, 58 y 59), así como el comportamiento de los perfiles correspondientes a cada variable, permiten realizar algunas interpretaciones respecto a éstas.

En primer lugar se tiene que el K_2O en la Formación Mirador se encuentra básicamente en las lutitas (ilita/esmectita) y no formando parte de feldespatos, lo que se evidencia por un comportamiento unimodal de este histograma (Fig. 68), el comportamiento totalmente inverso de los perfiles de SiO₂ y el K_2O (Fig. 59), y por las relaciones existentes entre ésta y los óxidos relacionadas con los minerales de arcilla. Por el contrario en la Formación Barco se observa un comportamiento bimodal de esta variable (Fig. 68) y las relaciónes existentes entre los perfiles, sugieren la existencia de una fuente adicional de K_2O además de las arcillas, que podrían ser los feldespatos, aún cuando estos no se encuentren en gran proporción.

Las relaciones lineales existentes en ambas formaciones entre variables como el Al_2O_3 , SiO₂ y K₂O con el TiO₂ (Figs. 69 y 70), demuestran la influencia de esta última en minerales de arcilla como caolinita, micas y clorita, además de la presencia de minerales pesados como ilmenita, rutilo o anatasa, identificados en petrografía (TORO, 1992; y PAPARONI, 1993) y DRX (Tablas 9 y 12). De igual manera, se puede asociar el comportamiento de dicha variable a la alta proporción de materia orgánica y capas de carbón existentes en ambas formaciones, sobre todo en la Formación Barco donde la presencia de éstas es mayor. Por su parte, las variables MnO y Fe₂O₃ se muestran en ambas formaciones sumamente relacionadas, lo que se evidencia al observar los perfiles de estas variables (Figs. 53 y 59) así como los gráficos exploratorios elaborados para éstas (Figs. 66, 68 y 70). Lo anterior responde a la fácil sustitución iónica que puede darse entre ambos elementos y por tanto a la coexistencia de los mismos en distintas fases mineralógicas.

6.- CONCLUSIONES

6.1. METODOLOGÍA

6.1.1.Radiometría

El peso óptimo para realizar mediciones de radiometría gamma, utilizando el espectrómetro Exploranium GR256, resultó ser 150 g, peso a partir del cual las cuentas por segundo no registran un incremento significativo.

La metodología empleada para el establecimiento de las condiciones óptimas de medición permitió generar ecuaciones para obtener cuentas por segundo corregidas, en muestras de peso inferior a 150 g.

El cilindro de plomo diseñado para el desarrollo de este proyecto permite aislar considerablemente los efectos ambientales de las respuestas radiométricas de las rocas, por lo que las mediciones resultan más confiables.

6.1.2. Fluorescencia de rayos X por dispersión de energía

Las pruebas de repetibilidad realizadas con el espectrómetro de rayos X Minipal PW4025, arrojaron un error menor al 5 % en la mayoría de las ventanas. Los errores superiores a este valor corresponden a las variables V y MnO con concentraciones menores a 150 ppm y 0,01 % respectivamente (Tablas 5 y 6).

Las condiciones óptimas de medición establecidas para este método y utilizadas en la aplicación Rocas- Si - Táchira, fueron 13 Kv, 30 mA y 240 seg sin filtro, debido a que éstas permiten obtener un número suficiente de cps en un tiempo relativamente corto (Tabla 2).

La aplicación desarrollada puede ser utilizada en la medición de elementos mayoritarios en rocas sedimentarias como las estudiadas, y que para casos específicos (calizas, mármoles, etc.) sólo debe ser modificada mediante la adición de algunas variables o patrones adicionales en los que estén representadas las características distintivas de las rocas a ser medidas.

El empleo del *Minipal* en la determinación de concentraciones de elementos mayoritarios a través de la técnica de energía dispersiva, demostró ser un método apropiado, de fácil aplicación y bajos costos, que permite obtener gran cantidad de datos en un tiempo relativamente corto.

6.2. CARACTERIZACIÓN QUÍMICA Y RADIOMÉTRICA

Se establecieron 3 unidades químico - radiométricas para la Formación Barco y 4 para la Formación Mirador (Anexo 9), cada una de las cuales representan variaciones geoquímicas que están asociadas a cambios en los ambientes de sedimentación.

En el caso de la Formación Mirador los límites establecidos para las unidades de forma independiente y objetiva, coinciden con límites (en algunos casos erosivos) de unidades sedimentarias, reportadas en trabajos previos. De igual manera las zonas de mayor deflexión de las curvas representan superficies de máxima inundación también reportados con anterioridad, lo que confirma y evidencia la validez de dichas unidades.

En base a los resultados obtenidos con la Formación Mirador, se asume un comportamiento similar en la Formación Barco donde las unidades establecidas representan cambios en los ambientes de sedimentación, cuyos límites pueden representar superficies erosivas o límites de unidades sedimentarias.

Los mayores valores de las variables radiométricas corresponden en ambas formaciones con litologías lutíticas y conglomerados, siendo la más representativa γTotal y obteniéndose los valores más altos en la Formación Barco (Tabla 37 y Anexo 9). Individualmente estas variables no permiten realizar interpretaciones relacionadas con otros aspectos geológicos.

En ambas formaciones, las variables químicas muestran un comportamiento similar de los perfiles. En la Formación Barco, las zonas más lutíticas están representadas por aumentos de Al_2O_3 , K_2O , TiO_2 y CaO principalmente y disminuciones de SiO_2 , en cambio en la Formación Mirador estas zonas se caracterizan por poseer altas concentraciones de todas las variables a excepción del SiO_2 . De igual manera es la Formación Barco la que registra las mayores concentraciones en todas las variables con excepción del SiO_2 que es mayor en la Formación Mirador (Anexo 9).

El TiO₂ es una variable característica en ambas formaciones, ya que posee los mejores coeficientes de correlación con las variables Al_2O_3 , K_2O y SiO₂, lo que evidencia la presencia de este elemento dentro de la estructura de los minerales de arcilla existentes en las formaciones (Fig. 70).

El K₂O por su parte, evidencia a través de los perfiles, coeficientes de correlación (Fig. 70) y DRX, (Tablas 9 y 12) que en las areniscas de ambas formaciones es escasa la presencia de feldespatos y que este elemento se encuentra principalmente formando parte de los minerales de arcilla, más específicamente dentro de la estructura de la ilita.

Las variables químicas, al contrario de las radiométricas, arrojaron mejores resultados al ser tratadas con métodos estadísticos multivariantes. Es decir los componentes principales establecidos a partir de los datos radiométricos (Tablas 19 y 31) representan en menor porcentaje a los datos originales, que aquellos establecidos a partir de la composición química, así mismo las funciones discriminantes clasifican con mayor porcentaje de aciertos a las muestras en los grupos previamente establecidos, cuando se parte de datos de composición química (Tablas 24 y 36).

Los grupos establecidos a partir del análisis de agrupaciones, más específicamente aquellos determinados con las variables químicas, representan con un alto porcentaje de confiabilidad a los ambientes de sedimentación definidos para cada unidad (Tablas 42 y 43).

Los componentes principales, a excepción de los obtenidos por medio de las variables radiométricas, representan más del 70 % de la variabilidad de los datos (Tablas 20 y 32), por lo que sus perfiles pueden ser utilizados para el establecimiento de las unidades químicas radiométricas (Anexo 5).

Debido a la representatividad de los grupos del análisis de agrupaciones, las funciones discriminantes determinadas permiten clasificar muestras de origen desconocido en los ambientes definidos para las Formaciones estudiadas con un determinado rango de probabilidad.

Las funciones discriminantes resultaron muy efectivas al discriminar las muestras de una Formación de la otra, es decir Barco vs Mirador, especialmente cuando se utilizó para su establecimiento la combinación de variables radiométricas y químicas a la vez. De esta manera se obtuvo que sólo con las variables radiométricas el porcentaje de aciertos fue de 79 %, sólo con las variables químicas 84 % y al usar las 16 variables a la vez se obtuvo el 91 % de aciertos (Tabla 38).

Los resultados obtenidos permiten ubicar una muestra cualquiera previamente pulverizada en alguna de las dos formaciones estudiadas, tratándolas con la misma metodología de este trabajo para lo cual sólo es necesario medir por radiometría y fluorescencia de rayos X las 16 variables utilizadas y con esos valores aplicar las dos funciones discriminantes establecidas para ambas formaciones, la muestra será entonces clasificada en la Formación cuya función discriminante obtenga valores más altos.
7.- BIBLIOGRAFÍA

- ALBRIZZIO C. 1969. Estratigrafía de la Formación Mirador en San Antonio y Ureña, estado Táchira, Venezuela. *IV Cong. Geol. Venez.* 2: 569-584.
- AZPIRITZAGA I. & CASAS J. 1989. Estudio sedimentológico de las formaciones Mirador y Carbonera en el río Lobaterita, Estado Táchira, Venezuela. *Geos*, 29: 1-17.
- BERTIN Eugene. 1975. *Principles and practise of x-ray spectrometric analysis*. 2da. Ed. Plenum Press, New York-London, 1079p.
- BOESI T., ROJAS G., DURÁN I., GALEA F., LORENTE, M.A. & VELÁSQUEZ M. 1988. Estudio estratigráfico del flanco norandino en el sector Lobatera – El Vigía. *Memorias III Simposio Bolivariano*, p. 1-41.
- BRICEÑO H., CALLEJÓN A. & LANDER R. 1996. Caracterización de quimiofacies en rocas Cretáceas del área sur del estado Táchira, Venezuela occidental. AAPG Bulletin. 80(8):1276.
- BRICEÑO H. & CALLEJÓN A. 2000. Chemostratigraphic correlation of the source rock in the La Luna – K/T (!) petroleum system in southwestern Venezuela. En: *Research conference. Paleogeography and hidrocarbon potential of the La Luna Formation and related cretaceous anoxic system.* SEPM, Edición en CD.
- BRONDIJK J. 1967-b. V Contribution of the AVGMP Maracaibo Basin Eocene nomenclature Commitee. Eocene formations in the southwestern part of the Maracaibo Basin. Asoc. Venez. Geol. Min. y Petrol., Bol. Inform. 10(2): 35-50

CALZADILLA María. 1978. Radiometría. Ed. Pueblo y educación, La Habana, 131p.

CHRISTENSEN Howard. 1983. Estadística paso a paso. Ed. Trillas, México, 678p.

CIEN-COMITÉ INTERFILIAL DE ESTRATIGRAFÍA Y NOMENCLATURA. 1999. Léxico Estratigráfico Electrónico de Venezuela. Edic. PDVSA, en CD. Actualización marzo 1999. Caracas.

COLMENARES O. &. TERÁN L. 1988. Bioestratigrafía de secuencias Eoceno-Oligoceno en el estado Táchira. *Revista Técnica Intevep*.

CREOLE PETROLEUM CORPORATION. 1976. Manual de facies clásticas. Ed. EPRCo. USA.

- CREOLE PETROLEUM CORPORATION. 1957. *Mapa G-2-D. Geología de Superficie*, esc 1:50000.
- CROW E., DAVIS F., MAXFIELD T. 1960. *Statistics Manual*. Dover Publications, Inc. New York. USA. 288p.
- DAVIS J. 1973. *STATISTICS AND DATA ANALYSIS IN GEOLOGY*. John Wiley & Sons Inc. New York/London/Sydney, 550 p.
- ESTÉVEZ Ivan. 2000. *Estudio quimioestratigráfico del terciario temprano-medio y límite Cretácico-Terciario del occidente venezolano*. UCV. Facultad de Ciencias. Instituto de Ciencias de la Tierra. Caracas. Inédito.
- ERLICH R. & BARRET F. 1990. Cenozoic plate tectonic history of the northern Venezuela Trinidad area. *Tectonics*. 9 (1): 161-184.
- ERLICH R. PALMER S. & LORENTE M. 2000. Geochemical characterization of oceanographic and climate changes recordered in upper Albian to lower Maastrichtian strata, western Venezuela. En: *Research conference*. *Paleogeography and hidrocarbon*

potential of the La Luna Formation and related cretaceous anoxic system. SEPM, Edición en CD.

- FRIEDLANDER G. KENNEDY J. & MILLER J. 1955. Nuclear and radiochemistry. 2da. Ed. John Wiley & Sons Inc. New York/London/Sydney, 584 p.
- GAILANI A. 1980. Geochemical identification of unconformities using semi-quantitative xray fluorescence analysis. *Journal of sedimentary petrology*. 50 (4): 1261-1270.
- GARNER A. 1926. Suggested nomenclature and correlation of the geological formations in Venezuela, in Petroleum development and techonology, 1925. Am. Inst. Min. Metall. Eng., Tr., p. 677-684.
- GONZÁLEZ DE JUANA C., ITURRALDE J. & PICARD X. 1980. *Geología de Venezuela y de sus cuencas petrolíferas*. Caracas, FONINVES, 2T., 1031 p.
- HARBAUGH J. & MERRIAM D. *Computer applications in stratigraphic analysis*. John Wiley & Sons Inc. New York/London/Sydney, 282 p.
- HOWARD B. & CHRISTENSEN J. 1983. Estadística paso a paso. 1ra. Edición. Ed. Trillas, México, 678 p.
- HURLBUT C. & KLEIN C. 1991. *Manual de mineralogía de Dana*. 3ra Edición. Ed. Reverté, Barcelona, 564 p.
- JOHNSON Robert. 1988. *Estadística elemental*. Grupo editorial Iberoamericano, México, 592 p.
- JORGENSEN N. 1986. Chemostratigraphy of upper cretaceous chalk in the Danish subbasin. *AAPG Bulletin.* 70 (3): 309-317.

- KENDALL M. 1980. *Multivariate analysis*. 2da. Ed. Charlers Griffin & Company LTD, 210 p.
- KISER G. D. 1989. Relaciones estratigráficas de la cuenca Apure-Llanos, con áreas adyacentes, Venezuela Suroeste y Colombia Oriental. Monografía. *Soc. Venez. Geol.* (1): 77.
- KUYL O., MULLER J. & WATERBOLK H., 1955. The application of palynology to oil geology with reference to western Venezuela. Geol. en *Mijnb., New. Ser.* 17(3): 49-76.
- LECKIE D., SINGH C., GOODARZI F. & WALL J. 1990. Organic rich, radioactive marine shale: a case study of a shallow-water condensed section, Cretaceous Shaftesbury Formation, Alberta, Canada. *Journal of Sedimentary Petrology*. 60(1):101-117.
- LIDDLE R.1946. *The geology of Venezuela and Trinidad*. J.P. MacGowan. Fort worth, Texas, 552 p.
- LUGO J. & MANN P. 1995. Jurassic Eocene tectonic evolution of Maracaibo Basin, Venezuela. En: *Petroleum basins of south America*. AAPG Memoir (62): 699-725.

MASON Bryan. 1960. Principios de geoquímica. Ed. Omega S.A. Barcelona, 333 p.

- MEIER B., SCHWANDER M. & LAUBSCHER H. 1987. The tectonics of Táchira: A sample of north Andean tectonics. Eds. SHAER J & RODGERS J. *The anatomy of mountain ranges*. Princenton University Press. Princenton NJ. P. 229-237.
- NORTH C. & BOERING M. 1999. Spectral gamma-ray logging for facies discrimination in mixed fluvial-eolian successions: a cautionary tale. *AAPG Bulletin*. 83 (1): 155-169.
- NOTESTEIN F., HUBMAN C.W. & BOWLER J. W. 1944. Geology of the Barco Concession, Republic of Colombia, South America, *Geol. Soc. Am.*, Bull. 55: 1165-1216.

- PAPARONI G. 1993. Análisis y caracterización de litofacies pertenecientes a parasecuencias de edad Eoceno (ambientes de transición) Formación Mirador de Venezuela Occidental. UCV. Fac. de Ing., Escuela de Geología, Minas y Geofísica. Dept. de Geología. Caracas. Trabajo Especial de Grado. Inédito. 199 p.
- PARNAUD F., GOU Y., PASCAL J.C., CAPELLO M.A., TRUSKOWSKI I., & PASSALACQUA H. 1995. Stratigrafic synthesis of western Venezuela. En: *Petroleum basins of South America.* AAPG Memoir. (62): 681-698.
- PEARCE T., BESLY B., WRAY D. & WRIGHT D. 1997. Chemostratigraphy: a method to improve interwell correlation in barren sequences – a case study using onshore Duckmantian/Stephanian sequences (West Midlands, U.K.). Sedimentary Geology. 124: 197-220.
- PEARCE T. & JARVIS I. 1995. High resolution chemostratigraphy of quaternary distal turbidites: a case study of new methods for the analysis and correlation of barren sequences. En: *Non-biostratigraphical methods of datin and correlation*. Geological Society special publication. (89): 107-143.
- PESTMAN P., GHOSH S., MELÉNDEZ L. & LORENTE M. 1998. Marco tectonoestratigráfico y paleogeografía de la Cuenca de Maracaibo y áreas vecinas durante el Paleógeno. *Boletín Sociedad Venezolana de Geólogos*. 23 (1): 28 – 45.
- PINDELL J. & BARRET F. 1990. Geologic evolution of the Caribbean: a plate-tectonic perspective. En: DENGO G. & CASE J. *The Caribbean: Decade of north American* geology. Geol. Soc. América. (44):405-432.
- RAMÍREZ C. & CAMPOS V. 1969. Geología de la región de la Grita-San Cristóbal, Estado Táchira, *IV Cong. Geol. Venez.*, 2: 861-897. (885-886).

- REYMENT R. & HIRANO H. 1999. Exploratory multivariate statistical analysis of geochemical data from the Cenomanian-Turonian transition of the Yezo Supergroup, Hokkaido, Japan. *Cretaceous Research*. 20: 539-546.
- ROLLINSON Hugh. 1993. Using geochemical data, evaluation, presentation, interpretation.Ed. Longman Scientific & Technical, New York, 352 p.
- SIEGEL F. 1974. *Applied geochemistry*. Ed. John Wiley & Sons Inc. New York/London/Sydney, 353 p.
- SKOOG D. & WEST D. 1984. Análisis instrumental. 2da Edición. Ed. Interamericana, México, 806p.

SNEDECOR G.1946. Statitical Methods.4th ed. State College Press, Iowa, 351 p.

- SUTTON F. A. 1946. Geology of Maracaibo basin, Venezuela. Am. Assoc. Petrol. Geol., Bull. 30, (10): 1621-1741.
- TORO M. 1992 Estratigrafía y arquitectura de facies fluvio-deltáicas en la zona de San Pedro del Río, Lobatera, Estado Táchira. UCV. Fac. de Ing. Escuela de Geología, Minas y Geofísica. Dept. de Geología. Caracas. Trabajo Especial de Grado. Inédito, 163 p.
- TRUMP G. W. & SALVADOR A. 1964. Guidebook to the geology of western Táchira. Asoc. Venez. Geol., Min. y Petról. 25 p.
- URBANI Franco. 1976. Ensayo de prospección geoquímica en el Parque Nacional El Ávila norte de Caracas.UCV. Fac. de Ing. Escuela de Geología, Minas y Geofísica. Dept. de Geología. Caracas. Inédito. 126 p.

- VAN VEEN F. R. 1969. Ambientes sedimentarios de las formaciones Mirador y Misoa del Eoceno inferior y medio en la cuenca del Lago de Maracaibo. *IV Cong. Geol. Venez.*, 2: 1073-1104.
- WINCHESTER J. & MAX M. 1996. Chemostratigraphic correlation, structure and sedimentary environments in the Daldarian of the NW Co. Mayo inlier, NW Ireland. *Journal of the geological society*. 153: 779-801.
- ZAMBRANO E., GHOSH S.K., PESTMAN P., MELÉNDEZ L., BARTOK P. & LORENTE, M.A. 1995. Síntesis geológica, marco secuencial y perspectivas exploratorias del Eoceno de la Cuenca de Maracaibo. Maraven. Informe EPC-13494. Inédito.

GRÁFICOS DE CALIBRACIÓN RADIOMÉTRICA

Fig. 75 Gráficos (sin modificar) de calibración radiométrica, para el establecimiento de condiciones óptimas de medición.

Fig. 76 Gráficos modificados de calibración radiométrica para la corrección por peso.

CURVAS DE CALIBRACIÓN FRX

Fig.77 Curva de calibración del Al₂O₃

Fig.78 Curva de calibración del CaO

Fig.79 Curva de calibración del Fe₂O₃.

Fig.80 Curva de calibración del K2O

Fig.81 Curva de calibración del MnO

Fig.82 Curva de calibración del V

Fig.83 Curva de calibración del TiO₂

Fig. 84 Curva de calibración del SiO₂

PRUEBAS DE REPETIBILIDAD

M-tspm20	%SiO ₂	%TiO₂	%Al ₂ O ₃	%Fe ₂ O ₃	%MnO	%CaO	%K₂O	ppmV
1	70,39	0,383	14,38	3,73	0,016	0,118	0,607	140
2	68,16	0,396	14,38	3,90	0,027	0,115	0,618	210
3	69,57	0,387	14,50	3,72	0,031	0,130	0,625	170
4	69,57	0,374	14,54	3,73	0,038	0,119	0,602	220
5	69,07	0,397	14,49	3,85	0,022	0,123	0,605	180
6	70,31	0,388	15,15	3,87	0,021	0,109	0,625	160
Promedio	69,51	0,387	14,57	3,80	0,026	0,119	0,614	180
Desv. Estand	0,83	0,008	0,29	0,08	0,008	0,007	0,010	31
Coef. Variac.	1,192	2,191	2,00	2,15	30,793	5,995	1,707	17

Pruebas de repetibilidad cambiando la muestra

Tabla 44. Pruebas de repetilidad de la muestra tspm 20

Tabla 45. Pruebas de repetilidad de la muestra tspm 170

M-tspm170	%SiO ₂	%TiO ₂	%Al ₂ O ₃	%Fe ₂ O ₃	%MnO	%CaO	%K ₂ O	ppmV
1	56,49	0,980	24,66	1,187	0,004	0,043	0,426	785
2	56,51	0,977	25,17	1,193	0,008	0,050	0,428	824
3	57,49	0,989	24,84	1,179	0,006	0,050	0,426	749
4	57,61	0,991	25,34	1,178	0,005	0,043	0,427	800
5	58,48	0,981	26,17	1,177	0,006	0,051	0,421	800
6	58,61	0,984	26,00	1,180	0,007	0,047	0,428	780
Promedio	57,53	0,984	25,36	1,182	0,006	0,047	0,426	789
Desv. Estand	0,92	0,005	0,61	0,006	0,002	0,004	0,003	24
Coef. Variac	1,59	0,556	2,41	0,539	27,487	7,893	0,641	3

Tabla 46. Pruebas de repetilidad de la muestra tspm 275

M-tspm275	%SiO ₂	%TiO ₂	%Al ₂ O ₃	%Fe ₂ O ₃	%MnO	%CaO	%K ₂ O	ppmV
1	62,75	0,537	16,64	8,96	0,054	0,140	0,900	180
2	65,23	0,520	18,50	8,94	0,053	0,131	0,860	220
3	65,67	0,528	17,95	9,00	0,059	0,125	0,838	220
4	66,21	0,532	18,35	8,96	0,060	0,126	0,857	200
5	67,08	0,534	18,35	8,96	0,064	0,136	0,872	220
6	66,20	0,520	19,23	8,96	0,063	0,117	0,863	220
Promedio	65,52	0,529	18,17	8,97	0,059	0,129	0,865	210
Desv. Estand	1,49	0,007	0,86	0,02	0,005	0,008	0,021	15
Coef. Variac	2,28	1,382	4,73	0,22	8,092	6,300	2,371	7

M-tspm310	%SiO ₂	%TiO ₂	%Al ₂ O ₃	%Fe ₂ O ₃	%MnO	%CaO	%K ₂ O	ppmV
1	89,36	0,527	4,75	0,90	0,004	0,043	0,101	0
2	88,52	0,522	4,81	0,80	0,002	0,027	0,094	110
3	87,96	0,542	4,92	1,01	0,007	0,030	0,120	90
4	89,34	0,565	5,18	1,02	0,011	0,025	0,108	140
5	89,14	0,576	5,38	1,09	0,006	0,028	0,109	60
6	88,55	0,582	4,74	0,99	0,045	0,037	0,122	50
Promedio	88,81	0,552	4,96	0,97	0,012	0,032	0,109	75
Desv. Estand	0,56	0,026	0,26	0,10	0,016	0,007	0,011	51
Coef. Variac	0,63	4,631	5,30	10,70	128,857	21,484	9,677	69

Tabla 47. Pruebas de repetilidad de la muestra tspm 310

Tabla 48. Pruebas de repetilidad de la muestra tspm 310

M-tspm375	%SiO ₂	%TiO ₂	%Al ₂ O ₃	%Fe ₂ O ₃	%MnO	%CaO	%K ₂ O	ppmV
1	67,82	0,680	21,72	0,66	0,009	0,042	1,188	300
2	66,90	0,681	21,67	0,70	0,012	0,051	1,217	300
3	66,78	0,670	21,89	0,67	0,009	0,047	1,200	280
4	68,11	0,678	22,51	0,69	0,005	0,042	1,173	330
5	68,82	0,681	23,32	0,68	0,008	0,046	1,201	290
6	68,06	0,677	22,99	0,69	0,005	0,042	1,193	310
Promedio	67,75	0,678	22,35	0,68	0,008	0,045	1,195	302
Desv. Estand	0,78	0,004	0,70	0,01	0,003	0,004	0,014	18
Coef. Variac	1,15	0,612	3,12	1,95	33,152	8,007	1,210	6

Pruebas de repetibilidad sin cambiar la muestra

M-tspm20	%SiO ₂	%TiO ₂	%Al ₂ O ₃	$%Fe_2O_3$	%MnO	%CaO	%K ₂ O	ppmV
1	68,98	0,387	14,83	3,85	0,020	0,117	0,637	260
2	68,86	0,387	14,60	3,85	0,026	0,115	0,636	250
3	69,80	0,382	14,66	3,86	0,025	0,113	0,636	280
4	70,04	0,387	15,19	3,86	0,027	0,111	0,642	220
5	69,57	0,386	15,07	3,83	0,023	0,120	0,631	230
Promedio	69,45	0,386	14,87	3,85	0,024	0,115	0,636	248
Desv. Estand	0,51	0,002	0,26	0,01	0,003	0,003	0,004	25
Coef. Variac	0,74	0,599	1,72	0,28	11,891	2,891	0,661	10

Tabla 49. Pruebas de repetilidad de la muestra tspm 20

M-tspm170	%SiO ₂	%TiO ₂	%Al ₂ O ₃	%Fe ₂ O ₃	%MnO	%CaO	%K ₂ O	ppmV
1	58,67	0,992	26,22	1,19	0,004	0,036	0,417	780
2	59,16	0,987	25,83	1,19	0,003	0,059	0,424	790
3	59,32	0,989	26,12	1,18	0,006	0,044	0,428	820
4	59,04	0,991	26,57	1,20	0,005	0,040	0,421	800
5	58,83	0,988	26,02	1,19	0,004	0,055	0,424	770
Promedio	59,00	0,989	26,15	1,19	0,004	0,047	0,423	790
Desv. Estand	0,26	0,002	0,27	0,01	0,001	0,010	0,004	22
Coef. Variac	0,44	0,213	1,05	0,64	29,685	21,121	0,967	3

Tabla 50. Pruebas de repetilidad de la muestra tspm 170

Tabla 51. Pruebas de repetilidad de la muestra tspm 275

M-tspm275	%SiO ₂	%TiO ₂	%Al ₂ O ₃	$%Fe_2O_3$	%MnO	%CaO	%K ₂ O	ppmV
1	66,14	0,525	18,60	8,97	0,063	0,131	0,877	210
2	67,07	0,525	18,83	8,97	0,057	0,127	0,860	200
3	66,47	0,523	18,76	8,99	0,064	0,128	0,862	220
4	66,34	0,523	18,57	9,00	0,065	0,131	0,876	230
5	66,46	0,526	19,07	8,97	0,061	0,140	0,880	210
Promedio	66,50	0,525	18,76	8,98	0,062	0,131	0,871	216
Desv. Estand	0,35	0,001	0,20	0,02	0,003	0,005	0,009	13
Coef. Variac	0,52	0,258	1,08	0,17	4,848	3,758	1,071	6

Tabla 52. Pruebas de repetilidad de la muestra tspm 310

M-tspm310	%SiO ₂	%TiO ₂	%Al ₂ O ₃	%Fe ₂ O ₃	%MnO	%CaO	%K ₂ O	ppmV
1	89,22	0,560	5,32	1,02	0,007	0,036	0,102	0
2	88,45	0,556	5,06	1,02	0,019	0,037	0,100	50
3	88,72	0,556	4,73	0,99	0,020	0,036	0,099	20
4	89,50	0,558	5,27	0,99	0,029	0,037	0,097	10
5	89,43	0,553	4,69	1,01	0,022	0,027	0,085	20
Promedio	89,06	0,557	5,01	1,01	0,019	0,035	0,097	21
Desv. Estand	0,46	0,003	0,29	0,02	0,008	0,004	0,007	15
Coef. Variac	0,52	0,504	5,86	1,52	41,703	11,741	6,796	73

Tabla 53. Pruebas de repetilidad de la muestra tspm 375

M-tspm375	%SiO ₂	%TiO ₂	%Al ₂ O ₃	$%Fe_2O_3$	%MnO	%CaO	%K ₂ O	ppmV
1	69,39	0,678	23,16	0,70	0,005	0,062	1,192	300
2	69,41	0,690	23,23	0,69	0,008	0,050	1,201	310
3	70,16	0,680	23,51	0,71	0,007	0,049	1,207	290
4	69,77	0,677	23,23	0,70	0,006	0,052	1,180	290
5	69,68	0,681	23,02	0,71	0,006	0,055	1,208	270
Promedio	69,68	0,681	23,23	0,70	0,006	0,054	1,197	292
Desv. Estand	0,32	0,005	0,18	0,01	0,001	0,005	0,012	15
Coef. Variac	0,45	0,791	0,76	0,96	18,881	9,362	0,986	5

PERFILES QUÍMICOS Y RADIOMÉTRICOS SIN PROMEDIO MÓVIL

Fig.85. Perfiles químicos de la Formación Mirador.

Fig.86. Perfiles radiométricos de la Formación Mirador.

Fig.87. Perfiles químicos de la Formación Barco.

Fig.88. Perfiles radiométricos de la Formación Barco.

PERFILES DE COMPONENTES PRINCIPALES RADIOMÉTRICOS Y QUÍMICOS

TABLAS DE ANÁLISIS MULTIVARIANTES

1	RA	DIOMETRÍ	A	FLUORES	SCENCIA R	AYOS X
	Muestra	Grupo	Grupo FD	Muestra	Grupo	Grupo FD
	(tspm)	-	-	(tspm)	-	-
	445	1	1	445	1	1
	440	3	3	440	1	1
	435	3	3	435	1	1
	430	3	3	430	1	1
	425	3	3	425	1	1
	420	1	1	420	1	1
	415	3	3	415	1	1
	410	3	3	410	1	1
	405	1	1	405	1	1
	400	3	3	400	1	1
	395	3	3	395	1	1
	390	1	*3	390	1	1
	385	3	3	385	1	1
	380	2	2	380	2	2
	375	4	4	375	3	3
	370	3	3	370	1	1
	365	3	3	365	1	1
	360	2	2	360	1	1
	355	3	3	355	1	1
	350	1	1	350	1	1
	345	3	3	345	2	2
	340	1	1	340	2	2
	335	3	3	335	2	2
	330	3	3	330	1	1
	325	4	*1	325	1	1
	320	1	*3	320	1	1
	315	1	1	315	1	1
	310	2	2	310	1	1
	305	3	3	305	1	1
	300	1	1	300	1	1
	295	2	2	295	1	1
	290	1	1	290	3	3
	285	4	4	285	3	3
	280	2	2	280	3	3
	275	4	4	275	3	3
	270	2	2	270	3	3
	265	4	4	265	3	3
	260	2	2	260	3	3
	255	5	5	255	3	3
	250	4	4	250	2	2
	245	4	4	245	3	3
	240	4	4	240	3	3
	235	2	2	235	2	2

Tabla 54. Clasificación de muestras según análisis de agrupaciones y funciones discriminantes Radiometría y Fluorescencia de rayos x Formación Mirador.

Muestra	Grupo	Grupo FD	Muestra	Grupo	Grupo FD
(tspm)	•	-	(tspm)	•	•
230	1	1	230	2	2
225	1	1	225	2	2
220	2	2	220	2	2
215	1	1	215	3	3
210	1	1	210	2	2
205	1	1	205	2	2
200	4	*2	200	2	*1
195	1	*3	195	5	5
190	1	1	190	2	2
185	1	1	185	1	1
180	2	2	180	1	1
175	1	1	175	1	1
170	5	5	170	5	5
165	5	5	165	3	3
160	2	*4	160	3	3
155	1	*4	155	3	3
150	4	4	150	3	3
145	2	2	145	4	4
140	1	1	140	2	.3
135	2	2	135	2	3
130	1	1	130	2	3
125	3	.3	125	2	3
120	3	*1	120	2	3
115	1	*3	115	2	3
110	2	*4	110	2	3
105	2	2	105	- 3	*2
100	2	2	100	2	2
95	- 3	- 3	95	2	2
90	3	3	90	2	2
85	2	2	85	2	2
80	1	*4	80	2	2
75	1	1	75	2	2
70	1	*3	70	3	3
65	3	3	65	3	3
60	2	2	60	2	2
55	4	4	55	3	3
50	2	2	50	4	4
45	1	1	45	3	3
40	3	3	40	2	2
35	2	*1	35	2	2
30	2	2	30	2	2
25	2	2	25	2	2
20	1	1	20	2	2
15	2	2	15	2	2
10	1	1	10	2	2
5	2	2	5	2	2

Grupo = grupo determinado previamente por análisis de agrupaciones

Grupo FD = grupo al que pertenecen las muestras según funciones discriminantes

* = muestras incorrectamente clasificadas.
| RA | DIOMETRÍ | 4 | FLUORES | CENCIA R | RAYOS X | |
|---------|----------|----------|---------|----------|----------|--|
| Muestra | Grupo | Grupo FD | Muestra | Grupo | Grupo FD | |
| (tsp) | - | - | (tsp) | - | - | |
| 835 | 1 | 1 | 835 | 1 | 1 | |
| 830 | 5 | 5 | 830 | 1 | 1 | |
| 825 | 3 | 3 | 825 | 3 | 3 | |
| 820 | 3 | 3 | 820 | 3 | 3 | |
| 815 | 3 | 3 | 815 | 3 | 3 | |
| 810 | 4 | *2 | 810 | 1 | 1 | |
| 805 | 4 | 4 | 805 | 2 | 2 | |
| 800 | 4 | *2 | 800 | 2 | 2 | |
| 795 | 4 | 4 | 795 | 2 | 2 | |
| 790 | 2 | 2 | 790 | 2 | 2 | |
| 785 | 4 | 4 | 785 | 2 | 2 | |
| 780 | 4 | 4 | 780 | 1 | *2 | |
| 775 | 4 | *2 | 775 | 2 | 2 | |
| 770 | 4 | *1 | 770 | 1 | 1 | |
| 765 | 4 | 4 | 765 | 2 | 2 | |
| 760 | 4 | 4 | 760 | 2 | 2 | |
| 755 | 2 | 2 | 755 | 2 | *1 | |
| 750 | 4 | 4 | 750 | 1 | 1 | |
| 745 | 3 | 3 | 745 | 1 | 1 | |
| 740 | 2 | 2 | 740 | 3 | 3 | |
| 735 | 2 | *5 | 735 | 3 | 3 | |
| 730 | 3 | *1 | 730 | 3 | 3 | |
| 725 | 1 | 1 | 725 | 1 | 1 | |
| 720 | 5 | 5 | 720 | 3 | 3 | |
| 715 | 1 | 1 | 715 | 3 | 3 | |
| 710 | 5 | 5 | 710 | 3 | *1 | |
| 705 | 3 | 3 | 705 | 2 | 2 | |
| 700 | 4 | 4 | 700 | 2 | 2 | |
| 695 | 4 | 4 | 695 | 2 | 2 | |
| 690 | 3 | 3 | 690 | 3 | 3 | |
| 685 | 5 | 5 | 685 | 3 | 3 | |
| 680 | 5 | 5 | 680 | 3 | 3 | |
| 675 | 2 | 2 | 675 | 3 | 3 | |
| 670 | 1 | 1 | 670 | 3 | 3 | |
| 665 | 2 | 2 | 665 | 2 | 2 | |
| 660 | 2 | 2 | 660 | 3 | 3 | |
| 655 | 1 | 1 | 655 | 3 | 3 | |
| 650 | 3 | *5 | 650 | 3 | 3 | |
| 645 | 5 | 5 | 645 | 3 | 3 | |
| 640 | 4 | *2 | 640 | 3 | 3 | |
| 635 | 1 | 1 | 635 | 3 | 3 | |
| 630 | 4 | 4 | 630 | 2 | 2 | |

Tabla 55. Clasificación de muestras según análisis de agrupaciones y funciones discriminantes Radiometría y Fluorescencia de rayos x Formación Barco

Muestra (tsp)	Grupo	Grupo FD	Muestra (tsp)	Grupo	Grupo FD
625	5	5	625	3	3
620	5	5	620	3	3
615	2	2	615	3	3
610	5	5	610	3	3
605	2	2	605	3	3
600	2	2	600	1	1
595	1	1	595	1	1
500	1	1	500	3	3
590	2	2	590	2	3
505	3 F	3 F	505	3	3
560	5	5	560	3	3 *2
575	2	2	575	1	- 3
570	1		570	3	3
565	3	3	565	3	3
560	4	4	560	2	2
555	4	4	555	1	1
550	1	3	550	2	2
545	4	*1	545	2	2
540	2	2	540	3	3
535	4	*5	535	1	1
530	4	4	525	2	2
525	4	4	520	1	1
520	4	4	515	1	1
515	3	3	510	3	3
510	2	2	505	3	*1
505	4	*2	500	3	3
500	3	3	495	3	3
495	5	5	490	1	1
490	3	3	485	1	*3
485	2	*1	480	2	2
480	2	2	475	1	*3
475	5	5	470	3	а З
470	1	1	465	1	1
465	5	5	460	3	3
460	1	1	400	1	1
400	2	2	455	2	2
455	5	5	430	2	2
430	5 5	5 5	440	3	ວ *2
440	5	5	440	1	о С
440	3 F	3 F	435	3	3
435	5	5	430	1	1
430	1	1	425	3	3
425	5	5	420	3	3
420	1	1	415	3	3
415			410	3	3
410	3	3	405	1	1
405	2	*1	400	3	3
400	5	5	395	2	2
395	3	3	390	2	2
390	1	*4	385	1	1
385	3	3	380	3	3
380	5	5	375	3	3

Muestra (tsp)	Grupo	Grupo FD	Muestra (tsp)	Grupo	Grupo FD
375	1	*4	370	3	3
370	4	4	365	3	3
365	5	5	360	1	1
360	5	5	355	3	3
355	3	3	350	3	3
350	3	3	345	3	3
345	1	1	340	1	1
340	2	2	335	1	1
335	2	2	330	1	1
330	3	3	325	3	3
325	1	1	320	1	1
320	4	*2	315	2	2
315	3	- 3	310	1	1
310	5	*1	305	2	2
305	4	4	300	2	2
300	1	1	295	2	2
295	1	1	200	2	2
200	4	4	285	1	1
285		2	280	3	3
280	5	5	200	2	2
200	2	*4	270	1	1
270	2	2	265	2	2
270	2	2	200	2	2
200	2	2	200	2	2
200	4	4	250	2	2
255	2	2	200	2 1	2
230	2	2	240	4	4
245	4	4	240	2	2
240	4	4	233	1	1
200	2	2	230	4	4
230	5	5	220	2	2
220	4	4	220	2	2
220	4	4	215	2	2
215	1	1	210	2	2
210	4	4	205	2	2
205	4	4	200	2	۲ ۲۵
200	4	4	195	1	2
195	4	4	190	ა ა	3 *1
190	3	3	100	3	1
100	3	3	100	1	1
175	1	1	175	2	2
175	1	2	170	1	1
170	3 F	ວ *	160	2	2
160	5		100	1	
100	ა ი	う *0	155		
155	3	*4	150	2	
150	4	^1 *4	145	1	1
145	4	1	140	2	2
140	2	2	135	2	2
135	2	2	130	2	2
130	4	4	125	3	3

Muestra (tsp)	Grupo	Grupo FD	Muestra (tsp)	Grupo	Grupo FD
125	5	*3	120	3	3
120	3	3	115	3	3
115	3	3	110	3	3
110	3	3	105	2	2
105	4	*1	100	3	3
100	3	3	95	3	3
95	4	4	90	1	1
90	3	3	85	2	2
85	5	5	80	2	*1
80	1	1	75	2	2
75	2	2	70	2	2
70	1	*2	65	3	3
65	5	5			

Grupo = grupo determinado previamente por análisis de agrupaciones

Grupo FD = grupo al que pertenecen las muestras según funciones discriminantes

* = muestras incorrectamente clasificadas.

Muestra	CP1	CP2									
835	0,382	-2,346	640	-0,221	1,081	445	1,433	-0,693	250	0,233	1,002
830	0,503	-0,017	635	0,990	-2,094	440	2,627	1,206	245	-2,498	-0,829
825	0,422	0,669	630	-2,880	-1,530	435	2,052	-1,509	240	-3,441	-0,269
820	1,131	2,115	625	1,565	-1,525	430	0,205	-0,735	235	-0,522	1,119
815	0,626	1,098	620	1,091	-0,494	425	4,572	0,487	230	5,598	0,604
810	-1,032	0,604	615	1,048	0,141	420	1,731	-1,723	225	-2,780	0,379
805	-2,451	0,704	610	1,381	-1,580	415	-0,054	-1,253	220	-2,274	0,352
800	-2,442	1,555	605	0,397	0,211	410	2,795	1,063	215	-1,130	0,098
795	-2,385	-0,071	600	-0,224	-1,248	405	0,583	-0,058	210	-1,805	-0,879
790	-1,204	2,017	595	-1,416	-2,374	400	5,089	0,267	205	-2,636	-1,217
785	-2,418	0,500	590	0,255	-1,085	395	0,561	1,754	200	-2,506	-0,229
780	-1,429	-0,366	585	0,768	0,824	390	-1,524	-0,199	195	-2,025	0,155
775	-2,123	2,337	580	0,218	-0,110	385	0,602	1,233	190	2,270	0,656
770	-1,938	-0,877	575	-0,361	0,437	380	1,758	-1,350	185	1,543	0,948
765	-2,105	-0,867	570	0,647	-1,694	375	-1,190	-0,063	180	-0,967	-0,761
760	-1,902	-0,800	565	0,572	0,746	370	-1,098	-0,551	175	-0,175	-1,041
755	-0,629	0,109	560	-2,663	0,403	365	2,497	-0,470	170	0,468	0,483
750	-1,307	-0,761	555	-2,334	-0,003	360	0,730	-0,574	165	0,157	0,185
745	-0,016	1,747	550	-1,363	0,209	355	2,171	2,090	160	1,486	0,980
740	-0,013	1,725	545	-1,063	-0,706	350	2,227	0,214	155	-0,162	2,448
735	1,560	0,330	540	-0,241	0,669	345	-1,053	-0,459	150	-1,063	0,220
730	-0,028	0,043	535	-0,006	-0,967	340	-0,432	0,552	145	-0,219	-1,020
725	-0,027	-1,011	530	-2,057	0,192	335	-0,702	0,430	140	-0,280	0,418
720	2,883	-1,308	525	-2,456	0,889	330	0,483	1,261	135	-0,828	0,602
715	0,082	-1,308	520	-0,937	-0,220	325	1,583	-1,276	130	-1,226	-1,717
710	2,092	-1,534	515	1,298	-0,706	320	-1,390	0,448	125	3,791	0,406
705	0,519	1,270	510	-0,297	0,048	315	0,950	0,348	120	1,994	0,626
700	-2,196	-1,039	505	0,019	-0,319	310	-0,227	-0,426	115	0,611	0,788
695	-3,276	1,353	500	2,004	1,576	305	-2,923	1,115	110	1,120	1,089
690	2,247	0,331	495	1,654	-2,096	300	-0,817	1,015	105	-0,559	-1,254
685	1,963	-0,593	490	1,519	0,326	295	-1,502	-1,447	100	1,786	1,318
680	2,331	-0,830	485	-0,197	-0,305	290	-1,401	-0,750	95	-2,154	0,634
675	0,984	1,249	480	-0,817	0,646	285	0,384	0,558	90	0,501	-0,114
670	-0,386	-0,683	475	4,006	2,060	280	2,464	-0,966	85	1,210	0,591
665	-0,175	0,497	470	-0,479	-1,320	275	-1,689	1,308	80	-0,921	-1,202
660	-0,840	1,227	465	0,653	-0,900	270	-1,194	-0,304	75	-0,277	0,806
655	-0,781	-0,763	460	0,439	-2,063	265	-0,074	-0,070	70	0,178	-0,192
650	2,347	-0,359	455	2,441	-0,418	260	-4,789	1,314	65	0,993	-0,331
645	0,676	-1,115	450	0,304	-0,365	255	-1,833	1,195			

Tabla 56. Componentes principales de variables radiométricas de la Formación Barco.

CP1 Y CP2: Componentes principales 1 y 2

Nota: Los números de muestras van precedidos por las siglas tsp.

muestra	CP1	CP2	CP3	muestra	CP1	CP2	CP3
835	-0,572	0,154	0,564	595	0,487	-1,122	0,534
830	-0,897	-0,991	0,794	590	1,881	-0,153	0,708
825	2,365	0,140	0,411	585	1,183	-0,367	0,587
820	2,411	0,047	0,746	580	1,721	0,116	0,548
815	2,350	0,149	0,889	575	1,102	2,013	-0,938
810	-1,230	1,132	1,059	570	1,458	0,089	0,549
805	-2,341	-0,089	0,792	565	1,760	0,026	-0,272
800	-3,726	1,013	-1,082	560	-1,343	-0,598	0,862
795	-3,064	-1,360	1,003	555	-0,552	-0,083	0,707
790	-0,927	0,509	-0,970	550	-1,999	0,720	-0,423
785	-2,375	1,696	-1,422	545	-1,697	0,107	-0,242
780	-1,639	-0,312	-0,767	540	1,465	0,369	0,487
775	-2,818	0,674	-1,666	535	0,292	1,762	-0,377
770	-1,191	-0,585	0,684	525	-2,217	2,674	0,224
765	-1,396	-1,066	0,818	520	-0,066	-0,222	-0,546
760	-2,370	-0,564	-0,385	515	0,023	2,141	0,665
755	-1,303	-0,826	0,711	510	0,741	-0,380	0,656
750	-1,552	-0,710	0,675	505	0,499	-0,645	0,750
745	-0,623	-0,432	-0,709	500	1,141	0,303	-0,540
740	1,422	-0,060	0,353	495	1,434	0,619	0,537
735	1,034	-0,361	0,358	490	0,587	0,417	-0,305
730	1,832	-0,603	0,336	485	0,847	1,285	-0,487
725	-0,962	-1,237	0,613	480	-2,940	2,860	-0,404
720	2,359	-0,084	0,277	475	0,836	1,717	-0,626
715	2,638	0,238	-1,813	470	1,325	0,643	0,590
710	0,576	-0,751	0,356	465	0,601	1,417	-0,273
705	-1,793	-0,393	0,879	460	1,887	1,094	-0,206
700	-1,422	-1,537	0,811	455	0,591	1,386	-0,145
695	-2,748	-1,665	0,984	450	0,839	1,247	0,639
690	2,128	-1,266	0,426	445	1,502	1,140	-0,089
685	2,588	-0,975	0,598	440	0,856	1,241	-0,208
680	2,224	-1,050	0,614	435	2,320	1,250	-0,210
670	1,701	0,298	-4,011	430	-0,318	0,920	0,042
670	1,300	0,100	0,307	420	2,675	1,237	-0,166
660	-2,297	-0,343	0,700	420	2,407	0,450	0,040
655	1,505	-1 135	0.515	410	0.874	0.483	0,513
650	1,303	-1,133	0,515	405	0,074	0,403	-0.592
645	1,000	-0.542	0,500	400	1 783	0,700	-0,532
640	1,732	-0,542	0,630	395	-2 822	0,013	0,802
635	1,170	-1 042	0.457	390	-2.358	0,110	0,002
630	-1 937	-0.662	0.637	385	-0.730	-0 136	0.763
625	2,150	-0.790	0.337	380	1,986	-0.034	0.394
620	2,117	0.735	-1.824	375	0.936	1.009	0.814
615	1.769	-0.087	0.526	370	1,142	4.520	0.718
610	2.532	-0.309	0.423	365	2,257	0.496	0.569
605	2.676	-0.435	0.374	360	0.738	0.350	-0.312
600	0.606	-0.821	0.508	355	1.913	-0.071	0.501
400	1,783	0,613	-0,502	350	2,052	0,964	0,626

Tabla 57. Componentes principales de variables químicas de la Formación Barco.

muestra	CP1	CP2	CP3	muestra	CP1	CP2	CP3
350	2,052	0,964	0,626	205	-2,620	-1,431	1,039
345	0,890	0,048	0,682	200	-2,855	-1,204	1,205
340	-0,409	-0,351	0,789	195	-0,736	-1,351	-0,839
335	0,261	0,455	-0,683	190	2,276	-1,178	-2,860
330	-0,186	0,147	0,561	185	0,918	-1,166	-3,167
325	2,895	0,727	-0,721	180	-1,064	-1,375	0,057
320	-0,570	0,377	-0,352	175	-1,132	-1,190	-2,267
315	-1,419	-0,516	-0,165	170	-0,528	-0,948	-0,506
310	-1,569	1,793	-0,338	165	-0,922	-0,706	-2,154
305	-2,483	-0,245	1,304	160	0,734	-1,366	-0,509
300	-2,267	-1,373	-0,651	155	0,070	-1,369	-0,269
295	-2,358	-1,127	-1,441	150	-1,528	-0,943	0,710
290	-1,148	-0,946	-0,955	145	0,510	-0,998	0,491
285	-0,217	-0,034	-0,944	140	-1,051	-1,273	0,706
280	3,010	-0,867	-2,081	135	-2,492	-1,282	0,871
275	-2,503	-1,352	-1,947	130	-1,973	-0,894	0,887
270	-0,707	-1,063	0,840	125	3,048	-0,560	0,495
265	-4,150	-0,463	-0,572	120	1,993	-0,371	0,226
260	-4,170	2,019	-0,339	115	2,337	-0,566	0,592
255	-1,435	0,097	-1,403	110	2,604	-0,556	0,351
250	-1,785	-0,189	-1,174	105	-2,152	-1,599	0,835
245	-3,199	8,263	0,521	100	3,727	-0,360	0,735
240	-2,163	-0,930	1,014	95	1,082	-0,180	1,592
235	-0,454	-0,570	-1,300	90	-0,168	1,217	0,657
230	5,984	-0,934	-2,937	85	-2,389	2,657	-0,913
225	-3,443	-1,266	-0,893	80	-2,053	3,574	-0,591
220	-3,471	-1,474	-1,491	75	-1,304	-1,305	-2,792
215	-3,423	-1,171	-1,653	70	-2,441	-0,426	1,091
210	-2,521	-1,139	0,948	65	1,641	-0,267	0,720

CP1, CP2 y CP3: Componentes principales 1, 2 y 3.

Nota: Los números de muestras van precedidos por las siglas tsp.

muestras	CP1	CP2	muestras	CP1	CP2
445	-2,809	0,194	220	-0,410	-0,947
440	-2,754	0,340	215	1,779	-1,869
435	-2,473	0,193	210	0,243	-0,935
430	-2,147	-0,145	205	-1,054	-0,306
425	-2,067	-0,151	200	-1,252	-0,645
420	-1,781	-0,168	195	0,545	-0,340
415	-2,223	-0,137	190	-0,845	-0,558
410	-2,194	0,453	185	-1,855	0,088
405	-2,260	-0,455	180	-2,119	-0,072
400	-2,452	0,333	175	-2,645	0,202
395	-2,535	0,232	170	4,840	-5,978
390	-2,531	-0,101	165	3,556	-2,101
385	-2,740	0,473	160	3,729	1,427
380	-1,222	-0,807	155	2,994	1,715
375	2,303	-2,543	150	4,182	-0,195
370	-2,355	0,021	145	5,291	4,485
365	-2,037	-0,271	140	0,378	1,674
360	-1,735	-0,154	135	0,701	1,041
355	-2,173	-0,375	130	-0,809	0,758
350	-2,541	0,199	125	0,690	0,834
345	-0,291	-1,116	120	0,356	1,299
340	-0,736	-0,853	115	-1,030	1,046
335	-0,918	-0,365	110	0,183	0,448
330	-1,592	-0,375	105	1,150	0,700
325	-2,222	0,379	100	-0,742	0,046
320	-2,618	0,278	95	-0,647	0,442
315	-2,307	0,036	90	-0,873	0,426
310	-1,615	-0,652	85	-0,054	0,662
305	-1,531	-0,359	80	-0,168	0,291
300	-2,303	-0,040	75	0,013	0,407
295	-1,759	-0,182	70	1,139	0,007
290	1,717	-1,616	65	1,909	-0,057
285	2,874	-0,378	60	0,890	0,836
280	2,232	0,910	55	1,685	0,532
275	2,513	1,102	50	4,556	2,339
270	3,163	1,042	45	2,022	0,031
265	3,237	0,777	40	0,560	0,396
260	3,029	0,173	35	1,015	0,190
255	3,484	-0,789	30	-1,283	0,242
250	0,624	-0,050	25	-1,053	0,225
245	4,446	-0,909	20	0,368	-0,017
240	3,958	-0,783	15	0,078	0,359
235	-0,091	-0,796	10	-0,753	0,442
230	0,172	-0,943	5	0,176	-0,293
225	-0,175	-0,897			

Tabla 58. Componentes principales de variables químicas de la Formación Mirador.

CP1 Y CP2: Componentes principales 1 y 2.

Nota: Los números de muestras van precedidos por las siglas tspm..

muestras	CP1	CP2	muestras	CP1	CP2
445	-0,524	-0,380	220	0,632	-1,700
440	-1,218	0,141	215	0,719	0,526
435	-2,021	1,086	210	-1,183	-0,099
430	-1,784	0,860	205	-1,259	0,158
425	-2,736	0,509	200	0,751	-3,029
420	-0,910	0,348	195	-0,470	0,495
415	-0,988	-0,256	190	-0,118	1,325
410	-2,087	-0,569	185	0,725	0,655
405	-1,204	0,899	180	-0,473	-0,910
400	-2,282	-1,325	175	-0,330	1,275
395	-2,507	0,939	170	6,917	-1,413
390	-0,814	1,603	165	5,439	1,403
385	-3,241	-1,143	160	0,114	0,471
380	0,270	-2,308	155	0,601	1,552
375	2,590	1,863	150	2,886	2,029
370	-0,593	-0,110	145	1,330	-0,560
365	-2,176	-0,131	140	0,986	1,477
360	-1,129	-0,641	135	0,062	-1,470
355	-3,329	0,481	130	-0,793	-0,296
350	1,179	1,192	125	-2,309	0,711
345	-0,737	0,405	120	-0,340	-0,330
340	-1,353	-1,096	115	-1,051	2,265
335	-1,669	0,313	110	-0,081	-0,345
330	-2,570	0,719	105	0,103	-2,228
325	0,566	-0,883	100	1,605	0,311
320	-2,160	-0,588	95	-0,611	-0,211
315	-0,106	-0,588	90	-1,616	0,202
310	-0,422	-1,573	85	-1,867	-0,688
305	-2,601	0,420	80	0,432	0,673
300	-0,747	-0,433	75	-0,826	0,095
295	0,631	0,209	70	0,193	0,509
290	1,374	1,285	65	-1,987	0,432
285	2,457	-0,246	60	-1,608	-1,947
280	1,205	-0,557	55	1,302	1,179
275	2,311	-0,618	50	1,539	-1,934
270	1,986	-0,309	45	1,817	0,019
265	2,244	-0,236	40	-1,554	-0,423
260	0,532	-1,087	35	-0,094	-0,125
255	4,088	-1,044	30	0,870	-0,785
250	0,508	3,327	25	0,741	-2,652
245	1,784	1,508	20	0,000	0,294
240	1,488	0,904	15	0,851	-0,752
235	0,341	0,177	10	0,068	0,099
230	0,885	1,456	5	2,192	-0,615
225	1,167	-0.164			

Tabla59. Componentes principales de variables radiométricas de la Formación Mirador.

CP1 Y CP2: Componentes principales 1 y 2.

Nota: Los números de muestras van precedidos por las siglas tspm..

ANEXO 7

TABLA DE COEFICIENTES DE CORRELACIÓN CRÍTICOS

f	Tota	al numbe	er of vari	ables		Tota	l numbe	r of varia	ables
	2	3	4	5	,	2	3.	4	5
1	.997 1.000	.999	.999	.999 1.000	24	.388	.470	.523	.562
2	.950 .990	.975 .995	.983 .997	.987	25	.381 .487	.462	.514	.553
3	.878 .959	.930 .976	.950 .983	.961 .987	26	.374	.454	.506	.545
4	.811 .917	.881 .949	.912 .962	.930 .970	27	.367	.446	.498	.536
5	.754	.836 .917	.874 .937	.898 .949	28	.361	.439	.490	.529
6	.707	.795	.839	.867	29	.355	.432	.482	.521
7	.666 .798	.758 .855	.807	.838	30	.349	.426	.476	.514
8	.632 .765	.726 .827	.777 .860	.811 .882	35	.325	.397	.445	.482
9	.602	.697	.750	.786	40	.304	.373	.419	.455
10	.576	.671	.726	.763	45	.288	.353	.397	.432
11	.553 .684	.648 .753	.703 .793	.741 .821	50	.273 .354	.336	.379	.412
12	.532 .661	.627 .732	.683 .773	.722	60	.250	.308	.348	.380
13	.514 .641	.608 .712	.664 .755	.703 .785	70	.232	.286	.324	.354
14	.497 .623	.590 .694	.646 .737	.686 .768	80	.217	.269	.304	.332
15	.482	.574	.630 .721	.670 .752	90	.205	.254 .312	.288 .343	.315
16	.468 .590	.559 .662	.615 .706	.655 .738	100	.195 .254	.241 .297	.274 .327	.300 .351
17	.456 .575	.545 .647	.601 .691	.641 .724	125	.174	.216	.246	.269
18	.444 .561	.532 .633	.587 .678	.628 .710	150	.159	.198	.225	.247
19	.433 .549	.520 .620	.575 .665	.615 .698	200	.138 .181	.172	.196	.215 .253
20	.423 .537	.509 .608	.563 .652	.604 .685	300	.113 .148	.141 .174	.160 .192	.176 .208
21	.413 .526	.498	.552	.592	400	.098	.122	.139	.153
22	.404	.488	.542	.582	500	.088	.109	.124	.137
23	.396 .505	.479 .574	.532 .619	.572 .652	1000	.062 .081	.077	.088 .106	.097 .115

Tabla 60. Coeficientes críticos de correlación según SNEDECOR, (1946). Tomado de CROW, (1960).

ANEXO 8

DIFRACTOGRAMAS

Fig.91. Difractograma de la muestra tsp370.

Fig.92. Difractograma de la muestra tsp280

Fig.93.Difractograma de la muestra tspm170.

Fig.94. Difractograma de la muestra tspm100.

Distancia

Dendrograma Radiometría Formación Barco

Fig. 60. Grupos establecidos por el análisis de agrupaciones. Radiometría de Formación Barco.

Dendrograma Fluorescencia de rayos x Formación Barco

Fig.61. Grupos establecidos por el análisis de agrupaciones. Fluorescencia de rayos x de Formación Barco.

Dendrogana Radionetnía Fornación Mirachr

Fig. 62. Grupos establecidos por el análisis de agrupaciones. Radiometría de Formación Mirador.

Dendrogana Hurrescencia de rayos x Fornación Mirachr

Fig . 63. Grupos establecidos por el análisis de agrupaciones. Fluorescencia de rayos x de la Formación Mirador.

FIG.64. DIAGRAMAS DE CAJA DE VARIABLES RADIOMÉTRICAS Y QUÍMICAS.

FIG. 65. DIAGRAMAS DE CAJA DE VARIABLES RADIOMÉTRICAS Formaciones Barco (B) y Mirador (M). Gráficos comparativos de variables radiométricas.

FIG. 66. DIAGRAMAS DE CAJA DE VARIABLES QUÍMICAS.

FIG. 67. HISTOGRAMAS DE VARIABLES RADIOMÉTRICAS.

Formación Barco

Formación Mirador

FIG. 68. HISTOGRAMAS DE VARIABLES QUÍMICAS.

Formación Barco

Formación Mirador

Fig.70. DIAGRAMAS DE DISPERSIÓN VARIABLES QUÍMICAS

% CaO

%CaO

FIG. 69. DIAGRAMAS DE DISPERSIÓN VARIABLES RADIOMÉTRICAS

168

169

F1 vs 214Bi B

y = 0,0549x - 0,0294

171

40K vs 214Bi B

ÍNDICE DE FIGURAS Y TABLAS

Figura 1. Mapa de ubicación	4
Figura 2. Mapa geológico estructural	11
Figura 3. Detalle de mapa geológico estructural	12
Figura 4. Paleogeografía Maastrichtiense-Paleoceno Inferior	14
Figura 5. Paleogeografía Paleoceno Superior-Eoceno Inferior	
Figura 6. Paleogeografía Eoceno Medio	16
Figura 7. Paleogeografía Eoceno Superior	16
Figura 8. Foto de laminación flaser. Formación Barco	
Figura 9. Foto de rizaduras. Formación Barco	
Figura 10. Foto de Intercalación de areniscas y lutitas de la facies Alc de la Formación Mirador	26
Figura 11. Foto de Arenisca con estratificación cruzada. Formación Mirador	
Figura 12. Tabla periódica de los elementos	
Figura 13. Series de desintegración del U y Th	31
Figura 14. Escintilómetro	34
Figura 15. Espectro electromagnético	35
Figura 16. Tubo coolidge	36
Figura 17. Esquema de funcionamiento del difractómetro de rayos X	37
Figura 18. Ejemplo de difractograma	
Figura 19. Espectro de un instrumento dispersor de energía	40
Figura 20. Curva de calibración del Al ₂ O ₃	41
Figura 21. Esquema básico de un espectrómetro dispersor de energía	41
Figura 22. Procesos de formación de rocas sedimentarias	44
Figura 23. Ejemplo de perfiles geoquímicos de elementos mayoritarios	
Figura 24. Correlación entre dos pozos mediante caracterización geoquímica	47
Figura 25. Tipos de correlaciones lineales	53
Figura 26. Ejemplo de diagrama de caja	55
Figura 27. Clases de distribuciones de frecuencia	56

Figura 28. Ejemplo de diagrama de dispersión	57
Figura 29. Ejemplo de dendrograma	58
Figura 30. Cálculo de la distancia entre dos puntos	60
Figura 31. Cálculo de la distancia entre dos puntos en tres dimensiones	60
Figura 32. Funciones discriminantes	63
Figura 33. Foto del afloramiento de la Formación Miradoor	65
Figura 34. Foto del afloramiento de la Formación Barco	65
Figura 35. Espectro energético	67
Figura 36. Foto del dispositivo de medición de radiometría	68
Figura 37. Ejemplo de gráficos construidos para la obtención de condiciones óptimas en las med radiométricas	diciones
Figura 38. Ejemplo de gráficos modificados para la corrección por peso	72
Figura 39. Valores de coeficientes P para la corrección por peso	73
Figura 40. Variaciones en las mediciones antes y después del nuevo escudo de plomo	74
Figura 41. Ejemplo de preparación de portamuestras para FRX	76
Figura 42. Espectro de la muestra tspm120	79
Figura 43. Espectro de la muestra tspm355	79
Figura 44. Espectro de la muestra tspm275	80
Figura 45. Espectro de la muestra tspm375	80
Figura 46. Parámetros que definen la curva de calibración del K2O	87
Figura 47. Curva de calibración del K ₂ O	87
Figura 48. Dendrograma de variables radiométricas. Formación Barco	111
Figura 49. Dendrograma de variables químicas. Formación Barco	114
Figura 50. Peso de las variables radiométricas en el establecimiento de los componentes principales Formación Barco.	117
Figura 51. Peso de las variables químicaas en el establecimiento de los componentes principales. Formación Barco	118
Figura 52. Perfiles de variables radiométricos de la Formación Barco	127
Figura 53. Perfiles de variables químicas de la Formación Barco	128

Figura 54. Dendrograma por variables radiométricas de la Formación Mirador	. 134
Figura 55. Dendrograma por variables químicas de la Formación Mirador	. 136
Figura 56. Peso de las variables radiométricas en el establecimiento de los componentes principales de la Formación Mirador	139
Figura 57. Peso de las variables químicas en el establecimiento de los componentes principales de la Formación Mirador	140
Figura 58. Perfiles de variables radiométricas de la Formación Mirador	. 150
Figura 59. Perfiles de variables químicas de la Formación Mirador	. 151
Figura 60. Grupos establecidos con variables radiométricas por el análisis de agrupaciones de la Formación Barco	. 152
Figura 61. Grupos establecidos con variables químicas por el análisis de agrupaciones de la Formación Barco	. 153
Figura 62. Grupos establecidos con variables radiométricas por el análisis de agrupaciones de la Formación Mirador	.154
Figura 63. Grupos establecidos con variables químicas por el análisis de agrupaciones de la Formación Mirador	. 155
Figura 64. Diagramas de caja de variables radiométricas y químicas	. 156
Figura 65. Diagramas de caja de variabless radiométricas	.157
Figura 66. Diagramas de caja de variables químicas	159
Figura 67. Histogramas de variables radiométricas	161
Figura 68. Histogramas de variables químicas	. 164
Figura 69. Diagramas de dispersión de variables radiométricas	. 167
Figura 70. Diagramas de dispersión de variables químicas	174
Figura 71. Diagramas de dispersión con funciones discriminantes donde se separan las muestras de cada Formación	187
Figura 72. Discriminación de ambientes según funciones discriminantes	191
Figura 73. Campos establecidos para determinar marcos tectónicos y fuente de rocas sedimentarias	192
Figura 74. Campos de clasificación de ambientes determinados para la Formación Mirador	192
Figura 75. Gráficos sin modificar de calibración radiométrica para el establecimiento de condiciones óptimas de medición	. 210
Figura 76. Gráficos modificados para la corrección por peso	. 211
Figura 77. Curva de calibración del Al ₂ O ₃	213

Figura 78. Curva de calibración del CaO	213
Figura 79. Curva de calibración del Fe ₂ O ₃	214
Figura 80. Curva de calibración del K ₂ O	214
Figura 81. Curva de calibración del MnO	215
Figura 82. Curva de calibración del V	215
Figura 83 Curva de calibración del TiO ₂	.216
Figura 84. Curva de calibración del SiO ₂	216
Figura 85. Perfiles químicos sin promedio móvil de la Formación Mirador	222
Figura 86. Perfiles radiométricos sin promedio móvil de la Formación Mirador	223
Figura 87. Perfiles químicos sin promedio móvil de la Formación Barco	224
Figura 88. Perfiles radiométricos sin promedio móvil de la Formación Mirador	225
Figura 89. Unidades químico-radiométricas definidas por componentes principales de Formación Barco .	227
Figura 90.Unidades químico-radiométricas definidas por componentes principales de Formación Mirador	228
Figura 91. Difractograma tsp370	.244
Figura 92. Difractograma tsp280	.244
Figura 93. Difractograma tspm170	245
Figura 94. Difractograma tspm100	.245
Figura 95. Perfiles radiométricos de la Formación Barco	. 246
Figura 96. Perfiles químicos de la Formación Barco	. 246
Figura 97. Perfiles radiométricos de la Formación Mirador	246
Figura 98. Perfiles químicos de la Formación Mirador	.246
Figura 99. Columna estratigráfica de la Formación Barco	.247
Figura 100. Columna estratigráfica de la Formación Mirador	. 248
Tabla 1. Promedio de cps en 60 mediciones para el establecimiento de condiciones óptimas	70
Tabla 2. Pruebas realizadas para establecer condiciones optimas de medición de FRX	77
Tabla 3. Composición química de patrones internacionales	81
Tabla 4. Reporte de valores teóricos y obtenidos en la aplicación	83
Tabla 5. Prueba de repetibilidad sin cambiar la muestra	. 88

Tabla 6. Prueba de repetibilidad cambiando la muestra	89
Tabla 7. Resultados de análisis químicos por FRX de la Formación Barco	91
Tabla 8. Resultados de análisis de radiometría de la Formación Barco	95
Tabla 9. Resultados de análisis mineralógico de la Formación Barco	99
Tabla 10. Resultados de análisis químicos por FRX de la Formación Mirador	100
Tabla 11. Resultados de análisis de radiometría de la Formación Mirador	102
Tabla 12. Resultados de an Iisis mineralógico de la Formación Mirador	104
Tabla 13. Valores estadísticos de variables radiométricas de la Formación Barco	105
Tabla 14. Valores estadísticos de composiciones químicas de la Formación Barco	106
Tabla 15. Distribución de muestras en grupos con valores de radiometría de la Formación Barco	112
Tabla 16. Promedio por variables de cada grupo con valores radiométricos de la Formación Barco	113
Tabla 17. Distribución de muestras en grupos con valores químicos de la Formación Barco	114
Tabla 18. Promedio por variables de cada grupo con valores químicos de la Formación Barco	115
Tabla 19. Autovalores y porcentajes de varianza de componentes principales con valores radiométricos de la Formación Barco	.116
Tabla 20. Autovalores y porcentajes de varianza de componentes principales con valores químicos de la Formación Barco	117
Tabla 21. Coeficientes de funciones discriminantes a partir de radiometría de la Formación Barco	119
Tabla 22. Porcentaje de muestras correctamente clasificadas por funciones discriminantes con valores de radiometría de la Formación Barco	120
Tabla 23. Coeficientes de funciones discriminantes por grupos a partir de composición química de la Formación Barco	121
Tabla 24. Porcentaje de muestras correctamente clasificadas por funciones discriminantes con composició química de la Formación Barco	n 121
Tabla 25. Valores estadísticos de las variables radiométricas de la Formación Mirador	129
Tabla 26. Valores estadísticos de las variables químicas de la Formación Mirador	130
Tabla 27. Distribución de muestras en grupos con valores de radiometría de la Formación Mirador	134
Tabla 28. Promedio por variables de cada grupo con valores radiométricos de la Formación Mirador	135
Tabla 29. Distribución de muestras en grupos con valores químicos de la Formación Mirador	136
Tabla 30. Promedio por variables de cada grupo con valores químicos de la Formación Mirador	137
Tabla 31. Autovalores y porcentaje de varianza de los componentes principales con radiometría de la	

Formación Mirador	.138
Tabla 32. Autovalores y porcentaje de varianza de los componentes principales con variables químicas de la Formación Miardor	. 139
Tabla 33. Coeficientes de funciones discriminantes a partir de radiometría de la Formación Mirador	.141
Tabla 34. Porcentaje de muestras correctamente clasificadas por funciones discriminantes con valores de radiometría de la Formación Mirador	. 142
Tabla 35. Coeficientes de funciones discriminantes a partir de composición química de la Formación Mirador	. 143
Tabla 36. Porcentaje de muestras correctamente clasificadas por funciones discriminantes con composicio química de la Formación Mirador	ón . 143
Tabla 37. Tabla comparativa de las variables de las Formaciones Barco y Mirador	. 181
Tabla 38. Funciones discriminantes de la Formación Barco vs la Formación Mirador	. 185
Tabla 39. Coeficientes de funciones discriminantes entre las Formaciones Barco y Mirador usando Variables químicas	185
Tabla 40. Coeficientes de funciones discriminantes entre las Formaciones Barco y Mirador usando Variables radiométricas	. 186
Tabla 41. Coeficientes de funciones discriminantes entre las Formaciones Barco y Mirador usando Variables químicas y radiométricas	186
Tabla 42. Relaciones entre los grupos del análisis de agrupaciones y los ambientes asociados a cada unidad de la Formación Mirador	. 190
Tabla 43 Relaciones entre los grupos del análisis de agrupaciones y los ambientes asociados a cada unidad de la Formación Barco	194
Tabla 44. Prueba de repetibilidad de la muestra tspm 20 cambiando la muestra	.218
Tabla 45. Prueba de repetibilidad de la muestra tspm 170 cambiando la muestra	.218
Tabla 46. Prueba de repetibilidad de la muestra tspm 275 cambiando la muestra	.218
Tabla 47. Prueba de repetibilidad de la muestra tspm 310 cambiando la muestra	.219
Tabla 48. Prueba de repetibilidad de la muestra tspm 375 cambiando la muestra	.219
Tabla 49. Prueba de repetibilidad de la muestra tspm 20 sin cambiar la muestra	.219
Tabla 50. Prueba de repetibilidad de la muestra tspm 170 sin cambiar la muestra	. 220
Tabla 51. Prueba de repetibilidad de la muestra tspm 275 sin cambiar la muestra	. 220
Tabla 52. Prueba de repetibilidad de la muestra tspm 310 sin cambiar la muestra	. 220
Tabla 53. Prueba de repetibilidad de la muestra tspm 375 sin cambiar la muestra	. 220

Tabla 54. Tablas de funciones discriminantes de radiometría y fluorescencia de rayos x de la Formación Mirador	. 230
Tabla 55. Tablas de funciones discriminantes de radiometría y fluorescencia de rayos x de la Formación Barco	232
Tabla 56. Tablas de componentes principales de radiometría de la Formación Barco	. 236
Tabla 57. Tablas de componentes principales de fluorescencia de la Formación Barco	. 237
Tabla 58. Tablas de componentes principales de fluorescencia de la Formación Miardor	. 239
Tabla 59. Tablas de componentes principales de radiometría de la Formación Mirador	240
Tabla 60. Tabla de coeficientes de correlación críticos	242