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ABSTRACT

This paper presents an elementary derivation of formulas for the
spin-relaxation parameters. The derivation is based on the solution of
the equation of motion for time correlation functions of the magnetiza-
tion. The use of the assumption of regression of fluctuations allows the
determination of non linear integral equations for the relaxation para-
meters. The method leads to the conclussion that the information obtai-
ned through Magnetic Resonance experiments is totally contained in
two time Green's functions of the magnetization components.

DEDUCCION ELEMENTAL DE LOS PARAMETROS
DE RELAJACION DE SPIN

RESUMEN

En este trabajo se presenta una deduccién elemental de las férmu-
las para los parémetros derelajacién de spin. La deduccién estd basada
enla solucién para la ecuacién de movimiento delas funciones de corre-
lacién temporales de la magnetizacién. El uso dela suposicién de regre-
sién de las fluctuaciones permite establecer ecuaciones integrales no-
lineales para los parémetros de relajacién. El método conduce a la con-
clusién de que la informacién obtenible a través de experimentos de
Resonancia Magnética estd totalmente contenida en las funciones de
Green de dos tiempos de las componentes de la magnetizacién.

I. INTRODUCTION

The purpose of this paper is to present an elemen-
tary derivation of the expressions for the spin-relaxation
parameters indicating at the same time a very conve-
nient method for their calculation. This derivation has
already been done many times by means of a variety of
formalisms with diverse degrees of complexity.!®%%1 In
contrast we give in this article an alternate derivation
which can be characterized by its compactness and mat-
hematical simplicity. Our approach is based on a method
proposed by Tserkovnikov® for the calculation of two-
times Green'’s functions together with Onsager’s basic
postulate of regression of fluctuations. With this proce-
dure we arrive at a self consistent expression for the rela-

Recibido: 28/10/83
Aceptado: 12-5-86

xation parameters from which the well known formulas
can be derived in the lowest order of approximation. A
further advantage of our approach lies in its close rela-
tionship with the powerfull two times Green’s function
formalism® which can be readily applied in the calcula-
tion of particular relaxation problems.

The organization of this paper is as follows: In sec-
tion II we introduce the symmetrized time correlation
functions for the magnetization components and derive
their equation of motion. In this context we define the
form of the total system Hamiltonian and introduce a
shorthand notation for the different commutators invol-
ved. At the end of the section a foymal solution for the
equation of motion is presented. In section III Onsager’s
basic postulate is recalled and expressions for the spin-
relaxation parameters are identified from the formal
solution obtained. In section IV we show that the com-
mon formulas for the spin-relaxation rates in the labora-
tory frame are the lowest order approximation of the
derived expression. Finally in section V we briefly show
how the Green’s function formalism can be used in the
calculation of the spin-relaxation parameters.

II. CORRELATION FUNCTIONS AND THEIR
EQUATIONS OF MOTION

Let us consider the symmetrized quantum mecha-
rical time correlation functions of the components of
the systems magnetization with vanishing ensemble
average
{AM® (t) AMP} =
=1/2(< AM® () AMP >, + < AMPAM®(t) > ) (IL1)
where M?(t) is the Heisenberg representation of the ope-
rator M®, AM?(t) = M*(t) — < M* >, represents the
deviation of the a-component of the magnetization from
thermal equilibrium at arbitrary times and

<...>,=2Z7" Tr(exp(— BH)...) (11.2)
where Z is the partition function, 8 = (kz T)™* and H is
the Hamiltonian of the total system.

In the context of this work we shall define the total
system Hamiltonian as
H=H; +Hg + H, (11.3)
where Hg, Hg; , H; are respectively the spin-system, spin-
lattice interaction and lattice Hamiltonians. This allows

us to write the equations of motion for the magnetizat-
ion components.

it SO ooy, H) = T Me(t) + 0 (IL4)

In this equation we have defined
[M®, H) = T M* and [M*, Hg]=J* (IL5)

The term T* describes motion in the external field
but without interaction between the spins. The interac-
tion between the spins is accounted for by J* which repre-
sents the flux operator corresponding to the a-compo-
nent of magnetization.
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Based on these definitions we can now establish, in
accordance with,® the equation of motion for the correla-
tion function (I.1):

i -d {AM*(t), AMP} = (T* + I*(t))- (AM*(t), AM#}
a (I1.6)
where I™(t) is the term which includes higher correla-
tion functions and has the form

= M), AW :
™ = a3t Ave Uty

Using the following identity
t
I (t) = I*#(0) - f at’ -gv It —t) (IL8)
0

equation (I1.6) can be rewritten as

,_% (AM(t), AMP)=—(i€2,,, /% + RB(t))- (AM*(t), AMP}

(IL9)
‘where
Q=T + 120 = T + {52 (IL10)
and,
o= [t [L_ro.re)
¥ [ & A, AP o))
T, AMPE) - (AME(), P () ] (IL11)
; t

The decay rate of the correlation function is deter-
mined by the real part of R*(t). Whereas the imaginary
part is responsible for the oscilatory behavior. It is to be
noted that these dynamic parameters are explicitly pro-
portional, through the flux operators of the magnetiza-
tion components involved, to the square of the spin-lat-
tice interaction Hamiltonian.

[II. ONSANGER’S POSTULATE AND THE
SPIN-RELAXATION RATES

The correlation function in equation (I.1) describes
the behaviour in time of the spontaneous fluctuations
from thermal equilibrium of the magnetization eompo-
nents of the system. This may be compared with the ave-
rage time-dependence of the macroscopic magnetization
when the system is initially not in equilibrium. The com-
parison is based on Onsager’s postulate of regression of
fluctuations which assumes that macroscopic evolution
laws are obeyed, on the average, by the decay of sponta-
neous fluctuations from thermal equilibrium. This postu-
late enables one to identify the spin-relaxation rate with
the real part of R*(t) and its imaginary part with the
dynamie frequency shift.

In this respect we must recall that the spin-relax-
ation behaviour is generally assumed to be exponential,
that is the observation time t is considered to be much
longer than the correlation time t of the microscopic
events causing relaxation. In order to account for this
assumption we must construct an asymptotic represen-
tation of the function R*® ast — < ; in this way the resul-

Landrove y Moreno

ting expression is time-indepgndent. Accounting for this

consideration the formal solution to equation (I1.9) can

be written as

{AM*(t), AMP} = {AM®, AMP} exp (— (iQ,,/K + R*)t)
(I1IL.1)

Substituting this last expression in (II.11) we obtain

in the long time approximation

Rof= _L ﬁ;, [_\T___J"(t');"’ exp ((iQ,,/f + R#)t)
J AM=, AW} g (I1L.2)
_ ), ﬁ&‘f }‘AﬁM"(t')’ P} exp (2(i9,,/K +R°”t')]

This expression shows that R*” satisfies a nonlinear
integral equation whose kernel can be expressed in
terms of higher order correlation functions, for which
equations of motion similar to (I1.6) can also be written.
In any case equation (II1.2) can be used to establish the
following very convenient expressions for the determi-
nation of the spin-relaxation rates and the dynamic fre-
quency shift

1/T, 4, = Re{R* "%} a=0, +1 (IIL3)

Aw =Im{R*~ %} a= =1 (I11.4)

It is worth noting that in the derivation of expres-
sions (II1.2) — (II1.4) we did not use any perturbation
theory approximation. This means that this equations
hold for arbitrary relation between r and T}, T,, i.e., they
hold for both weak and strong collision regimes. Nevert-
heless, it is important to emphasize that these equations
describe exponential damping of the spin time correla-
tion function only for the asymptotic limit t — = (t>
T,, T,, 7). This agreess with the conclusions that follow
from the general theory of magnetie relaxation® and the
theory of irreversible processes.! In the general case,
when t is arbitrary, the spin-relaxation is not exponen-
tial, in accordance with (I1.11).

IV. LABORATORY FRAME SPIN-RELAXATION
RATES

In this section let us consider the particular case of
spin-relaxation in the laboratory frame. In this situation
the spin Hamiltonian is the Zeeman Hamiltonian (H,
= H,) and by viitue of the cylindrical symmetry of the
problem it is convenient to use a representation where
the magnetization components are denoted as M® (« = 0,
+ 1) with the 0-direction determined by the external
magnetic field. It must also be noted that in all applica-
tions of interest, the equilibrium average of Hg, vanishes,
ie.

<Hg>,=0 Iv.1)

This has the consequence that terms linear in Hg,
vanish when averaged over the ensemble. Accordingly,
the second terms in the right hand side of both equations
(I1.10) and (II1.2) vanish. Now accounting in the lowest
order for the time evolution of the correlation function,
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that is approximating the term (i2,;/% + R*) in the
exponent of (II.2) by iT*/ we obtain from (IIL.3) the
following relations for the laboratory frame spin-relax-
ation times

1_ - 1 f 74 @), 9
T}-—Re{R‘”}—ReL,[ dt —%MJ—E{W,- Iv.z2)
== Re{(R"™") = Re [.}, f oy O T ]—
Ty A ;

— exp (iwot')] (Iv.3)

where we have used that T* = ofiw, with w, denoting the
Larmor frequency.

In can be appreciated that these results, to lowest
order in the integral equation (II1.2), are coincident with
those obtained by other more sofisticated formalisms
when those theories are carried out to second order in the
spin-lattice interaction.!"%%%10

V. CUNCLUSION

We have shown above how, in those cases where
Onsager’s postulate applies that is in spin systems that
are not driven too far away from equilibrium, the well
known expressions for the spin-relaxation parameters
can be readily obtained. Since these expressions are
given in terms of higher order correlation functions, the
problem of calculating these relaxation parameters for a
particular case, is by no means an easy task. Neverthe-
less, our derivation suggests that a convenient proce-
dure for the determination of the relaxation parameters
could be the application of the two-time Green’s function-
formalism®1° In fact the Green’s function defined as

<K AME(t); AMP >>-= (if)) ! O(t) {AM(t), AMF} (V.1)

is found to have the same dynamic parameters as the
correlation funection (I1.1).8

In the Green’s function method one must eonsider
an infinite system of coupled equations for these func-
tions. The technique of terminating such chains consists
in expanding the higher order Green functions and then
ignoring the irreducible parts.”® In the Fourier represen-
tation, the approximate solutions can be shown to have
the form

n— g
< AMY/AM >, = — @) gy (V2
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where

o= — (2fi) [AM=, AMP] (V.3)
and M*#(w) is called, by analogy with the quantum theo-
ry of fields, the mass operator.

The oscilatory frequency and decay rate of the co-
rrelation function (1.1) are determined by the poles of the
Green’s function (V.2):

4q=T" + M*¥(w) V4

Since in most cases the mass operator is considered
to be a “small correlation” the solutions seeked for equa-
tion (V.4) are of the form w = w + iR*®. Assuming that

M (@ + iR*) = M (w, ) F iM*(0, R*)  (V.5)
where M*#', M*#" are real functions, we obtain the follo-

wing system of equations for the determination of the
frequency shift and relaxation rate

Ao = (1K) M (@, R*®) (V.6)

R = — (1/8) M’ (0, R*) .7

At this point we must recall that since we are in
general interested in the exponential pole approxima-
tion, equations (V.6) — (V.7) are to be considered in their
low frequency limit. Taking this last consideration into
account it can be easily seen that these equations are for-
mally equivalent to equations (II1.3) and (IIL.4) so that
the problems in the determination of the spin-relaxation
parameters are reduced to the calculation of the Green’s
funetion (V.1) by an appropriate approximation sche-
me.™®

In conclusion, these results together with those in
reference! lead us to recognize the important point that
all the relevant information regarding the Magnetic Re-
sonance lineshape and relaxation of a spin system is con-
tained in Green’s functions of the type (V.1). This fact
highly recommends the application of the powerful two-
time Green’s function technique, of considerable use in
other areas of condensed matter physics, to the problems
of magnetic resonance spectroscopy.
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