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The  two-times Green’s-function formalism is appl ied to the calculation of the NMR 
relaxation time T, for systems of hindered-rotat ing molecules or atomic groups in solids 
or solid surfaces at very low temperature. The  rotation of the molecules is quantum- 
mechanical ly considered as  one-phonon induced transitions between the hindered-rotator 
levels. The  nuclear spin system is assumed to be  coupled to the bath of thermal phonons  
through the phonon-rotat ion interaction. The  longitudinal relaxation rate is determined 
by  taking the lowest order approximation for the pole structure of the retarded Green’s 
function; in this way a  multiexponential behavior due  to the different nuclear spin species 
present in the molecule or atomic group is obtained. 0 1992 Academic Press, IIIC. 

The  purpose of this paper  is to present a  formal derivation, based on  the two-times 
Green’s-function formalism, of the NMR relaxation rates for a  relatively simple nuclear 
spin system coupled to a  more complex one, acting as a  thermal reservoir within the 
linear response regime. The  determination of these relaxation rates is usually carried 
out by calculating some spectral densities, related through the fluctuation-dissipation 
theorem with the relaxation rates. As a  common practice this is done  semiclassically, 
i.e., the variables associated with the lattice are considered classical entities (I-4), and  
in many cases some parameters, such as correlation times and  their specific temperature 
dependencies,  are added  without r igorous calculation. Another approach to the problem 
is given by the solution of coupled master equations for the populations of the different 
nuclear spin species (5-9)) where the transition probabilities are calculated quantum 
mechanically, lim iting the treatment to low temperatures. 

The  formalism that we present in this work offers the possibility of a  first-principle 
calculation for the relaxation rates in such systems where it is possible to write down 
an  effective Hamiltonian that describes the thermal bath over the whole temperature 
range considered and  allows for the direct m icroscopic mode ling of the system, since 
various mode l Hamiltonians can be  easily introduced in an  attempt to reproduce the 
experimental results. There is no  need  to introduce in addition any phenomenological  
parameters or some very strong assumptions like the existence of a  common spin 
temperature, since all this information is included in the dynamics given by the Ham- 
iltonian and  in the formalism itselc i.e., the general ized susceptibilities given by the 
Green’s functions satisfy Kramer-s-Kronig relations, fluctuation-dissipation theorems, 
symmetry properties, sum rules, and  so on. 
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In the calculation presented here, we shall consider spin-carrying molecules or atomic 
groups in a solid or solid surface, subjected to an external strong magnetic field and 
a small perpendicular RF magnetic field. The spin-carrying molecules are assumed to 
undergo hindered rotations due to the scattering of phonons. In this sense, the rotational 
degrees of freedom are modeled by a Hamiltonian whose potential-energy term is 
taken as the interaction energy of the molecule with all the other atoms and molecules 
in the solid fixed at their equilibrium positions. The existence of collective vibrational 
modes in the crystal modulates this potential energy and gives rise to an interaction 
between the rotational degrees of freedom and the lattice vibrations or phonons. For 
simplicity, we shall consider the effect of the phonon-rotation interaction up to terms 
linear in the displacements of the atoms and molecules from their equilibrium positions, 
allowing in this way only one-phonon processes. This means that our calculation is 
limited to relaxation phenomena at very low temperatures. In regard to the magnetic 
interaction involved, the nuclear spins are taken to interact among themselves through 
magnetic dipolar forces of intramolecular type; intermolecular spin interactions are 
not included. 

In order to calculate the longitudinal relaxation rate, it is first necessary to set up 
the equations for the Green’s function, which in general consist of a system of hier- 
archical equations, usually infinite in number, and next to impose some physical 
approximations in order to decouple and further reduce the system of equations to a 
workable level. Finally, with these approximations, a solution with physical meaning 
is obtained. By this, we mean a solution which is consistent with general symmetry 
properties of the Green’s function and general sum rules. The approximations we 
shall impose include, to its lowest order, the rotation-phonon interaction, which means 
one-phonon processes, and the validity of the random-phase approximation, which 
in this context is related to the absence of correlation between different components 
of nuclear spin operators and those which correspond to the thermal bath, in this 
particular case, phonon operators. 

GREEN’S FUNCTIONS AND THE RELAXATION RATE 

We will consider a system which can be modeled by the total Hamiltonian 

2-P = & + %Yq, + 3(to, 111 
where ~4’s represents the nuclear spin Hamiltonian, SL is the Hamiltonian for the 
heat bath, and ~4’s~ represents the coupling between both systems, usually under the 
condition X; > MS > 2&r, which occurs commonly in NMR experiments. In order 
to consider the evolution of the system toward thermal equilibrium, it is necessary to 
prepare the system in an initial nonequilibrium state. This can be achieved by the 
adiabatic switching on of a perturbation, which in our case is a magnetic field along 
a particular direction, and suddenly, at a time t = 0, this perturbation is switched off, 
letting the system evolve freely according to the Hamiltonian Z. The perturbation 
can be written 

where 
IF, = -M-H;, [21 

H: = O(-t)e”H, c-*0+. 
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Within the linear response theory, the magnetization for t > 0 is given by the 
expression ( 20) 

(M(t)) = (M), - s+a ((M(t); M(t’)))‘-‘.H:‘dt’, -02 [41 

which is written in terms of the two-times-retarded Green’s function, ((M(t); 
M( t’)))? By using the causality property (10) of the retarded Green’s function, it 
is possible to write the equation for the displacement of magnetization from the equi- 
librium situation in the following way, 

where (6M(t)) = (M(t)) - (M)o. 
It can be shown that 

(nqt = 0))) = -((MIM))~-). H, 

so that by taking the Laplace transform of Eq. [ 5 1, one can write 

(AM(z)) = f(z)+M(t = 0)), 

where 

f(z) = - & s11” dw ((MIM))I;‘(((MIM))I;‘)-’ 
(0 - ic)(w - iz) 

[61 

171 

181 

We are interested in the asymptotic behavior of (6M( t) ) , since it is that regime in 
which the relaxation rates are experimentally measured. According to Tauber’s theorem 
(11, 12), an asymptotic expansion of f(t) can be written as 

f(t) = C exp(z,t) g C:Y’{ r(--nf))}-‘t-(‘+“p)), PI 
Y k=O 

where z, represents the poles of the function f(z), n f’ represents the order of the 
pole, and Ct’ represents the coefficient in a Laurent expansion of f(z) around the 
pole z,. In the particular case of f(z) having only first-order poles, Eq. [ 91 can be 
written 

f(t) = 2 C(“)exp(z t) Y * [lOI 

Let us suppose that the Green’s function can be written in the general form 

((MhL)), = 
a,(o) 

[cd - Lywo - W,( cd)] ’ 

where u, and IV, are complex functions. According to Eq. [ 81 the poles of the function 
f(z) are related to the poles of the Green’s function so that only those poles that are 
located at the upper complex plane must be considered (13). In general it is necessary 
to make a complete analysis of the pole structure of the Green’s function at the upper 
complex plane in order to describe the total asymptotic behavior of the function f(t). 
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As a simplifying assumption, we consider the following zeroth-order approximation 
to the pole structure. We first assume that the function u, does not contribute with 
any pole. This assumption must be analyzed in every particular case with some care. 
Second, we assume that the function W, can be approximated by its value at the 
frequency (YW~. This second assumption usually is a very strong one since the whole 
pole structure is sometimes collapsed to a single first-order pole, but nevertheless, in 
many cases, this approximation gives the right relaxation behavior, correlating quite 
well with the experimental results (14). The relaxation rates obtained with these as- 
sumptions can be written in terms of the imaginary part of the function W, evaluated 
at the frequency cyoo, that is, 

1 
- = -1m We(O) 
TI 

[=I 

and 

1 
- = -1m W+( +oo) = -1m W-( -oo) 
T2 

[I31 

HAMILTONIAN OF THE SYSTEM 

In this work we are interested in the calculation of the NMR longitudinal relaxation 
rates of nuclei in symmetric molecules or molecular ionic groups in solids. With 
neglect of internal vibration modes of the molecules, the Hamiltonian of a molecular 
crystal placed in an external magnetic field is written as 

3? = .yi”z + 2fR + SC., + 3&D + se&h, 1141 
where Jllv, is the nuclear Zeeman Hamiltonian in the external magnetic field, and 
Jig_, represents the intramolecular magnetic dipolar interaction Hamiltonian between 
the nuclei. We assume that the intermolecular interaction is negligible as in most 
cases of practical interest. .&, is the phonon Hamiltonian given by 

%Ph = c 4Gbla + l/2), 1151 
ks 

where bL and bL, are phonon creation and annihilation operators, s denotes the branch 
and polarization of the phonons, and k is its wave vector. 

Finally, the terms & and *n-r,, represent the molecular rotation Hamiltonian 
and the rotation-phonon interaction Hamiltonian, respectively. In general, the rota- 
tional Hamiltonian for a symmetric top molecule can be written as ( 15-17) 

where J is the molecular angular momentum operator, I is the moment of inertia, 
and V represents the intermolecular interaction potential, which depends on the set 
of Eulerian angles Q, describing the molecular orientation with respect to the lattice 
axes, the position rM of the molecule or ionic group in the lattice, and the set { ri } of 
positions of all other molecules and atoms in the lattice. This interaction potential 
I’( Q, rM, { ri } ) must be at least invariant with respect to the point symmetry group 
of the molecule or ionic group ( 18, 19) and it can be expanded as 
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[I71 

where V,(Q) is some linear combination of Wigner matrices wM( Q) with the appro- 
priate molecular symmetry invariance properties ( 18). The molecular positions in 
the crystal are not fixed but rather are undergoing displacements around the lattice 
equilibrium sites due to the presence of collective vibrational modes, i.e., phonons. 
Assuming that the displacements are very small, Eq. [ 17 ] can be expanded in a Taylor 
series around the molecular equilibrium positions, to obtain 

V(%rh4, {ri>) = C C4r0My {roil)V,(Q2) 
a 

+ C <C”&“’ UM>vm(Q) + C C <CS, ’ Ui)va(Q2), [I81 
a a i 

where 

CY = Vh4G(rOM, (r0i 1) and CL = ViCa{roh4, {roil). [I91 
The second and third terms on the right-hand side of Eq. [ 181 represent the phonon- 

rotation interaction, which can be written in terms of phonon creation and annihilation 
operators as 

+ (Cf. e:)e- lk-fb&) V,(Q). [ 201 

The first term on the right-hand-side of Eq. [ 18 ] represents the static rotation Ham- 
iltonian. In the representation of spin-rotation states, the rotation-phonon Hamil- 
tonian can be written 

[211 

where 

[=I 

where we have included molecular displacements only. 

CALCULATION OF THE GREEN’S FUNCTION ( (I0 / Z”))y 

It was shown in ( 19) and (20) that a convenient representation basis for the operators 
occurring in the system Hamiltonian is the set of eigenstates of the Zeeman and 
rotation Hamiltonians 

(=%Z + xk>b) = tE; + E,R)b+ [231 
The states 1 pu> are linear combinations of products of spin and rotational wave 

functions (14) so that the label P represents a set of quantum numbers which, in 
general, can be chosen as (Zml; Jm J; I’,r,I’,t), where Z is the total nuclear spin, ml 
its projection on the z axis, J the angular momentum, and mJ its projection on the 
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laboratory-frame z axis. For the most frequently studied hindered rotators of the type 
X Y, and X Y, with molecular point groups C,, and Td, respectively, it is safe to assume 
that the “feasible” operations of the full molecular symmetry group P,&KS2 ( PN is the 
symmetric group of N elements) form a subgroup which is isomorphic to the molecular 
point group. In this case the PS denotes irreducible representations of the molecular 
point group. Pl is the irreducible representation associated with a particular spin species 
of total nuclear spin I. PJ is the irreducible representation according to which the 
rotational wave function transforms and PO must be of symmetry A, or A2 depending 
on our choice of the state ( CL) as a symmetric or antisymmetric state with respect to 
the exchange of two identical nuclei. Finally the label t distinguishes between the 
different states, where all the other quantum numbers are the same. In most cases t 
can be left out since there are no such other states. In what follows and for the sake 
of simplicity in our notation we will denote these Zeeman-rotation states only by the 
label p. 

In this representation the Green’s function (( I0 ) I”)) can be represented by 

((z”lzo>>w = C((lP)(Pl Iz”>>J;~ 1241 

where Zz = ( ZA 1 I0 1 CL). In this form the Green’s function ( ( I0 ( Z”))o is decomposed 
into a combination of new Green’s functions ( ( 1 CL) ( ZA I I Z”))w that can be considered 
as its components in the given representation. The equation of motion for any of the 
components of [ 241 is given by 

fq( IP)(cLI I~“>>to = (rlP)(PL IO])0 
+ c k&IP)(PII lV”>>w - c hL,,((IPk)(PI I~“& 

lrlfP Pl#fl 
+ c ~E;,,~~~~~lCL~~~LII~LI~o))o-~~,~<~~((I~~)(~l~l,I~o)),} 

Flh 
+ 2 {~:,,(k~)((I~)(~L,I~;t,IZ”)), - ~;f;,(k~)((I~,)(~l~~~lZ”))o}. [251 

rlks 
The new higher order Green’s functions that appear and which contain phonon 

creation and annihilation operators obey the equations of motion 

{ho - m&i, + ~k,>((l~l)(~.,Ib,+,Iz”)), = (hl)(d&, z”])O 

+ c h,,,,((I~CLI)(~31b:sIz”))w- c ~,,,,((l~3)(~U21~k+slz”))o 
@3+P2 P3#PI 

+ p3?J, {~~z,,<k’~‘>((I~~)(~~lb:,bk~~~lz”)), 
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and 

{ hw - AEg, - ~ks}((l~CCI)(~*I~ksI~“))o = (rlP~)(~2l~ks~ IO])0 
+ c h,,,((I~CL1)(~31bkslz”))o - 2 ~,,,,((I~3)(~~lbksIzo))w 

IV%2 &PI 

+ p3zs, {~,,,,tk’~‘)((l~,)(CL31~sbl,~s~lz”)), 

AE;;;, = (Ef2 - E:,) + 6% - E,R,) + t&q,, - LJ. [281 

Green’s functions are also present in the dipolar coupling terms 

{ho - ~~:;,)(IPcL1)(PzI IZ”))~ = ([lP1)(/.d zO1)o 
+ c ~,,,,((IPL1)(P3l lZ”>>w - c 4L,,,((IP3)(P21 lz”>)w 

83+P2 P3hI 

+ 2 {&q,,tkd(( hh)(/dhs 1 z”))o - f-,,,,@s)(( b3)(d’ksl z”))w} 
r&s 

+ C {F~3,,(ks)((I~,)(~31b:,IZ”)), 

- ~:,P3tk~)((I~3)(~21b:sIzO))w). [291 

Considering that we are interested in the evaluation of the longitudinal relaxation 
rate, as was mentioned before, we must only look for terms that will contribute to 
poles in the neighborhood of the frequency w = 0. On the other hand in order to 
decouple the chain of equations, we will make the following approximation for the 
higher order two-phonon Green’s functions appearing in Eqs. [ 261 and [ 271, 

((l~3)(/I,l~:,~~‘,‘l~“))~ = ((IIL3)(~2/bks~~‘s’Izo))w =o, 

((~~,)(~L21~~~~k’,~t~“)), = (n(ks))oSkk,G,,((I~1)(CLZI Iz”))o, 1301 

where (n(ks))o = ( b&S)0 = 5( ks). 
The approximations are justified since they only take into account one-phonon 

processes in the rotation-phonon interaction, and at the same time there is the as- 
sumption of a lack of correlation between the number of phonon operators in the 
state ks, Fiti, and the operator IO. By keeping terms up to second order in the inter- 
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actions together with this set of approximations, the chain of equatios is effectively 
decoupled, to obtain the solution for the component Green’s function 

[311 

The complex functions F,,( w ) and S,( w ) are sums of matrix elements of the inter- 
action Hamiltonians over the spin-rotation and phonon states and usually these sums 
do not contribute with poles to the total Green’s function. Nevertheless these functions 
contribute to the intensity with which every component contributes to the time evo- 
lution of the longitudinal magnetization. Since, in order to get the relaxation rates, 
we are interested in the singular points of the Green’s function, it is important to study 
only the denominator of Eq. [ 3 11, which can be written for the total Green’s function 
as 

[34 

where now N,(w) = F,,(w) + S,(w) and 

- 

+ I F,,,(ks)12 F + I f’p,,(W12 (fiks + l) 

WI 
*+ 

Wl 
+ I F,,,(ks)12~ [331 

- I lrllr 

with A,&,, = h‘d - A‘?(‘) + tks. PWI 
The imaginary part of the function M ,,( w ), which is related to the relaxation rates, 

can be written 

ImM,(w) = -7~ c I/z,,, j2{6(hw - AE!$ + 6(/iw - A,!$~~)} 
PI+ 

DISCUSSION 

According to Eqs. [ 12 ] and [ 341, each spin-rotation level presents a single nuclear- 
spin longitudinal relaxation rate, given by 

1 -=- 2a 2 Ih,,,126(~;;f)+~ 2 {]&,,(k.Y)12(fik,+ l>~<~!::- tks) 

Tl, h jl,#, 
k”l 
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and the total relaxation function f(t) can be written 

f(t) = C-’ 2 K,exp - $ , 
!J 1 I llr 

where 

K, = i Ti,ZO,Im{ F,(O)} 

and the normalization constant C is given by 

C = $ 2 T,,ZzIm{ E;(O)}. 
!J 

1361 

[371 

Equation [ 351 can be separated into two contributions, one coming from the re- 
laxation induced by the rotational motion, characterized by the transition matrix 
elements h,, , of the dipolar interaction between the nuclear spins, which, because of 
the 6 function in [ 35 1, represents the first relaxation channel between spin-rotation 
levels with nearly the same energy. This contribution has a temperature dependence 
due to the presence of the rotation-phonon interaction which is at least third order 
in the perturbations of the rotation-Zeeman Hamiltonian (see the Appendix) and 
that can be physically explained by the induced time dependence of the dipolar in- 
teraction due to the phonon reservoir. 

The second contribution comes from the instability of the rotational levels due to 
the rotation-phonon coupling, introducing a width for each rotational level which 
increases the total transition probability between the Zeeman energy levels in the 
nucleus, therefore increasing the total longitudinal relaxation rate. This represents the 
second relaxation channel: the phonons induce transitions between different sets of 
spin-rotation levels, thereby increasing the probability that a transition between Zee- 
man levels will take place. The relaxation function given by Eq. [ 361 shows a mul- 
tiexponential behavior with a different relaxation rate for each spin-rotational level. 
Since the spin-rotational states are classified according to the irreducible representations 
of the symmetry group of the molecule, and since the matrix elements given by Eq. 
[ 221 contain matrix elements of the molecule-surface interaction, which is, at least, 
invariant according to the same symmetry group, it is possible that for those states 
belonging to the same irreducible representation, the relaxation rate could be nearly 
of the same value, giving us a further simplification of the total relaxation function 
containing only terms corresponding to the different irreducible representations of the 
molecular symmetry group. This behavior is consistent with experimental evidence 
and other theoretical approaches (9). 

APPENDIX 

In Eq. [ 291, we have the same type of Green’s functions as those in Eqs. [ 261 and 
[ 27 1, which are given in terms of two-phonon operator Green’s functions. If we in- 
troduce Eqs. [ 261 and [ 271 in [ 291, we can decouple the system by discarding those 
Green’s functions that represent two-phonon processes, by the same approximation 
used in Eq. [ 301. With this type of decoupling procedure we get an additional tem- 
perature-dependent term in the function M,( w ) , 
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R,(wT) = c h,,,G;,(w;T) + h:fi,G;:(-wT) 

lrlfP 
A 

81F A Wl 

23 

[AlI 

where 

G;,(wT) = C F,,,,(ks)Flf;,(ks)(nk, + 1) + 4L,(k~V’p,,(k~)ri,s 
ks A,, ALP 1. [A21 

&P 

The additional contribution to the relaxation rate is 

where ‘P represents the principal value of the sum. 
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