

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA TRABAJO ESPECIAL DE GRADO II

OBTENCIÓN DE YESO α EN AUTOCLAVE EN PRESENCIA DE SALES A PARTIR DE MATERIA PRIMA NACIONAL

TUTORES ACADÉMICOS: Dr. Arnaldo Millán Prof. Francisco Yánez

Presentado por las Brs.: Arias A. Teresita V. Ricaurte R. Mariellys V.

- Planteamiento del Problema
- Objetivos
- Metodología
- Análisis y discusión de resultados
- Conclusiones
- Recomendaciones

Planteamiento del Problema

- Objetivos
- Metodología
- Análisis y discusión de resultados
- Conclusiones
- Recomendaciones

Planteamiento del Problema

Tabla N°1. Principales características del Yeso Hemihidratado α

- Seneficios de obtención de yeso α_{Hemihidrato α}
- * Estructurar/del yeso α. 145,15
- *Formaide:iobtención de yeso α

Tiempo de Fraguado (min) A altas presiones: A Presión atmosférica: CaSO₄· $\frac{1}{2}$ H₂O_(s) + $1\frac{1}{2}$ H₂Ô²¹_(v)↑ (2) \xrightarrow{A} Solubilidad en agua a (gramos de yeso/long de solucion) = 3900 cal/mol o,67

Densidad (g/cm³)

2**,**757

23,81

Una de las aplicaciones de interés del yeso hemihidrato α es en impresiones odontológicas.

Para la producción del yeso α se deben lograr condiciones óptimas de presión, temperatura y agitación.

Un reactor químico es una unidad procesadora diseñada para que en su interior se lleve a cabo una o varias reacciones químicas.

Debe asegurar el tipo de contacto o modo de fluir de los reactantes.

Debe proporcionar el tiempo suficiente de contacto entre las sustancias.

Debe permitir condiciones de presión, temperatura y composición de modo que la reacción tenga lugar en el grado y a la velocidad deseada.

Planteamiento del Problema

- Objetivos
- Metodología
- Análisis y discusión de resultados
- Conclusiones
- Recomendaciones

Objetivo General

Estudiar las condiciones de obtención de yeso α en autoclave para uso odontológico, en presencia de sales a partir de materia prima nacional.

Objetivos Específicos

- Evaluar las etapas del proceso de producción de yeso alfa, con la finalidad de determinar la de mayor incidencia en la producción de yeso alfa hemihidratado.
- Identificar experimentalmente los parámetros cinéticos de la reacción de formación de yeso alfa hemihidratado a partir de gypsum.

Objetivos Específicos

- Diseñar un autoclave a escala de laboratorio para este proceso.
- Sevaluar el desempeño del autoclave mediante la producción de yeso α en presencia de sales a partir de materia prima nacional proveniente de El Morrito Estado Guárico.
- Caracterizar el producto obtenido mediante ensayos de densidad, difracción de rayos X, granulometría láser, microscopia óptica y electrónica de barrido.

Objetivos Específicos

- Evaluar las propiedades del producto obtenido mediante la determinación del tiempo de fraguado y temperatura de fraguado, y compararlo con el obtenido en condiciones normales en presencia de sales.
- Comparar el producto obtenido con el producto comercial de referencia.

- Planteamiento del Problema
- Objetivos
- Metodología
- Análisis y discusión de resultados
- Conclusiones
- Recomendaciones

- Planteamiento del Problema
- Objetivos
- Metodología

Análisis y discusión de resultados

- Conclusiones
- Recomendaciones

Tabla N° 2. Pruebas realizadas

Druche	Velocidades de Calentamiento (°C/min)					
Frueda	24 - 37	37 - 50	50 - *Siguiente	Anterior - 80	80 - 92	
P1	0,70	0,20	-	1,56	0,08	
P2	0,73	0,20	-	1,25	0,09	
P3	0,70	0,19	-	2,14	0,08	
P4	0,70	0,19	-	1,67	0,16	
P5	0,75	0,19	1,43 (*70° <i>C</i>)	0,38	0,10	
P6	1,56	0,32	0,80 (*70° <i>C</i>)	0,50	0,09	
P7	1,40	0,19	-	3,00	0,09	
P8	1.58	0.19	_	0.46	0,12	
P9	0,70	0,31	0,50 (*60° <i>C</i>)	0,25	0,31	

Tratamiento P1

Figura 2. Tratamiento térmico N°1 (P1) realizado para la obtención de yeso hemihidratado a presión atmosférica. Todas las micrografías fueron tomadas a 20X

Figura 3. Fotomicrografía tomada con MO y distribución granulométrica del polvo del tratamiento térmico P1

(Granulometría realizada en el IUT Región Capital)

- Curva de tamaños promedios
- _____ Curva de tamaños acumulada
- _____ Sesgo (60μm)

Figura 4. Tratamiento térmico N°4 (P4)

Figura 5. Fotomicrografía tomada con MO y distribución granulométrica del polvo del tratamiento térmico P4

(Granulometría realizada en el IUT Región Capital)

Curva de tamaños promedios
Curva de tamaños acumulada
Sesgo (60µm)

Figura 6. Tratamiento Térmico N°9 (P9).

Figura 7. Fotomicrografía tomada con MO y distribución granulométrica del polvo del tratamiento térmico P9

(Granulometría realizada en el IUT Región Capital)

Curva de tamaños promedios

- Curva de tamaños acumulada
- Sesgo (60µm)

Identificación de los parámetros cinéticos

Figura 8. Comportamiento de la viscosidad en función de la temperatura

Identificación de los parámetros cinéticos

Tabla N° 3 Densidades experimentales

Temperatura (°C)	Volumen Inicial (ml) [V±0,1]	Volumen Final (ml) [V±0,1]	Volumen Desplazad o (ml) [V±0,1]	Masa Inicial (gr) [m±0,01]	Masa Final (gr) [m±0,01]	Masa Agregada (gr) [m±0,01]	p (gr/ml)
23,000							2,281
40,000	1,100	19,800	18,700	53,730	9,100	44,630	2,387
50,000	1,200	18,400	17,200	46,520	5,340	41,180	2,394
60,000	1,000	18,200	17,200	75,290	33,560	41,730	2,426
70,000	1,100	18,500	17,400	62,730	21,070	41,660	2,394
80,000	1,200	18,100	16,900	72,470	30,400	42,070	2,489
84,000	1,000	18,200	17,200	75,840	32,980	42,860	2,492
88,000	1,200	18,000	16,800	42,640	0,630	42,010	2,501
92,000	1,200	18,000	16,800	66,940	24,810	42,130	2,508

ρ teórico: 2,757 (g/ml)

Identificación de los parámetros cinéticos

$$\frac{d\rho}{dt} = (-v_A) = k * \rho^n \qquad (3)$$
$$\frac{d\rho}{dt} = (-v_A) = 46,67 \frac{lt}{mol.h} \rho^2 \qquad (4)$$

REGION CAPITA

Figura 9. Fotomicrografía tomada con MO con resolución de 20X y distribución granulométrica del material obtenido (Granulometría realizada en la Universidad Central de Venezuela):

(a) Con agitador tipo pala; (b) Con agitador de disco para disolver y (c) Con agitador tipo hélice

Diseño de autoclave

Para el dimensionamiento del autoclave se fijaron los siguientes criterios de diseño:

• El reactor a diseñar es un reactor por cargas tipo tanque agitado.

• Se emplea una relación diámetro/altura igual a 2.

 Temperatura máxima de operación 92°C, ya que ésta es la temperatura máxima que se alcanza con el ciclo térmico.

Diseño de autoclave

 Presión máxima de operación de 4 atm, ya que ésta es la máxima presión a la que se da la reacción de deshidratación parcial.

 Material de construcción acero inoxidable 304, debido a que no presenta corrosión en presencia de la solución de cloruro de calcio al 34% p/p.

Diseño de autoclave

Tabla N° 4. Dimensiones y condiciones de diseño del Autoclave

Diámetro Interno (m)	0,15	
Altura (m)	0,30	
Capacidad (m ³)	0,0053	
Presión de diseño (Kpa)	486,36	
Temperatura de diseño (°C)	110	

Desempeño del autoclave

1. Granulometría ϕ =5 mm

[Medio	Pérdida de peso (%)	
3	Cloruro de Calcio al 34% p/p	15,00	
0 0 0	Agua	7,76	1 a
<mark>(a)</mark>	Sin medio	10,66	

Figura 10. Micrografía de las muestras de realizadas con φ =5 mm (Tomadas con microscopio óptico a 20X): (a) Sin medio; (b) Con CaCl₂ al 34% p/p; (c) Con Agua

Desempeño del autoclave

1. Granulometría $\varphi = 5 \text{ mm}$

Desempeño del autoclave

2. Granulometría ϕ < 90 μ m

Figura 13. Micrografía de las muestras de realizadas con φ < 90 μm, empleando como medio solución CaCl₂ al 34% p/p (Tomadas con microscopio óptico a 20X): (a) 3 atm; (b) 4 atm; (c) 5 atm

(a)

Desempeño del autoclave

Figura 14. Micrografía de las muestras de realizadas con $\varphi < 90 \mu m$, empleando como medio solución CaCl₂ al 34% p/p (Tomadas con MEB): (a) 3 atm; (b) 4 atm; (c) 5 atm

Spectrum 2

3 atm

7

(B)

8

Spectrum 3

4 atm

ke v

Spectrum 4

4.5

(C)

5 atm

keV

keV

(A)

Figura 16. EDX los cristales de yeso hemihidratado a (A) 3 atm, (B) 4atm; (C) 5 atm

Figura 17. Granulometría laser de yeso hemihidratado a obtenido en autoclave : (a) 3 atm, (b) 4 atm y (c) 5 atm (molido 15 min)

Temperatura y tiempo de fraguado

Figura 18. Evolución de la temperatura de fraguado para las diferentes mezclas de yeso preparadas con una relación yeso/agua de 70/30.

Resumen

Tabla N°6. Resumen

Cinética	Orden de reacción igual a dos y constante de velocidad de reacción 44,66 lt/mol.h
Tipo de Agitador	Pala
Ciclo Térmico	Calentamiento rápido hasta 37 °C (0,7 °C/min), y calentamientos hasta 50°C (0,3095 °C/min), 60°C (0,5°C/min), 80°C(0,25°C/min) y 92°C(0,3079°C/min).
Presión	Se obtuvo el material deseado empleando una presión de 5 atm
Tiempo de Fraguado	El material obtenido tiene un tiempo de fraguado de 2100 segundos

Hoja de especificaciones

es	Hoj Decifi	a de icacion	es	
UNVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INCENIERÍA ESCUELA DE INCENIERÍA GUIMICA	ESPECIFICACIÓN DE REACTOR		PROYECTO: Obtención de yearo o en autoclave en presencia de xales a partir de matiera prima nacional.	
DENTROJOÓN:				
SERVICIO:				
DESCRIPCIÓN:		100		
	DATOS DE OPE	RACIÓN / MECÁNICOS		
Temperatura de Operación, Máx./Nor./Win. *C	100 / 56 / 23		Name of Street, Street	
Presión de Operación, Máx./Nor./Min. KPs	405 / 253 / 101	the gas	is alvia	
Presión de Diseño . KPa	486,36	_		
Temperatura de Daselo. *C	110		\$.	
Material de construcción	Acero Inoxidable 304			
Sensided liquido a cond. standard (CPC, 1 stm), gr/cm				
Censided líguido a Temperatura de operación, Kgimo	2434,69			
Vaccaldad liguido a Temperatura de operación, cSI	41,25			
Flujo de Gazes, Kghr	10	-		
Peso molecular Gazes		1	T	
Densidad gases a temperatura de operación, griom2	100	10.00		
Nedo de Calentamiento	Resistencia			
Dámetro interno, mm	150,00			
Dénetro edeno, mm	150,02			
Longiud T/T, mm	300		17	
Démeiro del aglador, mm	50			
Polencia del Aglador, W	3852,76		Toma de	
	Loris	-	muestra	
Tigo de Agtador	ALC: NO			

- Planteamiento del Problema
- Objetivos
- Metodología
- Análisis y discusión de resultados
- Conclusiones
- Recomendaciones

Conclusiones

- La etapa determinante en la producción de yeso hemihidratado α, es la de nucleación y crecimiento de cristales, comprendida en el ciclo térmico entre 50°C -80°C (0,2913 °C/min).
- Se obtuvo, para este sistema, una ecuación cinética de segundo orden (n=2) con una constante cinética de 46,67 lt/mol.h.
- Para garantizar la obtención del yeso hemihidratado α con las propiedades adecuadas, se debe emplear un agitador tipo pala.

Conclusiones

- Para el diseño del autoclave se consideró una relación altura/diámetro de 2, así como acero inoxidable 304 como material de construcción.
- El tiempo de residencia en el reactor es de 3 horas.
- Al evaluar el desempeño de un autoclave con granulometrías de φ =5 mm y φ < 90 μ m, se determinó que esta última es la granulometría óptima para la obtención del yeso hemihidratado a.
- Al evaluar el desempeño del autoclave con material de granulometría ϕ < 90 μ m a diferentes presiones, se obtuvo el mejor producto a una presión de 5 atm.

- Planteamiento del Problema
- Objetivos
- Metodología
- Análisis y discusión de resultados
- Conclusiones
- Recomendaciones

Recomendaciones

- Realizar estudios a diferentes presiones con el material que presenta una granulometría $\varphi = 5 \text{ mm y } \varphi < 90 \mu \text{m}$, empleando vapor de agua como gas para aumentar la presión dentro del autoclave, para observar el efecto de esta variación en el tamaño de los cristales obtenidos.
- Estudiar la influencia de añadir ácido oxálico en pequeñas cantidades sobre el tamaño de los cristales obtenidos.
- Estudiar a fondo la cinética asociada al proceso de deshidratación parcial del gypsum.

Recomendaciones

- Explorar la influencia, en el producto final, de emplear soluciones diferentes a la de cloruro de calcio como medio para la deshidratación parcial del gypsum.
- Evaluar presiones sobre 5 atm, con un gas inerte.

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA TRABAJO ESPECIAL DE GRADO II

Un agradecimiento especial a:

- UCV- Facultad de Ciencias, Escuela de Geoquímica.
 Prof. William Marrero (Análisis de difracción de Rayos X)
- USB- Unidad de laboratorios, Laboratorio E .
 Lic. Gleen Rodríguez (Microscopía electrónica de barrido)
- UCV-Facultad de Ingeniería, Escuela de Ingeniería Química, Laboratorio de Separaciones Mecánicas.
 T.S.U Andreína Da Fonseca (Ensayos de Granulometría Láser)
- IUT- Instituto Universitario de tecnología Prof. Jesús Batista (Ensayos de Granulometría Láser)

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA TRABAJO ESPECIAL DE GRADO II

GRACIAS POR SU ATENCIÓN !!!!

TUTORES ACADÉMICOS: Dr. Arnaldo Millán Prof. Francisco Yánez Presentado por las Brs.: Arias A. Teresita V. Ricaurte R. Mariellys V.