EFECTO FISICOQUÍMICO DE LOS FLUIDOS DE PERFORACIÓN BASE AGUA EN EL COMPORTAMIENTO MECÁNICO DE LAS ROCAS LUTÍTICAS

TUTORES: Ing. Francisco J. Volpicella

Profa. Nólides Guzmán

Prof. Alí Lara

Presentado por Ezequiel Enrique Meza Hidalgo

CONTENIDO

FUNDAMENTOS DE LA INVESTIGACIÓN

Planteamiento del Problema

MARCO TEÓRICO Antecedentes

METODOLOGÍA

METODOLOGÍA RESULTADOS Y ANÁLISIS RESULTADOS Y ANÁLISIS

CONCLUSIONES Y RECOMENDACIONES CONCLUSIONES Y RECOMENDACIONES

PLANTEAMIENTO DEL PROBLEMA

- Inestabilidad de Hoyo en Lutitas
- Lutitas: mayoría de secciones perforadas.
- 12 15 % de los costos de perforación.
- Uso de fluidos base aceite en el país.
- Efectos ambientales negativos.
- Desarrollo de fluidos de perforación base agua.

25%
75%
LUTITA OTRAS

OBJETIVOS

GENERAL:

Estudiar los efectos fisicoquímicos de los fluidos de perforación sobre las formaciones lutíticas.

ESPECÍFICOS

- Caracterización mineralógica y química de la muestra.
- Determinar propiedades mecánicas iniciales de la muestra.
- Determinar concentraciones de soluciones de KCl.
- Determinar propiedades mecánicas de la muestra luego de interactuar con el fluido de perforación.
- Determinar el fluido con el cual la muestra de lutita mantiene mayor estabilidad.

ANTECEDENTES

- Eric van Oort, 1994. PPTT.
- Santos, 1997. Prueba de Reactividad de Lutita.
- Fam y Dusseault, 1998. Procesos de intercambio.
- Santos y Rogiers, 1998. Enfoque energético.
- Pontificia Universidade Católica de Rio, 1999. Caracterización.
- Tveit, 2003, y Nes, 2004. Tapones más pequeños.
- Al-Bazali, 2006. Eficiencia de membrana.

MARCO TEÓRICO

- Lutitas
- Fluidos de Perforación
- Mecánica de Rocas
- Problemas Asociados a la Perforación de Lutitas
- Factores Fisicoquímicos en la Estabilidad de Hoyo

METODOLOGÍA

RESULTADOS Y ANÁLISIS

CONCLUSIONES Y RECOMENDACIONES

LUTITAS, ¿QUÉ SON?

Son rocas sedimentarias de grano fino formadas por la consolidación de arcilla, lima o lodo, que se caracterizan por poseer una estructura laminar.

MINERALES DE ARCILLA

- Sólidos coloidales menores a 2μm.
- Dos unidades estructurales simples.
- Se diferencian en el empaquetamiento de éstas
- Absorción de cationes intercapa.

FLUIDOS DE PERFORACIÓN

FUNCIONES:

- Remoción de ripios
- Control de presiones
- Obturación de formaciones permeables
- Minimizar daños a la formación
- Enfriamiento y lubricación
- Transmisión de la energía hidráulica
- Asegurar la evaluación adecuada
- Control de la corrosión
- Facilitar la cementación y completación
- Minimizar el impacto con el medio ambiente

FLUIDOS DE PERFORACIÓN

- Fluidos de perforación base agua (WBM)
- Fluidos de perforación base aceite (OBM)
- Gas

PROPIEDADES

- Densidad
- Reología
- Filtrado
- pH
- Conductividad eléctrica
- Lubricidad
- Corrosividad

MECÁNICA DE ROCAS

Esfuerzos in-situ

- Esfuerzo Vertical: efectuado por el peso de los estratos superiores al volumen en estudio.
- Esfuerzo Horizontal Máximo: Esfuerzo principal mayor que actúa en compresión o tensión.
- Esfuerzo Horizontal Mínimo: Esfuerzo principal menor que actúa en compresión o en tensión

Esfuerzo efectivo de Terzaghi:

$$\sigma' = \sigma - P_p$$

MECÁNICA DE ROCAS

Esfuerzos inducidos alrededor del hoyo

- **Esfuerzo Radial**: actúa a lo largo del radio del hoyo (σ_r) .
- **Esfuerzo Tangencial**: actúa alrededor de la circunferencia del hoyo (σ_{θ}) .
- **Esfuerzo Axial**: actúa paralelo a la dirección del hoyo (σ_z) .

MECÁNICA DE ROCAS

Curva Esfuerzo-Deformación Típica

PROBLEMAS ASOCIADOS A LA PERFORACIÓN DE LUTITAS

A) Embolamiento de la mecha

- Aumenta viajes de tuberías
- Aumenta número de mechas usadas

Disminuye ROP

PROBLEMAS ASOCIADOS A LA PERFORACIÓN DE LUTITAS

B) Desintegración de los Recortes

- Aumenta la Viscosidad del Fluido
- Taponamiento de Mallas
- Necesidad de Diluir Fluido

Disminuye ROP

PROBLEMAS ASOCIADOS A LA PERFORACIÓN DE LUTITAS

C) Inestabilidad de Hoyo

- Exceso de ripios
- Taponamiento de líneas
- Atascamiento de la sarta
- Torques, pegas, arrastres
- Side Track

Disminuye ROP

FACTORES FISICOQUÍMICOS EN LA ESTABILIDAD DE HOYO

Ósmosis

- Comportamento de membrana en arcillas.
- Superficie con carga neta positiva.
- Aumenta con la compactación.

Hinchamiento de Arcillas

- Hidratación de cationes intercalados.
- Arcillas 2:1 y con carga de capa baja.
- Depende del tipo de ión intercapa.

Intercambio Catiónico

- Sustitución de los iones intercapa.
- Orden de Preferencia.

 $Li^+ < Na^+ < K^+ < Cs^+ < Mg^{2+} < Ca^{2+} < Ba^{2+} < Al^{3+}$

- a.) Valencia
- b.) Grado de Hidratación

FUNDAMENTOS DE LA INVESTIGACIÓN

MARCO TEÓRICO

METODOLOGÍA

- Selección de las Muestras
- Caracterización de la Roca
- Interacción Roca-Fluido
- Ensayos Mecánicos
- Caracterización final

RESULTADOS Y ANÁLISIS

CONCLUSIONES Y RECOMENDACIONES

SELECCIÓN DE LAS MUESTRAS

Difracción de Rayos X (XRD)

- Lavado de la muestra.
- Disgregación y homogeneización.
- Soporte de Al.
- Envío de la muestra.

Microscopía Electrónica de Barrido (SEM)

- Lavado de la muestra.
- Partir muestra para formar superficies frescas.
- Soporte de Al.
- Cubierta de aleación de Au.
- Análisis EDX y toma de fotografías.

Capacidad de Intercambio Catiónico (CEC)

- Lavado de la muestra.
- Trituración y saturación con BaCl₂.H₂O.
- Agregar solución de MgSO₄.
- Titulación conductimétrica.

Arcilla Ba²⁺ + MgSO₄ \rightarrow Arcilla Mg²⁺ + BaSO₄

Termogravimetría (TGA)

- Lavado de la muestra.
- Montaje de 40g de la muestra en el equipo.
- Creación de atmósfera inerte (Ar).
- Aumento progresivo de la temperatura hasta 300 °C.
- Obtención de termogramas.

Área Superficial Específica

- Lavado de la muestra.
- Montaje de 50 mg de la muestra en la cápsula.
- Creación de vacío en el sistema.
- Aumento progresivo de N₂ en la cápsula.
- Disminución progresiva de la presión.
- Obtención de curvas de adsorción/desorción de N2.

Porosidad

- Lavado de la muestra.
- Montaje de 40g de la muestra en la cápsula.
- Creación de vacío en el sistema.
- Intrusión de Hg hasta 60000 psi.
- Obtención de curvas de Hg intrusado en los poros.

DETERMINACIÓN DE LAS CONCENTRACIONES DE KCI

Preparación de las Soluciones

- Soluciones de KCl de grado técnico (al 1%; 2%; 3%, ...).
- Atención a la necesidad de usar calor y agitación.
- Observar tendencia de datos de hinchamiento.

Prueba de Hinchamiento Lineal

- Pulverización de la muestra.
- Tamiz de 250 mesh.
- Moldes de acero.
- Prensa hasta 6000 psi (1 hora).
- Calibración del equipo.
- Observar tendencia de datos

INTERACCIÓN ROCA-FLUIDO

Interacción Lutita - Solución de KCl

- Presión atmosférica.
- Temperatura ambiente.
- 13 días de exposición.
- Concentraciones
 de KCl definidas
 en la prueba de
 Hinchamiento
 Lineal.

ENSAYOS MECÁNICOS

Preparación de las Muestras

- Los cilindos deberán tener una relación largo diámetro de al menos 2:1.
- Los lados de los tapones deberán estar libres de irregularidades abruptas.
- Las superficies planas de los tapones deberán ser lisas.
- Deberán ser almacenadas en aceite.

ENSAYOS MECÁNICOS

Ensayo de Compresión Uniaxial

- Instalación del sistema de carga y captura de datos.
- Aplicación de la carga hasta la ruptura de las muestras.
- Determinación de UCS
- Determinación de la deformabilidad de la roca (Módulo de Young & Módulo de Poisson)

- Difracción de Rayos X (XRD)
- Microscopía Electrónica de Barrido (SEM)
- Capacidad de Intercambio Catiónico (CEC)
- Análisis Termogravimétrico (TGA)
- Análisis Superficial
- Porosimetría de Mercurio

CONTENIDO

FUNDAMENTOS DE LA INVESTIGACIÓN

MARCO TEÓRICO

METODOLOGÍA

RESULTADOS Y ANÁLISIS

- Caracterización de la Roca
- Ensayos Mecánicos
- Caracterización final

CONCLUSIONES Y RECOMENDACIONES

Difracción de Rayos X (XRD)

% Másico

Cuarzo	1 14895' (4540m)	14904' (4543m)	14937' (4552m)
Ilita y Esmectita	432	² 34	3 8
Ilita	19 ⁸	18 ⁵	_6
Caolinita y Clorita	- 60 63	2 61 65	5 56 73

MilWeired ogd fægdæ Tortaillas

Análisis Termogravimétrico (TGA)

Capacidad de Intercambio Catiónico (CEC)

Área Superficial y Porosidad (BET)

Porosidad (Intrusión de Mercurio)

HINCHAMIENTO LINEAL

ENSAYOS MECÁNICOS

ENSAYOS MECÁNICOS

Análisis Termogravimétrico (TGA)

Capacidad de Intercambio Catiónico (CEC)

Porosidad (Intrusión de Mercurio)

CONTENIDO

FUNDAMENTOS DE LA INVESTIGACIÓN

MARCO TEÓRICO

METODOLOGÍA

RESULTADOS Y ANÁLISIS

CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES

RECOMENDACIONES

EFECTO FISICOQUÍMICO DE LOS FLUIDOS DE PERFORACIÓN BASE AGUA EN EL COMPORTAMIENTO MECÁNICO DE LAS ROCAS LUTÍTICAS

