TRABAJO ESPECIAL DE GRADO

HERRAMIENTA COMPUTACIONAL PARA EL ESTUDIO DEL COMPORTAMIENTO DEL FLUJO MULTIFÁSICO CON TRANSFERENCIA DE CALOR EN LÍNEAS DE FLUJO

Presentado ante la Ilustre Universidad Central de Venezuela Por los Brs. Romero A., Alejandro J. Salazar P., Dimas B. Para optar al Título de Ingeniero de Petróleo

Caracas; Julio 2007

TRABAJO ESPECIAL DE GRADO

HERRAMIENTA COMPUTACIONAL PARA EL ESTUDIO DEL COMPORTAMIENTO DEL FLUJO MULTIFÁSICO CON TRANSFERENCIA DE CALOR EN LÍNEAS DE FLUJO

TUTOR ACADÉMICO: Ing. Sandro Gasbarri

Presentado ante la Ilustre Universidad Central de Venezuela Por los Brs. Romero A., Alejandro J. Salazar P., Dimas B. Para optar al Título de Ingeniero de Petróleo

Caracas, Junio 2007

Caracas, Julio 2007

Los abajo firmantes, miembros del Jurado designado por el Consejo de Escuela de Ingeniería de Petróleo, para evaluar el Trabajo Especial de Grado presentado por los Bachilleres Romero A., Alejandro J. y Salazar P., Dimas B. titulado:

"HERRAMIENTA COMPUTACIONAL PARA EL ESTUDIO DEL COMPORTAMIENTO DEL FLUJO MULTIFÁSICO CON TRANSFERENCIA DE CALOR EN LÍNEAS DE FLUJO"

Consideran que el mismo cumple con los requisitos exigidos por el plan de estudios conducente al Título de Ingeniero de Petróleo, y sin que ello signifique que se hacen solidarios con las ideas expuestas por los autores, los declaran APROBADO.

Prot ve

Jurado

Prof. Lisbeth Miranda

Jurado

Prof. Sandro Gasbarri Tutor Académico

A mis Padres Fernando Romero y Laura Alarcón de Romero A mi primo Juan Calos Paiva †

Alejandro J. Romero A.

A mi Abuela María Fuentes de Salazar A mi tía Eudis María Salazar †

Dimas Salazar

A Dios Todopoderoso, soy porque tu así lo quieres.

A la **Ilustre Universidad Central de Venezuela,** por ser parte de mi formación como profesional. Y a la Facultad de Ingeniería, **Escuela de Petróleo**, por brindarme la oportunidad de crecer como ingeniero de petróleo

A mi tutor académico **Prof. Sandro Gasbarri**, gracias por su asesoramiento y revisiones prestadas para la culminación de este proyecto.

A mis Padres **Fernando Romero Mazzeo** y **Laura Alarcon de Romero**, Gracias por todo, por el apoyo que me brindaron, por las ganas de que su hijo sea un persona brillante en la vida, porque sé que mi corazón la heredé de ustedes y porque son los mejores padres del mundo, GRACIAS!

A mis Hermanos **Fernando**, **Laura**, **Lorena** y **Alfredo** por ser mi ejemplo mas tácito de lo que se debe ser en la vida, y por mostrar cada uno el lado bueno de las cosa.

A mi primo **Juan Carlos** siempre llevo tu ejemplo de lo sencillo de la vida, y que todo se puede lograr con una sonrisa.

A mi gran compañero de tesis, **Dimas Salazar** por su paciencia y buen ojo clínico, para detectar problemas y tener soluciones instantáneas.

Al Prof. Carlos Gil por su ayuda prestada para el desarrollo en el área de PVT.

A mis amigas **Joanna Infante**, **Mariana Barbera** y **Gabriella Sosa**, por compartir todos los momentos y ser un verdadero punto de apoyo. Gracias por estar pendiente de mí.

A mi gente del laboratorio de Simulación, Luis, Feldriana, Aliosha, Juan, Martha, Miriam, Gustavo y Marino por aportar cada uno un poco de su conocimiento y algo al tomo que presentamos

Alejandro J. Romero A.

A Dios Todopoderoso, porque sin su bendición nada de esto hubiese sido posible.

A toda mi familia, en especial a mi abuela **María Fuentes de Salazar**, por todo el apoyo que me brindaron, y por que gracias a ustedes soy quien soy hoy día y me siento muy orgulloso de ello.

A **Nairoby Hidalgo**, por soportar junto a mi los momentos de alégrías y tristezas que has surgido a raiz de este trabajo y por ser un gran apoyo en estos momentos importantes de mi vida.

A mi compañero de tesis, **Alejandro Romero**, por haber compartido esta maravillosa experiencia y haber enfrentado todos los incovenientes con una sabia sonrisa.

A los amigos del laboratorio de Simulación, Aliosha, Feldriana, Gabriela, Martha, Miriam, Luis, Juan, Gustavo y Marino por ser parte grata de esta experiencia y por los aportes que hicieron al presente trabajo.

A mi amiga **Angie**, gracias por el diseño de la pantalla de inicio y por el apoyo.

A todos mis amigos por haber vivido junto a mi toda esta gran experiencia que ha sido mi carrera y mi vida laboral, pues de cada uno de ustedes aprendí algo importante que me acompañará el resto de mi vida.

A mi tutor académico **Prof. Sandro Gasbarri**, por sus ideas oportunas y asesoramiento, y por todas las revisiones realizadas, ¡gracias!

Al Prof. Carlos Gil por el apoyo y asesoría en el desarrollo en del módulo de PVT.

A la **Ilustre Universidad Central de Venezuela,** porque en ella aprendí no sólo a ser un gran profesional sino también a ser mas humano, y a aceptar que en el mundo a pesar de nuestras diferencias podemos lograr grandes cosas si nos lo proponemos seriamente.

A todas aquellas personas que de una u otra manera colaboraron con mi carrera y con este trabajo pero que lastimosamente no he mencionado, ¡GRACIAS!

Dimas Salazar

Romero A., Alejandro J. Salazar P., Dimas B.

HERRAMIENTA COMPUTACIONAL PARA EL ESTUDIO DEL COMPORTAMIENTO DEL FLUJO MULTIFÁSICO CON TRANSFERENCIA DE CALOR EN LÍNEAS DE FLUJO

Tutor Académico: Prof. Sandro Gasbarri.

Tesis. Ciudad, U.C.V. Facultad de Ingeniería. Escuela de Ingeniería de Petróleo. Año 2007, nº 102.

Palabras Claves: Flujo Multifásico, Líneas De Flujo, Transferencia de Calor, Gradiente de Presión, Simulación, Diluentes.

Resumen. El presente trabajo especial de grado nace de las líneas de investigación de la Escuela de Ingeniería de Petróleo en el área de flujo multifásico, mediante la creación de una herramienta computacional que permita pronosticar de manera confiable las condiciones a través de una línea de flujo, y a su vez complementar las investigaciones anteriores en la misma área, pero enfocadas a la tubería de producción.

En principio se hizo una revisión bibliográfica sobre las distintas correlaciones de flujo multifásico existentes y transferencia de calor, a partir de las cuales se programó la herramienta computacional. Como lenguaje de programación, se utilizó Borland Delphi 7.0, escogido principalmente por su fácil manejo. La metodología desarrollada en la elaboración de la herramienta computacional, AFM, permitió la creación de dos módulos principales: uno de pérdida de presión, y otro de transferencia de calor. Para la validación de cada uno de estos módulos, se realizaron un conjunto de sensibilidades en donde se establecieron los parámetros más influyentes sobre la presión y la temperatura de salida, variables resultantes de la simulación con el Analizador de Flujo Multifásico aquí desarrollado. Asimismo, la herramienta aquí desarrollada, se comparó con un simulador comercial con la finalidad de validar el módulo de transferencia de calor.

El diseño estuvo basado en una investigación exhaustiva de los modelos utilizados para predecir el gradiente de presión y la transferencia de calor en las tuberías. Adicionalmente se incluye la posibilidad de realizar estudios de inyección de diluentes y el efecto de la radiación solar en la transferencia de calor. Esta

herramienta permitirá modelar el análisis PVT a condiciones "*in situ*", pronosticar, los efectos y configuraciones de flujo que ocurren en la tubería.

La evaluación de las metodologías propuestas para cada caso y la construcción de diversos Diagramas de Tornado, permitió concluir que la inclinación y el diámetro interno de la tubería, son los parámetros que más influyen en la presión de salida de la línea de flujo.

ÍNDICE GENERAL

INTRODUCCIÓN1
CAPITULO I. PLANTEAMIENTO DEL PROBLEMA
1.1. Problema
1.2. Objetivos y Alcance del Trabajo
1.2.1. Objetivo General
1.2.2. Objetivos Específicos
1.3. Justificación
1.4. Alcance
CAPITULO II. FUNDAMENTOS TEÓRICOS 4
2.1. Simulación
2.1.1. Etapas de un Estudio de Simulación
2.1.2. Modelos de Simulación
2.2. Gradientes de presión en tuberías7
2.2.1. Cálculo de pérdidas de presión, según Beggs y Brill7
2.3. Transferencia de Calor
2.3.1. Transferencia de Calor por Convección
2.3.1.1. Flujo Distribuido
2.3.1.2. Flujo segregado
2.3.1.3. Flujo intermitente
2.3.1.4. Flujo transitorio
2.3.2. Transferencia de Calor por Radiación 19
2.3.2.1. Radiación Solar
2.4. Inyección de Diluentes para Disminuir Caídas de Presión en
crudos pesados
CAPITULO III. METODOLOGÍA
3.1. Revisión Bibliográfica

3.2. Revisión y Evaluación de Correlaciones y Modelos	28
3.3. Selección de las Correlaciones	29
3.4. Programación de la Herramienta Computacional	30
3.5. Verificación y Validación de la Herramienta	33
3.5.1. Validación con datos experimentales	34
3.5.2. Validación con herramientas comerciales	35
3.6. Análisis de Resultados	35
3.6.1. Análisis de los parámetros de perdida de presión	у
transferencia de calor por convección:	35
3.6.2. Análisis en crudos pesados mediante el aporte	de
radiación y la inyección de diluentes	36
CAPÍTULO IV. DESCRIPCIÓN DE LA HERRAMIENTA	38
4.1. Requerimiento del Sistema	38
4.2. Descripción de "AFM versión 1.0"	39
4.3. Validación de AFM	46
4.3.1. Validación del módulo de Pérdida de Presión	46
4.3.1. Validación del módulo de transferencia de calor p	or
convección	48
CAPÍTULO V	50
ANÁLISIS PARAMÉTRICOS	50
5.1 Análisis de los parámetros de pérdida de presión	у
transferencia de calor por convección:	50
5.1.1 Sensibilidad a la presión de salida.	50
Régimen de flujo segregado	50
Régimen de Flujo Intermitente	52
Régimen de Flujo Distribuido	54
5.1.2 Sensibilidad a la temperatura de salida	56
Régimen de Flujo Segregado	56
Régimen de flujo Distribuido	57
Régimen de flujo Intermitente	58

5.2 Análisis del aporte de la radiación y la inyección de
diluentes sobre la presión de salida59
Efectos de radiación 59
Efectos de los diluentes sobre crudos pesados y
extrapesados60
CONCLUSIONES
RECOMENDACIONES
REFERENCIAS BIBLIOGRÁFICAS
NOMENCLATURA
GLOSARIO
ANEXO A. Revisión del estado del arte en flujo multifásico y transferencia
de calor
ANEXO B. Conceptos Básicos
ANEXO C. Correlaciones PVT
ANEXO D. Predictor de Temperaturas
ANEXO E. Datos de Validación y Resultados del análisis Paramétrico

ÍNDICE DE FIGURAS

	Pag.
Figura 2.1: Ejemplos de Simulación	4
Figura 2. 2: Patrones de Flujo	9
Figura 2.3: Transmisión de Calor por Convección	14
Figura 2. 4: Mapas de Flujo Beggs y Brill (Modificado por los autores)	19
Figura 2 5: Espectro de Frecuencias	20
Figura 3.1: Esquema de Metodología de Trabajo	27
Figura 3. 2: Diagrama de Flujo de la Herramienta desarrollada	31
Figura 4.1: Icono de Acceso	39
Figura 4. 2: Pantalla de Inicio	39
Figura 4.3: Pantalla Principal	40
Figura 4.4: Menú Archivo	40
Figura 4.5: Ventana de Problema	41
Figura 4.6: Pestaña Datos Generales	41
Figura 4.7: Pestaña Petróleo, Gas, Agua y Diluente	42
Figura 4.8: Pestaña Linea de Flujo – Sección Recta	42
Figura 4.9: Botón "Resolver"	43
Figura 4. 10: Culminación del cálculo	43
Figura 4. 11: Tabla de Resultados	44
Figura 4. 12: Sección principal del reporte de Datos exportados a Excel	45
Figura 4. 13: Reporte de resultados en tablas exportadas a Excel	45
Figura 4. 14: Ejemplo de las gráficas obtenidas en AFM	46
Figura 5.1: Presión de Salida – Flujo Segregado	50
Figura 5.2: Presión de Salida – Flujo Intermitente.	53
Figura 5.3: Presión de Salida – flujo Distribuido	54
Figura 5.4: Temperatura de Salida- Flujo Segregado	57
Figura 5.5: Temperatura de Salida – Flujo Distribuido	58
Figura 5.6: Temperatura de Salida – Flujo Intermitente	59

Figura 5.7: Sensibilidad de presión de salida para diferentes diluentes.	61
Figura 5.8: Efecto del porcentaje de diluentes en la presión de salida de la tubería.	62
Figura B. 1: Tipos de Flujo	85
Figura B. 2: Diagrama de Baker 1954	86
Figura B. 3: Diagrama de Madhane, Gregory Aziz 1974	86
Figura D 1: Utilización del solver de Excel, para la distribución de temperaturas	98
Figura D 2: Distribución de Temperaturas en la ciudad de Caracas	98

ÍNDICE DE TABLAS

Pag.
Tabla 2 1: Constantes para el cálculo de H(0)10
Tabla 2 2: Constante para el cálculo de C
Tabla 2. 3: Constantes para el cálculo de la transmitancia 23
Tabla 3. 1: Datos Experimentales para validar la pérdida de presión
Tabla 3. 2: Datos base para la construcción del Diagrama de Tornado
Tabla 3. 3: Datos base para la opción de Radiación y de inyección de diluentes37
Tabla 4. 1: Resultados AFM vs datos experimentales sin transferencia de Calor 47
Tabla 5. 1: Sensibilidad de presión y temperatura a diferentes horas del día
Tabla C. 1: Rango requerido de los datos para emplear las correlaciones de
Standing
Tabla C. 2: Rango requerido de los datos para emplear las correlaciones de Beggs
y Robinson
Tabla C. 3: Valores de los coeficientes a ₁ , a ₂ , a ₃ correspondientes a cada A _i , Ec
B15-B16
Tabla C. 4: Rango de aplicación de la correlación de Lee, A.L., González, M.H y
Eakin, B.E
Tabla E.1: Datos Experimentales
Tabla E.1: Datos Experimentales (Continuación) 100
Tabla E.2: Datos Bases 101
Tabla E.3: Resultados de las simulaciones en AFM
Tabla E.4: Diferencias en las simulaciones entre AFM y el caso base
Tabla E.5: Diferencias en porcentaje entre AFM respecto el caso base

INTRODUCCIÓN

Durante los últimos 60 años numerosos autores se han dedicado al estudio del comportamiento de flujo multifásico en tuberías. Como resultado de estos trabajos se han identificado diversos patrones de flujo que dependen fundamentalmente de las velocidades y las propiedades físicas de los fluidos. Con la inclusión de estos parámetros se ha podido determinar con mayor exactitud las pérdidas de presión.

Es importante resaltar que las propiedades de los fluidos varían no solo con la presión sino también con la temperatura, por lo cual, el no incluir los fenómenos térmicos puede originar errores en la predicción del comportamiento del flujo, especialmente en los crudos pesados en los cuales se generan variaciones considerables de la viscosidad. En este caso se hace indispensable incluir el efecto de la inyección de diluentes para aumentar la movilidad del crudo.

Realizar un cálculo preciso que incluya ambos efectos implica cálculos iterativos y complejos, lo cual hace recomendable la automatización de estos. La mejor opción es el desarrollo de una herramienta computacional que facilite al ingeniero el estudio del comportamiento de los fluidos en la línea de flujo.

En el siguiente trabajo se presentó una revisión de la metodología utilizada para el estudio del comportamiento del flujo multifásico en las líneas de flujo, incorporando los efectos de la transferencia de calor. Se incluyó también, la metodología utilizada para el desarrollo de una herramienta computacional que contenga los puntos antes mencionados.

Para la caracterización de pérdida de presión se utilizó el modelo de Beggs y Brill (1991), Inyección de Diluentes por Argiller et al (2005), Transferencia de calor por convección Zhang et al (2004) y radiación por Hottel (1976), sin embargo, es importante recalcar que no existe un método de predicción robusto para todas las posibles condiciones de operación en sistemas multifásico.

CAPITULO I

PLANTEAMIENTO DEL PROBLEMA

1.1. Problema

Desarrollar la línea de investigación de la Universidad Central de Venezuela, en el área de flujo multifásico, mediante la creación de una herramienta computacional que permita pronosticar de manera confiable las condiciones a través de una línea de flujo, y a su vez complementar las investigaciones anteriores en la misma área, pero enfocadas a la tubería de producción.

1.2. Objetivos y Alcance del Trabajo

1.2.1. Objetivo General

Desarrollar una aplicación para pronosticar e identificar el comportamiento del flujo multifásico en líneas de flujo, tomando en cuenta la transferencia de calor.

1.2.2. Objetivos Específicos

- Estudiar el estado del arte de correlaciones de flujo multifásico y transferencia de calor en líneas de flujo.
- Estudiar el efecto de las irregularidades del terreno en el trayecto de la tubería.
- Incorporar el efecto de inyección de diluentes en la entrada de la línea.
- Modelar la variación de temperaturas en las principales ciudades productoras de Venezuela.
- Desarrollar un algoritmo de solución simultanea de caídas de presión, transferencia de calor y patrones de flujo.
- Realizar un análisis de sensibilidades para los principales parámetros: temperatura y presión a la entrada de la línea, temperatura ambiente, tasa de gas, tasa de líquido, gravedad API, gravedad específica del gas; longitud, diámetros

e inclinación de tubería, número de divisiones a segmentar la tubería, diluentes y radiación.

1.3. Justificación

Dado que no existe un método de predicción robusto para todas las posibles condiciones de operación en sistemas multifásicos, se hace necesaria la creación de un sistema que se adapte a los requerimientos particulares de los campos venezolanos que las herramientas comerciales no poseen.

1.4. Alcance

- Factores que determinan los regímenes de flujo.
- Estimación de fracción liquida en la línea de flujo, "hold up".
- Determinación de los regímenes de flujo a lo largo de la tubería.
- Pronóstico de temperatura, para cualquier parte de Venezuela.
- Obtener la transferencia de calor por convección y radiación.
- Incluir las irregularidades del terreno en el trayecto de la tubería.
- Efectos de inyección de diluentes, para crudo pesado.
- Obtención las caídas de presión.
- Análisis de sensibilidades de los factores que afectan el flujo.

CAPITULO II

FUNDAMENTOS TEÓRICOS

2.1.Simulación^[36]

La simulación es reproducir el ambiente y las variables (rasgos, apariencia, características, contexto) de un sistema real. Es imitar una situación del mundo real en forma matemática. Thomas H. Naylor y R. Bustamante la definen así: "Simulación es una técnica numérica para conducir experimentos en una computadora digital. Estos experimentos comprenden ciertos tipos de relaciones matemáticas y lógicas, las cuales son necesarias para describir el comportamiento y la estructura de sistemas complejos del mundo real a través de largos periodos de tiempo". En la Figura 2.1 podemos observar algunos ejemplos de simulación.

Figura 2.1: Ejemplos de Simulación

2.1.1. Etapas de un Estudio de Simulación ^{[36],[37],[38]}

Definición del sistema: Para tener una definición exacta del sistema que se desea simular, es necesario hacer primeramente un análisis preliminar del mismo, con el fin de determinar la interacción con otros sistemas, las restricciones del sistema, las variables que interactúan dentro del sistema y sus interrelaciones, las medidas de

efectividad que se van a utilizar para definir y estudiar el sistema y los resultados que se esperan obtener del estudio.

Formulación del modelo: Una vez definidos con exactitud los resultados que se esperan obtener del estudio, se define y construye el modelo con el cual se obtendrán los resultados deseados. En la formulación del modelo es necesario definir todas las variables que forman parte de él, sus relaciones lógicas y los diagramas de flujo que describan en forma completa el modelo.

Colección de datos: Es importante que se definan con claridad y exactitud los datos que el modelo va a requerir para producir los resultados deseados.

Implementación del modelo en la computadora: Con el modelo definido, el siguiente paso es decidir si se utiliza algún lenguaje como el fortran, algol, lisp, etc., o se utiliza algún paquete como GPSS, simula, simscript, etc., para procesarlo en la computadora y obtener los resultados deseados.

Validación: A través de esta etapa es posible detallar deficiencias en la formulación del modelo o en los datos alimentados al modelo. Las formas más comunes de validar un modelo son:

- La opinión de expertos sobre los resultados de la simulación.
- La exactitud con que se predicen datos históricos.
- La exactitud en la predicción del futuro.
- La comprobación de falla del modelo de simulación al utilizar datos que hacen fallar al sistema real.
- La aceptación y confianza en el modelo de la persona que hará uso de los resultados que arroje el experimento de simulación.

Experimentación: La experimentación con el modelo se realiza después que éste haya sido validado. La experimentación consiste en generar los datos deseados y en realizar un análisis de sensibilidad de los índices requeridos.

Interpretación: En esta etapa del estudio, se interpretan los resultados que arroja la simulación y con base a esto se toma una decisión. Es obvio que los resultados que se obtienen de un estudio de simulación ayuda a soportar decisiones del tipo semiestructurado.

Documentación: Dos tipos de documentación son requeridos para hacer un mejor uso del modelo de simulación. La primera se refiere a la documentación del tipo técnico y la segunda se refiere al manual del usuario, con el cual se facilita la interacción y el uso del modelo desarrollado.

2.1.2. Modelos de Simulación ^{[5],[21]}

Un modelo es un patrón, plan, representación o descripción diseñada para mostrar la estructura de un objeto, sistema o concepto. Existen diversos tipos de modelos, entre los cuales podemos mencionar los modelos empíricos y mecanicistas.

Los modelos empíricos son modelos que nacen de los datos obtenidos de instalaciones de prueba de laboratorio, tales como: características físicas del gas y el líquido, caudales volumétricos de las fases, las presiones de entrada y salida de la tubería, el diámetro y la inclinación, etc. Los datos de campo también son incorporados a veces en el sistema.

Los modelos mecanicistas, también llamados heurísticos, son modelos mecánicos que toman en consideración los mecanismos físicos implicados en los procesos. Para lograr estos modelos se requiere un acercamiento experimental y teórico colectivo, haciendo uso de instalaciones sofisticadas para la medida de variables cruciales. Existe un tercer tipo de modelo correspondiente a los modelos unificados, los cuales toman lo mejor de los modelos empíricos y heurísticos, dándole mayor aplicabilidad en comparación con los modelos anteriores usado por separados.

2.2. Gradientes de presión en tuberías^[6]

Es la variación de la presión por unidad de longitud. Para el caso de flujo de fluidos en tuberías existen 3 tipos de gradientes de presión, los cuales son:

Gradiente de presión por fricción: es debida a los esfuerzos cortantes desarrollados en la pared de la tubería por causa de la viscosidad de los fluidos.

Gradiente de presión por gravedad: depende esencialmente de la densidad de la mezcla, y es debida a los cambios de elevaciones y la acción de la gravedad.

Gradiente de presión por aceleración: es debido a que la energía cinética del fluido se incrementa cuando el fluido acelera.

Entre los factores que afectan el gradiente de presión podemos encontrar los siguientes ^{[11],[4]}:

- Propiedades hidrodinámicas de los fluidos
- Diámetro de la tubería
- Velocidad superficial del las fases.
- La velocidad de la mezcla:
- Fracción Volumétrica sin deslizamiento.
- Patrones de flujo.

Para mayor información sobre estos factores, consultar los anexos B y C.

2.2.1. Cálculo de pérdidas de presión, según Beggs y Brill^{[4][5][12][18][20]}

En flujo multifásico, se han desarrollado gran cantidad de correlaciones para flujo horizontal, vertical e inclinado. Las correlaciones de Beggs y Brill (1991), son de las pocas correlaciones publicadas capaces de manejar una gran gama de condiciones de flujo que se pueden encontrar en operaciones petróleo y gas, tales como flujo ascendente, en declive, horizontal, inclinado y vertical. Esta correlación fue desarrollada con datos experimentales obtenidos en un banco de prueba de escala pequeña, el cual consistía en el uso de tubería de diámetros de una a una y media pulgada, y de 90 pies de lago, la cual podía variarse la inclinación a cualquier ángulo. Los fluidos utilizados para el estudio fueron agua y aire.

En este modelo el primer paso es determinar el patrón apropiado del flujo (segregado, intermitente, distribuido o transitorio), mediante la combinación particular de la fracción liquida sin deslizamiento y el numero de Froud. Esta metodología comienza con el cálculo de las velocidades de flujo de cada una de las fases:

$$V_{SG} = \frac{Q_G}{A} \tag{Ec 2.1}$$

$$V_{SL} = \frac{Q_L}{A}$$
(Ec 2.2)

Donde Q_L y Q_G son las tasas volumétricas a condiciones de presión y temperatura en el punto:

$$Q_G = (Q_{Gsc} - Q_{Lsc} * R_S) * B_G$$
 (Ec 2.3)

$$Q_o = Q_{Osc} * B_o \tag{Ec 2.4}$$

Donde:

 B_o , B_G y R_s son las propiedades PVT de los fluidos (Ver Anexo C)

La velocidad de la mezcla: es la suma de las velocidades superficiales.

$$V_M = V_{SL} + V_{SG} \tag{Ec 2.5}$$

Fracción Volumétrica sin deslizamiento: es la relación entre el caudal de líquido y el caudal total en la tubería, no se considera deslizamiento.

$$\lambda_L = \frac{Q_L}{Q_L + Q_G} \tag{Ec 2.6}$$

Se calculan las constantes L para determinar el tipo de flujo mediante las siguientes ecuaciones:

$L_1 = 316 * \lambda_l^{0.302}$	(Ec. 2.7)
$L_2 = 0.0009252 * \lambda_l^{-2.4684}$	(Ec. 2.8)
$L_3 = 0.1 * \lambda_l^{-1.4516}$	(Ec. 2.9)
$L_4 = 0.5 * \lambda_l^{-6.738}$	(Ec. 2.10)

Se define el tipo de flujo dependiendo del rango en que se encuentren el número de Froude y la fracción liquida sin deslizamiento:

Beggs y Brill (1973) sugieren Cuatro grandes grupos de tipos básicos de flujo, definidos en el Anexo B:

Figura 2. 2: Patrones de Flujo^[12]

Una vez calculado el tipo de flujo se procede a calcular el "*hold-up*" horizontal H(0), y luego, si la tubería esta inclinada , se corrige por inclinación.

$$H_{L}(0) = \frac{a * \lambda_{l}^{b}}{N_{Fr}^{c}}$$
(Ec. 2.11)

donde las constantes a, b y c dependen del régimen de flujo en que se encuentre, como se muestra en la Tabla 2.1:

Tipo de flujo	Α	В	С
Segregado	0.98	0.4846	0.0868
Intermitente	0.845	0.5351	0.0173
Distribuido	1.065	0.5824	0.0609

 Tabla 2 1: Constantes para el cálculo de H(0)
 [12],[18]

Para el flujo en estado transitorio, el "Hold up" se calcula de la siguiente manera:

$$H_{L}(0)_{Transitorio} = A * H_{L}(0)_{Segregado} + B * H_{L}(0)_{Intermitten te}$$
(Ec. 2.12)

donde:

$$A = \frac{L_3 - N_{Fr}}{L_3 - L_2}$$
(Ec. 2.13)

$$B = 1 - A$$
 (Ec. 2.14)

Cuando la tubería no se encuentra en posición horizontal se calcula el factor empírico P_{si} :

$$\Psi = 1 + C \left[\sin(1.8 * \theta) - \frac{1}{3} * \sin^3(1.8 * \theta) \right]$$
 (Ec. 2.15)

donde el valor de C depende del patrón de flujo en el que se encuentre y de la dirección (colina arriba o abajo) que posea el fluido.

El parámetro C se define como:

$$C = (1 - \lambda_{I})^{*} \ln(e^{*} \lambda_{I}^{f} * N_{Iv}^{g} * N_{Fr}^{h})$$
(Ec. 2.16)

Los valores de e, f, g y h se obtienen de la tabla 2.2:

	Tipo de flujo	Ε	F	G	Н
Colina	Segregado	0.011	-3.378	3.539	-1.614
Arriba	Intermitente	2.96	0.305	-0.4473	0.0978
(Subida)	Distribuido		$\Psi = 1$		
Colina abajo (bajada)	Todos los flujos	4.7	-0.3692	0.1244	-0.5056

Tabla 2 2: Constante para el cálculo de $C^{[4],[12],[18]}$

El "*hold up*" *corregido* se calcula por:

$$H_L(\theta) = H_L(0) * \Psi \tag{Ec. 2.17}$$

Se calcula el parámetro "y":

$$y = \frac{\lambda_l}{\left(H_l(\theta)\right)^2}$$
(Ec. 2.18)

Ahora bien, si 1 < y < 1.2, entonces:

$$S=ln(2.2y-1.2)$$
 (Ec. 2.19)

En caso contrario, S se calcula de la siguiente manera:

$$S = \frac{\ln(y)}{-0.523 + 3.182 \ln y - 0.8725 (\ln y)^2 + 0.01853 (\ln y)^4}$$
(Ec. 2.20)

El *factor de fricción* es calculado de la siguiente manera:

$$\frac{F_{tp}}{F_{ns}} = e^s \tag{Ec. 2.21}$$

Donde:

$$F_{ns} = \left[2\log(\frac{\text{Re}_{M}}{4.5223\log(\text{Re}_{M}) - 3.8215})\right]^{-2}$$
(Ec. 2.22)

Despejando de la Ec. 2.21, se calcula el Factor de Fricción mediante la siguiente expresión:

$$F_{tp} = e^{s} F_{ns}$$
 (Ec. 2.23)

El Gradiente de Presión Total, viene dado por:

$$\frac{dP}{dZ} = \frac{g \sin \phi [\rho_1 H_1 + \rho_g (1 - H_1]] + \frac{F_{tp} G_m v_m}{2d}}{1 - \frac{[\rho_1 H_1 + \rho_g (1 - H_1)] v_m v_{sg}}{P}}$$
(Ec. 2.24)

Gradiente de fricción:

$$\left(\frac{dp}{dZ}\right)_{fric} = \frac{f_{tp}G_m v_m}{2d}$$
(Ec. 2.25)

Gradiente de presión de gravedad

$$\left(\frac{dp}{dZ}\right)_{grav} = g * \left[\rho_1 H_1 + \rho_g (1 - H_1)\right] \sin \phi$$
 (Ec. 2.26)

Gradiente de presión por aceleración

$$\left(\frac{dp}{dZ}\right)_{ace} = -\frac{\rho_{tp}v_m v_{sg}}{p}\frac{dp}{dZ}$$
(Ec. 2.27)

En nuestro trabajo excluimos el termino de la constante gravitacional utilizado en la forma original del modelo de Beggs y Brill debido a que genera errores en el análisis dimensional.

2.3.Transferencia de Calor^[34]

Es el proceso por el cual tiene lugar el intercambio de energía. Siempre que exista un gradiente de temperatura en un sistema, o cuando se ponen en contacto dos sistemas a diferentes temperaturas, se transfiere energía.

Existen tres tipos de transmisión de calor:

Conducción ^{[33], [34]}: fue propuesta en 1822 por el científico francés J. B. J. Fourier. En los sólidos, la única forma de transferencia de calor es la conducción. Si se calienta un extremo de una varilla metálica, de forma que aumente su temperatura, el calor se transmite hasta el extremo más frío por conducción. No se comprende en su totalidad el mecanismo exacto de la conducción de calor en los sólidos, pero se cree que se debe, en parte, al movimiento de los electrones libres que transportan energía cuando existe una diferencia de temperatura. Esta teoría explica por qué los buenos conductores eléctricos también tienden a ser buenos conductores del calor.

Convección ^[34]: Si existe una diferencia de temperatura en el interior de un líquido o un gas, es casi seguro que se producirá un movimiento del fluido. Este movimiento transfiere calor de una parte del fluido a otra.

Radiación ^[33]: Es la energía emitida por la materia en forma de ondas electromagnéticas (o fotones), como resultado de los cambios en las configuraciones electrónicas de los átomos o moléculas. En lo que respecta a la transferencia de calor es de interés la radiación térmica o forma de radiación emitida por los cuerpos debido a su temperatura. La radiación térmica suele corresponder a la banda de frecuencias del infrarrojo.

Estos tres procesos pueden tener lugar simultáneamente y puede ocurrir que uno de los mecanismos predomine sobre los otros dos. En el presente Trabajo Especial de Grado, sólo se consideran los efectos de *Convección* y *Radiación*.

2.3.1. Transferencia de Calor por Convección ^{[10],[33]}

El calor por convección se calcula utilizando los modelos homogéneos deducidos por *Zhang et al*^[33]. A medida que los fluidos van fluyendo a través de la tubería y la temperatura del ambiente es mas fría que la de los fluidos, ocurre una baja de temperatura en los fluidos.

En la figura 2.3 se muestra un segmento de tubería **dl** de diámetro interno d_{id} por el cual corre un solo fluido con densidad ρ y calor específico C_p . T_{B1} es la temperatura de entrada y T_{B2} es la de salida, v es la velocidad del fluido y q es el flujo de calor al ambiente.

Figura 2.3: Transmisión de Calor por Convección^[10]

La pérdida de calor del fluido en el segmento de tubería es igual al calor transferido hacia ambiente.

El cálculo de la transferencia de calor por convección parte de la siguiente expresión:

$$(T_{B1} - T_{B2}) vA \rho c_p = q \pi d_i dl$$
 (Ec. 2.28)

Despejando los diferenciales de temperaturas y longitud, se obtiene:

$$\frac{\partial T_B}{\partial l} = -\frac{q \pi d_i}{v A \rho c_p}$$
(Ec. 2.29)

La transferencia de calor se define como:

$$q = U(T_B - T_O) \tag{Ec. 2.30}$$

Quedando:

$$\frac{\partial T_B}{\partial l} = -\frac{4U(T_B - T_O)}{d_i v \rho c_p}$$
(Ec. 2.31)

donde:

T_B Temperatura de los fluidos

T_O Temperatura del ambiente

Para resolver la ecuación anterior necesitamos conocer U, donde U es el coeficiente de transferencia de calor total y se define como:

$$U = \frac{1}{\frac{1}{h} + \frac{d_i}{2k_p} \ln \frac{d_o}{d_i} + \frac{d_i}{h_o d_o}}$$
(Ec. 2.32)

donde:

- d_o Diámetro externo
- h Coeficiente convectivo de transferencia de calor de los fluidos
- h_o Coeficiente convectivo de transferencia de calor del ambiente
- Kp Conductividad térmica de la tubería

Considerando flujo homogéneo, *el coeficiente convectivo de transferencia de calor bifásico de la mezcla*, se determina de la siguiente manera:

$$h_M = \frac{Nu_M * K_L}{d_I}$$
(Ec. 2.33)

donde:

Nu_m número bifásico de Nusselt

K_L conductividad térmica de mezcla

di diámetro interno de la tubería

El Número de Nusselt ^{[10],[34]} representa la relación que existe entre el calor transferido por convección a través del fluido y el que se transferiría si sólo existiese conducción. Para cada tipo de flujo tenemos correlaciones de número de Nusselt que modelan el fenómeno de manera más precisa y confiable. El desarrollo de la transferencia de calor es tratado como un modelo homogéneo, donde las propiedades físicas de los fluidos son calculados como mezcla, y son ajustados dependiendo del tipo de flujo. El cálculo de número de Nusselt depende directamente del valor del número de Reynolds.

2.3.1.1.Flujo Distribuido^[10]

En el flujo distribuido al menos una de las fases es continua, y la fase discontinua se comporta como pequeñas gotas o burbuja dependiendo del caso. Para valores de Reynolds menores de 2300 se considera flujo laminar y el número de Nusselt bifásico es una constante de acuerdo a **Shah** y **London**^[16]:

$$Nu_M = 3.657$$
 (Ec. 2.34)

Para flujo turbulento, o Reynolds mayor a 2300, se usa la correlación de Petukhof^[17]:

$$Nu_{M} = \frac{(\frac{F_{tp}}{2})^{*} \operatorname{Re}_{M}^{*} \operatorname{Pr}_{M}}{1.07 + 12.7 \sqrt{\frac{F_{tp}}{2}} (\operatorname{Pr}_{M}^{\frac{2}{3}} - 1)} (\frac{\mu_{l}}{\mu_{lw}})^{0.25}$$
(Ec. 2.35)

donde:

- Re_M número de Reynolds de la mezcla
- Pr_M número de Prat de la mezcla
- μ₁ viscosidad del líquido
- μ_{lw} viscosidad del líquido en contacto con la tubería

2.3.1.2.Flujo segregado^[10]

Para flujo segregado, ambas fases son continuas, por lo cual son tratadas separadamente. Dependiendo del número de Reynolds de cada una de las fases se hace uso de diversas ecuaciones, según el régimen de flujo (laminar ó turbulento).

Para el caso del gas y de acuerdo a **Shah** y **London** ^[26], para flujo laminar, el número de Nusselt es un valor constante

$$Nu_G = 3.657$$
 (Ec. 2.36)

Y para régimen turbulento, se utiliza la correlación de **Dittus** y **Boelter**^[17]:

$$Nu_{G} = 0.023 * \operatorname{Re}_{G}^{0.8} * \operatorname{Pr}_{G}^{0.3}$$
(Ec. 2.37)

donde:

 Re_G número de Reynolds del gas.

 Pr_G número de Prat del gas.

En el caso de líquido en flujo laminar, para calcular el Número de Nusselt se utiliza un promedio entre el valor máximo de Nusselt para líquido y el valor mínimo de gas, recomendados por **Zhang**^[10], el cual dependerá de la altura de fluido que ocupa en la tubería, y viene dado por la ecuación:

$$Nu_{M} = 3.657 + \frac{7.541 - 3.657}{0.5} (0.5 - \delta)$$
 (Ec. 2.38)

Y para flujo turbulento, se utiliza la correlación de **Petukhof**^[9]:

$$Nu_{M} = \frac{(\frac{F_{tp}}{2})^{*} \operatorname{Re}_{M}^{*} \operatorname{Pr}_{M}}{1.07 + 12.7 \sqrt{\frac{F_{tp}}{2}} (\operatorname{Pr}_{M}^{\frac{2}{3}} - 1)} (\frac{\mu_{l}}{\mu_{lw}})^{0.25}$$
(Ec. 2.39)

donde:

F_{tp} factor de fricción

Re_M número de Reynolds de la mezcla

- Pr_M número de Prat de la mezcla
- μ₁ viscosidad del líquido
- μ_{lw} viscosidad del líquido en contacto con la tubería

2.3.1.3.Flujo intermitente^[10]

En el flujo intermitente debido a la discontinuidad de la fase gaseosa, es el flujo más difícil de evaluar.

Para el número de Nusselt bifásico se trabaja con la correlación de **Kago**^[19], la cual tiene un buen comportamiento para números de Reynolds desde 300 hasta 300000 basado en la consideración que la transferencia de calor dependerá sólo del flujo líquido.

$$Nu_{M} = (0.021 \operatorname{Re}_{L}^{0.8} + 4.5) * \operatorname{Pr}_{L}^{\frac{1}{3}} (\frac{\mu_{L}}{\mu_{LW}})^{0.14} * (1 + 0.3e^{(-0.5*(Fr_{L}-2)^{2})})$$
(Ec. 2.40)

donde

F_{tp} factor de fricción

- Re₁ número de Reynolds del liquido
- Pr₁ número de Prat del liquido
- μ₁ viscosidad del líquido
- μ_{lw} viscosidad del líquido en contacto con la tubería
- Fr₁ número de Froud del liquido.

2.3.1.4.Flujo transitorio

En la actualidad no se ha desarrollado ninguna correlación para el cálculo de la transferencia de calor en flujo transitorio, sin embargo al revisar los mapas de flujo comparativos entre las correlaciones de Beggs y Brill de 1973 y las correlaciones corregidas de Beggs y Brill de 1991 (ver Figura 2.4), se puede observar que el flujo transitorio en su mayoría, corresponde a lo que otros autores denominan flujo segregado; por lo tanto se utilizará como aproximación para el caso de flujo transitorio las definiciones de flujo segregado.

Figura 2. 4: Mapas de Flujo Beggs y Brill^[41] (Modificado por los autores)

2.3.2. Transferencia de Calor por Radiación [34]

La transferencia de calor por radiación emitida por los cuerpos, es debido a su temperatura y suele corresponder a la banda de frecuencias de rayos infrarrojos.

La figura 2.5, muestra un espectro de frecuencia en donde se aprecia los diferentes tipos de ondas, observándose que los rayos infrarrojos son captados a frecuencias que oscilan entre 10^{12} y 10^{14} hertz.

Figura 2 5: Espectro de Frecuencias^[1]

2.3.2.1. Radiación Solar ^{[1] [7],[25],[31]}

Es la energía recibida desde el Sol. Al atravesar la atmósfera, la radiación solar, sufre fuertes variaciones como consecuencia del filtrado que las diferentes capas atmosféricas llevan a cabo debido a tres causas: la reflexión, la absorción y la difusión de la energía. Ejemplo de esto, es la reflexión que provoca el ozono en la mayor parte de la radiación de onda corta y la absorción de energía producida por los gases atmosféricos sobre todo el vapor de agua.

Por lo anteriormente mencionado, la radiación solar que llega a la superficie terrestre queda enmarcada en dos enunciados según haya sido su paso a través de la atmósfera:

- **Radiación solar directa:** es aquélla que alcanza un punto de la superficie terrestre sin haber sido absorbida o reflejada.
- Radiación solar difusa: es aquella que llega al nivel del suelo después de haber sido reflejada o re-radiada

Para poder calcular la radiación que incide directamente del sol, es necesario definir la ubicación geográfica, la posición del sol y la posición de la tubería con respecto al sol (ángulo cenital).

Angulo horario ^[25]: es el ángulo que se forma entre la proyección de los rayos solares en el plano ecuatorial y el meridiano local

$$\omega_{1} = \frac{(-\pi/2)*(h-12)}{h_{salida} - 12}$$
(Ec. 2.41)

$$\omega_{2} = \frac{(\pi/2)*(h-12)}{h_{puesta} - 12}$$
(Ec. 2.42)

Donde:

h	hora (entre la hora de salida del sol y las 12 m)
h _{salida}	hora de salida del sol
h _{puesta}	hora de puesta del sol

Declinación solar ^[23]: es el ángulo formado entre la dirección de los rayos solares y el polo norte.

$$\delta = 0.409279 * sen[2\pi(284+n)/365]$$
 (Ec. 2.43)

donde

n número del día del año (entre 1 - 365)

Latitud^[15]: coordenada geográfica del lugar en estudio.

Ángulo cenital ^[25]: Es el ángulo formado por la dirección de los rayos solares y la vertical

$$\cos\theta_{z} = sen\phi^{*}sen\delta + \cos\phi^{*}\cos\delta^{*}\cos\omega \qquad (Ec. 2.44)$$

donde:

- θ ángulo cenital
- δ declinación solar
- ω ángulo horario
Método de día claro de Hottel^[2]: se utiliza para la estimación de la irradiación solar directa. La ecuación empírica de Hottel, es válida hasta los 2.500 m de altura con una visibilidad de 23 Km, e incluye tres coeficientes cuyos valores dependen de la altitud del lugar y de cuatro posibles tipos de clima. En aquellas regiones donde no existe una marcada diferencia entre inviernos y veranos (latitudes entre el Ecuador y los Trópicos) puede seleccionarse el tipo de clima "*Tropical*". Entre los trópicos y los polos la diferenciación entre invierno y verano aumenta sustancialmente y deben emplearse las opciones "*Verano de Latitud Media*" e "*Invierno de Latitud Media*" según la época del año. Para latitudes próximas a los círculos polares puede emplearse el tipo de clima "*Verano Subártico*".

En su método, Hottel, hace uso de las correlaciones para la estimación de la radiación difusa propuestas por Lui y Jordan (1960). Estas correlaciones incluyen el cálculo de la transmitancia solar, de la siguiente manera:

$$\tau_b = a_0 + a_1 * e^{(\frac{-k}{\cos\theta z})}$$
 (Ec. 2.45)

Donde:

 θ_{z} ángulo cenital

", " a_0 ", " a_1 " y "k" valores ajustados empíricamente mediante las siguientes ecuaciones:

$$a_{0} = r_{0} [0.4237 - 0.00821(6 - A)^{2}]$$

$$a_{1} = r_{1} [0.5055 + 0.00595 * (6.5 - A)^{2}]$$

$$k = r_{1} [0.2711 - 0.01858 * (2.5 - A)^{2}]$$
(Ec. 2.46)
(Ec. 2.47)
(Ec. 2.47)

$$A \qquad \text{altura sobre el nivel del mar}$$
(Ec. 2.48)

Las constantes r_0 , r_1 , r_k dependen del tipo de clima y localización en la que se encuentre. El valor de cada una de ellas, se puede apreciar a continuación en la tabla 2.3.

Tipo de clima	r ₀	r_1	r_k
1: Tropical	0.95	0.98	1.02
2: Verano, Latitud media	0.97	0.99	1.02
3: Verano, sub - artico	0.99	0.99	1.01
4: Invierno	1.03	1.01	1.00

Siguiendo con lo propuesto por Lui y Jordan, se tiene el cálculo de la radiación extraterrestre, por medio de la siguiente expresión:

$$G_{ON} = G_{SC} \left(1 + 0.033 \cos \frac{2\pi}{365} n \right)$$
(Ec. 2.49)

Donde:

 G_{ON} irradiación extraterrestre G_{SC} constante solar = 442 BTU/hr/pie

Asimismo, las irradiancias directa y difusa para un día claro, sobre el plano horizontal, vienen dado por:

$$G_{CB} = \tau_b * G_{ON} * \cos \theta_Z \tag{Ec. 2.50}$$

$$G_{CD} = \tau_d * G_{ON} * \cos \theta_Z \tag{Ec. 2.51}$$

Finalmente, la irradiancia total, se define como la suma de las irradiancias directas y difusas:

$$G_T = G_{CB} + G_{CD} \tag{Ec. 2.52}$$

• *Coeficiente de radiación*^[25]:

Por definición el cálculo de radiación se realiza por medio de la expresión 2.53, en donde el primer término simboliza la radiación solar y el segundo, la radiación de la tubería hacia el ambiente:

$$h_{R} = \frac{G_{T} * A}{(T_{S} - T_{O})} - \sigma \varepsilon * \frac{(T_{S}^{4} - T_{O}^{4})}{(T_{S} - T_{O})}$$
(Ec. 2.53)

donde:

h_R	coeficiente de radiación
G _T	transmitancia total
А	área de incidencia del sol sobre la tubería
Ts	temperatura de la tubería

T_O temperatura del ambiente

Este coeficiente es afectado por el día y la noche, por lo que se anula cuando anochece.

• Coeficiente combinado de transferencia de calor^[34]:

El coeficiente combinado de transferencia de calor (h_T), viene dado por la suma entre los coeficientes de radiación (h_R) y convección (h_C), es decir:

$$h_T = h_R + h_C \tag{Ec. 2.54}$$

2.4. Inyección de Diluentes para Disminuir Caídas de Presión en crudos pesados^{[19], [30]}

Para la reducción de la viscosidad en crudos pesados y extrapesados, es común el uso de solventes para diluirlos, ya que es el método más eficiente para el transporte de los mismos a través de las líneas de flujo.

El incremento de la demanda y los avances en la tecnología para la producción de petróleo pesado, han impulsado al desarrollo estratégico de extracción de este tipo de hidrocarburo. Las más grandes reservas de crudos pesados y extrapesados de gravedad API de 8º a 12º, se encuentran en Alberta, Canadá y en la Faja del Orinoco, Venezuela. En Venezuela la viscosidad de esos hidrocarburos, se encuentra entre 1500 y 3000 cP a la temperatura de yacimiento, pero en superficie puede llegar a valores superiores a 100000 cP, con lo cual se hace difícil la producción, separación y transporte de este crudo. Muchos sistemas de líneas de flujo requieren que el crudo

sea deshidratado para obtener una especificación de 19 API y una viscosidad alrededor de 400 cP, por lo que el uso de diluentes se hace necesario.

Una de las técnicas para la dilución de hidrocarburos pesados y extrapesados, consiste en el uso de hidrocarburos más livianos. En Canadá, fue usada la mezcla con condensado hasta finales de lo años 80 con fines de facilitar su transporte. Otra de las opciones es diluir los crudos pesados usando crudos livianos, con gravedad API en el rango de 35 a 42. El petróleo liviano es menos eficiente para reducir la viscosidad en petróleo pesado que los condensados, pero ambos están sujetos a la compatibilidad con asfáltenos. La Nafta se muestra como una interesante alternativa de uso, debido a su elevada gravedad API, lo cual resulta muy eficiente en la dilución de crudos pesados. La Nafta muestra buena compatibilidad con asfáltenos y es muy fácil de reciclar. Este diluente agregado se puede recuperar en la torre de destilación de las refinerías y posteriormente puede ser reinyectado.

En el presente Trabajo Especial de Grado, el resultado de la viscosidad de la mezcla depende de la tasa de dilución, y de las respectivas viscosidades y densidades del crudo y el solvente. A continuación se presentan las correlaciones de Lederer^[28] para el cálculo de la viscosidad y el factor α .

$$\log \mu = \left(\frac{\alpha V_o}{\alpha V_o + V_s}\right) \log \mu_o + \left(1 - \frac{\alpha V_o}{\alpha V_o + V_s}\right) \log \mu_s$$
(Ec. 2.55)

donde:

- V_o fracción de de volumen de crudo
- V_s fracción de de volumen de solvente
- μ_o viscosidad de crudo
- μ_s viscosidad de solvente
- α constante empírica

La constante empírica (α), se calculó utilizando la siguiente expressión ^[19,30]:

$$\alpha = \frac{17.04(\rho_o - \rho_s)^{0.5237} \rho_o^{3.2745} \rho_s^{1.6316}}{\ln\left(\frac{\mu_o}{\mu_s}\right)}$$

donde:

 μ_o viscosidad de crudo

 μ_s viscosidad del solvente

 ρ_s densidad del solvente

 ρ_o densidad de crudo

Asimismo, la variación de la gravedad API de la mezcla, viene dada por:

$$\boldsymbol{\rho}_{M} = \left(\frac{V_{O}}{V_{O} + V_{S}}\right)\boldsymbol{\rho}_{O} + \left(1 - \frac{V_{O}}{V_{O} + V_{S}}\right)\boldsymbol{\rho}_{S}$$
(Ec. 2.57)

donde:

 ρ_s densidad del solvente

 ρ_o densidad de crudo

 V_o fracción de volumen de crudo

 V_s fracción de volumen de solvente

(Ec. 2.56)

CAPITULO III

METODOLOGÍA

La metodología del presente trabajo fue desarrollada de tal manera, que permitiera realizar un análisis detallado de los modelos existentes para el estudio del comportamiento del flujo multifásico, y facilitar así el desarrollo de la herramienta computacional que es el objetivo principal de este trabajo. En la siguiente figura se presenta la metodología aplicada en el desarrollo del trabajo.

Figura 3.1: Esquema de Metodología de Trabajo

A continuación se detallan cada una de las secciones señaladas en el esquema mostrado en la Figura 3.1.

3.1. Revisión Bibliográfica

Corresponde a la primera etapa en la realización de este trabajo, durante la cual se recopiló aquella información que permitiese profundizar temas relacionados con Flujo multifásico, transferencia de calor por convección y radiación, inyección de diluentes para crudos pesados, entre otros. En esta etapa se utilizaron diferentes textos, artículos técnicos, publicaciones especiales de investigación y otros Trabajos Especiales de Grado. Esta revisión bibliográfica se realizó con la finalidad de recopilar toda la información y el material necesario para la compresión de los fenómenos ocurridos a lo largo de la línea de flujo cuando transportan flujo multifásico.

3.2. Revisión y Evaluación de Correlaciones y Modelos

Una vez recopilada la información necesaria, se procedió a realizar un estado del arte de los modelos existentes para las pérdidas y transferencias de calor por convección. El método de evaluación de cada modelo encontrado, se llevó a cabo en función de los siguientes criterios:

- Correlaciones que han sido más utilizadas en los últimos años en la industria petrolera.
- Correlaciones que mantengan rangos de aplicación semejantes, para obtener mayor confiabilidad a la hora de conseguir los resultados.
- La disponibilidad por completo de las correlaciones, ya que en muchos casos, existen variables que no son de fácil acceso en los proceso de flujo multifásico.

3.3. Selección de las Correlaciones

Una vez realizada la evaluación de las correlaciones, tal como se indicó en la sección anterior, se seleccionaron aquellas que cumplen con un mínimo de requerimientos para modelar el flujo y que no interfieran con otras correlaciones cuando son ejecutadas.

Para el cálculo de pérdidas de presión en líneas de flujo, se seleccionó el modelo de *Beggs y Brill* ^[11] (1991), ya que éste mantiene una alta aplicabilidad para líneas de flujo, y permite tomar en cuenta las irregularidades en el terreno. Éste modelo ha sido utilizado desde su aparición en 1973 y su posterior corrección en el año 1991. Para la aplicación de este modelo, Beggs y Brill toman como única suposición el flujo homogéneo de fluidos a través de las tuberías.

En el caso del cálculo de inyección de diluentes en crudo pesados, fue seleccionado el modelo de *Agillier et al*^[1] (2005), en donde se realizaron estudios en la faja petrolífera del Orinoco, Venezuela. Este estudio proviene de los trabajo de Shu^[30] (1983) realizados en los campos ubicados en Boscán en el estado Zulia, Venezuela. Agillier en su trabajo considera una mezcla totalmente homogénea entre el diluyente y el crudo, y suponen que no ocurren reacciones químicas ni precipitaciones de componentes asfaltenos.

En el área de Pérdida de calor por convección fue elegido el modelo de *Zhang et al*^[33] (2004) ya que es un modelo unificado y los patrones de flujo utilizados son congruentes con los descritos en el modelo de Beggs y Brill, ya que Zhang no considera el efecto de la burbuja de Taylor, el efecto Joule Thompsom, ni la ocurrencia de reacciones químicas entre las fases, y supone flujo homogéneo. Adicionalmente, en el presente Trabajo Especial de Grado se toman como iguales las temperaturas del gas y del líquido entre sí a través del área transversal de la tubería.

Para el efecto de radiación se decidió realizar los cálculos utilizando el método del día claro de *Hottel*^[15] (1973). En esta investigación, y para este modelo, sólo es

tomado en cuenta el clima de tipo "tropical", dado a que es el tipo de clima que presenta Venezuela. Asimismo, este modelo fue escogido dada la simplicidad de los cálculos que conllevan su aplicación.

El modelo predictor de temperaturas se desarrolló a partir de *Sucre, Navarro y Correa*^[31], desarrollado en la Universidad Simón Bolívar en el año 2005. Este modelo consiste en el modelado del cambio de temperaturas en un día cualquiera y a partir de lo cual se puede conocer un aproximado de la temperatura real para un momento (hora del día) específico. El desarrollo de este modelo se encuentra en el **Anexo D**

Una vez escogidas todas las correlaciones, se procedió a desarrollar la herramienta computacional que servirá para el modelado del flujo multifásico y transferencia de calor en tuberías.

3.4. Programación de la Herramienta Computacional

La herramienta fue desarrollada a través del lenguaje de programación *Borland Delphi 7.0*, utilizando el concepto de programación orientada a eventos, permitiendo así al programador generar soluciones computacionales con los más altos estándares de calidad, sin descuidar las funcionalidades de la aplicación a programar.

Con la finalidad de establecer una metodología de trabajo en la programación de la herramienta, se planteó un diagrama de flujo para tener una idea de los pasos a seguir con el desarrollo de la programación, el cual se muestra en la Figura 3.2.

Figura 3. 2: Diagrama de Flujo de la Herramienta desarrollada

A continuación, se presenta el desarrollo del anterior diagrama de flujo.

1. Lectura de datos por parte del usuario. Este paso es descrito en detallo en el *Capítulo IV Descripción de la Herramienta*. En esta etapa el usuario debe introducir la cantidad de divisiones en las que se desea seccionar la tubería, así como la longitud total. Esto con la finalidad de realizar cálculos más precisos a todo lo largo de la línea de flujo.

2. *Inicio del Módulo de pérdidas de presión*. Cálculo de las propiedades PVT de los fluidos a partir de las condiciones actuales de presión de entrada. Las correlaciones PVT utilizadas en este módulo se encuentran en el *Anexo C*.

3. Cálculos de pérdidas de presión, según el modelo de Beggs y Brill, donde se obtiene como resultado una presión P₂.

4. *Modulo de decisión.* En caso de que la diferencia absoluta entre la presión P_2 y P_2 ' sea mayor a una tolerancia de 0.01, se repite el proceso iterativo desde el paso 2, esta vez tomando en cuenta la presión obtenida en el paso 3. En caso de ocurrir lo contrario, sigue el proceso iterativo y se *concluye el módulo de pérdidas de presión*.

5. *Inicio del Módulo de transferencia de calor*. Cálculo de las propiedades PVT de los fluidos a partir de las condiciones actuales de presión y temperatura.

6. Cálculo de la transferencia de calor por convección y radiación, utilizando el modelo de Zhang y Hottel respectivamente. Cálculo del coeficiente combinado de transferencia de calor y temperatura de salida.

7. *Modulo de decisión.* En caso de que la diferencia absoluta entre la temperatura T_2 (Temperatura de salida) y T_2 ' (Temperatura actual), sea mayor a una tolerancia de 0.01, se repite el proceso iterativo desde el paso 5, esta vez tomando en cuenta la temperatura obtenida en el paso 6. En caso de ocurrir lo contrario, sigue el proceso iterativo y se *concluye el módulo de transferencia de calor*.

8. *Módulo principal de decisión*. Aquí se toman en cuenta la presión y la temperatura resultantes de cada iteración en los módulos de caídas de presión y transferencia de calor. Es decir, se comparan los resultados de una iteración, con aquellos obtenidos en la iteración anterior. Por lo que, si la diferencia tanto de la presión, como de la temperatura, entre 2 iteraciones, son menores a una tolerancia de 0.01, se continúa con el paso siguiente y se toma estas últimas propiedades como los valores de P y T a la salida de la tubería. En caso contrario, se repite el proceso iterativo, con el recálculo del PVT en el paso 2.

9. Cálculo de las propiedades PVT a las condiciones de salida de la tubería.

10. Cálculos finales. En esta sección se calcula el tipo de flujo existente, la velocidad Media del flujo, las tasas de líquido y de gas, la densidad del líquido y del gas, Número de Reynolds, entre otros parámetros.

11. *Modulo de decisión de longitud de tubería*. Si la longitud de la sección acumulada de tubería en estudio es distinta a la longitud total de tubería, se procede a sumar un ΔL (correspondiente a la longitud de UNA sección) a la longitud acumulada y repetir el proceso iterativo desde el Paso 2. En caso contrario, se *concluye la simulación*.

Cuando se programan herramientas computacionales, se hace necesario corroborar la veracidad de los resultados obtenidos con datos experimentales. En esta dirección, una vez construida la herramienta anteriormente descrita, el siguiente paso en el presente Trabajo Especial de Grado, lo constituyó la validación y verificación de la herramienta computacional.

3.5. Verificación y Validación de la Herramienta

Parte necesaria en el desarrollo de un software, es validar y verificar que la nueva herramienta esté funcionando correctamente y que los resultados se aproximen a la realidad. En esta investigación, el proceso de validación de la herramienta consistió en la utilización de casos claves, con el fin de validar uno a uno los módulos que la comprenden. Para esto, se utilizaron dos metodologías: la validación con datos experimentales y la comparación de los resultados con la herramienta comercial PIPESIM®.

3.5.1. Validación con datos experimentales

En este caso, se validó el modelo de Beggs y Brill para la pérdida de presión, sin tomar en cuenta los procesos térmicos. Los datos utilizados fueron aquellos obtenidos por Baker^[3](1953); de los cuales se muestra un ejemplo a continuación, en la tabla 3.1. En el *Anexo E*, se muestran es su totalidad, los datos empleados en la validación de la pérdida de presión.

	Taxaa ahaa	1	r	-	r i		r
Parametros a medir	Corridas	1	2	3	4	5	6
Tasa de Gas	MSCFD	26970	25552	12050	11886	6474	4348
Tasa de Petroleo	Bbls/D	514	5484	4167	6592	4970	5420
Longitud de la linea	Ft	11317	11317	11317	11317	5534	11317
Diametro interno	Pulg	7,75	7,75	7,75	7,75	7,75	7,75
presion de entrada	Psig	983	1007	972	977	964	940
presion de salida	Psig	964	975	962	960	958	930
Gravedad espesifica del gas	s/U	0,59	0,59	0,59	0,59	0,59	0,59
Densidad de gas	Lbs/Ft3	3,42	3,48	3,38	3,32	3,38	3,28
Densidad del liquido	lbs/gal	6,499	6,499	6,525	6,499	6,53	6,103
Viscosidad del gas	cP	0,014	0,014	0,014	0,014	0,014	0,014
Viscosidad del liquido	сР	0,577	0,574	0,58	0,578	0,58	0,587
Tension superficial	Dynes/cm	16,7	16,7	16,7	16,7	16,7	16,7
Psi	s/u	4,27	4,27	4,27	4,27	4,27	4,5
lamda	s/u	7,62	7,7	7,58	7,58	7,58	7,71
Temperatura de la linea	₽F	75	80	69	78	66	82
Caida de presion	Psig	19	32	10	17	6	10
reynold gas	*1000 S/U	2840	2750	1268	1250	681	456,3
Reynolds Liquido	*1000 S/U	8,26	88,5	67	105,5	79,2	80,3
Flujo masico de gas	lbs/(hr*ft2)	155500	147307	69500	68500	37400	25000
Flujo masico de Liquido	lbs/(hr*ft2)	17850	191000	145000	228500	173000	177000
Tipo de Flujo	S/U	Anular	Anular	Anular	Slug	Slug	Slug

Tabla 3. 1. Datos Experimentales para validar la pérdida de presión^[3]

Los procesos de inyección de diluentes, así como el cálculo de transferencia de calor por radiación no se pudieron validar, debido a la falta de datos experimentales, por lo que se toman los resultados publicados en los diversos artículos técnicos^[1, 15] como valederos.

3.5.2. Validación con herramientas comerciales

Este procedimiento consistió en realizar las mismas simulaciones con datos experimentales, incluyendo la transferencia de calor por convección, con una herramienta comercial y el programa AFM aquí desarrollado, para luego obtener y comparar la desviación de los resultados de AFM con respecto a la herramienta comercial PIPESIM ®.

3.6. Análisis de Resultados

Dada la naturaleza de la herramienta desarrollada y con la finalidad de cumplir con los objetivos específicos planteados, se realizó un análisis de sensibilidad para las variables más importantes del modelo completo, observando de esta manera, la influencia directa de cada variable en las condiciones finales del flujo en la tubería.

Este proceso se llevo a cabo en dos partes:

3.6.1. Análisis de los parámetros de perdida de presión y transferencia de calor por convección:

Los parámetros tomados en cuenta para la sensibilidad fueron la presión de salida, la temperatura de salida y el cambio de patrón de flujo. Las variables analizadas en cada caso de sensibilidad fueron la temperatura y presión a la entrada, temperatura del ambiente, gravedad API del crudo, tasa de crudo, gravedad especifica de gas, tasa de gas, longitud y diámetro interno de tubería, inclinación de tubería, número de divisiones tomadas en la tubería y el patrón de flujo.

El procedimiento general utilizado para el análisis de cada variable, fue partir de un conjunto de datos para cada uno de los tres tipos de flujos a estudiar, mediante la aplicación de un *Diagrama de Tornado*. El análisis consistió en la variación de valor tras valor, manteniendo iguales los valores bases no sensibilizados. Cada una de las variables a analizar se aumentaron y disminuyeron en 20% respecto a su valor base, obteniendo así dos resultados para estas variables. Las variaciones, respecto al aumento y a la disminución, son comparadas porcentualmente con el resultado obtenido en el cálculo base. Mediante estos diagramas de tornado, se realizó un análisis de las influencias de las variables sobre el comportamiento del fluido en función al comportamiento de sus variables representativas. A continuación se muestra una tabla en donde se observa los datos base utilizados

Tabla 3. 2. Datos base para la construcción del Diagrama de Tornado

	Datos	base Distrib	uido		Datos ł	ase intermitente		Datos base Segregado				
	Variable	Min	Base	Max	Variable Min Base Max V		Variable	Min	Base	Max		
Caso 1	Temperatura	i 144	180	i 216	Temperatura	i 144	180	216	Temperatura	i 144	180	216
Caso 2	Temperatura ambiente	80	100	120	Temperatura ambiente	80	100	120	Temperatura ambiente	80	100	120
Caso 3	Presion	1600	2000	2400	Presion	800	1000	1200	Presion	1600	2000	2400
Caso 4	API	24	30	36	API	24	30	36	API	24	30	36
Caso 5	Tasa de Petroleo	8000	10000	12000	Tasa de Petroleo	4000	5000	6000	Tasa de Petroleo	160	200	240
Caso 6	Gravedad del Gas	0,52	0,65	0,78	Gravedad del Gas	0,52	0,65	0,78	Gravedad del Gas	0,52	0,65	0,78
Caso 7	Tasa de Gas	i 4000000	i 5000000	6000000	Tasa de Gas	i 4000000	5000000	6000000	Tasa de Gas	i 4000000	5000000	6000000
Caso 8	Longitud de Tuberia	1600	2000	2400	Longitud de Tuberia	8000	10000	12000	Longitud de Tuberia	1600	2000	2400
Caso 9	Inclinacion de tuberia	! 0	! 0	! 0	Inclinacion de tuberia	! 0	0	0	Inclinacion de tuberia	! 0	0	0
Caso 10	Diametro Interno	3,1664	3,958	4,7496	Diametro Interno	3,1664	3,958	4,7496	Diametro Interno	3,1664	3,958	4,7496
	Diametro Externo	3,6	4,5	5,4	Diametro Externo	3,6	4,5	5,4	Diametro Externo	3,6	4,5	5,4
Caso 11	Numero de Divisiones	8	10	12	Numero de Divisiones	8	10	12	Numero de Divisiones	8	10	12

3.6.2. Análisis en crudos pesados mediante el aporte de radiación y la inyección de diluentes

Este análisis fue realizado con datos de crudos pesados para demostrar la capacidad de estos parámetros en la disminución de las pérdidas de presión en la línea de flujo. Estos datos se presentan a continuación en la tabla 3.3.

Datos tomados	Diluentes	Radiación	
Temperatura a la entrada	80	100	
Presión a la entrada		120	
Temperatura del Ambiente	60	Pronosticador	
Gravedad API		12	
Tasa de crudo	250	150	
Calor especifico de crudo	(),45	
Conductividad térmica crudo	(),08	
Gravedad especifica Gas	0,65		
Tasa Gas	200000		
Calor especifico de gas	(),55	
conductividad térmica de gas	(),02	
Longitud de tubería	1000	2000	
Diámetro interno de tubería		2,5	
Diámetro externo		3	
Ángulo de inclinación		0	
Divisiones		10	

Tabla 3. 3. Datos base para las sensibilidades de Radiación y de inyección de diluentes

En el caso de radiación se realizaron sensibilidades a distintas hora del día teniendo activo el pronosticador de temperaturas, para observar el efecto de la temperatura en la pérdida de presión.

En la inyección de diluentes se realizaron sensibilidades para distintos tipos de diluentes y tasas de inyección, con el fin de verificar la disminución de la viscosidad y la pérdida de presión para cada uno de los diluentes.

CAPÍTULO IV

DESCRIPCIÓN DE LA HERRAMIENTA

La herramienta computacional tiene como nombre Analizador de Flujo Multifásico, AFM, y es diseñada para la simulación de los procesos que ocurren en la línea de flujo. La cantidad de fenómenos tomados en cuenta exigen una gran habilidad para programarlos, debido a que es necesario mantener la integridad de cada uno de los modelos y a su vez que funcionen entre sí.

Para la creación de AFM se utilizo el lenguaje de programación Delphi 7, debido que es la herramienta de programación visual más rápida, de mayor cantidad de recursos y de fácil manejo. También, como la definen sus creadores, Delphi se caracteriza por [39].

- La calidad del entorno de desarrollo visual.
- La velocidad del compilador frente a la eficiencia del código compilado.
- La potencia del lenguaje de programación frente a su complejidad.
- La flexibilidad y la escalabilidad de la arquitectura de la base de datos.
- Los métodos de diseño y de utilización recomendados por el entorno.

4.1. Requerimiento del Sistema

Para obtener un funcionamiento óptimo de AFM, se debe disponer como mínimo de un computador con las siguientes características:

- Procesador de 1.8Ghz
- Disco Duro con al menos 100Mb de capacidad disponible
- 128 Mb de Memoria RAM

Software

- Windows XP[®]
- Microsoft Excel XP[®]

4.2. Descripción de "AFM versión 1.0"

AFM es una herramienta computacional muy sencilla de utilizar, ya que fue desarrollada para que su interfaz guíe al usuario a través del proceso, haciendo así de AFM una experiencia agradable para la simulación de líneas de flujo. Para su uso debe contarse con los siguientes datos: Presión y Temperatura a la entrada, Temperatura Ambiente de la ubicación, Gravedades específicas y Tasas de los fluidos y la descripción de los Tipos de Tuberías a utilizar.

Para inicializar la herramienta se pulsa dos veces sobre el icono correspondiente, el cual es mostrado en la figura 4.1.

Figura 4.1: Icono de Acceso

Mientras se inicia la aplicación y se ajustan las variables de entorno, apareciendo la pantalla de inicio mostrada en la figura 4.2.

Figura 4. 2: Pantalla de Inicio

Al iniciar la herramienta, se deberá observar la pantalla principal de AFM mostrada en la figura siguiente:

Figura 4.3: Pantalla Principal

Para iniciar un nuevo proyecto, el usuario debe ir al menú archivo, y seleccionar la opción "*Nuevo*", o si lo prefiere directamente en el icono de hoja blanca mostrado en la barra de herramientas localizada en la parte superior de la pantalla o con la combinación de teclas Ctrl-N.

🔗 AFM - Analizador de Fluj			
Archivo Problema Ayuda			
🗋 Nuevo	Ctrl+N	1	
🚔 Abrir	Ctrl+A	h.	
Cerrar			
Guardar	Ctrl+G		
Guardar co	omo	L	
Salir		L	

Figura 4.4: Menú Archivo

En este momento se debe abrir la ventana de problema, en donde debe llenar los datos del proyecto.

Figura 4.5: Ventana de Problema

Esta ventana, posee 3 pestañas verticales

Datos Generales: en esta seccion se introducen los datos básicos, como nombre del proyecto y su ubicación, la presión y temperatura de entrada a la línea, la temperatura del ambiente, la hora y día para la simulación y los procesos que se desean considerar (ver Figura 4.6). Si el usuario lo desea, puede utilizar el predictor de temperatura ambiente para algunas ciudades del país. Mostrada en el Anexo D.

Nombre del Proyecto :	Ubicaciór	n:
Condición a la Entrada de la Tubería	Pronosticador de Temperatura	Miscelaneos
Temperatura en la Entrada (°F) :	C Activar la Predicción de Temperatura	🦳 Incluir Inyección de Diluente
Presión en la Entrada (lpca) :	Hora de Estudio Ciudad de Referencia :	Producción con Corte de Agua
Temperatura Ambiente (°F) :	Día a estudiar : 08/06/2007 💌 Hora del Estudio : 10:07:55 📑	Calcular Efectos de Radiación

Figura 4.6: Pestaña Datos Generales

Petroleo, Gas, Agua y Diluente: en esta pestaña se introducen los datos de los fluidos necesarios para la simulación de la línea. Algunos datos aparecen cargados por defecto, ya que no son variables de uso común para los usuarios. Pero a su vez pueden ser modificados (ver Figura 4.7)

Petróleo Líquido	Gas	Diluente
Gravedad API :	Gravedad Específica :	Tipo de Diluente :
Tasa (Bbls/d) :	Tasa (Sfc/d) :	Gravedad Específica :
Calor Específico (Btu/lb/*F) :	Calor Específico (Btu/lb/*F) :	Viscosidad (cp) :
0.45	0.55	
Conductividad Térmica (Btu/hr/ft/°F) :	Conductividad Térmica (Btu/hr/ft/*F) :	Tasa de Inyección (Bbls/d) :
0.08	0.02	
Agua		
Gravedad Específica : Corte de Ag	ua (%) : Calor Específico (Btu/lb/°F) : Conductivid	ad Térmica (Btu/hr/ft/*F): Salinidad del Agua (ppm):
	1 0.35	0

Figura 4.7: Pestaña Petróleo, Gas, Agua y Diluente

Línea de Flujo: Aquí se define la línea de flujo, asi como el número de divisiones en que se desea seccionar (ver Figura 4.8)

= J Ø			
Sección 1 - Recta Sección 2 - Codo			
Longitud (pies) :	Material	Inclinación de la Tubería	
	•	90	
Tipo de Tubería	Conductividad Térmica (Btu/hr/ft/*F) :		
-			
Diametro Interno (pulg):	Emisividad :		
Diametro Externo (pulg) :	Rugosidad :		
Ángulo de Inclinación (*) :	N* de divisiones :		
0	100		
		-90	

Figura 4.8: Pestaña Linea de Flujo – Sección Recta

Una vez introducidos todos los datos necesarios para simulación en la línea de flujo, se procede a pulsar el botón "*Resolver*" de la barra de herramientas, o si el usuario lo prefiere pulsa la tecla F9.

	Þ
--	---

Figura 4.9: Botón "Resolver"

La herramienta mostrará un cuadro de diálogo, como el de la Figura 4.10, una vez culminado el cálculo.

Informati	ion	×					
٩	El Cálculo ha Fina						
	OK						

Figura 4. 10: Culminación del cálculo

Al finalizar el cálculo aparecerán en la parte superior de la ventana del proyecto, dos pestañas horizontales, representativas de la tabla de resultados y la hoja de graficas.

Tabla de Resultados: como su nombre lo dice se encuentran los resultados, mostrando sección por sección las variables más importantes del estudio, incluyendo datos Pvt de los fluidos (ver Figura 4.11). En esta misma pantalla se pueden importar los datos y resultados a la herramienta Excel (ver figuras 4.12 y 4.13) para su manipulación al detalle. En donde se reportan:

Número de secciones de tubería, longitud acumulada, presión y temperatura en la sección, tipo de flujo existente, velocidad media de la mezcla condiciones de tubería, gradiente de presión total, gradientes de presión por fricción, aceleración y gravedad,

tasas, densidades y flujo másico para petróleo y gas a condiciones de tubería, numero de Reynolds, fracción liquida sin deslizamiento, fracción liquida "Hold-up", y el coeficiente de transferencia de calor total.

atus de Entrada	Langitud (sig)	Presión (Inc)	Tomperatura (*E)	Tino do Elvio	Tasa de Batróleo (bbl/d)	Tana da Gas (sef/d)	Haldun
secionin	Longicus (pie)	1000	120	Tipo de Ficio	F 4320 0000020005	1 6200 005 1050 100	1.05500070000571
	U	1000	120	Distribuido	54370.8683079335	-16783.8334838438	1.20002078208071
	2500	964.252516502727	119.980516274339	Distribuido	54228.5333561432	-16510.1427365215	1.24988960126341
	5000	928.286977862375	119.961064737885	Distribuido	54087.0163048141	-16206.9673055992	1.2442359962502
	7500	892.08390952429	119.941647682565	Distribuido	53946.3032849809	·15878.5650977774	1.23803316104085
	10000	855.623061154129	119.922267499388	Distribuido	53806.3845296888	-15517.9928973608	1.23114108334335
	12500	818.880848404726	119.902927188007	Distribuido	53667.2456051327	·15122.8363601374	1.22353040834168
	15000	781.833437150226	119.883629845437	Distribuido	53528.8804162055	-14687.691927966	1.215111243645
	17500	744.455910826884	119.864378933078	Distribuido	53391.2891661186	-14206.0143871065	1.20577896241727
	20000	706.723061124236	119.845178332054	Distribuido	53254.4825990455	-13669.7935494401	1.1954109597134
	22500	668.611012713995	119.826032409861	Distribuido	53118.4891674954	-13069.1264495817	1.18386275139035
	25000	630.100500435957	119.806946100189	Distribuido	52983.3676452723	-12391.6579250688	1.17096356531782
	27500	591.183570917937	119.787924996701	Distribuido	52849.2304981523	-11621.8771345734	1.15651215976306
	30000	551.877843577397	119.768975457945	Distribuido	52716.2901630229	-10740.3341013522	1.14027534853359
	32500	512.258991240495	119.750104709398	Distribuido	52584.959145353	-9723.14300669186	1.12199713410251
	35000	472.542958012405	119,731320895001	Distribuido	52456.0946779913	-8543.85412009606	1.10145426138527
	37500	433.330948164036	119,712632881117	Distribuido	52331.7129016406	-7180.87789236863	1.0785968337609
	40000	396 58060062894	119 694049469023	Distribuido	52217 8021401631	-5676 17147690381	1 05445870217749
	42500	360 101580785803	119 675574861081	Distribuido	52107 4294483177	3900 4271828975	1.02740644562384
	45000	221 109569399362	119 657219902907	Distribuido	51992 6202053949	1597 94497779701	0.99437449255497
	47500	321.100303300302	110.037213002307	Distribuide	F1071.0004700000	1004 40441040505	0.053437448233467
	4/000	2/8./66000/8081/	113.63300701092	Distribuido	51871.3034786603	1004.48441242365	0.39291287465856
	50000	231.675678939731	119.620969446721	Distribuido	51742.9240804179	6431.54698120542	0.896372033400082

Figura 4. 11Tabla de Resultados

Ubicación : Caracas								
Temperatura Entrada :	75	¥						
Presión Entrada :	983	psi						
Temperatura Ambiente :	60	F						
Corte de Agua:	No							
hyección de Dibrentes :	No							
Transferencia de Calor :	Si							
Efectes de Dadiacións	No							
Electos de Radiación:	140							
Datos de Produ	ucción		Calor Es	pecífico		Cond	uctividad Té	ermica
Datos de Produ	ucción]	Calor Es	oecífico Aguar]	Cond Petróleo	uctividad Té	ermica Agua
Datos de Produ	ucción Agua (Bbl/d)]	Calor Es Petróko Gar (871/18/77) (871/14	oecífico Agua ທາງ ຍາບທະກາ	-	Cond Petróko (BTUhr/%°F)	uctividad Té Gas (ອາບາທາກາງ	ermica Agua (BTU/hu/R/YF)
Datos de Produ Petróleo Gas Øblio) (Néctio) 514 28970	ucción Agua (Bbl/d) 0]	Petróko Ga (BTU/Ib/P) (BTU/Ib/P) (BTU/Ib/P) 0.45 0.5	oecífico Aguar ກ∕ກ7) (8770/18/۲9) 5 0	-	Соnd <i>Ресто́ьео</i> (<i>ВТСИн/Ях°F)</i> 0.08	uctividad Té Gas (BTU/hr/ft/*F) 0.02	ermica Agua (BTU/hr/R/?F) 0
Datos de Produ Datos de Produ Petróleo Gas (Biblid) (Biblid) 514 26970 Salinidad: 0	Agua (Bblid) 0 ppm		Calor Es Petróko Gar (BTUNb/97) (BTUN 0.45 0.5	ວecífico ອີ Aguar ກິກິງ ຢູ່ໃນໃນກິກິງ 5 0		Cond Petróko (BTUhr/N ^{ro} F) 0.08	uctividad Té கே (சாபிலல்) 0.02	ermica Agua (פדעומאלא) 0
Datos de Produ Datos de Produ Petróleo Gas (Petróleo Gas) (Petróleo Gas (Petróleo Gas) (Petróleo Gas) (Petró	Agua Agua (Bbild) 0 ppm ujo]	Calor Es Petróko Ga (870/86/79) (870/8 0.45 0.5	oecífico <u>Aguar</u> 201777 @817028/1779 5 0 Resulta	ados al fin	Cond Petróko (BTUkhrR^F) 0.08 al de la Tub	uctividad Té Gas (1971/hr/11/77) 0.02	ermica Agua (870/hr/ft/?f) 0
Datos de Produ Datos de Produ Petróleo Gas (1901/0) (198-17/0) 514 28970 Salinidad: 0 Línea de Flu Longitud Diam. Ext.	ucción Agua (Bbl/d) ppm ppm ujo Diam. ht.		Calor Esp Petróko Ga (BTUNh/F) (BTUN 0.45 0.5 Presión Temper	oecífico <u>Agua</u> <u>A'77)</u> (8170/18/⊁7) 5 0 Resulta atura Qo	ados al fin	Cond Petróbo (BTURhrR*F) 0.08 al de la Tub	uctividad Té Gas (BTU/hr/ft/??) 0.02 ería Hobl-Up	erm ica Agua (BTU/hr:R/?F) 0 Patrón de Flujo
Datos de Produ Petróleo Gas @bb/d) (Metróle) 514 26970 Salinidad: 0 Línea de FII 200 (M) (Metróle)	ucción Agua (Bbh/d) 0 ppm ujo Diam. Int.		Calor Es Petróbo Ga (BTU/bo/F) (BTU/b 0.45 0.5 Presión Temper (peg) (F	Decífico <u>Agua</u> <u>∧77</u> (8770/8/75) 5 0 Resulta <u>atura</u> (20) (896/4)	ados al fin Gg (Bb#0)	Cond Petróko (67Ukr/R/P) 0.08 al de la Tub Qw (85M)	uctividad Té Gas (BTU/hr/fV*f) 0.02 ería (adim)	ermica Agua (TU/hu/R/P) 0 Ratrón de Flujo -
Datos de Produ Patos de Produ Petóleo Gas @Bbiloj (Háctid) 514 28970 Salinidad: 0 Lúnea de Fli Longitud Ølom. Ext. (Ølom. Ext.) (Ølom. Ext.) (Ølom. Ext.)	Agua Agua (Bblid) 0 ppm ujo Diam. htt. (m) 7.75		Petróleo Gas (BTU)//h/F) (BTU)/h 0.45 0.5 Presión Temper (pe) (F) 965.48 73.4	Coecífico <u>Agua</u> <u>۲۶۶</u> و1770/18/۶۶ 5 0 Result: adura Co <u>(20)</u> 33 580.354	ados al fin 09 (89%) 64577.006	Cond Petróko (BTUkirR*F) 0.03 al de la Tube Qw (Bbild) 0	uctividad Té Gas (BTU/Int/R*P) 0.02 ería (adim) 0.08301	ermica Agua (6770/kn/R/P) 0 Patrón de Flujo - Segregado

Caso de Validación de Caída de Presión No 1

Figura 4. 12: Sección principal del reporte de Datos exportados a Excel

M 🔀	🔀 Microsoft Excel - caso 1									
3	<u>A</u> rchivo <u>E</u> dicio	ón <u>V</u> er <u>I</u> nsertar	<u>F</u> ormato <u>H</u> erra	mientas Da <u>t</u> os Ve <u>n</u> t	ana <u>?</u>	Escriba una pr	egunta 🗸 🗕 🗗 🗙			
Calib	Calibri • 12 • N X S 三言言語 图 图 € % 000 *8 ,98 信 信 · ③ • <u>A</u> • _									
1	A1 🔻 🎪 Sección N°									
	A	B	С	D	F	F	G 🗖			
1	Socción Nº	I ongitud (nio)	Proción (Inc)	Tomporatura (°F)	Tino do Eluio	Valacidad Madia (ft/s)	Grad Prosión(f)			
2	Deccion 14	Lougicaa (bis)	11esion (ipc)	75.00	Somerado	12.72	1 527E 02			
3	1	565.85	983,00	74.02	Segregado	12,72	1.538E.03			
4	2	1131.7	981.26	74.84	Segregado	12,75	1,539E-03			
5	3	1697.55	980.39	74.76	Segregado	12,75	1,555E-03			
6	4	2263.4	979.52	74.68	Segregado	12.76	1.542E-03			
7	5	2829,25	978,64	74,61	Segregado	12,77	1,543E-03			
8	6	3395,1	977,77	74,53	Segregado	12,78	1,544E-03			
9	7	3960,95	976,90	74,45	Segregado	12,79	1,546E-03			
10	8	4526,8	976,02	74,38	Segregado	12,80	1,547E-03			
11	9	5092,65	975,15	74,30	Segregado	12,81	1,548E-03			
12	10	5658,5	974,27	74,22	Segregado	12,82	1,550E-03			
13	11	6224,35	973,39	74,15	Segregado	12,83	1,551E-03			
14	12	6790,2	972,52	74,07	Segregado	12,84	1,552E-03			
15	13	7356,05	971,64	74,00	Segregado	12,85	1,553E-03			
16	14	7921,9	970,76	73,93	Segregado	12,86	1,555E-03			
17	15	8487,75	969,88	73,85	Segregado	12,87	1,556E-03 🔜			
18	16	9053,6	969,00	73,78	Segregado	12,88	1,557E-03			
19	17	9619,45	968,12	73,71	Segregado	12,89	1,559E-03			
20	18	10185,3	967,23	73,63	Segregado	12,90	1,560E-03			
14 4	▶ N Resum	en Resultados /								
		Į (Di <u>b</u> ujo 🔹 🔓 🛛 A <u>u</u> to	formas 🔹 📐 🔌 🔲 (○ 🔮 利 🛟 [🗕 🔜 🔌 + 🚄 + i	≡ ☴ ☴ 🖬 🕤 🗸			
Listo							NUM			
in 👧	nicio 🛛 🌌 🐳	🕯 🕑 🍮 » <u></u>	Casos valid 🕅) TRABAJO 🛛 🔳 cuad	ro de s 📳 caso	1 Escritorio »	🖗 🍕 🛃 🛳 🛛 05:43 p.m.			

Figura 4. 13. Reporte de resultados en tablas exportadas a Excel

Gráficas: Permite al usuario graficar las variables que él seleccione, ubicándolas en el eje de su preferencia para poder analizar de manera rápida el cambio de cada uno de los valores. (ver Figura 4.14)

Figura 4. 14: Ejemplo de las gráficas obtenidas en AFM

4.3. Validación de AFM

A continuación se muestra el proceso de validación de la herramienta AFM, para los módulos de Perdida de Presión y Transferencia de calor por convección.

4.3.1. Validación del módulo de Pérdida de Presión

El proceso de validación de la herramienta consistió en la simulación de 27 casos diferentes, en los cuales se utilizaron como datos de entrada los resultados obtenidos en la investigación de *Baker*^[3] (1953).

En la Tabla 4.1, se pueden observar las presiones experimentales a la entrada y salida de la línea, los valores de presión de salida obtenidos en AFM.

Caso	Presión Ent	AFM Prosión	Flujo	Datos Exporimontolos	Tipo de	Desv.	Tipo de
	<u>Ent.</u>	Presion		Experimentales	<u>riujo</u>	Salida	<u> </u>
1	983	965,43	Segregado	964	Anular	0,15%	Igual
2	1007	967,47	Intermitente	975	Anular	0,77%	Distinto
3	972	957,33	Intermitente	962	Anular	0,49%	Distinto
4	977	956,65	Intermitente	960	Slug	0,35%	Igual
5	964	959,35	Intermitente	958	Slug	0,14%	Igual
6	940	934,75	Intermitente	930	Slug	0,51%	Igual
7	964	950,65	Segregado	945	Anular	0,60%	Igual
8	975	934,81	Transitorio	946	Anular	1,18%	Igual
9	962	952,93	Transitorio	948	Slug	0,52%	Igual
10	960	939,77	Transitorio	936	Slug	0,40%	Igual
11	952	943,14	Transitorio	936	Slug	0,76%	Igual
12	930	925,11	Transitorio	912	Slug	1,44%	Igual
13	1087	1074,1	Intermitente	1067	anular	0,67%	Distinto
14	1096	1076,9	Intermitente	1075	anular	0,18%	Distinto
15	1070	1063,06	Transitorio	1055	Anular	0,76%	Igual
16	1076	1064,47	Transitorio	1060	Anular	0,42%	Igual
17	712	707,97	Segregado	703	Wave	0,71%	Igual
18	705,5	703,90	Segregado	703	Wave	0,13%	Igual
19	1075,5	1075,01	Segregado	1075	Stratifies	0,00%	Igual
20	703	701,5	Segregado	701,5	Wave	0,00%	Igual
21	1067	1066,04	Segregado	1065,5	Stratified	0,05%	Igual
22	1075	1074,02	Segregado	1074	Stratified	0,00%	Igual
23	1064	1061,06	Segregado	1062	Annular	0,09%	Distinto
24	1074	1071,99	Segregado	1067	Wave	0,47%	Igual
25	705,5	702,40	Segregado	701,5	Wave	0,13%	Igual
26	1063	1059,96	Segregado	1055,5	Wave	0,42%	Igual
27	1068	1065,98	Segregado	1058	Stratified	0,75%	Igual

Tabla 4. 1: Resultad	dos AFM vs datos	experimentales sin	transferencia de	Calor.

Se puede observar una desviación de la herramienta entre 1.44% y 0.15% y obteniéndose una máxima diferencia en la presión de salida de 12 Psi. Esto da un alto grados de confiabilidad en el uso de la herramienta, aunque, en los casos 2, 3, 13, 14 y 22 se observaron diferencias en el tipo de flujo, debido a que en estos casos el régimen de flujo existente está entre los regímenes de flujo segregado e intermitente. Otra causa importante, es que estos datos experimentales fueron cargados en la

herramienta AFM, sin incluir los valores de la viscosidad del crudo y la tensión superficial, ya que estas propiedades son calculadas directamente por la herramienta.

4.3.1. Validación del módulo de transferencia de calor por convección

En cuanto a la validación del módulo de transferencia de calor, a causa de no poseer datos experimentales, se comparó la herramienta AFM con la herramienta comercial PIPESIM, utilizando los datos experimentales anteriores (*Baker*^[3], 1953), con la diferencia de que en el caso aquí presentado, se incluye la transferencia de calor por convección.

En la Tabla 4.2 se pueden observar los valores en la salida de la tubería de presión, temperatura y tipo de flujo, obtenidos mediante la herramienta AFM y se comparan con aquellos obtenidos por la herramienta comercial.

Las diferencia en las pérdidas de presión fueron muy pequeñas y se mantuvieron en un rango 0.01% y 1.14 % de desviación, manteniendo gran similitud entre ambas herramientas. Con respecto a la temperatura se tuvieron desviaciones de entre 2% a 14 %, esto debido, a la diferencia en las correlaciones utilizadas por la herramienta comercial para el cálculo del coeficiente total de transferencia de calor y el coeficiente convectivo del aire. Los tipos de Flujos predichos en ambas herramientas fueron iguales, con excepción del caso numero 15, donde AFM sugiere Transitorio y la herramienta comercial Segregado.

	AFM			Herramienta comercial			Comparación	
Caso	Presión	Temperatura	Flujo	Presión	Temperatura	Flujo	Error Pres	Error temn
1	965.46	73.48	Seg.	960,6	68,98	Seg.	0.51%	6,53%
2	967.51	79.67	inter.	959,58	74,56	inter.	0.83%	6,86%
3	957,33	68,76	inter.	955,73	66,17	inter.	0,17%	3,92%
4	956,66	77,66	inter.	953,9	73,09	inter.	0,29%	6,25%
5	959,43	65,92	inter.	959,01	65,06	inter.	0,04%	1,32%
6	934,75	81,43	inter.	933,14	73,64	inter.	0,17%	10,57%
7	950,93	69,84	Seg.	943,08	62,51	Seg.	0,83%	11,73%
8	934,83	76,09	Trans.	929,33	66,41	Trans.	0,59%	14,57%
9	952,87	66,88	Trans.	951,2	63,04	Trans.	0,18%	6,10%
10	939,83	73,85	Trans.	937,63	65,30	Trans.	0,23%	13,09%
11	943,12	63,94	Trans.	944,47	61,61	Trans.	0,14%	3,77%
12	925,10	70,14	Trans.	923,9	63,75	Trans.	0,13%	10,01%
13	1074,15	78,69	inter.	1066	73,67	inter.	0,76%	6,81%
14	1076,98	79,73	inter.	1064,4	74,85	inter.	1,18%	6,52%
15	1063,10	68,01	Trans.	1059,9	63,3	Seg.	0,30%	7,42%
16	1064,52	69,54	Trans.	1059,2	64,46	Trans.	0,50%	7,93%
17	707,86	63,90	Seg.	705,81	62,25	Seg.	0,29%	2,66%
18	703,90	63,21	Seg.	704,03	61,41	Seg.	0,02%	2,92%
19	1075,01	64,58	Seg.	1075	61,28	Seg.	0,00%	5,40%
20	701,50	63,31	Seg.	701,63	61,53	Seg.	0,02%	2,90%
21	1066,04	66,60	Seg.	1065,9	62,58	Seg.	0,01%	6,41%
22	1074,02	65,97	Seg.	1073,9	62,43	Seg.	0,01%	5,67%
23	1061,07	67,85	Seg.	1060,6	64,22	Seg.	0,04%	5,66%
24	1071,99	66,68	Seg.	1072,1	63,29	Seg.	0,01%	5,35%
25	702,41	62,53	Seg.	702,67	60,61	Seg.	0,04%	3,16%
26	1059,99	63,83	Seg.	1059,5	60,54	Seg.	0,05%	5,43%
27	1066,04	62,70	Seg.	1065,7	60,31	Seg.	0,03%	3,95%

Tabla 4.2. Resultados AFM vs de herramienta comercial

CAPÍTULO V

ANÁLISIS PARAMÉTRICOS

A continuación se presentan los análisis paramétricos, producto de cada sensibilidad realizada, cada una de ellas detallados en el *Capítulo III, Marco Metodológico*.

5.1 Análisis de los parámetros de pérdida de presión y transferencia de calor por convección:

El estudio paramétrico en este Trabajo Especial de Grado, abarca cada una de las sensibilidades propuestas en el marco metodológico para cada régimen de flujo, permitiendo así realizar los diagramas de Tornado en cada caso y sus correspondientes análisis.

5.1.1 Sensibilidad a la presión de salida.

• Régimen de flujo segregado

-20% -15% -10% -5% 0% 5% 10% 15% 20% Presion Entrada Inclinación de tubería Diametro Interno Tasa de gas Longitud de Tuberia Temperatura de entrada Tasa de Petroleo Gravedad API Gravedad del Gas Temp. Ambiente Número de Divisiones Disminución Aumento

En la Figura 5.1 se muestra el diagrama de Tornado obtenido.

Figura 5.1: Presión de Salida – Flujo Segregado

A continuación, se realiza el análisis de las variables que presentaron mayores variaciones en esta sensibilidad. En este régimen de flujo y para los datos seleccionados (ver tabla 3.2), el orden de influencia, de mayor a menor, se dio de la siguiente forma:

Inclinación de Tubería: Este parámetro resultó el más influyente, debido a que según sea el sentido de la inclinación, el factor de gradiente de presión gravitacional toma importancia, es decir, si la inclinación de la tubería es positiva respecto a la horizontal, la aceleración de gravedad actuará en sentido contrario al flujo y disminuirá la presión de salida, en cambio si la inclinación de la tubería es negativa, el efecto de la gravedad estará a favor del flujo y causará un aumento en la presión de salida.

Diámetro interno de tubería: A medida que el diámetro de tubería se hace más pequeño, al fluido se le dificulta el movimiento a través de ella, debido a que las velocidades del gas y del líquido aumentan, generando mayores pérdidas de presión por fricción, a causa del aumento de los esfuerzos cortantes en la pared de la tubería, y al incremento de las pérdidas de presión por aceleración, debido a la energía cinética del fluido.

Tasa de Gas: El aumento de la tasa de gas genera una caída de presión mayor, debido a que los gradientes de presión por fricción y aceleración se ven directamente afectados por el incremento de la tasa de flujo, que en este caso son de poca relevancia y alcanza una variación máxima de 0.62%.

Longitud de Tubería: Como es de esperarse a medida que se aumenta la longitud de tubería, se obtienen pérdidas de presión mayor a la salida de la línea. En este estudio, y debido a los datos experimentales considerados, la perdida de presión resultó poco significativa ante esta sensibilidad, debido a que la fase predominante es gaseosa.

Temperatura a la Entrada: Debido a que se utilizó un crudo liviano para la sensibilidad, el efecto de la temperatura de entrada no afecta al parámetro estudiado (presión de salida en la tubería) en virtud a la poca variación en la viscosidad que presentan estos tipos de crudos. Sin embargo, con crudos más pesados, la temperatura en la entrada de la línea, adquiere mayor importancia, por la dependencia directa entre la viscosidad y la temperatura.

Tasa de Petróleo: En este estudio, no se observó variación importante de pérdida de presión con esta variable, debido a que en flujo segregado, la velocidad de la fase líquida es pequeña con respecto a otros tipos de flujo.

Los efectos producidos por el resto de los parámetros (API, Gravedad específica del gas, temperatura del ambiente y el número de divisiones de la línea de flujo), resultó irrelevante ante la sensibilidad de pérdida de presión, esto debido a que una variación del 20%, no generan más que una variación máxima del 0.03% en la presión de salida.

• Régimen de Flujo Intermitente

En este régimen de flujo, el factor de inclinación de la tubería es el parámetro que más incide sobre la presión de salida, al igual que en el caso de régimen de flujo segregado, ya que la presión hidrodinámica del fluido se puede tener a favor o en contra del flujo, y a su vez ésta aumenta o disminuye la presión de salida según sea el caso, como se observa en el Diagrama de Tornado correspondiente en la Figura 5.5

Figura 5.2: Presión de Salida – Flujo Intermitente.

Inclinación de la Tubería: Este es un parámetro que va a ser determinante en las pérdidas de presión, ya que en estos casos actúa el gradiente de presión por gravedad, el cual agrega presión cuando su inclinación es negativa con respecto a la horizontal y disminuye cuando su inclinación es positiva.

Diámetro interno: Este parámetro cobra mucha mayor importancia en este régimen de flujo, debido a que las tasas de flujo de líquido es mayor con respecto a las de flujote tipo segregado, y generan mayores efectos cortantes en la pared de la tubería.

Longitud de la tubería: El efecto de pérdida de presión en flujo intermitente para longitud de tubería, toma importancia debido al aumento en la tasa de líquido y las velocidades de mezcla, que influyen directamente en las pérdidas por fricción y aceleración.

Tasa de líquido y gas: Estas variables presentan una pérdida de presión similar, ya que cuando se aumenta la energía cinética de los fluidos, aumenta la pérdida de presión por fricción y aceleración. El hecho de que la fracción de líquido *"Hold-up"* sea mayor cuando se aumenta la tasa de líquido, conlleva a aumentar las pérdidas de

presión a la salida de la tubería. Sin embargo, al incrementar la tasa de gas la viscosidad de la mezcla disminuye, por lo que se obtienen pérdidas de presión menores a las obtenidas con el aumento de la tasa de producción de líquido.

Gravedad API: Este es un parámetro importante, debido a que define la viscosidad de la mezcla. En este caso, como se obtuvo una fracción líquida "*Hold-up*" de 0.4, la viscosidad de la mezcla se hace mayor, y se generan pérdidas por fricción de 6% con respecto al caso base, es decir mientras mayor es el Grado API del crudo mayor es la viscosidad de la mezcla.

Los efectos de los parámetros, Gravedad especifica de gas, temperatura del ambiente y el numero de divisiones, afectan muy poco la pérdida de presión, esto debido a que una variación del 20% no generan mas que una variación máxima del 1.1% en la presión de salida.

• Régimen de Flujo Distribuido

El factor de inclinación de la tubería sigue siendo el más importante a la hora de analizar la presión de salida. (ver Figura 5.9)

Figura 5.3: Presión de Salida – flujo Distribuido

Inclinación de tubería: El efecto de la inclinación de tubería varía en gran medida la pérdida de presión, ya que la gravedad ejerce fuerza sobre los fluidos. El flujo distribuido puede considerarse como monofásico y la variación de la perdida de presión por gravedad va a depender de la densidad de la mezcla, por ello si la fase continua es liquido, se obtendrán perdidas mayores.

Diámetro interno: Se muestra nuevamente la influencia del diámetro de la tubería en la influencia de pérdida de presión. En la simulación realizada, el líquido es la fase continua, por ello se obtiene la mayor pérdida de presión por pie (0.0366 psi/pie), entre todos los tipos de flujo. Los esfuerzos cortantes son mayores en este régimen de flujo, debido a que la viscosidad de la mezcla es mayor.

Tasa de Petróleo y Gas: El roce y las altas velocidades de líquido, contribuyen a que se generen mayores pérdidas de presión, a medida que la tasa de líquido es mayor. En el caso de gas, las pérdidas de presión son muy pequeñas, debido a que en comparación con el líquido, esta fase ocupa menos área de tubería.

Longitud de tubería: El efecto de pérdida de presión en flujo distribuido sobre la longitud de tubería, es el más grande con respecto a los regímenes de flujo anteriores debido a que la fase liquida ocupa la mayor área de tubería y la fase gaseosa se encuentra en forma de burbujas en menor cantidad, aumentando la viscosidad de la mezcla y obteniéndose mayores perdidas por el efecto de la fricción del liquido con las paredes de la tubería.

Gravedad API: A mayor grado API, se obtienen menores pérdidas de presión, ya que la viscosidad de la mezcla se hace menor.

Los efectos de los parámetros Gravedad especifica de gas, temperatura de entrada y del ambiente, y número de divisiones de la tubería, afectan muy poco la pérdida de

presión, debido a que una variación del 20% en estos parámetros, produce apenas una variación máxima del 0.1% en la presión de salida.

Finalizando, el factor que más influye en la pérdida de presión es la inclinación de la tubería, ya que genera pérdidas de presión por gravedad aunado a las pérdidas por fricción y aceleración. Para el régimen de flujo distribuido se obtuvieron las mayores pérdidas de presión, debido a que la fase liquida predomina sobre la fase gaseosa.

El diámetro de tubería es un factor de suma importancia, ya que a medida que se reduce el diámetro, incrementan las pérdidas de presión. Asimismo, aumentan las velocidades superficiales de las fases, y los esfuerzos cortantes de los fluidos sobre la tubería.

El aumento de la tasa de flujo genera incrementos en la energía cinética de los fluidos, lo cual trae como consecuencia un aumento en el gradiente de presión por aceleración. Asimismo, a medida que se incrementa el caudal de líquido en la entrada de la tubería, la viscosidad de la mezcla (líquido y gas) se hace mayor, por lo que los fluidos presentan mayor dificultad para fluir.

5.1.2 Sensibilidad a la temperatura de salida

• Régimen de Flujo Segregado

A continuación, en la Figura 5.2, se muestra el diagrama de Tornado obtenido.

Figura 5.4: Temperatura de Salida- Flujo Segregado

En este caso el factor relevante es nuevamente la inclinación de la tubería pero sólo en el caso de disminución de la temperatura de salida, debido al efecto de la aceleración de gravedad, sobre la segregación gravitacional y la velocidad de los fluidos, ya que si la tubería posee inclinación positiva, al final de la misma se observará un aumento de la fracción liquida "*hold-up*" comparada con una tubería horizontal. El otro factor relevante, esta vez para el aumento de la temperatura de salida, es la temperatura ambiente. Esto se debe, a que en el proceso de transferencia de calor por convección la temperatura del fluido depende directamente de la temperatura del ambiente.

• Régimen de flujo Distribuido

En el caso de pérdida de temperatura, se observa en la figura 5.10, que la influencia de los parámetros es muy pequeña, ya que la temperatura incide directamente sobre el coeficiente convectivo que a su vez, se ve afectado directamente por el Número de Nusselt, Reynolds, Prant y Froud. Estos números son poco variables en el presente Trabajo Especial de Grado, debido a que dependen de variables como calor específico y conductividad térmica de los fluidos, de las cuales éstas dos últimas propiedades se
consideraron, en este caso, constantes debido a su poca variabilidad con la temperatura.

Figura 5.5: Temperatura de Salida – Flujo Distribuido.

• Régimen de flujo Intermitente

Tal como se observó en el régimen de flujo anterior, en este caso las variaciones de temperatura se ven poco afectada por los parámetros sensibilizados.

En la simulación de flujo intermitente, aunque se obtuvieron variaciones en ciertos parámetros en pequeñas proporciones, se obtuvo que el factor más influyente fue la temperatura del ambiente, ya que la pérdida de calor va a ser menor mientras la temperatura ambiental sea más alta.

Figura 5.6: Temperatura de Salida – Flujo Intermitente

5.2 Análisis del aporte de la radiación y la inyección de diluentes sobre la presión de salida

• Efectos de radiación

En el proceso de radiación se libera calor del cuerpo hacia el ambiente, pero la radiación solar le agrega calor a los fluidos dentro de la tubería, es por ello que es importante la hora y la temperatura en el momento de la simulación. En la siguiente tabla, se presentan los resultados obtenidos en tres simulaciones realizadas a diferentes horas del día. Asimismo, se incluyó el pronosticador de temperaturas y los efectos de transferencia de calor.

Tabla 5	. 1.	Sensibilidad	de	presión	v tem	peratura	a d	liferentes	horas	del	día
				p. 001011	,	p e					*****

	Presión (lpc)	Temperatura (°F)	Tipo de Flujo	Viscosidad de líquido
4AM	81,034	89,344	Intermitente	1879,397
11AM	84,360	93,291	Intermitente	1288,671
5 PM	86,220	95,916	Intermitente	1033,109

En la tabla anteriormente mostrada, se pudo observar que a medida que la temperatura aumenta, se obtienen consecuentemente una menor viscosidad del líquido y mayores presiones en la salida de la tubería. Por otro lado, se tiene que la temperatura incide directamente sobre la radiación emitida por los cuerpos, sin embargo, el efecto de la radiación de las líneas de flujo hacia el ambiente es mucho mayor que el efecto de calentamiento que produce la radiación solar.

El aporte de la radiación solar se incrementa con el transcurrir del día, disminuyendo las pérdidas de calor y tomando su máximo valor a la hora del mediodía, para luego descender hasta alcanzar valores nulos al atardecer, en donde la pérdida de calor por radiación solar se hace cero.

• Efectos de los diluentes sobre crudos pesados y extrapesados.

En la figura 5.7, se aprecia el efecto de diferentes tipos de diluentes sobre los crudo pesados y extrapesados, observándose que dependiendo del diluente escogido, se obtienen distintos valores de presión en la salida de la línea de flujo. Para los casos estudiados, el N-hexano resultó el diluente con el que se obtienen menores pérdidas de presión. Cabe acotar que la diferencia en las presiones de salida obtenidas para cada tipo de diluente, son muy pequeñas, por lo cual la escogencia del diluente a utilizar queda limitada en función de su disponibilidad y costo asociado.

Figura 5.7: Sensibilidad de presión de salida para diferentes diluentes.

Puesto que en la figura anterior se determinó que con el N-Hexano se obtienen mayores presiones en la salida de las tuberías. En la gráfica a seguir, figura 5.8, se verifica la acción de diferentes concentraciones de este tipo de diluente a lo largo de la línea de flujo. En esta figura se comparan tres opciones de inyección: Sin diluente, N-Hexano en una proporción del 20% respecto a la tasa de crudo, y por último, N-Hexano en una proporción del 40% respecto a la tasa de petróleo. En la misma, se aprecia que a mayores porcentajes de inyección, la viscosidad de la mezcla disminuye, ocasionando la disminución en la presión de salida. Asimismo, a mayores concentraciones de diluente la caída de presión a lo largo de la tubería es menor.

Figura 5.8: Efecto del porcentaje de diluentes en la presión de salida de la tubería

CONCLUSIONES

- La herramienta computacional AFM, es confiable para la predicción del flujo multifásico en las líneas de Flujo.
- 2. AFM tiene la ventaja de poder incluir el efecto de la radiación solar, un fenómeno que no es incluido en las herramientas comerciales.
- Los factores que más afectan el tipo de flujo y pérdida de presión son la inclinación y el diámetro interno de la tubería.
- Es de vital importancia considerar los fenómenos de transferencia de calor para crudo pesados.
- 5. El fenómeno de radiación es un término importante a la hora de estudiar el flujo bifásico, y se observa que el aporte de la radiación de la tubería al ambiente es mayor que la radiación solar sobre la tubería.
- 6. AFM permite el cálculo de la reducción de la viscosidad de crudos pesados y extrapesados por medio de la inyección de diluentes.
- La inclinación de la tubería define cuán grande es el aporte de la segregación gravitacional sobre la tubería y por ende las propiedades del flujo.

RECOMENDACIONES

- 1. Incluir modelos de predicción de pérdida de presión para crudos extrapesados.
- Complementar la herramienta de manera que se pueda diseñar la tubería en dos o tres dimensiones.
- Complementar esta herramienta con un simulador de estrangulador en cabezal de pozos para poder modelar todos los fenómenos en la superficie.
- 4. Probar la herramienta con datos reales de líneas de flujo venezolanas.
- Programar la herramienta aquí presentada para que calcule la presión de entrada en la tubería dada una presión de salida, es decir, en orden reverso al procedimiento desarrollado en este estudio.
- Adoptar la correlación de cálculo de viscosidad del crudo para ajustar los valores de éste parámetro medido en laboratorio y suministrados como dato entrante.

REFERENCIAS BIBLIOGRÁFICAS

- Angulo, N.; Pérez, A. 1995 "Influencia de la radiación Solar en Tuberías y Tanques de Almacenamiento". Caracas, Venezuela
- Argillier, J. F.; Hénaut, I; Gateau, P.; Héraud; J. P. "Heavy Oli Dilution". 2005 SPE 97763.
- Baker, Ovid. "Desing of Pipelines For simultaneous Flow of Oil and Gas. Part I". Paper: AIME 323-G
- Beggs, H. D., and Brill, J.P., (1973) "A Study of Two-Phase Flow in Inclined Pipes," Journal of Petroleum Technology, 607-617. SPE 4007
- 5. Brill, J.; Arirachakaran, S. "State of the Art in Multiphase Flow". SPE 23835.
- Cassanova, C.; Pennaccian, C. "Estudio de Flujo Bifasico Liquido-Liquido en Tuberías Horizontales y Ligeramente Inclinadas" Miniproyecto de Ingeniería Química. USB.
- Cooper, P. (1969), "The absortion of solar radiation in solar stills", Solar Energy, 12, 3

- Chew, Ju-Ham; Connally, Carl. "A Viscosity Correlation for Gas-Saturated Crude Oils." Spe 1092.
- Dittus, F.; Boelter, L "Heat transfer in Automobile Radiators of the Tubular Type". U. California (Berkeley) Pub. Eng (1930).
- García, F; Segura, J.; Moran, R. (2004). "Transferencia De Calor En Flujo Bifásico Gas-Líquido Parte I: Pozos Y Tuberías Horizontales" Revista de la Facultad de Ingeniería d e la U.C.V., Vol. 19, N° 3, pp.83 – 99.
- 11. Gayón J, González A y Vargas P. "Uso De Imágenes De Videos Digitales Para Estimar El Hold-Up De Liquido En Tuberías Verticales Y Reconocer Los Patrones De Flujo". Miniproyecto de Ingeniería Química. USB.
- 12. Gbolahan Afonja. "A PC-Based Fluid and Heat Transfer Analyzer for Two-Phase Flow in Pipes". Tesis. College of Engineering and Mineral Resources at West Virginia University
- Ghajar, A. J. "Non-Boiling Heat Transfer in Gas-Liquid Flow in Pipes a Tutorial" School of Mechanical and Aerospace Engineering Oklahoma State University
- Gomez, L.E.; Shoham, Ovadia; Zelimir Schmidt; Northug, Tor; Chokshi, R.N.
 "Unified Mechanistic Model for Steady-State Two-Phase Flow, Horizontal to Vertical Upward Flow". SPE 65705.

- 15. Hottel, H. C. (1976), "A simple model for estimating the transmitance of direct solar radiation through clear atmospheres". Solar Energy, 18, 129.
- 16. Jpt Forum"Estimating the Viscosity of Crude Oil Systems" Spe 5434.
- KAGO, T., Saruwatari, T., Kashima, M., Morooka, S. and Kato, Y. "Heat Transfer in horizontal Plug and Slug Flow for Gas-Liquid and Gas-Slurry Systems". J. Chem. Eng. Jpn.19, 125-131. (1986)
- 18. Kreith, Frank. "Principios de Transferencia de Calor". Pag 4-15.
- 19. Lederer, E "World Petroleum Congress". Londres
- 20. Lyons, William C. "Standard Handbook of Petroleum & Natural gas Engieering" Vol 2
- Mandhane J.M.; Gregory G. A.; Aziz, K. "Critical Evaluation of Friction Pressure-Drop Prediction Methods for Gas-Liquid Flow in Horizontal Pipes". SPE 6036
- McCain Jr, W.D. "Properties Of Petroleum Fluids"; Penwell Publishing Co., Tulsa, Oklahoma, 1990.
- 23. Moro, Juarista; Gasteiz, Victoria "Estimación de la Radiación Solar a Partir de Modelos Digitales de Elevaciones. Propuesta Metodológica". Universidad autónoma de Barcelona.

- 24. Ovid, B., "Design of Pipeline for Simultaneous Flow of Oil and Gas. Part II".Paper AIME 323-G.
- 25. Passamai, V. "Determinación De Radiación Solar Horaria Para Días Claros Mediante Planilla De Cálculo". Facultad de Ciencias Exactas. Argentina.
- 26. Petukhov, B. "Heat Transfer and Friction in Turbulent Pipe Flow with Variable Physical Propities". Prensa académica; New York (1978).
- 27. Ribas, Carlos. "Estudio y diseño numérico de un evaporador de doble tubo con flujo bifásico utilizando mapas de flujo." Tesis. Escola Tècnica Superior d'Enginyeria Industrial de Barcelona
- Romero, C.; Stammitti, A.; González, D. "Estudio de Patrones de Flujo Bifásico Liquido-Gas en Tuberías Inclinadas de 0º a 90º" Universidad Simón Bolívar.
- 29. Shah, R.; London, A. "Laminar Flow: Forced Convection in Ducts", Academic Press, New York, (1978).
- Shu, W. R. "A Viscosity Correlation for Mixtures of Heavy Oil, Bitumen, and Petroleum Fracctions". 1984 SPE 11280
- Sucre, K.; Navarro, M.; Correa, M.. "Influencia de La Radicion Solar en el Caletanmiento de Tuberías y Tanques". Miniproyecto de Ingeniería Química. USB.

- 32. Teixeira, Steve; Pacheco, Xavier. "Guia de dasarrollo de Delphi 5". Volumen1. Editorial Prentice Hall
- 33. Zhang, H. G.; Wang, Q.; Sarica, C.; Brill, J. P. "Unified Model of Heat Transfer in Gas-Liquid pipe Flow". Spe 90459
- 34. http://biocab.org/Transferencia Calor.html Extraído el 25 de Marzo, 2007
- 35. http://www.chemstations.net/documents/CCSNmanual56.pdf. Extraído el 20 de Febrero, 2006
- 36. http://docencia.50webs.com/simula01.htm Extraído el 22 de enero, 2007.
- 37. http://es.wikipedia.org/wiki/Simulaci%C3%B3n Extraído el 23 de Noviembre, 2006
- 38. http://www.etsimo.uniovi.es/~feli/CursoMDT/Tema_1.pdf Extraído el 23 de Noviembre, 2006
- 39. http://homepage.mac.com/uriarte/maprad.html. Extraído el 12 de abril, 2006
- 40. http://www.processassociates.com/process/fluid/baker_h.htm Extraído el 10 de enero, 2007
- 41. http://www.temas-estudio.com. Extraído el 22 de enero, 2007

NOMENCLATURA

En esta sección se muestran todas y cada una de las variables utilizadas en este Trabajo Especial de Grado, así como su respectiva nomenclatura, unidades, y en caso de ser necesario, abreviaciones.

θ	Ángulo de inclinación, latitud	0
θ_{Z}	Ángulo Cenital	0
API	API	s / u
A	Área, altura sobre el nivel del mar	ft^2 , Km
Cp_m	Calor específico de la mezcla	$\frac{Btu}{lbs^{*\circ}F}$
Cp_G	Calor específico gas	$\frac{Btu}{lbs^{*\circ}F}$
Cp_L	Calor específico liquido	$\frac{Btu}{lbs^{*\circ}F}$
Cp _o	Calor específico petróleo	$\frac{Btu}{lbs^{*\circ}F}$
Cp_{W}	Calor específico Agua	$\frac{Btu}{lbs^{*\circ}F}$
K_{G}	Conductividad térmica gas	$\frac{Btu}{ft*hr*^{\circ}F}$
K_L	Conductividad térmica liquido	$\frac{Btu}{ft * hr *^{\circ} F}$
K_P	Conductividad térmica tubería	$\frac{Btu}{ft * hr^{*\circ}F}$

K _o	Conductividad térmica petróleo	$\frac{Btu}{ft * hr^{*\circ} F}$
$K_{\scriptscriptstyle W}$	Conductividad térmica agua	$\frac{Btu}{ft * hr^{*\circ}F}$
$ ho_{\scriptscriptstyle M}$	Densidad de la mezcla	$\frac{Lbs}{ft^3}$
${oldsymbol{ ho}_{\scriptscriptstyle G}}$	Densidad del gas	$\frac{Lbs}{ft^3}$
$ ho_{\scriptscriptstyle L}$	Densidad del liquido	$\frac{Lbs}{ft^3}$
$ ho_o$	Densidad del petróleo	$\frac{Lbs}{ft^3}$
$ ho_{\scriptscriptstyle L}$	Densidad del agua	$\frac{Lbs}{ft^3}$
d_i	Diámetro de interno tubería	<i>Pu</i> lg
$d_{\scriptscriptstyle O}$	Diámetro externo de tubería	<i>Pu</i> lg
С	Factor de corrección C	s/u
F_{TP}	Factor de fricción	s/u
Gm	Flujo másico por unidad de área	$\frac{Lbs}{seg * ft^2}$
$\lambda_{_L}$	Fracción liquida sin deslizamiento	s/u
γ_G	Gravedad específica de gas (δο)	s/u
$\gamma_{\scriptscriptstyle L}$	Gravedad específica del petróleo	s/u
$H_{L}(\boldsymbol{\theta})$	"Hold-up" corregido	s / u

$H_L(0)$	"Hold-up" Horizontal (sin corrección)	s / u
L	Longitud de tubería	ft
ΔL	Segmento de tubería	ft
Fr_M	Número de Froud de la mezcla (Nfr)	s / u
\Pr_M	Número de Prandt de la mezcla	s / u
Re_{M}	Número de Reynolds de la mezcla	s/u
$N_{\scriptscriptstyle LV}$	Número de velocidad del liquido (Nlv)	s/u
Fns	Parámetro Fns	s / u
S	Parámetro S	s/u
Y	Parámetro para pérdida de presión	s / u
Q_{G}	Tasa de gas	$\frac{Pc}{d}$
Q_o	Tasa de petróleo	$\frac{Bbl}{d}$
$\sigma_{_L}$	Tensión superficial	$\frac{dinas}{cm^2}$
V_{M}	Velocidad de la mezcla	$\frac{ft}{seg}$
V _{SG}	Velocidad superficial de gas	$\frac{ft}{seg}$
V _{SL}	Velocidad superficial de líquido	$\frac{ft}{seg}$
$\mu_{\scriptscriptstyle M}$	Viscosidad de la mezcla	сP
$\mu_{_G}$	Viscosidad del gas	cР

μ_o	Viscosidad del líquido	сP
$\mu_{\scriptscriptstyle LW}$	Viscosidad en la pared de la tubería	сP
μ_s	Viscosidad de solvente	сP
$\mu_{\scriptscriptstyle W}$	Viscosidad de agua	сP
$\frac{dP}{dZ}$	Gradiente de presión total	$\frac{Psia}{ft}$
${dP\over dZ}_{fric}$	Gradiente de presión de fricción	$\frac{Psia}{ft}$
${dP\over dZ}_{acce}$	Gradiente de presión de aceleración	$\frac{Psia}{ft}$
$\frac{dP}{dZ}_{Grav}$	Gradiente de presión de gravedad	$\frac{Psia}{ft}$
$ ho_o$	Densidad de Petróleo	$\frac{Lbs}{ft^3}$
${oldsymbol{ ho}_{g}}$	Densidad de Gas	$\frac{Lbs}{ft^3}$
$ ho_{\scriptscriptstyle S}$	Densidad del diluente	$\frac{Lbs}{ft^3}$
R_s	Relación gas petróleo	Pcn Bn
Bo	Factor volumétrico de Petróleo	$\frac{By}{Bn}$
Bw	Factor volumétrico de agua	$\frac{By}{Bn}$
Bg	Factor volumétrico de gas	Bn Pcn

μ_o	Viscosidad de petróleo	сР
μ_s	Viscosidad de diluente	cP
Ζ	Factor de Compresibilidad de gas	s/u
т	Temperatura	°F
Ρ	Presión	Psi
Y	Salinidad del agua	ррт
Q_{GSC}	Tasa de gas a condiciones estándar	$\frac{Pcn}{d}$
Q_{osc}	Tasa de petróleo a condiciones estándar	$\frac{Bbl}{d}$
$Q_{\scriptscriptstyle WSC}$	Tasa de agua a condiciones estándar	$\frac{Bbl}{d}$
%C	Porcentaje de corte de agua	s / u
$h_{\scriptscriptstyle M}$	Coeficiente convectivo de la mezcla	$\frac{Btu}{ft^2 * hr^{*\circ}F}$
U	Transferencia de calor total	$\frac{Btu}{ft^2 * hr^{*o}F}$
Ts	Temperatura a la salida	°F
α	absorbancia	s / u
ε	Emisividad	s / u
σ	Constante de Stefan-Boltzmann	$\frac{Btu}{ft^2 * hr^{*o} R^4}$
ω	Angulo horario	rad
δ	Declinación solar	rad

Ľ	Latitud	rad
А	Altura con respecto al nivel del mar	mts
G_{SC}	Constante de irradiación solar	$\frac{Btu}{ft^2 * hr}$
G_{ON}	Irradiación extraterrestre	$\frac{Btu}{ft^2 * hr}$
G_{CB}	Irradiación directa	$\frac{Btu}{ft^2 * hr}$
G_{CD}	Irradiación difusa	$\frac{Btu}{ft^2 * hr}$
G_T	Irradiación total	$\frac{Btu}{ft^2 * hr}$
h_T	Coeficiente convectivo total	$\frac{Btu}{ft^2 * hr^{*\circ}F}$
h_{R}	Coeficiente convectivo Radiación	$\frac{Btu}{ft^2 * hr^{*\circ}F}$
L_1	Variable para definir el tipo de flujo	s/u
L_2	Variable para definir el tipo de flujo	s / u
L_3	Variable para definir el tipo de flujo	s/u
L ₄	Variable para definir el tipo de flujo	s/u
То	Temperatura del ambiente	°F

GLOSARIO

ANGULO: la porción de plano comprendida entre dos semirrectas con un origen en común denominado vértice.

CALOR ESPECÍFICO: El calor específico o capacidad calorífica específica, de una sustancia es la cantidad de calor necesaria para aumentar su temperatura en una unidad por unidad de masa, sin cambio de estado.

CONDUCTIVIDAD TÉRMICA: La conductividad térmica es la capacidad de los materiales para dejar pasar el calor.

DENSIDAD: Es una magnitud referida a la cantidad de masa contenida en un determinado volumen, y puede utilizarse en términos absolutos o relativos.

DIÁMETRO: se define como la máxima distancia entre dos puntos de una determinada forma geométrica (circular o con cualquier otra geométrica).

FLUJO LAMINAR: movimiento de un fluido cuando este es perfectamente ordenado, estratificado, de manera que el fluido se mueve en láminas paralelas, si la corriente tiene lugar entre dos planos paralelos, o en capas cilíndricas coaxiales.

FLUJO TURBULENTO: Movimiento de un fluido que se da en forma caótica, en que las partículas se mueven desordenadamente y las trayectorias de las partículas se encuentran formando pequeños remolinos aperiódicos, como por ejemplo el agua en un canal de gran pendiente.

GRAVEDAD ESPECÍFICA: La gravedad especifica esta definida como el peso unitario del material dividido por el peso unitario del agua destilada a 4 grados centígrados. Se representa la Gravedad Específica por Gs, y también se puede calcular utilizando cualquier relación de peso de la sustancia a peso del agua siempre y cuando se consideren volúmenes iguales de material y agua. NÚMERO DE FROUDE: Es un factor adimensional que relaciona la fuerza de inercia y la fuerza peso.

NÚMERO DE PRANDTL: Representa la relación que existe entre la difusividad molecular de la cantidad de movimiento y la difusividad molecular del calor o entre el espesor de la capa límite de velocidad y la capa límite térmica.

NÚMERO DE REYNOLDS: Reynolds (1874) estudió las características de flujo de los fluidos inyectando un trazador dentro de un líquido que fluía por una tubería. A velocidades bajas del líquido, el trazador se mueve linealmente en la dirección axial. Sin embargo a mayores velocidades, las líneas del flujo del fluido se desorganizan y el trazador se dispersa rápidamente después de su inyección en el líquido. El flujo lineal se denomina Laminar y el flujo errático obtenido a mayores velocidades del líquido se denomina Turbulento.

TASA DE FLUJO: Volumen de liquido o gas que pasa por una determinada sección transversal en la unidad de tiempo, generalmente se expresan en m3/s.

TENSIÓN SUPERFICIAL: Fenómeno por el cual la superficie de un líquido tiende a comportarse como si fuera una delgada película elástica.

TRANSFERENCIA DE CALOR: Proceso por el que se intercambia energía en forma de calor entre distintos cuerpos, o entre diferentes partes de un mismo cuerpo que están a distinta temperatura. El calor se transfiere mediante convección, radiación o conducción.

TUBERÍA: Elementos de diferentes materiales que cumplen la función de permitir el transporte el agua u otros fluidos en forma eficiente.

VISCOSIDAD: Es la oposición que muestra un fluido a las deformaciones tangenciales.

ANEXO A

Revisión del estado del arte en flujo multifásico y transferencia de calor ^{[5],[13],[18],[21],[28].}

Revisión de correlaciones: Gran cantidad de investigaciones teóricas y experimentales se has llevado a cabo para flujo horizontal, vertical e inclinado, pero muchos de los resultados de las correlaciones son validas para un limitado rango de tasas de flujo, propiedades de fluidos y tamaños de tuberías.

Muchas de las correlaciones de pérdida de presión publicadas requieren de la predicción de dos parámetro: el "hold-up" y el factor de fricción bifásico. La confiabilidad de cada una de la correlaciones es dependiente de la exactitud para estimar el "*hold-up*" y el factor de fricción. A continuación se nombran cada una de las correlaciones más importantes:

Lockhart y Mattinelli (1949): Fue utilizada para mezclas aire-liquido, como kerosén, agua, benceno y varios aceites. Este estudio fue realizado para tuberías de diámetro de 0.0586 a 1.017 pulgadas. A pesar de pequeño rango de diámetro de tubería, esta correlación ha sido usada extensamente en la industrias con moderado existo.

Bertuzzi et al. (1956): Este método es basado en un factor de fricción bifásico que es correlacionado con el número de Reynolds bifásico, la correlación es derivada de un set de datos mayormente aire-agua. Este método requiere la predicción independiente de hold-up.

Hoogendoorn, (1959): Proponen correlaciones para regímenes de flujo estratificado, tipo ola, y anular disperso basado en datos experimentales obtenidas de aire-aceite y

agua aceite, para diámetros de tuberías de 0.945 hasta 5.5 pulgadas. Para los otros regímenes de flujo recomiendan utilizar Lockhart y Martinelli.

Hoogendoorn and Buitelaar (1961): Continuaron el trabajo de Hoogendoorn, y presentaron correlaciones para regímenes flujo tipo burbuja, slug y disperso para un sistema Freon-11 y agua.

Baker (1961): Produjo una modificación compleja a la correlación de Lockhart y Martinelli para intentar tener una mayor exactitud con respecto a tuberías de mayores diámetros. Todas las ecuaciones tienen incluidas el diámetro de la tubería como variable, al contrario de Lockhart y Martinelli.

Duns y Ros (1963): Esta correlación fue el resultado de extensos estudios de laboratorio, en donde el "*hold-up*" y el gradiente de presión fueron medidos. Ellos desarrollaron mapas de patrones de flujo e identificaron regiones de flujo. (i) Burbuja, plug y parte de froth flor, (ii) slug y la otra mitad de froth flor (iii) mist flor y la zona de transición. Esta correlación es solo valida para pozos verticales.

Dukler et al (1964): Propone varias maneras para calcular la fricción en la pérdida de presión, dependiendo del tipo de flujo, y concluyeron que el no deslizamiento es su método preferido.

Hughmark (1965): Utilizo datos para sistemas de aire-aceite, aire-agua, aire-glycol y gas-aceite en tuberías de 1.049 a 7.75 pulgadas. Esta correlación solo es aplicable para flujo tipo "slug".

Baroezy (1966): Esta correlación fue derivada usando datos de numerosos sistemas, generalmente en tuberías de diámetros pequeños. El método correlaciona un índice de propiedades y la calidad de la mezcla. Muchos de los datos utilizados provienen de sistemas relacionados con transferencia de calor y transporte.

Chisholm (1967): Presento un modelo muy simplificado de la correlación de Lockhart y Martinelli. Esta correlación es expresada como una simple ecuación con una constante arbitraria, la cual depende de la naturaleza de flujo en cada fase (laminar o turbulenta).

Chawla's (1968): Esta correlación esta basada esencialmente en los datos contenidos en el banco de datos AGA/API. La forma de esta correlación tiene una fuerte dependencia con la velocidad superficial de gas y el diámetro de la tubería, mientras que las propiedades de los fluidos ejercen mucho menos efecto para la predicción de la pérdida de presión

Govler y Aziz (1972): La correlación fue propuesta para ser usada en regímenes de flujo burbuja dispersa y elongada. Esta es derivada de consideraciones mecanistas, usado junto con el cálculo de "*hold-up*" por Mandhane.

Beggs y Brill (1973): Es una de las pocas correlaciones publicadas capaces de manejar una gran gama de condiciones de flujo que se pueden encontrar en operaciones petróleo y gas, tales como flujo ascendente, en declive, horizontal, inclinado y vertical. Esta basada en datos experimentales para aire agua y para diámetros de tuberías de 1 y $1\frac{1}{2}$ pulgas.

Agrawal et al (1973): Realizan un modelo mecanicista para flujo horizontal estratificado bifásico, mediante el uso de un procedimiento iterativo computacional, que calcula el "*hold-up*" y el gradiente de presión simultáneamente. Este modelo fue comparado con datos de aire y agua para tuberías de una pulgada de diámetro, con buenos resultados.

Taitel 1976: es de los pioneros en la implementación de uso de modelos mecanicista. Este estudio se enfoca en determinar numéricamente las transiciones de los regímenes de flujo en flujo bifásico. También presenta un mapa de flujo generalizado.

Mukherjee y de Brill (1985): Este estudio se basa en una tubería en forma de "U" invertida, de 1.5 pulgadas en una tubería de acero, que se podía levantar o bajar a cualquier ángulo de 0° de $\pm 90^{\circ}$ del horizontal. Aproximadamente 1000 medidas de caída de presión y sobre 1500 medidas de "hold-up" fueron obtenidas para los varios caudales del gas y del líquido.

Xiao at el (1990): Es un modelo mecanicistas que fue desarrollado para flujo multifásico gas-liquido que es capaz de detectar 4 regímenes de flujo: estratificado, intermitente, anular y burbuja. El banco de datos incluye diámetros grandes de tubería obtenidos de A.G.A. y de datos de laboratorio. Tiene buenos resultados comparado con correlaciones empíricas.

Beggs y Brill (1991): Se realiza una modificación al mapa de patrones de flujo, donde se define el flujo transitorio como una transición entre flujo estratificado e intermitente.

Gómez et al (2000): Es un modelo unificado para la predicción de regímenes de flujo, "hold-up" y caída de presión aplicable para cualquier rango de inclinación desde 0° a +-90°. Este modelo es aplicable a pozos verticales, direccionales y horizontales el cual fue validado con datos de campo en Alaska con 86 casos. En comparación de con otros modelos, tiene muy buen desempeño.

Manabe et al (2003): Desarrollaron un modelo de transferencia de calor para flujo vertical. En su estudio. En las pruebas experimentales usaron flujo multifásico a alta presión, con un petróleo de 35 API y y gas natural.

Zhang et al (2004): Esta desarrollado como un modelo unificado para diferente regímenes de flujo tomando en cuenta cualquier inclinación desde -90° hasta +90° de la horizontal. El modelo predice el coeficiente de calor convectivo interno de la tubería para petróleo crudo y gas natural.

Ghajar and Kim (2005): Estudiaron el no burbujeo en flujo multifásico con trasferencia de calor para diferentes parámetros de flujo con distintas inclinaciones de tubería.

ANEXO B

Conceptos Básicos

B.1. Patrones de flujo^[11]

Existen diferentes regímenes de flujo, ya que cada autor puede realizar una clasificación dependiendo de sus intereses y objetivos. Otro factor muy importante que puede diferenciar un modelo de otro es la inclinación del tubo. Beggs y Brill los dividen en tres grandes grupos, como se muestran a continuación ^{[25],[28]}:

B.1.1. Flujo distribuido

Al menos una de las fases (gas o líquido) es discontinua. En este grupo se encuentran:

Flujo en burbujas (Bubble flow): En este caso, pequeñas burbujas de gas se distribuyen en un flujo continuo de líquido. En tubos horizontales tienden a concentrarse en la parte superior del tubo. A medida que la proporción de vapor aumenta, la distribución de las burbujas es menos uniforme.

Flujo neblina (Spray flow) (mist, froth, dispersed): Cuando la proporción de fase gas es ya muy superior a la de la fase líquido, el gas ocupa toda la sección del tubo, y el líquido viaja en forma de pequeñas gotas que se distribuyen axialmente a lo largo del tubo.

B.1.2. Flujo Intermitente

El líquido es la fase continua, y el gas es la fase discontinua. Los tipos de Flujos característicos son:

Flujo tapón (Plug flow): Burbujas de gran tamaño que ocupan la parte superior del tubo, mientras el resto del tubo está ocupado por líquido.

Flujo slug (Slug flow): El liquido se distribuye de tal manera que forma una especie de bolsas de líquido en forma de babosas (slug), que llenan el tubo y que son separadas por zonas de gas que forman unas burbujas alargadas, las cuales contienen una fina capa de líquido estratificado, que moja la superficie del tubo.

B.1.3. Flujo segregado

Ambas fases son continuas. Los tipos de flujos que se encuentran son:

Flujo estratificado (Stratified flow) (layered,separated): En el flujo estratificado el líquido fluye por la parte inferior del tubo, mientras que el gas circula por la parte superior. Este régimen se suele dividir en dos. Stratified smooth que ocurre normalmente a velocidades pequeñas, y en el cual la superficie que se encuentra entre ambas fases aparece lisa; y Stratified Wavy que en que la superficie intermedia aparece ondulante.

Flujo ondulado (Wavy flow) (ripple flow,cresting): El flujo ondulado es una característica que puede aparecer en diferentes configuraciones de flujo, como en el flujo estratificado o como en el flujo anular. Las altas velocidades del flujo hacen que la fase líquido forme unas "olas" que viajan en la dirección del flujo y alteran el equilibrio entre ambas fases.

Flujo anular (Annular flow) (ringed): Como resultado de un incremento de la velocidad del gas, se forma en el centro del tubo un núcleo de gas, que es rodeado por una capa de líquido que ocupa la periferia del tubo.

Figura B. 1: Tipos de Flujo^[4]

B.2. Mapas de Flujo^[28]

Es un gráfico de dos dimensiones que representa límites de la transición del régimen del flujo. Los parámetros más comunes usados para los ejes son las velocidades superficiales de líquido y gas, aunque se utilizan a veces las variables adimensionales. Existen mapas explícitos para tubos en posición horizontal y otros para posición vertical, y en general para cualquiera que sea el grado de inclinación del tubo. Aún así también hay mapas que se adaptan a cualquier tipo de inclinación, ya que muchos regímenes de flujo coinciden entre diferentes posiciones.

Figura B. 2: Diagrama de Baker 1954 [40]

Figura B. 3: Diagrama de Madhane, Gregory Aziz 1974^[16]

B.3. "Hold-up"^[12]

Es la relación de volumen ocupado por el líquido en un segmento de tubería, y el volumen total del segmento de la misma, considerando el efecto de deslizamiento entre las fases.

ANEXO C

Correlaciones PVT

En esta sección, se presentarán las correlaciones PVT empleadas en la programación de la herramienta, divididas en tres secciones: correlaciones para determinar las propiedades del componente petróleo, correlaciones para determinar las propiedades del componente agua, y por último, las correlaciones empleadas en la generación de las propiedades referentes al gas.

C.1. Correlaciones para determinar las propiedades del componente petróleo.

Para la mayoría de las propiedades (Rs, Bo) se utilizaron las correlaciones de Standing, como se muestra a continuación:

Relación gas-petróleo en solución^[16]

Para determinar la variación de la Relación Gas - Petróleo en solución (Rs) con la presión, se hizo uso de las correlaciones de Standing. Esta ecuación se muestra en la ecuación C.1.

$$Rs = \gamma_G \left[\left(\frac{P}{18.2} + 1.4 \right) \cdot 10^A \right]^{1.2048}$$
Ec. C.1
$$A = 0.0125 \ API - 0.00091 \ T$$

En donde:

- Rs: Relación Gas Petróleo en solución, [PCN/BN]
- γ_G : Gravedad específica del gas, [fracción]

P: Presión, [psia]

API: Gravedad API del crudo sujeto a estudio, [°API]

Las correlaciones de Standing, sugieren que el crudo estudiado cumpla con una serie de requisitos mínimos que coinciden con el rango de los datos utilizados en la generación de las correlaciones, mostradas en la tabla C.1.

Propiedad	Valor Máximo	Valor Mínimo
Presión de burbujeo, psia	130	7000
Temperatura, °F	100	258
Relación gas-petróleo en solución, PCN/BN	20	1425
Gravedad API del crudo @ 60°F	16.5	63.8
Gravedad específica del gas disuelto	0.59	0.95
Temperatura del Separador, °F	100	
Presión en el separador, psia	150	400

Tabla C. 1: Rango requerido de los datos para emplear las correlaciones de Standing^[16]

Factor volumétrico de formación^[20]

Para determinar la variación del Factor Volumétrico de Formación (β_o) con la presión se empleó la correlación propuesta por Standing para esta propiedad, mostrada en la ecuación C.2.

$$\beta_{o} = 0.9759 - 0.000120 \cdot \left[Rs \left(\frac{\gamma_{G}}{\gamma_{O}} \right)^{0.5} + 1.25T \right]^{1.2}$$
 Ec. C.2

Donde:

 β_0 : Factor Volumétrico de Formación, [BY/BN].

Rs: Relación Gas-Petróleo en solución, [PCN/BN].

- γ_G : Gravedad específica del gas, [fracción].
- γ_0 : Gravedad específica del petróleo, [fracción].
- T: Temperatura, [°F].

Correlaciones para determinar la viscosidad del petróleo.^{[8],[20]}

Para determinar la viscosidad del petróleo, hay que distinguir entre dos etapas: la etapa subsaturada (P > Pb) y la etapa saturada ($P \le Pb$). Para cada etapa, distintos autores han desarrollado una serie de correlaciones, cada una con características y rangos de aplicación distintos. En este estudio se utilizaron las correlaciones de Beggs y Robinson, y Vásquez y Beggs.

Viscosidad del crudo muerto $(\mu_{ob})^{[8]}$.

En primer lugar, para el cálculo de la viscosidad del crudo se partió de la suposición que el crudo se encuentra por debajo del punto de burbujeo en la línea de flujo, y se calcula la viscosidad del crudo muerto, que no es más que crudo sin gas en solución, correspondiente a presión atmosférica y a temperatura de yacimiento. Para realizar este cómputo, se utilizó la correlación de **Beggs-Robinson**, cuya formulación matemática se detalla en las acuaciones C. 5, C. 6, C. 7, y C.8.

 $\mu_{ob} = 10^{x} - 1$

Ec. C. 5

Siendo:

$$x = y T^{-1.163}$$
 Ec. C. 6
 $y = 10^{z}$ Ec. C. 7

$$z = 3.0324 - 0.02023$$
° API Ec. C.8

Viscosidad para crudos saturados ^[8, 20]

Para este tipo de crudo, se utilizó la correlación propuesta por Beggs y Robinson en 1975, con la forma siguiente:

$$\mu_{ob} = a(\mu_{od})^b \qquad \text{Ec. C. 9}$$

En donde:

$$a = 10.71 (\text{Rs} + 100)^{-0.515}$$
 Ec. C.10

$$b = 5.44 (\text{Rs} + 150)^{-0.338}$$
 Ec. C.11

Los rangos adecuados para trabajar con éstas correlaciones se pueden observar en la tabla C.3.

Tabla C. 2: Rango requerido de los datos para emplear las correlaciones de Beggs-

Robinson^[20]

Propiedad	Valor Máximo	Valor Mínimo
Presión, psia	132	5265
Temperatura, °F	70	295
Relación gas-petróleo en solución, PCN/BN	20	2070
Gravedad API del crudo @ 60°F	16	58

C.2. Correlaciones para determinar las propiedades del agua.

Para determinar las propiedades PVT del agua, diversos autores ^[20, 22] han propuesto diversas correlaciones, en función de análisis de muestras provenientes de todo el mundo. A continuación se especificarán las correlaciones empleadas en la generación de los datos PVT del agua de formación empleada en este estudio.

Factor volumétrico de formación^[20]

El factor volumétrico de formación del agua (β_w) fue determinado a partir de la siguiente expresión matemática:

$$\beta_{w} = A_1 + A_2 P + A_3 P^2$$
 Ec. C.15

$$A_i = a_1 + a_2 T + a_3 T^2$$
 Ec. C.16

Tabla C. 3: Valores de los coeficientes a1, a2, a3 correspondientes a cada Ai, Ec B15-B16^[20]

Ai	a ₁	a ₂	a ₃
A ₁	0.9947	5.8 10-6	1.02 · 10-6
A ₂	-4.228 ·10 ⁻⁶	1.8376 · 10 ⁻⁸	-6.77 · 10 ⁻¹¹
A ₃	1.3 · 10 ⁻¹⁰	-1.3855 · 10 ⁻¹²	4.285 · 10 ⁻¹⁵

Viscosidad del agua^{[20],[22]}

Meehan en 1980, propuso una correlación para determinar la viscosidad del agua (β_w) , tomando en cuenta los efectos de la presión y la salinidad:

$$\mu_{w} = \mu_{wD} \left[1 + 3.5 \cdot 10^{-2} P^{2} (T - 40) \right]$$
 Ec. C.17

Con:

$$\mu_{w} = \mu_{wD} \left[1 + 3.5 \cdot 10^{-2} \text{ P}^{2} \text{ T} \right]$$
Ec. C.18

$$\mu_{\rm wD} = A + B/T \qquad \qquad \text{Ec. C.19}$$

$$A = 4.518 \cdot 10^{-2} + 9.313 \cdot 10^{-7} \text{ Y} - 3.93 \cdot 10^{-12} \text{ Y}$$
 Ec. C.20

$$B = 70.634 + 9.576 \cdot 10^{-10} \text{ Y}^2$$
 Ec. C.21

En donde:

 μ_{w} : Viscosidad del agua, [cp].

 μ_{wD} : Viscosidad del agua @ 14,7 psia y T, [cp].

T: Temperatura, [°F].

P: presión, [psia].

Y: salinidad del agua de formación, [ppm].

C.3. Correlaciones para determinar las propiedades del gas.

Las propiedades del gas disuelto en el crudo se determinaron por medio de una serie de correlaciones y métodos conocidos y encontrados en la literatura. Los métodos empleados en la determinación de cada propiedad se detallan a continuación.

Factor de Compresibilidad del Gas.^[22]

Para determinar el factor de compresibilidad del gas, se utilizaron las siguientes ecuaciones:
$P_{pc} = 708,75 - 57,5 \cdot \gamma_g$	Ec. C.26
$T_{pc} = 169 + 314 \cdot \gamma_g$	Ec. C.27
$p_{pr} = \frac{p}{p_{pc}}$	Ec. C.28

$$T_{pr} = \frac{T}{T_{pc}}$$
 Ec. C.29

Donde:

P_{pc}: Presión Pseudo Crítica [psia]

T_{pc}: Temperatura Pseudo Crítica [°R]

P_{pr}: Presión Pseudo Reducida [adimensional]

T_{pr}: Temperatura Pseudo Reducida [adimensional]

- P: Presión del Yacimiento [lpca]
- T: Temperatura del Yacimiento [°R]

Mediante la iteración Newton Raphson se calcula el valor de la densidad reducida en la ecuación no lineal

$$-0.06125 p_{pr} t e^{-1.2(1-t)^2} + \frac{y + y^2 + y^3 - y^4}{(1-y)^3} - (14.76t - 9.76t^2 + 4.58t^3)y^2 + (90.7t - 242.2t^2 + 42.4t^3)y^{(2.18+2.82t)} = 0$$

Ec. C.30

Para luego determinar el valor de Z

$$Z = \frac{0.06125 \, p_{pr} t e^{-1.2(1-t)^2}}{y}$$

Ec. C31

Donde:

Ppr: Presión reducida

T: Temperatura pseudo-reducida

.y: Densidad reducida (incognita)

Factor Volumétrico del Gas^[,22]

Mediante la siguiente ecuación, se determinó el factor volumétrico del gas con la temperatura y presiones del yacimiento:

$$\beta_{gi} = 0,00503 \cdot \frac{Z \cdot T}{P}$$
 Ec. C.30

Donde:

P: Presión, [psia]
T: Temperatura, [°R]
βgi: Factor Volumétrico del Gas @ condiciones iniciales, [PCY/PCN]

Viscosidad del gas^{.[22]}

Los valores de viscosidad del gas del yacimientos, se determinó utilizando la correlación de Lee, A.L., González, M.H y Eakin, B.E. Las ecuaciones usadas fueron las siguientes:

$$\mu_g = \frac{K \cdot \exp \left(X \cdot \rho_g^Y \right)}{10^4}$$
 Ec. C.31

$$K = \frac{(9,4+0,02 \cdot M) \cdot T^{1,5}}{209+19 \cdot M+T}$$
 Ec. C.32

$$X = 3,5 + \frac{986}{T} + 0,01 \cdot M$$
 Ec. C.33

$$Y = 2, 4 - 0, 2 \cdot X$$
 Ec. C.34

$$\rho_g = 1,4935 \times 10^{-3} \cdot \frac{P \cdot M}{z \cdot T}$$
 Ec. C.35

Donde:

- μ_g : Viscosidad del gas a p y T (cP)
- ρ_g : Densidad del gas (gr/cc)
- *M*: Peso molecular del gas (= 28,96 γ_g), (lb/lb-mol)
- z: Factor de compresibilidad del gas (adimensional)

p: Presión (psia)

T: Temperatura (°R)

El rango de aplicación para estas ecuaciones se presenta tabla C.4.

Tabla C. 4: Rango de aplicación de la correlación de Lee, A.L., González, M.H y Eakin, B.E.^[22]

Parámetro	Mínimo	Máximo
Presión (lpca)	100	8000
Temperatura (°F)	100	340
°API	10	52,5

ANEXO D

Predictor de Temperaturas

A continuación se muestra el procedimiento que se utilizó^[24] para determinar la función de la temperatura ambiente:

- Se utilizó el trabajo previo de "Influencia de La Radiación Solar en el Calentamiento de Tuberías y Tanques" como punto de partida.
- Se tomó la base de datos de la pagina web Weather.com, la variación de temperatura para las ciudades de Venezuela.
- Se tomó la temperatura de 2 días consecutivos en la ciudad de Caracas con intervalos de una hora.
- Se transformó la temperatura a grados °F.
- Se transformó un parámetro que por comodidad se ha llamado tiempo angular.
- Se definió la función f(θ) = a + b * sen(θ) + c * cos(θ) fijando arbitrariamente los valores de las constantes a, b y c.
- Se definió la función error $err = \sqrt{T^2 + f(\theta)^2}$ y se evaluó punto a punto
- Se creo una hoja de Excel y usando la función solver se ajustaron a, b y c de modo que la sumatoria de lo errores de cada punto se hiciera mínima.
- Obteniéndose funciones para cada día del año, que van a depender de la hora del amanecer, anochecer, la temperatura máxima y mínima.

A Continuación se muestra una de las tablas creadas su grafica de solución:

	302,333355	62 -	-3,1311911	65-	-1,52771671
t (horas)	Tref (°C)	Tlin (°C)	Tcorr (°C)	Err	
0	23,3723	28,4723	28,4722	1,4215E-09	Referencia
1	22,9909	27,5585	27,5584	2,471E-09	Tmax (°C) = 25,6797
2	22,6789	26,8111	26,8110	3,7827E-09	tmax (horas) = 17
3	22,4576	26,2810	26,2809	5,2247E-09	Tmin (°C) = 22,3403
4	22,3421	26,0043	26,0043	6,6114E-09	tmin (horas) = 5
5	22,3403	26,0000	25,9999	7,7392E-09	Local
6	22,4523	26,2682	26,2682	8,43E-09	Tmax (°C) = 34,0000
7	22,6704	26,7908	26,7907	8,5703E-09	Tmin (°C) = 26,0000
8	22,9798	27,5321	27,5320	8,1367E-09	m = 2,3956807
9	23,3595	28,4415	28,4414	7,2011E-09	b = -27,520294
10	23,7834	29,4572	29,4571	5.9148E-09	
11	24,2228	30,5098	30,5098	4.4743E-09	El error calculado es el
12	24,6477	31,5277	31,5277	3.0791E-09	error cuadrático medio qu
13	25,0291	32,4415	32,4415	1.8908E-09	viene dado por la formula
14	25,3411	33,1889	33,1889	1.0042E-09	
15	25,5624	33,7190	33,7190	4.3725E-10	Err = Xi - Xi') ^ 2
16	25,6779	33,9957	33,9956	1.412E-10	() n*(n-1)
17	25,6797	34,0000	34,0000	2.7252E-11	V V
18	25,5677	33,7318	33,7318	1.8983E-12	
19	25.3496	33,2092	33,2092	3.8045E-13	1
20	25,0402	32,4679	32,4679	8.9357E-12	
21	24,6605	31,5585	31,5585	6.9447E-11	
22	24,2366	30,5428	30,5428	2.6521E-10	
23	23,7972	29,4902	29,4902	6.9183E-10	
24	23,3723	28,4723	28,4722	1,4215E-09	
				1.1712E-05	

Distribución de Temperaturas @Ccs 29-01-07

Figura D 1: Utilización del solver de Excel, para la distribución de temperaturas

Obteniéndose el comportamiento de la curva:

Figura D 2: Distribución de Temperaturas en la ciudad de Caracas

ANEXO E

Datos de Validación y Resultados del análisis Paramétrico

A continuación se muestran los datos experimentales para la validación de pérdida de calor. Tablas E.1

Parametros a medir	Corridas	1	2	3	4	5	9	7	8	6	10	11	12	13	14
fasa de Gas	MSCFD	26970	25552	12050	11886	6474	4348	26970	25552	12050	11886	6474	4348	7471,6	9338,4
asa de Petroleo	Bbls/D	514	5484	4167	6592	4970	5420	514	5484	4167	6592	4970	5420	627	721
ongitud de la linea	Ft	11317	11317	11317	11317	5534	11317	41333	41333	31115	41333	41333	41333	3666	3666
Diametro interno	pulg	7,75	7,75	7,75	7,75	7,75	7,75	10,136	10,136	10,136	10,136	10,136	10,136	4,026	4,026
presion de entrada	Psig	983	1007	972	116	964	940	964	975	962	960	952	930	1087	1096
presion de salida	Psig	964	975	962	960	958	930	945	946	948	936	936	912	1067	1075
Sravedad espesifica del gas	s/u	0,59	0,59	0,59	0,59	0,59	0,59	0,59	0,59	0,59	0,59	0,59	0,59	0,625	0,625
Densidad de gas	Lbs/Ft3	3,42	3,48	3,38	3,32	3,38	3,28	3,36	3,37	3,38	3,32	3,32	3,28	4,31	4,31
Densidad del liquido	lbs/gal	6,499	6,499	6,525	6,499	6,53	6,103	6,499	6,499	6,525	6,499	6,53	6,103	5,11	5,11
/iscosidad del gas	cP	0,014	0,014	0,014	0,014	0,014	0,014	0,014	0,014	0,014	0,014	0,014	0,014	0,0145	0,0145
/iscosidad del liquido	cP	0,577	0,574	0,58	0,578	0,58	0,587	0,577	0,577	0,58	0,578	0,58	0,589	0,557	0,557
ension superficial	Dynes/cm	16,7	16,7	16,7	16,7	16,7	16,7	16,7	16,7	16,7	16,7	16,7	16,7	16,7	16,7
⁵ Si	s/u	4,27	4,27	4,27	4,27	4,27	4,5	4,27	4,27	4,27	4,27	4,27	4,5	4,98	4,98
amda	S/U	7,62	7,7	7,58	7,58	7,58	17,7	7,6	7,62	7,58	7,58	7,58	7,71	9,66	9,66
emperatura de la linea	ēF	75	80	69	78	99	82	75	80	69	78	99	82	62	80
Caida de presion	Psig	19	32	10	17	9	10	19	29	14	24	16	18	20	21
eynold gas	*1000 S/U	2840	2750	1268	1250	681	456,3	2172	2100	166	166	532	357	1510	2020
Reynolds Liquido	*1000 S/U	8,26	88,5	67	105,5	79,2	80,3	6,31	67,6	51,1	80,7	9'09	61,2	15,8	18,2
Iujo masico de gas	lbs/(hr*ft2)	155500	147307	69500	68500	37400	25000	90500	85727	40400	39800	21700	14600	158000	210000
Iujo masico de Liquido	lbs/(hr*ft2)	17850	191000	145000	228500	173000	177000	10440	111400	84500	133300	101000	110000	63600	76500
Tipo de Flujo	s/u	Anular	Anular	Anular Sl	ßn	Slug	Slug	Anular	Anular	Slug	Slug	Slug	Slug	anular	anular

. Tabla E. 1: Datos experimentales ^[24]

			10	100	0	20			2	191- 101-	10		100	() ()
Parametros a medir	Corridas	15	16	17	18	19	20	21	22	23	24	25	26	27
Tasa de Gas	MSCFD	6979,6	9338,4	11767	6483,5	4440,7	6483,5	6668	6797,9	11950	9476,7	6483,5	11950	9476,7
Tasa de Petroleo	Bbls/D	627	721	192	136	76	136	107	102	236	244	136	236	244
Longitud de la linea	Ft	14790	14790	11427	11427	11427	10617	10617	10617	11313	11313	22044	41317	41317
Diametro interno	Pulg	5,937	5,937	7,75	7,75	7,75	7,75	7,75	7,75	7,75	7,75	7,75	10,136	10,136
presion de entrada	Psig	1070	1076	712	705,5	1075,5	203	1067	1075	1064	1074	705,5	1063	1068
presion de salida	Psig	1055	1060	703	703	1075	701,5	1065,5	1074	1062	1067	701,5	1055,5	1058
Gravedad espesifica del gas	s/u	0,625	0,625	0,62	0'0	0,6	0'0	0,6	0,6	0'0	0,6	0,6	0,6	0,59
Densidad de gas	Lbs/Ft3	4,28	4,28	2,62	2,62	3,99	2,62	3,99	3,99	3,99	3,99	2,62	3,99	3,88
Densidad del liquido	Ibs/gal	5,11	5,11	6,15	6,15	5,68	6,15	5,68	5,68	5,68	5,68	6,15	5,68	5,68
Viscosidad del gas	сР	0,0145	0,0145	0,0143	0,014	0,014	0'014	0,014	0,014	0,014	0,014	0,014	0,014	0,014
Viscosidad del liquido	cP	0,577	0,577	0,63	0,63	0,557	0'03	0,557	0,577	0,557	0,557	0,63	0,557	0,557
Tension superficial	Dynes/cm	16,7	16,7	18	18	15	18	15	15	15	15	18	15	16,7
Psi	s/u	4,98	4,98	4,25	5,17	4,25	5,17	4,27	5,17	5,17	5,17	4,25	5,17	4,65
lamda	s/u	9,66	99'66	6,86	6,86	8,82	6,86	8,82	8,82	8,82	8,82	6,86	8,82	8,7
Temperatura de la linea	Зē	72	73	65	65	69	92	70	69	02	69	99	70	69
Caida de presion	Psig	15	16	9	2,5	0,5	1,5	1,5	1	2	7	4	7,5	10
reynold gas	*1000 S/U	1022	1370	1330	722	494	727	746	756	1340	1038	722	1023	794
Reynolds Liquido	*1000 S/U	10,7	1235	2,67	1,88	1,1	1,88	1,55	1,48	3,44	3,56	1,88	2,62	2,71
Flujo masico de gas	Ibs/(hr*ft2)	72300	96300	71100	37800	25900	37800	38900	39600	69600	55200	37800	40600	31800
Flujo masico de Liquido	lbs/(hr*ft2)	29200	35100	6310	4470	2310	4470	3250	3090	7150	7400	4470	4170	4320
Tipo de Flujo	s/u	Anular	Anular	Wave	Wave	Stratifies	Wave	Stratified	Stratified	Annular	Nave	Wave	Nave S	tratified

(Continuación)
s experimentales ^[24]
Tabla E.1 Dato.

	Datos b	base Distribu	iido	Π		Datos bas	se intermiter	nte			Datos ba	ise Segregao	0	
	Variable	Min	Base M	ax		Variable	Min	ase M	XE	Ċ	Variable	Min B	ase Max	
Caso 1	Temperatura	144	180	216	Caso 1	Temperatura	144	180	216	Caso 1	Temperatura	144	180 21	10
Caso 2	Temperatura ambiente	80.	100	120	Caso 2	Temperatura ambiente	.08	100	120	Caso 2	Temperatura ambiente	80;	100 12	50
Caso 3	Presion	1600	2000	2400	Caso 3	Presion	800	10001	1200	Caso 3	Presion	1600	2000 240	8
Caso 4	API	24	30	36	Caso 4	API	24	30	36	Caso 4	API	24	30	36
Caso 5	Tasa de Petroleo	8000	10000	12000	Caso 5	Tasa de Petroleo	4000	5000	6000	Caso 5	Tasa de Petroleo	160	2001 24	40
Caso 6	Gravedad del Gas	0,521	0,651	0,78	Caso 6	Gravedad del Gas	0,521	0,651	0,78	Caso 6	Gravedad del Gas	0,521	0,651 0,7	78
Caso 7	Tasa de Gas	140000015	50000001 6	000000	Caso 7	Tasa de Gas	400000015	0000001 61	00000	Caso 7	Tasa de Gas	4000000150	00000 00000	18
Caso 8	Longitud de Tuberia	16001	2000	2400	Caso 8	Longitud de Tuberia	80001	100001	12000	Caso 8	Longitud de Tuberia	16001	20001 240	18
Caso 9	Inclinacion de tuberia	5	6	0	Caso 9	Inclinacion de tuberia	6	5	0	Caso 9	Inclinacion de tuberia	5	0	0
Caso 10	Diametro Interno	3,16641	3,958	4,7496	Caso 10	Diametro Interno	3,16641	3,958	4,7496	Caso 10	Diametro Interno	3,16641	3,958 4,749	38
	Diametro Externo	3.61	4,5	5,4		Diametro Externo	3,6!	4,51	5,4		Diametro Externo	3,61	4,51 5	4
Caso 11	Numero de Divisiones	8	101	12	Caso 11	Numero de Divisiones	60	101	12	Caso 11	Numero de Divisiones	8	101	12
				82					50					2

Tabla E.3 Datos base

Tabla E. 2 Resultados de las Simulaciones en AFM

		Seg	regado		200		Inte	mitente				Dist	ribuido		
	Temperatura	Presión	Tipo de Flujo	80	Qg	Temperatura	Presión	Tipo de Flujo	00	Qg	Temperatura	Presión	Tipo de Flujo	80	Qg
Caso Base	1997,40	174,71	Segregado	0,0155	9,4445	730,22	178,83	Intermitente	0,3552	78,1872	1931,16	179,91	Distribuido	0,7709	3,7017
Caso Min 1	1997,67	141,08	Segregado	0,0154	7,7846	726,00	143,34	Intermitente	0,3499	67,5983	1930,76	143,95	Distribuido	0,7649	2,4987
Caso Min 2	1997,41	173,38	Segregado	0,0155	9,3778	730,22	178,54	Intermitente	0,3552	78,0904	1931,16	179,89	Distribuido	0,7709	3,7009
Caso Min 3	1596,32	174,77	Segregado	0,0150	15,3135	448,49	178,83	Intermitente	0,3496	236,4611	1522,48	179,91	Distribuido	0,7486	9,0205
Caso Min 4	1997,20	174,75	Segregado	0,0151	9,4734	679,72	178,84	Intermitente	0,3518	94,3260	1919,19	179,91	Distribuido	0,7521	5,1042
Caso Min 5	1997,60	174,54	Segregado	0,0124	9,4602	789,12	178,61	Intermitente	0,2852	66,6739	1948,72	179,84	Distribuido	0,6175	4,9177
Caso Min 6	1997,50	173,76	Segregado	0,0149	10,7759	721,74	178,80	Intermitente	0,3515	86,7035	1929,21	179,86	Distribuido	0,7547	4,9609
Caso Min 7	1998,38	173,66	Segregado	0,0155	7,4792	777,48	178,79	Intermitente	0,3563	52,2827	1940,79	179,86	Distribuido	0,7714	1,5256
Caso Min 8	1997,92	175,74	Segregado	0,0155	9,4912	789,52	179,06	Intermitente	0,3566	65,0950	1945,01	179,89	Distribuido	0,7717	3,5856
Caso Min 9	1991,21	175,19	Transitorio	0,0155	9,5328	238,59	178,97	Distribuido	0,3460	1446,1296	1976,36	179,90	Distribuido	0,7735	3,3357
Caso Min 10	2020,31	172,91	Segregado	0,0155	9,1251	1168,11	178,86	Intermitente	0,3652	25,2796	2119,70	179,87	Distribuido	0,7818	2,3603
Caso Min 11	1997,40	174,70	Segregado	0,0155	9,4444	731,19	178,83	Intermitente	0,3553	78,4049	1931,18	179,86	Distribuido	0,7709	3,7017
Caso Max 1	1997,12	208,35	Segregado	0,0156	11,1791	728,38	214,33	Intermitente	0,3607	90,8813	1930,92	215,87	Distribuido	0,7776	5,1150
Caso Max 2	1997,40	176,03	Segregado	0,0155	9,5112	730,22	179,12	Intermitente	0,3553	78,2840	1931,16	179,93	Distribuido	0,7709	3,7026
Caso Max 3	2398,04	174,65	Segregado	0,0160	6,4547	975,31	178,83	Intermitente	0,3607	39,7814	2338,88	179,91	Distribuido	0,7948	1,2876
Caso Max 4	1997,54	174,66	Segregado	0,0160	9,4105	766,95	178,82	Intermitente	0,3595	67,7053	1941,94	179,91	Distribuido	0,7951	2,0292
Caso Max 5	1997,16	174,87	Transitorio	0,0186	9,4289	665,11	178,99	Intermitente	0,4247	95,5155	1911,57	179,92	Distribuido	0,9238	2,4806
Caso Max 6	1997,45	175,39	Segregado	0,0161	7,8461	738,32	178,86	Intermitente	0,3589	70,2281	1934,80	179,91	Distribuido	0,8003	1,9212
Caso Max 7	1996,17	175,46	Segregado	0,0155	11,4205	679,23	178,87	Intermitente	0,3542	113,1793	1924,76	179,91	Distribuido	0,7705	5,8886
Caso Max 8	1996,89	173,69	Segregado	0,0155	9,3984	667,18	178,60	Intermitente	0,3539	96,6015	1917,27	179,89	Distribuido	0,7701	3,8201
Caso Max 9	1998,92	174,35	Segregado	0,0155	9,4108	895,36	178,68	Intermitente	0,3588	48,1993	1976,36	179,90	Distribuido	0,7735	3,3357
Caso Max 10	1856,98	173,66	Segregado	0,0153	11,0189	188,39	178,88	Distribuido	0,3452	2101,4586	1736,97	179,91	Distribuido	0,7601	5,7072
Caso Max 11	1997 40	174 71	Segregado	0.0155	9 4445	729.56	178 83	Intermitente	0.3552	78 0449	1931 15	179.91	Distribuido	0 7709	3 7006

En las Tablas E.2, E.3, E.4 y E.5 se observan, los Casos Bases, resultados, diferencias y diferencias en % del análisis Paramétrico.

101

		Con	obener				Inte	amitanta				Die	+ribuido		
_	Presión	Temperatura	Tipo de Fluio	00	Qa	Presión	Temperatura	Tipo de Fluio	00	Qa	Presión	Temperatura	Tipo de Fluio	00	Qa
Ain 1	0,26	-33,63	VERDADERO	-0,0001	-1,6598	-4,22	-35,49	VERDADERO	-0,0054	-10,5888	-0,40	-35,96	VERDADERO	-0,0060	-1,2031
Min 2	00'0	-1,32	VERDADERO	0,0000	-0,0667	00'0	-0,29	VERDADERO	0,0000	-0,0968	00'0	-0,02	VERDADERO	0'0000	-0,0008
Min 3	-401,08	0,06	VERDADERO	-0,0004	5,8690	-281,73	00'0	VERDADERO	-0,0056	158,2739	-408,69	00'0	VERDADERO	-0,0223	5,3187
Win 4	-0,20	0,04	VERDADERO	-0,0004	0,0290	-50,50	0,01	VERDADERO	-0,0034	16,1388	-11,97	00'0	VERDADERO	-0,0188	1,4025
Min 5	0,19	-0,17	VERDADERO	-0,0031	0,0157	58,90	-0,22	VERDADERO	-0,0701	-11,5133	17,56	-0'0-	VERDADERO	-0,1534	1,2159
Min 6	0'08	-0,95	VERDADERO	-0,0005	1,3314	-8,48	-0,04	VERDADERO	-0,0038	8,5164	-1,95	-0'02	VERDADERO	-0,0162	1,2592
Min 7	0,98	-1,05	VERDADERO	0'0000	-1,9652	47,26	-0,04	VERDADERO	0,0010	-25,9045	9,62	-0,05	VERDADERO	0,0005	-2,1761
Min 8	0,52	1,03	VERDADERO	0,0000	0,0467	59,30	0,23	VERDADERO	0,0013	-13,0922	13,85	-0,02	VERDADERO	0,0008	-0,1161
Min 9	-6,19	0,48	FALSO	0,0000	0,0883	-491,63	0,13	FALSO	-0,0093	1367,9424	45,20	-0,01	VERDADERO	0,0026	-0,3661
Min 10	22,90	-1,79	VERDADERO	0,0000	-0,3193	437,89	0'03	VERDADERO	0,0100	-52,9075	188,54	-0,04	VERDADERO	0,0109	-1,3415
Win 11	00'0	00'0	VERDADERO	0,0000	-0,0001	0,97	00'0	VERDADERO	0'0000	0,2177	0,01	-0,05	VERDADERO	0'0000	0,0000
Max 1	-0,28	33,65	VERDADERO	0,0001	1,7346	-1,84	35,50	VERDADERO	0,0055	12,6942	-0,24	35,96	VERDADERO	7800,0	1,4133
Max 2	00'0	1,32	VERDADERO	0,0000	0,0668	00'0	0,29	VERDADERO	0,0000	0,0969	00'0	0,02	VERDADERO	0'0000	0,0008
Max 3	400,63	-0,06	VERDADERO	0,0005	-2,9897	245,09	00'0	VERDADERO	0,0054	-38,4058	407,72	00'0	VERDADERO	0,0239	-2,4142
Max 4	0,13	-0,04	VERDADERO	0,0005	-0,0339	36,73	-0,01	VERDADERO	0,0043	-10,4819	10,78	00'00	VERDADERO	0,0242	-1,6726
Max 5	-0,24	0,16	FALSO	0,0031	-0,0156	-65,11	0,16	VERDADERO	0,0694	17,3284	-19,59	0,01	VERDADERO	0,1529	-1,2211
Max 6	0,05	0,69	VERDADERO	0,0006	-1,5984	8,10	0'03	VERDADERO	0,0036	-7,9591	3,64	00'00	VERDADERO	0,0294	-1,7805
Max 7	-1,24	0,75	VERDADERO	0,0000	1,9760	-50,99	0,04	VERDADERO	-0,0011	34,9921	-6,40	00'00	VERDADERO	-0,0004	2,1868
Max 8	-0,52	-1,02	VERDADERO	0'0000	-0,0461	-63,04	-0,23	VERDADERO	-0,0014	18,4144	-13,89	-0,02	VERDADERO	-0,0008	0,1183
Max 9	1,52	-0,36	VERDADERO	0,0000	-0,0337	165,14	-0,15	VERDADERO	0,0036	-29,9878	45,20	-0,01	VERDADERO	0,0026	-0,3661
Aax 10	-140,43	-1,04	VERDADERO	-0,0002	1,5745	-541,83	0,05	FALSO	-0,0101	2023,2714	-194,19	00'0	VERDADERO	-0,0108	2,0055
Aax 11	00'0	00'0	VERDADERO	0,0000	0,0000	-0,66	00'00	VERDADERO	0,0000	-0,1423	-0,01	00'0	VERDADERO	0,0000	-0,0011

base
caso
el
ري
AFM
entre
ones
ıci
simula
вn
encias
Difer
4
E
Tabla 1

Tabla E. 5 Diferencias en % entre AFM respecto a caso base

								0.000 B.							
		Seg	regado		-		Inte	emitente				DIST	ribuido		10
	Presión	Temperatura	Tipo de Flujo	Qo	Qg	Presión	Temperatura	Tipo de Flujo	Q0	Qg	Presión	Temperatura	Tipo de Flujo	Qo	Qg
Caso Min 1	0,01%	-19,25%	VERDADERO	-0,66%	-17,57%	-0,58%	-19,84%	VERDADERO	-1,51%	-13,54%	-0,02%	-19,99%	VERDADERO	-0,77% -	-32,50%
Caso Min 2	%00'0	-0,76%	VERDADERO	-0,03%	-0,71%	0'00%	-0,16%	VERDADERO	-0,01%	-0,12%	%00'0	-0,01%	VERDADERO	%00'0	-0,02%
Caso Min 3	-20,08%	0,04%	VERDADERO	-2,90%	62,14%	-38,58%	0,00%	VERDADERO	-1,58%	202,43%	-21,16%	%00'0	VERDADERO	-2,90%	143,68%
Caso Min 4	-0,01%	0,03%	VERDADERO	-2,50%	0,31%	-6,92%	0,01%	VERDADERO	-0,96%	20,64%	-0,62%	%00'0	VERDADERO	-2,44%	37,89%
Caso Min 5	0,01%	-0,10%	VERDADERO	-20,00%	0,17%	8,07%	-0,12%	VERDADERO	-19,72%	-14,73%	0,91%	-0,04%	VERDADERO	-19,90%	32,85%
Caso Min 6	%00'0	-0,54%	VERDADERO	-3,51%	14,10%	-1,16%	-0,02%	VERDADERO	-1,06%	10,89%	-0,10%	-0,03%	VERDADERO	-2,10%	34,02%
Caso Min 7	0,05%	-0,60%	VERDADERO	-0,01%	-20,81%	6,47%	-0,02%	VERDADERO	0,28%	-33,13%	0,50%	-0,03%	VERDADERO	0,07%	-58,79%
Caso Min 8	0,03%	0,59%	VERDADERO	0,03%	0,49%	8,12%	0,13%	VERDADERO	0,37%	-16,74%	0,72%	-0,01%	VERDADERO	0,10%	-3,14%
Caso Min 9	-0,31%	0,27%	FALSO	-0,04%	0,94%	-67,33%	0,08%	FALSO	-2,61%	1749,57%	2,34%	-0,01%	VERDADERO	0,33%	-9,89%
Caso Min 10	1,15%	-1,03%	VERDADERO	0,13%	-3,38%	59,97%	0,02%	VERDADERO	2,80%	-67,67%	9,76%	-0,02%	VERDADERO	1.41%	-36,24%
Caso Min 11	%00'0	0,00%	VERDADERO	%00'0	0,00%	0,13%	0,00%	VERDADERO	0,01%	0,28%	0,00%	-0,03%	VERDADERO	%00'0	%00'0
Caso Max 1	-0,01%	19,26%	VERDADERO	0,76%	18,37%	-0,25%	19,85%	VERDADERO	1,54%	16,24%	-0,01%	19,99%	VERDADERO	0,87%	38,18%
Caso Max 2	%00'0	0,76%	VERDADERO	0,03%	0,71%	0,00%	0,16%	VERDADERO	0,01%	0,12%	0,00%	0,01%	VERDADERO	%00'0	0,02%
Caso Max 3	20,06%	-0'03%	VERDADERO	3,11%	-31,66%	33,56%	0'00%	VERDADERO	1,52%	-49,12%	21,11%	%00'0	VERDADERO	3,10%	-65,22%
Caso Max 4	0,01%	-0,02%	VERDADERO	3,21%	-0,36%	5,03%	-0,01%	VERDADERO	1,20%	-13,41%	0,56%	%00'0	VERDADERO	3,14%	45,18%
Caso Max 5	-0,01%	0,09%	FALSO	20,00%	-0,16%	-8,92%	0,09%	VERDADERO	19,55%	22,16%	-1,01%	0,01%	VERDADERO	19,83%	-32,99%
Caso Max 6	%00'0	0,39%	VERDADERO	3,99%	-16,92%	1,11%	0,02%	VERDADERO	1,03%	-10,18%	0,19%	%00'0	VERDADERO	3,81%	48,10%
Caso Max 7	-0,06%	0,43%	VERDADERO	0,01%	20,92%	-6,98%	0,02%	VERDADERO	-0,30%	44,75%	-0,33%	%00'0	VERDADERO	-0,05%	59,08%
Caso Max 8	-0'03%	-0,58%	VERDADERO	-0,03%	-0,49%	-8,63%	-0,13%	VERDADERO	-0,38%	23,55%	-0,72%	-0,01%	VERDADERO	-0,10%	3,20%
Caso Max 9	0,08%	-0,21%	VERDADERO	%00'0	-0,36%	22,61%	-0,09%	VERDADERO	1,01%	-38,35%	2,34%	-0,01%	VERDADERO	0,33%	-9,89%
Caso Max 10	-7,03%	-0,60%	VERDADERO	-1,07%	16,67%	-74,20%	0,03%	FALSO	-2,83%	2587,73%	-10,06%	%00'0	VERDADERO	-1,40%	54,18%
Caso Max 11	%00'0	%00'0	VERDADERO	0.00%	0,00%	~0°00%	%00'0	VERDADERO	%00'0	-0,18%	%00.0	%00'0	VERDADERO	%00'0	-0,03%