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In 1881, C. Jordan gave the notion of variation of a function in [1], and from this
moment, many generalizations and extensions have been given. Consequently,
the study of notions of generalized bounded variation forms an important
direction in the field of mathematical analysis. Another important generalization
of the space of bounded variation in the Jordan’s sense is the notion of the space
of functions of second bounded variation studied by Ch. J. de la Vallée Poussin
in 1908 in [2]. It is defined as follows:

Definition 1 Let n be a partition of the interval [a, b] of the form
r={a=ty<t <--<t =b},and f beafunction f:[a,b]>R. The

nonnegative real number

DOI: 10.4236/apm.2017.79033  Sep. 28, 2017 507 Advances in Pure Mathematics


http://www.scirp.org/journal/apm
https://doi.org/10.4236/apm.2017.79033
http://www.scirp.org
https://doi.org/10.4236/apm.2017.79033
http://creativecommons.org/licenses/by/4.0/

0. Mejia et al.

v(2>(f)=v(2)(f;[a,b]);=sup"j|f(ti+l)_f(ti) ()= f(t)

={ T bty |

is called the second variation of f on [a,b], where the supremum is taken
over all partitions z of [a,b]. In the case that V(Z)(f)<oo, we say that f
has bounded second variation on [a, b] and we denote it by f e BV? [a,b].

A well-known generalization of the functions of bounded variation was done
by N. Wiener in 1924 in [3]. The p-variation of a function f is the supremum
of the sums of the p" powers of absolute increments of f over non over-
lapping intervals. Wiener mainly focused on the case p =2, the 2-variation.

Definition 2 Let n be a partition of the interval [a,b] of the form
r={a=ty <t <--<t =b}, f be a function f:[a,b] >R and 1<p<w.

The nonnegative real number
n-1
Vp( f ):Vp ( f ;[a,b])::sgp;‘ f (tj)_ f (tj—l)‘p !

is called the Wiener p-variation of f on [a,b] where the supremum is taken
over all partitions 7 of [a, b] . In the case that V, ( f ) <o, wesaythat f has
bounded Wiener p-variation on [a, b] and we denote itby f € BV;N [a,b].

The p*-variations were reconsidered in a probabilistic context by R. Dudley in
[4] and [5], in 1994 and 1997, respectively. Many basic properties of the
variation in the sense of Wiener and a number of important applications of the
concept can be found in [6] [7]. The paper by V. V. Chistyakov and O. E. Galkin
in [8] in 1998 is very important in the context of p-variation.

The class of nonlinear problems with exponent growth is a new research field
and it reflects a new kind of physical phenomena. In 2000 the field began to
expand even further. Motivated by problems in the study of electrorheological
fluids, Diening [9] raised the question of when the Hardy-Littlewood maximal
operator and other classical operators in harmonic analysis are bounded on
variable Lebesgue spaces. These and related problems are the subject of active
research to this day. These problems are interesting in applications (see [10] [11]
[12] [13]) and gave rise to a revival of the interest in Lebesgue and Sobolev
spaces with variable exponent, the origins of which can be traced back to the
work of Orlicz [14] in the 1930’s. In the 1950’s, this study was carried on by
Nakano [15] [16] who made the first systematic study of spaces with variable
exponent. Later, Polish and Czechoslovak mathematicians investigated the
modular function spaces (see for example Musielak [17] [18], Kovacik and
Rakosnik [19] and Kozlowski [20]). We refer to the book [13] for detailed
information on the theoretical approach for the Lebesgue and Sobolev spaces
with variable exponents. Recently, in [21] Castillo, Merentes and Rafeiro studied
a new space of functions of generalized bounded variation. They introduced the
notion of bounded variation in the Wiener sense with variable exponent p()
on [a, b] and study some of its properties.

Definition 3 Given a function p: [a, b] - (1, oo) , a partition
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T= {a t, <t < tnzb} of the interval [a,b] , and a function
f: [ b] — R, the nonnegative real number

Vo, ()=Vy(, (f.[ab])= sg*pg‘ f(t;)-f (tH)

is called the Wiener variation with variable exponent (or p() -variation in

p(xj1)

: (1.1)

Wiener’s sense) of f on [a, b] where 7~ is a tagged partition of the interval
[a b] Le., a partition of the interval [a b] together with a finite sequence of
numbers Xy, -+, X, ; subject to the conditions that for each j, t; <x; <t,.

In case that Vr\Q’-) (fi[ab])<o, we say that f has bounded Wiener
variation with variable exponent (or bounded p () -variation in Wiener’s sense)
on [a,b]. The symbol WBV, olab]= BV;'(V‘) [a,b] will denote the space of
functions of bounded p( ) Varlatlon in Wiener’s sense with variable exponent
on [a,b].

The aim of this paper is to provide a description of the new class formed by
the functions of bounded (p(-),2)-variation in the sense of Wiener as an
extension to the double case of the previous concept. Also, we prove structural
properties for mappings of bounded (p(-),2)—variation in the Wiener’s sense.
Finally, we show that any uniformly bounded composition operator that maps
the space BV [a b] into itself necessarily satisfies the so-called Mat-

kowski’s COIldlthIlS

2. Preliminaries

In this section we present some definitions and propositions that will be used
through out this paper.

Definition 4 Let 1< p<cw, 7 be a partition m={a=t,<t <--<t =b}
of the interval [a,b], and f:[a,b] >R be a function. The nonnegative real

number
f(t)-f(t) f(t)-f(t °
V(vl\:z)(f) pz)(f [a b])—sup2| J+1 - (J)_ (l)_ (J—l)| ’
! "1‘ b =Y G-ty |

is called the De La Vallée Poussin-Wiener variation (or (p,Z) -variation in
Wiener’s sense) of f on [a,b] where the supremum is taken over all

partitions 7 of [a,b]. In the case that Vipz () <0, we say that f has
bounded (Pp,2)-variationon [a,b] and we denote by f e BV(V:,Z)[a'b]-

For the interested readers can see some of the properties in [2] [7] and other
related problems in [22].

Proposition 1 Zet f:[a,b] >R be a function with a,b>0 and consider
1< p<ow. Then

1) VW ( fi[a, b]) =0 ifand onlyif f isaliner function.

2) If V (f [a, b])<oo then f isboundedin [ab].

3) V(p,z) (-; [a, b]) is a convex function.
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Proof. 1) Suppose first that f is a linear function. If f (t) =at+f for all
te [a, b] , with «, f e R, then by Definition 4, it follows easily that

W .
Vi (fi[ab])=0.

Now, if V(Vr\,”z ( '[a b]) =0, then by Definition 4 we have

0= V"Zz)( ;[a,b])

Hence, for any partition 7= {a =t <t <<t = b} of the interval [a,b],
we should have that

) 1) Fl)- ()
1:1‘ L=t b7t |

Then, any term in the sum should be zero. Since the function t—t"

vanishes only at zero, it follows that

f(tj+1)_f(tj>_ f(tj)_f(ti-l) forall j=12,---,n—1

tis -t t -t

Therefore, f isequalto alinear function.
2) Suppose that f e BV(\Q’Y [a,b] and f isnot bounded, then there exists a

sequence {tn}nﬂ, t, e(a,b) N=1 such that | |—>oo when n—oo. Let
such that { m}
Then, as {f (t, )}mﬂ is a subsequence of {f (t,)} ,so

n>1

{tm}m21 be a subsequence of { n} converge to X e[a,b].

n>1 m>1

|f(t,)| > when n—c.

We have that

If(tm)—f(t)_ f(tz— (a)I o (flat]) <V, (1.[ab]).

t, —t

In consequence, V (f [a b]) o0, since

[ (t)-f() _fO)-f(a)

|t -t t-a

—> 0,

as m— oo, which is a contradiction with f e BVW [a b] Therefore f is
bounded.

3) Let f,g Z[&,b]—)R be two functions, a,ﬂe[O,l] such that o+ =1
and 7={a=t, <t <--<t =b} be a partition of [a,b]. Since t” is convex

and nondecreasing, we have that
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AN (Fi[ab])+ AV, (9:[ab])

p
s )10 1) 1)
re L i~ ‘
(t.)-a(t) o(t) g(tH)|p
Toj=l M—tj tj _tj—l ‘
Zsupni 0{[ f( Jt+1) tf (ti)_ f(tjt) tf (tj_l)]
te e it

+ﬂ[9(tm)—9(h)_ g(tj)—g(tj-l)] p

ti, -t t -t

n-1
=Ssup
%

(af +,Bg)(tj+1)—(af +ﬂg)(tj)

L=t

(af+Bg)(t)~(af +ﬂg)(t“)r
t -t
=V(y (@ f +Bg;[a,b]).

Then, V(ngz) (-; [a, b]) is a convex function.
Definition 5 (Norm in BVW2 [a,b] ) The functional

||||p2 BVW ab]—>R defined by

||f||‘(pr2): | | |f |+VW f;[a, b]) (2.1)

is a norm.
In [7], the authors have shown that the linear space BV [a b] with the
norm (2.1) is a Banach space and BV [a b] c BVW [a b]

3. Main Results

In [23] the authors present and study the space of functions of bounded p()
-variation as an extension of the space BVF\,N [a,b] . In this section, our goal is to
study the corresponding space of functions of bounded second p( ) -variation,
with P(-) be a variable exponent, as an extension of BV [a b].

Definition 6 Let P be a function P: [a, b] ( 00) , m be a partition
r={a=t <t <--<t =b} of the interval [a,b] and f:[ab]>R be a

function. The nonnegative real number

(t“l)_ f (tj)_ f (tj)_ f (tj_l) p(xj-1)

x 1—1‘ G =t G-t

Vs (F)=Visz (Fi[a:b]) =

is called the De La Vallée Poussin-Wiener variation with variable exponent (or
(p(~),2) -variation in De La Vallée Poussin-Wiener’s sense) of f on [a,b],

where 7z is a tagged partition of the interval [a,b], iLe., a partition of the
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interval [a, b] together with a finite sequence of numbers x,,---,X,_, subject

to the conditions t; <X; <t;,, foreach j.Itis worth to note that by definition

j+l
(we take supremum over]all partitions), the number V(V;'(‘)vz)(f) does not
depend on the election of the argument of the exponent. In the case that
V(W( )(f)<oo we say that f hasbounded (p(-),2)-variationon [a,b].

We will denote by BVW [a b]= VW [a b] the space of functions of
bounded (p(-),2) Varlatlon in W1eners sense with variable exponent in [a,b].

It is endowed with the functional:
. . . f
|t ||Bv(wp(')‘2)[a,b] =|f (a)|+|f/(a)|+inf {/1 > 01V(V;\)I(<),2) (E,[a, b]) < 1}. (3.1)
Then,
(BVW [a b] " "BVW ab]j {f [a b]_>R||f"BVW 220 OO}'

Remark 3.1 Given a function p'[a b] [ o).
DIf p(x)=1 forall xe[a,b],then BV, [a,b]=BV*[a,b].

2) If p(X)z p forall Xe[a,b] and 1< p<o then
BV(W )[a b]= BVW [a, b], i.e., the space of bounded (p() 2) -variation in De
la Vallée Poisson-Wiener’s sense with variable exponent is exactly the space of
bounded ( p, 2) -variation in De la Vallée Poisson-Wiener’s sense.

Given a function p: [a,b] - (l,oo), that is, a variable exponent function, let

us define as in the literature,

p=essinf, . p(x) =sup{ﬂ eR :|{x e[ab];p(x)< /3}| = O},
and

p* = esssup, 1, 1P (X) = inf{a eR:|{XG[a,b]; p(x)>a}| :O}.

It is said that the exponent p is admissible if the range of p is in (1,00) and
p* is finite.

Let us recall a classical concept in the theory of function spaces. Let X be a
vector space over R. A convex and left-continuous function p: X — [0,00] is
called a convex pseudo-modular on Xif for arbitrary x and y; there holds:

1) p(0x)=0,

2) p(aX) = p(X) for every o €R such that |a| =1,

3) plax+(l-a)y)<ap(x)+(1-a)p(y) forevery ae[01].

It is possible to see that for p be an admissible function, the functional

V(\?:/(-),z) (-; [a, b]) is a convex pseudo-modular.
Proposition 2 Let P be an admissible function. Then V(VJ(.),z)('J[a!b]) is a

convex pseudo-modular.
Proof We have that forany f e BV [a b]

V(p(_)vz)(Of;[a,b])= (p('),Z)( ;[a,b])= . Moreover, the fact that for any
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feBV( )[a b] R V(\:‘J’(.)Vz)(af;[a,b]>=V(\g’(‘)‘2)(f;[a,b]) whenever |0!|=

follows immediately from the definition.
Finally, with the same kind of argument than in Proposition 1(c) it follows
that for « E[O 1] and f,ge BVW [a b] we have that
VW

(p(-)2) ((x f+ (1_ a) g;[a, b]) < av(\?nl(),z) ( f ;[a* b]) + (1_ a)v(v;\a/(-),z) (g;[a’ b])

Definition 7 A convex and left-continuous function p:X — [0,00] is called
semimodularon X if

1) p(0)=0,

2) p( )—p(X) for every Xe X, and

3)if p(Ax)=0 forevery A€R, then x=0.

For P be an admissible function, the functional VW ( [a, b]) is a
semimodular on X .

Proposition 3 Let P be an admissible function. Then V(V;\JI(«),Z)("[a’b]) is a
semimodular.

Proof. Let feBV(V:(‘)vz)[a,b] and 7~ be a tagged partition of [a,b], then

p(xj)
—(f(t.)-f(t)) —(f(t)-f(t,
o oreapg 1) (1))
T = I:j-*—l tj tj tj—l ‘
(xj)
g )= () f()=f (1) "
_St{p; - t,—t t -t ‘
(Xj-1)
()= () ()T
_Sgpé t, -t t -t ‘
=Vl (F)
On the other hand, if
(%))
A7 (t.) -2 (5) AF(4)-21 (1)
Vi) (A1) = S/lrlplz‘, Jt; : Jt,-—t,-_l 11‘

g8 o[t 1 6] F)= )

:Sflr{p =L tg tj t -t ‘
(41)
:sup§|i|p(xj*1) f(tm)"f(tj)_ F(t)-f(t) o —0,
L ‘ La -t G-ty

for every A, necessarily it follows that f =0.

Proposition 4 Let X be a vector space, p be a semimodular on X and
feX. Then

1) p( f)Sl if and only if ||f||p <1,

2)if |[f] <1, then p(f)<|f] .
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3)if || >1,then p(f)=>]|f] .
4) forevery feX, ||f||p£p(f)+l.

Theorem 1 Let fZ[&,b]—)R be a function and P be an admissible
function, then BV? [a,b] < BV(V;\),(~),2) [a,b].

Proof Let P be an admissible function, 7~ be a tagged partition of the
interval [a,b], feBVZ[a,b] and

)= 10) )=t |

o=<Jjern:

ba—t -ty |
al Fta)-F(t) f(y)-1(t) i)
= -ty |
_ f (tj+l)_ f (tj)_ f (tj)— f (tj—l) p(xj1) +Z| f (tm)— f (tj)_ f (tj)— f (tj—l) p(Xj-1)
Jeo tJ'+l _tj tj _tjfl J'EG‘ 1:j+1 _tj tj _tj,1 ‘
< Flta)=F6) F(6)-F(ta) Ly Fta) = T() f(4)-F(ta) ol
ieo| L G-t jeo| Lt t -t
Ly )= () F(t)-F(t) S fta)-f(6) Fty)-f(tn) ol
= L =t =t ieo L Gi—t,
p(xj-1)
SV(Z)(f;[a,b]) Z| f (tm): f (ti)_ f (ti): f (tH)
jer| Ll G-ty ‘
Then,
(¥j-1)
ey )= () f()- ()
V(p()Z)(f)'_Sfpé‘ ta-t,  t-t, |
p(xj-1)
SV(Z)(f;[a,b])+supz| f (ti+1)_ f (tj)_ f (tj)_ f (tH) J
7 e Gath =t
p(xj-1)
The proof of the fact that Supz| ! (tm)_ f (tj ) - f (tj )_ f (tH) <o
- I t -t ‘

will be by contradiction. That is, we assume that

SETROSIE

=oo . Therefore, there exists a
t -t

T jgo tj+1_tj

SUPZ% f(t

tagged partition 7~ such that

o)
Z| f (tm)_ f (tj)_ f(tj)_ f (tH) J — o,
jgo Ga =t G-t ‘
Since jg¢o and p() >1 we get
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)= () ()=t

|t -ty |

But this is satisfied only for a finite number of terms, because in opposite case

we would get

(rianl)> 3| o)

jeo t

f(tj)_ f(tj)_ f (tj’l>|>21—>oo,

j+1_tj tj—tH ‘ igo

which is a contradiction as f € BV? [a, b]. Then, taking supremum we get

(()-1(8) (o)1 (t,__l)‘w

< 0,
7 J—l‘ La—t =t

Vioa) (200 =

Theorem 2 Let P be an admissible function. If f € BV

(p@yz)[a, b], then it
follows that for any C<(a,b)

V(W( (f [a, c])+V(W() )(f;[c,b])sv(‘g’(l)vz)(f;[a,b]). (3.2)
Proof. By the definition of V(p(l)’z)(f;[a,c]) and V(":(.)’z)(f;[c, b]) we have

that, for each ¢ >0, there are partitions 2 and Zich) with

ac)

Tlae) = {a=1,--.t,=c} and Miop) = {c=t,,--,t, =b}, and sequences of

points {x]}:j and {yj};;z such that t; <x; <%, for j=0,--,m-2 and
t;<y;<t;, for j=0,---,r—2 that satisfies
U (F \_F (s =\ g (e \[P)
&1 j_ﬂ)_i(tj)— f (tj_)_j(t'_l) >V(V;’(,)Y2)(f;[a c])
121‘ tj-¢-1 j j tj—l ‘
and
r-1 f(tj+1)_ f(t |P le .
1:1\ " t _t ‘ >V, (f [c, b])
Taking 7 =7, U7, ={a=Uy, U, =b} and the points
{Zj }j = {Xj }:JZ U {yj }:;Z , we get a partition of [a, b] such that
m+zr—2 f (Uj+1)— f (Uj)_ f (Uj)— f (Uj_1) o)
[ Uj —U; Uy —Uj,y ‘
et () t) f()- ()™
j=1 tj+l tj tj _tj—l ‘
g (G)-T()f(5)- ()"
le‘ Ga Y i~ ‘
which implies that
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m+r-2

f(up)-f (UJ)_ f(u;)-f (ujl)r(zu)

i ‘ Ujya —U; Uj=Uj,y

>V(vr\)l(»),2) ( f ;[C’ b]) _g +V(vr\)l(»),2) ( f ;[a' C]) _g'

Letting € >0 first, and then taking the corresponding supremum in the
left-hand side of (3.3), it follows (3.2).

a)P(tha) ( f ;[a, b])
Define B | f(t)-f(s) f(s)-f(o) P(%so)
= SUP, o fas] | t-s  s-—o | '

(33)

Lemma 1 Basic properties of the (p() , 2) -variation in De La Vallée
Poussin-Wiener’s sense Let f:[a,b] >R be an arbitrary map. We have the
following properties:

(P1) Forany t,8,0€ [a, b] , we have that

I f(t)-=f(s) f(s)-f (O_)Ip(xtm)

t-s S—o

= Oy, ( fla, b]) SV(V;\al(-),z) ( fi[a, b])

(P2) Monotonicity: If t,Se [a, b] and a<t<s<b,then
Vi (Filat]) <V (filas]) o Vi, (Filsbl)<Viy, (Fi[tb]) , and
V(":(.)’z) (fi[t:s]) SV(V:(.),z) (f:[a.b]).
(P3) Semi-additivity: If te(a,b), then
V(V;Z(.),z) (f ;[a’t])’LV(V:z’(A),z) ( f:[t.b]) SV(V:al(-),z) (f:[ab]).
(P4) Change of variable: If ¢ [C, d] - [a,b] is a monotone function, then
V(V:(A),z) ( fip[c.d ]) =V(V;\>I(~),z) ( fogi[c.d ]) (3.4)

(P5) Regularity: V", (f:[a,b])=sup (V¥ , (T:[s.t]);s.te[ab]).
Proof. (P1) We have that for any t,s,0 eTa,b] R

If(t)— f(s) f(s)=f(o)

t—s S—o

Ssupﬂ F(t)=f(s) f(s)=f (o))" e [a,b]}

p( Xlsu')

t-s S—o |
= a)p(xm) ( f ;[a’b])
o ()= F(5) F(t)-F(ta)
< _
Sgpé tio—t, -ty |

w .
=Vin2) (f:[ab]).
(P2) Let a<t<s<b and the partition
r={asty <t <<ty =t<..<t,=s<--<t =b}.Then

p(xj-1)
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p(xj1)
v (f;[a,t]):su*pil: f<ti+1)_ f (ti)_ f(tj)_ f (tH)

L= tj+l_tj tJ_tJ—l
+sup w | f <tl+1) f (ti ) _ f (tl) f (tJ—l) ]
< il tat -ty |
e[l F6)F() =)™
- 7 A tj+l_tj tJ_tJ—l ‘

The other cases follow in a similar way.

(P3) Semi-additivity: It is obtained in Theorem 2.

(P4) It follows as in ([23], Lemma 2 (P4)). Indeed, let [c,d]cR,
go:[C,d]—)[a, b] be a (not necessarily strictly) monotone function, 7, be a

tagged partition of the interval [C,d], T, :{Ti}T:o en, and T :{tj}r;:O with

t; :(p(rj), then

Vi (feoT)
(%))
=supi f(¢<ri*l))_ f (¢(Ti))_ f(<”<fi))_ f (40(7171)) "
ho fra ™t IR ‘
p(xj-1)
mif(t.,)-f(t ft;)-f(t
:Slij,Z:;‘ (Jt?—t( = (t-)—t-_(1 )

=V (1. T) =V (f o([c. d]))
On the other hand, if a partition T :{tj}rjnzo of ¢([c,d]) is such that
t, <t

; for j=1..-m then there exists Tje[c,d] such that tj:q)(rj)

and, again by the monotonicity of ¢
Vi (FT) =V (FooT) <V (Fro([e.d]).

(P5) By monotonicity V(W() )(f;[a,b])ZSUp{V(":(_)Yz)(f;[s,t]);s,te[a,b]}.
On the other hand, for any a <Vy, (fi[a,b]) such that there exists a tagged
partition IT={t;};, of [a,b] with Vi , (fill)2a. Wedefine 7 a
partition of the interval [t,,t,] then [1€7Z and

V(W )(f 7z)>V(W )(f )>a,ie,

Vi (fi[ab])< sup{v(":(,)’z) (fi[s.t])is.te [a,b]}.
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f f
Lemma 2 If f3, > f3,, then V(";’(_)’z) (E;[a,b]J SV(\ﬁ(.),z) [Fz;[a,b]J for all

1

w
fe BV( ’02)

Proof. Let p,,p, such that S > f,. Then, consider any partition 7 of

[a,b].

[a,b], ﬂz{azto,---,tn =b} and any finite sequence of numbers X;,---,X

subject to the conditions t; <x; <t;, foreach j<n-2.Itfollows that

j+l

(i (2o
\

P(%-1)

ti+1 _ti ti _ti—l
_|1L f (ti+1)_ f (ti ) ~ f (ti)_ f (tu) P(%-1)
= B t, -t t -t
L[ F(6)-T(4) f(t)-f ()]
A —y
f f f f P(%i1)
— (tu) - = |(x, e[ e
= (ﬂzJ( ) (ﬂzJ( )_[ﬁzj( ) (ﬁzj( )
t, =1 G-t ‘
as i > ﬂi Then, as this inequality follows for all terms in the sum
f f f f p(%i-1)
e L) (o f)en
= ba—h -t ‘
n-1 [fj(tiﬂ) - [f](tl ) (fj(t| )_ (f](til) P(%i1)
< Z ﬂz t ﬁz B 132 ﬂz

-1 [l Y ‘

Taking supremum in any partition, it follows that

w [T Lot
Viwo2 (F'[a’ b]J Mot (;,[a, b]j

1 2
Proposition 5 Let P be an admissible function. The space BV(V:(.)’Z) [a, b] is
a vectorial space.
Proof Let f,ge BV(VF\)’(‘
= {a =t 1, = b} and any finite sequence of numbers X;,---,X,_, subjectto
the conditions t; <x;<t;, and @, BeR. By definition, there exists £,/,

such that

12) [a, b] and consider any partition

DOI: 10.4236/apm.2017.79033 518 Advances in Pure Mathematics


https://doi.org/10.4236/apm.2017.79033

0. Mejia et al.

L 9.
V(W)Z)(ﬂl,[a,b]J<1<oo and V("F‘)’() )[ﬂz'[a’bﬂgkw'

Let ﬁA =max{f,,3,} >0. By Lemma 2, it follows that
f f.
V(‘f)'( )(ﬁ,[a,b]j<v(w()2)(ﬂl,[a,b]J<oo
g. g.
V(w ( [a b]]<V\g’()2)(ﬂ2 ,[a,b]}<oo

The rest of the proof follows analyzing the possible cases.

DIf a=p=0,then af+pgeBVy , [ab].

2)If @#0 and/or B#0.Let u= (|a| |B|) B >0, and consider any tagged
partition 7~ of [a,b], = {a=t,<---<t =b} which is any partition 7 of

[a b] and any finite sequence of numbers X;,--:,X, , subject to the conditions

t; <x;<t;,, foreach j<n-2. Then, by convexity of t”, when 1< p<co, it
followsthat
p(xj-1)
e (e
Z _
j—l‘ tj+1_tj tj_tj—l ‘
(%)
:”*13[““(%) t(t))+A(9(t)- g(tj)ﬂ_i[“(f(ti)‘f(tj—l))”}(g(ti)‘g(ti—l)ﬂ
=M tj+l tj H tj_tj—l ‘
(454
S |0‘|| ta) ~ f(ti)‘f(t1—1)|+ﬂ|9(t1+1)‘9(t1)_g(ti)‘g(t1—1)| p
j=1 ﬂ‘ L= tj =1, ﬂ‘ t—t, ti—t, ‘
RS |o| 1| ti) f(tj)_f(tj)_f(tj—1)|
= Jaf+ |ﬂ|ﬂ‘ Ln =t ‘
(454
1A 1|g(t1+1) g(tj)_g(tj)‘g(ti—1)| p
|0‘| |ﬂ|,3‘ La Y b=t ‘
(xj1)
§| ol g|f(tj+1) fn) t)- )|V
i |o|+[A] /”‘ tia—t b=t ‘
Xj1)
g [1]o(ta)-a(t) s(t)-oft.)])
o] +|A] ﬁ‘ Ln G-t ‘
el 2]l rl) r) - [
|a|+|ﬂ| = ﬁ‘ L=t t -t ‘

DOI: 10.4236/apm.2017.79033 519 Advances in Pure Mathematics


https://doi.org/10.4236/apm.2017.79033

0. Mejia et al.

Therefore,

f f f f )
B O e Y ) (VR i) O
j=1 tj+1_tj tj_tj—l ‘

p(xj-1)
o] © i|f(tj+1) i) f(y) f(t,_1)|
|o| +] 8| = ,3‘ tia—t ti—t, ‘
p(xj1)
N 1A “i|g<ti+1)‘g(tj)_g(tj)‘g(ti—1)|
|a| |ﬂ| = ﬂ‘ tJ+1_tj tj_tj—l
|| (f. ] 4] " (g. j
V —:[a,bl |+ V =:la,bf |<oo.
“Tal gl oo 57120 gy Yoa 5712
Then, taking supremum over all partitions, we get that
w af +pg.
Vo) [T’[a’b]]
o] V (f abj 4] VW [g abj
“Talf w00 5 0L e ooa | 1)
|| Bl .
“Jed+A T+ Iﬂl
Therefore af+ﬁgeBV(W [a,b].

The other properties of a Vectorlal space follow similarly.
Theorem 3 Let P be an admissible function. The space BVW [a b] isa
normed space.

Proof. Let P be an admissible function. Let us analyze all the properties of a
norm.

1) By definition of || ||

oy e we have that "f"BVW [avb]zo for all

fe BV( )[a b]
2) To prove that "“f"BvW at] :|05|||1‘||Bv(W [o5] for any aeR , we
consider the possible cases:
-If a=0,then
"0”("Bv";_v2 [a.b] :”O"BV(V\;(_)YZ)[a b] =0= O"f"BvW [a,b] " "BV ()z[ab

forany fe BV( )[a b].

-If a#0,then
’ - . af i
o =t (@)t 2 i {4 SOV, [T’ [a, b]j < 1}

“Jel )]+

f (a)| +infia>0vY

(502) —;[ab] <1

SN
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“Ja (o)

. A f
f (a)|+|nf a;>0;v(";’(l)’2) 7;[a,b] <1
(04

=la]|f (a)+

, . A ) f
f+(a)|+a|nf ;>0,V("")’(l)’2) 7,[a,b] <1
(04

=|a||f (a)|+|a|| ! ()| +«inf {/3 >0V (%;[a, b]) 31}

el

3) Property ||f+g||

BV fab] = ” "BV [a,b]+||g||BVV;(_)‘2 [ab] is satistied by
using  that |f+g|£|f|+|g

,\f+g

—|f +g+| <|f | |g+| and the
previous proposition.
4) Let us see that | f "sz T 0 ifand onlyif f =0.

- If ||f||BV at] =0, then by definition of the norm,

f(a)zo and
f/(a )=O,and

. f
W . _
inf {/1 >0V ()2 (E [a, b]j < 1} =0.
Hence, we have by Proposition 3 and Proposition 4 (2) that
w .
V( p(-).2) ( f ’[a' b]) < ” f "BV(Wp(V)YZ)[a,b] :

Therefore, VW (f [a, b]) 0, and hence,

f (tm)_ f (ti)_ f (ti)_ f (tH)

tis—t t -t

p(xj1)

r j=

n-1
sup Z‘

Therefore, for any tagged partition 7~ of the interval [a b] that is a
partition H—{a—t <<t =b} together with a finite sequence of numbers

Xgs'*, X, subject to the conditions t; <x; <t;, foreach j, we have that
p(x-1)
flt)-f(t) f(t)-"f(t
-t (™
tia—t; ity |
So that

Fta) = F(5)  F(4)-F(ta)

- . Vie{l-n-1.
tj+l _tj tJ' _tj-l

Consider the partition 7= {a <t <t,=c<t< b} . We get that

im fO-f(c)_ . fle)-f(a)_,

coa+ t—c coat c—a - +( ):
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Then
fO-1()_,
t—a
As f (a) =0 is obtained that f ('[) =0 forall te [a,b] .
- In other hand, if f=0, then f(t)=0 for all te[a,b] . Hence,
f/ (a) =0 and V(V;\;,(«),z) ( f ;[a,b]) =V(\g’(_)2) (O; [a, b]) =0. Therefore, by definition,

" f "BV(V;(.)lZ)[a,b] =0.
Theorem 4 Let P be an admissible function. The space BV(V:(')’Z) [a,b] is a

Banach space endowed with the norm in (3.1).
Let {f,} , be a Cauchy sequence in BV(V:]’(_)VZ)[a,b]. Then, for all €>0,

there exists N (6) such that

" fm - fn"sv(‘“;(_)vz)[a,b] <¢, vmn>N (6)

Therefore, by definition it follows that

H fm_fn.
|m{z>qme{ 7 {&MJS%<Q vm,n>N(e), (3.5)

|(f, = f.)(a)|<e, vm,n>N(e), (3.6)

m

and

( fo =1, )I+ (a)

Then, by (3.5) and Proposition 4 (2) we have that

Visa [ fn = fui[aib]) <.

It implies that for fixed t, {f, (t)}neN

<€, Vm,n>N(e). (3.7)

is a Cauchy sequence in R.Indeed,

w
Viro2)

(%_EJSL vm,n> N (e)

€

thenforall X, y,ze[ab], f=1f, —f weget

E[Wﬂ—fW)f(w—fun

€ z-y y—X €
SO
(¥)
(@)= _fO)-1" _
| z-y y—X
As
(¥) p(y)
@)= W™ _[f@-fO)]_[f¥-f()
oy T ey [ yex |
[f(@)=t()_t=t ("
|-y y-x |
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thus
‘f(z)— F)™
-y
Therefore
[t @)=t ()" <(elz=y)""
and by property of log
y)log|f (z)~f (y)| < p(y)log(e|z~Y]).
Then
log| f (2)— f ()] <log(e[z-v])
and hence
|f (z)-f (y)| <¢ =exp ) = =elz-y|.
Le.

|( fo—f)(2)—(f,— fn)(y)| <€, vm,n>N(e).

()—Ilmn_m f,(t) for any te[ab] and let 7 be any partition

{ =15,k —b} of [a,b] and a sequence X,---,X,; such that

t; <x; <t,, forany 1< j<k-1.TItfollows that forall m,n>N (e)
o)
Zk:| J+1 f - f )( ) (fm_fn)(ti)_(fm_fﬂ)(ti—l) a <e
,:1‘ tJ+1 tj G-t
Then, letting n— o, forany m> N (e) it follows that
P(X‘-l)
A A T I A T LA U AN
= ‘ tJ+1 ti tj _tj—l

Therefore, as (3.8) follows for any tagged partition 7~ of [a,b], taking

supremum over all tagged partitions it follows that

Viso (fn = Fiab])<e, vm>N(e). (3.9)
Moreover, by (3.6) and (3.7), we have that
(fa = f) (@) <er |(fa=1.).(2)
Then, letting n — oo, we have that
(f,- D)@ <e |(f-1) . (2)

Then, (3.9) and (3.10) imply that for m sufficiently large

<e, Vm,n> N(e).

<€, Vm>N(e). (3.10)

—~

" fo = f”BV(V;(_)YZ)[a,b] <3e.

Hence, as
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" f "vag(_ 2[2b] < " fo = 1 "BV(\Aé(A)vz)[a,h] +|| f "BV(\”;(_)‘Z)[a,b] <,

we obtain that f e BV( [a b]

)2)
Theorem 5 Let P be an admissible function. Then, we have:

DIf fe BV(W )[a b] then f isbounded in all the interval [a, b].
2) BV( 0()2 [a b]‘—>BV [a b] for functions q( ) p(X).
Let us proof (a). Suppose that f e BV(W )[a b] and f is not bounded.

Then, there exists a sequence {tn}n 510

t,e(ab), n>1 such that |f

when n-—»>o. Let {tm}mﬂ be a subsequence of {tn} such that {tm}mﬂ

convergeto Xe[a,b]. As {f(t, )}mﬂ is a subsequence of {f (t,)} ,so

n=1

n>1

|f(t,)| > whenn—c.

Case 1: Suppose that x=a and let t such that a<t <t<b for some
t, € {tm}mﬂ,then

and since U —U® is continuous

[f(b)-f(r) limf()-1(t)

‘ bt T ‘
p(x)
:r!]m“(b):f(t)_ f(t):f(tm) <V(W (f [a b])
| b-t t-t, |

On the other hand | f(t)-f(t, )| tend to infinity as m — oo. Then

Iim| f(o)-f(t) f()-f (tm)|p(xz>

s bt t—t,

:OO,

and hence V (f [a, b]) o, which is a contradiction.

Case 2: Suppose that x=a and let t such that a<t<t, <b for some
t, € {tm}mﬂ,then

| t-t  t-a | Ve (Fi[20])

Since U —U® is continuous

lim £(t,)=f(t) (t)-f(a)
t

<V (Fi[2:]).

On the other hand | f(t,)—f (t)| tend to infinity as m —» oo then
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lim £ (t,)= (1) (1)— ()"

m—o

‘ X —t t-a

—> 00 as N — o,

w _ Cq ..
and then V) (f)=o0, which is a contradiction.

Let us proof (b). Taking "f"BVW 1, since V" (f;[a,b])Sl, it
(

p(_)vz)[a,b] - (p(-),2)
follows that
£(t)-1(6) 1))
J=l‘ tj+1_tj tj_tj—l ‘ ,

for any tagged partition 7r:={a=t0 <<t =b} and any sequence of points

X; suchthat t; <x;<t;, for j=0,---,n—2. Therefore,

e ()= 1(t)_F (1)1 o)
le‘ tJ+1_tj tj_tj—l ‘
1) rl)- ()
lzl‘ tj+l_tj tj_tj—l ‘ ,
()= 1 (1) F(e)=f ()™
since in particular aa AR = <1 for any
‘ Y b=t ‘

1< j<n-1. Taking supremum to both sides, we obtain that

V(\;v(‘),z) ( fi[a, b]) SV(V:(A)YZ) ( fi[a, b]) . Then, by definition it follows that

" f "BV(V(;/(F)‘Z)[a,b] <|f "BV(Vz(.)VZ)[a,b] !

and the general case follows from the homogeneity of the norm. [J

4. Functions in BV(VF‘)’(.) 2)[a,b] and Holder Continuous
Functions

In this section we prove also that if a function is the composition of a bounded
monotone function with a (y(-)+1) -Holder continuous function with
}/() =1/ p() , then the function is in BV(\f)/(-),z) [a, b] .

Definition 8 A function Q' [a, b] — R is Hélder continuous of exponent Y,

where 7/() is a positive function such that 0< ;/(x) <1,if
|g (ti ) -9 (ti_1)| <C |ti _ti_l|y(xu)

forall X € [a, b] . The least number C satisfying the above inequality is called
the Holder constant of .

Proposition 6 Let P be an admissible function and f:[a,b]—>R such
that f =qgoq@, where (oi[a, b]—)R is a bounded monotone function and

g:p[ab]>R is (7(-)+1) -Hélder continuous with y(-)zi. Then

p()
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feBV( )[a b].

Proof. Assume that ¢ is nondecreasing. Since (p( a, b]) [(p b)] , by

virtue of the change of variable

VW

e (Fi[0]) =V(5 o (900 [ab]) =V(5  (gi[o(a). 0

If T ={ti}?_o is a partition of [(p(a) @

b)]). @1

b):| and {xj} is a sequence of

points  x; e(tJ t1+1) for j=0,---,n—2 then
L g(ti+l)_g(ti _ i |1 |pXIl
i:l| t, -t 1 _ti—l |
L ﬂi la(ta) -9 (t)] +| g(t)-9(t,)| (1)
i=1 b=, | | G-t |

-1l C |t|+l —t | (Xia)¥ C |ti t %1 p(%_1)
: +
tl| |tl _tl—1|

7(%1) ) p(Xi,l)

:

t|”'1 +Clt, -t

i+l

(c|t

n-1
< 22 p(%i1) (C P(%i1) ti+1 _ ti |(7(Xi71))p(xi—1) +C p(%i1) |ti _ti71|(7(xi—1))p(xi—1))
=1

n-.

< Zzp (c Pty |+ CP —tH|) <2°C% |p(b) - p(a)].

Therefore, by taking supremum over any tagged partition, it follows that
Visoa (Gi[2(2).0(b)])<27C” |p(b) - p(a)] <=0
by the boundedness of ¢ . Hence, by (4.1)

Voo (Fi1ab]) =V (gil0(2).0(b)]) <=

5. The Matkowski’s Condition

Let us show as an application that, any uniformly bounded composition
operator that maps the space BV( )[a b] into itself satisfies the Matkowski’s
condition.

Theorem 6 Suppose that the composition operator H generated by h
maps BV( )[a b] into itself and satisties the following inequality

||Hf1— Hfz”(p(.),z) < 7(" fi- f2||\(Np(-),2))’ (f f,e BVW [a b]) 5.1

for any function y:[0,00) —[0,0). Then, there exist functions
a,Be BVW )[a b] such that

h(t,x)=a(t)x+A(t),
Proof. By hypothesis, for XeR fixed, the constant function f(t):x,

te[a,b] belongs to BV(W )[a b]. Since H maps BV(W )[a b] into itself,

e[a,b],xeR. (5.2)
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we have that (Hf )(t) =h (t, f (t)) e BV(V:(.)’Z) [a, b] .
From inequality (5.1) and definition of the norm ||~||\(Np(.)'2) , we have for

f,, f, € BV, [ab],

_ Hf, — Hf
<M= HE ) < (1= Ellyn)

and then

W Hf, — Hf,
(p()2) w
(1=t

Consider a<s<t<Db and let 7, = {to,ti,'--,th} er be the equidistant
partition defined by

J[a.b]|<1. (5.3)

t—s .
th=s t —tj&:m, (j=12,---,2m).

Given UVeR with uzv,define f,f,:[ab]>R by
v, if x=t; for some even j,
u+v

f(x):= — if x=t, for some odd j,

linear, otherwise

and

——, if x=t; for some even j,

f (%)= u, if x=t, for some odd j,
linear, otherwise.

Then, the difference f —f, satisfies that |f1(X)— f, (X)| 2@ for all

Xe [a, b] . Therefore, by the inequality (5.1)

"Hfl - Hf2 "\(A:)()'z) = 7(" fl N fz "\(Np()vz))

A=)

and hence, by definition

Vie02) W;[a,b] <1 (5.4)
&
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From the inequality (5.4), and the definition, it follows that for any partition

{totot by | of [ab]

2 1‘h( fl)(th)_h( fz)(th)_h fl)(th—1)+h( fz)(tzH)

i1

(
|t2j _tzj-1| 7£|UQV|J

() (ta) = () (ty) = h(f) (1,

|t2j1_t2jz|7[|u;v|] ‘

However, by the definition of f, and f,, we have that

h(f)(tye)=h(F)(tie)-h(f)(to)+h(F)(t; )

p(xj-1)

Ju-v

|t2j1_t2j2|7/( 2

)

p(xj1)
o 2‘h(v)+h(u)—2h(uzvj
CH s fluy
2m y( 2 j
"
u-+v
o am h(v)+h(u)—2h() B
Sl t-s u—v| -
"2

Then, since 1< p(xH)<oo and j=1,2,--

u+v

‘h(v)+h(u)—2h[2j

-,2m, it follows that

p(xj1)

Sl t-s |u—v|
"\ 2

Hence, necessarily
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h(v)+h(u)—2h(%)=o.

So that, we conclude that h(S,-) satisfies the Jensen equation in R. The
continuity of h with respect to the second variable implies that for every
te[a,b] there exists a,ﬂ:[a,b]—ﬂR such that

h(t,x)=a(t)x+ (1), (te[a,b],XE]R).

Since ﬂ(t):h(t,O), te[a,b], a(t)zh(t,l)—ﬂ(t) and

h(-, x) e BV(V:(.)’Z) [a, b] foreach X€R we obtain that a,f € BV(\?)/(')’Z) [a, b] .

Now we will give the definition of uniformly bounded mapping introduced by
J. Matkowski in [24].

Definition 9 Let X and Y be two metric (or normed) spaces. A mapping
H:X >Y s uniformly bounded if, for any t>0 there exists a nonnegative

real number 7/(t) such that for any nonempty set B < X we have
diam(B) <t — diamH (B) < (t).

With the same kind of argument than in ([23], Theorem 7), we can see that
any uniformly bounded composition operator acting between general Lipschitz
function normed space must be of the form (5.2):

Theorem 7 Let h:[a,b]xR —R and H the composition operator
associated to h. Suppose that H maps BV(\QI(.)VZ)[a, b] into itself and it is
uniformly continuous, then there exists functions a,p € BV(V;’(})YZ) [a,b], such

that
h(t,x)=a(t)x+B(t), (t E[a,b],XeR).
Proof. It follows as ([23], Theorem 7) by Theorem 6.

6. Absolutely Continuous Functions

We now define the analog of absolute p-continuous functions of order two in
the framework of variable space.
Definition 10 Given a function p:[a,b]—>(l,00), by modulus of p()

-continuity of order two of a function T : [a, b] — R, we mean

; ot (t NS p(xj-1)
w{(;p(-)YZ) (f):=sup Su*pi f (tj+1) f (tl ) _ f (tJ) f (tJ-l)

flo s H bt Yt |

where the supremum is taken over all tagged partitions
n= {a =t <t <<t = b} of the interval [a, b] together with a finite

sequence of numbers X;,---,X, , subject to the conditions t; <X; <t for

j+1
each j such that the norm of 7~ isatmost J.

Lemma 3 Let P be an admissible function. The modulus of p() -
continuity of order two is a sub-additive function.

ProofLet f,g Z[&,b]—)R.
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&P (f +g)

2+ 0)(t,)-(F+a)(t)_(F+a)(t)-(F+a)(t.)™"

iﬁ}‘gsgpé‘ L=t t -t ‘
(Xj—l)
B L, f(t.) f(t-)—f<t.71) p
o 11t flt)-1(
) mg%p; ‘ ta =t t -t
+|g (t1)-9(t) 9 (t;)-9 (tH)|p(XH)
|t Gt |

=27 ("9 1)+ (g)).

w
If fe BV(p(l)’2

absolutely p(-) -continuous of order two, thatis, f e C'? [a b].

| [a, b] and lim, a)((,p(‘)'z) (f)=0,wesaythat f is

Theorem 8 Let P be an admissible function. Then CP) )[a,b] is a closed
subspace of BV( )[a b]

Proof. We take a sequence { f”}neN of functions in C'" [a b] such that

s—limf, = f BV, [ab]. 6.1)

N (p(
By the sub-additivity of @{"’”)(f) we have that
w{P? (f)< (PP (f-f)+ P ( f,).
Moreover, since V(\f)/(.),z) (f)= wgp(.),z) (f) and V(W 2) (2f) <V(W() )( f),
using Proposition 2.3. in [21] and the strong limit (6.1) we have that, for each
fixed 5, o"? (f-f,)>0 when n—o. Since wP? (f,)>0 when

0 —> 0 by hypothesis, we obtain that a)((sp(‘)'z) (f)>0 when 6—0.
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