TRABAJO ESPECIAL DE GRADO

"EFECTO DE LA VARIACIÓN DE LOS PARÁMETROS CARACTERÍSTICOS DEL COMPONENTE C₂₀₊ SOBRE ALGUNAS PROPIEDADES PVT"

Presentado ante la Ilustre Universidad Central de Venezuela Por los Brs. Giménez, Jorge Salas, Orlando Para optar al Título de Ingeniero de Petróleo

Caracas, 2007

TRABAJO ESPECIAL DE GRADO

"EFECTO DE LA VARIACIÓN DE LOS PARÁMETROS CARACTERÍSTICOS DEL COMPONENTE C₂₀₊ SOBRE ALGUNAS PROPIEDADES PVT"

TUTOR ACADÉMICO: Dr. Martín Essenfeld TUTOR INDUSTRIAL: Ing. Arturo Borges

> Presentado ante la Ilustre Universidad Central de Venezuela Por los Brs. Giménez, Jorge Salas, Orlando Para optar al Título de Ingeniero de Petróleo

Caracas, 2007

Los abajo firmantes, miembros del Jurado designado por el Consejo de Escuela de Ingeniería de Petróleo, para evaluar el Trabajo Especial de Grado presentado por los Bachilleres Jorge Giménez y Orlando Salas, titulado:

"Efecto de la Variación de los Parámetros Característicos del Componente C₂₀₊ Sobre Algunas Propiedades PVT"

Consideran que el mismo cumple con los requisitos exigidos por el plan de estudios conducente al Título de Ingeniero de Petróleo, y sin que ello signifique que se hacen solidarios con las ideas expuestas por los autores, lo declaran APROBADO.

Prof. Carlos Gil Jurado Prof. Edgar Cotte Jurado

Prof. Martín Essenfeld Tutor Académico

La radiante luz del sol y la fresca lluvia germinaron la semilla que creció entre cálidos días y frías noches así, aprendió a coexistir entre intensos y profundos arbustos entre el follaje de los grandes árboles entre el suave césped moldeado por la brisa y los frutos en descomposición, algún día, las raíces surcaron alrededor, fijándose por siempre, el tallo cambió de color y sus primeras ramas sintieron nueva savia corriendo por su cuerpo tierra, agua, aire y fuego sensaciones de alegría, placer, dolor y rabia lo envolvieron, en poco tiempo alcanzó la altura y cuerpo de sus predecesores sintió la necesidad de fructíferas simbiosis, que marcaron la llegada, primero de las flores, luego los frutos, cada uno de ellos poseía algo singular, especial, sus ramas entrelazadas y confundidas con una nueva especie injertadas naturalmente, hoy espera nuevos frutos, debajo de él espera cobijar con su sombra a quien lo preserva regocijado con innumerables vecinos que lo alientan celebrando nuevamente un nuevo día, un nuevo conocimiento.

De la grandeza y belleza en el mundo, todos los días podrían aprender, esta es sólo parte de la historia

...dedicado a todos los que vieron crecer el árbol de la vida...su propia vida

Jorge Giménez

iv

... Las universidades han sido hasta aquí el refugio secular de los mediocres, la renta de los ignorantes, la hospitalización segura de los inválidos y –lo que es peor aún- el lugar en donde todas las formas de tiranizar y de insensibilizar hallaron la cátedra que las dictara. Las universidades han llegado a ser así fiel reflejo de estas sociedades decadentes que se empeñan en ofrecer el triste espectáculo de una inmovilidad senil. Por eso es que la ciencia frente a estas casas mudas y cerradas, pasa silenciosa o entra mutilada y grotesca al servicio burocrático. Cuando en un rapto fugaz abre sus puertas a los altos espíritus es para arrepentirse luego y hacerles imposible la vida en su recinto...Nuestro régimen universitario -aún el más reciente- es anacrónico. Está fundado sobre una especie de derecho divino; el derecho divino del profesorado universitario... La federación universitaria de Córdoba se alza para luchar contra este régimen y entiende que en ello le va la vida. Reclama un gobierno estrictamente democrático y sostiene que el demos universitario, la soberanía, el derecho a darse el gobierno propio radica principalmente en los estudiantes...La autoridad, en un hogar de estudiantes, no se ejercita mandando sino sugiriendo y amando: enseñando. Si no existe una vinculación espiritual entre el que enseña y el que aprende, toda enseñanza es hostil y por consiguiente infecunda. Toda educación es una obra de amor a los que aprenden...

> La Juventud Argentina de Córdoba A los hombres libres de Sudamérica (Manifiesto del 21 de junio de 1918)

Dedicado a la verdadera transformación universitaria, al cambio en las estructuras universitarias, al cambio en el modelo educacional. Por la educación del hombre y el verdadero desarrollo en la investigación.

Orlando Salas

Mis más sinceros agradecimientos a la Universidad Central de Venezuela, al Profesor Martín Essenfeld y a nuestro Tutor Arturo Borges.

Quiero agradecer a todas aquellas personas que siempre me motivaron a terminar este trabajo, en especial a: Hiledu, René, Esther, Cecilia (y flia.), Ana (y flia.), Omar (y flia.), Gerson, Carlos, Maritza, Ricardo, Carlos C., Carlos A., Griselda, Franklin, Giménez, María Yanett, José Gregorio, Yordis, Patricia, Wilmer, Maurice, Arelis, Debbie, Whayt y por supuesto al pana Orlando Salas.

Jorge Giménez

Le agradezco profundamente a la ilustre Universidad Central de Venezuela, Patrimonio Cultural de la Humanidad. Mis agradecimientos especiales al Profesor Martín Essenfeld por su voluntad incondicional para colaborar, y al Ing. Arturo Borges por la oportunidad brindada.

No menos especiales deben ser mis agradecimientos a todos aquellos que me alentaron en la consecución de esta humilde meta: Jorge Giménez, Whayt Machado, José Miguel Flores, Aurora de Bocaranda, Ramiro Bocaranda, Pedro Mora.

Orlando Salas

Giménez P. Jorge A., Salas B. Orlando J.

"EFECTO DE LA VARIACIÓN DE LOS PARÁMETROS CARACTERÍSTICOS DEL COMPONENTE C₂₀₊ SOBRE ALGUNAS PROPIEDADES PVT"

Tutor Académico: Dr. Martín Essenfeld. Tutor Industrial: Ing. Arturo Borges. Tesis. Caracas, U.C.V. Facultad de Ingeniería. Escuela de Ingeniería de Petróleo. Año 2007, 145 p.

Palabras Claves: Componente C_{20+} , Composición de fluidos de yacimientos, Análisis PVT, Ecuaciones de Estado.

Para determinar el comportamiento de un vacimiento es necesario realizar un análisis PVT sobre muestras representativas de los fluidos del mismo. Esto es muy importante en la vida productiva del vacimiento, ya que, al tener una aproximación del comportamiento de los fluidos se puede planificar con mayor exactitud su explotación. Del análisis PVT se obtienen ciertos parámetros característicos de los fluidos, tales como, presión de saturación (Ps), relación gas-petróleo en solución (Rs), factor volumétrico del petróleo (Bo) y la composición total, entre otros. Uno de los parámetros que mayor incertidumbre presenta en su estimación, es la composición de la fracción pesada o fracción "plus" (C20+). Debido a ello, en este Trabajo Especial de Grado se realizó un estudio del efecto que produce la variación de los parámetros experimentales de un análisis PVT sobre la estimación de las propiedades características del componente C_{20+} y sobre la predicción de ciertas propiedades físicas de los fluidos del yacimiento. Es importante destacar que todos los fluidos estudiados presentaban un contenido de asfaltenos sensibles a los cambios de presión, de allí que se pretendió determinar si la influencia del contenido de asfaltenos sobre el componente C_{20+} era medible o no.

Metodológicamente se procedió a realizar variaciones de los parámetros experimentales como, gravedad API, peso molecular del líquido (MI), gravedad específica del gas (G.E.g), peso molecular del gas (Mg), relación gas-petróleo en solución (Rs) y densidad del líquido (ρ I), para verificar cuales de ellos impactaban mayormente en los valores estimados de las propiedades características de la fracción pesada, como son, la gravedad específica (G.E.) y el peso molecular (M) del componente C₂₀₊. Obteniéndose que los parámetros °API y MI fueron los que mayor impacto tuvieron sobre la caracterización de la fracción pesada.

Posteriormente, se procedió a realizar pronósticos de propiedades físicas de los fluidos, tales como, Ps, Bo y Rs con las Ecuaciones de Estado SRK y PR78 y sus respectivas modificaciones, las cuales se compararon con las obtenidas experimentalmente; de aquí se verificó que las ecuaciones que mejor se ajustan fueron efectivamente las recomendadas en la literatura.

ÍNDICE

,	Pág.
DEDICATORIA JORGE GIMENEZ	iv
DEDICATORIA ORLANDO SALAS	V
AGRADECIMIENTOS	vi
RESUMEN	vii
LISTA DE FIGURAS	xiii
LISTA DE TABLAS	xix
INTRODUCCIÓN	1
CADÍTULO I DI ANTE AMIENTO DEL DRODI EMA	2
CAPITULO I. PLANTEAMIENTO DEL PROBLEMA	3
1.1. Justification	3
1.2. Objetivo general	4
1.2.1. Objetivos específicos	4
CAPÍTULO II. MARCO TEÓRICO	5
2.1. Yacimientos de hidrocarburos	5
2.2. Diagrama Presión-Temperatura de una mezcla de hidrocarburos	6
2.3. Clasificación de los yacimientos basada en el comportamiento de fases	8
2.3.1. Yacimientos de gas seco	8
2.3.2. Yacimientos de gas húmedo	9
2.3.3. Yacimientos de gas condensado	10
2.3.4. Yacimientos de petróleo de alta volatilidad (cuasicrítico)	11
2.3.5. Yacimientos de petróleo de baja o moderada volatilidad (petróleo	12
negro)	
2.4. Propiedades características de los hidrocarburos	14
2.4.1. Presión de burbujeo (Pb)	14
2.4.2. Relación gas-petróleo en solución (Rs)	15
2.4.3. Factor volumétrico del petróleo (Bo)	15
2.4.4. Gravedad específica del petróleo (γ_0)	16

2.4.5. Gravedad °API	16
2.5. Caracterización de los fluidos del yacimiento	17
2.5.1. Tipos de muestreo	17
2.5.1.1. Muestreo de fondo	18
2.5.1.2. Muestreo de separador	18
2.5.1.3. Muestreo de cabezal	19
2.5.2. Análisis PVT	19
2.5.2.1. Liberación instantánea (Flash)	20
2.5.2.2. Expansión a composición constante (ECC)	21
2.5.2.3. Liberación diferencial	24
2.5.3. Análisis Composicional	25
2.5.3.1. Destilación simulada	27
2.5.3.2. Análisis PNA (Parafinas, Naftenos y Aromáticos)	29
2.5.3.3. Determinación del peso molecular promedio del líquido (Ml)	30
2.5.3.4. Componente o fracción pesada (plus)	30
2.5.3.4.1. Función de número de carbono simple (SCN)	31
2.5.3.4.2. Descripción continua	33
2.5.3.5. Programa Sistema PVT	36
2.6. Asfaltenos	37
2.6.1. Causas de la precipitación de los asfaltenos	40
2.7. Programa PVTsim	43
2.7.1. Ecuaciones de estado (EdE)	45
2.7.2. Generalidades	45
2.7.3. Modificaciones de $\alpha(T_R)$	48
2.7.4. Ecuaciones de adaptación del volumen	48
2.7.5. Ecuaciones de estado de tres parámetros	49
2.7.6. Aplicación a mezclas	49
2.7.8. Aplicación de EdE cúbicas para fluidos de yacimiento	50
2.7.9. Predicción de propiedades características del petróleo	51

CAPÍTULO III. METODOLOGÍA	54
3.1. Manejo de datos experimentales	56
3.1.1. Metodología para determinar la composición total del líquido	57
(Validación)	
3.2. Variación de los parámetros experimentales	61
3.3. PVTsim	63
3.4. Metodología para calcular el error	70
	70
CAPITULO IV. ANALISIS DE RESULTADOS	72
4.1. Variación sistemática de los parametros experimentales y su influencia	72
en el cambio de las propiedades características del C_{20+}	
4.2. Efectos de la variación del peso molecular del líquido (Ml) y la	79
gravedad °API sobre las propiedades características del C_{20^+} tomando en	
cuenta el contenido de asfaltenos	
4.3. Predicción de las propiedades físicas de los fluidos (Ps, Bo y Rs) a	82
partir de las ecuaciones de estado seleccionadas utilizando el programa	
PVTsim	
4.3.1. Errores absolutos porcentuales para cada propiedad física	85
pronosticada	
4.4. Comportamiento de los errores de las propiedades físicas de los fluidos	89
seleccionados a partir de la variación sistemática del MI y la °API	
utilizando las EdE seleccionadas	
4.4.1. Predicciones utilizando PR78-P(T)	89
4.4.2. Predicciones utilizando SRK-P(T)	96
4.5. Comportamiento de la razón de los valores validados entre los valores	102
pronosticados como función de los cambios sistemáticos del Ml y °API	
4.6. Envolvente de fases y su comportamiento a medida que varía la °API y	109
el peso molecular del líquido para los fluidos estudiados	

CONCLUSIONES

115

RECOMENDACIONES	117
BIBLIOGRAFÍA	118
APÉNDICES	123
APÉNDICE A. COMPOSICIONES VALIDADAS	124
APÉNDICE B. VALIDACIÓN DE PRUEBAS PVT	136
B.1. Prueba de Balance de Materiales	136
B.2. Prueba de Desigualdad	138
B.3. Prueba de Linealidad de la Función Y	138

LISTA DE FIGURAS

Figura 1. Acumulación de Gas o Petróleo	Pág 5
Figura 2. Diagrama de fases	7
Figura 3. Diagrama de los diferentes tipos de vacimiento y sus	8
hidrocarburos asociados	-
Figura 4. Diagrama de fases para un vacimiento de gas seco	9
Figura 5. Diagrama de fases para un vacimiento de gas húmedo	10
Figura 6. Diagrama de fases para un vacimiento de gas retrógrado	11
Figura 7. Diagrama de fases para un vacimiento de petróleo volátil	12
Figura 8. Diagrama de fases para un vacimiento de petróleo negro	13
Figura 9. Esquema de liberación instantánea en una etapa	21
Figura 10. Esquema de una prueba ECC	22
Figura 11. Comportamiento del volumen en función de la presión	23
Figura 12. Función "Y" en función de la presión	23
Figura 13. Esquema de prueba de liberación diferencial	25
Figura 14. Curva de calibración, ASTM D5307 Extendido	28
Figura 15. Proceso para determinar la composición total del fluido	37
Figura 16. Estructura molecular de asfalteno de crudo venezolano	38
Figura 17. Formación de Micelas de asfaltenos en presencia de resinas	39
Figura 18. Condición original de la muestra (1) a presión y temperatura de	41
yacimiento	
Figura 19. Umbral de floculación de los asfaltenos (2)	42
Figura 20. Precipitación de asfaltenos al punto de burbuja (3)	42
Figura 21. Esquema de la metodología utilizada en este Trabajo Especial	56
de Grado	
Figura 22. Datos de PNA a introducir en el programa	58
Figura 23. Gráfica correspondiente a la destilación simulada	59
Figura 24. Hoja de cálculo de las propiedades características del C_{20+}	60
Figura 25. Menú de opciones de los módulos a simular	63

Figura 26. Base de datos del programa PVTsim	64
Figura 27. Ventana para introducir los datos del pozo y la composición	65
total del fluido de yacimiento	
Figura 28. Opciones para caracterizar la fracción plus	66
Figura 29. Ventana del módulo PVT Simulation	67
Figura 30. Ventana para introducir los datos de las condiciones de	68
separación (presión y temperatura) y la temperatura de yacimiento	
Figura 31. Resultados pronosticados de los parámetros elegidos	69
Figura 32. Esquema del proceso de trabajo	71
Figura 33. Cambio del peso molecular total en función de la variación	75
porcentual de la densidad experimental del crudo (ρ) para diferentes tipos	
de crudo	
Figura 34. Cambio de la gravedad específica del C_{20+} en función de la	75
variación porcentual de la densidad experimental del crudo (p) para	
diferentes tipos de crudo	
Figura 35. Cambio del peso molecular total en función de la variación	76
porcentual de la G.E experimental del gas para diferentes tipos de crudo	
Figura 36. Cambio del peso molecular total en función de la variación	76
porcentual del peso molecular experimental del gas (Mg) para diferentes	
tipos de crudo	
Figura 37. Cambio del peso molecular total en función de la variación	77
porcentual de la RGP experimental para diferentes tipos de crudos	
Figura 38. Cambio del peso molecular del C_{20+} en función de la variación	77
porcentual del peso molecular del líquido experimental (Ml) para	
diferentes tipos de crudo	
Figura 39. Cambio del peso molecular total en función de la variación	78
porcentual del peso molecular de líquido experimental (Ml) para	
diferentes tipos de crudo	
Figura 40. Cambio de la gravedad del C_{20+} en función de la variación	78

porcentual de la °API experimental para diferentes tipos de crudo	
Figura 41. Cambio del M en función de la variación porcentual de la °API	79
experimental para diferentes tipos de crudo	
Figura 42. Cambio de la G.E. del C_{20+} en función de la variación	80
porcentual de la °API experimental del líquido para crudos de Occidente	
Figura 43. Cambio del peso molecular del C_{20^+} en función de la variación	81
porcentual del peso molecular experimental del líquido para crudos de	
Occidente	
Figura 44. Cambio de la G.E. del C_{20+} en función de la variación	81
porcentual de la °API experimental del líquido para crudos de Oriente	
Figura 45. Cambio del peso molecular del C_{20^+} en función de la variación	82
porcentual del peso molecular experimental del líquido para crudos de	
Oriente	
Figura 46. Error en el pronóstico de la presión de saturación (Ps) de los	91
fluidos seleccionados en función de la variación porcentual del peso	
molecular del líquido (Ml) utilizando PR78-P(T)	
Figura 47. Error en el pronóstico del factor volumétrico de petróleo (Bo)	91
de los fluidos seleccionados en función de la variación porcentual del peso	
molecular del líquido (Ml) utilizando PR78-P(T)	
Figura 48. Error en el pronóstico de la relación gas-petróleo (Rs) de los	92
fluidos seleccionados en función de la variación porcentual del peso	
molecular del líquido (Ml) utilizando PR78-P(T)	
Figura 49. Error en el pronóstico de la presión de saturación (Ps) de los	94
fluidos seleccionados en función de la variación porcentual de la °API del	
líquido utilizando PR78-P(T)	
Figura 50. Error en el pronóstico del factor volumétrico de petróleo (Bo)	95
de los fluidos seleccionados en función de la variación porcentual de la	
°API del líquido utilizando PR78-P(T)	
Figura 51. Error en el pronóstico de la relación gas-petróleo (Rs) de los	95
fluidos seleccionados en función de la variación porcentual de la °API del	

líquido utilizando PR78-P(T)

Figura 52. Error en el pronóstico de la presión de saturación (Ps) de los	97
fluidos seleccionados en función de la variación porcentual del peso	
molecular del líquido (Ml) utilizando SRK-P(T)	
Figura 53. Error en el pronóstico del factor volumétrico de petróleo (Bo)	98
de los fluidos seleccionados en función de la variación porcentual del peso	
molecular del líquido (Ml) utilizando SRK-P(T)	
Figura 54. Error en el pronóstico de la relación gas-petróleo (Rs) de los	98
fluidos seleccionados en función de la variación porcentual del peso	
molecular del líquido (Ml) utilizando SRK-P(T)	
Figura 55. Error en el pronóstico de la presión de saturación (Ps) de los	100
fluidos seleccionados en función de la variación porcentual de la °API del	
líquido utilizando SRK-P(T)	
Figura 56. Error en el pronóstico del factor volumétrico de petróleo (Bo)	101
de los fluidos seleccionados en función de la variación porcentual de la	
°API del líquido utilizando SRK-P(T)	
Figura 57. Error en el pronóstico de la relación gas-petróleo (Rs) de los	101
fluidos seleccionados en función de la variación porcentual de la °API del	
líquido utilizando SRK-P(T)	
Figura 58. Relación del valor validado y valor pronosticado respecto a la	103
variación del peso molecular del líquido (Ml) para la presión de saturación	
(Ps) utilizando la ecuación PR78-P(T)	
Figura 59. Relación del valor validado y valor pronosticado respecto a la	103
variación del peso molecular del líquido (Ml) para el factor volumétrico	
del petróleo (Bo) utilizando la ecuación PR78-P(T)	
Figura 60. Relación del valor validado y valor pronosticado respecto a la	104
variación del peso molecular del líquido (Ml) para la relación gas-petróleo	
(Rs) utilizando la ecuación PR78-P(T)	
Figura 61. Relación del valor validado y valor pronosticado respecto a la	104
variación del peso molecular del líquido (Ml) para la presión de saturación	

(Ps) utilizando la ecuación SRK-P(T)	
Figura 62. Relación del valor validado y valor pronosticado respecto a la	105
variación del peso molecular del líquido (Ml) para el factor volumétrico	
del petróleo (Bo) utilizando la ecuación SRK-P(T)	
Figura 63. Relación del valor validado y valor pronosticado respecto a la	105
variación del peso molecular del líquido (Ml) para la relación gas-petróleo	
(Rs) utilizando la ecuación SRK-P(T)	
Figura 64. Relación del valor validado y valor pronosticado respecto a la	106
variación de la °API para la presión de saturación (Ps) utilizando la	
ecuación PR78-P(T)	
Figura 65. Relación del valor validado y valor pronosticado respecto a la	106
variación de la ºAPI para el factor volumétrico del petróleo (Bo)	
utilizando la ecuación PR78-P(T)	
Figura 66. Relación del valor validado y valor pronosticado respecto a la	107
variación de la ºAPI para la relación gas-petróleo (Rs) utilizando la	
ecuación PR78-P(T)	
Figura 67. Relación del valor validado y valor pronosticado respecto a la	107
variación de la °API para la presión de saturación (Ps) utilizando la	
ecuación SRK-P(T)	
Figura 68. Relación del valor validado y valor pronosticado respecto a la	108
variación de la °API para el factor volumétrico del petróleo (Bo)	
utilizando la ecuación SRK-P(T)	
Figura 69. Relación del valor validado y valor pronosticado respecto a la	108
variación de la °API para la relación gas-petróleo (Rs) utilizando la	
ecuación SRK-P(T)	
Figura 70. Diagrama P-T para el fluido A3 variando el peso molecular del	111
líquido (Ml) utilizando PR78-P(T)	
Figura 71. Diagrama P-T para el fluido A3 variando la ºAPI del líquido	111
utilizando PR78-P(T)	
Figura 72. Diagrama P-T para el fluido A11 variando el peso molecular	112

del líquido (Ml) utilizando PR78-P(T)	
Figura 73. Diagrama P-T para el fluido A11 variando la °API del líquido	112
utilizando PR78-P(T)	
Figura 74. Diagrama P-T para el fluido A3 variando el peso molecular del	113
líquido (Ml) utilizando SRK-P(T)	
Figura 75. Diagrama P-T para el fluido A3 variando la °API del líquido	113
utilizando SRK-P(T)	
Figura 76. Diagrama P-T para el fluido A11 variando el peso molecular	114
del líquido (Ml) utilizando SRK-P(T)	
Figura 77. Diagrama P-T para el fluido A11 variando la °API del líquido	114
utilizando SRK-P(T)	

LISTA DE TABLAS

Tabla 1. Clasificación para petróleos negros	Pág 13
Tabla 2. Campos analíticos e información disponible	36
Tabla 3. Propiedades características de los fluidos estudiados	57
Tabla 4. Variaciones realizadas al fluido del pozo A1	61
Tabla 5. Predicciones de la presión de saturación con las diferentes	83
ecuaciones de estado para cada uno de los fluidos estudiados	
Tabla 6. Predicciones del factor volumétrico de petróleo con las diferentes	83
ecuaciones de estado para cada uno de los fluidos estudiados	
Tabla 7. Predicciones de la relación gas - petróleo con las diferentes	84
ecuaciones de estado para cada uno de los fluidos estudiados	
Tabla 8. Error porcentual de la presión de saturación (Ps) para las	86
diferentes ecuaciones de estado para cada uno de los fluidos estudiados	
Tabla 9. Error porcentual del factor volumétrico de petróleo (Bo) para las	87
diferentes ecuaciones de estado para cada uno de los fluidos estudiados	
Tabla 10. Error porcentual de la relación gas - petróleo (Rs) para las	88
diferentes ecuaciones de estado para cada uno de los fluidos estudiados	
Tabla 11. Error porcentual de las propiedades físicas de los fluidos	89
seleccionados respecto a la variación del peso molecular del líquido (Ml)	
utilizando PR78-P(T)	
Tabla 12. Error porcentual de las propiedades físicas de los fluidos	93
seleccionados respecto a la variación de la °API utilizando PR78-P(T)	
Tabla 13. Error porcentual de las propiedades físicas de los fluidos	96
seleccionados respecto a la variación del peso molecular del líquido (MI)	
utilizando SRK-P(T)	
Tabla 14. Error porcentual de las propiedades físicas de los fluidos	99
seleccionados respecto a la variación de la °API utilizando SRK-P(T)	
Tabla 15. Composición validada del Fluido A1 obtenida a 288 °F	124

Tabla 16. Composición validada del Fluido A2 obtenida a 300 °F	125
Tabla 17. Composición validada del Fluido A3 obtenida a 302 °F	126
Tabla 18. Composición validada del Fluido A4 obtenida a 293 °F	127
Tabla 19. Composición validada del Fluido A5 obtenida a 294 °F	128
Tabla 20. Composición validada del Fluido A6 obtenida a 298 °F	129
Tabla 21. Composición validada del Fluido A7 obtenida a 300 °F	130
Tabla 22. Composición validada del Fluido A8 obtenida a 300 °F	131
Tabla 23. Composición validada del Fluido A9 obtenida a 306 °F	132
Tabla 24. Composición validada del Fluido A10 obtenida a 306 °F	133
Tabla 25. Composición validada del Fluido A11 obtenida a 292 °F	134
Tabla 26. Composición validada del Fluido A12 obtenida a 287 °F	135
Tabla 27. Presión y Volumen relativo del Fluido A1 obtenido de la prueba	139
ECC	
Tabla 28. Datos a utilizar para calcular el factor de correlación para el	140
Fluido A1	
Tabla 29. Prueba de Balance de Materiales para el Fluido A1	141
Tabla 30. Prueba de desigualdad para el Fluido A1	141
Tabla 31. Prueba de Balance de Materiales para el Fluido A2	142
Tabla 32. Prueba de desigualdad para el Fluido A2	142
Tabla 33. Prueba de Balance de Materiales para el Fluido A4	142
Tabla 34. Prueba de desigualdad para el Fluido A4	143
Tabla 35. Prueba de Balance de Materiales para el Fluido A6	143
Tabla 36. Prueba de desigualdad para el Fluido A6	143
Tabla 37. Prueba de Balance de Materiales para el Fluido A7	144
Tabla 38. Prueba de desigualdad para el Fluido A7	144
Tabla 39. Prueba de Balance de Materiales para el Fluido A8	144
Tabla 40. Prueba de desigualdad para el Fluido A8	145
Tabla 41. Factores de correlación para cada fluido obtenidos de la prueba	145
ECC	

INTRODUCCIÓN

Las propiedades físicas de los fluidos del yacimiento provenientes de un análisis PVT, pueden ser pronosticadas a partir de simulaciones numéricas. Propiedades tales como, la presión de saturación (punto de rocío o burbuja), relación gas-petróleo (RGP) y factor volumétrico (Bo) entre otros, resultan fundamentales en el esquema de desarrollo de explotación de un yacimiento, así como, en la aplicación de modelos geoestadísticos y en el cálculo de reservas. Su predicción involucra una gran cantidad de variables, una de las más importantes es la composición total del fluido proveniente del yacimiento.

La composición total del fluido se obtiene de un estudio experimental previo (liberación instantánea) realizado a muestras de fluido de fondo o recombinada como parte de un estudio PVT y la misma varía desde C_1 hasta C_{20}^+ incluyendo CO_2 y N_2 . A su vez, esta composición es usada para calcular los parámetros característicos del componente C_{20^+} , como son, gravedad específica (γ) y peso molecular (M).

Tanto la composición como los parámetros del C_{20+} forman parte de la data de entrada a un simulador para llevar a cabo las predicciones. Debido a esto, es factible suponer que la variación de algunas de estas propiedades afectará los resultados de la simulación.

De igual manera, los simuladores composicionales utilizan ecuaciones cúbicas de estado que se basan en el equilibrio líquido-vapor de la mezcla para predecir el comportamiento de fases. Sin embargo, algunos fluidos poseen asfaltenos, los cuales precipitan bajo ciertas condiciones de presión y temperatura, y la mayoría de ellos forman una fase sólida al precipitar. En tal sentido, esto podría ocasionar errores al momento de la predicción de las propiedades termodinámicas debido a que las diferentes ecuaciones de estado que utilizan los simuladores no toman en cuenta la fase sólida.

En virtud de que los parámetros característicos del componente C_{20+} , están vinculados con la predicción de las propiedades físicas de los fluidos de yacimiento, en el presente trabajo se estudiará el efecto que produce la variación de algunos análisis experimentales complementarios (densidad y peso molecular del líquido, gravedad específica y peso molecular del gas, entre otros) de un estudio PVT, sobre el componente C_{20+} y sobre la predicción de las propiedades físicas de los fluidos del yacimiento.

Este Trabajo Especial de Grado consta de cuatro capítulos, descritos brevemente a continuación:

En el Capítulo I, se expone el problema a resolver con los objetivos planteados para alcanzar tal fin. En el Capítulo II, se presentan los fundamentos teóricos acerca de tipos de yacimiento, propiedades características de los fluidos, análisis PVT, análisis composicional y ecuaciones de estado (EdE) para realizar las predicciones. En el Capítulo III, se presenta en forma detallada la metodología utilizada para el desarrollo del trabajo. En el Capítulo IV, se muestran y discuten los resultados obtenidos usando la metodología descrita en el capítulo anterior. Finalmente se presentan las Conclusiones y Recomendaciones.

CAPÍTULO I

PLANTEAMIENTO DEL PROBLEMA

1.1. JUSTIFICACIÓN

En la actualidad existe una variedad de paquetes comerciales de simulación para la predicción de propiedades PVT. Los mismos utilizan como insumo de entrada la composición total experimental del fluido del yacimiento (desde C_1 hasta C_{20}^+ incluyendo N_2 y CO₂) y la caracterización del componente plus (M y G.E.); estos datos son de suma importancia ya que influyen considerablemente en los resultados obtenidos en la simulación composicional.

Entendiendo esto como una dependencia en cuanto a insumos de datos necesarios para generar resultados en la predicción de propiedades termodinámicas para cualquier simulación composicional, resulta claro que el estudio de la variación de los parámetros característicos del componente C_{20}^+ se debe llevar a cabo para verificar su influencia en las predicciones de las propiedades como presión de saturación(punto de rocío o burbuja), RGP, Bo, compresibilidad del crudo y viscosidad; información importante para definir esquemas de explotación entre otros.

El componente plus a su vez está integrado por una variedad de componentes de cadenas de hidrocarburos más pesadas (parafinas, nafténicos, aromáticos entre otros) y en algunos casos por asfaltenos sensibles a cambio de presión y temperatura, estos forman parte del componente plus. El equilibrio termodinámico líquido-vapor-sólido no es tomado en cuenta por las ecuaciones de estado que son utilizadas por los simuladores comerciales. De acuerdo con esto, es probable que se vea afectada la precisión al momento de realizar los cálculos de predicción. Por esta razón se pretende establecer una relación entre el contenido de asfaltenos y los parámetros que afectan el cálculo del componente C_{20+} .

1.2. OBJETIVO GENERAL

Analizar el efecto de la variación de los parámetros característicos del componente C_{20+} (gravedad específica y peso molecular) sobre algunas propiedades PVT y sobre la predicción de las propiedades físicas de los fluidos del yacimiento.

1.2.1. OBJETIVOS ESPECÍFICOS

- a) Validar a partir de informes previos las propiedades características de la fracción pesada (gravedad específica y peso molecular) obtenidas a partir del proceso de liberación instantánea.
- b) Determinar la influencia de la variación de los parámetros experimentales sobre los parámetros característicos de la fracción pesada.
- c) Correlacionar el posible efecto del contenido de sólidos (asfaltenos) en la determinación de los parámetros característicos de la fracción pesada y en consecuencia su efecto en la predicción de las propiedades físicas de los fluidos.
- d) Evaluar diferentes Ecuaciones de Estado (EdE) para pronosticar las propiedades físicas de los fluidos del yacimiento y estimar sus desviaciones con respecto a las propiedades experimentales.

CAPÍTULO II

MARCO TEÓRICO

2.1. Yacimientos de Hidrocarburos

Un yacimiento de hidrocarburos puede definirse como una unidad geológica de origen variado, de volumen limitado, porosa y permeable que contiene hidrocarburos en estado líquido o gaseoso o una combinación de ambos ^[1] (ver Figura 1).

Fig. 1. Acumulación de Gas o Petróleo Fuente: http://www.tacarigua.com.ve/gas.htm

En un yacimiento pueden coexistir agua en fase líquida y mezcla de hidrocarburos en fase líquida (crudos) o gaseosa (gas natural). El agua contiene sales y otros elementos

disueltos, mientras que los hidrocarburos son mezclas de composición química compleja y otros elementos tales como N₂, CO₂ y H_2S ^[2]. Estos fluidos están sometidos a condiciones variables de presión y temperatura que pueden alterar su estado (gaseoso y/o líquido)^[2] y la distribución de los distintos componentes entre las fases que coexisten.

2.2. Diagrama Presión-Temperatura de una mezcla de hidrocarburos

La mejor forma de iniciar el estudio de los cambios de fase de las mezclas de hidrocarburos que se presentan naturalmente en yacimientos de petróleo y gas, es utilizando un diagrama de Presión – Temperatura (P-T). Los diagramas de fases son representaciones gráficas de las relaciones entre las fases y las propiedades del sistema ^[2]. Utilizándolos sistemáticamente se puede concluir si la mezcla de hidrocarburos se encuentra en fase líquida, gaseosa o si coexisten en el sistema ambas fases.

En la Figura 2 se muestra para un sistema típico y a manera de ejemplo, la envolvente de fases que resulta de unir las curvas de punto de burbujeo (curva AC) y punto de rocío (curva CB). En el punto de burbujeo, el sistema (mezcla de hidrocarburos) se encuentra en fase líquida en equilibrio con una cantidad infinitesimal de gas. En el punto de rocío, el sistema se encuentra en fase gaseosa en equilibrio con una cantidad infinitesimal de líquido. *Las curvas de punto de burbujeo y rocío se unen en el punto crítico C*. A las condiciones del punto crítico, las propiedades intensivas (aquellas que no dependen de la cantidad de muestra) del gas y del líquido son idénticas.

La envolvente de las fases divide al diagrama en tres regiones: la de líquido que está situada fuera de la envolvente y a la izquierda de la temperatura crítica; la de gas que también está fuera de la envolvente pero a la derecha de la temperatura crítica y la de

dos fases que se encuentra dentro de la envolvente y donde se hallan en equilibrio fases de gas y de líquido. En la región de dos fases se muestran líneas que unen puntos de igual porcentaje de líquido en la mezcla. Así, las curvas de burbujeo y rocío son de 100% y 0% de líquido, respectivamente. Todas estas curvas convergen en el *punto crítico*.

En el diagrama de fases es importante resaltar los puntos extremos Pcb y Tct. A la temperatura del punto Tct se le llama *Cricondentérmica*, y es la máxima temperatura a la cual pueden coexistir en equilibrio vapor y líquido. A la presión del punto Pcb se le llama *Cricondembárica*, y es la máxima presión a la cual puede existir equilibrio entre vapor y líquido ^[2].

Figura 2. Diagrama de fases^[2]

2.3. Clasificación de los yacimientos basada en el comportamiento de fases

Dependiendo del estado de fases en que se encuentre la mezcla de hidrocarburos en los yacimientos, estos se pueden clasificar como yacimientos de fase gaseosa y yacimientos de fase líquida (petróleo). Las características de los diferentes tipos de yacimientos se indican en la Figura 3:

Figura 3. Diagrama de los diferentes tipos de yacimiento y sus hidrocarburos asociados (Giménez y Salas, 2006)

2.3.1. Yacimientos de Gas Seco

En los yacimientos de gas seco la mezcla de hidrocarburos permanece en fase gaseosa, tanto a condiciones de yacimiento como a condiciones de superficie. En la Figura 4, se observa que la temperatura de estos yacimientos es *mayor* que la temperatura cricondentérmica de la mezcla. Sin embargo, en algunas oportunidades puede obtenerse en superficie una pequeña cantidad de líquido (agua), la cual no excede a 10 BN/MMPCN. Se destaca que *no* se produce condensación de

hidrocarburos en ninguna etapa en el proceso normal de producción. La obtención de líquidos hidrocarburos sólo se puede alcanzar a temperaturas criogénicas (bajo 0°F). Estos yacimientos están constituidos principalmente por metano, con algunos hidrocarburos de moléculas intermedias (desde etano a butano).

Figura 4. Diagrama de fases para un yacimiento de gas seco^[3]

2.3.2. Yacimientos de Gas Húmedo

Para este tipo de yacimiento, la mezcla de hidrocarburos permanece en estado gaseoso en el yacimiento, como se representa en la Figura 5 a través de la línea 1-2. Sin embargo, al salir a la superficie los fluidos se encuentran en la región de dos fases, formándose una cantidad de líquido del orden de 10 a 20 BN/MMPCN. Al igual que los yacimientos de gas seco, la temperatura de éstos, *a condiciones de subsuelo*, es mayor que la cricondentérmica. Los gases húmedos tienen mayor porcentaje de componentes intermedios y pesados (desde propano hasta heptanos).

Figura 5. Diagrama de fases para un yacimiento de gas húmedo [3]

2.3.3. Yacimientos de Gas Condensado

En los yacimientos de gas condensado la mezcla de hidrocarburos se encuentra en fase gaseosa o en el punto de rocío a las condiciones iniciales de presión y temperatura del yacimiento. El valor de la temperatura se encuentra entre la temperatura crítica y la cricondentérmica de la mezcla, como muestra la Figura 6.

Las variaciones de presión en el yacimiento se representan a través de la línea 1-2-3. A medida que disminuye la presión se alcanza el punto de rocío (punto 2). Al continuar la disminución se produce una condensación de líquido que tiene un máximo para cierta condición de presión característica de la mezcla (condensación retrógrada). Luego, si la disminución de presión continúa, parte de la fase líquida empezará a revaporizarse.

Figura 6. Diagrama de fases para un yacimiento de gas retrógrado ^[3]

2.3.4. Yacimientos de Petróleo de Alta Volatilidad (Cuasicrítico)

En el yacimiento, la mezcla de hidrocarburos se encuentra inicialmente en estado líquido cerca del punto crítico y a una temperatura ligeramente menor a la temperatura crítica de la mezcla. De acuerdo a la Figura 7, la línea 1-2-3 muestra el comportamiento de la reducción de presión en el yacimiento, ocurrido durante la producción. Una pequeña reducción en la presión por debajo del punto de burbuja (punto 2) causa la liberación de una gran cantidad de gas en el yacimiento. Esto es debido a que contiene relativamente menos moléculas de hidrocarburos pesados y más moléculas intermedias (definidas desde etano a hexanos) que el petróleo negro, lo cual permite que se vaporicen más fácilmente con una reducción de presión.

A condiciones normales de operación de separador estos yacimientos muestran porcentajes *más bajos* de líquido producido, cuando se comparan con los parámetros de producción de yacimientos de petróleo negro.

Figura 7. Diagrama de fases para un yacimiento de petróleo volátil^[3]

2.3.5. Yacimientos de Petróleo de Baja a Moderada Volatilidad (Petróleo Negro)

En yacimientos de petróleo negro, originalmente la mezcla de hidrocarburos se encuentra en estado líquido, por encima del punto de burbujeo según la Figura 8 (línea 12). En ese momento inicial el petróleo es capaz de mantener en solución una mayor cantidad de gas si ese gas estuviese disponible a esa presión inicial indicada (Petróleo subsaturado). Si la presión cae por debajo de la presión de burbujeo se comienza a liberar gas, y se dice que el petróleo se encuentra ahora saturado (línea 2-3). De allí en adelante, el gas sale del líquido, desde el yacimiento hasta la superficie y si las condiciones del fluido en el separador se encuentran estables dentro de la envolvente de fases, una gran cantidad de líquido llega a la superficie.

El petróleo negro lo constituye una gran variedad de especies químicas incluyendo cadenas de moléculas de hidrocarburos largas, pesadas y no volátiles. Estos fluidos son los más comunes, con gravedad API menor a 40 °API. En la Tabla 1 se presenta la clasificación de acuerdo a la gravedad API, de los hidrocarburos líquidos producidos.

Figura 8. Diagrama de fases para un yacimiento de petróleo negro^[3]

Tabla 1. Clasificación para petróleos negros

Petróleo Negro	Rango °API
Livianos	30-40
Medianos	20-30
Pesados	10-20
Extrapesado	<10

2.4. PROPIEDADES CARACTERÍSTICAS DE LOS HIDROCARBUROS

Las propiedades de los hidrocarburos inciden en el cálculo de reservas, diseño de una instalación de producción y planes operacionales, entre otros. Es por ello que el estudio de éstas debe hacerse de la forma mas precisa posible.

Entre las propiedades características de los hidrocarburos se tienen:

- Presión de saturación (Ps)
- Relación gas-petróleo en solución (Rs)
- Factor volumétrico del petróleo (Bo)
- Factor volumétrico del gas (Bg)
- Compresibilidad del petróleo (Co)
- Viscosidad del petróleo (µ_o)
- Gravedad específica del líquido (γ_0) y el gas (γ_g)

Entre las propiedades señaladas anteriormente se encuentra la presión de saturación (Ps.). La misma, se conoce para petróleo negro o volátil como "presión de burbuja", mientras que para el gas condensado se habla de "presión de rocío". A continuación se describen las propiedades que forman parte del estudio y la estructura de este trabajo.

2.4.1. Presión de Burbujeo (Pb)

Es la presión a la cual se forma la primera burbuja de gas, cuando el sistema pasa de estado monofásico (líquido) a bifásico (líquido y gas), donde la fase líquida se encuentra en equilibrio con una cantidad infinitesimal de gas.

2.4.2. Relación Gas-Petróleo en solución (Rs)

La razón o relación gas disuelto - petróleo (R_s) es el cociente entre el volumen de gas (inicialmente disuelto en el petróleo) que resulta de la separación en la superficie, reportado a condiciones normales, y el volumen de petróleo (V_{os}) que resulta también de esta separación y reportado igualmente a condiciones normales ^[2]. También se puede definir como el número de pies cúbicos normales (PCN) de gas que pueden disolverse en un barril normal (BN) de petróleo cuando ambos son llevados a las condiciones de presión y temperatura que existen en el yacimiento. La relación se representa mediante la siguiente ecuación:

$$Rs = \frac{V_{gs}(PCN)}{V_{os}(BN)} \qquad \text{Ec.} (1)$$

La solubilidad del gas en el petróleo depende de:

- Presión
- > Temperatura
- Gravedad del petróleo
- Gravedad del gas

2.4.3. Factor volumétrico del Petróleo (Bo)

Se define como el volumen de petróleo a *condiciones de yacimiento* (presión y temperatura) y gas disuelto, (V_Y) , requerido para producir un barril de petróleo a condiciones normalizadas de tanque (V_N) ^[3]. También puede definirse como el cambio de volumen que experimenta la fase líquida al pasar de las condiciones de yacimiento a las condiciones de superficie como consecuencia de la expansión líquida y/o liberación del gas en solución. Permite determinar cuántos barriles de crudo con su gas en solución hay que extraer del yacimiento para obtener un barril normal en superficie.

$$B_o = \frac{V_Y(BY)}{V_N(BN)} \qquad \text{Ec. (2)}$$

2.4.4. Gravedad específica del petróleo (γ_0)

La gravedad específica o densidad relativa del petróleo es la relación entre la densidad de éste y la densidad del agua, tomadas ambas a las mismas condiciones de presión y temperatura.

$$\gamma_o = \frac{\rho_o}{\rho_{H,O}} \qquad \text{Ec.} (3)$$

Donde:

 γ_o = Gravedad especifica del crudo a 60 °F

 ρ_o = Densidad del crudo a 60 °F

 $\rho_{H_{2}O}$ = Densidad del agua a 60 °F

La medida de la densidad del crudo en Intevep se realiza con un equipo llamado densímetro digital que permite conocer esta propiedad con una aproximación de +/- 0.001 g/cc.

2.4.5. Gravedad API

Es un parámetro de caracterización del crudo usado comúnmente. Es una medida relacionada con la gravedad específica del mismo, y viene dada por la siguiente formula:

$$^{\circ}API_{60/60} = \frac{141.5}{\gamma_{O}} - 131.5 \quad \text{Ec.} (4)$$

La gravedad API se expresa en grados; la densidad relativa o gravedad específica de 1.0 es equivalente a $10 \text{ }^{\circ}\text{API}$.
2.5. CARACTERIZACIÓN DE LOS FLUIDOS DE YACIMIENTO

Para la clasificación de la naturaleza del yacimiento, se utilizan criterios que se obtienen del estudio extenso tanto de propiedades de los materiales como de las propiedades de los fluidos. De igual manera, determinar el comportamiento de un yacimiento incluyendo los sistemas de producción, implica realizar un análisis PVT sobre una muestra representativa de los fluidos del yacimiento. Esto es de vital importancia para la vida productiva del yacimiento, porque al entender como será el comportamiento del fluido, se planificará la manera de obtener el mayor recobro.

2.5.1. Tipos de muestreos

El análisis de las muestras de los fluidos de yacimiento es fundamental para la definición del comportamiento de fases y las propiedades físicas del petróleo, el gas y el agua producidos por el yacimiento. Más importante aún, estos análisis especiales permiten identificar y caracterizar el comportamiento de fases de los asfaltenos, las ceras y los hidratos que *pueden precipitar* de los fluidos del yacimiento ante los cambios de temperatura y presión.

La manera de realizar el muestreo de un yacimiento es de suma importancia, ya que la caracterización correcta del fluido depende de la *representatividad de la muestra*. Por tal razón, para ser representativa del fluido original del yacimiento, debe tomarse en los primeros días de producción en vista de que la caída de presión no es apreciable. Dependiendo del lugar donde se tomen las muestras, éstas se clasifican en:

- Muestras de Fondo
- Muestras de Separador
- Muestras de Cabezal

2.5.1.1. Muestreo de fondo

Consiste en bajar una herramienta especial (muestreador) que tiene una cámara donde se acumula una muestra de petróleo con su gas en solución a las condiciones de presión y temperatura del punto de muestreo. El muestreo de fondo se puede realizar a hoyo desnudo u hoyo entubado. Para cada uno de ellos existen muestreadores y técnicas diferentes. El mejor lugar de muestreo es el punto *más profundo* en el pozo por donde pase el fluido que viene de la formación y donde preferiblemente la presión sea menor o igual a la presión estática del yacimiento (presión estimada de saturación). Este tipo de muestreo de fondo se recomienda cuando existe la presencia de asfaltenos en la muestra.

2.5.1.2. Muestreo de separador

Consiste en tomar muestra de petróleo y gas en el separador de alta medir las tasas correspondientes y *recombinar* las muestras de acuerdo a la relación gas- petróleo medida en el campo. Las muestras de gas y petróleo se toman al mismo tiempo y bajo las mismas condiciones de presión y temperatura (equilibrio termodinámico). Este tipo de muestreo se realiza para gas condensado y petróleo negro. La ventaja de éste tipo de muestra es que se maneja fácilmente en el laboratorio y la cantidad de volumen que se toma en el muestreo y que está disponible para recombinar es mucho mayor de la que se puede tomar con un muestreo de fondo (Bánzer, 1997).

Se deben cumplir tres condiciones para tener éxito en el muestreo de separador:

1. Producción estabilizada a bajas tasas de flujo

2. Medición precisa de las tasas de flujo de gas y líquido

3. Toma de muestras representativas de gas y líquido de la primera etapa de separación (separador de alta)

2.5.1.3 Muestreo de cabezal

El muestreo de cabezal, se realiza cuando el fluido que llega a la superficie (cabezal del pozo) es monofásico. Este tipo de muestreo generalmente se utiliza para algunos yacimientos de gas condensado (cuando P > Pr) o para yacimientos de petróleo que estén sub-saturados, es decir que la presión del mismo esté por encima de la presión de saturación. El muestreo de cabezal es ventajoso ya que no es necesario medir tasas de flujo, el costo es menor y se realiza rápidamente. Sin embargo, se requiere como condición sin excepción que en el punto de muestreo el flujo sea *monofásico*.

2.5.2 Análisis PVT

Un análisis PVT consta de un conjunto de pruebas que se realizan en el laboratorio a condiciones específicas de presión, volumen y temperatura. Así se determinan las propiedades de los fluidos en un yacimiento de hidrocarburos. Las pruebas de laboratorio se realizan basándose en que ocurren dos procesos termodinámicos diferentes al mismo tiempo: La separación instantánea de los fluidos (petróleo y gas) en la superficie durante la producción, y la separación diferencial de los fluidos en el yacimiento durante la declinación de presión.

Los estudios experimentales para el *petróleo negro y volátil*, generalmente son los siguientes:

- Proceso de liberación flash en una o en dos etapas
- Proceso de expansión a composición constante
- Proceso de liberación diferencial
- Pruebas de separadores
- Estudio de viscosidad en función de la presión

Los principales procesos se definirán y describirán a continuación.

2.5.2.1. Proceso de Liberación Instantánea (Flash)

En la liberación instantánea se simula el comportamiento del fluido en un separador de una etapa. Para ello, se coloca la muestra de petróleo vivo (petróleo con gas en solución) en una celda a la temperatura y presión inicial del yacimiento (P_1 , T_1) o a una presión que debe ser mayor a la presión de burbuja (A). Cuando el sistema se encuentra en equilibrio y manteniendo la presión inicial de la celda, se extrae una alícuota de la muestra hacia un recipiente (separador) que se encuentra a presión atmosférica o a la presión de prueba y se mide el volumen de petróleo y de gas obtenido de la separación instantánea (B); el gas es medido en un gasómetro, instrumento que permite la lectura del volumen. Posteriormente el gas es analizado en un cromatógrafo.

El líquido o crudo muerto se pesa y analiza para determinar su peso molecular (Ml) y densidad (ρ). A partir de la liberación flash se obtiene la siguiente información: relación gas petróleo (RGP), factor volumétrico del petróleo (B_o) y densidad a la presión de carga, la gravedad API del líquido producido y composiciones de los fluidos. Los valores obtenidos dependerán de sus condiciones de separación. La Figura 9 muestra esquemáticamente una liberación instantánea que se realiza en una etapa:

Figura 9. Esquema de liberación instantánea en una etapa (Giménez y Salas, 2006)

2.5.2.2. Proceso de Expansión a Composición Constante (ECC)

En esta prueba se coloca la muestra en una celda a una presión por encima de la presión de burbuja y a la temperatura de yacimiento. Se comienza a reducir la presión de la celda por etapas. Esto genera una expansión, produciendo incrementos en el volumen de la muestra, los cuales son medidos. Al comienzo de la prueba, la muestra se encuentra en estado monofásico; cuando la presión es menor a la presión de burbuja se desprende el gas y el volumen total se incrementa bruscamente. Es importante destacar que *en ningún momento de la prueba*, el gas liberado es retirado de la celda. Por ello *la composición total del fluido no cambia*.

De la prueba de expansión a composición constante se obtiene la siguiente información,

- Con los datos obtenidos por encima de la presión de burbuja: los volúmenes relativos, la compresibilidad del petróleo y la densidad de la fase líquida
- Con los datos obtenidos por debajo de la presión de burbuja: el volumen relativo, la Función "Y" y la presión de burbuja.

La Figura 10 muestra esquemáticamente la prueba ECC.

Figura 10. Esquema de una prueba ECC (Giménez y Salas, 2006)

Después de obtener en el laboratorio el comportamiento volumétrico de las muestras en función de la presión con la prueba ECC, se procede a optimizar el cálculo de la presión de burbuja a través de la función "Y", un primer estimado de la misma se obtiene del gráfico Vr vs. P (Figura 11). La función Y se obtiene utilizando la siguiente relación:

$$Y = \frac{Pb - P}{P\left(\frac{V}{V_b} - 1\right)} \qquad Ec. (5)$$

Donde P_b es la presión de burbuja, V_b es el volumen correspondiente a la presión de burbuja, P es la presión por debajo de la presión de burbuja y V es el volumen correspondiente a la presión P, la relación V/V_b se conoce como volumen relativo (Vr). A continuación se muestran las figuras 11 y 12 donde se presentan la variación de presión (en una misma escala) con respecto al volumen relativo de muestra y la función Y respectivamente.

Figura 11. Comportamiento del volumen en función de la presión (Giménez y Salas, 2006)

Figura 12. Función "Y" en función de la presión (Giménez y Salas, 2006)

Cuando se grafican los valores de la función "Y" computada versus los valores de presión, generalmente se obtendrá una recta similar a la tendencia presentada en la Figura 12.

2.5.2.3 Proceso de Liberación Diferencial

Es un estudio a composición variable, el cual se realiza en el laboratorio para simular el comportamiento de los fluidos en el yacimiento durante la disminución de la presión. El proceso comienza con una presión igual a la presión de burbujeo (Pb) y a temperatura de yacimiento (Ty). Luego se fija un número de etapas por debajo de burbujeo donde se expande la muestra. La celda se agita hasta alcanzar el equilibrio entre las fases. El gas liberado se desplaza de la celda a presión constante y su volumen medido, utilizando un gasómetro. Posteriormente, se analiza para obtener su composición y gravedad específica. También se toman medidas de los volúmenes de muestra antes (líquido y gas) y después de liberar el gas (líquido) a la presión a la cual se realizó la liberación diferencial. El proceso se repite según el número de etapas determinadas, hasta una presión de abandono donde se hace una liberación instantánea y el líquido residual (denominado petróleo residual) obtenido es enfriado a temperatura ambiente, se mide su densidad y se lleva a 60 °F. De la prueba diferencial se obtiene:

- Relación gas petróleo en solución (Rs)
- Factor volumétrico del petróleo (Bo)
- Factor volumétrico total (Bt)
- Densidad del petróleo (po)
- Factor de compresibilidad del gas, Z
- Factor volumétrico del gas, Bg
- Gravedad específica del gas, G.E.g
- Gravedad API del crudo residual, °API

La Figura 13 muestra esquemáticamente la prueba de liberación diferencial,

Figura 13. Esquema de prueba de liberación diferencial (Giménez y Salas, 2006)

2.5.3. Análisis Composicional

La mayoría de los parámetros medidos de un fluido de yacimiento pueden ser calculados con un grado aceptable de precisión a partir de su composición. En el pasado, las composiciones de los fluidos del yacimiento eran medidas para incluir la separación del componente metano hasta hexano, con los heptanos y componentes más pesados *agrupados* como un componente único reportado con peso molecular y densidad promedio, identificado como C_{7+} .

Con el desarrollo de Ecuaciones de Estado (EdE) sofisticadas para *calcular* las propiedades de los fluidos, se concluyó que era necesaria una descripción más *completa* de los componentes pesados. Se recomendó que los análisis composicionales de los fluidos de yacimiento deberían incluir una separación de componentes *hasta C10 como mínimo*. Las instituciones de investigación más calificadas usan ahora ecuaciones de estado que requieren composiciones *hasta C30 o más alta* ^[4].

Aunque los hidrocarburos de yacimientos pueden ser descritos por un número de componentes discretos y grupos de componentes, pueden ser expresados con mayor detalle utilizando una descripción continua. Ejemplo de ello son la curva destilación TBP (True Boiling Point) y la cromatografía de gases.

La curva de destilación TBP es un método estándar (ASTM D2892-05) que permite recuperar cortes de crudo a diferentes temperaturas de ebullición. Las fracciones son recolectadas dentro del rango de temperatura de dos (2) alcanos normales consecutivos, donde cada corte comienza y termina en el punto de ebullición de n- C_{n-1} y n- C_n respectivamente y es referido al número de carbono. Por ejemplo, la fracción reportada C₉, nonanos, comprende todos aquellos compuestos colectados como destilados, dentro del rango de temperatura del n-octano y n-nonano. Por ello, las fracciones se denominan, *grupos de número de carbono simple* (SCN). Katz & Firoozabadi ^[5] extendieron los datos y mediciones de punto de ebullición promedio, peso molecular y densidad de grupos SCN de un número importante de fluidos de yacimiento. Las propiedades de Parafinas, Naftenos y Aromáticos (PNA) presentes en cada grupo SCN son diferentes.

Realizar un análisis extendido de un crudo por destilación puede requerir mucho tiempo, además de utilizar un volumen importante de muestra. Sin embargo, un análisis cromatográfico puede identificar componentes pesados en pocas horas y realizarse usando pequeñas cantidades de fluido. En este tipo de análisis, la muestra se inyecta en una zona caliente, se vaporiza y transporta por un gas de soporte (Helio, por ejemplo) dentro de una columna empacada con una fase sólida, resultando en la "partición" de los constituyentes de la muestra. Los componentes son transportados por el gas de soporte a un detector, donde la concentración del componente se relaciona al área bajo la curva del tiempo de respuesta del detector. Los picos individuales pueden ser identificados comparando los tiempos de retención dentro de la columna con aquellos compuestos conocidos previamente, analizados a las mismas condiciones cromatográficas. Estas columnas son capaces de separar compuestos

26

gaseosos y de allí determinar sus concentraciones como componentes discretos. Todos los componentes detectados por cromatografía entre las dos parafinas normales contiguas son agrupados, medidos y reportados *como un SCN igual a aquella parafina normal más alta*. Las condiciones de operación de la cromatografía pueden ser ajustadas, esto equivale a decir su eficiencia disminuida, para simular la destilación TBP.

Actualmente, en PDVSA-Intevep el proceso experimental para obtener la composición total de un fluido de yacimiento, incluido dentro de la categoría mediano y liviano (según la API), es por medio de una recombinación matemática de los análisis al líquido (destilación simulada, PNA y MI) producido de la liberación flash y del análisis cromatográfico al gas. Además, se utiliza la información obtenida de la liberación instantánea, como es la RGP y la gravedad en °API.

2.5.3.1. Destilación simulada

La destilación simulada se utiliza con el fin de determinar la fracción de volumen del líquido destilado. Esta prueba permite obtener la distribución del rango de ebullición del petróleo crudo por medio de una cromatografía de gas. Se fundamenta en que los hidrocarburos se adsorben por determinado tiempo sobre columnas cromatografías no polares, en un orden que coincide con sus puntos de ebullición. Esta cromatografía no se realiza de forma convencional, de manera de lograr una separación óptima de los componentes de una mezcla. Por el contrario, las condiciones cromatográficas se seleccionan de forma tal que la resolución y eficiencia de separación de los componentes de la mezcla es limitada. Este ensayo se realiza utilizando el método estándar ASTM D5307-97 (revisada en 2002) y se aplica a todos los tipos de crudo. El método consiste en que la muestra de petróleo se diluye con bisulfuro de carbono. La solución resultante se inyecta dentro de la columna de cromatografía de gases que separa los hidrocarburos en orden de punto de ebullición. La temperatura de la columna se eleva de forma reproducible, a una tasa lineal, y el área bajo la curva del

cromatograma se registra a medida que el proceso se lleva a cabo. Los puntos de ebullición se asignarán al eje del tiempo, por comparación a una curva de calibración como la que se muestra en la Figura 14, obtenida bajo iguales condiciones cromatográficas, pero para una mezcla de n-parafinas de punto de ebullición conocidos a una temperatura de 538 °C.

Con esta data obtenida, se calcula la distribución del rango de ebullición para la muestra libre de agua, utilizando un sistema de procesamiento de datos, el cual permite conocer la fracción de volumen destilado en función de la temperatura a la cual ebullen todos los componentes presentes en la muestra analizada. La determinación de la distribución del *rango de temperaturas de ebullición* es un requerimiento esencial en crudos. Esta información puede usarse para estimar el rendimiento en la refinería y para evaluar económicamente el uso particular de un crudo.

Figura 14. Curva de calibración, ASTM D5307 Extendido

28

2.5.3.2. Análisis PNA (Parafinas, Naftenos y Aromáticos)

Para determinar el contenido de Parafina, Naftas y Aromáticos existen varias normas. Actualmente PDVSA-Intevep lo realiza utilizando el método (ASTM D5443,04) el cual incluye la determinación de los hidrocarburos por familia química, a saber: Parafinas, Naftenos, Olefinas y Aromáticos. Para ello se realiza el análisis en un cromatógrafo de gases de alta resolución.

Esta norma establece la determinación detallada de los hidrocarburos existentes en naftas y gasolinas, comprendidas en el intervalo de ebullición IBP-230 °C, específicamente en cortes de C_2 a C_{12+} .

La muestra se inyecta al cromatógrafo de gases en forma manual o automática. Una vez que esta se ha vaporizado en el inyector, se introduce a la columna y cada uno de sus componentes se separan y se queman en el detector de ionización a llama (FID) a medida que emergen de la columna. Se produce una señal que es adquirida y luego analizada utilizando un sistema especial de procesamiento de datos. La identificación de cada componente se realiza por *comparación* entre los tiempos de retención de los picos de la muestra, con los tiempos de retención de la tabla de calibración de una muestra conocida de nafta y/o gasolina, tomada como referencia.

La concentración en peso de cada componente se determina por normalización de áreas y factores de respuesta. El porcentaje en volumen se calcula utilizando gravedades específicas a 60 °F, y el porcentaje molar utilizando el Peso Molecular de cada compuesto.

2.5.3.3. Determinación del Peso Molecular promedio del líquido (Ml)

El peso molecular es un parámetro físico - químico fundamental, que puede usarse en conjunto con otras propiedades para caracterizar hidrocarburos puros y sus mezclas. El peso molecular promedio se determina mediante el método de la crioscopia o a través de un osmómetro de presión de vapor. El método usado para caracterizar crudos medianos y livianos es la técnica de crioscopia y está basada en las propiedades coligativas de las soluciones. Consiste en el descenso de temperatura de congelación de un líquido provocado por la disolución en otra sustancia (solvente) de ese líquido. La diferencia entre la temperatura del solvente puro y la temperatura inicial de congelación de la mezcla esta relacionada con la cantidad de moles disueltos en el solvente. Éste método se recomienda en hidrocarburos, para pesos moleculares menores a 500 gr./gr-mol.

2.5.3.4. Componente o Fracción pesada (plus)

La determinación de la composición de cada uno de los cientos de diferentes especies químicas presentes en el petróleo negro es imposible. Aún determinar la composición sólo de la mayor fracción del crudo es difícil. En todo caso, se determinan las composiciones de los componentes livianos y todos los componentes más pesados son agrupados en un componente "plus". El componente "plus" consiste de cientos de diferentes especies químicas ^[3].

Una distribución semi-continua consiste en identificar componentes discretos y una distribución continua en representar todos los otros componentes. Los componentes discretos incluyen hidrocarburos ligeros y gases inorgánicos, tales como, el CO₂. La función de distribución continua F(I) describe el resto del fluido de acuerdo al índice I que se escoge para representar una propiedad, tal como, punto de ebullición, número de carbono o peso molecular. La distribución continua se usa para describir componentes inidentificables, tales como, el heptano "plus" (C_7^+) y aquellos que son demasiado numerosos para ser considerados individualmente ^[6].

La descripción continua de una mezcla de fluido tiene dos aplicaciones principales:

- a) Puede ser usada para desarrollar y extender la caracterización del fluido a través de la descripción de la fracción "plus" por un número de grupos de carbono sencillo (SCN) o múltiple (MCN), particularmente en ausencia de datos experimentales.
- b) La función de distribución continua puede ser usada directamente en modelos de comportamiento de fase, en lugar de datos de componentes discretos.

2.5.3.4.1. Función de número de carbono simple (SCN) $^{[7]}$

Se han sugerido y aplicado con éxito razonable varias formas funcionales. La más simple de todas fue propuesta por Katz (1983) para la fracción C_7^+ de sistemas de gas condensado, se expresa matemáticamente por:

$$Z_{Cn} = 1.38205 \times Z_{C_{7}^{+}} \times \boldsymbol{\ell}^{(-0.25903 \times n)}$$
 Ec. (6)

Donde Z_{Cn} es la fracción molar del grupo de número de carbono simple C_n . Ahmed y col. ^[8] (1985) propusieron otro método para la extensión de la distribución molar del C_7^+ , la cual se describe a continuación:

• Usar la gravedad específica experimental de la fracción "plus" para calcular la pendiente, S:

$$S = 688.0563583 \times e^{\left(-11.46167654 \times \gamma C7 +\right)}$$
 Ec. (7)

• Calcular el peso molecular de la fracción octano "plus", M₈⁺ como:

$$M_{Cn+} = M_{C7+} \times (1 + S(n-7))$$
 Ec. (8)

• Resolver el sistema de ecuaciones abajo descrito para Z_{C7} y Z_{C8+} :

$$Z_{n} + Z_{(n+1)^{+}} = Z_{n+}$$

$$M_{n} \times Z_{n} + M_{(n+1)^{+}} \times Z_{(n+1)^{+}} = M_{n+} \times Z_{n+}$$

Ec. (9)

Se repiten los pasos anteriores hasta que la suma de las fracciones molares sea igual a la fracción molar del C_7^+ .

Se puede usar una relación lineal entre el SCN y el logaritmo de la concentración para así describir adecuadamente las fracciones pesadas de la mayoría de los fluidos de yacimiento,

$$\ln Z_{Cn} = A + Bn \qquad \text{Ec.} (10)$$

Donde A y B son constantes para cada fluido.

Pedersen y col.^[9] recomendaron inicialmente la aplicación de esta ecuación para gases condensados, mientras que para sistemas de crudos pesados los resultados mejoran por extrapolación de la curva de destilación TBP. Posteriormente ^[10], evaluaron la ecuación propuesta con un número importante de fluidos de yacimientos del Mar del Norte con un análisis composicional hasta C_{80}^+ . La expresión aquí descrita fue capaz de representar la data medida tan bien, que los autores *no* observaron ninguna ventaja en realizar una medida de análisis composicional más allá de C_{20}^+ .

En cálculos de comportamiento de fase el número de carbono no se usa directamente. Por eso se debe reemplazar por algunas propiedades físicas. *El peso molecular es frecuentemente relacionado al número de carbono por*:

$$M_{Cn} = 14 \times n - \delta \qquad \text{Ec.} (11)$$

Donde δ depende de la naturaleza química del grupo SCN. Un valor de δ =4 es una aproximación razonable en la mayoría de los casos,

$$M_{C_n} = 14 \times n - 4$$
 Ec. (12)

La correlación indicada sugiere que la ecuación 10 puede ser escrita en términos del peso molecular en lugar del número de carbono,

$$\ln Z_{C_n} = A + B \times M_{C_n} \qquad \text{Ec. (13)}$$

Las constantes en las dos (2) ecuaciones tienen diferentes valores y varían también de acuerdo a la composición de cada hidrocarburo. La función exponencial también es válida cuando la concentración se expresa en términos de fracción de masa en lugar de la fracción molar.

 C_n es el número de carbono más pesado que se supone está presente en la mezcla. Los valores de 50 a 80 (Behrens & Sandler y Pedersen respectivamente) han sido sugeridos como el "número de carbono de cierre". Sin embargo, la escogencia de este valor, ha tenido un efecto pequeño en los resultados de predicción de las ecuaciones de estado (EDE) en la mayoría de los casos, debido a su baja concentración y a que su contribución es mínima para propósitos prácticos.

2.5.3.4.2. Descripción continua^[7]

La descripción de la concentración de los grupos SCN es, básicamente, una representación discreta. La función describe la parte pesada por un número de grupos SCN y sólo es válida a números discretos de carbonos. Una visión más apropiada es la descripción continua del fluido, donde lo más conveniente es la distribución de *todos* sus constituyentes, en lugar de grupos de carbonos. La distribución continua refleja la verdadera naturaleza del fluido del yacimiento la cual incluye muchos compuestos, con propiedades que varían tan gradualmente que *no* permiten su identificación específica.

La distribución continua de componentes puede ser expresada por una función F(I), de forma tal que:

$$\int F(I)dI = Z \qquad \text{Ec.} (14)$$

Donde Z es la concentración total de todos los componentes, representados por I. Si todos los componentes del fluido quedan descritos por la descripción continua, entonces Z=1. La Intensidad de Distribución, F(I), o la Probabilidad de Ocurrencia, frecuentemente se expresan por distribución molar. La variable I puede ser el número de carbono o cualquier propiedad, tal como, el peso molecular (M) o el punto de burbuja (Pb), para caracterizar los compuestos que conforman el fluido. La función de distribución más usada es la función de probabilidad gamma, propuesta por Whitson en 1983, usando el peso molecular como variable de caracterización:

$$F(M) = \frac{\left((Md - \tau)^{\gamma - 1} \times e^{\frac{-(Md - \tau)}{\beta}} \right)}{\beta^{\gamma} \times \Gamma(\gamma)} \quad \text{Ec. (15)}$$

donde:

 $\Gamma(\gamma)$ es la función gamma

 τ es el mínimo peso molecular incluido en la distribución

 α y β determinan la forma de la función de distribución

$$\beta = (M_d - \tau)/\gamma$$

y Md es el peso molecular medio de la parte continua, que comprende los compuestos con peso molecular comenzando desde τ y extendiéndose al infinito.

La función de distribución se usa generalmente para describir la fracción C_7^+ , con sus parámetros determinados por regresión, para ajustar la data experimental disponible del grupo SCN. Al-Meshari ^[11], quien realizó un análisis exhaustivo de la descomposición de la fracción plus por la función de distribución gamma, recomienda lo siguiente:

a) Cuando se descompone la composición del fluido que tiene una fracción plus como el C_7^+ o C_{11}^+ , se debe calcular la frecuencia acumulativa de ocurrencia

usando el método de corte normal, con un valor de η igual al peso molecular del alcano normal *más pequeño* que la fracción plus.

b) Cuando se asigna el peso molecular promedio para los grupos SCN, la correlación de Katz y Firoozabadi tiene más precisión de peso molecular promedio de la fracción C_{45}^+ que la correlación de Whitson.

El valor de γ se encuentra en un rango desde 0.5 hasta 2.5 para fluidos de yacimientos típicos y controla la forma de la distribución. El valor de $\gamma = 1$, reduce la función gamma a una función de distribución exponencial,

$$F(M) = \frac{e^{\frac{-(M-\tau)}{\beta}}}{\beta} = \frac{e^{\frac{\tau}{\beta}}}{\beta}e^{(-M/\beta)} \qquad \text{Ec.} (16)$$

La Ecuación 16 representa más exactamente la descripción de los gases condensados. Para petróleo negro el valor de γ toma valores mayores y a medida que la °API es menor, la distribución se aproxima a una distribución normal.

Auvallè y col. ^[12] definen dos clases de fluidos de yacimiento. Debido a ello, existen dos (2) caracterizaciones termodinámicas diferentes: una más adecuada para gases condensados y otra para petróleos. La gran cantidad de cálculos e información que debe estar disponible para los mismos, lo hacen un método complicado para ser utilizado. A continuación se presenta un resumen de los parámetros que deben estar disponibles para poder utilizar este método:

Tipo de componente	Información			
Componentes ligeros: Sulfuro de hidrógeno,	Fracción molar completa			
nitrógeno, dióxido de carbono, metano,				
etano, isobutano, butano				
Componentes medianos: Hexano,	Composición global			
isopentanos, isohexanos				
Componentes hidrocarburos desde C7 hasta	Para cada corte: Conocimiento global de			
C ₁₀	análisis PNA			
Componentes hidrocarburos desde C ₁₁ hasta	Para cada corte: Peso molecular, densidad a			
C ₁₉	condiciones normales			
Residuo de destilación TBP C_{20}^+	Peso molecular, densidad a condiciones			
	normales			

Tabla 2. C	Campos a	analíticos e	inform	ación	disponible	
1 4014 2. 0	- ang ob				anoponnoite	

2.5.3.5. Programa Sistema PVT

El Sistema PVT es un programa que se utiliza en PDVSA-Intevep para calcular propiedades características de fluidos de yacimientos. Este consta de diferentes módulos de cálculo, entre los más importantes se tienen:

• Módulo 1: Se presentan los datos correspondientes a la prueba de liberación instantánea, para calcular: Rs, Bo y °API.

- Módulo 2: Se calcula la función Y, para optimizar el punto de burbuja.
- Módulo 3: Se introducen los datos obtenidos de la liberación diferencial, para generar la variación del Rs, el Bo, el Bg y la densidad en función de la presión.
- Módulo 4: Se calcula composición total del fluido de yacimiento desde C₁ hasta C₂₀₊, incluyendo CO₂ y N₂, la gravedad específica y el peso molecular del componente C₂₀₊. En el Capítulo 3 se presenta un esquema de cálculo de la composición total del fluido, utilizando los datos obtenidos experimentalmente. A continuación se presenta la Figura 15, en donde se indican los pasos previos a la obtención de la composición total del fluido utilizando el programa Sistema PVT:

Figura 15. Proceso para determinar la composición total del fluido (Giménez y Salas, 2006)

2.6. ASFALTENOS

El término "asfalteno" se acredita a Boussingault, un científico francés quien lo usó en 1837 para describir ciertos constituyentes durante la destilación de asfaltos ^[13]. Estos constituyentes eran insolubles en alcohol pero solubles en turpentina (resina derivada del aceite de pino). Sin embargo, debido a que se parecían al asfalto en apariencia, los refirió como "asfaltenos" para denotar su origen. Las sustancias de

diversa naturaleza química que conforman al petróleo, pueden ser clasificadas dentro de dos (2) grandes grupos: el primer grupo es de hidrocarburos no polares tales como las parafinas, naftenos y aromáticos de peso molecular moderado (100 < M < 500), y un segundo grupo de materiales *poliaromáticos polares*. Los aromáticos polares, son parte de la fracción pesada no volátil del petróleo y pueden ser subdivididos a su vez en resinas y asfaltenos. Las resinas son menos polares que los asfaltenos. Las definiciones operacionales de asfaltenos y resinas están basadas en su solubilidad en diferentes diluentes [¹⁴].

Los asfaltenos se puede definir como estructuras poliaromáticas, formadas por anillos de benceno, naftaleno, fenantreno, etc. de *alto peso molecular* (M > 1000), los cuales contienen heteroátomos tales como: azufre, oxigeno y vanadio formando estructuras complejas, tal como se muestra en la Figura 16. Los asfaltenos existen disueltos en el crudo o en suspensión en el mismo, estabilizados por medio de agentes como las resinas, las cuales ayudan a la suspensión y dispersión de las partículas de asfaltenos y a su vez reducen o previenen la coagulación y precipitación de estos asfaltenos en el crudo.

Figura 16. Estructura molecular de asfalteno de crudo venezolano. Propuesto por Carbognani [Intevep S.A. Tech. Rept, 1992]

Por naturaleza, los asfaltenos solubles su son en aromáticos, hidrocarburos tales el tolueno como 0 benceno, pero insolubles enalcanos 0 hidrocarburos parafínicos, tales como el n-pentano o n-heptano. Estas características de solubilidad permiten precipitar los asfaltenos de un determinado crudo y caracterizarlos de manera *cuantitativa*. Las resinas se definen como la fracción de crudo, insoluble en exceso de propano líquido a temperatura ambiente.

Según diferentes autores, la estructura de los asfaltenos disueltos en un solvente, incluyendo el crudo, es del tipo coloidal. Existen dos modelos para describir este comportamiento. En el primer modelo, el crudo y el residuo asfáltico, pueden ser considerados como una solución polimérica (líquida), en la cual las moléculas grandes (asfaltenos) interactúan principalmente con las moléculas pequeñas (resinas) que las rodean. En esta teoría la precipitación de asfaltenos es reversible.

En el otro modelo, varias moléculas de asfaltenos se asocian y forman una partícula, la cual se podría denominar Micela (Figura 17).

Figura 17. Formación de Micelas de asfaltenos en presencia de resinas (Giménez y Salas, 2006)

Las soluciones micelares son líquidos coloidales, en los cuales las micelas se encuentran suspendidas en moléculas de resinas asociadas, que actúan como surfactantes para estabilizar la suspensión coloidal. Estas partículas coloidales pueden existir como una fase separada en el crudo, o pueden estar disueltos en él, formando una sola fase. La remoción de las resinas puede llevar a una precipitación irreversible de los asfaltenos.

2.6.1 Causas de la precipitación de los asfaltenos

Son muchos los factores que pueden ocasionar la precipitación de asfaltenos en un yacimiento determinado. Datos de campo y laboratorio confirman que mientras más liviano es el crudo menor es la solubilidad de los asfaltenos, esto posiblemente debido a la relación resina-asfaltenos o estructura molecular de los asfaltenos y resinas. Esto implica que, los asfaltenos precipitarán más fácilmente de un crudo mediano o liviano que en un crudo pesado. Por ejemplo, el crudo Boscán de Venezuela (10 °API) con 17 % p/p de asfaltenos produce casi sin problemas y el crudo Furrial (25 °API) con 10 % p/p presenta numerosos problemas de producción. Esta *no* es la razón fundamental o la única que determina la precipitación de asfaltenos.

A medida que el yacimiento se produce, ocurren cambios en la composición del crudo, en los cuales este pierde componentes livianos y en consecuencia el gas en solución (Rs) comienza a disminuir y el crudo aumenta su densidad (si P<Pb). La composición de los fluidos puede variar debido a dos causas principales, cambios de presión e inyección de fluidos.

Cuando la presión en el yacimiento se reduce, la suspensión coloidal es desestabilizada, resultando en la precipitación de los asfaltenos y moléculas resinosas. El punto en el cual el contenido de asfaltenos presentes en un fluido de fondo del yacimiento comienza a precipitar cuando desciende la presión a temperatura constante es el *umbral de floculación primario* (Figura 18). Por encima

de este punto de presión (a una temperatura establecida), el contenido de asfaltenos presente permanecerá en solución (Figura 19). A medida que la presión disminuye por debajo de ese valor, la precipitación de asfaltenos aumenta y la floculación de partículas de asfaltenos se presenta en grandes agregados. La máxima precipitación ocurre cerca de la presión de burbuja (Figura 20). A medida que disminuye la presión y se libera gas del crudo, se produce una nueva redistribución de las resinas sobre las partículas precipitadas (solvatación) y los asfaltenos entran nuevamente en solución con el crudo. Esto implica que los mayores problemas relacionados con la deposición de asfaltenos deberían corresponder primordialmente a los yacimientos subsaturados. Las Figuras 18, 19 y 20 representan estas etapas y la disminución en el porcentaje de asfaltenos corresponde al obtenido, fuera de la celda en estudio.

Figura 18. Condición original de la muestra (1) a presión y temperatura de yacimiento (Giménez y Salas, 2006)

Pb = Presión de burbuja

Figura 19. Umbral de floculación de los asfaltenos (2) (Giménez y Salas, 2006)

Figura 20. Precipitación de asfaltenos al punto de burbuja (3) (Giménez y Salas, 2006)

Otra de las maneras mediante las cuales los asfaltenos se depositarán en el yacimiento, como resultado del *cambio de composición*, es por inyección de un fluido dentro del yacimiento. Esto sucede durante un proceso de recuperación secundaria o terciaria. El proceso de deposición puede originar otra serie de efectos, como el cambio de humectabilidad y reducción en la permeabilidad relativa al crudo. Esto puede ser negativo debido a que produce un aumento en la saturación residual del crudo.

Los problemas asociados a la precipitación de asfaltenos ocurren tanto en el subsuelo como en la superficie, afectando la explotación efectiva de los yacimientos petrolíferos. A continuación se presentan los problemas típicos ocasionados por la precipitación de los asfaltenos ^[15]:

- Taponamiento del yacimiento y en la vecindad del pozo
- Taponamiento de la tubería de producción
- Taponamiento de las líneas de flujo y demás equipos de superficie
- Deterioro de la calidad del crudo por la formación de emulsiones estables
- Pérdida de eficiencia y obstrucción en los intercambiadores de calor
- Deposición y taponamiento en sistemas de transmisión de gas

2.7. PROGRAMA PVTsim^[16]

El PVTsim es un programa de simulación bastante versátil desarrollado en Noruega, para los ingenieros de yacimientos, especialistas de flujo y procesos de ingeniería. Un análisis composicional estándar de un fluido es todo lo que se necesita para simular el comportamiento PVT teórico de petróleos y mezclas de gases condensados. Una gran cantidad de información de fluidos de yacimientos puede ser caracterizada y agrupada en un único juego de pseudocomponentes, de una manera rápida y eficiente.

El Modelo PVTsim se usa a través de los módulos de: hidratos, parafinas (ceras) y asfaltenos, para así evaluar el riesgo de la precipitación de sólidos durante el transporte del fluido en las tuberías y líneas de flujo. Este programa también permite cuantificar mediante simulación la distribución de los componentes y el comportamiento de fases de gas, petróleo y agua en un rango de condiciones desde el yacimiento hasta la superficie.

Actualmente PDVSA-Intevep sólo cuenta con la licencia para los módulos PVT y MMP (presión mínima de miscibilidad). En este trabajo se utilizará el módulo de PVT. Por ello se hará referencia sólo a éste.

El módulo PVT permite simular los siguientes experimentos:

- Expansión a composición constante
- Agotamiento diferencial
- Agotamiento a volumen constante
- Prueba de hinchamiento
- Prueba de separadores
- Medidas de viscosidad en función de la presión

La versión utilizada de PVTsim utiliza las siguientes ecuaciones de estado y combinaciones de estas para predecir el comportamiento termodinámico teórico de los fluidos:

- Soave-Redlich-Kwong (SRK)
- Peng-Robinson

Las combinaciones, para cada ecuación, son las modificaciones realizadas por Peneloux y la modificación del parámetro de temperatura. A continuación se presenta una revisión bibliográfica de los desarrollos de las distintas ecuaciones de estado utilizadas en el programa PVTsim.

2.7.1. Ecuaciones de Estado (EdE) ^[17]

2.7.2. Generalidades

Desde que van der Waals propuso la primera versión de su célebre ecuación de estado (EdE) hace más de un siglo (1873), han sido propuestas muchas modificaciones en la literatura para desarrollar predicciones de propiedades termodinámicas, volumétricas y de equilibrio de fase. Fue van der Waals quien dio inicio a lo que parecía ser la más grande pero inalcanzable meta de muchos investigadores: encontrar la más simple y generalizada EdE. Van der Waals propuso en su tesis la siguiente ecuación:

$$\left(P + \frac{a}{V^2}\right)(V - b) = R(1 + \alpha t)$$
 Ec. (17)

En esta ecuación, P es la presión externa, V es el volumen molar, b es un múltiplo del volumen molecular, a es la "atracción específica", y α es una constante relacionada a la energía cinética de las moléculas. Después, esta ecuación llegó a conocerse como la Ecuación de Estado de van der Waals,

$$P = \frac{RT}{(V-b)} - \frac{a}{V^2} \qquad \qquad \mathbf{Ec.} (18)$$

Los parámetros o las denominadas "constantes de la ecuación de estado", a y b, fueron primero calculadas usando datos PVT pero más tarde fueron relacionadas a las *propiedades críticas* aplicando la condición de continuidad de la isoterma crítica en el punto crítico. Estas condiciones permiten a las constantes ser relacionadas con la presión crítica (Pc) y la temperatura crítica (Tc) y además ofrecen un valor constante para el factor de compresibilidad crítico (Zc = 0.375).

Riedlich y Kwong (1949) se preocuparon en mayor medida acerca del "límite de comportamiento" de las EdE. Ellos querían corregir las representaciones a baja y alta densidad y propusieron la siguiente ecuación,

$$P = \frac{RT}{V-b} - \frac{a_c \alpha(T)}{V(V+b)} \qquad \qquad \mathbf{Ec.} (19)$$

Donde:

$$\alpha(T) = a / T^{0.5}$$
 $a_c = \Omega_a R^2 T_c^{2.5} / P_c$
 $b = \Omega_b R T_c / P_c$
 $\Omega_a = 0.4278$
 $\Omega_a = 0.0867$

Cuando Riedlich y Kwong (RK) propusieron su célebre EdE, estaban interesados solamente en desarrollar una buena ecuación para gases. Durante el período 1960-1980, el interés en las ecuaciones tipo RK era tan alto que la Ecuación RK fue en algún momento la EdE más modificada.

Wilson (1964) hizo una contribución importante al intentar generalizar la ecuación RK. Fue capaz de considerar las variaciones en comportamiento de diferentes fluidos a la misma presión y temperatura reducida, introduciendo el factor acéntrico de Pitzer (ω) dentro del término de atracción. Adicionalmente fue Soave (1972) quien propuso una nueva versión mejorada de la idea de Wilson, redefiniendo la función α (T_R, ω) y manteniendo la funcionalidad de volumen en la ecuación RK. La Ecuación SRK puede ser resumida como sigue:

$$P = \frac{RT}{V-b} - \frac{a_c \alpha(T_R, \omega)}{V(V+b)} \qquad \text{Ec.} (20)$$

Donde:

46

Luego de la propuesta de Soave, se han presentado muchas modificaciones en la literatura. La más popular de todas estas modificaciones fue la realizada por Peng y Robinson (1976). Estos investigadores superaron la Ecuación de Soave por recalculo de la función α (T_R, ω) y por modificación de la dependencia de volumen del término de atracción. Estos cambios les permitieron obtener mejores resultados para volúmenes de líquidos y mejores representaciones de Equilibrios Líquido - Vapor (ELV) para muchas mezclas. La Ecuación de Peng y Robinson (PR) se presenta a continuación:

$$P = \frac{RT}{V-b} - \frac{a_c \alpha(T_R, \omega)}{V(V+b) + b(V-b)} \quad \text{Ec.} (21)$$

$$a_c = 0.45724 \frac{RT_c^{2.5}}{P_c} \qquad \qquad \alpha(T_R, \omega) = \left[1 + m(1 - T_R^{0.5})\right]^2$$

$$b = 0.07780 \frac{RT_c}{P_c} \qquad \qquad m = 0.37464 + 1.54226\omega - 0.26992\omega^2$$

Las Ecuaciones SRK y PR son las ecuaciones cúbicas de estado más populares usadas corrientemente en investigación, simulaciones y optimizaciones en las cuales se requieren, las propiedades termodinámicas y los ELV.

Las tendencias en investigación sobre EdE cúbicas, después de las contribuciones de Soave y PR, han seguido tres rutas principales:

(a) Las modificaciones al parámetro dependiente de la temperatura α (T_R) en las Ecuaciones SRK y PR

(b) Las modificaciones de la dependencia de volumen en el término de presión de atracción

(c) El uso de un tercer parámetro dependiente de la sustancia.

El primer método se ha enfocado a mejorar las predicciones y correlaciones del equilibrio líquido-vapor y la presión de vapor para fluidos polares. La segunda ruta ha dado realce al concepto de "adaptación del volumen". La tercera línea de desarrollo constituye el llamado grupo de "EdE de tres parámetros".

2.7.3. Modificaciones a $\alpha(T_{R})$

Las modificaciones de la función dependiente de la temperatura $\alpha(T_R)$ en el término de atracción de las Ecuaciones SRK y PR han sido propuestas principalmente para mejorar las correlaciones y predicciones de la presión de vapor de los fluidos polares. La más popular de todas es la propuesta por Soave:

$$\alpha(T_r) = 1 + (1 - T_r) \left(m + \frac{n}{T_r} \right)$$
 Ec. (22)

Todas las modificaciones demuestran que las EdE cúbicas de dos parámetros pueden ser ajustadas para ofrecer buenas representaciones de las propiedades PVT de los *fluidos polares puros*.

2.7.4. Ecuaciones de adaptación del volumen

Peneloux y col.(1982) propusieron una corrección de volumen consistente en la Ecuación SRK, la cual mejora las predicciones de volumen sin cambio en las condiciones del equilibrio líquido-vapor. El método consiste en usar un volumen corregido:

$$V^* = V + t$$
 Ec. (23)

Donde t es un pequeño factor de corrección, dependiente del volumen molar del componente. El método ha sido altamente recomendado para calcular comportamiento de fase y volumétrico de mezclas de hidrocarburos y fluidos de yacimiento.

2.7.5. Ecuaciones de estado de tres parámetros

Una de las mayores desventajas de las EdE tipo Van der Waals es que la Z_c toma valores fijos sea cual sea la sustancia. Para superar esta deficiencia, se ha sugerido que el valor fijo de Z_c debe ser reemplazado por un *parámetro crítico ajustable*, dependiente de la sustancia. Esto se lleva a cabo introduciendo un tercer parámetro dentro de la EdE. Una de las ecuaciones más reconocidas es la desarrollada por Patel-Teja (PT) y generalizada por Valderrama (1990).

2.8. Aplicación a mezclas

La mayoría de las aplicaciones usan las reglas clásicas de mezcla de tipo cuadrático. Se ha introducido un parámetro de interacción dentro del parámetro "a" en las ecuaciones tipo Van der Waal para mejorar las predicciones de las propiedades de mezcla. Sin embargo, se ha reconocido que aún con el uso de los parámetros de interacción, las reglas de mezcla de Van der Waal de un fluido no conducen a resultados precisos para sistemas complejos. Se han llevado a cabo numerosos esfuerzos por extender la aplicabilidad de las ecuaciones de estado para obtener representaciones precisas del equilibrio de fase en diferentes tipos de mezclas. Los diferentes métodos incluyen el uso de múltiples parámetros de interacción en las reglas cuadráticas de mezcla, la introducción del concepto de composición local, la conexión entre los modelos de energía libre de Gibbs y las EdE, el uso de reglas no cuadráticas de mezclas, hasta el desarrollo de reglas de mezcla consistentes con la teoría de mecánica estadística, para asi minimizar la desviación en la predicción de las propiedades PVT. Se debe entender que los estimados de propiedades volumétricas (Bo por ejemplo) son de naturaleza distinta a propiedades como presión de burbujeo que están más afectadas por el comportamiento intermolecular de los fluidos.

2.9. Aplicación de EdE cúbicas para fluidos de yacimiento

La aplicación de las EdE para correlacionar los equilibrios líquido-vapor y propiedades de fluidos de yacimiento ha sido estudiada por diferentes autores (Xu y col. y Danesh y col.) los cuales han evaluado el desempeño de varias EdE para predecir comportamiento de fases y propiedades volumétricas de fluidos de yacimiento. Entre las propiedades evaluadas se tienen la presión de saturación, densidad de gas y líquido y relaciones de equilibrio para varias mezclas multicomponentes. Las principales conclusiones obtenidas en esos trabajos son:

- a) La Ecuación modificada PT-Valderrama y la Ecuación RK modificada por Zudkevitch y Joffe son, en general, superiores a todas las otras EdE
- b) La capacidad de las Ecuaciones SRK y PR para predecir la densidad de líquido fue mejorada por la inclusión del concepto de adaptación de volumen
- c) La fase volumétrica obtenida por cálculos flash fue insatisfactoria con todas las ecuaciones evaluadas
- d) Las concentraciones de fase fueron pronosticadas razonablemente bien por todas las ecuaciones, para todas las condiciones evaluadas

Danesh^[7] describe que, la parte más pesada de un componente no es bien representada por las EdE, ya que los datos de presión de vapor han sido correlacionados a componentes livianos (compuestos con moléculas esféricas simples) sobre el cual, se basan los modelos de las EdE.

Pedersen y col.^[18] recomienda que si se necesita un método consistente para simular comportamiento de fases, el método de Peneloux y col. es aconsejable para gases condensados, mientras que la Ecuación no modificada SRK ofrece mejores resultados para crudos pesados. Por otro lado, el comportamiento de fase de fluidos originarios de yacimiento, crudos aromáticos pesados, así como, fluidos a alta temperatura y

presión (ATAP) pueden ser bien representados usando las Ecuaciones SRK y PR incluyendo el parámetro de corrección de volumen dependiente de la temperatura ^[19].

2.10. Predicción de propiedades características del petróleo

La mayoría de las caracterizaciones de las EdE no son realmente útiles desde el punto de vista predictivo debido a que los errores en la presión de saturación son comúnmente +/- 10 % y en densidades cerca del +/- 5%, y las composiciones pueden estar lejos por varios moles por ciento en los componentes claves. Esta debilidad en la capacidad de predicción por las EdE puede deberse a insuficientes datos composicionales para las fracciones del C_7^+ , propiedades imprecisas para las fracciones del C7⁺, parámetros de interacción binaria (PIB) inadecuados o composición total incorrecta. Si los datos PVT son consistentes, y las composiciones del fluido son consideradas representativas del fluido analizado en las pruebas PVT, es necesaria la modificación de los parámetros en la EdE para mejorar las caracterizaciones del fluido. La mayoría de estos métodos modifican las propiedades de las fracciones complementando al C_7^{+} (T_c, P_c, ω o multiplicadores directos en las constantes de las EdE (Ω_a y Ω_b) y los PIB k_{ii} entre el metano y las fracciones del componente "plus"^[20]. En todo caso, se entiende que la naturaleza de las interrelaciones binarias bien puede afectar la composición de los fluidos en la cercanía del punto de burbujeo.

El análisis composicional usado para mezclas de gas y líquido frecuentemente se reporta en unidades de peso. La conversión a composición molar requiere conocimiento del peso molecular de cada componente y la fracción del número de carbono. La imprecisión experimental en la determinación del peso molecular de la fracción "plus" es del orden de 5-10 %. Las desviaciones en el orden de magnitud pueden influenciar el cálculo de una presión de rocío para un gas condensado tanto como 730 lpca (50 bar). Una aplicación obvia es, de hecho, el uso del peso molecular

de la fracción "plus" como un parámetro ajustable. Los ajustes dentro de la incertidumbre experimental pueden ser usados para reproducir un punto de saturación medido ^[20]. Si en el análisis composicional el contenido de CO₂ y N₂ es menor a 1.5 %, la influencia sobre la predicción del comportamiento de fase y los puntos de saturación es despreciable. Por lo tanto, el parámetro de interacción binaria k_{ij} entre no hidrocarburos-hidrocarburos y no hidrocarburos-no hidrocarburos se puede considerar igual a cero (k_{ij} =0)^[21].

De acuerdo a estudios realizados por Whitson ^[20], con una EdE cúbica de dos constantes (a y b) que incluya adaptación de volumen, la modificación de los parámetros de la EdE (o propiedades críticas) es típicamente sólo de 5 a 10 %, comparada con un \pm 30-40 % de las modificaciones requeridas con cualquier otro método que no use adaptación de volumen.

Danesh ^[7], reporta estudios realizados en cuanto a la variación de las propiedades ajustables del componente plus y pseudocomponentes (agrupación de componentes que conforman la fracción "plus"). En estos trabajos los parámetros, tales como, gravedad específica, peso molecular, composición, PIB entre otros, fueron variados +/- 5%. El comportamiento de fase fue pronosticado utilizando PR-1978 y los resultados indican que una variación en la gravedad específica afecta significativamente las predicciones, encontrándose que este factor es el parámetro más efectivo en cuanto al ajuste de la EdE.

La mayoría de la bibliografía consultada reporta como parámetro de ajuste en la predicción de las propiedades del fluido al componente o fracción "plus", debido a su imprecisión en los cálculos de sus propiedades. Sin embargo, el estudio previo a los análisis que conducen al cálculo del mismo, no han sido reportados en cuanto a como afecta su variación en la predicción de las propiedades características del petróleo. Es por ello que a continuación se presenta un estudio desde el inicio del tratamiento de la información experimental y como la variación de la misma afecta el cálculo de la
composición total del fluido y la predicción de las propiedades características del fluido.

En otras palabras, en este trabajo se evalúa el impacto que tiene la variación sistemática de las propiedades estimadas para la fracción "plus" sobre las estimaciones subsiguientes o predictivas de las propiedades totales de los fluidos de yacimientos a los que pertenece esa fracción "plus".

CAPÍTULO III METODOLOGÍA

Para la realización de este trabajo se revisaron más de 30 informes técnicos (Estudios experimentales PVT) sobre muestras de fluidos, pero sólo 8 de ellos contenían la siguiente información a ser utilizada: datos de presión- saturación, factor volumétrico, relación gas-petróleo, temperatura de yacimiento, contenido de asfaltenos, análisis PNA, destilación simulada y composición de gas^[23-31]. Se eligieron ensayos sobre 12 muestras de fluidos de yacimiento de fondo de pozo, provenientes del Oriente y Occidente del país, caracterizadas previamente. Los fluidos del Occidente provienen del mismo campo, mientras que en los de Oriente, cuatro (4) pertenecen a un mismo campo y los dos (2) restantes a campos diferentes. La principal particularidad de estos fluidos es que todos contienen asfaltenos sensibles a los cambios de presión. El tratamiento de los datos comienza con el recalculo de la composición total del fluido desde C₁ hasta C₂₀₊ incluyendo CO₂ y N₂, a partir de una recombinación matemática usando los datos de la destilación simulada, el análisis PNA y la cromatografía del gas, provenientes de la liberación instantánea, utilizando el programa Sistema PVT. Esta composición se llamará composición validada.

Como se deseaba identificar cuales de los parámetros de entrada para calcular las características del componente C_{20+} (M y GE) a partir de propiedades experimentales medidas del fluido (Mg, Ml, Rs, API, G.E.g y ρ) son mas relevantes. Se hizo la evaluación de su "importancia relativa" con estimados de C_{20+} para las 12 muestras aceptadas.

Posteriormente, se realizó la variación sistemática de cada uno de los parámetros experimentales (Mg, Ml, Rs, °API, p y G.E.g) para determinar *cuál de esos*

parámetros al modificarse afecta más el cálculo de los parámetros característicos del C_{20+} (M y G.E).

El propósito de esta variación sistemática de parámetros de "entrada" en pasos de 5 unidades de porcentaje en el rango de +/- 15% tenía dos objetivos: primero ayudar a identificar o confirmar aquellos parámetros (del grupo de 6) que mas inciden entre los estimados de M y GE del C_{20+} ya que estos dos últimos "caracterizados" impactan todas las predicciones de comportamiento fásico y segundo analizar los resultados obtenidos en los pronósticos de Ps, Rs y Bo, que ya incluyen los valores estimados de M y GE del C_{20+} , en los niveles de incertidumbre que se pueden aceptar en los parámetros de entrada para cualquier estimación. Esto se logra al comparar los valores estimados para Ps, Rs y Bo con los valores medidos experimentalmente.

A partir de las composiciones validadas, y específicamente de aquellas que más afectan las propiedades del C_{20+} , se procede a utilizar el programa PVTsim para realizar las predicciones de las propiedades tales como: presión de burbuja, factor volumétrico (Bo) y relación gas-petróleo en solución (Rs).

Finalmente, se verifica cual de las Ecuaciones de Estado (EdE), pronostica mejor las propiedades de los fluidos y cual de ellas es más factible de ajustar. Esto se intenta lograr mediante tratamiento estadístico de los datos y de los resultados obtenidos.

Figura 21. Esquema de la metodología utilizada en este Trabajo Especial de Grado.(Giménez y Salas, 2006)

3.1 Manejo de Datos Experimentales

Los datos de cada fluido, obtenidos del Informe Técnico correspondiente, fueron validados. Se obtuvieron ligeros cambios en la composición total original y en los parámetros característicos del C_{20+} . Aún así, se utilizaron estas composiciones *modificadas* para continuar aplicando la metodología propuesta. A continuación se presentan las características principales de cada fluido estudiado:

Ubioggión	Dozo	Ту	0 A DI	Ps	Rs	Bo	%
UDICACIOII	F UZU	(°F)	AFI	(lpca)	(PCN/BN)	(BY/BN)	Asfaltenos
	A1	288	31.6	4705	1429	2.000	0.84
	A2	300	23.8	2709	544	1.422	17.8
Oriente	A3	302	23.5	2600	517	1.450	14.97
Onente	A4	293	25.6	2290	466	1.411	6.56
	A5	294	20.5	2430	430	1.417	17.64
	A6	298	23.9	1673	302	1.273	9.73
	A7	300	23.3	1635	359	1.392	6.15
	A8	300	22.6	1440	308	1.363	6.22
Occidente	A9	306	24.2	1350	284	1.316	6.6
	A10	306	24.2	1295	284	1.320	7.5
	A11	292	22.9	1380	244	1.222	6.22
	A12	287	22.8	1250	228	1.130	6.8

Tabla 3. Propiedades características de los fluidos estudiados

3.1.1. Metodología para Determinar la Composición Total del Líquido

A continuación se indican los pasos de cálculo que realiza el programa Sistema PVT:

a) Del ensayo experimental realizado sobre la muestra de líquido se obtiene la composición de Parafinas, Naftenos y Aromáticos (PNA) hasta C_{12} , Destilación Simulada (DS), Peso Molecular (MI) y densidad (ρ).

b) Cálculo de la composición del líquido.

b.1) Para cada grupo de carbonos (PNA) se tiene:

$$\Sigma Xi \text{ molar} = 1 = \Sigma Xi_P + \Sigma Xi_N + \Sigma Xi_A$$
 Ec. (24)

Trabajando con el peso molecular de cada componente o número de carbono sencillo adecuado (SCN), se obtiene el peso molecular normalizado:

$$M_{PNA} = \Sigma Xi \text{ molar} \times Mi = 1/(\Sigma (Xi \text{ peso} / M_{PNA}))$$
 Ec. (25)

Para cada grupo SCN, el programa calcula la fracción másica como se indica a continuación:

Xi másica =
$$\frac{\text{Xi molar} \times \text{Mi}}{\text{M}_{\text{PNA}}}$$
 Ec. (26)

COMPOSICIO	NFUR	NOWEROD	E CARBO	5005	pozo A1		-			
COMPUESTO		% MOLAR	X MOL	X MOL NOR	PESO MOL.	X MOL * PM	COMPUESTO	X MOLAR		F másico
NAFTENOS							-			
	C5	0,518	0,00518	0,005194	70,135	0,3642	C1	0,0000	0,0000	0,0000
	C6	3,901	0,03901	0,039112	84,162	3,2918	C2	0,0021	0,0636	0,0006
	C7	6,322	0,06322	0,063385	98,189	6,2238	C3	0,0105	0,4633	0,0041
	C8	3,923	0,03923	0,039333	112,216	4,4138	i-C4	0,0067	0,3922	0,0035
	C9	5,255	0,05255	0,052688	126,243	6,6514	n-C4	0,0221	1,2827	0,0113
	C10	2,999	0,02999	0,030068	140,27	4,2177	i-C5	0,0286	2,0519	0,0181
	C11	1,262	0,01262	0,012653	154,29	1,9522	n-C5	0,0311	2,2469	0,0198
	C12	0	0	0,000000	168,32	0,0000	C6	0,1284	10,8640	0,0959
PARAFINAS						· · · · · · · · · · · · · · · · · · ·	C7	0,1649	16,1162	0,1423
	C1	0	0	0,000000	16,043	0,0000	C8	0,1650	18,4098	0,1625
	C2	0,211	0,00211	0,002116	30,07	0,0636	C9	0,1617	20,2628	0,1789
	C3	1,048	0,01048	0,010507	44,097	0,4633	C10	0,1546	21,3720	0,1887
	C4	2,201	0,02201	0,022068	58,124	1,2827	C11	0,0774	11,9170	0,1052
	C5	3,106	0,03106	0,031141	72,151	2,2469	C12	0,0469	7,8268	0,0691
	C6	3,375	0,03375	0,033838	86,176	2,9161		1,000	113,2693	1,0000
	C7	3,228	0,03228	0,032364	100,205	3,2431				
	C8	3,013	0,03013	0,030209	114,232	3,4508				
	C9	2,283	0,02283	0,022890	128,259	2,9358				
	C10	1,968	0,01968	0,019731	142,286	2,8075				
	C11	1,722	0,01722	0,017265	156,313	2,6988				
	C12	1,578	0,01578	0,015821	170,34	2,6950				
	C13	0	0	0,000000	184,37	0,0000				
	C14	0	0	0,000000	198,39	0,0000				
	C15	0	0	0,000000	212,42	0,0000				
I- PARAFINAS		100 100 1								
	C4	0,673	0,00673	0,006748	58,124	0,3922				
	C5	2,333	0,02333	0,023391	72,151	1,6877				

A continuación se presenta gráficamente un resumen de este procedimiento,

Figura 22. Datos de PNA a introducir en el programa

b.2) De la destilación simulada se obtiene el porcentaje en peso de destilado de muestra como función de la temperatura a la cual se obtiene el corte. En la gráfica "%

peso vs. Temperatura", se muestran los puntos y una curva que se ajusta por mínimos cuadrados, como se observa en la Figura 23:

Figura 23. Gráfica correspondiente a la destilación simulada

La ecuación, %peso = f(T), se utiliza para "predecir" el porcentaje en peso de los componentes destilados señalados como C_{12}^+ , de acuerdo con la *temperatura teórica* de ebullición de cada grupo SCN.

b.3) Con los datos obtenidos experimentalmente: Mg, M_L , Rs, ρ y G.E.g se procede a calcular:

Densidad del gas (g/cc), RGP (g gas/ g crudo), fracción en peso del gas (f_p), fracción en peso del líquido, fracción molar del líquido (β) y peso molecular del fluido total (M).

b.4) Con los datos de destilación simulada y análisis PNA, se obtiene la fracción en peso y el peso molecular del C_{13}^{-} y por consiguiente, el peso molecular y la fracción en peso del C_{13}^{+} .

RESULTADOS INTER	RMEDIOS		
PM gas	24,70	Densidad gas (gr/cc) @ 60F y 1	latm 0,0010
PM liq (lab)	230,00	RGP (gr gas/gr crudo)	0,3062
RGP (PCN/BN)	1429,00	fp gas	0,2344
Densidad crudo (60° F)	0,8671	fp liq	0,7656
GE gas	0,8530	Beta	0,7404
API del petróleo (60 F):	31,6	PM F. Total.	78,01
C13- (%p)	0,2820	C20- (%p)	0,485
PM C13-	113,27	PM C20-	141,13
C13+ (%p)	0,7180	C20+ (%p)	0,515
PM C13+	386,40	PM C20+	563,98
	morado se deben cami	iar los números de la ecuación de	e acuerdo a la del gráfico anterior
En la celda fondo	morado se deben cum		
En la celda fondo RANGO TEMP.	(% peso)	c/pseudocomp	cłpseudocomp en muestra
En la celda fondo BANGO TEMP. 216,8	(% peso) 28,20020806	cłpseudocomp 4,4452	cfpseudocomp en muestra 0,0319
En la celda fonde RANGO TEMP. 216,8 235,9	(% peso) 28,20020806 32,645429	cłpseudocomp 4,4452 4,3264	cłpseudocomp en muestra 0,0319 0,0311
En la celda fonde RANGO TEMP. 216,8 235,9 253,9	(% peso) 28,20020806 32,645429 36,97179523	cłpseudocomp 4,4452 4,3264 4,2354	cipseudocomp en muestra 0,0319 0,0311 0,0304
En la celda fonde RANGO TEMP. 216,8 235,9 253,9 253,9 271,1	(% peso) 28,20020806 32,645429 36,97179523 41,207211	cłpseudocomp 4,4452 4,3264 4,2354 4,0603	c/pseudocomp en muestra 0,0319 0,0311 0,0304 0,0292
En la celda fonde RANGO TEMP. 216,8 235,9 263,9 263,9 271,1 287,3	(% peso) 28,20020806 32,845429 36,97179523 41,207211 45,26747417	cłpseudocomp 4,4452 4,3264 4,2354 4,0603 3,9835	cłpseudocomp en muestra 0,0319 0,0311 0,0304 0,0232 0,0286
En la celda fonde RANGO TEMP. 216,8 235,9 253,9 271,1 287,3 303,0	(% peso) 28,20020806 32,645429 36,97179523 41,207211 45,26747417 49,2510111	cłpseudocomp 4,4452 4,3264 4,2354 4,0603 3,9835 3,5792	c/pseudocomp en muestra 0,0319 0,0304 0,0292 0,0286 0,0287
En la celda fonde RANGO TEMP. 216,8 235,9 253,9 253,9 271,1 287,3 3003,0 301,0	(% peso) 28,20020806 32,645423 36,97179523 41,207211 45,26747417 49,2510111 52,8301909	cłpseudocomp 4,4452 4,3264 4,2354 4,0603 3,9835 3,5732 3,5526	c/pseudocomp en muestra 0,0319 0,0311 0,0304 0,0292 0,0286 0,0257 0,0258

Figura 24. Hoja de cálculo de las propiedades características del C₂₀₊

b.5) A partir de estos resultados y usando la función de distribución de la destilación simulada, obtenida en el punto b.2, se obtiene el porcentaje en peso de los componentes destilados a partir del C_{13}^{+} hasta el C_{19}^{-} , de acuerdo al rango de temperatura de ebullición de cada uno de ellos, ver Figura 24.

b.6) Con los valores así calculados y con el peso molecular del fluido total, se calcula el peso molecular del C_{19}^{-1} y posteriormente el peso molecular del C_{20}^{+1} .

c) El análisis de la muestra por cromatografía genera los siguientes resultados para el gas: Composición desde C_1 hasta C_{11}^+ , gravedad específica (G.E) y peso molecular del gas (M_G).

d) Con los resultados del líquido obtenidos en el literal (b) y los del gas ya reseñados, se procede a calcular la composición total del fluido.

Es importante aclarar que aunque se utilizó una solubilidad de gas (Rs) como valor de entrada, el mismo se debe considerar como valor base experimental ya que, aunque ciertamente fue medido, no estaba atado a una descripción específica de C_{20+} . Como si lo está el Rs pronosticado con las EdE, ya que su estimación se encuentra vinculada con las variaciones en el cálculo de la composición total y de las propiedades características del C_{20+} .

3.2. Variación de los parámetros experimentales

Una vez obtenida la composición total del fluido desde C_1 hasta C_{20+} (incluyendo CO_2 y N_2), se procede a realizar variaciones sistemáticas de los siguientes parámetros experimentales: el peso molecular del gas (Mg), el peso molecular del líquido (Ml), la relación gas-petróleo en solución (Rs), la gravedad específica del gas (G.E.g), la densidad del líquido (ρ) y la gravedad API, *para reflejar niveles de posible incertidumbre en cada parámetro*.

Las variaciones sistemáticas fueron realizadas *para cada fluido* en un rango entre -15% y 15% en intervalos de 5%. Esto quiere decir que para cada pozo se realizaron 6 variaciones debido a cada parámetro experimental que multiplicado por seis, implica 36 variaciones en total. Como ejemplo se resumen en la Tabla 4, las variaciones realizadas al fluido del pozo A1:

Tabla 4. Variaciones realizadas al fluido del pozo A1

	Variación	-15%	-10%	-5%	0	5%	10%	15%
A1	Parámetro							
luido	Mg	21.00	22.23	23.47	24.7	25.94	27.17	28.41
H	Ml	195.5	207.0	218.5	230.0	241.5	253.0	264.5

Rs	1205	1280	1354	1429	1503	1578	1652
G.E.g	0.725	0.767	0.810	0.853	0.895	0.938	0.981
°API	26.9	28.4	30.0	31.6	33.2	34.8	36.3
ρ	0.737	0.780	0.823	0.867	0.910	0.953	0.997

Cada una de estas variaciones se considera "un caso posible" y se introduce por separado en el programa Sistema PVT, lo cual permite *cuantificar los impactos* que ocurren como resultado sobre la composición y los parámetros del fluido. Así mismo, se evalúa la alteración resultante de los parámetros característicos del componente C_{20+} (G.E. y M_{C20+}) y se identifica *cual parámetro experimental incide en mayor medida en sus variaciones*. Hay que tomar en cuenta que la variación de la densidad experimental del crudo implica una variación en la °API. De la misma forma, las variaciones en la °API generan automáticamente una variación en la densidad del líquido. Igualmente, se hace la observación que MI y API (ρ), así como, Mg y GEg, por pares, *no son independientes*. Sin embargo, visto que se requieren individualmente en cualquier proceso de caracterización, se aceptan como variables cuasi-independientes. Es importante destacar que estas variaciones son *diferentes* en ambos casos.

Posteriormente, se procede a utilizar el programa PVTsim para realizar las predicciones de Ps, Rs y Bo para los distintos casos y compararlos con los resultados experimentales.

3.3. PVTsim

La Figura 25 muestra el menú de opciones de los módulos que se pueden utilizar. En este trabajo sólo se utilizará el módulo "PVT Simulation", ya que PDVSA-Intevep actualmente posee dicha licencia. Además, la Figura 25 muestra los botones de las distintas ecuaciones de estado que permiten caracterizar el comportamiento del fluido, las cuales son: (1) Soave – Riedlich – Kwong (SRK) – Peneloux, (2) SRK, (3) SRK – Peneloux (T), (4) Peng – Robinson (PR) – Peneloux, (5) PR, (6) PR-Peneloux (T), (7) PR78-Peneloux, (8) PR78, (9) PR78-Peneloux (T). En este trabajo especial de grado sólo se utilizaron las ecuaciones, SRK y PR-78 con sus respectivas modificaciones.

🛢 PVTsim	
File Edit View Fluid CharFluid Options Pure Component Window Hel	9
🕸 SRX 🕸 🕅 P2 🕅 P30 P30 P32 4+4 ab 🗞 🌆 CP LC	
No filid selected	No njection gas selected
↓	
Oil / Gas	
PT Flash	D Phase Envelope
EdE PVT Sinulation	🔒 Multi Flash
Ø* Unit Operations	ММР
K,5 H25	S Asphatenes
	of Hydrates
PVT Scale	🧔 DepoWax
	Netfaces
English units PR78 Pen (T) Standard Normal C7+ CSP	Database C:\4rchivos de programa\PVT sim 11\demodata FLD

Figura 25. Menú de opciones de los módulos a simular

También se identifica el botón de la base de datos (oil/gas). Al presionar éste, se abre la ventana que se muestra en la Figura 26. En esta ventana se muestra la base de datos donde se guardan todos los archivos creados. Para crear uno nuevo se presiona NEW.

and the second		partners in				3
1 18	PR R PR	800 (Fil)	ab 🔓		7 🐶 🖉 🖉 🖉 💿	
*	Database		-10			
No	Well	Test	Fluid	Sample	Text	Type 🔺
1	10310	USI	GASCOND	RECOMBINED TO C10+	TEST LAB	Plus -
2	TEST1	DST 1	GASCOND	RECOMBINED TP C20+	PVT LAB	Plus
3	SEP GAS	PT1	SEP GAS	BOTTLE A#16000	PVT LAB	No-Plus
4	SEP OIL	PT1	SEP LIQUID	BOTTLE K#6000	PVT LAB	Plus
5	TEST4	BHS	OIL	C10+	OIL LAB	Plus
6	TEST4	BHS	OIL+H2S	to C20+	OIL LAB	Plus
7	TEST	A	OIL	DIFF LIB DATA	DIFF LAB	Plus
8	TEST	B	CONDENSATE	CVD DATA	CVD LAB	Plus
9	TEST G	1	NATURAL GAS	90.4% C1	GAS LAB	No-Plus
10	Test	A	SALES GAS	TO C6	GAS LAB	No-Plus
11	TEST	38	HEAVY COND	TBP DIST TO C20+	TBP LAB	Plus
12	TEST	3C	HEAVY COND	GC COMP TO C20+	GC LAB	Plus
13	TEST	30	HEAVY COND	GC COMP TO C20+	GC LAB	Plus
14	TEST	38	HEAVY COND	+ SALT WATER	CHARACTERIZED EOS= SRK	Char
15	TEST4	BHS	OIL	HEAVILY LUMPED	OIL LAB EOS= SRK	Char
16	TEST	F&U	C02	100% PURE	RESEARCH LAB	No-Plus
17	BASE OIL	MUD	CONTAMINATE	C12-C29	CHEMICAL	No-Plus
18	GAS COND	A5	BOTTOM HOLE	CONTAMINATE	MUD LAB	Plus
19	PIPELINE	TEST A	STABLE OIL	WAX IN OIL VISC	WAX LAB EOS= SRK	Char
20	Delta		Ex1	char to 6 c7+	EOS= SRK	Char
21	SBC-130	VISC	OIL	MUESTRA DE FONDO		Plus
22	Ful-74	PRUEBA	PETROLEO	MUESTRA DE FONDO		No-Plus
23	P0Z0 VLG-38		PETROLEO	MUESTRA DE FONDO	New	No-Plus
24	FN19		PETRÓLEO	MANUEL		Char
25	LL-447		PETRÓLEO	MUESTRA DE FONDO		Plus
26	LPG-1462		PETRÓLEO	MUESTRA DE SUPERFICIE		Plus

Figura 26. Base de datos del programa PVTsim

De inmediato se abre la siguiente ventana que esta representada por la Figura 27, en la cual se coloca el nombre del pozo (Well) del que provienen los fluidos, la fase de la muestra (Fluid) y si la muestra es de fondo o de superficie o es un fluido de inyección (Sample) y alguna acotación respecto a la muestra (Text). Además, se introduce la composición molar del fluido total del yacimiento y se caracteriza el componente plus a través de su peso molecular y su densidad. Luego se presiona la

opción "plus fraction" y OK. En el caso de no caracterizar el componente "plus" se presiona la opción "save char fluid", luego OK, y *el programa lo caracteriza de acuerdo a la ecuación elegida*.

Figura 27. Ventana para introducir los datos del pozo y la composición total del fluido de yacimiento

Posteriormente, se verifica la condición bajo la cual la fracción "plus" será simulada. Esto equivale a escoger el tipo de agrupamiento de la fracción plus (Standard o AB) y si el fluido es altamente aromático o no (Normal o Heavy C_{7+}). Esto se lleva a cabo en "Options", y se escoge "ab lumping" y "Normal". En la Figura 28 se representan estas opciones.

File Edit Vew Fluid CharFike Component Window Fleip Unit System Unit System Unit System Unit System Unit System Six Peneloux Six Peneloux The peneloux Six Peneloux Six Peneloux The peneloux The peneloux Six Peneloux Six Peneloux <td< th=""><th>🗑 PVTsim</th><th></th><th></th></td<>	🗑 PVTsim		
Unit Converter SRX Predicux 2 SRX 3 SRX Predicux 1 SRX Predicux 2 SRX 3 SRX Predicux 1 SRX Predicux	File Edit View Fluid CharFluid Options Pure Component	Window Help	
✓ Preserve Input Wax Scale Interfaces	PVT Sim File Edit Vew Fluid CharFluid Pure Component Imit System Imit System Imit System Imit System Imit System Imit System Imit System Imit System VLG: SRX Peneloux 2 SRX SRX Peneloux 5 R Peneloux (T) PR Peneloux 7 PR78 Peneloux (T) PR78 Peneloux 1 Standard Lumping Imit System Normal C7+ Char Heavy C7+ Char CSP Viscosity UBC Viscosity Show Comp Save Char Default Mw and Dens	Window Help	R PE FR PM PM FR 100 R B CP L No injection gas selected
English units PR78 Pen (T) ab Normal C7+ CSP Database D: VP/Tsim 11\DEMODATA FLD	✓ Preserve Input English units PR78 Pen (T) ab Normal C2	Hydrates Scale DepoWax Interfaces Provide A and A	vTsim 11\DEMODATA.FLD

Figura 28. Opciones para caracterizar la fracción plus

Luego se presiona PVT Simulation que se encuentra en el menú principal, y se abre la ventana que se muestra en la Figura 29, donde se muestran los experimentos PVT que se pueden simular. Estos son los siguientes: Punto crítico, punto de saturación, prueba de separadores, expansión a composición constante, agotamiento a volumen constante, liberación diferencial, viscosidad, prueba de hinchamiento y gradiente de profundidad.

🛢 PVTsim										
File Edit View Fluid CharFluid Options Pure	File Edit View Fluid CharFluid Options Pure Component Window Help									
DIZII @ X NE										
- 🔚 🗃 📾 🔜 💀 🎩 💷 🖤 🚰		8 8 8								
No fluid selected		No injection gas selected	1							
		PVT Simulation	. 🔷							
🗑 Main Menu	X	Critical Point								
😑 PT Flash	Phase Envelope	★ Saturation Point	<u></u>							
PVT Simulation	📄 Multi Flash	📲 Separator Test								
🧭 Unit Operations	ММР	Const Mass Exp								
H ₂ S H2S	Asphaltenes	📋 Const Vol Depl								
Wax	o分 Hydrates	Diff Depletion	į							
© Scale	🥥 DepoWax	Yiscosity	/							
n 🔁	terfaces	Swelling Test								
		Depth Gradient	~							
English units PR78 Pen (T) Standard	Normal C7+ CSP	Database C:\Archivos de programa\PVTsim	11\demodata.FLD							

Figura 29. Ventana del módulo PVT Simulation

Los parámetros a cotejar y que se evaluarán son: Presión de saturación (Ps), relación gas-petróleo en solución (Rs) y factor volumétrico de petróleo (B_o), los cuales se evalúan en la prueba "Separator test". Al seleccionar esta opción se abre la siguiente ventana representada por la Figura 30, donde se introduce la presión y la temperatura a la que se realiza la separación, además de colocarse la temperatura de yacimiento (Res. Temp/°F), luego se presiona OK.

🛢 PVTsim		
File Edit View Fluid CharFluid Opti	ons Pure Component Window Help	
	🗧 Separator Test 🛛 🔀 👫 OF	
SRK SRK SRK FR PR FR PR PR	1st set 2nd set 3rd set 4th set 5th set 📔 🔘 🥥 🧭 💿	
FN 19-3 PETRÓLEO N	Identification	
G	Stage Pressure remp *F	^
Main Men	2 3 4 5 6 Benine Fest	
Ø Unit Dr H ₂ s H	7 8 9 10 Pepl	
	11 12 13	
	A final stage at std cond is automaticallyClearestest	
English units PR78 Pen (T)	Standard Normal C7+ CSP Database C:\Archivos de programa\PVTsim 11\demodata.FLD	

Figura 30. Ventana para introducir los datos de las condiciones de separación (presión y temperatura) y la temperatura de yacimiento

Por último, aparece la ventana con las ecuaciones de estado (EdE) a utilizarse en la predicción. Al seleccionar la EdE deseada, se obtienen los parámetros requeridos, como lo muestra la Figura 31.

🛢 PVTsim - [PVT Simulation]									
File Edit \	📲 File Edit View Format Chart Fluid CharFluid Options Pure Component Window Help 📃 🗗 🗙									
durk over durk ber	FK PK PPB FKB									
Gi 300		♥ 0~ -€ -€	🗲 🖌 🌠 🔯 🕽		? × § Ý					
FN 1	9-3 PETRÓLEO	MUESTBA DE EC	ואסח	5						
				Convert	Properties	Comp	Ext Comp	Save Phase		
FN 19-3	PETRÓLEO M	UESTRA DE FO	NDO EOS	= PR 78 Pene	loux (T)			-		
	-									
2750 C		Separat	or Test							
Pressure	Temp	GOR	Oil Dens	FVF						
psi	°F	Scf/stb	lb/ft ^s	bbl/stb						
2331.75	300.00	400 4	45.697	1.343						
12.60	70.00	400.4	55.964	1.005						
14.70	59.00	0.0	56.216	1.000						
		Gravity of stabi	lized oil							
		25.635	°API							
	10.01	Netar Par Ale		224						
1257	Comp	osition in mole	% of Liberated	Gas						
Press	ure (psi)	2331.75	12.60							
Ter	np (°F)	300.00	70.00							
	N2	0.446	0.217							
	002	4.102	4.576							
	01	/5.063	62.043					+		
•										
English un	its PR78 Pen	(T) Standard N	lormal C7+ CS	P Data	base C: VArchivos	de programa\P	VTsim 11\demod	ata.FLD		

Figura 31. Resultados pronosticados de los parámetros elegidos

3.4. Metodología para calcular el error

Los valores de Ps, Bo y Rs "pronosticados" por el programa PVTsim para cada uno de los fluidos evaluados (aquellos con composiciones validadas), serán utilizados para realizar los cálculos del error absoluto y porcentual respecto a los valores experimentales reportados. Para ello se utiliza la siguiente expresión:

$$E = \frac{\text{valor exp. - valor simulado}}{\text{valor exp.}} \times 100\% \quad \text{Ec. (27)}$$

Aquí se deja claro, que el valor simulado o teórico es el resultado de usar un conjunto de parámetros de entrada (Mg, Ml, Rs (base experimental), G.E.g, ρ y API) para lograr una descripción que incluye las características del C₂₀₊ (M y GE). Luego esos parámetros conducen a un pronóstico de Ps, Rs y Bo que se debe comparar con los valores experimentales medidos.

Adicionalmente, se comparan los valores pronosticados bajo escenarios variables de incertidumbre (hasta +/- 15%) en algunos de los parámetros de entrada con los valores validados. Esto para confirmar que niveles de incertidumbre son tolerables, luego de evaluar su impacto entre los valores pronosticados de Ps, Rs y Bo en comparación con los valores medidos.

Los errores obtenidos para cada propiedad (Ps, Rs y Bo) se clasifican individualmente y se concluye sobre la ecuación de estado que mejor se ajusta a los valores experimentales. Esto se logra, verificando que la diferencia entre el valor experimental respecto al pronosticado para cada propiedad, se encuentre por debajo de 5 %.

Luego de determinar la ecuación de estado que mejor se ajusta, se escogen los fluidos cuyas propiedades experimentales difieren en menos de 5 % respecto al cálculo

realizado con el programa PVTsim. Posteriormente, se pronostican nuevamente las propiedades características de estos fluidos con cada una de las variaciones o casos seleccionados en el paso 3. Esto con la finalidad de evaluar el efecto de la variación del componente "plus" (C_{20+}) en la predicción de las propiedades características del fluido. A continuación se muestra en la Figura 23 un resumen del esquema del proceso de trabajo:

Figura 32. Esquema del proceso de trabajo

CAPÍTULO IV

ANÁLISIS DE RESULTADOS

4.1. Variación sistemática de los parámetros experimentales y su influencia en el cambio de las propiedades características del C_{20+}

En el análisis de la composición total de los fluidos, resaltan nueve (9) parámetros experimentales. De los mismos, se observó que sobre la cromatografía del gas, el análisis PNA y la destilación simulada existe poca incertidumbre, debido a la precisión y continua calibración de los equipos. Por ello, de los 6 restantes se deseaba identificar cuales eran aquellos cuya posible incertidumbre podría al final afectar mas los estimados de C_{20+} (G.E. y M).

Al realizar las variaciones sistemáticas de los parámetros experimentales de los fluidos estudiados: densidad de crudo (ρ), gravedad específica del gas (G.E.g), peso molecular del gas (Mg), relación gas – petróleo en solución (Rs), peso molecular del líquido (MI) y gravedad API (°API) del líquido, se encontró que todos generan variación en el peso molecular total (M). Esto implica una variación en la composición total del fluido. Las Figuras 33-41 presentan las tendencias para los 12 fluidos.

El cambio en la p, Mg y Ml genera un aumento proporcional en el M, tal como se observa en las Figuras 33, 36 y 39, mientras que la G.E.g y la RGP varían de forma inversamente proporcional al valor del M (ver Figuras 35 y 37). Por otro lado, la variación de la °API no afectó (dentro del error experimental) el valor del peso molecular total del fluido (Figura 41).

La variación del peso molecular del líquido, afecta el estimado del peso molecular del C_{20+} , mientras que, la densidad y la °API, las cuales están vinculadas aunque en escala distinta, son los parámetros experimentales que más afectan el estimado de la gravedad específica del C_{20+} .

El efecto sobre el M_{C20+} se evidencia a medida que varía el Ml, observándose que presenta una tendencia exponencial a medida que se sobrestima el valor del Ml; esto se observa en la Figura 38. Los valores de Ml obtenidos con el equipo de crioscopía, presentan un rango de incertidumbre de +/- 5 %, razón por la cual este parámetro influye directamente en las propiedades características del componente C_{20+} .

La variación de la densidad experimental del crudo (ρ) se muestra en la Figura 34. Esta variación originó un cambio en la gravedad API de los fluidos, modificándola en un rango comprendido entre 80 – 100 % respecto a la experimental, de allí la observación anterior de escalas. Por ejemplo, el fluido A1 de 0.867 g/cc de densidad (31.6 °API); al variarla +15%, pasó a ser un crudo con una densidad de 0.997 g/cc (10.4 °API) diferencia que es relativamente pequeña, pero cuyo cambio en la °API es considerable. Esto significaría un cambio de crudo liviano a pesado, físicamente inadmisible. Como se discutió en la sección de teoría, el error asociado a esta medida de densidad es de +/- 0.001 g/cc, esto implica, que no es probable que con el uso de este equipo de medición se obtenga un error mayor al 1%, ya que el equipo se calibra periódicamente.

Por otro lado las variaciones de la °API generan las curvas que se muestran en la Figura 40. Se observa que la $G.E_{C20+}$ disminuye de manera inversamente proporcional manifestando una tendencia lineal. Los valores de °API obtenidos debido a estas modificaciones se encuentran dentro del rango de valores físicamente aceptables. Tal es el caso del mismo crudo A1, que con una °API experimental de 31.6° (0.867 g/cc) al modificarla +15% llega a ser 36.3° (0.84 g/cc) siendo aun un crudo liviano. En concordancia con lo expuesto anteriormente, con el rango de sensibilidades

propuestas (+/- 5, 10 y 15%), sólo se generan resultados físicamente admisibles cuando se realiza la variación de la °API, en lugar de la densidad experimental. Por tanto, el parámetro a utilizarse en el análisis de sensibilidad/error será °API.

La gravedad específica y el peso molecular del gas son igualmente, parámetros cuasidependientes entre si, ya que al variar el peso molecular varia la composición y esta modifica la gravedad específica del fluido. Sin embargo, no se detectó un efecto apreciable de sus variaciones sobre las propiedades del C_{20+} . Esto obedece a las mínimas proporciones de C_{20+} en la fase gaseosa. Es por ello que ninguno de estos dos (2) parámetros se consideró al realizar las predicciones con las EdE.

Con respecto a la Rs no se observaron efectos en las propiedades características estimadas del C_{20+} , por lo tanto no se considera su utilización en las estimaciones de las EdE.

En resumen, el análisis se enfocará a variaciones sistemáticas de MI y °API con miras a concluir sobre el efecto de sus niveles de incertidumbre en los estimados de propiedades de C_{20+} .

En las Figuras 33 a la 41 que a continuación se presentan es necesario advertir que M representa el peso molecular total del sistema, compuesto del líquido con su gas total inicial en solución, mientras que la densidad representa la densidad del líquido muerto sin gas en solución (crudo muerto), al igual que la gravedad API correspondiente.

Figura 33. Cambio del peso molecular total en función de la variación porcentual de la densidad experimental del crudo (ρ) para diferentes tipos de crudo

Figura 34. Cambio de la gravedad específica del C_{20+} en función de la variación porcentual de la densidad experimental del crudo (ρ) para diferentes tipos de crudo

Figura 35. Cambio del peso molecular total en función de la variación porcentual de la G.E experimental del gas para diferentes tipos de crudo

Figura 36. Cambio del peso molecular total en función de la variación porcentual del peso molecular experimental del gas (Mg) para diferentes tipos de crudo

Figura 37. Cambio del peso molecular total en función de la variación porcentual de la RGP experimental para diferentes tipos de crudos

Figura 38. Cambio del peso molecular del C₂₀₊ en función de la variación porcentual del peso molecular del líquido experimental (Ml) para diferentes tipos de crudo

Figura 39. Cambio del peso molecular total en función de la variación porcentual del peso molecular de líquido experimental (Ml) para diferentes tipos de crudo

Figura 40. Cambio de la gravedad del C₂₀₊ en función de la variación porcentual de la °API experimental para diferentes tipos de crudo

Figura 41. Cambio del M en función de la variación porcentual de la °API experimental para diferentes tipos de crudo

4.2. Efectos de la variación del peso molecular del líquido (Ml) y la gravedad API sobre las propiedades características del C_{20+} tomando en cuenta el contenido de asfaltenos

Para realizar las gráficas de esta sección, se seleccionaron los seis (6) pozos correspondientes a un mismo campo de Occidente y los cuatro pozos de un mismo campo, perteneciente a Oriente. Esto se realizó para evaluar a continuación, el efecto que pudiera tener la cantidad de asfaltenos sobre las características del C₂₀₊. Las Figuras 42 hasta la 45, reflejan el impacto de la posible incertidumbre en la medida del MI y la °API sobre los estimados de C₂₀₊. La idea era identificar tendencias si las hubiere, para concluir sobre una posible relación en el impacto de las incertidumbres de medición con los niveles absolutos de contenido de asfaltenos. En el caso de los fluidos de

Occidente existe la particularidad de que todos ellos contienen una cantidad de asfaltenos en el rango de 6,1 a 7,5% en peso. A pesar de la mínima diferencia se observó en las gráficas que un incremento en el contenido de asfaltenos resultó en un mayor valor estimado de G.E. y M del componente C_{20+} para cada uno de los fluidos pertenecientes a este campo, siendo este aumento de similares proporciones de acuerdo al contenido de asfaltenos. Similar comportamiento se verificó con los fluidos de Oriente con la característica que existe una mayor diferencia de concentración de asfaltenos entre los fluidos, lo cual originó una mayor diferencia entre las G.E. Para este tipo de análisis no existe suficiente número de estudios previos de los cuales se puedan obtener conclusiones definidas y confiables. Por ello, se recomienda continuar analizando un mayor número de muestras con diferente contenido de asfaltenos, al igual que analizar las mismas muestras sin el contenido del mismo, esto con el fin de verificar si las tendencias de las curvas presentan igual comportamiento. Por otro lado, es importante destacar que la base de datos para realizar este análisis es de apenas doce muestras, limitante importante para lograr confirmar alguna tendencia.

Figura 42. Cambio de la G.E. del C₂₀₊ en función de la variación porcentual de la °API experimental del líquido para crudos de Occidente

Figura 43. Cambio del peso molecular del C₂₀₊ en función de la variación porcentual del peso molecular experimental del líquido para crudos de Occidente

Figura 44. Cambio de la G.E. del C₂₀₊ en función de la variación porcentual de la °API experimental del líquido para crudos de Oriente

Figura 45. Cambio del peso molecular del C₂₀₊ en función de la variación porcentual del peso molecular experimental del líquido para crudos de Oriente

4.3. Predicción de las propiedades físicas de los fluidos(Ps, Bo, y Rs) a partir de las ecuaciones de estadoseleccionadas utilizando el programa PVTsim

Se pudo observar que las predicciones de la presión de saturación con las ecuaciones de estado (EdE) utilizadas (Tabla 5) arrojan el mismo valor para cada ecuación y sus modificaciones. Es decir, valores semejantes para Soave-Riedlich-Kwong (SRK), SRK-P y SRK-P(T), así como, Peng-Robinson 1978 (PR78), PR78-P y PR78-P(T).

Esto debido a que las principales modificaciones hechas a las EdE por los distintos autores tomaron como principal objetivo mejorar las predicciones por volumen de líquido sin cambio en las condiciones del equilibrio líquido-vapor, por lo tanto, no existe variación en el cálculo de la presión de saturación para un mismo tipo de EdE (SRK o PR78).

Tabla 5. Predicciones de la presión de saturación con las diferentes ecuaciones de estado para cada uno de los fluidos estudiados

			Valores pron	osticados de P	S	
POZO (Vexp)	SRK-P	SRK	SRK-P(T)	PR78-P	PR78	PR78-P (T)
A1 (4705)	6085	6085	6085	4849	4849	4849
A2 (2709)	4533	4533	4533	3068	3068	3068
A3 (2600)	3578	3578	3578	2952	2952	2952
A4 (2290)	2358	2358	2358	2325	2325	2325
A5 (2430)	2542	2542	2542	2022	2022	2022
A6 (1673)	2200	2200	2200	1870	1870	1870
A7 (1635)	2339	2339	2339	2034	2034	2034
A8 (1440)	2076	2076	2076	1819	1819	1819
A9 (1350)	1949	1949	1949	1727	1727	1727
A10 (1295)	1990	1990	1990	1669	1669	1669
A11 (1380)	1974	1974	1974	1655	1655	1655
A12 (1250)	1714	1714	1714	1419	1419	1419

Conociendo que el factor volumétrico del petróleo (Bo) es una relación o razón entre volúmenes y las EdE modificadas tienen como principal característica la mejora en la predicción de los volúmenes y correcciones por temperatura; se observa en la Tabla 6, que los resultados de los factores volumétricos obtenidos del programa PVTsim son diferentes para cada una de las EdE.

Tabla 6. Predicciones del factor volumétrico de petróleo con las diferentes ecuaciones de estado para cada uno de los fluidos estudiados

			Valores pron	osticados de B	0	
POZO (Vexp)	SRK-P	SRK	SRK-P(T)	PR78-P	PR78	PR78-P (T)
A1 (2.000)	1,833	1,857	1,871	1,909	1,848	1,954
A2 (1.422)	1,373	1,426	1,419	1,413	1,401	1,462
A3 (1.450)	1,341	1,373	1,387	1,356	1,34	1,407
A4 (1.411)	1,324	1,301	1,36	1,308	1,291	1,356

A5 (1.417)	1,332	1,377	1,376	1,347	1,34	1,394
A6 (1.273)	1,22	1,241	1,267	1,224	1,218	1,276
A7 (1.392)	1,261	1,282	1,307	1,262	1,248	1,312
A8 (1.363)	1,229	1,245	1,275	1,228	1,215	1,278
A9 (1.316)	1,234	1,249	1,28	1,232	1,219	1,283
A10 (1.320)	1,246	1,271	1,292	1,253	1,249	1,303
A11 (1.222)	1,186	1,206	1,233	1,189	1,184	1,24
A12 (1.130)	1,179	1,201	1,225	1,182	1,18	1,231

Igual que el factor volumétrico, la relación gas-petróleo en solución (Rs) es función directa de volúmenes. En la tabla 7 se muestran los diferentes valores para cada uno de los fluidos estudiados. En la misma se observa como se diferencia el valor de la ecuación original de las modificaciones utilizadas por el programa.

Tabla 7. Predicciones de la relación gas - petróleo con las diferentes ecuaciones de estado para cada uno de los fluidos estudiados

			Valores pron	osticados de R	.S	
POZO (Vexp)	SRK-P	SRK	SRK-P(T)	PR78-P	PR78	PR78-P (T)
A1 (1429)	1472	1472	1472	1482	1475	1482
A2 (544)	609	674	609	603	621	603
A3 (526)	524	558	524	520	527	520
A4 (466)	433	393	433	432	433	432
A5 (430)	452	497	452	445	459	445
A6 (183)	294	314	294	291	298	291
A7 (359)	349	366	349	345	344	345
A8 (308)	295	308	295	291	288	291
A9 (284)	291	302	291	288	285	288
A10 (284)	303	325	303	299	308	299
A11 (244)	240	259	240	236	242	236
A12 (228)	221	241	221	217	224	217

Las predicciones mostradas anteriormente de Ps, Bo y Rs se realizaron con los valores desde C_1 hasta C_{19} y C_{20+} de las composiciones "validadas".

4.3.1. Errores absolutos porcentuales para cada propiedad física pronosticada

Una vez calculados los errores absolutos para cada propiedad física (Ps, Bo y Rs), se puede observar que, utilizando como intervalo de error apropiado 0 - 5%, las ecuaciones que mejor se ajustan son: SRK-P(T) y PR-P(T). Esto coincide con las investigaciones realizadas por otros autores^[18,19].

Las propiedades que tienen los más bajos errores son la Rs y el Bo, mientras que la presión de saturación (Ps) presenta valores por encima del rango sugerido para casi la totalidad de los fluidos (ver Tabla 8). Para cada ecuación y sus modificaciones, sólo dos (2) fluidos se encuentran dentro del rango de aceptación en el caso de la presión de saturación. Es necesario señalar que la ecuación PR-78 y sus modificaciones presentan errores más bajos en la predicción de presión de saturación que SRK y sus variantes (excepto para el fluido A5) y que en todos los casos el valor pronosticado de Ps resultó mayor respecto al experimental. La diferencia considerable entre las presiones de saturación pronosticadas con los valores validados y las experimentales se deben atribuir posiblemente a:

- a) El hecho de que los fluidos contienen asfaltenos sensibles a los cambios de presión
- b) El método de cálculo que emplea el programa Sistema PVT para determinar la composición total del fluido puede tener deficiencias
- c) El equipo para realizar el análisis PVT no presenta una calibración o ajuste adecuado de las medidas fundamentales
- d) La caracterización experimental de los fluidos no haya sido la adecuada

En este último hipotético caso, en lo que respecta a los parámetros intermedios que llevan a estimar finalmente Pb, se recurrió a la validación de la prueba PVT y no se encontraron discrepancias que repercutieran negativamente en la caracterización. En cuanto al punto b, sería conveniente revisar el programa y verificar lo señalado. Por otro lado, el mantenimiento realizado al equipo es periódico. En este sentido el contenido de asfaltenos podría afectar, ya que, en condición de saturación precipita la mayor cantidad de asfaltenos. En este momento los asfaltenos se encuentran en fase sólida y las ecuaciones de estado sólo toman en cuenta el equilibrio de dos fases (líquido y vapor). De igual manera, la Ps depende en gran medida del comportamiento intermolecular del fluido y esto causa que en la mayoría de los casos se supere el rango de error sugerido.

Del total de las doce muestras, para el Bo, aproximadamente el 70% de las muestras están dentro del intervalo sugerido (Tabla 9); mientras que para el Rs, un aproximado del 65% están en dicho intervalo (Tabla 10). Las predicciones obtenidas para los fluidos A1, A3 y A5 por los crudos de Oriente y A7, A11y A12 por Occidente, serán las utilizadas para describir mediante gráficas el comportamiento de los errores porcentuales de las propiedades físicas de los fluidos, respecto a las variaciones sistemáticas de las propiedades experimentales (Ml y °API).Esta escogencia se hace de manera aleatoria y representa un total de 50% de las muestras.

POZO (Vexp)	SRK-P / SRK / SRK-P(T)	ERROR	PR78-P / PR78 / PR78-P(T)	ERROR
A1 (4705)	6085	29,33	4849	3,06
A2 (2709)	4533	67,33	3068	13,25
A3 (2600)	3578	37,62	2952	13,54
A4 (2290)	2358	2,97	2325	1,53
A5 (2430)	2542	4,61	2022	16,79
A6 (1673)	2200	31,50	1870	11,78
A7 (1635)	2339	43,06	2034	24,40
A8 (1440)	2076	44,17	1819	26,32
A9 (1350)	1949	44,37	1727	27,93
A10 (1295)	1990	53,67	1669	28,88
A11 (1380)	1974	43,04	1655	19,93
A12 (1250)	1714	37,12	1419	13,52

Tabla 8. Error porcentual de la presión de saturación (Ps) para las diferentes ecuaciones de estado para cada uno de los fluidos estudiados

Error	2,30	2,81	2,97	3,90	1,62	0,24	5,75	6,24	2,51	1,29	1,47	8,94
PR78-P(T)	1,954	1,462	1,407	1,356	1,394	1,276	1,312	1,278	1,283	1,303	1,240	1,231
Error	7,60	1,48	7,59	8,50	5,43	4,32	10,34	10,86	7,37	5,38	3,11	4,42
PR78	1,848	1,401	1,340	1,291	1,340	1,218	1,248	1,215	1,219	1,249	1,184	1,180
Error	4,55	0,63	6,48	7,30	4,94	3,85	9,34	96,90	6,38	5,08	2,70	4,60
PR78-P	1,909	1,413	1,356	1,308	1,347	1,224	1,262	1,228	1,232	1,253	1,189	1,182
Error	6,45	0,21	4,34	3,61	2,89	0,47	6,11	6,46	2,74	2,12	06,0	8,41
SRK-P(T)	1,871	1,419	1,387	1,360	1,376	1,267	1,307	1,275	1,280	1,292	1,233	1,225
Error	7,15	0,28	5,31	7,80	2,82	2,51	7,90	8,66	5,09	3,71	1,31	6,28
SRK	1,857	1,426	1,373	1,301	1,377	1,241	1,282	1,245	1,249	1,271	1,206	1,201
Error	8,35	3,45	7,52	6,17	6,00	4,16	9,41	9,83	6,23	5,61	2,95	4,34
SRK-P	1,833	1,373	1,341	1,324	1,332	1,220	1,261	1,229	1,234	1,246	1,186	1,179
POZO (Vexp)	A1 (2,000)	A2 (1,422)	A3 (1,450)	A4 (1,411)	A5 (1,417)	A6 (1,273)	A7 (1,392)	A8 (1,363)	A9 (1,316)	A10 (1,320)	A11 (1,222)	A12 (1,130)

Tabla 9. Error porcentual del factor volumétrico de petróleo (Bo) para las diferentes ecuaciones de estado para cada uno de los fluidos estudiados

POZO (Vexp)	SRK-P / SRK-P(T)	Error	SRK	Error	PR78-P / PR78-P(T)	Error	PR78	Error
A1 (1429)	1472	3,01	1472	3,01	1482	3,71	1475	3,22
A2 (544)	609	11,95	674	23,9	603	10,85	621	14,15
A3 (526)	524	0,38	558	6,08	520	1,14	527	0,19
A4 (466)	433	7,08	3,93	15,67	432	7,30	433	7,08
A5 (430)	452	5,12	497	15,58	445	3,49	459	6,74
A6 (183)	294	2,65	314	3,97	291	3,64	298	1,32
A7 (359)	349	2,79	366	1,95	345	3,90	344	4,18
A8 (308)	295	4,22	308	0,00	162	5,52	288	6,49
A9 (284)	291	2,46	302	6,34	288	1,41	285	0,35
A10 (284)	303	6,69	325	14,44	299	5,28	308	8,45
A11 (244)	240	1,64	259	6,15	236	3,28	242	0,82
A12 (228)	221	3,07	241	5,70	217	4,82	224	1,75

Tabla 10. Error porcentual de la relación gas – petróleo (Rs) para las diferentes ecuaciones de estado para cada uno de los fluidos estudiados
4.4. Comportamiento de los errores de las propiedades físicas de los fluidos seleccionados a partir de la variación sistemática del Ml y la °API utilizando las EdE seleccionadas

Se presentan los resultados al variar estos dos parámetros ya que, como se ha discutido anteriormente, fueron ellos los que afectaron más significativamente las propiedades características estimadas para el componente C_{20+} en cada caso.

4.4.1. Predicciones utilizando PR78 - P(T)

Los errores obtenidos para cada propiedad física respecto a las variaciones de MI utilizando la ecuación PR78-P(T), se muestran para los fluidos en la tabla 11. A medida que se subestima la variación del peso molecular del líquido, el valor de los errores para el Bo y la Rs varían poco para todos los fluidos, sin embargo, la presión de saturación muestra una tendencia creciente. Por otro lado, si se sobreestima la variación del peso molecular, la mayoría de los errores para el Bo y el Ps se encuentran dentro del rango definido. Para la Rs, cualquier variación por encima de + 10% afecta considerablemente el error en la predicción, ver Figuras 46, 47 y 48.

		Variación del MI (%)									
Fluido	Propiedad	-15	-10	-5	0	5	10	15			
	Ps	18,60	9,63	2,39	0,00	3,75	6,68	13,38			
A1	Во	1,64	0,41	1,54	0,00	1,13	9,21	20,37			
	Rs	1,35	0,74	2,56	0,00	0,40	14,84	32,19			

Tabla 11. Error porcentual de las propiedades físicas de los fluidos seleccionados respecto a la variación del peso molecular del líquido (MI) utilizando PR78-P(T)

	Ps	9,86	4,37	0,98	0,00	1,02	0,07	0,58
A3	Во	0,07	0,21	0,21	0,00	0,92	3,98	7,53
	Rs	0,77	0,19	0,00	0,00	2,12	13,65	26,73
	Ps	-	10,54	3,78	0,00	8,77	12,60	13,51
A5	Во	-	0,52	0,22	0,00	0,15	0,15	0,44
	Rs	-	0,93	0,46	0,00	0,46	0,69	0,93
	Ps	14,50	8,36	3,44	0,00	1,92	2,06	0,04
A7	Bo	0,23	0,08	0,00	0,00	0,15	0,38	1,60
	Rs	2,03	1,16	0,58	0,00	0,29	0,29	6,09
	Ps	9,97	5,08	1,69	0,00	0,12	2,36	4,59
A11	Во	0,16	0,24	0,16	0,00	0,24	1,69	3,39
	Rs	1,27	0,85	0,42	0,00	0,42	10,59	22,46
A12	Ps	8,25	3,81	0,99	0,00	0,78	3,17	5,29
	Во	0,24	0,24	0,16	0,00	0,81	2,44	4,22
	Rs	1,38	0,92	0,46	0,00	4,61	16,59	29,49

Figura 46. Error en el pronóstico de la presión de saturación (Ps) de los fluidos seleccionados en función de la variación porcentual del peso molecular del líquido (Ml) utilizando PR78-P(T)

Figura 47. Error en el pronóstico del factor volumétrico de petróleo (Bo) de los fluidos seleccionados en función de la variación porcentual del peso molecular del líquido (Ml) utilizando PR78-P(T)

Figura 48. Error en el pronóstico de la relación gas-petróleo (Rs) de los fluidos seleccionados en función de la variación porcentual del peso molecular del líquido (Ml) utilizando PR78-P(T)

Respecto a las variaciones de la °API, los errores en las predicciones de las propiedades (Ps, Bo y Rs) no superan en ningún caso el 1%, para todos los fluidos estudiados. De esta manera, se confirma que para todos los fluidos la variación de la °API causa mínimos cambios en las propiedades físicas pronosticadas respecto a las validadas, como lo muestran las Figuras 49, 50 y 51.

		Variación de °API								
Fluido	Propiedad	-15	-10	-5	0	5	10	15		
	Ps	1,84	1,11	0,54	0,00	0,45	1,01	1,40		
A1	Во	0,61	0,46	0,26	0,00	0,05	0,26	0,61		
	Rs	0,20	0,07	0,07	0,00	0,61	0,40	0,20		
	Ps	0,03	0,03	0,00	0,00	0,03	0,07	0,00		
A3	Во	0,28	0,14	0,07	0,00	0,21	0,36	0,43		
	Rs	0,38	0,38	0,38	0,00	0,38	0,38	0,19		
	Ps	2,84	3,05	3,27	0,00	3,74	3,96	4,17		
A5	Во	0,00	0,15	0,29	0,00	0,59	0,74	0,88		
	Rs	0,23	0,00	0,00	0,00	0,00	0,00	0,00		
А7	Ps	0,15	0,10	0,05	0,00	0,10	0,15	0,20		
	Во	0,53	0,23	0,08	0,00	0,15	0,30	0,38		
	Rs	0,00	0,00	0,00	0,00	0,00	0,00	0,29		

Tabla 12. Error porcentual de las propiedades físicas de los fluidos seleccionados respecto a la variación de la °API utilizando PR78-P(T)

A11	Ps	0,42	0,30	0,60	0,00	0,06	0,24	0,36
	Во	0,32	0,24	0,08	0,00	0,08	0,24	0,32
	Rs	0,00	0,00	0,42	0,00	0,00	0,00	0,00
	Ps	0,49	0,35	0,14	0,00	0,07	0,28	0,42
A12	Во	0,32	0,24	0,08	0,00	0,16	0,24	0,41
	Rs	0,00	0,00	0,00	0,00	0,00	0,00	0,00

Figura 49. Error en el pronóstico de la presión de saturación (Ps) de los fluidos seleccionados en función de la variación porcentual de la °API del líquido utilizando PR78-P(T)

Figura 50. Error en el pronóstico del factor volumétrico de petróleo (Bo) de los fluidos seleccionados en función de la variación porcentual de la °API del líquido utilizando PR78-P(T)

Figura 51. Error en el pronóstico de la relación gas-petróleo (Rs) de los fluidos seleccionados en función de la variación porcentual de la °API del líquido utilizando PR78-P(T)

4.4.2. Predicciones utilizando SRK - P(T)

Los errores de las propiedades físicas de los fluidos seleccionados también se calcularon para las predicciones obtenidas con la ecuación SRK-P(T). Los resultados para las variaciones de MI se muestran en la Tabla 13 y el comportamiento en las Figuras 52, 53 y 54. La subestimación del MI ocasiona un aumento en el valor del error de la Ps, Bo y Rs y los errores exceden el intervalo propuesto, cuando nos encontramos fuera del margen de -5% de variación sistemática. Al sobrestimar las variaciones se observa una tendencia creciente de la Rs. Mientras que con Bo y Ps el comportamiento del error en pocos casos excede el intervalo de error sugerido.

			Variación de MI (%)								
Fluido	Propiedad	l -15	-15 -10 -5			5	10	15			
	Ps	28,41	21,79	11,88	0,00	3,25	1,91	10,02			
A1	Во	59643	2,89	0,32	0,00	0,05	7,54	17,74			
	Rs	56681	0,68	2,24	0,00	0,75	15,01	31,93			
	Ps	15,87	10,09	4,70	0,00	3,02	1,98	0,11			
A3	Во	1509	1627	0,22	0,00	0,43	3,46	6,92			
	Rs	1487	1615	0,00	0,00	2,10	13,55	32,06			
	Ps	7,47	2,91	0,39	0,00	10,31	9,80	-			
A5	Во	2,62	2,69	2,54	0,00	3,34	6,83	-			
	Rs	11,50	11,06	10,18	0,00	11,50	24,56	-			
A7	Ps	16,08	10,47	5,09	0,00	4,53	8,29	15,01			

Tabla 13. Error porcentual de las propiedades físicas de los fluidos seleccionados respecto a la variación del peso molecular del líquido (MI) utilizando SRK-P(T)

	Во	3667	2811	0,08	0,00	0,08	0,23	0,84
	Rs	3585	2774	0,57	0,00	0,29	0,29	6,30
A11	Ps	14,59	9,22	4,31	0,00	3,39	4,71	5,47
	Во	1905	0,16	0,08	0,00	0,00	1,38	3,08
	Rs	1868	1,25	0,83	0,00	0,00	10,42	22,08
A12	Ps	13,71	8,58	3,91	0,00	2,33	3,21	3,62
	Во	1491	0,08	0,00	0,00	0,57	2,12	4,00
	Rs	1467	0,90	0,45	0,00	4,98	16,29	28,96

Figura 52. Error en el pronóstico de la presión de saturación (Ps) de los fluidos seleccionados en función de la variación porcentual del peso molecular del líquido (Ml) utilizando SRK-P(T)

Figura 53. Error en el pronóstico del factor volumétrico de petróleo (Bo) de los fluidos seleccionados en función de la variación porcentual del peso molecular del líquido (Ml) utilizando SRK-P(T)

Figura 54. Error en el pronóstico de la relación gas-petróleo (Rs) de los fluidos seleccionados en función de la variación porcentual del peso molecular del líquido (MI) utilizando SRK-P(T)

Los errores de las propiedades físicas originados debido a las variaciones de la °API con la ecuación SRK-P(T) se muestran en la Tabla 14. En ella se observa que al subestimar las variaciones, la Ps muestra una tendencia creciente y en la mitad de los casos se encuentra dentro del intervalo sugerido. Por otro lado, el error del Bo y la Rs, se encuentran dentro del rango aceptado. Al sobrestimar las variaciones se observó que todos los errores de las propiedades físicas (excepto la de Ps del fluido A1) se encuentran en el rango sugerido.

Tabla	14.	Error	porcentual	de	las	propiedades	físicas	de	los	fluidos	seleccionados	respecto	а	la
variac	ión d	le la °A	PI utilizand	lo S	RK-	-P(T)								

		Variación de °API (%)								
Fluido	Propiedad	-15	-10	-5	0	5	10	15		
	Ps	78.77	36.17	13.53	0.00	7.54	17.63	15.45		
A1	Во	7.32	4.06	1.76	0.00	0.96	0.69	2.78		
	Rs	0.68	0.34	0.20	0.00	0.68	5.10	0.61		
	Ps	21.95	17.55	1.65	0.00	1.14	2.40	3.50		
A3	Во	0.07	0.87	1.82	0.00	0.15	0.29	0.51		
	Rs	0.22	0.44	0.44	0.00	0.00	0.22	0.22		
	Ps	48.10	14.70	4.97	0.00	1.65	3.16	4.84		
A5	Во	2.45	0.94	0.22	0.00	0.50	0.50	0.79		
	Rs	0.76	0.76	0.38	0.00	0.19	0.00	0.19		
	Ps	4.45	2.95	1.37	0.00	1.37	2.74	4.15		
A7	Во	-	0.38	0.23	0.00	0.15	0.31	0.54		
	Rs	-	0.57	0.29	0.00	0.29	0.29	0.57		

A11	Ps	4.10	2.74	2.23	0.00	1.42	2.63	3.90
	Во	0.49	0.32	0.16	0.00	0.16	0.32	0.49
	Rs	0.42	0.00	0.42	0.00	0.42	0.83	0.83
	Ps	3.79	2.51	1.28	0.00	1.34	2.45	3.62
A12	Во	0.49	0.33	0.16	0.00	0.16	0.33	0.49
	Rs	0.90	0.45	0.45	0.00	0.00	0.45	0.45

Figura 55. Error en el pronóstico de la presión de saturación (Ps) de los fluidos seleccionados en función de la variación porcentual de la °API del líquido utilizando SRK-P(T)

Figura 56. Error en el pronóstico del factor volumétrico de petróleo (Bo) de los fluidos seleccionados en función de la variación porcentual de la °API del líquido utilizando SRK-P(T)

Figura 57. Error en el pronóstico de la relación gas-petróleo (Rs) de los fluidos seleccionados en función de la variación porcentual de la °API del líquido utilizando SRK-P(T)

Generalizando, los valores obtenidos en la predicción de las propiedades físicas, producto de la variación en la °API se encuentran *dentro del intervalo de error sugerido (+/- 5 %)*. Por otro lado, las variaciones del peso molecular del líquido (MI) generaron como resultado, errores con mayores desviaciones que los que generó el cambio de la °API. Es importante destacar que para ambas EdE utilizadas, en el intervalo +/- 5% de variación del MI, las mismas generaron errores aceptables para cada una de las propiedades físicas.

4.5. Comportamiento de la razón de los valores validados entre los valores predichos como función de los cambios sistemáticos del Ml y °API

Siguiendo el procedimiento del punto anterior, se realizaron las gráficas de la razón de los valores validados entre los valores pronosticados para cada propiedad física (Ps, Bo y Rs) en función de la variación de Ml y °API. Esto implica que los valores que se encuentran dentro del rango de error sugerido se deben ubicar entre 0.95 y 1.05 (+/- 5%). Las Figuras desde la 58 hasta la 69, confirman el resultado de las tendencias obtenidas en el punto 4.4. Señalando en primer lugar como las predicciones realizadas con ambas EdE, genera resultados satisfactorios siempre que nos encontremos dentro de una variación de +/- 5% en Ml (ver recuadro de las gráficas). Para la °API, prácticamente todos los fluidos se encuentran dentro del intervalo de error sugerido.

Es importante reseñar que como los paquetes de estimación involucran rangos de aplicación de cada parámetro de entrada, las figuras que siguen deben ser consideradas con cautela en sus regiones extremas y su análisis debe concentrarse en el sector central.

Figura 58. Relación del valor validado y valor predicho respecto a la variación del peso molecular del líquido (Ml) para la presión de saturación (Ps) utilizando la ecuación PR78-P(T)

Figura 59. Relación del valor validado y valor predicho respecto a la variación del peso molecular del líquido (Ml) para el factor volumétrico del petróleo (Bo) utilizando la ecuación PR78-P(T)

Figura 60. Relación del valor validado y valor predicho respecto a la variación del peso molecular del líquido (Ml) para la relación gas-petróleo (Rs) utilizando la ecuación PR78-P(T)

Figura 61. Relación del valor validado y valor predicho respecto a la variación del peso molecular del líquido (Ml) para la presión de saturación (Ps) utilizando la ecuación SRK-P(T)

Figura 62. Relación del valor validado y valor predicho respecto a la variación del peso molecular del líquido (Ml) para el factor volumétrico del petróleo (Bo) utilizando la ecuación SRK-P(T)

Figura 63. Relación del valor validado y valor predicho respecto a la variación del peso molecular del líquido (Ml) para la relación gas-petróleo (Rs) utilizando la ecuación SRK-P(T)

Figura 64. Relación del valor validado y valor predicho respecto a la variación de la °API para la presión de saturación (Ps) utilizando la ecuación PR78-P(T)

Figura 65. Relación del valor validado y valor predicho respecto a la variación de la °API para el factor volumétrico del petróleo (Bo) utilizando la ecuación PR78-P(T)

Figura 66. Relación del valor validado y valor predicho respecto a la variación de la °API para la relación gas-petróleo (Rs) utilizando la ecuación PR78-P(T)

Figura 67. Relación del valor validado y valor predicho respecto a la variación de la °API para la presión de saturación (Ps) utilizando la ecuación SRK-P(T)

Figura 68. Relación del valor validado y valor predicho respecto a la variación de la °API para el factor volumétrico del petróleo (Bo) utilizando la ecuación SRK-P(T)

Figura 69. Relación del valor validado y valor predicho respecto a la variación de la °API para la relación gas-petróleo (Rs) utilizando la ecuación SRK-P(T)

4.6. Envolvente de fases y su comportamiento a medida que varía la gravedad API y el peso molecular del líquido para los fluidos estudiados

A manera de ejemplo y escogidos de forma aleatoria, se presentan los diagramas de fase, para las muestras A3 y A11 (Figuras 70-77), sin embargo, el estudio se realizó para los 12 fluidos. Es importante destacar como las variaciones del peso molecular del líquido (Ml) afectan la estructura de la envolvente. Las curvas generadas para cada fluido se encuentran diferenciadas entre sí: esto indica la aparente existencia de un fluido totalmente diferente para cada valor. A medida que se subestima el valor del Ml, implica que el fluido es más "liviano". Debido a ello las envolventes de fases se trasladan de una manera lógica (si tomamos el punto crítico como referencia) a la izquierda y por debajo del fluido "validado"; mientras que al sobrestimar este valor, el comportamiento no es el esperado para los dos fluidos presentados, ya que se ubican a la izquierda del fluido de referencia. Esto sucede con ambas ecuaciones de estado utilizadas (Figuras 70, 72, 74 y 76). Una explicación a ello, es la dificultad en la predicción con las EdE para representar un fluido cuya composición, posiblemente no sea físicamente aceptable. Es importante señalar que se realizó de manera aislada la posible influencia de la división (splitting) de la fracción pesada C_{n+} en este comportamiento de acuerdo al trabajo realizado por Barrufet^[32]. Obteniéndose que al trabajar con C₇₊, C₁₀₊ y C₁₅₊, las envolventes presentan la tendencia esperada mientras que, al utilizar C₂₀₊ como componente final del fluido, ocurre la inflexión en los puntos críticos. De acuerdo con el artículo mencionado, esto ocurre debido a elevados valores estimados en el peso molecular del componente "plus". También se verificó gráficamente que la diferencia entre el valor experimental de la presión de saturación (Ps) y la del fluido validado es menor cuando se utiliza la ecuación PR78-P(T) en la mayoría de los casos.

Las gráficas de las envolventes obtenidas variando la °API muestran un comportamiento particular al utilizar la EdE PR78-P(T), ya que las envolventes se

109

solapan independientemente de las variaciones de la °API, confirmando que cualquier porcentaje de variación en ^oAPI representa un cambio *mucho menor* que el mismo porcentaje aplicado a peso molecular. Respecto al uso de la EdE SRK-P(T), las envolventes se observan ligeramente distanciadas entre ellas y presentan un comportamiento inverso al observado cuando se varía Ml, comportamiento no esperado, ya que al aumentar la °API (sobrestimación), el fluido es considerado mas liviano y debería aumentar su Ps, situación que no ocurre. Además ocurre un traslado de las curvas hacia la derecha (respecto al fluido validado) contradictorio. Al subestimar el valor, la tendencia es similar. Debido a este comportamiento, se analizaron individualmente los valores en las predicciones de la presión de saturación utilizando las dos EdE, resultando que la EdE PR78-P(T)pronosticó valores coherentes, esto significa que al sobrestimar °API aumenta la presión de saturación, mientras que, con la EdE SRK-P(T) los valores de °API disminuyen. Esto indica que para los fluidos estudiados (crudos medianos), la EdE PR78-(PT) resulta conveniente a la hora de realizar predicciones y generar resultados coherentes con cierto margen de error en las propiedades experimentales medidas.

Figura 70. Diagrama P-T para el fluido A3 variando el *peso molecular del líquido (Ml)* utilizando PR78-P(T)

Figura 71. Diagrama P-T para el fluido A3 variando la °API del líquido utilizando PR78-P(T)

Figura 72. Diagrama P-T para el fluido A11 variando el *peso molecular del líquido (M1)* utilizando PR78-P(T)

Figura 73. Diagrama P-T para el fluido A11 variando la °API del líquido utilizando PR78-P(T)

Figura 74. Diagrama P-T para el fluido A3 variando el peso molecular del líquido (Ml) utilizando SRK-P(T)

Figura 75. Diagrama P-T para el fluido A3 variando la °API del líquido utilizando SRK-P(T)

Figura 76. Diagrama P-T para el fluido A11 variando el peso molecular del líquido (M1) utilizando SRK-P(T)

Figura 77. Diagrama P-T para el fluido A11 variando la °API del líquido utilizando SRK-P(T)

CONCLUSIONES

Del trabajo realizado se ofrecen las siguientes conclusiones:

En la validación de la composición experimental de los fluidos obtenidas de estudios PVT, se obtuvieron resultados que permitieron alcanzar los objetivos planteados.

Los parámetros experimentales estudiados afectan la composición total del fluido y por ende a su peso molecular total (M).

Usando el programa Sistema PVT, la gravedad API y el peso molecular del líquido (Ml) son los parámetros experimentales que afectaron en mayor grado la caracterización del componente C_{20+} .

La estimación de los parámetros característicos del componente C_{20+} , proporcionó como resultado que la gravedad API afecta la G.E._{C20+} y el peso molecular del líquido (MI) influye sobre el M_{C20+}.

El valor experimental del MI es la medida más sensible al momento de conocer cual parámetro afecta más el cálculo de las propiedades características del componente C_{20+} .

En este trabajo de investigación no se obtuvieron resultados que permitieran concluir en forma definida y confiable sobre como medir la influencia del contenido de asfaltenos en las propiedades características del componente C_{20+} .

De las Ecuaciones de Estado (EdE) utilizadas para realizar pronósticos de las propiedades físicas de los fluidos estudiados, las ecuaciones PR78-P(T) y SRK-P(T) son las que generaron menor error porcentual respecto a los valores experimentales

115

para estimar el factor volumétrico del petróleo (Bo) y la relación gas-petróleo en solución (Rs), mientras que, para la presión de saturación (Ps) los pronósticos realizados con cualquier EdE no generaron resultados satisfactorios para la mayoría de los casos estudiados. Esto posiblemente se debe atribuir precisamente a la existencia del contenido de asfaltenos en las muestras.

Sobre la base de los pronósticos de las propiedades físicas (Ps, Bo y Rs), se confirmó que el peso molecular del líquido (Ml) genera mayores desviaciones que las obtenidas con la °API.

Del análisis de las envolventes de fases se obtuvo que la EdE PR78-P(T) es la que genera resultados físicamente aceptables al realizar variaciones tanto del peso molecular como de la °API.

RECOMENDACIONES

Del trabajo realizado se ofrecen las siguientes recomendaciones:

Se recomienda realizar calibraciones frecuentes de los equipos utilizados en la determinación de parámetros experimentales en los análisis complementarios del análisis PVT, específicamente en el equipo de determinación de peso molecular promedio de líquido, debido a su alta sensibilidad en las estimaciones del componente C_{20+} , composición total y predicciones de propiedades PVT.

Extender el estudio a un número mayor de muestras de fluidos y crear un banco de datos para verificar las tendencias y tener una base estadística más confiable.

Adquirir el módulo de Asfaltenos del programa PVTsim para mejorar la predicción de la presión de saturación (Ps).

Para profundizar el estudio del *efecto del* contenido de asfaltenos, se sugiere realizar una investigación comparando los resultados sobre muestras con asfaltenos y la misma muestra sin asfaltenos, además de extender el rango de °API de los crudos estudiados en pesados y livianos.

Realizar la predicción de propiedades con otros paquetes comerciales que también tomen en consideración el contenido de asfaltenos, que son sensibles a los cambios de presión.

BIBLIOGRAFÍA

- ARAUJO, M.; ARAUJO, Y. "Taller de interacción Roca-Fluido", PDVSA Intevep, 1998.
- 2. "Caracterización Física de los Yacimientos", PDVSA-CIED, 1997.
- Mc CAIN, W. JR. "The properties of petroleum fluids". 2^a Ed. Tulsa, Oklahoma. Penn Well Publishing Company, 1990, 548p.
- 4. AHMED, TAREK. "Reservoir Engineering Handbook". Gulf Publishing Company. 2000.
- KATZ, D. L; FIROOZABADI, A. "Predicting Phase Behavior of Condensate / Crude Oil Systems". SPE 6721. November, 1978.
- BEHRENS, R. A.; SANDLER, S. I. "The Use of Semicontinuous Description to Model the C₇⁺ Fraction in Equation of State Calculations". SPE Reservoir Engineering. August, 1988. 1041-1047.
- DANESH, ALÍ. "PVT and Phase Behavior of Petroleum Reservoir". Elsevier Science. 1998.
- AHMED, T., CADY, G. V., AND STORY, A. L. "An Accurate Method for Extending the Analysis of C7+". SPE 12916 presented at the 1984 Rocky Mountain Regional Meeting, Casper, Wyoming 21-23 May.
- 9. PEDERSEN, K. S. THOMASSEN, P. FREDENSLUND A. "Thermodynamics of Petroleum Mixtures Containing Heavy Hydrocarbons. 1. Phase Envelope

Calculations by Use of the SRK Equation of State". Ind. Eng. Chem. Des. Dev. 1984, 23,163-170.

- PEDERSEN, K. S. BLILIE, A. N. MEISINGSET, K. "PVT Calculations on Petroleum Reservoir Fluids Using Measured and Estimated Compositional Data for the Plus Fraction." Ind. Eng. Chem. Res. 1992, 31, 1378-1384.
- AL-MESHARI, A. A. "New Strategic Method to Tune Equation-of-State to Match Experimental Data for Compositional Simulation". PhD Dissertation. Texas A&M University. December, 2004.
- AVAULLE, L. NEAU, E. JAUBERT, J. N. "Thermodynamic Modelling for Petroleum Fluids II". Prediction of PVT Properties of Oils and Gases by Fitting One or Two Parameters to the Saturation Pressures of Reservoir Fluids. Fluid Phase Equilibria, 139 (1997), 171-203.
- SARMA, H. "Can We Ignore Asphaltene in Gas Injection Project for Lightoils?". SPE 84877. October 2003.
- FIROOZABADI, A. "Thermodynamics of Hydrocarbon Reservoirs". Mc Graw-Hill. 1999. 311-335
- 15. PERALTA, Y. "Validación de Datos Experimentales a Través del Simulador Composicional PVTsim de Crudos que Poseen Asfaltenos del Oriente y Occidente del País". Trabajo Especial de Grado. UCV. 2003.
- 16. ESCOLA, K.; PEREZ, L. "Efecto que Produce la Variación de Parámetros Obtenidos de un Estudio PVT en la Composición Total y Sobre la Predicción del Comportamiento de Fases del Fluido de un Yacimiento". Trabajo Especial de Grado. INTEVEP-LUZ. 2006.

- 17. VALDERRAMA, JOSÉ O. "The State of the Cubic Equations of State". Ind. Eng. Chem. Res. 2003, 42, 1603-1618.
- PEDERSEN, K. S. THOMASSEN, P. FREDENSLUND A. "Thermodynamics of Petroleum Mixtures Containing Heavy Hydrocarbons".
 Flash and PVT Calculations with the SRK Equation of State. Ind. Eng. Chem. Process. Des. Dev, 1984. 23, 566-573.
- PEDERSEN K. S. MISTER, J. SØRENSEN, H. "Cubic Equations of State Applied to HTHP and Highly Aromatic Fluids". SPE paper No. 88364. June 2004.
- WHITSON, C. BRULÉ, M. "Phase Behaviour". SPE & Henry L. Doherty Series. Monograph, vol. 20. Rich. Texas. 2000.
- 21. THOMASSEN, P. PEDERSEN, K. S. FREDENSLUND, A. "Adjustment of C₇⁺ -Molecular Weights in the Characterization of Petroleum Mixtures Containing Heavy Hydrocarbons". SPE No. 16036. August 1986.
- PEDERSEN, K. S. THOMASSEN, P. FREDENSLUND A. "Thermodynamics of Petroleum Mixtures Containing Heavy Hydrocarbons".
 Efficient Flash Calculations Procedures Using the SRK Equation of State. Ind. Eng. Chem. Process. Des. Dev, 1985. 24, 948-954.
- 23. BORGES, A. HERNANDEZ, J.G. CAMACHO, M.Y. "Estudio Experimental con Fluido de Fondo de Yacimiento del Pozo FN-21". INT-10275,2004.

- 24. BORGES, A. GONZÁLEZ, Y. HERNANDEZ, J.G. CAMACHO, M.Y. CARABALLO, Y. "Estudio PVT de Fluidos de Fondo del Pozo SBC-63 S/U. INT-10115,2003.
- 25. BORGES, A. HERNÁNDEZ, J. G. CAMACHO, M. Y. CARABALLO, Y. GONZÁLEZ, Y. SÁNCHEZ, M. "Campo el Furrial. Caracterización Experimental de los Fluidos (Fondo y Superficie) del Pozo FUL-86". Yacimiento Cretáceo-01. INT-08782,2001.
- 26. GIL, C. BORGES, A. SANCHEZ, M. "Estudio PVT y Solubilidad de Asfaltenos de los Fluidos de los Pozos VLG-3852, VLG-3855 y VLG-3857. Campo Ceuta, Área Sur 8. INT-08613,2001.
- 27. BORGES, A. SANCHEZ, M. CONDE, C. "Estudio PVT y Solubilidad de Asfaltenos de los Fluidos de los Pozos VLG-3804 y VLG-3803".
- BORGES, A. CONDE, C. GARCÍA, F. "Estudio PVT y Solubilidad de Asfaltenos para Lagoven S.A. Pozo FUL-52, Formación Los Jabillos". INT-STE 01422,97.
- BORGES, A. HERNÁNDEZ, J. G. CAMACHO, M. Y. "Estudio Termodinámico Experimental con los Pozos VLG-3878, VLG-3882,VLG-3885 y VLG-3857". INT-10067,2003.
- BORGES, A. PERALTA, Y. HERNANDEZ, J.G. CAMACHO, M.Y. "Estudio PVT de Fluidos de Fondo del Pozo FN-19 (16367' – 17022')formación Naricual Superior, Campo El Furrial". INT-10228,2004.

- 31. BORGES, A. CAMACHO, M. Y. HERNANDEZ, J. G. CARABALLO, Y. GONZALEZ, Y. "Estudio PVT de Fluidos de Fondo del Pozo CHL 6X (14597' 14641')". INT-10119,2003.
- 32. BARRUFET, MARIA. "Importance of the C₇₊ Fraction in Phase Behavior Calculations". Hart's Petroleum Engineer International. October 1998. 47-53.
- 33. ROJAS, GONZALO (PhD). "Actualización en Ingeniería de Yacimientos". Módulo: Propiedades de los Fluidos y Rocas de Yacimientos Petrolíferos. CEPET.

APÉNDICES

APÉNDICE A

COMPOSICIONES VALIDADAS DE LOS FLUIDOS UTILIZADOS

Tabla 15. Composición validada del Fluido A1 obtenida @ 288 °F

Componente	Gas	Líquido	Fluido total
	% molar	% molar	% molar
Nitrógeno	0,279	0,000	0,207
Metano	70,419	0,000	52,135
Dióxido de Carbono	3,043	0,000	2,253
Etano	10,832	0,121	8,051
Propano	7,547	0,603	5,744
i-Butanos	1,542	0,386	1,242
n-Butanos	2,932	1,264	2,499
i-Pentanos	1,028	1,629	1,184
n-Pentanos	0,937	1,783	1,157
Hexanos	0,744	7,335	2,455
Heptanos	0,467	9,416	2,791
Octanos	0,187	9,424	2,585
Nonanos	0,039	9,232	2,426
Decanos	0,004	8,829	2,295
Undecanos	0,000	4,420	1,148
Dodecanos	0,000	2,784	0,723
Tridecanos	0,000	4,195	1,089
Tetradecanos	0,000	3,760	0,976
Pentadecanos	0,000	3,395	0,882
Hexadecanos	0,000	3,020	0,784
Heptadecanos	0,000	2,776	0,721
Octodecanos	0,000	2,355	0,611
Nonadecanos	0,000	2,256	0,586
C20+	0,000	21,017	5,457
	100,000		
% molar	74,0	26,0	100,0
Peso Molecular	24,70	230,00	78,01
PROPIEDADES C20+	(Calculadas)		
Gravedad específica a 60 °F	(Calculadas)		0.966
Peso molecular			563.98
			200,70
PROPIEDADES DEL FLUIDO T	OTAL		
Peso Molecular			78,01
Relación Gas-Petróleo (PCN/BN)			1429,00
Gravedad específica del gas a 60 $^\circ\mathrm{F}$			0,853
Gravedad API del petróleo de tanqu	e a 60 °F		31,6
CONDICIONES DE SEPARACIO	ON		
Presión (lpca)			12,8
Temperatura (°F)			72
Componente	Gas	Líquido	Fluido total
-------------------------------------	--------------	---------	--------------
-	% molar	% molar	% molar
Nitrógeno	0,110	0,000	0,063
Metano	63,011	0,122	36,211
Dióxido de Carbono	6,240	0,000	3,581
Etano	12,020	0,358	7,050
Propano	9,880	1,791	6,433
i-Butanos	1,790	0,915	1,417
n-Butanos	3,570	2,866	3,270
i-Pentanos	1,130	2,022	1,510
n-Pentanos	1,020	2,754	1,759
Hexanos	0,693	6,112	3,002
Heptanos	0,349	6,928	3,153
Octanos	0,141	7,116	3,113
Nonanos	0,039	6,696	2,876
Decanos	0,006	5,334	2,276
Undecanos	0,001	3,138	1,338
Dodecanos	0,000	2,540	1,082
Tridecanos	0,000	4,643	1,979
Tetradecanos	0,000	4,176	1,780
Pentadecanos	0,000	3,780	1,611
Hexadecanos	0,000	3,369	1,436
Heptadecanos	0,000	3,100	1,321
Octodecanos	0,000	2,632	1,122
Nonadecanos	0,000	2,522	1,075
C20+	0,000	27,086	11,542
	100.000		
% molar	57,4	42,6	100,0
Peso Molecular	26,70	300,00	143,16
PROPIEDADES C20+	(Calculadas)		
Gravedad específica a 60 °F			1,022
Peso molecular			681,13
PROPIEDADES DEL FLUIDO TO	TAL		
Peso Molecular			143,16
Relación Gas-Petróleo (PCN/BN)			544,00
Gravedad específica del gas a 60 °F			0,921
Gravedad API del petróleo de tanque	a 60 °F		23,8
CONDICIONES DE SEPARACION	Ň		
Presión (lpca)			12,8
Temperatura (°F)			72

Tabla 16. Composición validada del Fluido A2 obtenida @ 300 °F

Componente	Gas	Líquido	Fluido total
-	% molar	% molar	% molar
Nitrógeno	0,270	0,000	0,148
Metano	64,310	0,000	35,347
Dióxido de Carbono	5,500	0,000	3,023
Etano	11,800	0,100	6,531
Propano	9,420	0,707	5,496
i-Butanos	1,820	0,448	1,202
n-Butanos	3,540	1,492	2,617
i-Pentanos	1,150	1,671	1,385
n-Pentanos	1,010	1,750	1,343
Hexanos	0,670	5,767	2,965
Heptanos	0,322	6,712	3,200
Octanos	0,126	6,708	3,090
Nonanos	0,041	6,518	2,958
Decanos	0,011	5,597	2,527
Undecanos	0,010	2,929	1,325
Dodecanos	0,000	2,418	1,089
Tridecanos	0,000	4,974	2,240
Tetradecanos	0,000	4,564	2,055
Pentadecanos	0,000	4,190	1,887
Hexadecanos	0,000	3,772	1,699
Heptadecanos	0,000	3,494	1,574
Octodecanos	0,000	2,979	1,341
Nonadecanos	0,000	2,860	1,288
C20+	0,000	30,350	13,669
	100,000		
% molar	55,0	45,0	100,0
Peso Molecular	26,30	286,40	143,44
PPOPIEDADES C20+	(Calculadas)		
Gravedad específica a 60 °F	(Calculadas)		1.001
Peso molecular			598.18
			576,10
PROPIEDADES DEL FLUIDO TO	TAL		
Peso Molecular			143,44
Relación Gas-Petróleo (PCN/BN)			517,00
Gravedad específica del gas a 60 °F			0,908
Gravedad API del petróleo de tanque	a 60 °F		23,5
CONDICIONES DE SEPARACION	V		
Presión (lpca)			12.8
Temperatura (°F)			72

Tabla 17. Composición validada del Fluido A3 obtenida @ 302 °F

Componente	Gas	Líquido	Fluido total
_	% molar	% molar	% molar
Nitrógeno	0,240	0,000	0,118
Metano	60,440	0,000	29,785
Dióxido de Carbono	3,430	0,000	1,690
Etano	11,460	0,072	5,684
Propano	10,910	0,286	5,522
i-Butanos	2,420	0,140	1,263
n-Butanos	5,200	0,456	2,794
i-Pentanos	2,000	0,501	1,240
n-Pentanos	1,850	0,544	1,188
Hexanos	1,303	2,371	1,844
Heptanos	0,624	3,754	2,211
Octanos	0,118	4,648	2,415
Nonanos	0,005	5,334	2,708
Decanos	0,000	4,366	2,215
Undecanos	0,000	3,087	1,565
Dodecanos	0,000	1,640	0,832
Tridecanos	0,000	3,096	1,570
Tetradecanos	0,000	2,821	1,431
Pentadecanos	0,000	2,577	1,307
Hexadecanos	0,000	2,312	1,173
Heptadecanos	0,000	2,137	1,084
Octodecanos	0,000	1,819	0,923
Nonadecanos	0,000	1,746	0,885
C20+	0,000	56,292	28,551
	100,000		
% molar	49,3	50,7	100,0
Peso Molecular	28,52	248,63	140,16
PROPIEDADES C20+	(Calculadas)		
Gravedad específica a 60 °F			0,947
Peso molecular			321,26
PROPIEDADES DEL FLUIDO TO	TAL		
Peso Molecular			140,16
Relación Gas-Petróleo (PCN/BN)			466
Gravedad específica del gas a 60 °F			0,988
Gravedad API del petróleo de tanque	a 60 °F		25,6
CONDICIONES DE SEPARACIO	N		
Presión (lpca)			12.8
Temperatura (°F)			72

Tabla 18. Composición validada del Fluido A4 obtenida @ 293 °F

% molar % molar % molar Nitrógeno 0.434 0.000 0.235 Mitrógeno 0.4354 0.000 1,802 Dióxido de Carbono 3,330 0.000 1,802 Enno 9,357 0.794 5,427 Propano 19.258 0.463 10.631 i-Butanos 7,957 0.000 4,305 i-Pentanos 2,411 1,559 2,011 Hexanos 1,972 5,958 3,801 Heptanos 0,680 7,190 3,668 Octanos 0,196 7,660 3,622 Decanos 0,073 6,827 3,173 Undecanos 0,000 2,601 1,194 Trictadecanos 0,000 3,767 1,740 Dodecanos 0,000 3,713 1,732 Hexadecanos 0,000 3,713 1,732 Hexadecanos 0,000 3,713 1,732 Hexadecanos 0,000 2,755 1,265 </th <th>Componente</th> <th>Gas</th> <th>Líquido</th> <th>Fluido total</th>	Componente	Gas	Líquido	Fluido total
Nitrógeno 0,434 0,000 0,235 Metano 48,295 0,108 26,177 Dióxido de Carbono 3,330 0,000 18,022 Elano 9,357 0,794 5,427 Propano 19,258 0,463 10,031 i-Butanos 3,385 1,302 2,429 i-Pentanos 2,411 1,559 2,020 n-Pentanos 2,254 1,725 2,011 Hexanos 1,972 5,958 3,801 Heptanos 0,680 7,190 3,668 Octanos 0,378 7,725 3,750 Nonanos 0,196 7,660 3,622 Decanos 0,000 2,601 1,194 Tridecanos 0,000 2,601 1,194 Tridecanos 0,000 3,767 1,740 Dodecanos 0,000 3,773 1,732 Hexadecanos 0,000 3,196 1,467 Octodecanos 0,000 2,793	_	% molar	% molar	% molar
Metano 48,295 0,108 26,177 Dioxido de Carbono 3,330 0,000 1,802 Etano 9,357 0,794 5,427 Propano 19,258 0,463 10,631 i-Butanos 3,385 1,302 2,429 n-Bartanos 7,957 0,000 4,305 i-Pentanos 2,211 1,559 2,020 n-Pentanos 2,254 1,725 2,011 Hexanos 1,972 5,958 3,801 Heptanos 0,680 7,190 3,666 Octanos 0,378 7,725 3,750 Nonanos 0,196 7,660 3,622 Decanos 0,0073 6,827 3,173 Undecanos 0,000 2,611 1,194 Tridecanos 0,000 3,767 1,740 Dodecanos 0,000 3,773 1,732 Hexadecanos 0,000 3,735 1,230 Cotdocanos 0,000 3,735 1,230 Cotdocanos 0,000 2,756 1,265 Nonadecanos 0,000 2,756 1,265 Nonadecanos 0,000 3,724 172,97 PROPIEDADES DEL FLUIDO T	Nitrógeno	0,434	0,000	0,235
Diáxido de Carbono 3,330 0,000 1,802 Elano 9,357 0,794 5,427 Propano 19,258 0,463 10,631 i-Butanos 7,957 0,000 4,305 i-Pentanos 2,411 1,559 2,020 n-Partanos 2,254 1,725 2,011 Hexanos 1,972 5,958 3,801 Heptanos 0,680 7,190 3,668 Octanos 0,173 6,827 3,750 Nonanos 0,000 2,601 1,194 Tridecanos 0,000 3,767 1,740 Dodecanos 0,000 3,767 1,732 Undecanos 0,000 3,763 1,732 Hexadecanos 0,000 3,733 1,732 Hexadecanos 0,000 3,733 1,732 Hexadecanos 0,000 3,753 1,265 Nonadecanos 0,000 2,756 1,265 Nonadecanos 0,000 3,735 1,262 Cotodecanos 0,000 2,735 1,262 Cotodecanos 0,000 2,735 1,265 Nonadecanos 0,000 2,735 1,262 Cotodecanos	Metano	48,295	0,108	26,177
Eiano 9,357 0,794 5,427 Propano 19,258 0,463 10,631 i-Butanos 3,385 1,302 2,429 n-Pentanos 7,957 0,000 4,305 i-Pentanos 2,254 1,725 2,011 Hexanos 1,972 5,958 3,801 Heptanos 0,680 7,190 3,668 Octanos 0,0378 7,725 3,750 Nonanos 0,0196 7,660 3,622 Deceanos 0,073 6,6827 3,173 Undecanos 0,000 2,601 1,194 Tridecanos 0,000 4,468 2,051 Tetradecanos 0,000 4,468 2,051 Tetradecanos 0,000 3,773 1,732 Hexadecanos 0,000 3,196 1,880 Pentadecanos 0,000 3,198 1,569 Heptadecanos 0,000 3,198 1,569 Nonadecanos 0,000 3,196 1,467 Octodecanos 0,000 2,681 1,230 C20+ 0,000 2,756 1,265 Nonadecanos 0,000 2,681 1,230 C20+ 0,000 2,755 12,822 PROFIEDADES C20+ (Calculadas) Gravedad especifica a 60 °F 1,015 Peso Molecular 33,60 337,24 172,97 PROFIEDADES C20+ (Calculadas) FROPIEDADES C20+ (Calculadas) Gravedad especifica a 60 °F 1,015 Peso Molecular 33,60 337,24 172,97 PROFIEDADES C20+ (Calculadas) Gravedad especifica a 60 °F 1,015 Peso Molecular 172,97 Relación Gas-Petróleo (PCN/BN) 430 Gravedad especifica d 0 °F 1,015 Peso Molecular 172,97 Relación Gas-Petróleo (PCN/BN) 430 Gravedad especifica d 10 °F 2,05 CODSICIONES DE SEPARACION Presior (lpca) 12,88 Temmenture (FD 120 Presior (lpca) 12,88 Presior (lpca) 12,89 Presior (l	Dióxido de Carbono	3,330	0,000	1,802
Propano 19,258 0,463 10,631 i-Butanos 3,385 1,302 2,429 n-Butanos 7,957 0,000 4,305 i-Fentanos 2,411 1,559 2,020 n-Pentanos 2,254 1,725 2,011 Hexanos 1,972 5,958 3,801 Heptanos 0,680 7,190 3,668 Octanos 0,973 6,827 3,750 Nonanos 0,196 7,660 3,622 Decanos 0,073 6,827 1,740 Dodecanos 0,000 2,601 1,194 Tridecanos 0,000 4,468 2,051 Tetradecanos 0,000 3,173 1,732 Hexadecanos 0,000 3,186 1,467 Octodecanos 0,000 3,186 1,467 Octodecanos 0,000 2,681 1,230 C20+ 0,000 2,735 12,822 PROFIEDADES C20+ (Calculadas) 3,60 337,24 172,97 PROFIEDADES D2L FLUIDO TOTAL Preson olecular 54,1 45,9 100,0 Peso Molecular 53,60 33,60 337,24 172,97 PROFIEDADES D2L FLUIDO	Etano	9,357	0,794	5,427
i-Butanos 3,385 1,302 2,429 n-Butanos 7,957 0,000 4,305 i-Pentanos 2,411 1,559 2,020 n-Pentanos 2,254 1,725 2,011 Hexanos 1,972 5,958 3,801 Heptanos 0,680 7,190 3,668 Octanos 0,0378 7,725 3,750 Nonanos 0,196 7,660 3,622 Decanos 0,073 6,827 3,173 Undecanos 0,020 3,767 1,740 Dodecanos 0,000 2,601 1,194 Tridecanos 0,000 4,468 2,051 Tetradecanos 0,000 4,468 2,051 Tetradecanos 0,000 3,773 1,732 Hexadecanos 0,000 3,773 1,732 Hexadecanos 0,000 3,713 1,732 Hexadecanos 0,000 3,196 1,467 Octodecanos 0,000 3,196 1,467 Octodecanos 0,000 2,756 1,265 Nonadecanos 0,000 2,681 1,230 C20+ 0,000 2,755 1,282 Totodecanos 0,000 2,681 1,230 C20+ 0,000 2,756 1,265 Nonadecanos 0,000 3,196 1,467 Octodecanos 0,000 2,756 1,265 Nonadecanos 0,000 2,881 1,230 C20+ 0,000 2,935 1,2822 PROPIEDADES C20+ (Calculadas) Gravedad especifica a 60 °F 1,015 Peso Molecular 33,60 337,24 172,97 PROPIEDADES DEL FLUIDO TOTAL Preso Molecular 172,97 Relación Gas-Petróleo (PCN/BN) 430 Gravedad especifica a 60 °F 1,015 Peso Molecular 172,97 PROPIEDADES DEL FLUIDO TOTAL Preso Molecular 172,97 PROPIEDADES DEL FLUIDO TOTAL Preso Molecular 172,97 PROPIEDADES DEL FLUIDO TOTAL Preso Molecular 172,97 Preso Molecular 172,97 Preso Molecular 20 °F 1,015 Preso Molecular 172,97 Preso Molecular 172,97	Propano	19,258	0,463	10,631
n-Butanos 7,957 0,000 4,305 i-Pentanos 2,411 1,559 2,020 n-Pentanos 2,254 1,725 2,011 Hexanos 1,972 5,958 3,3801 Heptanos 0,680 7,190 3,668 Octanos 0,078 7,725 3,750 Nonanos 0,196 7,660 3,622 Decanos 0,073 6,827 3,173 Undecanos 0,000 2,601 1,194 Tridecanos 0,000 4,468 2,051 Tetradecanos 0,000 4,468 2,051 Tetradecanos 0,000 4,468 2,051 Tetradecanos 0,000 3,773 1,732 Hexadecanos 0,000 3,773 1,732 Hexadecanos 0,000 3,775 1,265 Nonadecanos 0,000 3,776 1,265 Nonadecanos 0,000 3,775 1,282 Tetradecanos 0,000 3,775 1,265 Nonadecanos 0,000 3,775 1,265 Nonadecanos 0,000 2,756 1,265 Nonadecanos 0,000 2,756 1,265 Nonadecanos 0,000 2,7935 12,822 TO TO Peso Molecular 54,1 45,9 100,0 Peso Molecular 7,935 12,822 PROPIEDADES C20+ (Calculadas) Gravedad especifica a 60 °F 1,015 Peso Molecular 172,97 Relación Gas-Petróleo (PCN/BN) 430 Gravedad especifica d 1gas a 60 °F 1,166 Gravedad API del petróleo de tanque a 60 °F 20,5 CONDICIONES DE SEPARACION Presión (pea) 12,8	i-Butanos	3,385	1,302	2,429
i-Pentanos 2,411 1,559 2,020 n-Pentanos 2,254 1,725 2,011 Hexanos 1,972 5,958 3,801 Heptanos 0,680 7,190 3,668 Octanos 0,378 7,725 3,750 Nonanos 0,196 7,660 3,622 Decanos 0,073 6,827 3,173 Undecanos 0,000 2,601 1,194 Tridecanos 0,000 2,601 1,194 Tridecanos 0,000 4,468 2,051 Pentadecanos 0,000 3,773 1,732 Hexadecanos 0,000 3,418 1,569 Heptadecanos 0,000 3,196 1,467 Octodecanos 0,000 2,756 1,265 Nonadecanos 0,000 2,756 1,2822 Uno_0000 2,935 1,2822 V 100,000 2 100,0 % molar 54,1 45,9 100,0 Peso Molecular 33,60 337,24 172,97 R	n-Butanos	7,957	0,000	4,305
n-Pentanos 2,254 1,725 2,011 Hexanos 1,972 5,958 3,801 Heptanos 0,680 7,190 3,668 Octanos 0,378 7,725 3,750 Nonanos 0,196 7,660 3,622 Decanos 0,002 3,767 1,740 Dodecanos 0,000 2,601 1,194 Tridecanos 0,000 4,468 2,051 Tetradecanos 0,000 4,4095 1,880 Pentadecanos 0,000 3,773 1,732 Hexadecanos 0,000 3,418 1,569 Heptadecanos 0,000 3,418 1,569 Heptadecanos 0,000 2,756 1,265 Nonadecanos 0,000 2,756 1,265 Nonadecanos 0,000 2,756 1,265 Nonadecanos 0,000 2,7935 12,822 100,000 % molar 54,1 45,9 100,0 Peso Molecular 54,1 45,9 100,0 Peso Molecular 54,1 45,9 100,0 Peso Molecular 172,97 PROPIEDADES C20+ (Calculadas) Gravedad especifica a 60 °F 1,015 Peso molecular 172,97 PROPIEDADES DEL FLUIDO TOTAL Peso Molecular 172,97 PROPIEDADES DEL FLUIDO TOTAL Peso Molecular 172,97 PROPIEDADES DEL FLUIDO TOTAL Peso Molecular 172,97 PROPIEDADES DEL FLUIDO TOTAL Presión (Gas-Petróleo (PCN/BN) 430 Gravedad especifica del gas a 60 °F 1,015 Peso Molecular 172,97 PROPIEDADES DEL SEPARACION 130 CONDICIONES DE SEPARACION 128 Presión (pca) 12,82	i-Pentanos	2,411	1,559	2,020
Hexanos 1,972 5,958 3,801 Heptanos 0,680 7,190 3,668 Octanos 0,378 7,725 3,750 Nonanos 0,196 7,660 3,622 Decanos 0,003 6,827 3,173 Undecanos 0,000 2,601 1,194 Dodecanos 0,000 4,468 2,051 Tetradecanos 0,000 4,468 2,051 Tetradecanos 0,000 3,773 1,732 Heytadecanos 0,000 3,418 1,569 Heptadecanos 0,000 3,196 1,467 Octodecanos 0,000 2,681 1,230 C20+ 0,000 2,7935 12,822 Voltadecanos 0,000 2,681 1,230 C20+ 0,000 2,7935 12,822 Voltadecanos 0,000 2,7935 12,822 Voltadecanos 0,000 337,24 172,97 PROPIEDADES C20+ (Calculadas) 100,00 % molar 54,1 45,9 100,0 % specifica a 60 °F 1,015 \$28,12 PROPIEDADES DEL FLUIDO TOTAL 22,97 \$28,12 Preso Molecular 172,97<	n-Pentanos	2,254	1,725	2,011
Heptanos 0,680 7,190 3,668 Octanos 0,378 7,725 3,750 Nonanos 0,196 7,660 3,622 Decanos 0,073 6,827 3,173 Undecanos 0,020 3,767 1,740 Dodecanos 0,000 2,601 1,194 Tridecanos 0,000 4,468 2,051 Tetradecanos 0,000 3,773 1,732 Pentadecanos 0,000 3,718 1,569 Heptadecanos 0,000 3,196 1,467 Octadecanos 0,000 2,681 1,230 C20+ 0,000 2,756 1,265 Nonadecanos 0,000 2,7935 12,822 I00,000 % 12,820 12,822 Verote despecifica a 60 °F 1,015 1,015 Peso Molecular 54,1 45,9 100,0 % molar 54,1 45,9 1,015 Preso Molecular 3,60 337,24 172,97 PROPIEDADES DEL FLUIDO TOTAL \$2,97 \$2,98	Hexanos	1,972	5,958	3,801
Octanos 0,378 7,725 3,750 Nonanos 0,196 7,660 3,622 Decanos 0,073 6,827 3,173 Undecanos 0,000 2,601 1,194 Tridecanos 0,000 4,468 2,051 Tetradecanos 0,000 4,095 1,880 Pentadecanos 0,000 3,773 1,732 Hexadecanos 0,000 3,418 1,569 Heptadecanos 0,000 3,196 1,467 Octadecanos 0,000 2,755 1,265 Nonadecanos 0,000 2,755 1,265 Nonadecanos 0,000 2,735 12,822 100,000 2,681 1,230 C20+ 0,000 2,735 12,822 100,000 2,812 172,97 PROPIEDADES C20+ (Calculadas) 828,12 Gravedad especifica a 60 °F 1,015 828,12 PROPIEDADES DEL FLUIDO TOTAL 172,97 172,97	Heptanos	0,680	7,190	3,668
Nonanos 0,196 7,660 3,622 Decanos 0,073 6,827 3,173 Undecanos 0,020 3,767 1,740 Dodecanos 0,000 2,601 1,194 Tridecanos 0,000 4,468 2,051 Tetradecanos 0,000 3,773 1,732 Hexadecanos 0,000 3,773 1,732 Hexadecanos 0,000 3,418 1,569 Heptadecanos 0,000 3,196 1,467 Octodecanos 0,000 2,756 1,265 Nonadecanos 0,000 2,681 1,230 C20+ 0,000 2,7935 12,822 100,000 2 102,97 2 % molar 54,1 45,9 100,0 % molar 54,1 45,9 10,05 PROPIE	Octanos	0,378	7,725	3,750
Decanos 0,073 6,827 3,173 Undecanos 0,020 3,767 1,740 Dodecanos 0,000 2,601 1,194 Tridecanos 0,000 4,468 2,051 Tetradecanos 0,000 4,095 1,880 Pentadecanos 0,000 3,773 1,732 Hexadecanos 0,000 3,196 1,467 Octodecanos 0,000 2,556 1,265 Nonadecanos 0,000 2,681 1,230 C20+ 0,000 2,681 1,230 C20+ 0,000 2,681 1,282 I00,000 2,681 1,230 Y 0,000 2,7935 12,822 I00,000 33,60 337,24 172,97 PROPIEDADES C20+ (Calculadas) 828,12 PROPIEDADES DEL FLUIDO TOTAL 828,12 PROPIEDADES DEL FLUIDO TOTAL 430 Peso Molecular 172,97 Relación Gas-Petróleo (PCN/BN) 430 Gravedad especifica del gas a 60 °F 1,166 Gravedad API del petróleo de t	Nonanos	0,196	7,660	3,622
Undecanos 0,020 3,767 1,740 Dodecanos 0,000 2,601 1,194 Tridecanos 0,000 4,468 2,051 Tetradecanos 0,000 4,095 1,880 Pentadecanos 0,000 3,773 1,732 Hexadecanos 0,000 3,418 1,569 Heptadecanos 0,000 3,196 1,467 Octodecanos 0,000 2,756 1,265 Nonadecanos 0,000 2,681 1,230 C20+ 0,000 27,935 12,822 100,000 2 100,0 2 % molar 54,1 45,9 100,0 Peso Molecular 33,60 337,24 172,97 PROPIEDADES C20+ (Calculadas) Graveda despecifica a 60 °F 1,015 Peso molecular 828,12 172,97 Relación Gas-Petróleo (PCN/BN) 430 Graveda 459 1,166 Graveda despecifica del gas a 60 °F 1,166 1,166 Graveda API del petróleo de tanque a 60 °F 20,5 CONDICIONES DE SEPARACION	Decanos	0,073	6,827	3,173
Dodecanos 0,000 2,601 1,194 Tridecanos 0,000 4,468 2,051 Tetradecanos 0,000 4,095 1,880 Pentadecanos 0,000 3,773 1,732 Hexadecanos 0,000 3,418 1,569 Heptadecanos 0,000 3,196 1,467 Octodecanos 0,000 2,756 1,265 Nonadecanos 0,000 2,681 1,230 C20+ 0,000 2,7935 12,822 100,000 % molar 54,1 45,9 100,0 Peso Molecular 33,60 337,24 172,97 PROPIEDADES C20+ (Calculadas) Gravedad específica a 60 °F 1,015 Peso molecular 828,12 PROPIEDADES DEL FLUIDO TOTAL Peso Molecular 172,97 Relación Gas-Petróleo (PCN/BN) 430 Gravedad API del petróleo de tanque a 60 °F 20,5 CONDICIONES DE SEPARACION Presión (lpca) 12,8 Demoretrue (FE) 12,8 <td>Undecanos</td> <td>0,020</td> <td>3,767</td> <td>1,740</td>	Undecanos	0,020	3,767	1,740
Tridecanos 0,000 4,468 2,051 Tetradecanos 0,000 4,095 1,880 Pentadecanos 0,000 3,773 1,732 Hexadecanos 0,000 3,418 1,569 Heptadecanos 0,000 3,196 1,467 Octodecanos 0,000 2,756 1,265 Nonadecanos 0,000 2,681 1,230 C20+ 0,000 27,935 12,822 I00,000 % molar 54,1 45,9 100,0 % molar 54,1 45,9 100,0 PROPIEDADES C20+ (Calculadas) Gravedad específica a 60 °F 1,015 Peso Molecular 33,60 337,24 172,97 PROPIEDADES DEL FLUIDO TOTAL Peso Molecular 172,97 828,12 PROPIEDADES DEL FLUIDO TOTAL Peso Molecular 172,97 Relación Gas-Petróleo (PCN/BN) 430 Gravedad específica del gas a 60 °F 1,166 Gravedad API del petróleo de tanque a 60 °F 20,5 CODICIONES DE SEPARACION 20,5 Presión (lpca) 12,8 Temperatura (FE) 72	Dodecanos	0,000	2,601	1,194
Tetradecanos 0,000 4,095 1,880 Pentadecanos 0,000 3,773 1,732 Hexadecanos 0,000 3,418 1,569 Heptadecanos 0,000 3,196 1,467 Octodecanos 0,000 2,756 1,265 Nonadecanos 0,000 2,681 1,230 C20+ 0,000 27,935 12,822 100,000 7,935 12,822 % molar 54,1 45,9 100,0 % molar 54,1 45,9 100,0 Peso Molecular 33,60 337,24 172,97 PROPIEDADES C20+ (Calculadas) 828,12 PROPIEDADES DEL FLUIDO TOTAL 828,12 PROPIEDADES DEL FLUIDO TOTAL 172,97 Relación Gas-Petróleo (PCN/BN) 430 Gravedad específica del gas a 60 °F 1,166 Gravedad API del petróleo de tanque a 60 °F 20,5 CODICIONES DE SEPARACION 20,5 Presión (lpca) 12,8	Tridecanos	0,000	4,468	2,051
Pentadecanos 0,000 3,773 1,732 Hexadecanos 0,000 3,418 1,569 Heptadecanos 0,000 3,196 1,467 Octodecanos 0,000 2,756 1,265 Nonadecanos 0,000 2,681 1,230 C20+ 0,000 27,935 12,822 100,000 100,000 337,24 172,97 PROPIEDADES C20+ (Calculadas) 1,015 Gravedad especifica a 60 °F 1,015 Peso Molecular 101,015 PROPIEDADES DEL FLUIDO TOTAL 172,97 Relación Gas-Petróleo (PCN/BN) 430 Gravedad específica del gas a 60 °F 1,166 Gravedad API del petróleo de tanque a 60 °F 20,5 CODICIONES DE SEPARACION 20,5 Presión (lpca) 12,8	Tetradecanos	0,000	4,095	1,880
Hexadecanos 0,000 3,418 1,569 Heptadecanos 0,000 3,196 1,467 Octodecanos 0,000 2,756 1,265 Nonadecanos 0,000 2,681 1,230 C20+ 0,000 27,935 12,822 100,000 % molar 54,1 45,9 100,0 Peso Molecular 33,60 337,24 172,97 PROPIEDADES C20+ (Calculadas) Gravedad específica a 60 °F 1,015 Peso Molecular 828,12 PROPIEDADES DEL FLUIDO TOTAL Peso Molecular 172,97 Relación Gas-Petróleo (PCN/BN) 430 Gravedad específica del gas a 60 °F 1,166 Gravedad API del petróleo de tanque a 60 °F 20,5 CODDICIONES DE SEPARACION Presión (Ipca) 12,8 CODICIONES DE SEPARACION 12,8 Presión (Ipca) 12,8	Pentadecanos	0,000	3,773	1,732
Heptadecanos 0,000 3,196 1,467 Octodecanos 0,000 2,756 1,265 Nonadecanos 0,000 2,681 1,230 C20+ 0,000 27,935 12,822 100,000 7935 12,822 % molar 54,1 45,9 100,0 % molar 54,1 45,9 100,0 Peso Molecular 33,60 337,24 172,97 PROPIEDADES C20+ (Calculadas) 1,015 Gravedad específica a 60 °F 1,015 Peso molecular 828,12 PROPIEDADES DEL FLUIDO TOTAL 172,97 Relación Gas-Petróleo (PCN/BN) 430 Gravedad específica del gas a 60 °F 1,166 Gravedad API del petróleo de tanque a 60 °F 20,5 CONDICIONES DE SEPARACION 20,5 Presión (Ipca) 12,8 Temperatura (°F) 72	Hexadecanos	0,000	3,418	1,569
Octodecanos $0,000$ $2,756$ $1,265$ Nonadecanos $0,000$ $2,681$ $1,230$ C20+ $0,000$ $27,935$ $12,822$ 100,000 $\%$ molar $54,1$ $45,9$ $100,0$ $\%$ molar $54,1$ $45,9$ $100,0$ Peso Molecular $33,60$ $337,24$ $172,97$ PROPIEDADES C20+ (Calculadas) $1,015$ Gravedad especifica a $60 ^\circ$ F $1,015$ $828,12$ PROPIEDADES DEL FLUIDO TOTAL $828,12$ $828,12$ PROPIEDADES DEL FLUIDO TOTAL $172,97$ $828,12$ PROPIEDADES DEL FLUIDO TOTAL $172,97$ $828,12$ PROPIEDADES DEL FLUIDO TOTAL $20,57$ 300 Gravedad especifica del gas a $60 ^\circ$ F $20,5$ $20,5$ CONDICIONES DE SEPARACION $20,5$ $20,57$	Heptadecanos	0,000	3,196	1,467
Nonadecanos 0,000 2,681 1,230 C20+ 0,000 27,935 12,822 100,000 100,000 100,0 100,0 % molar 54,1 45,9 100,0 Peso Molecular 33,60 337,24 172,97 PROPIEDADES C20+ (Calculadas) 1,015 Gravedad específica a 60 °F 1,015 828,12 PROPIEDADES DEL FLUIDO TOTAL 828,12 PROPIEDADES DEL FLUIDO TOTAL 172,97 Relación Gas-Petróleo (PCN/BN) 430 Gravedad específica del gas a 60 °F 1,166 Gravedad API del petróleo de tanque a 60 °F 20,5 CONDICIONES DE SEPARACION 20,5 Presión (Ipca) 12,8 Temperatura (E) 72	Octodecanos	0,000	2,756	1,265
C20+ 0,000 27,935 12,822 100,000 % molar 54,1 45,9 100,0 % molar 54,1 45,9 100,0 Peso Molecular 33,60 337,24 172,97 PROPIEDADES C20+ (Calculadas) 1,015 Gravedad especifica a 60 °F 1,015 Peso molecular 828,12 PROPIEDADES DEL FLUIDO TOTAL 828,12 PROPIEDADES DEL FLUIDO TOTAL 172,97 Relación Gas-Petróleo (PCN/BN) 430 Gravedad específica del gas a 60 °F 1,166 Gravedad API del petróleo de tanque a 60 °F 20,5 CONDICIONES DE SEPARACION 20,5 Presión (lpca) 12,8 Temperatura (°E) 72	Nonadecanos	0,000	2,681	1,230
100,000% molar54,145,9100,0Peso Molecular33,60337,24172,97PROPIEDADES C20+ (Calculadas)(Calculadas)1,015Gravedad específica a 60 °F1,015Peso molecular828,12PROPIEDADES DEL FLUIDO TOTAL172,97Relación Gas-Petróleo (PCN/BN)430Gravedad específica del gas a 60 °F1,166Gravedad API del petróleo de tanque a 60 °F20,5CONDICIONES DE SEPARACION12,8Presión (lpca)12,8Temperatura (°E)70	C20+	0,000	27,935	12,822
% molar54,145,9100,0Peso Molecular33,60337,24172,97PROPIEDADES C20+ (Calculadas)(Calculadas)1,015Gravedad específica a 60 °F1,015Peso molecular828,12PROPIEDADES DEL FLUIDO TOTAL Peso Molecular172,97Relación Gas-Petróleo (PCN/BN)430Gravedad específica del gas a 60 °F1,166Gravedad API del petróleo de tanque a 60 °F20,5CONDICIONES DE SEPARACION12,8Presión (lpca)12,8Termeratura (E)72		100,000		
Peso Molecular33,60337,24172,97PROPIEDADES C20+ (Calculadas)(Calculadas)1,015Gravedad específica a 60 °F1,015Peso molecular828,12PROPIEDADES DEL FLUIDO TOTAL Peso Molecular172,97Relación Gas-Petróleo (PCN/BN)430Gravedad específica del gas a 60 °F1,166Gravedad API del petróleo de tanque a 60 °F20,5CONDICIONES DE SEPARACION12,8Presión (lpca)12,8Temperatura (F)72	% molar	54,1	45,9	100,0
PROPIEDADES C20+(Calculadas)Gravedad específica a 60 °F1,015Peso molecular828,12PROPIEDADES DEL FLUIDO TOTAL172,97Relación Gas-Petróleo (PCN/BN)430Gravedad específica del gas a 60 °F1,166Gravedad API del petróleo de tanque a 60 °F20,5CONDICIONES DE SEPARACION12,8Presión (lpca)12,8Temperatura (°E)72	Peso Molecular	33,60	337,24	172,97
International ContractionInternational ContractionGravedad especifica a 60 °F1,015Peso molecular828,12PROPIEDADES DEL FLUIDO TOTAL172,97Peso Molecular172,97Relación Gas-Petróleo (PCN/BN)430Gravedad especifica del gas a 60 °F1,166Gravedad API del petróleo de tanque a 60 °F20,5CONDICIONES DE SEPARACION12,8Presión (lpca)12,8Temperatura (°E)72	PDODIEDADES C20+	(Calculadas)		
Peso molecular 828,12 PROPIEDADES DEL FLUIDO TOTAL Peso Molecular 172,97 Relación Gas-Petróleo (PCN/BN) 430 Gravedad específica del gas a 60 °F 1,166 Gravedad API del petróleo de tanque a 60 °F 20,5 CONDICIONES DE SEPARACION Presión (lpca) 12,8 Temperatura (°E) 72	Gravedad específica a 60 °F	(Calculadas)		1.015
PROPIEDADES DEL FLUIDO TOTAL 523,12 Preso Molecular 172,97 Relación Gas-Petróleo (PCN/BN) 430 Gravedad específica del gas a 60 °F 1,166 Gravedad API del petróleo de tanque a 60 °F 20,5 CONDICIONES DE SEPARACION 12,8 Presión (lpca) 12,8 Temperatura (°E) 72	Paso molecular			828.12
PROPIEDADES DEL FLUIDO TOTAL Peso Molecular 172,97 Relación Gas-Petróleo (PCN/BN) 430 Gravedad específica del gas a 60 °F 1,166 Gravedad API del petróleo de tanque a 60 °F 20,5 CONDICIONES DE SEPARACION Presión (lpca) 12,8 Temperatura (°E) 72	reso molecular			020,12
Peso Molecular172,97Relación Gas-Petróleo (PCN/BN)430Gravedad específica del gas a 60 °F1,166Gravedad API del petróleo de tanque a 60 °F20,5CONDICIONES DE SEPARACIONPresión (lpca)12,8Temperatura (°E)72	PROPIEDADES DEL FLUIDO TO	TAL		
Relación Gas-Petróleo (PCN/BN)430Gravedad específica del gas a 60 °F1,166Gravedad API del petróleo de tanque a 60 °F20,5CONDICIONES DE SEPARACIONPresión (lpca)12,8Temperatura (°E)72	Peso Molecular			172,97
Gravedad específica del gas a 60 °F 1,166 Gravedad API del petróleo de tanque a 60 °F 20,5 CONDICIONES DE SEPARACION 12,8 Presión (lpca) 12,8 Temperatura (°E) 72	Relación Gas-Petróleo (PCN/BN)			430
Gravedad API del petróleo de tanque a 60 °F 20,5 CONDICIONES DE SEPARACION Presión (lpca) 12,8 Temperatura (°E) 72	Gravedad específica del gas a 60 °F			1,166
CONDICIONES DE SEPARACION Presión (lpca) 12,8 Temperatura (°E) 72	Gravedad API del petróleo de tanque a	a 60 °F		20,5
Presión (lpca) 12,8	CONDICIONES DE SEPARACION	1		
Temperatura (°E)	Presión (lpca)			12,8
12 12	Temperatura (°F)			72

Tabla 19. Composición validada del Fluido A5 obtenida @ 294 °F

Componente	Gas	Líquido	Fluido total
	% molar	% molar	% molar
Nitrógeno	0,230	0,000	0,072
Metano	54,369	0,026	16,941
Dióxido de Carbono	12,020	0,000	3,741
Etano	11,810	0,098	3,743
Propano	11,380	0,448	3,851
i-Butanos	1,780	0,199	0,691
n-Butanos	4,320	0,828	1,915
i-Pentanos	1,260	0,978	1,066
n-Pentanos	1,230	1,163	1,184
Hexanos	0,877	4,348	3,268
Heptanos	0,486	6,190	4,415
Octanos	0,198	7,284	5,079
Nonanos	0,035	8,633	5,957
Decanos	0,005	7,902	5,444
Undecanos	0,000	4,277	2,946
Dodecanos	0,000	2,724	1,876
Tridecanos	0,000	4,171	2,872
Tetradecanos	0,000	3,746	2,580
Pentadecanos	0,000	3,388	2,333
Hexadecanos	0,000	3,017	2,078
Heptadecanos	0,000	2,774	1,911
Octodecanos	0,000	2,355	1,622
Nonadecanos	0,000	2,256	1,554
C20+	0,000	33,196	22,863
	100,000		
% molar	31,1	68,9	100,0
Peso Molecular	29,50	298,00	214,42
PROPIEDADES C20+	(Calculadas)		
Gravedad específica a 60 °F	(Calculadas)		0.986
Peso molecular			596 58
r eso morecular			570,50
PROPIEDADES DEL FLUIDO TO	OTAL		
Peso Molecular			214,42
Relación Gas-Petróleo (PCN/BN)			183,42
Gravedad específica del gas a 60 °F			1,019
Gravedad API del petróleo de tanque	a 60 °F		23,9
CONDICIONES DE SEPARACIO	N		
Presión (lpca)			12.8
Temperatura (°F)			72

Tabla 20. Composición validada del Fluido A6 obtenida @ 298 °F

Componente	Gas	Líquido	Fluido total
_	% molar	% molar	% molar
Nitrógeno	0,590	0,000	0,269
Metano	52,109	0,000	23,753
Dióxido de Carbono	8,690	0,000	3,961
Etano	12,510	0,151	5,784
Propano	11,310	0,757	5,567
i-Butanos	2,560	0,449	1,411
n-Butanos	5,600	1,547	3,394
i-Pentanos	2,030	1,715	1,859
n-Pentanos	2,010	1,949	1,977
Hexanos	1,577	5,969	3,967
Heptanos	0,752	6,953	4,127
Octanos	0,208	6,620	3,697
Nonanos	0,031	6,343	3,466
Decanos	0,017	5,080	2,772
Undecanos	0,006	3,294	1,795
Dodecanos	0,000	1,905	1,037
Tridecanos	0,000	3,283	1,786
Tetradecanos	0,000	2,947	1,604
Pentadecanos	0,000	2,664	1,450
Hexadecanos	0,000	2,372	1,291
Heptadecanos	0,000	2,181	1,187
Octodecanos	0,000	1,851	1,007
Nonadecanos	0,000	1,773	0,965
C20+	0,000	40,198	21,875
	100.000		
% molar	45,6	54,4	100,0
Peso Molecular	31,20	283,50	168,50
BRODIED A DES COA.	(Calandada)		
Croweded específica a 60 %	(Calculadas)		0.085
Gravedad especifica a 60 °F			0,985
Peso molecular			498,38
PROPIEDADES DEL FLUIDO T	OTAL		
Peso Molecular			168,50
Relación Gas-Petróleo (PCN/BN)			359,00
Gravedad específica del gas a 60 $^\circ\mathrm{F}$			1,077
Gravedad API del petróleo de tanque	e a 60 °F		23,3
CONDICIONES DE SEPARACIO	DN		
Presión (lpca)			12.8
Temperatura (°F)			72
· · · · · · · · · · · · · · · · · · ·			, =

Tabla 21. Composición validada del Fluido A7 obtenida @ 300 °F

Componente	Gas	Líquido	Fluido total
_	% molar	% molar	% molar
Nitrógeno	0,700	0,000	0,295
Metano	50,117	0,000	21,107
Dióxido de Carbono	9,440	0,000	3,976
Etano	13,390	0,079	5,685
Propano	12,330	0,466	5,463
i-Butanos	2,740	0,308	1,332
n-Butanos	5,690	1,111	3,040
i-Pentanos	1,940	1,361	1,605
n-Pentanos	1,790	1,568	1,661
Hexanos	1,203	5,270	3,557
Heptanos	0,488	6,378	3,898
Octanos	0,130	6,356	3,734
Nonanos	0,020	6,126	3,554
Decanos	0,016	4,999	2,901
Undecanos	0,006	3,395	1,968
Dodecanos	0,000	1,924	1,114
Tridecanos	0,000	3,176	1,838
Tetradecanos	0,000	2,857	1,654
Pentadecanos	0,000	2,587	1,498
Hexadecanos	0,000	2,306	1,335
Heptadecanos	0,000	2,122	1,228
Octodecanos	0,000	1,802	1,043
Nonadecanos	0,000	1,726	0,999
C20+	0,000	44,083	25,518
	100.000		
% molar	42,1	57,9	100,0
Peso Molecular	31,20	288,30	180,02
PROPIEDADES C20+	(Calculadas)		
Gravedad específica a 60 °F			0,983
Peso molecular			473,79
PROPIEDADES DEL FLUIDO TO	TAL		
Peso Molecular			180.02
Relación Gas-Petróleo (PCN/BN)			308.00
Gravedad específica del gas a 60 °F			1 077
Gravedad API del petróleo de tanque	a 60 °F		22,6
			,
CONDICIONES DE SEPARACION	N		
Presión (lpca)			12,8
Temperatura (°F)			72

Tabla 22. Composición validada del Fluido A8 obtenida @ 300 °F

Componente	Gas	Líquido	Fluido total
-	% molar	% molar	% molar
Nitrógeno	0,450	0,000	0,175
Metano	49,504	0,105	19,367
Dióxido de Carbono	13,390	0,000	5,221
Etano	16,690	0,289	6,684
Propano	9,750	1,074	4,457
i-Butanos	2,110	0,570	1,170
n-Butanos	4,270	1,829	2,781
i-Pentanos	1,390	1,860	1,677
n-Pentanos	1,270	2,064	1,754
Hexanos	0,825	5,878	3,907
Heptanos	0,290	6,493	4,075
Octanos	0,058	6,403	3,929
Nonanos	0,003	5,577	3,403
Decanos	0,000	4,783	2,918
Undecanos	0,000	3,009	1,836
Dodecanos	0,000	2,586	1,578
Tridecanos	0,000	3,707	2,261
Tetradecanos	0,000	3,390	2,068
Pentadecanos	0,000	3,118	1,902
Hexadecanos	0,000	2,822	1,721
Heptadecanos	0,000	2,636	1,608
Octodecanos	0,000	2,271	1,385
Nonadecanos	0,000	2,207	1,347
C20+	0,000	37,328	22,773
	100,000		
% molar	39,0	61,0	100,0
Peso Molecular	30,00	272,00	177,64
BROBIED A DES COA	(Calanda da a)		
Craveded específica a 60 %	(Calculadas)		0.027
Gravedad especifica a 60 °F			0,987
Peso molecular			489,82
PROPIEDADES DEL FLUIDO	TOTAL		
Peso Molecular			177,64
Relación Gas-Petróleo (PCN/BN)			284,00
Gravedad específica del gas a 60 °F			1,035
Gravedad API del petróleo de tano	que a 60 °F		24,2
CONDICIONES DE SEPARAC	TION		
Presión (lpca)			12.8
Temperatura (°F)			72

Tabla 23. Composición validada del Fluido A9 obtenida @ 306 °F

Componente	Gas	Líquido	Fluido total
-	% molar	% molar	% molar
Nitrógeno	0,290	0,000	0,120
Metano	51,656	0,245	21,567
Dióxido de Carbono	11,270	0,000	4,674
Etano	12,270	0,000	5,089
Propano	11,210	0,805	5,120
i-Butanos	2,460	0,516	1,322
n-Butanos	5,260	1,680	3,165
i-Pentanos	1,780	1,871	1,833
n-Pentanos	1,730	2,060	1,923
Hexanos	1,262	6,342	4,235
Heptanos	0,591	7,256	4,492
Octanos	0,159	7,184	4,270
Nonanos	0,035	7,363	4,324
Decanos	0,022	8,856	5,192
Undecanos	0,005	5,560	3,256
Dodecanos	0,000	2,623	1,535
Tridecanos	0,000	4,353	2,547
Tetradecanos	0,000	3,964	2,320
Pentadecanos	0,000	3,633	2,127
Hexadecanos	0,000	3,279	1,919
Heptadecanos	0,000	3,057	1,789
Octodecanos	0,000	2,629	1,539
Nonadecanos	0,000	2,552	1,494
C20+	0,000	24,171	14,146
	100,000		
% molar	41,5	58,5	100,0
Peso Molecular	31,00	302,00	189,61
PROPIEDADES C20+	(Calculadas)		
Gravedad específica a 60 °F	()		0.997
Peso molecular			797.64
PROPIEDADES DEL FLUIDO) TOTAL		
Peso Molecular			189,61
Relación Gas-Petróleo (PCN/BN)			284,00
Gravedad específica del gas a 60 °F			1,068
Gravedad API del petróleo de tar	nque a 60 °F		24,2
CONDICIONES DE SEPARA	CION		
Presión (lpca)			12,8
Temperatura (°F)			72

Tabla 24. Composición validada del Fluido A10 obtenida @ 306 °F

Componente	Gas	Líquido	Fluido total
-	% molar	% molar	% molar
Nitrógeno	0,480	0,000	0,180
Metano	58,804	0,000	22,092
Dióxido de Carbono	7,930	0,000	2,979
Etano	10,940	0,174	4,219
Propano	10,400	0,927	4,486
i-Butanos	2,430	0,571	1,269
n-Butanos	4,680	1,465	2,673
i-Pentanos	1,530	1,781	1,687
n-Pentanos	1,330	1,452	1,406
Hexanos	0,885	5,300	3,641
Heptanos	0,373	5,628	3,653
Octanos	0,108	6,127	3,866
Nonanos	0,032	6,239	3,907
Decanos	0,031	5,577	3,493
Undecanos	0,047	3,954	2,486
Dodecanos	0,000	3,489	2,178
Tridecanos	0,000	4,062	2,536
Tetradecanos	0,000	3,722	2,324
Pentadecanos	0,000	3,428	2,140
Hexadecanos	0,000	3,106	1,939
Heptadecanos	0,000	2,904	1,813
Octodecanos	0,000	2,503	1,563
Nonadecanos	0,000	2,435	1,520
C20+	0,000	35,157	21,949
	100,000		
% molar	37,6	62,4	100,0
Peso Molecular	29,00	305,00	201,31
PROPIEDADES C20+	(Calculadas)		
Gravedad específica a 60 °F	(Carcanadas)		0 990
Peso molecular			595.18
			0,0,10
PROPIEDADES DEL FLUIDO) TOTAL		
Peso Molecular			201,31
Relación Gas-Petróleo (PCN/BN))		244,00
Gravedad específica del gas a 60 °F			0,986
Gravedad API del petróleo de tan	nque a 60 °F		22,9
CONDICIONES DE SEPARAC	CION		
Presión (lpca)			12,8
Temperatura (°F)			72

Tabla 25. Composición validada del Fluido A11 obtenida @ 292 °F

Componente	Gas	Líquido	Fluido total
-	% molar	% molar	% molar
Nitrógeno	0,170	0,000	0,062
Metano	53,277	0,070	19,483
Dióxido de Carbono	8,210	0,000	2,995
Etano	11,290	0,156	4,218
Propano	11,280	0,763	4,600
i-Butanos	2,870	0,486	1,356
n-Butanos	5,840	1,547	3,114
i-Pentanos	2,240	1,745	1,926
n-Pentanos	2,100	1,920	1,986
Hexanos	1,681	5,966	4,403
Heptanos	0,807	6,806	4,618
Octanos	0,195	6,933	4,475
Nonanos	0,022	6,400	4,073
Decanos	0,012	5,836	3,711
Undecanos	0,006	3,406	2,165
Dodecanos	0,000	2,814	1,787
Tridecanos	0,000	4,137	2,628
Tetradecanos	0,000	3,786	2,404
Pentadecanos	0,000	3,483	2,212
Hexadecanos	0,000	3,152	2,002
Heptadecanos	0,000	2,945	1,871
Octodecanos	0,000	2,538	1,612
Nonadecanos	0,000	2,467	1,567
C20+	0,000	32,644	20,734
	100,000		
% molar	36,5	63,5	100,0
Peso Molecular	31,00	304,00	204,39
PROPIEDADES C20+	(Calculadas)		
Gravedad específica a 60 °F	()		0.996
Peso molecular			630,80
PROPIEDADES DEL ELUDO	τοται		
Peso Molecular	IUIAL		20/1 39
r cso morculai Relación Gas-Petróleo (PCN/RN)			204,39
Gravedad específica del gas a 60 °F			1 081
Gravedad API del petróleo de tan	que a 60 °F		22.8
State data in i dei periore de tan	4 u u u u u		22,0
CONDICIONES DE SEPARAC	CION		
Presión (lpca)			12,8
Temperatura (°F)			72

Tabla 26. Composición validada del Fluido A12 obtenida @ 287 °F

APÉNDICE B

VALIDACIÓN DE LAS PRUEBAS PVT^[33]

Se realizó la validación de:

- a) La prueba de liberación diferencial
- b) La prueba de desigualdad
- c) La prueba de expansión a composición constante

B.1. Prueba de Balance de Materiales

Esta prueba consiste en chequear si la Rs experimental de la prueba de liberación diferencial es igual a la Rs calculada por balance de materiales. La diferencia entre los dos valores no debe exceder 5%.

Para realizar el balance de masas de la liberación diferencial se necesita la siguiente información obtenida del informe de la prueba PVT:

- Gravedad API del crudo residual
- Relación gas-petróleo en solución a diferentes presiones
- Factor volumétrico del petróleo a diferentes presiones
- Gravedad específica del gas liberado en cada etapa de liberación

En la deducción de las ecuaciones para calcular Rs se tomará como base un litro (1000 cc) de petróleo residual a condiciones normales (60 °F y 14.7 lpca).

A 14,7 lpca y 60 °F:

Masa de petróleo $M_{o1} = (\gamma_0 \rho_w) g/cc \times 1000 cc$

$$\gamma_o = \frac{141,5}{131,5+^{\circ}API}$$

 $\rho_w = 0.999015$ g/cc (densidad del agua)

Masa de gas en solución,

$$M_{g1} = 0$$

Volumen de gas en solución,

$$V_{g1} = 0$$

Relación gas-petróleo en solución,

 $R_{s1} = 0$

A 14,7 lpca y T (temperatura de la prueba): Masa de petróleo,

iviasa de petioleo,

 $M_{o2} = M_{o1}$ (no varía)

La masa y volumen de gas en solución y la relación gas-petróleo en solución siguen siendo cero.

$$M_{g2} = 0, V_{g2} = 0, R_{s2} = 0$$

A p_i y T_i : Masa de petróleo, $M_{oi} = \rho_{odi} B_{odi} \times 1000$ Significado de los subíndices: d = diferencial, i = nivel de presión

Incremento de la masa de gas en solución entre las presiones p_i y p_{i-1} $M_{gi} = M_{oi} - M_{oi-1}$

Volumen de gas en solución correspondiente a Mgi

$$V_{gi} = 0,02881 \frac{m_{gi}}{\gamma_{gdi}}$$
 (PCN) Ec. (28)

Relación gas-petróleo en solución a pi

$$R_{sdi} = R_{sdi-1} + 159 V_{gi} (PCN/BN)$$
 Ec. (29)

B.2. Prueba de Desigualdad

Una restricción importante que deben cumplir los datos PVT para que sean consistentes es:

$$\frac{\delta B_{od}}{\delta P} < B_g \frac{\delta R_{sd}}{\delta P} \qquad \text{Ec.} (30)$$

Si esta desigualdad es violada en datos suministrados a simuladores numéricos, los programas envían mensajes de error.

B.3. Prueba de Linealidad de la Función Y

El informe de la prueba PVT incluye una tabla con la Función "Y" calculada de los datos de expansión a composición constante. Los valores de la función se grafican contra la presión y se debe obtener una línea recta cuando el crudo tiene poca cantidad de componentes no hidrocarburos y las mediciones en el laboratorio fueron hechas con precisión.

Modelo de Cálculo

A continuación se presenta el modelo de cálculo del pozo A1:

a) Prueba de balance de materiales

 $P_1 = P_2 = 14,7$ lpca

$$M_{o2} = M_{o1} = \left(\frac{141,5}{131,5+31,6}\right) \times 0,999015 \times 1000 = 865,87 \text{ g}$$

Para
$$P_3 = 1000 \text{ lpc}$$

 $M_{03} = 1000 \times 0,6865 \times 1,3523 = 928,35 \text{ g}$

 $M_{g3} = 928,35 - 865,87 = 62,48 g$

$$V_{g3} = 0.02881 \times \frac{62.48}{1.047} = 1.7194 \text{ PCN}$$

 R_{sd} calculada = R_{sd2} + 159 × 1,7194 = 273,38 PCN/BN

Error relativo porcentual = $\frac{(278 - 273)}{278} \times 100 = 1,66$ % para esta etapa el error es

aceptable.

b) Prueba de desigualdad

$$\begin{split} P_1 &= 0 + 14,7 = 14,7 \text{ lpca} \\ P_2 &= 1000 + 14,7 = 1014,7 \text{ lpca} \\ B_{od1} &= 1,0912 \text{ BY/BN} \\ B_{od2} &= 1,3523 \text{ BY/BN} \\ B_g &= 3,506 \text{ BY/MPCN} \\ R_{sd1} &= 0 \text{ PCN/BN} \\ R_{sd2} &= 278 \text{ PCN/BN} \\ \frac{(1,3523 - 1,0912)}{(1014,7 - 14,7)} < 3,506 \times 10^{-3} \times \frac{(278 - 0)}{(1014,7 - 14,7)} \\ &= 2.611 \times 10^{-4} < 9.747 \times 10^{-4} \end{split}$$

cumple con la desigualdad, por lo tanto, es aceptable.

c) Prueba de linealidad de la función Y

Tabla 27. Presión y Volumen relativo del fluido A1 obtenido de la prueba ECC

Presión (lpc)	Volumen relativo (Vr)
4705	1,0000
4600	1,0070
4500	1,0142
4250	1,0342
4000	1,0576
3750	1,0856
3500	1,1192

2500	1,3447
2000	1,5631
1500	1,9498
1000	2,7579

Sabiendo que Fy es igual a:

$$Y = \frac{P_b - P}{P\left(\frac{V}{V_b} - 1\right)}$$

Y utilizando el coeficiente de regresión lineal como:

$$r^{2} = \frac{\left[n\sum xy - \sum x\sum y\right]^{2}}{\left[n\sum x^{2} - (\sum x)^{2}\right]n\sum y^{2} - (\sum y)^{2}} \qquad \text{Ec.} (31)$$

Procesando los datos se obtiene,

Tabla 28. Datos a utilizar para calcular el factor de correlación para el fluido A1.

n	P (x)	Vr	Fy (y)	xy	x2	y2
0	4705	1				
1	4600	1,007	3,261	15000,0	21160000	10,6333
2	4500	1,0142	3,208	14436,6	20250000	10,2921
3	4250	1,0342	3,130	13304,1	18062500	9,7992
4	4000	1,0576	3,060	12239,6	16000000	9,3630
5	3750	1,0856	2,975	11156,5	14062500	8,8511
6	3500	1,1192	2,888	10109,1	12250000	8,3423
7	2500	1,3447	2,559	6396,9	6250000	6,5472
8	2000	1,5631	2,402	4803,8	4000000	5,7690
9	1500	1,9498	2,250	3374,4	2250000	5,0607
10	1000	2,7579	2,108	2107,6	1000000	4,4421
Σ	31600		27,841	92928,6	115285000	79,1000

$$r^{2} = \frac{\left[10 \times 92928, 6 - 31600 \times 27, 841\right]^{2}}{\left[10 \times 115285000 - 998560000\right] \times \left[10 \times 79, 10000 - 775, 094\right]} = 0,9994$$

Según el factor de correlación, la Función Y se ajusta a una línea recta y el punto de burbuja es el correcto. A continuación, se presentan tablas resumen para los fluidos estudiados.

P (psim)	T (°F)	Rsd (PCN/BN)	Bod (BY/BN)	po (g/cc)	G. E.g	Mo (g)	Mg (g)	ΔV de Gas (PCN)	Rsd Calc (PCN/BN)	Error (%)
0	60	0	1,0000		0,000	865,87	-	-		
0	288		1,0912		1,047	865,87	-	-	0	
1000	288	278	1,3523	0,6865	0,8020	928,35	62,48	1,7194	273,38	1,66
1500	288	399	1,4127	0,6718	0,7840	949,05	20,70	0,7436	391,61	1,85
2000	288	490	1,4652	0,6583	0,7580	964,54	15,49	0,5692	482,12	1,61
2500	288	589	1,5382	0,6376	0,7560	980,76	16,22	0,6163	580,12	1,51
3000	288	701	1,6091	0,6210	0,7510	999,25	18,49	0,7049	692,19	1,26
3500	288	856	1,6878	0,6042	0,7390	1019,77	20,52	0,7872	817,35	4,52
4000	288	1044	1,7872	0,5875	0,7560	1049,98	30,21	1,1779	1004,63	3,77
4500	288	1248	1,928	0,5685	0,7420	1096,07	46,09	1,7565	1283,91	-2,88
4705	288	1445	2,0009	0,5611	0,0000	1122,70	26,64	1,0343	1448,36	-0,23

Tabla 29. Prueba de balance de materiales para el Fluido A1

P (psim)	T (°F)	Rsd (PCN/BN)	Bod (BY/BN)	Bg (BY/MPCN)	dBod/dP	Bg*dRs/dP	Diferencia
0	60	0	1,0000				
0	288		1,0912	248,8147			
1000	288	278	1,3523	3,506	2,61E-04	9,75E-04	Aceptable
1500	288	399	1,4127	2,3046	1,21E-04	5,58E-04	Aceptable
2000	288	490	1,4652	1,7115	1,05E-04	3,11E-04	Aceptable
2500	288	589	1,5382	1,3632	1,46E-04	2,70E-04	Aceptable
3000	288	701	1,6091	1,1372	1,42E-04	2,55E-04	Aceptable
3500	288	856	1,6878	0,9823	1,57E-04	3,05E-04	Aceptable
4000	288	1044	1,7872	0,8689	1,99E-04	3,27E-04	Aceptable
4500	288	1248	1,928	0,7875	2,82E-04	3,21E-04	Aceptable
4705	288	1445	2,0009				

P (psim)	T (°F)	Rsd (PCN/BN)	Bod (BY/BN)	po (g/cc)	G. E.g	Mo (g)	Mg (g)	ΔV de Gas (PCN)	Rsd Calc (PCN/BN)	Error (%)
0	60	0	1,0000		0,000	909,36	-	-		
0	300	0	1,096		1,1180	909,36	-	-	0	
1100	300	253	1,206	0,8027	0,8220	968,06	58,69	1,5126	240,50	4,94
1400	300	310	1,2422	0,7872	0,7840	977,86	9,80	0,3436	295,14	4,79
1700	300	361	1,27	0,7771	0,7670	986,92	9,06	0,3329	348,06	3,58
2000	300	405	1,3048	0,7619	0,7190	994,13	7,21	0,2708	391,13	3,43
2300	300	458	1,3346	0,7508	0,7570	1002,02	7,89	0,3162	441,40	3,62
2600	300	528	1,3645	0,7425	0,8370	1013,14	11,12	0,4234	508,72	3,65
2709	300	562	1,4226	0,7166	0,0000	1019,44	6,29	0,2167	543,16	3,35

Tabla 31. Prueba de balance de materiales para el Fluido A2

Tabla 32. Prueba de desigualdad para el fluido A2

P (psim)	T (°F)	Rsd (PCN/BN)	Bod (BY/BN)	Bg(BY/MPCN)	dBod/dP	Bg*dRs/dP	Diferencia
0	60	0	1,0000				
0	300	0	1,096	260,3			
1100	300	253	1,206	2,8535	1,00E-04	6,56E-04	Aceptable
1400	300	310	1,2422	1,9474	1,21E-04	3,70E-04	Aceptable
1700	300	361	1,27	1,8909	9,27E-05	3,21E-04	Aceptable
2000	300	405	1,3048	1,332	1,16E-04	1,95E-04	Aceptable
2300	300	458	1,3346	0,91	9,93E-05	1,61E-04	Aceptable
2600	300	528	1,3645	2,0286	9,97E-05	4,73E-04	Aceptable
2709	300	562	1,4226				

Tabla 33. Prueba de balance de materiales para el Fluido A4

P (psim)	T (°F)	Rsd (PCN/BN)	Bod (BY/BN)	po (g/cc)	G. E.g	Mo (g)	Mg (g)	∆V de Gas (PCN)	Rsd Calc (PCN/BN)	Error (%)
0	60	0	1,0000		0,000	898,94	-	-		
0	293	0	1,0932		1,267	898,94	-	-	0	
900	293	231	1,2867	0,7502	0,8450	965,28	66,34	1,5086	239,86	-3,84
1100	293	266	1,3073	0,7433	0,8100	971,72	6,43	0,2194	274,74	-3,29
1300	293	300	1,3254	0,7377	0,7960	977,75	6,03	0,2145	308,86	-2,95
1500	293	335	1,3403	0,7340	0,7910	983,78	6,03	0,2184	343,57	-2,56
1700	293	372	1,3581	0,7291	0,7810	990,19	6,41	0,2335	380,70	-2,34
1900	293	408	1,3769	0,7235	0,7710	996,19	6,00	0,2212	415,87	-1,93
2100	293	445	1,3965	0,7179	0,8971	1002,55	6,36	0,2377	453,66	-1,95
2290	293	461	1,4115	0,7150						

P (psim)	T (°F)	Rsd (PCN/BN)	Bod (BY/BN)	Bg (BY/MPCN)	dBod/dP	Bg*dRs/dP	Diferencia
0	60	0	1,0000				
0	293	0	1,0932	257,9025			
900	293	231	1,2867	4,2806	2,15E-04	1,10E-03	Aceptable
1100	293	266	1,3073	3,2391	1,03E-04	5,67E-04	Aceptable
1300	293	300	1,3254	2,7368	9,05E-05	4,65E-04	Aceptable
1500	293	335	1,3403	2,3874	7,45E-05	4,18E-04	Aceptable
1700	293	372	1,3581	2,0874	8,90E-05	3,86E-04	Aceptable
1900	293	408	1,3769	1,8683	9,40E-05	3,36E-04	Aceptable
2100	293	445	1,3965	1,6746	9,80E-05	3,10E-04	Aceptable
2290	293	461	1,4115				

Tabla 35. Prueba de balance de materiales para el Fluido A6

P (psim)	T (°F)	Rsd (PCN/BN)	Bod (BY/BN)	po (g/cc)	G. E.g	Mo (g)	Mg (g)	ΔV de Gas (PCN)	Rsd Calc (PCN/BN)	Error (%)
0	60	0	1,0000		0,000	908,78	-	-		
0	298	0	0,0952		1,251	908,78	-	-	0	
300	298	53	1,1543	0,8000	0,9450	923,44	14,66	0,3377	53,69	-1,31
600	298	109	1,1827	0,7905	0,9190	934,92	11,48	0,3501	109,37	-0,34
900	298	160	1,2111	0,7805	0,8520	945,26	10,34	0,3241	160,91	-0,57
1200	298	210	1,2326	0,7743	0,8270	954,40	9,14	0,3090	210,04	-0,02
1500	298	259	1,2576	0,7660	0,8080	963,32	8,92	0,3107	259,45	-0,17
1673	298	278	1,2731	0,7593	0,0000	966,66	3,34	0,1192	278,41	-0,15

Tabla 36. Prueba de desigualdad para el fluido A6

P (psim)	T (°F)	Rsd (PCN/BN)	Bod (BY/BN)	Bg(BY/MPCN)	dBod/dP	Bg*dRs/dP	Diferencia
0	60	0	1,0000				
0	298	0	0,0952	259,615			
300	298	53	1,1543	14,7667	3,53E-03	2,61E-03	No Aceptable
600	298	109	1,1827	7,9386	9,47E-05	1,48E-03	Aceptable
900	298	160	1,2111	5,8912	9,47E-05	1,00E-03	Aceptable
1200	298	210	1,2326	4,8739	7,17E-05	8,12E-04	Aceptable
1500	298	259	1,2576	6,9577	8,33E-05	1,14E-03	Aceptable
1673	298	278	1,2731				

P (psim)	T (°F)	Rsd (PCN/BN)	Bod (BY/BN)	po (g/cc)	G. E.g	Mo (g)	Mg (g)	ΔV de Gas (PCN)	Rsd Calc (PCN/BN)	Error (%)
0	60	0	1,0000		0,000	912,30	-	-		
0	300	0	1,096		1,4690	912,30	-	-	0	
400	300	148	1,2732	0,7552	1,0030	961,52	49,22	0,9654	153,50	-3,71
600	300	184	1,2957	0,7482	0,9350	969,44	7,92	0,2276	189,68	-3,09
800	300	217	1,3161	0,7425	0,8870	977,20	7,76	0,2392	227,71	-4,93
1000	300	252	1,3327	0,7384	0,8740	984,07	6,86	0,2229	263,14	-4,42
1200	300	291	1,352	0,7333	0,8450	991,42	7,36	0,2425	301,70	-3,68
1400	300	339	1,3714	0,7294	0,8530	1000,30	8,88	0,3027	349,83	-3,19
1635	300	369	1,3928	0,7222	0,0000	1005,88	5,58	0,1885	379,80	-2,93

Tabla 37. Prueba de balance de materiales para el Fluido A7

Tabla 38. Prueba de desigualdad para el fluido A7

P (psim)	T (°F)	Rsd (PCN/BN)	Bod (BY/BN)	Bg(BY/MPCN)	dBod/dP	Bg*dRs/dP	Diferencia
0	60	0	1,0000				
0	300	0	1,0960	254,93			
400	300	148	1,2732	9,2855	4,43E-04	3,44E-03	Aceptable
600	300	184	1,2957	6,1514	1,13E-04	1,11E-03	Aceptable
800	300	217	1,3161	4,5983	1,02E-04	7,59E-04	Aceptable
1000	300	252	1,3327	3,6526	8,30E-05	6,39E-04	Aceptable
1200	300	291	1,3520	3,0425	9,65E-05	5,93E-04	Aceptable
1400	300	339	1,3714	2,6341	9,70E-05	6,32E-04	Aceptable
1635	300	369	1,3928				

Tabla 39. Prueba de balance de materiales para el Fluido A8

P (psim)	T (° F)	Rsd (PCN/BN)	Bod (BY/BN)	po (g/cc)	G. E.g	Mo (g)	Mg (g)	ΔV de Gas (PCN)	Rsd Calc (PCN/BN)	Error (%)
0	60	0	1,0000		0,000	916,44	-	-		
0	300	0	1,0960		1,614	916,44	-	-	0	
300	300	114	1,2408	0,7720	1,1440	957,90	41,45	0,7400	117,66	-3,21
500	300	157	1,2741	0,7602	0,9830	968,57	10,67	0,2688	160,40	-2,17
700	300	193	1,3043	0,7493	0,9470	977,31	8,74	0,2562	201,14	-4,22
900	300	231	1,3282	0,7417	0,9110	985,13	7,81	0,2377	238,94	-3,44
1100	300	267	1,3439	0,7384	0,8780	992,34	7,21	0,2280	275,19	-3,07
1300	300	307	1,356	0,7375	0,8780	1000,05	7,71	0,2531	315,44	-2,75
1440	300	329	1,3636	0,7361	-	1003,75	3,70	0,1213	334,73	-1,74

P (psim)	T (°F)	Rsd (PCN/BN)	Bod (BY/BN)	Bg(BY/MPCN)	dBod/dP	Bg*dRs/dP	Diferencia
0	60	0	1,0000				
0	300	0	1,0960	254,7534			
300	300	114	1,2408	12,3462	4,83E-04	4,69E-03	Aceptable
500	300	157	1,2741	7,397	1,67E-04	1,59E-03	Aceptable
700	300	193	1,3043	5,2376	1,51E-04	9,43E-04	Aceptable
900	300	231	1,3282	4,0563	1,20E-04	7,71E-04	Aceptable
1100	300	267	1,3439	3,3361	7,85E-05	6,00E-04	Aceptable
1300	300	307	1,356	2,8458	6,05E-05	5,69E-04	Aceptable
1440	300	329	1,3636				

Tabla 40. Prueba de desigualdad para el fluido A8

Tabla 41. Factores de correlación para cada fluido obtenidos de la prueba ECC

Fluido	Factor de correlación (r ²)	Criterio de aceptación
A1	0,9994	Aceptable
A2	0,9494	Mejorable
A3	0,9987	Aceptable
A4	0,9840	Mejorable
A5	0,9916	Aceptable
A6	0,9973	Aceptable
A7	0,9945	Aceptable
A8	0,9950	Aceptable
A9	0,9872	Aceptable
A10	0,9963	Aceptable
A11	0,9989	Aceptable
A12	0,9938	Aceptable