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1 Introduction

The theoretical derivation of expressions for die
magnetic nuclear relaxation times at very low
temperatures and the description of the beha-
viour with temperature for such relaxation times,
has been of major interest among the researchers
in the field, specially because of the recent expe-
rimental possibility to obtain measurements of
nuclear magnetic properties at such low tempera-
tures. There has been a considerable amount of
work in the area of nuclear magnetism [1], but a
comprehensive theoretical interpretation of
NMR relaxation times, at arbitrary temperatures,
is still lacking. Recently, Sbibata et al. has pub-
lished a series of papers [2], [3] concerning the
theoretical determination of the nuclear spin lat-
tice relaxation time for a system of nuclear spins
interacting with conduction electrons ina a metal.
Using a theory of nonlinear spin relaxation [4], [5]
they predicted a multicxponential spin-lattice re-
laxation behaviour.

In the case of disordered metals and high tempe-
ratures, where a Korringa law is aplicable, Wa-
rren [6] predicted an enhancement of the relaxa-
tion rate, which in some cases [7] could be as large
as 6,500. More recently [8], Gdtze and Ketterle
derived expressions for die Warren enhancement
factor by means of normalized Kubo response
functions [9].

ED the present work, we make use of the two-ti-
mes Green's function formalism in the regime of
the Linear Response Theory to derive the tempe-
rature behaviour of nuclear relaxation times [10]
for nuclei in metals and disordered metals. The

results obtained are in complete agreement with
those derived by Sbibata in the assumption of an
effective unique relaxation time [2], [3] and with
experimental evidence [11], [12]. Also, there is
agreement between our results and those derived
by Gdtze and Ketterle [8] in the high temperature
regime, where Korringa law is valid but additio-
nally we obtained expressions for the enhanced
relaxation rate which are valid in the whole tem-
perature range. The organization of this paper is
as follows, in section 2, the general formalism is
derived, in section 3, we work out the Hamilto-
nian of die system from which the equation for the
Green's function < < I°/I°> > to, which con-
tains all the information relevant to the spin-lat-
tice relaxation, is derived. This equation is then
solved including terms up to second order in the
electron nucleus interaction and the disorder pa-
rameters. Finally in section 4 we discuss the rela-
xation times formulas.

2 Green's Functions and the Relaxation
Rate

We will consider a system which can be mode-
lled by the total Hamiltonian:

H = Hs + HSL + HL (1)

where Hs represents the nuclear spin Hamilto-
nian, HL is the Hamiltonian for the heat bath and
HSL represents the couplig between both
systems, usually under the condition
HL > Hs > HSL which occurs commonly in NMR
experiments. In order to consider the evolution of
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the system toward thermal equilibrium, it is ne-
cessary to prepare the system in an initial non-
equilibrium state. This can be achieved by the
adiabatic switching on of a pertrubation, which in
our case is a magnetic field along a particular
direction, and suddenly at time t—0, this pertur-
bation is switched off letting the system to evolve
freely according to die Hamiltonian H. The per-
turbation can be written as:

Hi' = - M .

where:

H\* = Q(-t)eEt Hi

(2)

(3)

Within the linear response theory, the magneti-
zation for t>0 is given by the following expres-
sion [13]:

where:

- iz)

(8)

with GM (<o ) « < < M; M > >

We are interested in the asymptotic behaviour
of < 8 M(f > since in that regime is that the rela-
xation rates are experimentally measured. Accor-
ding to Tauber's theorem [14], [15] an asymptotic
espanskm of f(t) can be written as:

( V )

*« 0

H\r dt

(4)

which is written in terms of the two times retar-
ded Green's function. By using the causality pro-
perty [13] of the retarded Green's function, it is
posible to write the equation for the displacement
of magnetization from the equilibrium situation
as:

1 [+OO << M&>> lT) H\ _ lm ,

(5)

where < 8Af(/> = <M(t)> - <Af>o .Itcan
be shown that:

. H\ (6)

so that taking the Laplace transform of eq. (5), it
can be written as:

where Z\ represents the poles of the function
f(z), n*( v ) the order of the pole and Ck(y) the
coefficient in a Laurent expansion of f(z) around
the pole. In the particular case of f(z) having only
first order poles, eq. (9) can be written:

(10)

Let us suppose that the Green's function can be
written in the general form:

<*»(*>)
o> - acoo -

(11)

/(z) . (7)

where Qxand Waare complexfunctions. Accor-
ding to eq. (8) the poles of the function f(z) are
related to the poles of the Oieen's function so that
only those poles that are located at the upper
complex plane must be considered [16]. In gene-
ral it is necessary to make a complete analysis of
the pole structure of the Green's function at the
upper complex plane in order to describe the total
aymptotic behaviour of the function f(t). As a sim-
plifying assumption, we will consider the follo-
wing zeroth-order approximation to the pole
structure. We will first assume that the function
Ox(ci>) does not contribute with any pole. This
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analyzed with some care. Secondly that the func-
tion Wo. can be approximated by its value at die
frequency aoo . This second assumption ussually
is a very strong one since the whole pole structure
is sometimes collapsed to a single first order pole,
but nevertheless in many cases, this approxima-
tion gives the right relaxation behaviour correla-
ting quite well with the experimental results. The
relaxation rates obtained under this assumptions
can be written in terms of the imaginary part of
the function Wa evaluated at the frequency aoao,
that is:

j - ImWo(O) (12)

and:

T2
too) - ( - too)

(13)

3 Hamiltonian and Equation for the
Green's Function Go (coX

For tile system considered in this work, the Ha-
miltonian can be written as in equation (1) where
the different terms are:

(14)

vv'tt

X Vz «*v*+ ~ « v ' f -

r

(15)

with:

The lattice Hamiltonian can be written as the
sum of two terms [8]:

HL = 2 - £v (ks) at k s av k s
\ks

p+ (q)V(q) (17)

where:

X at- §.*«* + (18)

and represents the electron density fluctuations
for wavevector q. The disorder in the lattice is
represented by the Fourier transform U(q) of the
random potential. This coefficient satisfies the
symmetry property:

U*(q)= V(-q) (19)

The equation for the Green function Go(<o)is:

- < < /" at '+ a*- > a )

(20)

which is to be considered the root of an infinite
set of hierarchy equations, that can only be decou-
pled by introducing some approximations. First,
we will assume that there is no correlation be-
tween the electron operators and the nuclear spin
operators. The second approximation will be a
perturbative one, we will take into account only
terms independent of U(q) in order to have an
approximation for the root Green's function up to
second order. Then the equation for the root
Green's function can be written simply as:

- W(to)}Go(G>) = F(to) (21)

where:
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W(to) = §
* * '

Att - A** A** -

and:

At* -

Gf-+
(0JU

Ajt* -

with:

(22)

oi

(23)

As it was discussed previously [17], the longitu-
dinal relaxation rate is proportional to the imagi-
nary part of the function W (<a ) . If it is taken into
account that A is a complex function:

R c A t t ( w ) - /

where:

V(q)\Z,

q> 0
&t',k-

and:

ImAt*(w)= *
q> 0

(30)

(31)

X {»(* * - ) ( ! - *(*+)) + «(lt+)(i- «(*:*-))}

(24)

At* -

at-- at+ ,

2

- OJO)+

o

(25)

i

(26)

(27)

(28)

21 1 + I
\k-g At •+,.*]

(29)

(32)

Equation (31) represents the dynamical shift in
electronic energy due to the disorder and equa-
tion (32) corresponds to the electronic relaxation
rate function, which in the limit of a>-»O,gives the
electronic relaxation rate 1/J> . The imaginary
part of W (to ) now become s:

1ml

x r

kk

X I -
(At*-ReAt*)2+(/mAt*)2 I

(A**- RcAt*)2+ (

(33)

In the case of a perfect metal, that is for U(q) -
0, we get from equation (33), the following ex-
pression for the relaxation rate [17]:
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[n(*+)(!-
k* '

+ n(*'-)(!-«(*+))]5( At*•) (34)

which exhibits a Korringa behaviour at high
temperatures and attains a maximum for the re-
laxation time at very low temperatures, compara-
ble with nuclear spin energies [17]. in the case of
disorder we get for the relaxation rate:

njk - XI - n(k+

(At* - ReAt*)2+ (ImA**)2

(35)

I ( A * i - ReAi"*)2-

in the limit <i> goes to 0.

4 Conclusions

In die whole temperature range, equation (34)
can be calculated numerically, and the result for
the case of a perfect metal was obtained in refer-
ence 17, where it can be appreciated that T i
shows a maximum at a temperature that is appro-
ximately half of the nuclear spin temperature,
which is consistent with the result obtained by
Shibata and co-workers in the supposition that
the relaxation process can be described by a uni-
que effective relaxation time T l as the observed
experimental behaviour is. Also there is a corres-
pondence between both results in the limit of low
temperature, leading us to think that our calcula-
tion, even in its simpler approximation, is quanti-
tatively correct From the experimental point of
view there are not enough data to decide whether
a single or a multiexponential relaxation takes
place, but the general tendency is to believe that
even though the process seems actually to be mul-
tiexponential, it could be described by an effecti-
ve relaxation time T 'i, which is die time that char-
acterizes the evolution of observables, in particu-

lar, the longitudinal magnetization [11], [12]. The
temperature dependence shown experimentally
by this time T 'i, agrees completely with the beha-
viour calculated in reference 17. Also, equation
(35) takes into account the enhancement of the
relaxation rate for the whole temperature range,
showing at high temperatures a departure from
Korringa's law proportional to the electronic re-
laxation time as Warren proposed. The result ob-
tained for the enhanced relaxation rate shows
that this enhancement will be present even at low
temperatures, as equation (35) is valid in the who-
le temperature range. The approximation assu-
med in this work, besides its simplicity, takes into
account the main features present in die tempe-
rature behaviour of relaxation times, witiiin the
limits of Linear Response Theory, and it can be
extended to consider more realistic models or
systems.
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