

Universidad Central de Venezuela Facultad de Ingeniería Escuela de Geología, Minas y Geofísica Departamento de Minas

ANÁLISIS GEOMECÁNICO Y ESTABILIDAD DE LOS ESTRIBOS EN LA PRESA SOBRE EL RÍO CUIRA DEL SISTEMA TUY IV, EN EL SECTOR EL DINERO, MUNICIPIO ACEVEDO, ESTADO MIRANDA

Trabajo Especial de Grado presentado ante la Ilustre Universidad Central de Venezuela por el Bachiller: Vicente Johan Manuel Rico para optar por el Título de Ingeniero de Minas

Caracas, 2015

Universidad Central de Venezuela Facultad de Ingeniería Escuela de Geología, Minas y Geofísica Departamento de Minas

ANÁLISIS GEOMECÁNICO Y ESTABILIDAD DE LOS ESTRIBOS EN LA PRESA SOBRE EL RÍO CUIRA DEL SISTEMA TUY IV, EN EL SECTOR EL DINERO, MUNICIPIO ACEVEDO, ESTADO MIRANDA

Trabajo Especial de Grado presentado ante la Ilustre Universidad Central de Venezuela por el Bachiller: Vicente Johan Manuel Rico para optar por el Título de Ingeniero de Minas

Caracas, 2015

Los abajo firmantes del jurado designado por el Consejo de Escuela de Geología, Minas y Geofísica, para evaluar el Trabajo Especial de Grado presentado por el bachiller Vicente Johan Manuel Rico, titulado

ANÁLISIS GEOMECÁNICO Y ESTABILIDAD DE LOS ESTRIBOS EN LA PRESA SOBRE EL RÍO CUIRA DEL SISTEMA TUY IV, EN EL SECTOR EL DINERO, MUNICIPIO ACEVEDO, ESTADO MIRANDA

Consideran que el mismo cumple con los requisitos exigidos por el plan de estudios conducente al Título de Ingeniero Geólogo, y sin que ello signifique hacerse solidarios con las ideas expuestas por los Autores, lo declaran **APROBADO**.

> Prof: David Mendi Jurado

Prof: Pietro De Marco Jurado

Prof. Miguel Castillejo Tutor Académico

AGRADECIMIENTOS

A Dios A mis Padres A mi Familia A mi Guapa Al Profesor Castillejo A Anny Araque, Diego Marchán y Marino Morillo A mis Amigos y Allegados A Eje Consultores por la oportunidad

Vicente Johan Manuel Rico

ANÁLISIS GEOMECÁNICO Y ESTABILIDAD EN LOS ESTRIBOS EN LA PRESA SOBRE EL RÍO CUIRA DEL SISTEMA TUY IV, EN EL SECTOR EL DINERO, MUNICIPIO ACEVEDO, ESTADO MIRANDA

Tutor académico: Prof. Miguel Castillejo

Tesis. Caracas, Universidad Central de Venezuela, Facultad de Ingeniería. Escuela de Geología, Minas y Geofísica Departamento de Minas Año 2015, 321p.

Palabras clave: Geomecánica, Mecánica de Rocas, Rocas Competentes, Rocas Duras, Rocas Metaígneas, Rocas Metavolcánicas, Modelo Geomecánico, Elementos Finitos-Análisis, Talud, RMR, DMR, SMR, GSI, Presa, Río Cuira.

RESUMEN

Para la construcción de una obra hidráulica de envergadura como lo es la Presa sobre el Río Cuira, se necesita que el macizo cumpla con ciertos factores. Estos parámetros son importantes debido al empuje que ejercerá el agua tanto en la presa como en los estribos; por tal motivo es necesario que estos sean competentes. Debido a esto se realizaron diversos estudios de caracterización en la zona, al igual que una evaluación de cada uno de los taludes que conforman cada estribo de la presa, con la finalidad de conocer la calidad de cada uno de los macizos. Se llevaron a cabo los respectivos ensayos geomecánicos para definir los parámetros de resistencia y estabilidad, logrando caracterizar el macizo y conocer la existencia de algún tipo de inestabilidad en los taludes, para así tomar medidas de seguridad en caso de deslizamientos o caída de roca. Por otro lado, se clasificó el macizo y los distintos taludes para establecer patrones de referencia en función de la calidad de los mismos, de igual manera se analizaron las distintas deformaciones y esfuerzos que puede llegar a sufrir la masa rocosa en distintas etapas, tanto verticales como horizontales. Llegando a la conclusión de que los estribos están en la capacidad de soportar toda la carga que pueda llegar a ejercer la presa.

v

	AGR	ADECIM	IENTOS	IV
	RESU	JMEN		V
	ÍNDI	CE DE CO	ONTENIDO	VI
	ÍNDI	CE DE FI	GURAS	XI
	ÍNDI	CE DE GI	RÁFICOS	XXI
	ÍNDI	CE DE TA	ABLAS	xxv
1.	INTE	RODUCCI	IÓN	1
	1.1.	PLANTE	AMIENTO DEL PROBLEMA	2
	1.2.	OBJETI\	/OS DE LA INVESTIGACIÓN	2
		1.2.1.	Objetivo General	2
		1.2.2.	Objetivos Específicos	2
	1.3.	JUSTIFI	CACIÓN DE LA INVESTIGACIÓN	3
	1.4.	ALCANO	CE DE LA INVESTIGACIÓN	3
2.	MA	RCO TEÓ	RICO	5
	2.1.	ANTECE	EDENTES DE LA INVESTIGACIÓN	5
	2.2.	UBICAC	TÓN DE LA ZONA DE ESTUDIO	6
	2.3.	GEOLO	GÍA DE LA ZONA	8
		2.3.1.	Geología Regional	8
			2.3.1.1. Formación Las Hermanas	9
	2.4.	BASES 1	ΓΕÓRICAS	15
		2.4.1.	Macizo Rocoso	15
		2.4.2.	Esfuerzos, Tensiones y Deformaciones en las Rocas	
		2.4.3.	Descripcion de las discontinuidades	1/
			2.4.3.1. Unentation	10 18
			2 4 3 3 Continuidad	10
			2.4.3.4. Rugosidad	
			2.4.3.5. Resistencia de las paredes de la discontinuidad	20
			2.4.3.6. Abertura	20
			2.4.3.7. Relleno	21
			2.4.3.8. Filtraciones	21
		2.4.4.	Parámetros del macizo rocoso	
			2.4.4.1. Número de orientación de familias de discontinuidades	22

			2.4.4.2. Tamaño de bloque y grado de fracturación	22
			2.4.4.3 . Grado de meteorización	23
		2.4.5.	Proyección estereográfica	23
			2.4.5.1. Proyección en el plano ecuatorial	23
			2.4.5.2. Diagrama de densidad de polos	24
			2.4.5.3. Roseta de Diaclasas	25
		2.4.6.	Análisis Petrográfico	25
		2.4.7.	Dilatancia	25
		2.4.8.	Esfuerzo efectivo	26
			2.4.8.1. Resistencia máxima o resistencia pico	26
			2.4.8.2. Resistencia residual	26
		2.4.9.	Clasificación de Deere o Índice RQD	27
		2.4.10.	Clasificación de Barton	28
		2.4.11.	Clasificación Hoek (GSI)	29
		2.4.12.	Criterio de Barton y Choubey	30
		2.4.13.	Criterio de Mohr-Coulomb	31
		2.4.14.	Criterio de Hoek-Brown	33
		2.4.15.	Clasificación de Bieniawski	34
		2.4.16.	Clasificación de Romana aplicada a presas	36
		2.4.17.	Clasificación de Romana	37
		2.4.18.	Talud	39
		2.4.19.	Estabilidad de taludes	39
		2.4.20.	Factor de Seguridad	40
		2.4.21.	Tipo de falla	41
			2.4.16.1.Falla Plana	42
			2.4.16.2.Falla en Cuña	42
			2.4.16.3.Falla por Volcamiento	43
		2.4.22.	Ensayos geomecánicos	44
			2.4.17.1.Compresión Uniaxial	44
			2.4.17.2.Compresión Triaxial	45
			2.4.17.3.Ensayo de corte directo	46
		2.4.23.	RocData (Rocscience)	4/
		~	2.4.22.1.Criterios Fuerza: Generalizada Hoek-Brown	48
		2.4.24.	Modelo de Elementos Finitos	48
		2.4.25.	Estribo	49
			2.4.23.1.Estribo derecho	49
			2.4.23.2.Estribo izquierdo	49
3.	MAF	RCO MET	ODOLÓGICO	. 50
	3.1.	TIPO DE	INVESTIGACIÓN	50
	3.2.	DISEÑO	DE INVESTIGACIÓN	50
	3.3.	POBLAC	ΣΙÓΝ Υ MUESTRA	50

Análisis Geomecánico y Estabilidad de los Estribos en la Presa sobre El Río Cuira del Sistema Tuy IV en el Sector El Dinero, Municipio Acevedo, Estado Miranda vii

	3.4.	MEDIO	S, INSTRUMENTOS Y TÉCNICAS	51
	3.5.	METOD	OLOGÍA	52
		3.5.1.	Etapa I: Recopilación de información y Análisis de la información	52
			3.5.1.1. Recopilación de la información	52
			3.5.1.2. Análisis de la información recopilada	52
		3.5.2.	Etapa II: Recolección de muestra	52
			3.5.2.1. Selección de las muestras	53
			3.5.2.2. Obtención de datos estructurales	53
		3.5.3.	Etapa III: Trabajo de laboratorio y oficina	53
			3.5.3.1. Estudios Geomecánicos	54
			3.5.3.2. Estudio petrográfico	56
			3.5.3.3. Estudio de estabilidad de taludes	57
			3.5.3.4. Análisis de esfuerzos y deformaciones	57
4.	RESU	ULTADOS	S: ANÁLISIS Y DISCUSIÓN	58
	4.1.	PROPIE	DADES ÍNDICES	58
	4.2	ESTUDI	OS PETROGRÁFICOS	59
	4.3.	ENSAYC	DS GEOMECÁNICOS	60
		4.3.1.	Ensayos de Corte Directo	60
			4.3.1.1. Estribo Derecho	60
			4.3.1.2. Estribo Izquierdo	75
			4.3.1.3. Resultados de los Ensayos de Corte Directo	
		4.3.2.	Ensayos de Corte Directo en caras lisas	104
			4.3.2.1. Resultados de Ensayos	104
		4.3.2.	Ensayos Triaxial Estático	108
			4.3.2.1. Estribo Derecho	108
			4.3.2.2. Estribo Izquierdo	109
			4.3.2.3. Esfuerzos y deformaciones en función de la profundidad	111
		4.3.3.	Ensayos de Compresión Uniaxial	114
			4.3.3.1. Estribo Derecho	114
			4.3.3.2. Estribo Izquierdo	115
			4.3.3.3. Relación módulos de elasticidad vs resistencia a la compresió simple	ón 117
	4.4.	ANÁLIS	IS DE ESTABILIZACIÓN EN LOS TALUDES	119
		4.4.1.	Estribo Derecho	119
			4.4.1.1. Zona 1-R	119
			4.4.1.2. Zona 2-R	122
			4.4.1.3. Zona 3-R	130
			4.4.1.4. Zona 4-R	132
			4.4.1.5. Zona 5-R	138
			4.4.1.6. Zona 6-R	148

Análisis Geomecánico y Estabilidad de los Estribos en la Presa sobre El Río Cuira del Sistema Tuy IV en el Sector El Dinero, Municipio Acevedo, Estado Miranda viii Vicente Johan Manuel Rico

		4.4.1.7. Zona 7-R	153
		4.4.1.8. Zona 8-R	155
		4.4.1.9. Zona 9-R	158
		4.4.1.10.Zona 10-R	160
	4.4.2.	Estribo Izquierdo	166
		4.4.2.1. Zona 1-L	166
		4.4.2.2. Zona 2-L	174
		4.4.2.3. Zona 3-L	179
		4.4.2.4. Zona 4-L	182
		4.4.2.5. Zona 5-L	188
		4.4.2.6. Zona 6-L	198
		4.4.2.7. Zona 7-L	203
		4.4.2.8. Zona 8-L	211
		4.4.2.9. Zona 9-L	222
		4.4.2.10.Zona 10-L	227
		4.4.2.11.Zona 11-L	229
		4.4.2.12.Zona 12-L	237
		4.4.2.13.Zona 13-L	242
		4.4.2.14.Zona 14-L	245
		4.4.2.15.Zona 15-L	256
	4.4.3.	Análisis global de las discontinuidades en los estribos	258
		4.4.3.1. Estribo Derecho	258
		4.4.3.2. Estribo Izquierdo	260
		4.4.3.3. Resultados de las familias en los estribos	262
4.5.	CARACT	ERIZACIÓN GEOMECÁNICA DE LOS ESTRIBOS	264
	4.5.1.	Estribo Derecho	264
		4.5.1.1. Zona 1-R	264
		4.5.1.2. Zona 2-R	265
		4.5.1.3. Zona 3-R	267
		4.5.1.4. Zona 4-R	268
		4.5.1.5. Zona 7-R	269
		4.5.1.6. Zona 8-R	270
		4.5.1.7. Zona 9-R	271
		4.5.1.8. Zona 10-R	272
		4.5.1.9. Resultados estribo derecho	274
	4.5.2.	Estribo Izaujerdo	275
		4.5.2.1. Zona 1-I	275
		4.5.2.2. Zona 2-I	276
		4.5.2.3. Zona 3-L	277
		4.5.2.4. Zona 4-L	277
		4.5.2.5. Zona 5-L	279
		4.5.2.6. Zona 6-L	280
		4.5.2.7. Zona 7-L	282

		4.5.2.8. Zona 8-L	283
		4.5.2.9. Zona 9-L	285
		4.5.2.10.Zona 10-L	286
		4.5.2.11.Zona 12-L	287
		4.5.2.12.Zona 13-L	289
		4.5.2.13.Zona 14-L	290
		4.5.2.14.Zona 15-L	291
		4.5.2.16.Resultados estribo izquierdo	292
	4.5.3.	Clasificación de los estribos como fundación de la presa según el DMR	293
	4.5.4.	Modelo Geomecánico de los Estribos	295
		4.5.4.1. Estribo Derecho	295
		4.5.4.2. Estribo Izquierdo	296
	4.6. MODEL	O DE ELEMENTOS FINITOS	298
	4.6.1.	Etapa 1 (Macizo rocoso sin ningún tipo de carga)	299
	4.6.2.	Etapa 2 (vaciado de CCR 1 a la altura de 20 m)	302
	4.6.3.	Etapa 3 (vaciado de CCR 1 a la altura de 40 m)	305
	4.6.4.	Etapa 4 (vaciado de CCR 2 a la altura de 60 m)	308
	4.6.5.	Etapa 5 (vaciado de CCR 2 a la altura de 80 m)	311
	4.6.6.	Etapa 6 (vaciado de CCR 3 a la altura de 100 m)	314
	4.6.7.	Etapa 7 (vaciado completo de la presa a 122 m)	317
	4.6.8.	Resultados de las etapas del Modelo de Elementos Finitos	320
5.	CONCLUSION	NES	321
	5.1. CONCLU	JSIONES	321
	5.2. RECOM	ENDACIONES	323
6.	REFERENCIA	BIBLIOGRÁFICAS	324
7.	APÉNDICES.		331

ÍNDICE DE FIGURAS

Figura 1.	Ubicación de la zona de presa en el estado Miranda. (fuente propia)	6
Figura 2.	Ubicación Satelital de la zona de estudio (fuente propia)	6
Figura 3.	Zona de la presa sobre el río Cuira (fuente propia)	7
Figura 4.	Zona del estribo derecho de la presa sobre el río Cuira (fuente propia)	7
Figura 5.	Zona del estribo izquierdo de la presa sobre el río Cuira (fuente propia).	8
Figura 6.	Mapa Geológico Simplificado del Área Guatopo – El Guapo, Edos.	
	Miranda y Guárico. (Urbani, Chirinos , & Marquina, 1990)	8
Figura 7.	Mapa Geológico de la zona de presa, en El Dinero (Cortiula , 1983) &	
	(Perez D'Gregorio, 1986)1	4
Figura 8.	Representación simbólica y estadística del efecto escala en un macizo	
	rocoso (Castillejo, 1993)1	5
Figura 9.	Diferentes estados de tensiones aplicados a muestras de Laboratorio	
	(Gonzales de Vallejo, 2002)1	7
Figura 10.	Representación esquemática de las propiedades geométricas de las	
	discontinuidades (Gonzales de Vallejo, 2002)1	8
Figura 11.	Medida de la orientación de discontinuidades (Gonzales de Vallejo,	
	2002) 1	8
Figura 12.	Medida del espaciado en una cara expuesta del afloramiento (Gonzales	
	de Vallejo, 2002) 1	9
Figura 13.	Modelos de discontinuidades (Gonzales de Vallejo, 2002)1	9
Figura 14.	Ondulación y rugosidad de una superficie de discontinuidad (Gonzales d	e
	Vallejo, 2002) 2	0
Figura 15.	Distintas aperturas de una discontinuidad (Brown, 1981) 2	0
Figura 16.	Diferentes tipos de relleno en discontinuidades (Brown, 1981) 2	1
Figura 17.	Representación de distintas familias de discontinuidades (Gonzales de	
	Vallejo, 2002) 2	2
Figura 18.	Distintos tipos de tamaños y formas de bloques (Brown, 1981) 2	2
Figura 19.	Representación de un plano inclinado (Tomas et al, 2002) 2	3
Figura 20.	Representación en una falsilla de Schmidt (Brown, 1981) 2	4
Figura 21.	Representación de varias discontinuidades en un roseta (Brown, 1981)2	5
Figura 22.	Representación de la dilatancia (Ramirez, 1980) 2	6
Figura 23.	Resistencia pico y residual (Suarez J. , 1998) 2	7
Figura 24.	Clasificación del Índice RQD (Gonzales de Vallejo, 2002) 2	7
Figura 25.	Representación gráfica de la medición y cálculo del índice RQD (Gonzale	S
	de Vallejo, 2002) 2	8
Figura 26.	Clasificación GSI (Belandria & Borgiorno, 2012)2	9

Figura 27.	Perfiles de rugosidad JRC (Kliche, 1999)
Figura 28.	Rugosidad entre bloques (Kliche, 1999)
Figura 29.	a) Representación de los esfuerzos cortante y normal de una
	discontinuidad. b) Grafica entre el esfuerzo cortante y el desplazamiento
	horizontal (Zagoya, 2004)
Figura 30.	Diferentes envolventes de Mohr-Coulomb (Gonzales de Vallejo, 2002) 33
Figura 31.	Envolventes de rotura del criterio de Hoek y Brown (Gonzales de Vallejo,
	2002)
Figura 32.	Nomenclatura de Taludes y Laderas (Suarez J. , 1998)
Figura 33.	Fuerzas actuando sobre una superficie de rotura en un talud (Ochoa &
	Reyes, 2011) 41
Figura 34.	Tipos de fallas planas (Melentijevic, 2005) 42
Figura 35.	Tipos de fallas en cuña (Melentijevic, 2005)
Figura 36.	Tipos de fallas por volcamiento (Melentijevic, 2005)
Figura 37.	Ensayo de compresión uniaxial (Castillejo, 1993)
Figura 38.	Variación de la resistencia a la compresión uniaxial en función de la
	relación L/D (Castillejo, 1993) 45
Figura 39.	Ensayo de compresión triaxial (Castillejo, 1993)
Figura 40.	Esquema del aparato de Corte Directo (Kliche, 1999)
Figura 41.	Gráfico en función del esfuerzo normal (Espinace, 1979)
Figura 42.	Modelo de elementos finitos aplicado a un estudio de taludes
	(Rocscience, 2013) 49
Figura 43.	Ubicación de los estribos en una presa (Suarez J. , 1998)
Figura 44.	Pulidora GCTS RSG-200 (GCTS, 2015) 55
Figura 45.	Equipo GCTS RDS-500 (GCTS, 2015)
Figura 46.	Estudio de falla plana en zona 1-R120
Figura 47.	Concentración de polos y familias en zona 1-R 120
Figura 48.	Estudio de falla en cuña en zona 1-R121
Figura 49.	Roseta de orientaciones de la zona 1-R 121
Figura 50.	Estudio de falla plana en zona 2-R123
Figura 51.	Concentración de polos y familias en zona 2-R 123
Figura 52.	Estudio de falla en cuña en zona 2-R124
Figura 53.	Roseta de orientaciones de la zona 2-R 124
Figura 54.	Configuración del talud y resultados del análisis mecánico de la falla
	plana de la zona 2-R 125
Figura 55.	Vista en 3D de la configuración de la falla plana 1 de la zona 2-R 125
Figura 56.	Vista de perfil de la configuración de la falla en cuña 1 de la zona 2-R 127
Figura 57.	Vista en 3D de la configuración de la falla en cuña 1 de la zona 2-R 128

Figura 58.	Estudio de falla plana en zona 3-R 130
Figura 59.	Concentración de polos y familias en zona 3-R
Figura 60.	Estudio de falla en cuña en zona 3-R131
Figura 61.	Roseta de orientaciones de la zona 3-R 132
Figura 62.	Estudio de falla plana en zona 4-R133
Figura 63.	Concentración de polos y familias en zona 4-R 133
Figura 64.	Estudio de falla en cuña en zona 4-R134
Figura 65.	Roseta de orientaciones de la zona 4-R 134
Figura 66.	Configuración del talud y resultados del análisis mecánico de la falla
	plana de la zona 4-R135
Figura 67.	Vista en 3D de la configuración de la falla plana 1 de la zona 4-R 135
Figura 68.	Estudio de falla plana en zona 5-R138
Figura 69.	Concentración de polos y familias en zona 5-R
Figura 70.	Estudio de falla en cuña en zona 5-R139
Figura 71.	Roseta de orientaciones de la zona 5-R140
Figura 72.	Configuración del talud y resultados del análisis mecánico de la falla
	plana 1 de la zona 5-R 140
Figura 73.	Vista en 3D de la configuración de la falla plana 1 de la zona 5-R 141
Figura 74.	Configuración del talud y resultados del análisis mecánico de la falla
	plana 2 de la zona 5-R 143
Figura 75.	Vista en 3D de la configuración de la falla plana 2 de la zona 5-R 143
Figura 76.	Configuración del talud y resultados del análisis mecánico de la falla
	plana 3 de la zona 5- R 145
Figura 77.	Vista en 3D de la configuración de la falla plana 3 de la zona 5-R 146
Figura 78.	Concentración de polos y familias en zona 6-R 148
Figura 79.	Estudio de falla plana en zona 6-R149
Figura 80.	Estudio de falla en cuña en zona 6-R149
Figura 81.	Roseta de orientaciones de la zona 6-R 150
Figura 82.	Configuración del talud y resultados del análisis mecánico de la falla
	plana 1 de la zona 6-R 150
Figura 83.	Vista en 3D de la configuración de la falla plana 1 de la zona 6-R 151
Figura 84.	Estudio de falla plana en zona 7-R153
Figura 85.	Concentración de polos y familias en zona 7-R 154
Figura 86.	Estudio de falla en cuña en zona 7-R154
Figura 87.	Roseta de orientaciones de la zona 7-R 155
Figura 88.	Estudio de falla plana en zona 8-R156
Figura 89.	Concentración de polos y familias en zona 8-R
Figura 90.	Estudio de falla en cuña en zona 8-R157

Figura 91.	Roseta de orientaciones de la zona 8-R 157
Figura 92.	Estudio de falla plana en zona 9-R 158
Figura 93.	Concentración de polos y familias en zona 9-R 159
Figura 94.	Estudio de falla en cuña en zona 9-R 159
Figura 95.	Roseta de orientaciones de la zona 9-R 160
Figura 96.	Estudio de falla plana en zona 10-R 161
Figura 97.	Concentración de polos y familias en zona 10-R 161
Figura 98.	Estudio de falla en cuña en zona 10-R 162
Figura 99.	Roseta de orientaciones de la zona 10-R 162
Figura 100.	Configuración del talud y resultados del análisis mecánico de falla plana
	1 de la zona 10-R 163
Figura 101.	Vista en 3D de la configuración de la falla plana 1 de la zona 10-R 163
Figura 102.	Estudio de falla plana en zona 1-L 166
Figura 103.	Concentración de polos y familias en la zona 1-L 167
Figura 104.	Estudio de falla en cuña en zona 1-L 167
Figura 105.	Roseta de orientaciones de la zona 1-L 168
Figura 106.	Configuración del talud y resultados del análisis mecánico de falla plana
	1 de la zona 1 -L 168
Figura 107.	Vista en 3D de la configuración de la falla plana 1 de la zona 1-L 169
Figura 108.	Configuración del talud y resultados del análisis mecánico de falla plana
	2 de la zona 1 - L 171
Figura 109.	Vista en 3D de la configuración de la falla plana 2 de la zona 1-L 171
Figura 110.	Estudio de falla plana en zona 2-L 174
Figura 111.	Concentración de polos y familias en la zona 2-L 175
Figura 112.	Estudio de falla en cuña en zona 2-L 175
Figura 113.	Roseta de orientaciones de la zona 2-L 176
Figura 114.	Configuración del talud y resultados del análisis mecánico de falla plana
	1 de la zona 2 - L 176
Figura 115.	Vista en 3D de la configuración de la falla plana 1 de la zona 2-L 177
Figura 116.	Estudio de falla plana en zona 3-L 179
Figura 117.	Concentración de polos y familias en la zona 3-L 180
Figura 118.	Estudio de falla en cuña en zona 3-L 180
Figura 119.	Roseta de orientaciones de la zona 3-L 181
Figura 120.	Estudio de falla plana en zona 4-L 183
Figura 121.	Concentración de polos y familias en la zona 4-L 183
Figura 122.	Estudio de falla en cuña en zona 4-L 184
Figura 123.	Roseta de orientaciones de la zona 4-L 184

Figura 124.	Configuración del talud y resultados del análisis mecánico de falla plana
	1 de la zona 4 - L 185
Figura 125.	Vista en 3D de la configuración de la falla plana 1 de la zona 4-L 185
Figura 126.	Estudio de falla plana en zona 5-L 188
Figura 127.	Concentración de polos y familias en la zona 5-L 189
Figura 128.	Estudio de falla en cuña en zona 5-L 189
Figura 129.	Roseta de orientaciones de la zona 5-L 190
Figura 130.	Configuración del talud y resultados del análisis mecánico de falla plana
	1 de la zona 5 - L 190
Figura 131.	Vista en 3D de la configuración de la falla plana 1 de la zona 5-L 191
Figura 132.	Configuración del talud y resultados del análisis mecánico de falla plana
	2 de la zona 5 - L 193
Figura 133.	Vista en 3D de la configuración de la falla plana 2 de la zona 5-L 193
Figura 134.	Vista de perfil de la configuración de la falla en cuña 1 de la zona 5-L 195
Figura 135.	Vista en 3D de la configuración de la falla en cuña 1 de la zona 5-L 196
Figura 136.	Estudio de falla plana en zona 6-L 198
Figura 137.	Concentración de polos y familias en la zona 6-L 199
Figura 138.	Estudio de falla en cuña en zona 6-L 199
Figura 139.	Roseta de orientaciones de la zona 6-L 200
Figura 140.	Configuración del talud y resultados del análisis mecánico de falla plana
	1 de la zona 6 - L 200
Figura 141.	Vista en 3D de la configuración de la falla plana 1 de la zona 6-L 201
Figura 142.	Estudio de falla plana en zona 7-L 203
Figura 143.	Concentración de polos y familias en la zona 7-L 204
Figura 144.	Estudio de falla en cuña en zona 7-L 204
Figura 145.	Roseta de orientaciones de la zona 7-L 205
Figura 146.	Configuración del talud y resultados del análisis mecánico de falla plana
	1 de la zona 7 - L 205
Figura 147.	Vista en 3D de la configuración de la falla plana 1 de la zona 7-L 206
Figura 148.	Vista de perfil de la configuración de la falla en cuña 1 de la zona 7-L 208
Figura 149.	Vista en 3D de la configuración de la falla en cuña 1 de la zona 7-L 208
Figura 150.	Estudio de falla plana en zona 8-L 212
Figura 151.	Concentración de polos y familias en la zona 8-L
Figura 152.	Estudio de falla en cuña en zona 8-L 213
Figura 153.	Roseta de orientaciones de la zona 8-L 213
Figura 154.	Vista de perfil de la configuración de la falla en cuña 1 de la zona 8-L 214
Figura 155.	Vista en 3D de la configuración de la falla en cuña 1 de la zona 8-L 214
Figura 156.	Vista de perfil de la configuración de la falla en cuña 2 de la zona 8-L 216

Figura 157.	Vista en 3D de la configuración de la falla en cuña 2 de la zona 8-L 217
Figura 158.	Vista de perfil de la configuración de la falla en cuña 3 de la zona 8-L 219
Figura 159.	Vista en 3D de la configuración de la falla en cuña 3 de la zona 8-L 219
Figura 160.	Estudio de falla plana en zona 9-L 222
Figura 161.	Concentración de polos y familias en la zona 9-L 223
Figura 162.	Estudio de falla en cuña en zona 9-L 223
Figura 163.	Roseta de orientaciones de la zona 9-L 224
Figura 164.	Configuración del talud y resultados del análisis mecánico de falla plana
	1 de la zona 9 - L 224
Figura 165.	Vista en 3D de la configuración de la falla plana 1 de la zona 9-L 225
Figura 166.	Estudio de falla plana en zona 10-L 227
Figura 167.	Concentración de polos y familias en la zona 10-L 228
Figura 168.	Estudio de falla en cuña en zona 10-L 228
Figura 169.	Roseta de orientaciones de la zona 10-L 229
Figura 170.	Estudio de falla plana en zona 11-L 229
Figura 171.	Concentración de polos y familias en la zona 11-L 230
Figura 172.	Estudio de falla en cuña en zona 11-L 230
Figura 173.	Roseta de orientaciones de la zona 11-L 231
Figura 174.	Configuración del talud y resultados del análisis mecánico de falla plana
	1 de la zona 11-L 231
Figura 175.	Vista en 3D de la configuración de la falla plana 1 de la zona 11-L 232
Figura 176.	Vista de perfil de la configuración de la falla en cuña 1 de la zona 11-
	L
Figura 177.	Vista en 3D de la configuración de la falla en cuña 1 de la zona 11-L 234
Figura 178.	Estudio de falla plana en zona 12-L 237
Figura 179.	Concentración de polos y familias en la zona 12-L 238
Figura 180.	Estudio de falla en cuña en zona 12-L 238
Figura 181.	Roseta de orientaciones de la zona 12-L 239
Figura 182.	Configuración del talud y resultados del análisis mecánico de falla plana
	1 de la zona 12-L 239
Figura 183.	Vista en 3D de la configuración de la falla plana 1 de la zona 12-L 240
Figura 184.	Estudio de falla plana en zona 13-L 242
Figura 185.	Concentración de polos y familias en la zona 13-L 243
Figura 186.	Estudio de falla en cuña en zona 13-L 243
Figura 187.	Roseta de orientaciones de la zona 13-L 244
Figura 188.	Estudio de falla plana en zona 14-L 246
Figura 189.	Concentración de polos y familias en la zona 14-L 246
Figura 190.	Estudio de falla en cuña en zona 14-L 247

Figura 191.	Roseta de orientaciones de la zona 14-L 247
Figura 192.	Vista de perfil de la configuración de la falla en cuña 1 de la zona 14-
Figura 193.	Vista en 3D de la configuración de la falla en cuña 1 de la zona 14-L 248
Figura 194.	Vista de perfil de la configuración de la falla en cuña 2 de la zona 14-
Figura 195.	Vista en 3D de la configuración de la falla en cuña 2 de la zona 14-L 251
Figura 196.	Vista de perfil de la configuración de la falla en cuña 3 de la zona 14-
	L
Figura 197.	Vista en 3D de la configuración de la falla en cuña 3 de la zona 14-L 253
Figura 198.	Estudio de falla plana en zona 15-L 256
Figura 199.	Concentración de polos y familias en la zona 15-L
Figura 200.	Estudio de falla en cuña en zona 15-L 257
Figura 201.	Roseta de orientaciones de la zona 15-L 258
Figura 202.	Concentración de polos y familias del estribo derecho
Figura 203.	Planos de las familias y del estribo derecho
Figura 204.	Roseta de orientaciones del estribo derecho
- Figura 205.	Concentración de polos y familias del estribo izquierdo
Figura 206.	Planos de las familias y del estribo izquierdo
Figura 207.	Roseta de orientaciones del estribo izquierdo
Figura 208.	Representación de las familias y la dirección del eje de presa (N20W) del
	estribo derecho
Figura 209.	Representación de las familias y la dirección del eje de presa (N70E) del
	estribo izquierdo
Figura 210.	Perfil del eje de presa y representación de los buzamientos de las
	familias más vulnerables en los estribos (vista desde aguas ARRIBA) 263
Figura 211.	Talud de la zona 1-R (fuente propia) 264
Figura 212.	Talud de la zona 2-R (fuente propia) 265
Figura 213.	Talud de la zona 3-R (fuente propia) 267
Figura 214.	Talud de la zona 4-R (fuente propia) 268
Figura 215.	Talud de la zona 7-R (fuente propia) 269
Figura 216.	Talud de la zona 8-R (fuente propia) 270
Figura 217.	Talud de la zona 9-R (fuente propia) 271
Figura 218.	Talud de la zona 10-R (fuente propia) 272
Figura 219.	Talud de la zona 4-L (fuente propia) 277
Figura 220.	Talud de la zona 5-L (fuente propia) 279
Figura 221.	Talud de la zona 6-L (fuente propia) 280
Figura 222.	Talud de la zona 7-L (fuente propia) 282

Figura 223.	Talud de la zona 8-L (fuente propia) 28	33
Figura 224.	Talud de la zona 9-L (fuente propia) 28	35
Figura 225.	Talud de la zona 10-L (fuente propia) 28	36
Figura 226.	Talud de la zona 12-L (fuente propia) 28	37
Figura 227.	Talud de la zona 13-L (fuente propia) 28	39
Figura 228.	Perfil estudiado de la presa con los distintos tipos de materiales (Vista	
	desde aguas arribas) 29	98
Figura 229.	Representación de la etapa 1 29	9 9
Figura 230.	Representación del mallado en la etapa 1 29	9 9
Figura 231.	Representación de la direcciones en los esfuerzos en la etapa 1 29	99
Figura 232.	Esfuerzos verticales en la etapa 1 30	00
Figura 233.	Esfuerzos horizontales en la etapa 1 30	00
Figura 234.	Deformaciones horizontales en la etapa 1	00
Figura 235.	Deformaciones verticales en la etapa 1 30	01
Figura 236.	Deformaciones totales en la etapa 1)1
Figura 237.	Deformaciones a escala en la etapa 1 30)1
Figura 238.	Representación de la etapa 2 30)2
Figura 239.	Representación del mallado en la etapa 2 30)2
Figura 240.	Representación de la direcciones de los esfuerzos en la etapa 2 30)2
Figura 241.	Esfuerzos verticales en la etapa 2 30)3
Figura 242.	Esfuerzos horizontales en la etapa 2 30)3
Figura 243.	Deformaciones horizontales en la etapa 2 30)3
Figura 244.	Deformaciones verticales en la etapa 2)4
Figura 245.	Deformaciones totales en la etapa 2 30)4
Figura 246.	Deformaciones a escala en la etapa 2 30)4
Figura 247.	Representación de la etapa 3 30)5
Figura 248.	Representación del mallado en la etapa 3 30)5
Figura 249.	Representación de la direcciones de los esfuerzos en la etapa 3 30)5
Figura 250.	Esfuerzos verticales en la etapa 3 30	26
Figura 251.	Esfuerzos horizontales de la etapa 3 30	06
Figura 252.	Deformaciones horizontales de la etapa 3 30	06
Figura 253.	Deformaciones verticales de la etapa 3)7
Figura 254.	Deformaciones totales de la etapa 3)7
Figura 255.	Deformaciones a escala de la etapa 3 30)7
Figura 256.	Representación de la etapa 4 30	30
Figura 257.	Representación del mallado en la etapa 4 30	38
Figura 258.	Representación de la direcciones de los esfuerzos en la etapa 4 30	30
Figura 259.	Esfuerzos verticales en la etapa 4)9

Figura 260.	Esfuerzos horizontales de la etapa 4 309)
Figura 261.	Deformaciones horizontales de la etapa 4 309)
Figura 262.	Deformaciones verticales de la etapa 4 310)
Figura 263.	Deformaciones totales de la etapa 4 310)
Figura 264.	Deformaciones a escala de la etapa 4 310)
Figura 265.	Representación de la etapa 5 311	L
Figura 266.	Representación del mallado en la etapa 5 311	L
Figura 267.	Representación de la direcciones de los esfuerzos en la etapa 5 311	Ł
Figura 268.	Esfuerzos verticales en la etapa 5 312	2
Figura 269.	Esfuerzos horizontales de la etapa 5 312	2
Figura 270.	Deformaciones horizontales de la etapa 5	2
Figura 271.	Deformaciones verticales de la etapa 5	3
Figura 272.	Deformaciones totales de la etapa 5	3
Figura 273.	Deformaciones a escala de la etapa 5 313	3
Figura 274.	Representación de la etapa 6 314	ţ
Figura 275.	Representación del mallado en la etapa 6 314	ţ
Figura 276.	Representación de la direcciones de los esfuerzos en la etapa 6 314	ţ
Figura 277.	Esfuerzos verticales en la etapa 6 315	5
Figura 278.	Esfuerzos horizontales de la etapa 6 315	5
Figura 279.	Deformaciones horizontales de la etapa 6 315	5
Figura 280.	Deformaciones verticales de la etapa 6	5
Figura 281.	Deformaciones totales de la etapa 6	5
Figura 282.	Deformaciones a escala de la etapa 6 316	5
Figura 283.	Representación de la etapa 7 317	7
Figura 284.	Representación del mallado en la etapa 7 317	7
Figura 285.	Representación de la direcciones de los esfuerzos en la etapa 7 317	7
Figura 286.	Esfuerzos verticales en la etapa 7 318	3
Figura 287.	Esfuerzos horizontales de la etapa 7 318	3
Figura 288.	Deformaciones horizontales de la etapa 7 318	3
Figura 289.	Deformaciones verticales de la etapa 7)
Figura 290.	Deformaciones totales de la etapa 7)
Figura 291.	Deformaciones a escala de la etapa 7 319)
Figura 292.	Clasificación según el JRC (Barton & Bandis, 1990)	Ĺ
Figura 296.	Clasificación de la roca según su módulo de elasticidad (Attewell &	
	Farmer , 1976)	3
Figura 297.	Clasificaciones según su resistencia a la compresión simple (Gonzales de	
	Vallejo, 2002)	3
Figura 298.	Disposición de orientaciones (Gonzales de Vallejo, 2002)	3

Figura 299.	Soportes Sugeridos para clases de SRM (Singh & Goel, 1999) 3	34
Figura 300.	Efectos de relaciones entre módulos (Rocha, 1975) 3	34
Figura 301.	Recomendaciones orientativas para las inyecciones de consolidación	
	(Romana M. , 2003a) 3	34
Figura 302.	Problemas de deformabilidad según el DMR (Romana M., 2003b) 3	35

ÍNDICE DE GRÁFICOS

Gráfico 1	Esquema metodológico general	52
Gráfico 2.	Ajuste geomecánico del ensayo 806 (valores picos)	60
Gráfico 3.	Ajuste geomecánico del ensayo 806 (valores residuales)	61
Gráfico 4.	Ajuste geomecánico del ensayo 810 (valores picos)	61
Gráfico 5.	Ajuste geomecánico del ensayo 810 (valores residuales)	62
Gráfico 6.	Ajuste geomecánico del ensayo 81 (valores pico)	62
Gráfico 7.	Ajuste geomecánico del ensayo 812 (valores residuales)	63
Gráfico 8.	Ajuste geomecánico del ensayo 813 (valores pico)	63
Gráfico 9.	Ajuste geomecánico del ensayo 813 (valores residuales)	64
Gráfico 10.	Ajuste geomecánico del ensayo 814-1 (valores pico)	64
Gráfico 11.	Ajuste geomecánico del ensayo 814-1 (valores residuales)	65
Gráfico 12.	Ajuste geomecánico del ensayo 814-2 (valores pico)	65
Gráfico 13.	Ajuste geomecánico del ensayo 814-2 (valores residuales)	66
Gráfico 14.	Ajuste geomecánico del ensayo 814-3 (valores pico)	66
Gráfico 15.	Ajuste geomecánico del ensayo 814-3 (valores residuales)	67
Gráfico 16.	Ajuste geomecánico del ensayo 817 (valores pico)	67
Gráfico 17.	Ajuste geomecánico del ensayo 817 (valores residuales)	68
Gráfico 18.	Ajuste geomecánico del ensayo 829 (valores pico)	69
Gráfico 19.	Ajuste geomecánico del ensayo 829 (valores residuales)	69
Gráfico 20.	Ajuste geomecánico del ensayo 831 (valores pico)	70
Gráfico 21.	Ajuste geomecánico del ensayo 831 (valores residuales)	71
Gráfico 22.	Ajuste geomecánico del ensayo 832-1 (valores pico)	72
Gráfico 23.	Ajuste geomecánico del ensayo 832-1 (valores residuales)	72
Gráfico 24.	Ajuste geomecánico del ensayo 832-2 (valores pico)	73
Gráfico 25.	Ajuste geomecánico del ensayo 832-2 (valores residuales)	73
Gráfico 26.	Ajuste geomecánico del ensayo 834-1 (valores pico)	74
Gráfico 27.	Ajuste geomecánico del ensayo 834-1 (valores residuales)	74
Gráfico 28.	Ajuste geomecánico del ensayo 795 (valores pico)	75
Gráfico 29.	Ajuste geomecánico del ensayo 795 (valores residuales)	75
Gráfico 30.	Ajuste geomecánico del ensayo 796 (valores pico)	76
Gráfico 31.	Ajuste geomecánico del ensayo 796 (valores residuales)	76
Gráfico 32.	Ajuste geomecánico del ensayo 801 (valores pico)	77
Gráfico 33.	Ajuste geomecánico del ensayo 801 (valores residuales)	77
Gráfico 34.	Ajuste geomecánico del ensayo 802 (valores pico)	78
Gráfico 35.	Ajuste geomecánico del ensayo 802 (valores residuales)	78
Gráfico 36.	Ajuste geomecánico del ensayo 804 (valores pico)	79

Gráfico 37.	Ajuste geomecánico del ensayo 804 (valores residuales)
Gráfico 38.	Ajuste geomecánico del ensayo 805 (valores pico)
Gráfico 39.	Ajuste geomecánico del ensayo 805 (valores residuales)
Gráfico 40.	Ajuste geomecánico del ensayo 808 (valores pico)
Gráfico 41.	Ajuste geomecánico del ensayo 808 (valores residuales)
Gráfico 42.	Ajuste geomecánico del ensayo 816 (valores pico)
Gráfico 43.	Ajuste geomecánico del ensayo 816 (valores residuales)
Gráfico 44.	Ajuste geomecánico del ensayo 828-2 (valores pico)
Gráfico 45.	Ajuste geomecánico del ensayo 828-2 (valores residuales)
Gráfico 46.	Ajuste geomecánico del ensayo 830 (valores pico)
Gráfico 47.	Ajuste geomecánico del ensayo 830 (valores residuales)
Gráfico 48.	Ajuste geomecánico del ensayo 833-1 (valores pico)
Gráfico 49.	Ajuste geomecánico del ensayo 833-1 (valores residuales)
Gráfico 50.	Ajuste geomecánico del ensayo 1011 (valores pico)
Gráfico 51.	Ajuste geomecánico del ensayo 1011 (valores residuales)
Gráfico 52.	Ajuste geomecánico del ensayo 1013 (valores pico)
Gráfico 53.	Ajuste geomecánico del ensayo 1013 (valores residuales)
Gráfico 54.	Ajuste geomecánico del ensayo 1014 (valores pico)
Gráfico 55.	Ajuste geomecánico del ensayo 1014 (valores residuales)
Gráfico 56.	Ajuste geomecánico del ensayo 1015 (valores pico)
Gráfico 57.	Ajuste geomecánico del ensayo 1015 (valores residuales)
Gráfico 58.	Ajuste geomecánico del ensayo 1016 (valores pico)
Gráfico 59.	Ajuste geomecánico del ensayo 1016 (valores residuales)
Gráfico 60.	Ajuste geomecánico del ensayo 1042 (valores pico)
Gráfico 61.	Ajuste geomecánico del ensayo 1042 (valores residuales)
Gráfico 62.	Ajuste geomecánico del ensayo 1049 (valores pico)
Gráfico 63.	Ajuste geomecánico del ensayo 1049 (valores residuales)
Gráfico 64.	Ajuste geomecánico del ensayo 1050 (valores pico)
Gráfico 65.	Ajuste geomecánico del ensayo 1050 (valores residuales)
Gráfico 66.	Valores del JRC según su perfil de rugosidad, Estribo Derecho
Gráfico 67.	Valores del JRC según su perfil de rugosidad, Estribo Izquierdo
Gráfico 68.	Ajuste geomecánico global del Estribo Derecho (valores pico)
Gráfico 69.	Ajuste geomecánico global del Estribo Derecho (valores residuales) 100
Gráfico 70.	Ajuste geomecánico global del Estribo Izquierdo (valores pico) 101
Gráfico 71.	Ajuste geomecánico global del Estribo Izquierdo (valores residuales). 102
Gráfico 72.	Ajuste geomecánico global del Estribo Derecho caras lisas (valores
	pico) 104

Gráfico 73.	Ajuste geomecánico global del Estribo Derecho caras lisas (valores residuales)
Gráfico 74.	Ajuste geomecánico global del Estribo Izquierdo caras lisas (valores
	pico)
Gráfico 75.	Ajuste geomecánico global del Estribo Izquierdo caras lisas (valores
	residuales) 107
Gráfico 76.	Ajuste geomecánico de los ensayos triaxiales del Estribo Derecho 108
Gráfico 77.	Curvas esfuerzo vs deformación globales del Estribo Derecho 109
Gráfico 78.	Ajuste geomecánico de los ensayos triaxiales del Estribo Izquierdo 110
Gráfico 79.	Curvas esfuerzo vs deformación globales del Estribo Izquierdo 110
Gráfico 80.	Profundidad vs Esfuerzo efectivo global 111
Gráfico 81.	Profundidad vs deformación axial global 112
Gráfico 82.	Representación gráfica de los esfuerzos del estribo derecho 114
Gráfico 83.	Curvas Esfuerzos vs Deformación del estribo derecho 115
Gráfico 84.	Representación gráfica de los esfuerzos del estribo izquierdo 116
Gráfico 85.	Curvas Esfuerzos vs Deformación del estribo izquierdo116
Gráfico 86.	Clasificación de (Deer & Miller, 1966) según la relación entre el módulo
	de elasticidad tangente al 50% y la resistencia uniaxial 117
Gráfico 87.	Determinación de la zona límite de la falla plana 1 en la zona 2-R 127
Gráfico 88.	Determinación de la zona límite de la falla en cuña 1 en la zona 2-R 129
Gráfico 89.	Determinación de la zona límite de la falla plana 1 en la zona 4-R 137
Gráfico 90.	Determinación de la zona límite de la falla plana 1 en la zona 5-R 142
Gráfico 91.	Determinación de la zona límite de la falla plana 2 en la zona 5-R 145
Gráfico 92.	Determinación de la zona límite de la falla plana 3 en la zona 5-R 147
Gráfico 93.	Determinación de la zona límite de la falla plana 1 en la zona 6-R 152
Gráfico 94.	Determinación de la zona límite de la falla plana 1 en la zona 10-R 165
Gráfico 95.	Determinación de la zona límite de la falla plana 1 en la zona 10-R 170
Gráfico 96.	Determinación de la zona límite de la falla plana 1 en la zona 1-L 173
Gráfico 97.	Determinación de la zona límite de la falla plana 1 en la zona 2-L 178
Gráfico 98.	Determinación de la zona límite de la falla plana 1 en la zona 4-L 187
Gráfico 99.	Determinación de la zona límite de la falla plana 1 en la zona 5-L 192
Gráfico 100.	Determinación de la zona límite de la falla plana 2 en la zona 5-L 195
Gráfico 101.	Determinación de la zona límite de la falla en cuña 1 en la zona 5-L 197
Gráfico 102.	Determinación de la zona límite de la falla plana 1 en la zona 6-L 202
Gráfico 103.	Determinación de la zona límite de la falla plana 1 en la zona 7-L 207
Gráfico 104.	Determinación de la zona límite de la falla en cuña 1 en la zona 7-L 210
Gráfico 105.	Determinación de la zona límite de la falla en cuña 2 en la zona 8-L 216
Gráfico 106.	Determinación de la zona límite de la falla en cuña 2 en la zona 8-L 218

Determinación de la zona límite de la falla en cuña 3 en la zona 8-L 221
Determinación de la zona límite de la falla plana 1 en la zona 9-L 226
Determinación de la zona límite de la falla plana 1 en la zona 11-L 233
Determinación de la zona límite de la falla en cuña 1 en la zona 8-L 236
Determinación de la zona límite de la falla plana 1 en la zona 12-L 241
Determinación de la zona límite de la falla en cuña 1 en la zona 14-L . 250
Determinación de la zona límite de la falla en cuña 2 en la zona 14-L . 252
Determinación de la zona límite de la falla en cuña 3 en la zona 14-L . 255
Ajuste Geomecánico del estribo derecho 296
Ajuste geomecánico del estribo izquierdo 297
Ábaco para determinar el JRC (Barton & Bandis, 1990) 331
Clasificación de Deer & Miller (Attewell & Farmer , 1976) 332
Tipo de comportamiento de la roca según su tipo de rotura (Attewell &
Farmer , 1976) 332

ÍNDICE DE TABLAS

Tabla 1.	Parámetros de Barton	28
Tabla 2.	Clasificación de Barton	28
Tabla 3.	Determinación del RMR 1989 (Bañon & Beviá, 2000)	35
Tabla 4.	Calidad de la roca en función del RMR 1989 (Bañon & Beviá, 2000)	36
Tabla 5.	Factores de ajuste RSTA para la estabilidad de presas (Romana M. ,	
	2012a)	36
Tabla 6.	Factores de ajuste según método de excavación (Alpízar , 2012)	38
Tabla 7.	Clasificación SMR (Belandria & Borgiorno, 2012)	38
Tabla 8.	Calidad del talud rocoso según el índice SMR (Bañon & Beviá, 2000)	39
Tabla 9.	Resultados de las propiedades índices	58
Tabla 10.	Resultados petrográficos estribo derecho	59
Tabla 11.	Resultados petrográficos estribo izquierdo	59
Tabla 12.	Resultados del ensayo 806	60
Tabla 13	Resultados del ensayo 806	61
Tabla 14	Resultados del ensayo 812	62
Tabla 15	Resultados del ensayo 813	63
Tabla 16	Resultados del ensayo 814-1	64
Tabla 17	Resultados del ensayo 814-2	65
Tabla 18	Resultados del ensayo 814-3	66
Tabla 19	Resultados del ensayo 814-3	67
Tabla 20	Resultados del ensayo 829	68
Tabla 21	Resultados del ensayo 831	70
Tabla 22	Resultados del ensayo 832-1	71
Tabla 23	Resultados del ensayo 832-2	73
Tabla 24	Resultados del ensayo 834-1	74
Tabla 25	Resultados del ensayo 795	75
Tabla 26.	Resultados del ensayo 796	76
Tabla 27	Resultados del ensayo 801	77
Tabla 28	Resultados del ensayo 802	78
Tabla 29	Resultados del ensayo 804	79
Tabla 30	Resultados del ensayo 805	80
Tabla 31	Resultados del ensayo 808	81
Tabla 32	Resultados del ensayo 816	82
Tabla 33	Resultados del ensayo 828-2	83
Tabla 34	Resultados del ensayo 830	84
Tabla 35	Resultados del ensayo 833-1	86

Tabla 36	Resultados del ensayo 1011 87
Tabla 37	Resultados del ensayo 1013 88
Tabla 38	Resultados del ensayo 1014 89
Tabla 39.	Resultados del ensayo 1015 90
Tabla 40.	Resultados del ensayo 1016 91
Tabla 41.	Resultados del ensayo 1042 92
Tabla 42.	Resultados del ensayo 1049 93
Tabla 43.	Resultados del ensayo 1050 94
Tabla 44.	Resultados de Dilatancia del ED 96
Tabla 45.	Resultados de Dilatancia del El 96
Tabla 46.	Caracterización de las rugosidades del Estribo Derecho
Tabla 47.	Caracterización de las rugosidades del Estribo Izquierdo
Tabla 48.	Resultados totales Estribo Derecho (valores pico)
Tabla 49.	Resultados Globales Estribo Derecho (valores pico)
Tabla 50.	Resultados totales Estribo Derecho (valores residuales) 100
Tabla 51.	Resultados Globales Estribo Derecho (valores residuales) 100
Tabla 52.	Resultados totales Estribo Izquierdo (valores pico) 101
Tabla 53.	Resultados Globales Estribo Izquierdo (valores pico) 101
Tabla 54.	Resultados totales Estribo Izquierdo (valores residuales) 102
Tabla 55.	Resultados Globales Estribo Izquierdo (valores residuales) 102
Tabla 56.	Resultados totales Estribo Derecho caras lisas(valores pico) 104
Tabla 57.	Resultados Globales Estribo Derecho caras lisas (valores pico) 104
Tabla 58.	Resultados totales Estribo Derecho caras lisas(valores residuales) 105
Tabla 59.	Resultados Globales Estribo Derecho caras lisas (valores residuales) 105
Tabla 60.	Resultados totales Estribo Izquierdo caras lisas(valores pico) 106
Tabla 61.	Resultados Globales Estribo Izquierdo caras lisas (valores pico) 106
Tabla 62.	Resultados totales Estribo Izquierdo caras lisas(valores residuales) 107
Tabla 63.	Resultados Globales Estribo Izquierdo caras lisas (valores residuales). 107
Tabla 64.	Resultados de los ensayos triaxiales Estribo Derecho 108
Tabla 65.	Resultados de los ensayos triaxiales Estribo Izquierdo 109
Tabla 66.	Resultados de los ensayos triaxiales Estribo Izquierdo 111
Tabla 67.	Resultados de los ensayos de compresión simple del Estribo Derecho 114
Tabla 68.	Resultados de los ensayos de compresión simple del Estribo
	Izquierdo 115
Tabla 69.	Resultados totales de los ensayos de compresión simple 117
Tabla 70.	Valores promedios de los ensayos UCS con su respectiva desviación
	estándar 117
Tabla 71.	Discontinuidades presentes en el talud de la zona 1-R 119

Tabla 72.	Familias principales de la Zona 1-R 120
Tabla 73.	Discontinuidades presentes en el talud de la zona 2-R 122
Tabla 74.	Familias principales de la Zona 2-R 123
Tabla 75.	Resultados cinemáticos de la zona 2-R 124
Tabla 76.	Resultados con Cohesión 2 MPa en falla plana 1 de la zona 2-R 126
Tabla 77.	Resultados con Cohesión 1.5 MPa en falla plana 1 de la zona 2-R 126
Tabla 78.	Resultados con Cohesión 1 MPa en falla plana 1 de la zona 2-R 126
Tabla 79.	Resultados con Cohesión 0.5 MPa en falla plana 1 de la zona 2-R 126
Tabla 80.	Resultados con Cohesión 0 MPa en falla plana 1 de la zona 2-R 126
Tabla 81.	Resultados del Análisis Mecánico de la Cuña 1 en la zona 2-R 127
Tabla 82.	Resultados con Cohesión 2 MPa en falla en cuña 1 de la zona 2-R 128
Tabla 83.	Resultados con Cohesión 1.5 MPa en falla en cuña 1 de la zona 2-R 128
Tabla 84.	Resultados con Cohesión 1 MPa en falla en cuña 1 de la zona 2-R 128
Tabla 85.	Resultados con Cohesión 0.5 MPa en falla en cuña 1 de la zona 2-R 128
Tabla 86.	Resultados con Cohesión 0 MPa en falla en cuña 1 de la zona 2-R 129
Tabla 87.	Discontinuidades presentes en el talud de la zona 3-R 130
Tabla 88.	Familias principales de la Zona 3-R 130
Tabla 89.	Discontinuidades presentes en el talud de la zona 4-R 132
Tabla 90.	Familias principales de la Zona 4-R 133
Tabla 91.	Resultados de la zona 4-R 134
Tabla 92.	Resultados con Cohesión 2 MPa en falla plana 1 de la zona 4-R 136
Tabla 93.	Resultados con Cohesión 1.5 MPa en falla plana 1 de la zona 4-R 136
Tabla 94.	Resultados con Cohesión 1 MPa en falla plana 1 de la zona 4-R 136
Tabla 95.	Resultados con Cohesión 0.5 MPa en falla plana 1 de la zona 4-R 136
Tabla 96.	Resultados con Cohesión 0 MPa en falla plana 1 de la zona 4-R 136
Tabla 97.	Familias principales de la Zona 5-R 138
Tabla 98.	Resultados de la zona 5-R 140
Tabla 99.	Resultados con Cohesión 2 MPa en falla plana 1 de la zona 5-R 141
Tabla 100.	Resultados con Cohesión 1.5 MPa en falla plana 1 de la zona 5-R 141
Tabla 101.	Resultados con Cohesión 1 MPa en falla plana 1 de la zona 5-R 141
Tabla 102.	Resultados con Cohesión 0.5 MPa en falla plana 1 de la zona 5-R 141
Tabla 103.	Resultados con Cohesión 0 MPa en falla plana 1 de la zona 5-R 142
Tabla 104.	Resultados con Cohesión 2 MPa en falla plana 2 de la zona 5-R 144
Tabla 105.	Resultados con Cohesión 1.5 MPa en falla plana 2 de la zona 5-R 144
Tabla 106.	Resultados con Cohesión 1 MPa en falla plana 2 de la zona 5-R 144
Tabla 107.	Resultados con Cohesión 0.5 MPa en falla plana 2 de la zona 5-R 144
Tabla 108.	Resultados con Cohesión 0 MPa en falla plana 2 de la zona 5-R 144
Tabla 109.	Resultados con Cohesión 2MPa en falla plana 3 de la zona 5-R 146

Tabla 110.	Resultados con Cohesión 1.5MPa en falla plana 3 de la zona 5-R 146
Tabla 111.	Resultados con Cohesión 1MPa en falla plana 3 de la zona 5-R 146
Tabla 112.	Resultados con Cohesión 0.5MPa en falla plana 3 de la zona 5-R 146
Tabla 113.	Resultados con Cohesión OMPa en falla plana 3 de la zona 5-R 147
Tabla 114.	Familias principales de la Zona 6-R 148
Tabla 115.	Resultados de la zona 6-R 150
Tabla 116.	Resultados con Cohesión 2 MPa en falla plana 1 de la zona 6-R 151
Tabla 117.	Resultados con Cohesión 1.5 MPa en falla plana 1 de la zona 6-R 151
Tabla 118.	Resultados con Cohesión 1 MPa en falla plana 1 de la zona 6-R 151
Tabla 119.	Resultados con Cohesión 0.5 MPa en falla plana 1 de la zona 6-R 151
Tabla 120.	Resultados con Cohesión OMPa en falla plana 1 de la zona 6-R 152
Tabla 121.	Discontinuidades presentes en el talud de la zona 7-R 153
Tabla 122.	Familias principales de la Zona 7-R 153
Tabla 123.	Discontinuidades presentes en el talud de la zona 8-R 155
Tabla 124.	Familias principales de la Zona 8-R 156
Tabla 125.	Discontinuidades presentes en el talud de la zona 9-R 158
Tabla 126.	Familias principales de la Zona 9-R 158
Tabla 127.	Discontinuidades presentes en el talud de la zona 10-R 160
Tabla 128.	Familia principal de la Zona 10-R 161
Tabla 129.	Resultados de la zona 10-R 162
Tabla 130.	Resultados con Cohesión 2 MPa en falla plana 1 de la zona 10-R 164
Tabla 131.	Resultados con Cohesión 1.5 MPa en falla plana 1 de la zona 10-R 164
Tabla 132.	Resultados con Cohesión 1 MPa en falla plana 1 de la zona 10-R 164
Tabla 133.	Resultados con Cohesión 0.5 MPa en falla plana 1 de la zona 10-R 164
Tabla 134.	Resultados con Cohesión 0 MPa en falla plana 1 de la zona 10-R 164
Tabla 135.	Discontinuidades presentes en el talud de la zona 1-L 166
Tabla 136.	Familia principal de la zona 1-L 167
Tabla 137.	Resultados Cinemáticos de la zona 1-L 168
Tabla 138.	Resultados con Cohesión 4 MPa en falla plana 1 de la zona 1-L 169
Tabla 139.	Resultados con Cohesión 3 MPa en falla plana 1 de la zona 1-L 169
Tabla 140.	Resultados con Cohesión 2 MPa en falla plana 1 de la zona 1-L 169
Tabla 141.	Resultados con Cohesión 1 MPa en falla plana 1 de la zona 1-L 169
Tabla 142.	Resultados con Cohesión 0 MPa en falla plana 1 de la zona 1-L 170
Tabla 143.	Resultados con Cohesión 4 MPa en falla plana 2 de la zona 1-L 172
Tabla 144.	Resultados con Cohesión 3 MPa en falla plana 2 de la zona 1-L 172
Tabla 145.	Resultados con Cohesión 2 MPa en falla plana 2 de la zona 1-L 172
Tabla 146.	Resultados con Cohesión 1 MPa en falla plana 2 de la zona 1-L 172
Tabla 147.	Resultados con Cohesión 0 MPa en falla plana 2 de la zona 1-L 172

Tabla 148.	Discontinuidades presentes en el talud de la zona 2-L 174
Tabla 149.	Familia principal de la zona 2-L 174
Tabla 150.	Resultados Cinemáticos de la zona 2-L 176
Tabla 151.	Resultados con Cohesión 4 MPa en falla plana 1 de la zona 2-L 177
Tabla 152.	Resultados con Cohesión 3 MPa en falla plana 1 de la zona 2-L 177
Tabla 153.	Resultados con Cohesión 2 MPa en falla plana 1 de la zona 2-L 177
Tabla 154.	Resultados con Cohesión 1 MPa en falla plana 1 de la zona 2-L 177
Tabla 155.	Resultados con Cohesión 0 MPa en falla plana 1 de la zona 2-L 178
Tabla 156.	Discontinuidades presentes en el talud de la zona 3-L 179
Tabla 157.	Familia principal de la zona 3-L 179
Tabla 158.	Discontinuidades presentes en el talud de la zona 4-L 182
Tabla 159.	Familia principal de la zona 4-L 183
Tabla 160.	Resultados Cinemáticos de la zona 4-L 184
Tabla 161.	Resultados con Cohesión 4 MPa en falla plana 1 de la zona 4-L 186
Tabla 162.	Resultados con Cohesión 3 MPa en falla plana 1 de la zona 4-L 186
Tabla 163.	Resultados con Cohesión 2 MPa en falla plana 1 de la zona 4-L 186
Tabla 164.	Resultados con Cohesión 1 MPa en falla plana 1 de la zona 4-L 186
Tabla 165.	Resultados con Cohesión 0 MPa en falla plana 1 de la zona 4-L 186
Tabla 166.	Discontinuidades presentes en el talud de la zona 5-L 188
Tabla 167.	Familia principal de la zona 5-L 188
Tabla 168.	Resultados Cinemáticos de la zona 5-L 190
Tabla 169.	Resultados con Cohesión 4 MPa en falla plana 1 de la zona 5-L 191
Tabla 170.	Resultados con Cohesión 3 MPa en falla plana 1 de la zona 5-L 191
Tabla 171.	Resultados con Cohesión 2 MPa en falla plana 1 de la zona 5-L 191
Tabla 172.	Resultados con Cohesión 1 MPa en falla plana 1 de la zona 5-L 191
Tabla 173.	Resultados con Cohesión 0 MPa en falla plana 1 de la zona 5-L 192
Tabla 174.	Resultados con Cohesión 4 MPa en falla plana 2 de la zona 5-L 194
Tabla 175.	Resultados con Cohesión 3 MPa en falla plana 2 de la zona 5-L 194
Tabla 176.	Resultados con Cohesión 2 MPa en falla plana 2 de la zona 5-L 194
Tabla 177.	Resultados con Cohesión 1 MPa en falla plana 2 de la zona 5-L 194
Tabla 178.	Resultados con Cohesión 0 MPa en falla plana 2 de la zona 5-L 194
Tabla 179.	Resultados del Análisis Mecánico de la Cuña 1 en la zona 5-L 195
Tabla 180.	Resultados con Cohesión 4 MPa en falla en cuña 1 de la zona 5-L 196
Tabla 181.	Resultados con Cohesión 3 MPa en falla en cuña 1 de la zona 5-L 196
Tabla 182.	Resultados con Cohesión 2 MPa en falla en cuña 1 de la zona 5-L 196
Tabla 183.	Resultados con Cohesión 1 MPa en falla en cuña 1 de la zona 5-L 196
Table 101	
19019 184.	Resultados con Cohesión 0 MPa en falla en cuña 1 de la zona 5-L 197

Tabla 186.	Familia principal de la zona 6-L 198
Tabla 187.	Resultados Cinemáticos de la zona 6-L 200
Tabla 188.	Resultados con Cohesión 4 MPa en falla plana 1 de la zona 6-L 201
Tabla 189.	Resultados con Cohesión 3 MPa en falla plana 1 de la zona 6-L 201
Tabla 190.	Resultados con Cohesión 2 MPa en falla plana 1 de la zona 6-L 201
Tabla 191.	Resultados con Cohesión 1 MPa en falla plana 1 de la zona 6-L 201
Tabla 192.	Resultados con Cohesión 0 MPa en falla plana 1 de la zona 6-L 202
Tabla 193.	Discontinuidades presentes en el talud de la zona 7-L 203
Tabla 194.	Familia principal de la zona 7-L 203
Tabla 195.	Resultados Cinemáticos de la zona 7-L 205
Tabla 196.	Resultados con Cohesión 4 MPa en falla plana 1 de la zona 7-L 206
Tabla 197.	Resultados con Cohesión 3 MPa en falla plana 1 de la zona 7-L 206
Tabla 198.	Resultados con Cohesión 2 MPa en falla plana 1 de la zona 7-L 206
Tabla 199.	Resultados con Cohesión 1 MPa en falla plana 1 de la zona 7-L 206
Tabla 200.	Resultados con Cohesión 0 MPa en falla plana 1 de la zona 7-L 207
Tabla 201.	Resultados del Análisis Mecánico de la Cuña 1 en la zona 7-L 207
Tabla 202.	Resultados con Cohesión 4 MPa en falla en cuña 1 de la zona 7-L 209
Tabla 203.	Resultados con Cohesión 3 MPa en falla en cuña 1 de la zona 7-L 209
Tabla 204.	Resultados con Cohesión 2 MPa en falla en cuña 1 de la zona 7-L 209
Tabla 205.	Resultados con Cohesión 1 MPa en falla en cuña 1 de la zona 7-L 209
Tabla 206.	Resultados con Cohesión 0 MPa en falla en cuña 1 de la zona 7-L 209
Tabla 207.	Discontinuidades presentes en el talud de la zona 8-L 211
Tabla 208.	Familia principal de la zona 8-L 212
Tabla 209.	Resultados Cinemáticos de la zona 8-L 213
Tabla 210.	Resultados del Análisis Mecánico de la Cuña 1 en la zona 8-L 214
Tabla 211.	Resultados con Cohesión 4 MPa en falla en cuña 1 de la zona 8-L 215
Tabla 212.	Resultados con Cohesión 3 MPa en falla en cuña 1 de la zona 8-L 215
Tabla 213.	Resultados con Cohesión 2 MPa en falla en cuña 1 de la zona 8-L 215
Tabla 214.	Resultados con Cohesión 1 MPa en falla en cuña 1 de la zona 8-L 215
Tabla 215.	Resultados con Cohesión 0 MPa en falla en cuña 1 de la zona 8-L 215
Tabla 216.	Resultados del Análisis Mecánico de la Cuña 2 en la zona 8-L 216
Tabla 217.	Resultados con Cohesión 4 MPa en falla en cuña 2 de la zona 8-L 217
Tabla 218.	Resultados con Cohesión 3 MPa en falla en cuña 2 de la zona 8-L 217
Tabla 219.	Resultados con Cohesión 2 MPa en falla en cuña 2 de la zona 8-L 217
Tabla 220.	Resultados con Cohesión 1 MPa en falla en cuña 2 de la zona 8-L 217
Tabla 221.	Resultados con Cohesión 0 MPa en falla en cuña 2 de la zona 8-L 218
Tabla 222.	Resultados del Análisis Mecánico de la Cuña 3 en la zona 8-L 219
Tabla 223.	Resultados con Cohesión 4 MPa en falla en cuña 3 de la zona 8-L 220

Tabla 224.	Resultados con Cohesión 3 MPa en falla en cuña 3 de la zona 8-L 220
Tabla 225.	Resultados con Cohesión 2 MPa en falla en cuña 3 de la zona 8-L 220
Tabla 226.	Resultados con Cohesión 1 MPa en falla en cuña 3 de la zona 8-L 220
Tabla 227.	Resultados con Cohesión 0 MPa en falla en cuña 3 de la zona 8-L 220
Tabla 228.	Discontinuidades presentes en el talud de la zona 9-L 222
Tabla 229.	Familia principal de la zona 9-L 222
Tabla 230.	Resultados Cinemáticos de la zona 9-L 224
Tabla 231.	Resultados con Cohesión 4 MPa en falla plana 1 de la zona 9-L 225
Tabla 232.	Resultados con Cohesión 3 MPa en falla plana 1 de la zona 9-L 225
Tabla 233.	Resultados con Cohesión 2 MPa en falla plana 1 de la zona 9-L 225
Tabla 234.	Resultados con Cohesión 1 MPa en falla plana 1 de la zona 9-L 225
Tabla 235.	Resultados con Cohesión 0 MPa en falla plana 1 de la zona 9-L 226
Tabla 236.	Discontinuidades presentes en el talud de la zona 10-L 227
Tabla 237.	Familia principal de la zona 10-L 227
Tabla 238.	Familia principal de la zona 11-L 230
Tabla 239.	Resultados Cinemáticos de la zona 11-L 231
Tabla 240.	Resultados con Cohesión 4 MPa en falla plana 1 de la zona 11-L 232
Tabla 241.	Resultados con Cohesión 3 MPa en falla plana 1 de la zona 11-L 232
Tabla 243.	Resultados con Cohesión 2 MPa en falla plana 1 de la zona 11-L 232
Tabla 244.	Resultados con Cohesión 1 MPa en falla plana 1 de la zona 11-L 232
Tabla 245.	Resultados con Cohesión 0 MPa en falla plana 1 de la zona 11-L 233
Tabla 246.	Resultados del Análisis Mecánico de la Cuña 1 en la zona 11-L 233
Tabla 247.	Resultados con Cohesión 4 MPa en falla en cuña 1 de la zona 11-L 235
Tabla 248.	Resultados con Cohesión 3 MPa en falla en cuña 1 de la zona 11-L 235
Tabla 249.	Resultados con Cohesión 2 MPa en falla en cuña 1 de la zona 11-L 235
Tabla 250.	Resultados con Cohesión 1 MPa en falla en cuña 1 de la zona 11-L 235
Tabla 251.	Resultados con Cohesión 0 MPa en falla en cuña 1 de la zona 11-L 235
Tabla 252.	Discontinuidades presentes en el talud de la zona 12-L 237
Tabla 253.	Familia principal de la zona 12-L 237
Tabla 254.	Resultados Cinemáticos de la zona 12-L 239
Tabla 255.	Resultados con Cohesión 4 MPa en falla plana 1 de la zona 12-L 240
Tabla 256.	Resultados con Cohesión 3 MPa en falla plana 1 de la zona 12-L 240
Tabla 257.	Resultados con Cohesión 2 MPa en falla plana 1 de la zona 12-L 240
Tabla 258.	Resultados con Cohesión 1 MPa en falla plana 1 de la zona 12-L 240
Tabla 259.	Resultados con Cohesión 0 MPa en falla plana 1 de la zona 12-L 241
Tabla 260.	Discontinuidades presentes en el talud de la zona 13-L 242
Tabla 261.	Familia principal de la zona 13-L 242
Tabla 262.	Discontinuidades presentes en el talud de la zona 14-L 245

Tabla 263.	Familia principal de la zona 14-L 246
Tabla 264.	Resultados Cinemáticos de la zona 14-L 247
Tabla 265.	Resultados del Análisis Mecánico de la Cuña 1 en la zona 14-L 248
Tabla 266.	Resultados con Cohesión 4 MPa en falla en cuña 1 de la zona 14-L 249
Tabla 267.	Resultados con Cohesión 3 MPa en falla en cuña 1 de la zona 14-L 249
Tabla 268.	Resultados con Cohesión 2 MPa en falla en cuña 1 de la zona 14-L 249
Tabla 269.	Resultados con Cohesión 1 MPa en falla en cuña 1 de la zona 14-L 249
Tabla 270.	Resultados con Cohesión 0 MPa en falla en cuña 1 de la zona 14-L 249
Tabla 271.	Resultados del Análisis Mecánico de la Cuña 2 en la zona 14-L 250
Tabla 272.	Resultados con Cohesión 4 MPa en falla en cuña 2 de la zona 14-L 251
Tabla 273.	Resultados con Cohesión 3 MPa en falla en cuña 2 de la zona 14-L 251
Tabla 274.	Resultados con Cohesión 2 MPa en falla en cuña 2 de la zona 14-L 251
Tabla 275.	Resultados con Cohesión 1 MPa en falla en cuña 2 de la zona 14-L 251
Tabla 276.	Resultados con Cohesión 0 MPa en falla en cuña 2 de la zona 14-L 252
Tabla 277.	Resultados del Análisis Mecánico de la Cuña 3 en la zona 14-L 253
Tabla 278.	Resultados con Cohesión 4 MPa en falla en cuña 3 de la zona 14-L 254
Tabla 279.	Resultados con Cohesión 3 MPa en falla en cuña 3 de la zona 14-L 254
Tabla 280.	Resultados con Cohesión 2 MPa en falla en cuña 3 de la zona 14-L 254
Tabla 281.	Resultados con Cohesión 1 MPa en falla en cuña 3 de la zona 14-L 254
Tabla 282.	Resultados con Cohesión 0 MPa en falla en cuña 3 de la zona 14-L 254
Tabla 283.	Discontinuidades presentes en el talud de la zona 15-L 256
Tabla 284.	Familia principal de la zona 15-L 256
Tabla 285.	Familias principales del estribo derecho 259
Tabla 286.	Familias principales del estribo izquierdo
Tabla 287.	Planos de los estribos
Tabla 288.	Clasificación RMR zona 1-R 265
Tabla 289.	Clasificación RMR zona 2-R
Tabla 290.	Clasificación SMR zona 2-R
Tabla 291.	Clasificación RMR zona 3-R
Tabla 292.	Clasificación RMR zona 4-R
Tabla 293.	Clasificación SMR zona 4-R
Tabla 294.	Clasificación RMR zona 7-R 270
Tabla 295.	Clasificación RMR zona 8-R 271
Tabla 296.	Clasificación RMR zona 9-R 272
Tabla 297.	Clasificación RMR zona 10-R 273
Tabla 298.	Clasificación SMR zona 10-R 273
Tabla 299.	Resultados globales de las clasificaciones del estribo derecho 274
Tabla 300.	Soporte sugerido según su SMR del estribo derecho

Tabla 301.	Clasificación RMR zona 1-L 275
Tabla 302.	Clasificación SMR zona 1-L 275
Tabla 303.	Clasificación RMR zona 2-L 276
Tabla 304.	Clasificación SMR zona 2-L 276
Tabla 305.	Clasificación RMR zona 2-L 277
Tabla 306.	Clasificación RMR zona 4-L 278
Tabla 307.	Clasificación SMR zona 4-L 278
Tabla 308.	Clasificación RMR zona 5-L 279
Tabla 309.	Clasificación SMR zona 5-L 280
Tabla 310.	Clasificación RMR zona 6-L 281
Tabla 311.	Clasificación SMR zona 6-L 281
Tabla 312.	Clasificación RMR zona 7-L 282
Tabla 313.	Clasificación SMR zona 7-L 283
Tabla 314.	Clasificación RMR zona 8-L 284
Tabla 315.	Clasificación SMR zona 8-L 284
Tabla 316.	Clasificación RMR zona 9-L 285
Tabla 317.	Clasificación SMR zona 2-L 286
Tabla 318.	Clasificación RMR zona 10-L 287
Tabla 319.	Clasificación RMR zona 12-L 288
Tabla 320.	Clasificación SMR zona 12-L 288
Tabla 321.	Clasificación RMR zona 13-L 289
Tabla 322.	Clasificación RMR zona 14-L 290
Tabla 323.	Clasificación SMR zona 14-L 290
Tabla 324.	Clasificación RMR zona 15-L 291
Tabla 325.	Resultados globales de las clasificaciones del estribo izquierdo 292
Tabla 326.	Soporte sugerido según su SMR del estribo izquierdo 292
Tabla 327.	Clasificación DMR para el estribo derecho 293
Tabla 328.	Clasificación DMR para el estribo izquierdo 293
Tabla 329.	Módulos de elasticidad de los diferentes tipos de concretos y los
	estribos 293
Tabla 330.	Relación entre los módulos de elasticidad de los estribos con cada uno
	de los concretos que serán utilizados en la presa Ec/Em 294
Tabla 331.	Resultados del Coeficiente de Poisson mediante V_p y V_s
Tabla 332.	Modelo Geomecánico del estribo derecho 295
Tabla 333.	Modelo Geomecánico del estribo izquierdo 296
Tabla 334.	Características de los materiales utilizados en el Modelo de Elementos
	Finitos
Tabla 335.	Resultados del análisis de elementos finitos de la etapa 1 301

Tabla 336.	Resultados del análisis de elementos finitos de la etapa 2 304
Tabla 337.	Resultados del análisis de elementos finitos de la etapa 3 307
Tabla 338.	Resultados del análisis de elementos finitos de la etapa 4 310
Tabla 339.	Resultados del análisis de elementos finitos de la etapa 5 313
Tabla 340.	Resultados del análisis de elementos finitos de la etapa 6 316
Tabla 341.	Resultados del análisis de elementos finitos de la etapa 7 319

1. INTRODUCCIÓN

Debido a que la mayor fuente de trabajo se ubica en la región capital, ha existido en la última década un incremento poblacional debido a diferentes factores, esto aumentó la demanda de urbanismo y a su vez servicios públicos en esta zona; como resultado, existe la escasez de cualquier tipo de servicio básico debido al aumento del consumo del mismo.

El siguiente trabajo de investigación tiene como objetivo exponer a detalle todos los rasgos geotécnicos e ingenieriles que están presentes en el estudio de estabilidad para los estribos de la presa sobre el Rio Cuira, ubicada en el poblado de "El Dinero", Edo. Miranda, para ello se analizó la información obtenida en campo, como la obtenida en el laboratorio a través de los diferentes ensayos geomecánicos, estableciendo los parámetros característicos con los cuales se puede caracterizar el macizo rocoso y el comportamiento que tendrá la presa una vez esté realizada la misma, analizando si pudiese ocurrir cualquier tipo de deslizamiento en el área en cuestión, para determinar si es posible realizar la construcción del embalse.

El proyecto está estructurado en cinco capítulos, los cuales abarcan las necesidades que originaron la creación del tema de investigación y la propuesta para resolver el problema, la ubicación de la zona de estudio y trabajos previos que guardan estrecha relación con el tema tratado en esta investigación, las bases teóricas y metodológicas del tema estudiado, por ultimo se tienen los resultados y análisis de los mismos, haciendo énfasis en los distintos ensayos geomecánicos, petrografícos y análisis de estabilización de taludes, modelo geomecánico y análisis de estado de esfuerzo del macizo por medio del método de elementos finitos.

FUNDAMENTOS DE LA INVESTIGACIÓN

1.1. PLANTEAMIENTO DEL PROBLEMA

Durante la última década, el aumento poblacional observado en la región capital ha sido exponencial, como resultado, se ha generado un alto consumo de servicios básicos en la zona, principalmente de agua potable, trayendo como consecuencia un déficit en la distribución de la misma hacia la región capital como a las ciudades aledañas, por tal motivo, el Ministerio del Poder Popular para el Ambiente, colocó en marcha la construcción de un embalse correspondiente al sistema Tuy IV, que será drenado principalmente por el Rio Cuira, ubicado en el estado Miranda.

La construcción de cualquier obra sobre un terreno, implica la perturbación del macizo rocoso mediante diferentes esfuerzos, alterando los estados tensionales de equilibrio a los cuales se encuentra la masa rocosa. La puesta en marcha de la represa depende directamente de los distintos estudios geotécnicos, geológicos y geomecánicos realizados en las fases previas para la construcción de la misma. Es probable que antes, durante y después de la realización de la obra el macizo sufra deformaciones por el reacomodo de los elementos que compone la roca o la inestabilidad en los taludes que conforman los estribos, pudiendo necesitar alguna protección con la finalidad de evitar cualquier tipo de deslizamiento o caída de roca.

Por tal motivo es indispensable caracterizar la roca y asegurar mediante sus parámetros físicos con factores cuantitativos y cualitativos que la masa rocosa sea apta para la construcción de la presa.

1.2. OBJETIVOS DE LA INVESTIGACIÓN

1.2.1. Objetivo General

Determinar los parámetros geomecánicos y la estabilidad de los estribos en la presa sobre el Río Cuira del Sistema Tuy IV para evitar cualquier deslizamiento de masa, a través de estudios geológicos y de laboratorio, en el sector "EL DINERO", Municipio Acevedo, edo. Miranda.

1.2.2. Objetivos Específicos

- Determinar por medio de ensayos de laboratorio sobre muestras de roca intacta, los siguientes parámetros geomecánicos y físicos:
 - Resistencia a la compresión uniaxial.
 - Resistencia a la tracción indirecta.
 - Resistencia a la compresión Confinada.
 - o Resistencia al corte.

2
- Ensayos físicos (densidad, absorción y porosidad).
- Petrografías.
- Aplicar los métodos de estabilidad de taludes en roca.
- Caracterizar geomecánicamente el macizo rocoso en el área de los estribos de la presa.
- Analizar el comportamiento geomecánico del macizo rocoso estudiado, tanto en profundidad como lateralmente.

1.3. JUSTIFICACIÓN DE LA INVESTIGACIÓN

El estudio describirá las características geomecánicas y geológicas del área de interés, para establecer el comportamiento del macizo rocoso, obteniendo valores por medio de ensayos de laboratorio en roca intacta y estudiando las distintas estructuras existentes en el macizo, que puedan resultar desfavorables para la estabilidad de los taludes en los estribos de la presa, generando un modelo final, para su posterior análisis y estimación de las deformaciones que puedan producirse al momento de la realización del embalse, caracterizando la roca según su calidad y resistencia.

Los resultados obtenidos de esta investigación aportarán información nueva, sustentable, de interés y necesaria sobre la geología de superficie en esta zona, lo que servirá como antecedente para la realización de futuros trabajos geológicos y geomecanicos; aparte de los necesario para la construcción de la presa sobre el rio Cuira, en pro de mejorar el sistema de servicio de agua y favorecer a la población creciente en la región central y sus zonas aledañas.

1.4. ALCANCE DE LA INVESTIGACIÓN

Para comprobar la calidad del terreno donde descansará la presa, se realizaran estudios geológicos tanto descriptivos como estructurales en los frentes de los taludes para observar el estado de los mismos, con el fin de obtener datos tangibles a partir de los ensayos de laboratorio y los análisis de taludes correspondientes, con la finalidad de caracterizar el macizo rocoso en la zona de los estribos y poder calcular los distintos estados de esfuerzos que puedan sufrir al momento de realizar la obra. Limitando el estudio en los taludes ya excavados, de los cuales se logró obtener información geológica. Por tal motivo este trabajo proporcionará información indispensable para la realización de la presa y evitar o remediar algún tipo de inconveniente de estabilidad que pueda ocurrir.

2. MARCO TEÓRICO

2.1. ANTECEDENTES DE LA INVESTIGACIÓN

Díaz y Ochoa 2009, **"Análisis y correlación entre el parámetro RQD y la permeabilidad Lugeón".** Investigaron la validez del uso del parámetro Rock Quality Designation (R.Q.D.) en la caracterización de macizos rocosos, específicamente para calificar la permeabilidad del mismo, su estanqueidad, y su uso para el estudio de fundaciones para presas. Para ello se realizaron análisis geológicos - geotécnicos a varias presas fundadas en distintos tipos de roca, haciendo énfasis en el Proyecto de Presa sobre el río Cuira, en el Estado Miranda, donde el lecho rocoso son rocas metavolcánicas pertenecientes al Grupo Villa de Cura, y donde no existe verdadera correspondencia entre los resultados del RQD y los de las pruebas de permeabilidad allí realizadas. Con estos análisis se espera obtener las razones por las cuales existen esas discrepancias, y establecer si estas circunstancias se repite en otros tipos de roca.

Pérez 1986, **" Estudio geológico de la cuenca del rio Cuira, Estado Miranda".** Es el resultado de un estudio geológico realizado en la porción media y baja de la cuenca del Rio Cuira, cubriendo un área aproximada de 250 km², la cual se encuentra ubicada al este del Parque Nacional Guatopo en el estado Miranda. En el área de estudio fueron reconocidas seis asociaciones litológicas distintas, las cuales corresponden a una secuencia de rocas máficas y ultramáficas, una secuencia de serpentinitas, dos secuencias de rocas metavolcánicas y dos secuencias de rocas sedimentarias sin metamorfismo.

Cortiula 1983, **"Estudio geológico de un área ubicada al sur de Panaquire y este del rio Cuira, Estado Miranda".** Realizo un estudio desde un punto de vista regional de la geología circunscrita en un área de aproximadamente 128 km², ubicada al sur de la población de Panaquire en el estado Miranda. Dicho estudio consistió en la definición de unidades litológicas informales cada una de ellas constituidas por tipos litológicos distintivos y en el establecimiento de las probables condiciones de presión y temperatura que prevalecieron durante el metamorfismo el cual pertenece al de la facie de esquistos verdes sufrido por gran parte de las rocas incluidas en la zona.

2.2. UBICACIÓN DE LA ZONA DE ESTUDIO

El presente estudio se llevó a cabo en el sitio "El Dinero" en el Río Cuira, localizado en el Municipio Acevedo del estado Miranda, a unos 9 km al suroeste de Panaquire (N 1.123.200 y E 796.000). (Ver fig. 1 y 2).

Figura 1. Ubicación de la zona de presa en el estado Miranda. (fuente propia).

Figura 2. Ubicación Satelital de la zona de estudio (fuente propia).

Figura 3. Zona de la presa sobre el río Cuira (fuente propia).

Figura 4. Zona del estribo derecho de la presa sobre el río Cuira (fuente propia).

Figura 5. Zona del estribo izquierdo de la presa sobre el río Cuira (fuente propia).

2.3. GEOLOGÍA DE LA ZONA

2.3.1. Geología Regional

La litología expuesta tanto en el sitio de presa como en el vaso de almacenamiento en el sector El Dinero, sobre el río Cuira, pertenece a la formación las Hermanas, la cual presenta un con complejo de rocas metaígneas con índices de metamorfismo bajo a medio, de origen Arco volcánico la cual podemos relacionar con la faja del grupo Villa de Cura (ver Fig.6 y 7)

Figura 6. Mapa Geológico Simplificado del Área Guatopo – El Guapo, Edos. Miranda y Guárico. (Urbani, Chirinos , & Marquina, 1990)

Análisis Geomecánico y Estabilidad de los Estribos en la Presa sobre El Río Cuira del Sistema Tuy IV en el Sector El Dinero, Municipio Acevedo, Estado Miranda

2.3.1.1. Formación Las Hermanas

Según (Urbani, Chirinos, & Marquina, 1991), al este de San Sebastián (Aragua), afloran rocas metavolcánicas constituidas fundamentalmente por lava, brecha y toba, inicialmente cartografiadas corno "formación Tiara", por correlacionarlas con las que afloran cerca de Tiara. Más recientemente, características petrológicas y geoquímicas distintivas, proponen la separación de ambas unidades como formaciones Tiara y Las Hermanas, para las localidades de Tiara y San Sebastián respectivamente. El nombre de la formación proviene de la localidad tipo en la quebrada Las Hermanas, al este de San Sebastián.

Los autores que han realizado estudios geológicos y geoquímicos en la metalava basáltica de esta formación en San Sebastián, concuerdan en señalar que corresponden a un ambiente de arco volcánico y ubican a la Formación Tiara dentro de la "Napa de Loma de Hierro" y a la Formación Dos Hermanas en la "Napa de Villa de Cura", así mismo cartografían a esta formación a través de una faja casi ininterrumpida desde San Sebastián (Aragua) basta Las Colonias en el Parque Nacional Guatopo (Urbani, Chirinos , & Marquina, 1990).

La zona que se ha cartografiado como Formación Las Hermanas, es debido a su carácter masivo y carencia de estructuras planares, además por el predominio de lavas andesíticas (Urbani, Chirinos , & Marquina, 1990).

La formación Las Hermanas se ha podido subdividir en dos unidades cartografiables separadamente, a saber:

• Subunidad de Metatoba:

Esta subunidad aflora en las hoyas de los ríos Taguaza, Apa y Cuira, en forma de faja dislocada por fallas transcurrentes dextrales y limitada por corrimientos, y cubre un área de 81 km². Al norte está en contacto de corrimiento y de falla con el grupo Villa de Cura, al sur el contacto de corrimiento sobre la unidad de metalava y en su sección más occidental sobrecorre a la Caliza de Las Colonias (ver Fig. 6) (Urbani, Chirinos, & Marquina, 1990).

Está caracterizada por la presencia de metatoba lítica piroxénica, que constituye prácticamente el 99% de la unidad, encontrándose además metalava andesitica, granofel y metaftanita. Es notable la casi total ausencia de cristales de anfibol en comparación con las unidades metamórficas restantes. La unidad es de carácter masivo en las hoyas de los ríos Taguaza y Apa. Sin embargo hacia la parte norte de la boya del río Cuira, la metatoba presenta un bandeamiento incipiente (Urbani, Chirinos, & Marquina, 1990).

Litología:

Metatoba Los mejores afloramientos de este tipo litológico están en la naciente del río Taguaza, de las quebradas Los Casupitos y Mondongo, en curso inferior del río Cuira entre los caseríos El Cambur y El Oro y en la parte media del río Apa (Urbani, Chirinos , & Marquina, 1990).

Presenta un color que varía desde verde oliva claro y gris verdoso a verde oliva oscuro o verde oscuro y meteoriza tanto a verde oscuro como a pardo claro. Los fragmentos de rocas pueden ser de colores verdosos más claros o más oscuros. En el extremo norte de la unidad se puede observar un bandeamiento grueso con colores alternantes gris verdoso claro claro y gris verdoso oscuro, paralelo a la estratificación volcánica original de la roca. Las bandas tienen un espesor de basta 3 cm. Afloran como cuerpos discontinuos masivos, por lo general fracturados y diaclasados y están cortados por vetas de epidoto. Aunque no se observaron los contactos en el campo, se pudo observar en varios puntos de toda la unidad, una gradación en el tamaño y abundancia de los fragmentos de roca, pasando de metatoba lítica a metatoba cristalina (Urbani, Chirinos , & Marquina, 1990).

Se encuentran cinco tipos de metatoba siendo: metatoba lítica, metatoba líticocristalina, metatoba cristalino-lítica, metatoba cristalina y metabrecha piroclástica, donde la primera es la que caracteriza la unidad (Urbani, Chirinos, & Marquina, 1990).

La mayoría de los fragmentos son de ceniza gruesa y lapilli. Al microscopio se puede observar fragmentos de lava y escasamente de ftanita y metatoba (Urbani, Chirinos, & Marquina, 1990).

En los fragmentos de lava hay microlitos de plagioclasa que definen una textura afieltrada y menos frecuentemente tranquítica (Urbani, Chirinos, & Marquina, 1990).

Ocasionalmente las amígdalas definen una textura vesicular. Los cristales son de plagioclasa y clinopiroxeno y en menor cantidad se observa clorita. Son abundantes las amígdalas con un diámetro máximo de 2 mm y están rellenas de clorita, epídoto, clionozoisita, prehnita, pumpellita y escasamente cuarzo y calcita. Por lo general la matriz de estos fragmentos está muy alterada a laucoxeno y material no identificable. Los fragmentos de metatoba contienen a su vez fragmentos de metalava andesíttica con microlitos de plagioclasa y la matriz esta alterada a leucoxeno. Los fragmentos ·de metaftanita alcanzan basta 8 mm de diámetro. La matriz es oscura y de material no identificable. Se observan fósiles de radiolarios no identificables y algunos pequeños fragmentos de plagioclasa (Urbani, Chirinos , & Marquina, 1990).

Los cristales de la metatoba son de plagioclasa alterada a sericita y abundante clinopiroxeno con diámetro de hasta 2,5 mm. Ocasionalmente estos fenocristales están muy fracturados. La matriz es de grano fino, compuesta de cuarzo, plagioclasa, clorita, epidoto, abundante clinozoisita, pumpellita, prehnita, material cuarzo-albítico y escasamente actinolita. Las vetas son poco abundantes y están rellenas de clorita, prehnita, epidoto, clinozoisita, pumpellita y muy escasamente cuarzo y plagioclasas.

Mineralogía detallada: Cuarzo, Plagioclasa, Matriz cuarzo-albítica, Clorita, Epídoto, Clinozoisita, Actinolita, Hornblenda, Clinopiroxeno, Prehnita, Pumpellita, Calcita, Esfena y Leucoxeno (Urbani, Chirinos, & Marquina, 1990).

Metalava: Es muy escasa y solamente se encuentra en la naciente del río Taguaza y en las quebradas Pequeño Apa y Mondongo. Es de tipo andesítica y presenta color gris verdoso a verde oliva. Por lo general es masiva, aunque ocasionalmente se observa una gruesa foliación, son poco resistentes a la meteorización y están poco fracturadas. Aunque no se observaron los contactos en el campo, se sugiere que están intercaladas con la metatoba (Urbani, Chirinos, & Marquina, 1990).

Al microscopio, la plagioclasa muestra textura intersectal, y también definen textura traquítica, aunque la textura dominante es la porfirítica. De igual manera, se pudo observar textura perlitica. La matriz está constituida por microlitos de plagioclasa y abundante clorita, epidoto y clinozoisita y en menor proporción pumpellita. Las vetas son muy escasas y están rellenas de epidoto, clinozoisita y prehnita. Las pocas amígdalas observadas están rellenas de clorita, pumpellita, clinozoisita y calcita.

Mineralogía detallada: Cuarzo, Plagioclasa, Matriz cuarzo-albítica, Sericita, Epídoto, Clinozoisita, Pumpellita, Calcita, Estilpnomelana, Pirita y Leucoxeno (Urbani, Chirinos, & Marquina, 1990).

o Metamorfismo

Para esta subunidad, las asociaciones metamórficas típicas son las siguientes:

- Metaboba cristalina: Albita Cuarzo clorita ± sericita ± epidoto ± clinozoisita.
- Metatoba lítica y metabrecha: Albita cuarzo clorita ± sericita ± epidoto ± clinozoisita actinolita.
- Metalava andesítica: Plagioclasa cuarzo clorita ± epidoto ± sercita ± clinozoisita.

En esta subunidad se observó la asociación: clorita - clinozoisita - actinolita- sericita, que corresponde a la facies de los esquistos verdes (zona de la clorita) (Urbani, Chirinos, & Marquina, 1990).

 Subunidad de Metalava
 Esta subunidad aflora en la parte central-sur y oriental de la región en estudio y sus mejores afloramientos están en las hoyas de los ríos Taguaza, Apa, Carapa, Casupo Grande, Paria, Taguay y San José. Esta dislocada por fallas transcurrentes dextrales y se acuña hacia el noroeste, la franja de aforamientos muestra una orientación este oeste. Ocupa un área de 372 Km², es decir que la unidad con mayor extensión del área estudiada. En la parte central y nororiental, la subunidad está en contacto de corrimiento estructuralmente por dejado del grupo Villa de Cura y en su extrema nororiental está cubierta por sedimentos de la formación Caucagua. Al oeste y suroeste, particularmente en las hoyas de los ríos Apa y Carapa, la subunidad está en contacto de corrimiento con el grupo Villa de Cura, la subunidad de Metatoba de la formación Las Hermanas y el complejo Apa. Hacia el sur y sureste el contacto también es de corrimiento por encima de unidades sedimentarias: calizas de las Colonias, flysch de Guatopo y la formación Río Aragua. La subunidad está caracterizada por la presencia de metalava, metatoba y metabrecha con fenocristales de plagioclasa, piroxeno y anfíbol, siendo la metalava el tipo litológico dominante (Urbani, Chirinos , & Marguina, 1990).

o <u>Litología</u>

Metatoba: son de color verde oscuro a claro, meteorizando a pardo rojizo y pardo verdoso. En el río Casupo Grande así corno en sus afluentes, el tamaño de los granos es muy variable observándose desde cenizas basta bloques, por lo que algunas se clasificaron corno metabrecha piroclástica. En la sección media del río Paria, predomina la metatoba con piroclastos en disposición caótica dentro de una matriz verde amarillenta (Urbani, Chirinos, & Marquina, 1990).

Dichos piroclastos presentan tamaños desde cenizas basta lapilli. Son de aspecto masivo y en general se encuentran intercaladas con los demás tipos litológicos.

Al microscopio, la mayoría de los fragmentos de rocas son de tamaño lapilli y están constituidos por metalava y escasamente por metatoba de ceniza, alcanzando basta 3 cm de diámetro. Están caracterizados por tener fenocristales de piroxenos de basta 4 mm, anfíbol y plagioclasa, asi como también amígdalas. Los cristales de plagioclasa están muy alterados a clorita y sericita y los microlitos presentes en la matriz definen algunas veces textura afieltrada o traquítica El piroxeno está en su mayoría muy fracturado y ocasionalmente se observa uralitización a actinolita en los bordes de los cristales. Las amígdalas de estos fragmentos de metalava están alargados y alcanzan un diámetro máximo de 4 mm. Se encuentran rellenas de calcita, clorita, cuarzo en los bordes y escasamente prehnita (Urbani, Chirinos , & Marquina, 1990).

Los fenocristales de la metatoba están constituidos por plagioclasa y actinolita con hábito fibroso a acicular. Dentro de la matriz de la metatoba es frecuente encontrar numerosas agujas de actinolita, epidoto, plagioclasa, calcita, clinozoisita y esfena alterada a leucoxeno. Las vetas están rellenas de epidoto (Urbani, Chirinos, & Marquina, 1990).

Mineralogía detallada: Plagioclasa, Matriz de cristales asociados, Clorita, Epidoto, Clinozoisita, Actinolita, Hornblenda, Anfíbol verde azul, Clinopiroxeno, Calcita, Pirita y Prehnita (Urbani, Chirinos, & Marquina, 1990).

Metalava: presenta color variable entre verde claro, verde oscuro y gris claro azulado a oscuro. En el río Casupo Grande son visibles la estructuras volcánicas, principalmente texturas residuales porfirítica y vesicular y en menor proporción traquítica, afieltrada e interpenetrativa. Son visibles los cristales de piroxeno y plagioclasa que alcanzan, hasta 2,5 cm de diámetro. En el río Taguay la metalava

de tonalidad oscuro son de afinidad basáltica y está atravesada por vetillas de epidoto; la de tipo andesítico está atravesada por vetillas oscuras que podrían representar trenes de trituración (Urbani, Chirinos, & Marquina, 1990).

En general es de carácter masivo y se encuentra intercalada con metatoba aunque no se visualizó claramente el contacto entre ambos tipos litológicos.

Al microscopio los cristales de la matalava están constituidos por anfíbol, clinopiroxeno y plagioclasa. Por lo general las muestras presentan anfíbol y plagioclasa o piroxeno y plagioclasa (Urbani, Chirinos, & Marquina, 1990).

La matriz está constituida por material no identificable debido el grado de alteración. Sin embargo, se observan microlitos de plagioclasa definiendo una textura afieltrada o traquítica, además de clorita, actinolita acicular, calcita en forma de parches, perhnita y esfena alterada a leucoxeno. Ocasionalmente hay amígdalas rellenas de calcita, clorita, epidoto, clinozoisita, pumpellita y prehnita. Hacia el norte de la unidad se puede observar deformación de las amígdalas produciendo su alargamiento, así como también minerales orientados, seguramente debido a las fallas del contacto con el grupo Villa de Cura. Las vetas encontradas están rellenas de calcita, clorita, epidoto, prehnita, cuarzo y leucoxeno (Urbani, Chirinos , & Marquina, 1990).

Mineralogía detallada: Plagioclasa, Clinopiroxeno, Hornblenda, Clorita, Calcita, Cuarzo, Actinolita, Prehnita, Matriz cuarzo-albitíca, Epidoto, Clinozoisita y esfena (Urbani, Chirinos, & Marquina, 1990).

• Metamorfismo

Para esta unidad, las asociaciones mineralógicas metamórficas típicas son las siguientes:

- Metalava Basáltica:
 - a) Albita ± clorita ± epidoto ± actinolita ± pumpellita ± seriçita ± cuarzo.
 - Albita ± clorita ± epidoto ± clinozoisita ± actinolita ± actinolita verde azulada.
 - c) Albita clorita ± clinozoisita ± actinolita ± cuarzo ± epidoto.
- Metalava andesítica:
 - a) Albita ± clorita ± prehnita.
 - b) Albita ± clorita ± pumpellita ± epidoto.
 - c) Albita ± clorita ± actinolita verde azulada ± actinolita ± clinozoisita.
 - d) Albita ± clorita ± epidoto ± cuarzo ± sericita ± actinolita ± clinozoisita.
- Metatoba cristalina:
 - a) Albita ± prehnita ± clorita.
 - b) Albita ± clorita ± pumpellita ± actinolita.
 - c) Albita ± clorita ± epidoto ± actinolita ± clinozoisita ± actinolita verde azulada.
 - d) Albita clorita ± actinolita ± clinozoisita ± epidoto.
- Metatoba lítica y metabrecha:
 - a) Albita ± clorita ± prehnita.
 - b) Albita ± pumpellita ± clorita.
 - c) Albita ± clorita ± actinolita ± actinolita verde azulada ± clinozoisita.

d) Albita - clorita ± actinolita ± clinozoisita ± epidoto.

En sentido sureste a noreste son varias las asociaciones que dentro de esa unidad indican carácter progresivo del metamorfismo regional en los diferentes tipos litológicos (Urbani, Chirinos, & Marquina, 1990). Estas asociaciones son:

- Muy bajo grado (facies de la prehnita-pumpellita y pumpellita-actinolita)
 - a) Clorita prehnita pumpellita.
 - b) Clorita actinolita pumpellita.
- Bajo grado (facies de los esquistos verdes, zona de la clorita)
 - a) Clorita actinolita verde azulada actinolita clinozoisita pumpellita.
 - b) Clorita clinozoisita -actinolita -sericita.

Unidad de metatobas laminadas

Figura 7. Mapa Geológico de la zona de presa, en El Dinero (Cortiula , 1983) & (Perez D'Gregorio, 1986)

2.4. BASES TEÓRICAS

2.4.1. Macizo Rocoso

"Un macizo rocoso es un medio heterogéneo y discontinuo cuyas propiedades resistentes y deformacionales no pueden ser medidas directamente en laboratorio, existiendo una diferencia muy apreciable entre los valores que se obtienen en los ensayos de laboratorio y los que se obtienen mediante medidas in situ que afectan, en el ensayo, a un volumen de terreno mayor" Castillejo (1993).

Figura 8. Representación simbólica y estadística del efecto escala en un macizo rocoso (Castillejo, 1993)

El estudio geológico y geotécnico fundamental de un macizo rocoso debe abordarse mediante: 1) el levantamiento en superficie de los afloramientos, tomando en cuenta discontinuidades, contacto y distribución de litología, geomorfología, posición y movilidad del agua, espesor de materiales de recubrimiento entre otros factores; 2) mediciones indirectas basadas en técnicas geofísicas que permitan obtener datos con los que sea posible contrastar la información obtenida a partir de los levantamientos en superficie, y así generar una idea de lo que pueda encontrarse por debajo de esta y 3) mediciones puntuales como los sondeos mecánicos puntuales. Estos estudios tiene como objeto final generar un modelo geológico y a su vez un modelo geomecánico donde se representen "los parámetros físicos, resistentes y deformacionales del macizo rocoso involucrado en la excavación, tanto en sus valores medios más representativos y locales, como en su variabilidad" Castillejo, (1993).

Castillejo, (1993) también afirma que "una vez caracterizados los litotipos a nivel de roca intacta se evalúan las propiedades del macizo rocoso empleando la clasificación de Bieniawski, que proporciona el índice RMR y que permite, a partir de las expresiones de (Priest & Brown, 1983),

minorar las propiedades de la roca intacta obteniendo los parámetros "m" y "s" del criterio de rotura Hoek Brown para el macizo rocos. Sin embargo todavía la mayor parte de los programas de cálculo utilizan internamente el criterio de rotura de Mohr-Coulomb, definido por la cohesión y la fricción. Por ello se han desarrollado las expresiones que permiten definir la cohesión y la fricción a partir del"m" y del "s", y siempre en función del estado tensional existente en el macizo rocoso a excavar. Para la obtención de los parámetros elásticos es preferible la realización de ensayos presiométricos y dilatométricos in situ, que permiten no sólo conocer el módulo de elasticidad, sino además correlaciona dicho módulo con los obtenidos en laboratorio."

Los parámetros "m" y "*s*", son constantes que dependen de la roca y vienen dados por las siguientes expresiones:

$$m = m_i * e^{\frac{(RMR - 100)}{14}} \tag{1}$$

$$S = e^{\frac{(RMR-100)}{6}} \tag{1}$$

Siendo m_i un parámetro dependiente de la litología de la roca.

Una vez conseguidos m y s se pueden estimar los valores de la cohesión y fricción del macizo rocoso, ya que existe una relación para un determinado nivel de presión de confinamiento representado por la presión de confinamiento, a la curva de resistencia intrínseca envolvente de los estados tensionales últimos definidos por el criterio de Hoek y Brown, puede sustituirse por una recta definida por el ángulo de fricción (φ) y la cohesión (C) determinada por las siguientes expresiones:

$$C = (c * \tan \varphi * \cos \varphi) \frac{m\sigma_c}{8} - \sigma * \tan \varphi$$
(3)

$$\varphi = \tan^{-1} \left[4 * h * \cos \left(30 + \frac{1}{3} * \sin^{-1} \left(h^{\frac{-3}{2}} \right) \right) - 1 \right]^{\frac{-1}{2}}$$
⁽⁴⁾

En donde:

$$h = \frac{1 + 16(m\sigma + s\sigma_c)}{3m^2\sigma_c} \tag{5}$$

Esto define los valores de cohesión y fricción para un entorno específico de presiones en el terreno. A su vez la resistencia a la compresión del macizo rocoso viene dada por esta expresión:

$$\sigma_{CS} = \sqrt{S} * \sigma_C \tag{6}$$

2.4.2. Esfuerzos, Tensiones y Deformaciones en las Rocas

Las rocas pueden estar sometidas a diversos esfuerzos y estados de tensiones, en condiciones naturales, un núcleo de roca intacta puede estar sometido a los esfuerzos como los mostrados en la figura 9, donde σ 1 es el esfuerzo principal mayor y σ 3 es el esfuerzo principal menor (σ 1 > σ 2 > σ 3). Adicionalmente, también se encuentran sometidas a esfuerzos tangenciales τ , ocasionados por la tracción entre las partículas de rocas o en las discontinuidades. Debido a que estos esfuerzos a los que se ven sometidos las rocas le ocasionan ciertas deformaciones que influyen directamente sobre sus propiedades mecánicas, es importante conocer las relaciones entre los esfuerzos y las deformaciones para poder predecir la magnitud de éstas (Gonzales de Vallejo, 2002).

Figura 9. Diferentes estados de tensiones aplicados a muestras de Laboratorio (Gonzales de Vallejo, 2002)

Uno de los aspectos más importantes que se debe conocer de un material rocoso es su resistencia a los esfuerzos a los que se ve sometido y las leyes que rigen su rotura y deformación. (Gonzales de Vallejo, 2002).

2.4.3. Descripción de las discontinuidades

Las discontinuidades condicionan de una forma definitiva las propiedades y el comportamiento resistente, deformacional e hidráulico de los macizos rocosos (ver fig. 10) (Gonzales de Vallejo, 2002).

La resistencia al corte de las discontinuidades es el aspecto más importante de la determinación de la resistencia de los macizos rocosos duros fracturados, y para su estimación es necesario definir las características y las propiedades de las discontinuidades (Gonzales de Vallejo, 2002).

Figura 10. Representación esquemática de las propiedades geométricas de las discontinuidades (Gonzales de Vallejo, 2002)

2.4.3.1. Orientación

Según (Gonzales de Vallejo, 2002) la orientación de una discontinuidad en el espacio queda definida por su dirección de buzamiento (dirección de la línea de máxima pendiente del plano de discontinuidad respecto al norte) y por su buzamiento (inclinación respecto a la horizontal de dicha línea) (ver fig. 11).

2.4.3.2. Espaciado

Según (Gonzales de Vallejo, 2002) el espaciado se define como la distancia entre dos planos de discontinuidad de una misma familia, medida en la dirección perpendicular a dichos planos. Normalmente este valor se refiere al espaciado medio espaciado medio o modal de los valores medidos para las discontinuidades de una misma familia (ver fig. 12).

2.4.3.3. Continuidad

Según (Gonzales de Vallejo, 2002) la continuidad o persistencia de un plano de discontinuidad es su extensión superficial, medida por la longitud según la dirección del plano y según su buzamiento. Es un parámetro de gran importancia pero de difícil cuantificación a partir de la observación de afloramientos, en los que normalmente se ven las trazas de los planos de discontinuidad según un buzamiento aparente (ver fig. 13).

Figura 13. Modelos de discontinuidades (Gonzales de Vallejo, 2002)

Análisis Geomecánico y Estabilidad de los Estribos en la Presa sobre El Río Cuira del Sistema Tuy IV en el Sector El Dinero, Municipio Acevedo, Estado Miranda

2.4.3.4. Rugosidad

Según (Gonzales de Vallejo, 2002) el término de rugosidad se emplea en sentido amplio para hacer referencia tanto a la ondulación de las superficies de discontinuidad, como las irregularidades o rugosidades a pequeña escala de los planos, definidas en ocasiones como de 1 ° y 2 ° orden respectivamente (ver fig. 14).

Figura 14. Ondulación y rugosidad de una superficie de discontinuidad (Gonzales de Vallejo, 2002)

2.4.3.5. Resistencia de las paredes de la discontinuidad

Influye en su resistencia al corte y en su deformabilidad. Depende del tipo de matriz rocosa, del grado de alteración y de la existencia o no del relleno. En discontinuidades sanas y limpias, la resistencia seria la misma de la matriz rocosa, pero generalmente es menor debido a la meteorización de las paredes: los procesos de alteración afectan en mayor grado a los planos de discontinuidad que a la matriz rocosa (Gonzales de Vallejo, 2002).

2.4.3.6. Abertura

Según (Gonzales de Vallejo, 2002) es la distancia perpendicular que separa las paredes de las discontinuidades cuando no existe relleno. Este parámetro puede ser muy variable en diferentes zonas de un mismo macizo rocoso; mientras que en superficie la abertura puede ser alta, ésta se reduce con la profundidad, pudiendo llegar a cerrarse. La influencia de la abertura es la resistencia al corte de la discontinuidad es importante incluso en discontinuidades muy cerradas, al modificar las tensiones efectivas que actúan sobre las paredes (ver fig. 15).

Figura 15. Distintas aperturas de una discontinuidad (Brown, 1981)

2.4.3.7. Relleno

Según (Gonzales de Vallejo, 2002) las discontinuidades pueden aparecer rellenas de un material de naturaleza distinta a la roca de las paredes. Existe gran variedad de materiales de relleno con propiedades físicas y mecánicas muy variables. La presencia del relleno gobierna el comportamiento de la discontinuidad, por lo que deben ser reconocidos y descritos todos los aspectos referentes a sus propiedades y estado. Debe tenerse en cuenta que si se trata de materiales blandos o alterados, estas variaciones pueden sufrir variaciones importantes de sus propiedades resistentes a corto plazo si cambia su contenido en humedad o si tiene lugar algún movimiento a lo largo de las juntas o diaclasas (ver fig. 16).

Figura 16. Diferentes tipos de relleno en discontinuidades (Brown, 1981)

2.4.3.8. Filtraciones

El agua en el interior de un macizo rocoso procede generalmente del flujo que circula por las discontinuidades (permeabilidad secundaria), aunque en ciertas rocas permeables las filtraciones a través de la matriz rocoso (permeabilidad primaria) pueden ser también importantes (Gonzales de Vallejo, 2002).

2.4.4. Parámetros del macizo rocoso

Según (Gonzales de Vallejo, 2002) para la caracterización global del macizo rocoso a partir de datos de afloramientos, además de la descripción de sus componentes, la matriz rocosa y las discontinuidades, deben ser considerados otros factores representativos del conjunto, como son:

2.4.4.1. Número de orientación de familias de discontinuidades

El comportamiento mecánico del macizo rocoso, su modelo de deformación, y sus mecanismos de rotura están condicionados por el número de familias de discontinuidades. La orientación de las diferentes familias con respecto a una obra o instalación sobre el terreno puede determinar, además, la estabilidad de la misma (ver fig. 17).

La intensidad o grado de fracturación y el tamaño de los bloques de matriz rocoso vienen dados por el número de familias de discontinuidades y por el espaciado de cada familia. Cada una de las familias queda caracterizada por su orientación en el espacio y por las propiedades y características de los planos.

Figura 17. Representación de distintas familias de discontinuidades (Gonzales de Vallejo, 2002)

2.4.4.2. Tamaño de bloque y grado de fracturación

El tamaño de los bloques que forman el macizo rocoso condiciona la forma definitiva de su comportamiento y deformaciones. La dimensión y la forma de los bloques están definidas por el número de familias de discontinuidades, su orientación, su espaciado y su continuidad (ver fig. 18).

Figura 18. Distintos tipos de tamaños y formas de bloques (Brown, 1981)

Análisis Geomecánico y Estabilidad de los Estribos en la Presa sobre El Río Cuira del Sistema Tuy IV en el Sector El Dinero, Municipio Acevedo, Estado Miranda

2.4.4.3. Grado de meteorización

La evaluación del grado de meteorización del macizo rocoso se realiza por observación directa del afloramiento y comparación con los índices estándares. En ocasiones puede ser necesario fragmentar el trozo de roca para observar la meteorización de la matriz rocosa (Gonzales de Vallejo, 2002).

2.4.5. Proyección estereográfica

La proyección estereográfica es un tipo de proyección azimutal muy usado en cristalografía y geología estructural para establecer la relación angular existente entre las caras de los cristales o entre las estructuras geológicas.

Todas las proyecciones permiten la representación de objetos tridimensionales en una superficie de dos dimensiones. Cualquiera que sea el sistema de proyección elegido, la representación plana presenta deformaciones que pueden ser lineales, angulares y superficiales. Dependiendo de la finalidad de la representación elegiremos uno u otros tipos de proyección. Por ejemplo, nos puede interesar que los ángulos se proyecten en verdadera magnitud aunque las magnitudes lineales y superficiales sufran deformaciones en mayor o menor grado (Tomas Jover, Ferreiro Prieto, Sentana Gadea, & Diaz Ivorra, 2002).

2.4.5.1. Proyección en el plano ecuatorial

En la proyección estereográfica en el plano ecuatorial es el plano de proyección pasa por el ecuador y el centro de proyección esta sobre la superficie de la esfera en una recta perpendicular a él. Este tipo de proyección define una inversión en el espacio que transforma los puntos de la esfera en puntos del plano. Además presenta la ventaja de que la proyección de los círculos de la esfera se produce como círculos, lo que hace muy sencillo la construcción de la proyección (ver fig. 19). La proyección estereográfica es conforme, es decir, conserva la verdadera magnitud de los ángulos en la proyección, de ahí que también se denomine proyección equiangular (Tomas et al, 2002).

Análisis Geomecánico y Estabilidad de los Estribos en la Presa sobre El Río Cuira del Sistema Tuy IV en el Sector El Dinero, Municipio Acevedo, Estado Miranda

2.4.5.2. Diagrama de densidad de polos

La proyección estereográfica de un determinado elemento de la naturaleza, nunca es tan exacta como la de líneas y planos teóricos, ya que presentan irregularidades puntuales, falta de ajuste con la geometría ideal, en muchos casos, y posibles errores de precisión. Esto hace que se produzcan dispersiones que, dependiendo de su magnitud, pueden o no facilitar la interpretación de un polo o un círculo máximo. De ser así y producirse una gran dispersión de datos, será preciso recurrir a un análisis estadístico de una muestra grande de datos con el fin de determinar la dirección y buzamiento predominantes (ver fig. 20) (Tomas et al, 2002).

Este análisis estadístico no se puede realizar mediante la proyección estereográfica ya que se producirá una gran concentración de puntos en la parte central del diagrama. Para realizar este análisis se recurre a la proyección equiareal, empleando la falsilla de Schmidt, que nos permite el recuento directo de los polos, calcular su valor estadístico por unidad de superficie y determinar las direcciones y buzamiento predominante (Tomas et al, 2002).

Figura 20. Representación en una falsilla de Schmidt (Brown, 1981)

2.4.5.3. Roseta de Diaclasas

Una roseta de diaclasas es un diagrama sencillo para visualizar las direcciones de los rumbos generales de estructuras tabulares (diques, vetas) y de planos tectónicos (diaclasas, fallas). En este tipo de diagrama no hay información sobre el manteo o la dirección de inclinación. En conclusión se puede describir este diagrama como un histograma de forma redondo. Significa los rangos de rumbo se ubican al margen del circulo desde arriba (Norte o 0 º) hacia abajo (Sur o 180 º) en sentido de reloj. La cantidad de los datos a respeto de un rango se encuentra en el eje desde el centro (como 0 %) hacia al margen (como 100 %). Solamente es necesario calcular la mitad de los rangos (el medio circulo) porque el rumbo es un elemento bidireccional y automáticamente cubre el rango opuesto es decir el rango de diferencia de 180 º (lado opuesto) se marca igualmente (Brown, 1981) (ver fig. 21).

Figura 21. Representación de varias discontinuidades en un roseta (Brown, 1981)

2.4.6. Análisis Petrográfico

"Es la rama de la geología, específicamente de la petrología, relacionada con la descripción y clasificación de las rocas "Baamonde (2006).

2.4.7. Dilatancia

Al producirse el movimiento relativo de los bordes de la junta o diaclasa y si ésta tiene una mínima rugosidad, se produce una apertura para poder saltar las rugosidades o resaltes que se conocen bajo el nombre de "Dilatancia", la cual es mayor para tensiones normales pequeñas, debido a que las tensiones altas tienden a romper los picos de las rugosidades (Ramirez, 1980) (ver fig. 22).

Figura 22. Representación de la dilatancia (Ramirez, 1980)

2.4.8. Esfuerzo efectivo

Según (Suarez J., 1998) los esfuerzos efectivos son los que controlan el comportamiento del suelo y no los esfuerzos totales. En problemas prácticos el análisis con esfuerzos totales podría utilizarse en problemas de estabilidad a corto plazo y las presiones efectivas para analizar la estabilidad a largo plazo.

Desde el punto de vista de la relación esfuerzo – deformación, en estabilidad de taludes se deben tener en cuenta dos tipos de resistencia (ver fig. 23):

2.4.8.1. Resistencia máxima o resistencia pico

Es la resistencia al corte máxima que posee el material que no ha sido fallado previamente, la cual corresponde al punto más alto en la curva esfuerzo - deformación.

La utilización de la resistencia pico en el análisis de estabilidad asume que la resistencia pico se obtiene simultáneamente a lo largo de toda la superficie de falla. Sin embargo, algunos puntos en la superficie de falla han alcanzado deformaciones mayores que otros, en un fenómeno de falla progresiva y asumir que la resistencia pico actúa simultáneamente en toda la superficie de falla puede producir errores en el análisis (Suarez J. , 1998).

2.4.8.2. Resistencia residual

Es la resistencia al corte que posee el material después de haber ocurrido la falla. Otro factor que determina las diferencias entre la resistencia pico y residual es la sensitividad, la cual está relacionada con la perdida de resistencia por el remoldeo o la reorientación de las partículas de las rocas (Suarez J., 1998).

Figura 23. Resistencia pico y residual (Suarez J., 1998)

2.4.9. Clasificación de Deere o Índice RQD

El índice RQD representa la relación entre la suma de las longitudes de los fragmentos de testigos mayores a de 10 cm y la longitud total del tramo considerado (ver fig. 25).

$$RQD = \frac{\sum longitud \ de \ los \ trozos \ de \ testigo > 10 \ cm}{longitud \ total} * 100$$
(7)

Para la estimación del RQD se consideran sólo los fragmentos o trozos de testigo de material fresco, excluyéndose los que presentan un grado de alteración importante (a partir de grado IV inclusive), para los que se considera un RQD = 0 %. La medida del RQD se debe realizar en cada maniobra del sondeo o en cada cambio litológico, siendo recomendable que la longitud de maniobra no exceda de 1.5 m. El diámetro mínimo de los testigos debe ser 48 mm. La medida de la longitud del testigo se realiza sobre el eje central del mismo, considerándose los fragmentos con, un diámetro completo (Gonzales de Vallejo, 2002).

A continuación se muestra el procedimiento de medida del RQD y se describe la calidad de la roca en función de este índice (ver fig. 24) (Gonzales de Vallejo, 2002).

RQD (%)	Calidad de roca
< 25	muy mala
25 - 50	mala
50 - 75	regular
75 - 90	buena
90 - 100	excelente

Figura 24. Clasificación del Índice RQD (Gonzales de Vallejo, 2002)

Figura 25. Representación gráfica de la medición y cálculo del índice RQD (Gonzales de Vallejo, 2002)

2.4.10. Clasificación de Barton

Esta clasificación se basa en un índice de calidad "Q" obtenido a partir de 6 parámetros que tienen en cuenta una serie de características del macizo rocoso (Brown, 1981).

El índice Q se define como:

$$Q = \left(\frac{RQD}{J_n}\right) * \left(\frac{J_r}{J_a}\right) * \left(\frac{J_w}{SRF}\right)$$
(8)

Donde:

Tabla 1. Parámetros de Bartor

Abreviatura	Parámetro
RQD	Rock Quality Designation
Jn	Índice de diaclasado, que tiene en cuenta la fracturación
Jr	Índice de rugosidad, que tiene en cuenta, además de la rugosidad, la presencia de relleno y la continuidad de las juntas
Ja	Índice de alteración de las juntas
Jw	Coeficiente reductor, que se tiene en cuenta al considerar la presencia de agua
SRF	Stress reduction factor, tiene en cuenta el estado tensional en el macizo rocoso

Considerando los intervalos de variación de los parámetros que definen el índice de calidad, Q, éste toma valores comprendidos entre 0,001 y 1000. Según estos valores, los macizos rocosos se clasifican en 9 categorías:

Valor de Q	Tipo de roca
0,001 - 0,01	Excepcionalmente Mala
0,01 - 0,1	Extremadamente Mala
0,1 - 1	Muy Mala
1 - 4	Mala
4 - 10	Media
10 - 40	Buena
40 - 100	Muy Buena
100 - 400	Extremadamente Buena
400 -1000	Excepcionalmente Buena

Tabla 2.	Clasificación	de	Barton.
	Clashicación	~~	Durtoin

2.4.11. Clasificación Hoek (GSI)

(Hoek et al, 2000) han propuesto un índice geológico de resistencia, GSI (*geological strength index*), que evalúa la calidad del macizo rocoso en función del grado y las características de la fracturación, estructura geológica, tamaño de los bloques y alteración de las discontinuidades.

En la aplicación del criterio de GSI y en la interpretación de los valores de resistencia obtenidos debe tenerse en cuenta (ver fig. 26):

- El criterio es válido únicamente para macizos con comportamiento isotrópo.
- El índice GSI se basa en estimaciones cualitativas y en modelos simples que rara vez coinciden con las condiciones reales
- Los resultados deben ser cotejados con otros métodos y, siempre que sea posible, con datos de campo y análisis de laboratorio.

Figura 26. Clasificación GSI (Belandria & Borgiorno, 2012)

Análisis Geomecánico y Estabilidad de los Estribos en la Presa sobre El Río Cuira del Sistema Tuy IV en el Sector El Dinero, Municipio Acevedo, Estado Miranda

2.4.12. Criterio de Barton y Choubey

Se trata de un criterio empírico, deducido a partir del análisis del comportamiento de las discontinuidades en ensayos de laboratorio, que permite estimar la resistencia al corte en discontinuidades rugosas (Barton & Choubey, 1977). Se expresa de la siguiente manera:

$$\tau = \sigma'_n \tan \left[JRC \, \log_{10} \left(\frac{JCS}{\sigma'_n} \right) + \phi_r \right] \tag{9}$$

En donde:

- $\tau y \sigma'_n$ son los esfuerzos tangenciales y normal efectivo sobre el plano de discontinuidad.
- ϕ_r es el ángulo de rozamiento residual (ver fig. 28).
- *JRC* es el coeficiente de rugosidad de la discontinuidad (*joint roughness coefficient*) (ver fig. 27).
- *JCS* es la resistencia a la compresión de las paredes de la discontinuidad (*joint Wall compression strength*).

Según la expresión anterior la resistencia de la discontinuidad depende de tres componentes: una componente friccional, ϕ_r , una componente geométrica dada por el parámetro JRC, y una componente de asperidad controlada por la relación $\frac{JCS}{\sigma'_n}$ (Gonzales de Vallejo, 2002).

Donde:

$$\phi_r = (\phi_b - 20^o) + 20\frac{r}{p} \tag{10}$$

$$\log_{10} JCS = 0.00088 * \gamma_{roca} * r + 1.01 \tag{11}$$

$$JRC = \frac{\alpha - \phi_r}{\log\left(\frac{JCS}{\sigma_n}\right)_{ensayo}}$$
(13)

Figura 27. Perfiles de rugosidad JRC (Kliche, 1999)

Figura 28. Rugosidad entre bloques (Kliche, 1999)

2.4.13. Criterio de Mohr-Coulomb

Según (Gonzales de Vallejo, 2002), este criterio expresa la resistencia al corte a lo largo de un plano en un estado Triaxial de tensiones, obteniéndose la relación entre los esfuerzos normal y tangencial actuantes en el momento de la rotura (ver fig. 30) mediante la expresión matemática:

$$\tau = c + \sigma_n \tan \phi$$

(14)

Donde:

 τ y σ_n son tensiones tangencial y normal sobre el plano de rotura (ver fig. 29).

C y ϕ son la cohesión y el ángulo de rozamiento.

Figura 29. a) Representación de los esfuerzos cortante y normal de una discontinuidad. b) Grafica entre el esfuerzo cortante y el desplazamiento horizontal (Zagoya, 2004)

El criterio puede expresarse igualmente en función de los esfuerzos principales σ_1 y σ_3 .

$$\sigma = \frac{2c + \sigma_3[\sin 2\theta + \tan \phi (1 - \cos 2\theta)]}{\sin 2\theta - \tan \phi [1 + \cos 2\theta]}$$
(15)

Permientiendo obtener la resistencia en cualquier plano definido por θ . Para el plano critico de rotura, $\theta = 45^{\circ} + \frac{\phi}{2}$, la expresión anterior tomará la forma:

$$\sigma_1 = \frac{2c * \cos\phi + \sigma_3(1 + \sin\phi)}{(1 + \sin\phi)} \tag{16}$$

Si se da la condición $\sigma_3 = 0$, σ_1 sera la resistencia a compresión simple de la roca:

$$\sigma_1 = \sigma_c = \frac{2c * \cos\phi}{1 - \sin\phi} \tag{17}$$

El criterio también proporciona el valor de la resistencia a tracción:

$$\sigma_1 = \frac{2c * \cos \phi}{1 + \sin \phi} \tag{18}$$

Figura 30. Diferentes envolventes de Mohr-Coulomb (Gonzales de Vallejo, 2002)

2.4.14. Criterio de Hoek-Brown

Para evaluar la resistencia de la matriz rocosa es más adecuado un criterio no lineal, donde la representación gráfica de la rotura es un curva tipo cóncavo.

El propuesto por (Hoek & Brown, 1980) es un criterio empírico de rotura no lineal valido para evaluar la resistencia de la matriz rocosa isótropa en condiciones triaxiales (ver fig. 31):

$$\sigma_1 = \sigma_3 + \sqrt{m_i * \sigma_{ci} * \sigma_3 + \sigma_{ci}^2} \tag{19}$$

Donde σ_1 y σ_3 son los esfuerzos principales mayor y menos de rotura, σ_{ci} es la resistencia a compresión simple de la matriz rocosa y m_i es una constante que depende de las propiedades de la matriz rocosa (Gonzales de Vallejo, 2002).

El valor de σ_{ci} debe ser estimado en ensayos de laboratorio o, en su defecto, a partir de PLT. El parámetro m_i puede obtenerse de la bibliografía cuando no se posible obtenerlo a partir de los ensayos traxiales en la roca (Gonzales de Vallejo, 2002).

El criterio expresado adimensionalmente, en términos de esfuerzos normalizados con respecto a σ_{ci} tiene la forma:

$$\frac{\sigma_1}{\sigma_{ci}} = \frac{\sigma_3}{\sigma_{ci}} + \sqrt{m_i * \frac{\sigma_3}{\sigma_{ci}} + 1}$$
(20)

La resistencia a la compresión simple viene dada por la expresión anterior sustituyendo $\sigma_3 = 0$, y la resistencia a tracción se obtiene resolviendo para $\sigma_1 = 0$ y $\sigma_3 = \sigma_1$:

$$\sigma_1 = \frac{1}{2} * \sigma_{ci} \left(m_i - (m_i^2 + 4) \right)$$
⁽²¹⁾

La expresión del criterio de rotura en función de los esfuerzos tangenciales y normales es:

$$\tau = A * \sigma_{ci} \left(\frac{\sigma_n - \sigma_t}{\sigma_{ci}}\right)^B \tag{22}$$

Donde σ_t es la resistencia a la tracción y A, B son constantes dependientes deñ valor de m_i .

Figura 31. Envolventes de rotura del criterio de Hoek y Brown (Gonzales de Vallejo, 2002)

2.4.15. Clasificación de Bieniawski

Esta clasificación, se basa en el índice **RMR** (*Rock Mass Rating*), la cual da una estimación de la calidad del macizo rocoso, teniendo en cuenta los siguientes factores:

- Resistencia de la roca matriz.
- Condiciones del diaclasado.
- Efecto del agua.
- Posición relativa del diaclasado respecto a la excavación.

Estos factores se cuantifican mediante una serie de parámetros, definiéndose unos valores para dichos parámetros, cuya suma, en cada caso, da el índice de calidad RMR, que varía entre 0 y 100.

- Los objetivos que se persiguen con esta clasificación son:
 - Dividir el macizo rocoso en grupos de conducta análoga.
 - Proporcionar una buena base de entendimiento de las características del macizo rocoso.
 - Facilitar la planificación y el diseño de estructuras en roca, proporcionando datos cuantitativos necesarios para la solución real de los problemas de ingeniería.
 - Proporcionar una base común para la comunicación efectiva entre todas las personas que trabajan en un determinado problema de geomecánica.

- Se clasifican las rocas en 5 categorías. En cada categoría se estiman los valores de la cohesión y del ángulo de rozamiento interno del macizo rocoso. A continuación se definen y valoran cada uno de los factores que intervienen en la clasificación:
 - o Resistencia de la roca intacta
 - o Calidad de la roca
 - o Espaciado de las juntas
 - o Condición de las juntas
 - o Apertura
 - o Tamaño
 - Rugosidad. En esta clasificación se establecen 5 categorías de rugosidad: rugosa, ligeramente rugosa, suave y espejo de falla.
 - Dureza de los labios de la discontinuidad.
 - o Relleno.
 - Presencia de agua
 - Orientación de las discontinuidades.

Tabla 3.	Determinación del RMR 1989 (Bañon & Beviá, 2000)
----------	--

	PARÁM	ETRO		RAN	IGO DE VA	LORES			
	Resistencia	Carga puntual	> 10	4 a 10	2 a 4	1 a 2	Preferible ver compr. Unlaxial		
1 2 3	de la roca sana (MPa)	Compresión simple	> 250	100 a 250	50 a 100	25 a 50	5 a 25	1 a 5	<1
	VALORACIÓN (Rc)		15	12	7	4	2	1	0
2	RQD (%) Rock Quality	Designation	90 a 100	75 a 90	50 a 75	25 a 50		< 25	ŝ
	VALORAC	CÓN (R _{RQD})	20	17	13	8	3		
3	Separación entre diaclasas (m) VALORACIÓN (Rd)		> 2.00	0.60 a 2.00	0.20 a 0.60	0.05 a 0.20	< 0.06		
			20	15	10	8	5		
4	Estado de las diaclasas		Muy rugosas Discontinuas Sin espacios Bordes sanos y duros	Ligeramente rugosas Aberturas de más de 1mm Bordes duros	Ligeramente rugosas Aberturas de más de 1mm Bordes blandos	Espejos de falla ° Relleno < 5mm ° Separación entre 1-5mm (Diaclasas con- tínuas)	Relle supe o Aber (Diaci nuas)	no bla rior a tura>: asas co	indo 5mm 5mm nti-
	VALORACIÓN (Rs)		30	25	20	10	0		
5	Agua freática	a en juntas	Seco	Algo húmedo	Húmedo	Goteando	F	uyen	do
-	VALORAC	IÓN (R.)	15	10	7	4		0	

Análisis Geomecánico y Estabilidad de los Estribos en la Presa sobre El Río Cuira del Sistema Tuy IV en el Sector El Dinero, Municipio Acevedo, Estado Miranda

CLASE	I	I	Ш	IV	v
RMR	100 ← 81	80 ← 61	60 ← 41	40 ← 21	< 20
Descripción	Muy buena	Buena	Normal	Mala	Muy mala
Cohesión (kPa)	> 400	300 - 400	200 - 300	100 - 200	< 100
Rozamiento interno	> 45°	35 - 450	25 - 35º	15 - 250	< 15º
Estabilidad	Desliza 15 m. en 20 años	Desliza 10 m. en 1 años	Desliza 5 m. en 1 semana	Desliza 2.5 m. en 10 horas	Desliza 1 m. en 15 minutos

Tabla 4. Calidad de la roca en función del RMR 1989 (Bañon & Beviá, 2000)

2.4.16. Clasificación de Romana aplicada a presas

(Romana M. , 2012a), la clasificación geomecánica DMR (Dam Mass Rating), es una adaptación para presas de la clasificación geomecánica RMR (Rock Mass Rating). La clasificación DMR da criterios indicativos (teniendo en cuenta el tipo de presa) sobre la capacidad del terreno frente al deslizamiento; sobre las condiciones de cimentación, y la necesidad (o no) de tratamiento de consolidación; y sobre la aptitud de la cerrada para acomodar la presa sin deformaciones excesivas. Como todas las clasificaciones geomecánicas la clasificación DMR constituye una herramienta de estudio previo pero no sustituye al cálculo.

Tabla 5.Factores de ajuste R_{STA} para la estabilidad de presas (Romana M. , 2012a)

	MF	F	В	D	MD	
TIPO DE	Muy	E	Deces	Desfaces 11	Muy	
PRESA	favorable	Favorable	Bueno	Desiavorable	desfavorable	
MATERIALES	Otros	10-30 DS	0-10 A	_	_	
SUELTOS	0100	10 00 00	0 10 11			
	10-60 DS	30-60 US	10-30 US	0-10 A	_	
GRAVEDAD	10-00 05	60-90 A	10-00 05	0-10 //		
ARCO	30-60 DS	10-30 DS	30-60 US	10-30 US	0-10 A	
11100	00 00 00	10 00 00	60-90 A	10 00 00	0 10 11	
R _{STA}	0	-2	-7	-15	-25	

DS buzamiento hacia aguas abajo / US buzamiento hacia aguas arriba/

A cualquier buzamiento. "GRAVEDAD" incluye las presas de CVC (hormigón vibrado), RCC (hormigón compactado con rodillo), y relleno duro (hardfill)

El valor de **DMR**_{STA} (en cuanto a la estabilidad ante el deslizamiento) es:

$$DMR_{STA} = RMR_{BD} + R_{STA}$$
(24)

(Romana M. , 2012a), donde RMR_{BD} ("RMR básico seco") es la suma de los cuatro primeros parámetros del RMR más una valoración del factor del agua de 15 y R_{STA} es el factor de ajuste para la estabilidad de la presa .Actualmente no hay bastantes datos que permitan establecer una correlación entre el valor del DMR_{STA} y el grado de seguridad de la presa ante el deslizamiento. Como regla práctica puede sugerirse la siguiente indicación al proyectista, o revisor, cuando estudie la estabilidad de la presa:

DMR_{STA}> 60 Sin preocupación especial.

60 > **DMR**_{STA}>45 A comprobar con atención.

45 > **DMR**_{STA}>30 Preocupación.

 $30 > DMR_{STA}$ Seria preocupación.

2.4.17. Clasificación de Romana

El índice SMR (*Slope Mass Rating*) para la clasificación de taludes se obtiene del índice RMR básico, restando un "factor de ajuste" que es función de la orientación de las discontinuidades (y producto de tres subfactores) y sumando un "factor de excavación" que depende del método utilizado (Belandria & Borgiorno, 2012).

$$SMR = RMR + (F_1 * F_2 * F_3) + F_4$$
(25)

El factor de ajuste de las discontinuidades es producto de tres subfactores:

• F1, depende del paralelismo entre el rumbo de las discontinuidades y la cara del talud. Varía entre 1,00 (cuando ambos rumbos son paralelos) y 0,15 (cuando el ángulo entre ambos rumbos es mayor de 30^o y la probabilidad de rotura es muy baja, Siendo α_J y α_s los valores de dirección de la discontinuidad (α_J) y del talud (α_s). Estos valores establecidos empíricamente ajustan aproximadamente a la expresión:

$$F_1 = \left(1 - \sin(\alpha_J - \alpha_S)\right)^2 \tag{26}$$

• F₂, depende del buzamiento de la discontinuidad en la rotura plana. Varía entre 1,00 (para discontinuidades con buzamiento superior a 45°) y 0,15 (para discontinuidades con buzamiento inferior a 20°), Donde β_J es el buzamiento de la discontinuidad. Puede ajustarse aproximadamente según la relación:

$$F_2 = \tan^2 \beta_I \tag{27}$$

• F₃, refleja la relación entre los buzamientos de la discontinuidad β_I y del talud β_S .

$$F_3 = \beta_J + \beta_S (rotura \ plana \ y \ en \ cuña)$$
(28)

$$F_3 = \beta_J - \beta_S (rotura \ con \ vuelco) \tag{29}$$

El F₄ hace referencia a la influencia del método de excavación ultilizado en la estabilidad del talud. Aquellos métodos que originen un mayor residuo o fisuren las capas superficiales del talud favorecerán el desprendimiento de fragmentos y bloques rocosos, precipitándose ladera abajo hacia la zona de explanación. (Belandria & Borgiorno, 2012) & (Bañon & Beviá, 2000).

Tabla 6. Factores de ajuste según método de excavación (Alpízar, 2012)

Método	Talud Natural	Precorte	Voladura Suave	Voladura o Mecánico	Voladura Deficiente	
F4	+15	+10	+8	0	-8	

TIPO DE ROTURA		MUY FAVORA- BLE	FAVORABLE	NORMAL	DESFAVORA- BLE	M DESFA	IUY AVORA-			
Plana		α _j -α _s								
Vuelco	Α	α _j -α _s -180	>30°	30-20°	20-10°	10-5°	<	<5°		
Cuña		$ \alpha_i - \alpha_s $								
	F ₁		0.15	0.40	0.70	0.85	1	.00		
	в	$ \beta_j \circ \beta_i $	<20°	20-30°	30-35°	35-45°	>	45°		
Plana/Cuña			0.15	0.40	0.70	0.85	1	.00		
Vuelco		\mathbf{F}_2	1.00							
Plana		βj-βs	-100	10.00		0 (100)		100		
Cuña	C β _i -β _s		>10°	10-05	05	0-(-10°)	<(-10°)			
Vuelco		β _{j+} β _s	<110°	110-120°	>120°	-		-		
	F ₃		0	-6	-25	-50	-60			
MÉTODO DE EXCAVACIÓN			F4	MÉTODO DE EXCAVACIÓN F4			F4			
Talud natural	Talud natural +15 Voladura normal o excavación mecánica			a	0					
Precorte				+10	Voladura deficiente			-8		
Voladura suave +8										

Tabla 7. Clasificación SMR (Belandria & Borgiorno, 2012)
CLASE	1	Ш	III	IV	v
SMR	81 - 100	61 - 80	41 - 60	21 - 40	0 - 20
Descripción	Muy buena	Buena	Normal	Mala	Muy mala
Estabilidad	Totalmente estable	Estable	Parcialmente estable	Inestable	Totalmente inestable
Roturas	Grandes por planos contínuos	Juntas o grandes cuñas	Sistemáticas	Ocasionales	Escasas o ninguna

Tabla 8. Calidad del talud rocoso según el índice SMR (Bañon & Beviá, 2000)

2.4.18. Talud

Según (Suarez J., 1998), se conocen con el nombre genérico de talud cualquier superficie inclinada respecto a la horizontal que hayan de adoptar permanentemente las masas de tierra (ver fig. 32).

Cuando un Talud se produce de forma natural, sin intervención humana, se denomina de ladera natural o simplemente Ladera (Suarez J., 1998).

Cuando los taludes son hechos por el hombre se denominan cortes o taludes artificiales, según la génesis de su formación. En el corte se realiza una excavación en una formación terrea natural, en tanto los taludes artificiales son los lados inclinados de los terraplenes (Suarez J., 1998).

Figura 32. Nomenclatura de Taludes y Laderas (Suarez J., 1998)

2.4.19. Estabilidad de taludes

(Suarez J., 1998), la estabilidad de taludes es la teoría que estudia la estabilidad o posible inestabilidad de un talud a la hora de realizar un proyecto, o llevar a cabo una obra de

CAPITULO 2

construcción de ingeniería civil, siendo un aspecto directamente relacionado con la geotecnia. La inestabilidad de un talud, se puede producir por un desnivel, que tiene lugar por diversas razones:

- Razones geológicas: laderas posiblemente inestables, orografía acusada, estratificación, meteorización, etc.
- Variación del nivel freático: situaciones estacionales, u obras realizadas por el hombre.
- Obras de ingeniería: rellenos o excavaciones tanto de obra civil, como de minería.

Los taludes además serán estables dependiendo de la resistencia del material del que estén compuestos, los empujes a los que son sometidos o las discontinuidades que presenten. Los taludes pueden ser de roca o de tierras. Ambos tienden a estudiarse de forma distinta (Suarez J. , 1998).

2.4.20. Factor de Seguridad

El coeficiente de seguridad (también conocido como factor de seguridad) es el cociente entre el valor calculado de la capacidad máxima de un sistema y el valor del requerimiento esperado real a que se verá sometido. Por este motivo es un número mayor que uno, que indica la capacidad en exceso que tiene el sistema por sobre sus requerimientos (Ochoa & Reyes, 2011).

Según tales condiciones, es permitido establecer las ecuaciones de equilibrio entre fuerzas que inducen el deslizamiento (actuantes) y las fuerzas resistentes. Los análisis proporcionan el valor del factor de seguridad del talud para la superficie en análisis, bajo equilibrio estricto o equilibrio límite de las fuerzas que actúan (Ochoa & Reyes, 2011). Este factor se expresa de la siguiente forma:

$$F = \frac{Fuerzas \ Resistente}{Fuerzas \ Actuantes}$$
(30)

O expresado en términos de esfuerzos:

$$F = \frac{Fuerzas tangenciales resistentes}{Fuerzas tangenciales deslizantes o actuantes}$$
(31)

Después de evaluar el factor de seguridad de la superficie supuesta, es necesario analizar otras superficies de rotura, hasta encontrar la condición con el menor factor, reconocida como superficie potencial de rotura del talud, este factor se toma como el factor de seguridad de todo el talud (Ochoa & Reyes, 2011).

Las fuerzas que actúan sobre un plano de rotura o deslizamiento potencial, suponiendo que no existen fuerzas externas sobre el talud, son las debidas al peso del material, Wa la cohesión c, y a la fricción, ϕ , del plano (Ochoa & Reyes, 2011).

Figura 33. Fuerzas actuando sobre una superficie de rotura en un talud (Ochoa & Reyes, 2011)

En este caso, el factor de seguridad viene dado por la siguiente ecuación:

$$F = \frac{R_C + R_\phi}{S} \tag{32}$$

Siendo:

- R_C : las fuerzas cohesivas = cA.
- R_{ϕ} : las fuerzas friccionantes = $(W * \cos \alpha) * \tan \phi$.
- S: las fuerzas que tienden al deslizamiento = $(W * \cos \alpha)$.
- A: área del plano de rotura.

Si existe U, es decir, las fuerzas totales debido a una presión de agua sobre la superficie A; la ecuación se traduciría a:

$$R_{\phi} = (W * \cos \alpha - U) * \tan \phi \tag{33}$$

Existen distintos métodos para el cálculo del factor de seguridad por equilibrio límite, que varían en complejidad, fundamentados en la aplicación para análisis de suelos. Estos métodos proporcionan un factor de seguridad a partir de la solución inmediata de ecuaciones con alta simplicidad, mientras que hay otros métodos numéricos que requieren de sistemas de ecuaciones y procesos de cálculo iterativo (Ochoa & Reyes, 2011).

2.4.21. Tipo de falla

Los diferentes tipos de falla están condicionados por el grado de fracturación del macizo rocoso y por la orientación y distribución de las discontinuidades con respecto al talud, quedando la estabilidad definida por los parámetros resistentes de las discontinuidades determinan la situación de los planos de falla (Gonzales de Vallejo, 2002), Los tres principales mecanismos de rotura de un talud rocoso son los que a continuación se mencionan:

CAPITULO 2

2.4.16.1. Falla Plana

Cuando el deslizamiento corresponde a uno o varios bloques a favor de planos de deslizamiento, las roturas se llaman planas. El deslizamiento plano suele producirse cuando la masa no esté confinada lateralmente. Normalmente ocurre en taludes naturales o en desmontes cuando las discontinuidades tienen casi la misma dirección del buzamiento que la superficie natural del talud. La tipología de falla plana es muy frecuente y puede ser de máxima peligrosidad. La falla plana en un macizo rocoso representa uno de los mecanismos más simples de rotura (Melentijevic, 2005). Los mecanismos básicos de deslizamientos traslacionales planos se pueden subdividir en (ver fig. 34):

- a) Rotura por un plano singular;
- b) Rotura por un plano singular con grieta de tracción;
- c) Rotura por plano escalonado y con puentes de roca matriz;
- d) Rotura por una superficie poligonal formada por varios planos.

Figura 34. Tipos de fallas planas (Melentijevic, 2005)

2.4.16.2. Falla en Cuña

Cuando el bloque que desliza está limitado por dos o tres juntas se trata de una rotura por cufia. Ocurre en taludes cortados por dos superficies de discontinuidades, no paralelas, de tal manera que la línea de intersección de ambos planos aflora en el talud y buza en sentido desfavorable. Normalmente este tipo de rotura es limitado por cuatro caras, dos de planos de discontinuidades, dos de superficie de roca, y a veces incluye un plano correspondiente a la grieta de tracción. También la superficie de falla puede estar formada por planos escalonados e incluso con puentes de roca matriz (Melentijevic, 2005) (ver fig. 35).

Figura 35. Tipos de fallas en cuña (Melentijevic, 2005)

2.4.16.3. Falla por Volcamiento

Para que se produzca en un talud el fenómeno de vuelco, también conocido como "cabeceo", o a menudo con la denominación inglesa "toppling", es necesario que exista una familia de discontinuidades que siendo paralelas tengan casi el mismo rumbo que el talud, con buzamiento alto y orientación hacia el interior del talud (Melentijevic, 2005).

El vuelco conlleva la rotación de los bloques, o columnas, en tomo de una base fija bajo la acción gravitatoria o presión de agua en las discontinuidades. Implica que un estrato tiende a quedar colgado y soportado por la resistencia pasiva de las capas de la base del talud (Melentijevic, 2005).

(Melentijevic, 2005) Cifra en ±10° la diferencia máxima entre ambos para que se produzca el fenómeno. Las roturas por vuelco pueden manifestarse a cualquier escala y en casi todo tipo de roca, incluso pueden ser profundas y grandes. Pueden incluir también roca bastante sana. Ocurren tanto en taludes naturales como en taludes excavados, en desmontes en obras civiles o cortas mineras (ver fig. 36).

- Vuelco por flexión ("flexural toppling").
- Vuelco de bloques rígidos ("block toppling").
- Vuelco por flexión de bloques (mixto) ("block-flexural toppling").

Figura 36. Tipos de fallas por volcamiento (Melentijevic, 2005)

2.4.22. Ensayos geomecánicos

Los ensayos geomecánicos representan una etapa imprescindible en el proceso de caracterización del macizo rocoso, los valores obtenidos a partir de estos permiten cuantificar de una manera aproximada los estados de esfuerzos máximos que puede soportar dicho cuerpo rocoso. Dentro de estos ensayos destacan los siguientes:

2.4.17.1. Compresión Uniaxial

Castillejo (1993), "la resistencia a la compresión uniaxial está definida como la solicitación $\sigma_1=C_0$ máxima que una muestra cilíndrica de roca es capaz de soportar. El valor determinante para C_0 depende de la rugosidad de la superficie, del no paralelismo y la perpendicularidad entre las caras". Debe tomarse en cuenta además las dimensiones de la muestra, tal es el caso del diámetro **D** (Castillejo, 1993. En este ensayo la muestra cilíndrica de roca es colocada entre dos piezas cilíndricas de metal y por medio de una prensa se somete a una solicitación creciente de σ_1 , tal como se muestra en la figura 37 (Castillejo, 1993).

Figura 37. Ensayo de compresión uniaxial (Castillejo, 1993)

Castillejo (1993), indica "determinar el máximo diámetro **d** de un grano sencillo componente de la roca y seleccionar el diámetro de la muestra **D** de manera que se cumpla la relación D/d> 10. La altura de la muestra L deberá ser múltiplo del diámetro". Diversos ensayos de laboratorio, realizados en distintos tipos de rocas confirman que C_o disminuye al aumentar la relación L/D, según una ley del tipo:

$$C_o = (C_o)_1 \left(0.778 + \frac{0.222}{L/D} \right)$$
(34)

Donde ($C_{o)1}$ representa la resistencia a la compresión de una muestra de roca cuyo L/D<2. En la figura 38. Se refleja el diagrama correspondiente a dicha ecuación, comparada con resultados

experimentales. Se puede constatar que, para L/D \geq 2,5, la variación de C_o/(C₀₁) es despreciable, siendo esta relación la sugerida por muchos investigadores, y considerando la relación mínima de L/D=2 como aceptable (Castillejo, 1993).

Figura 38. Variación de la resistencia a la compresión uniaxial en función de la relación L/D (Castillejo, 1993)

2.4.17.2. Compresión Triaxial

El ensayo de compresión triaxial, permite obtener la resistencia a la compresión confinada de la roca, y debe ejecutarse de la siguiente manera (Castillejo, 1993).

Castillejo (1993) "la muestra de roca es sometida a una solicitación creciente σ_1 de manera uniforme, mientras la tensión lateral σ_3 o la relación $(\sigma_1 / \sigma_3) = k_i$ se mantiene constante. La prueba puede ser también realizada con la presencia de un fluido en los poros de la roca ejerciendo un control de la presión intersticial" (Castillejo, 1993).

La muestra de forma cilíndrica, es colocada entre dos piezas cilíndricas de acero (una para el apoyo de la muestra y otra para la aplicación de la tensión axial σ_1 , la muestra es revestida por una membrana impermeable y ensayada en una celda como se muestra en la figura 39, donde la tensión lateral σ_3 es aplicada mediante aceite a presión. Los resultados de este ensayo son afectados por los mismos factores discutidos en el ensayo de compresión uniaxial, con la diferencia de que en el caso de este ensayo, al aumentar σ_3 se nota una disminución de la influencia de la fricción de entre la roca y las piezas de apoyo de la muestra. Según Castillejo, (1993) "para valores de $L/D \ge 2.5$, el efecto de la fricción es despreciable en el cálculo de resistencia y deformabilidad" (Castillejo, 1993).

Figura 39. Ensayo de compresión triaxial (Castillejo, 1993)

2.4.17.3. Ensayo de corte directo

La finalidad de los ensayos de corte, es determinar la resistencia de una muestra de roca, sometida a fatigas y/o deformaciones que simulen las que existen o existirán en terreno producto de la aplicación de una carga (Espinace, 1979).

Para conocer una de estas resistencias en laboratorio se usa el aparato de corte directo, siendo el más típico una caja de sección cuadrada o circular dividida horizontalmente en dos mitades. Dentro de ella se coloca la muestra de suelo con piedras porosas en ambos extremos, se aplica una carga vertical de confinamiento (Pv) y luego una carga horizontal (Ph) creciente que origina el desplazamiento de la mitad móvil de la caja originando el corte de la muestra (Espinace, 1979).

Figura 40. Esquema del aparato de Corte Directo (Kliche, 1999)

El ensayo induce la falla a través de un plano determinado. Sobre este plano de falla actúan dos esfuerzos (ver fig. 40):

- PITULO 2 MARCO TE un esfuerzo normal (σ_n) , aplicado externamente debido a la carga vertical (Pv).
- un esfuerzo cortante (τ) , debido a la aplicación de la carga horizontal. •

Estos esfuerzos se calculan dividiendo las respectivas fuerzas por el área (A) de la muestra o de la caja de corte y deberían satisfacer la ecuación de Coulomb:

$$\tau = c + \sigma_n * \tan \varphi \tag{35}$$

Según esta ecuación la resistencia al corte depende de la cohesión (C) y la fricción interna del suelo (φ) (Espinace, 1979).

Al aplicar la fuerza horizontal, se van midiendo las deformaciones y con estos valores es posible graficar la tensión de corte (τ) , en función de la deformación (ε) en el plano de esta tensión de corte. De la gráfica es posible tomar el punto máximo de tensión de corte como la resistencia al corte de la roca (Espinace, 1979).

(Espinace, 1979) Los valores de se llevan a un gráfico en función del esfuerzo normal, obteniendo la recta intrínseca, donde (τ) va como ordenada y (σ_n) como abscisa. El ángulo que forma esta recta con el eje horizontal es el ángulo (arphi) y el intercepto con el eje (au), la cohesión (C) (ver fig. 41).

Figura 41. Gráfico en función del esfuerzo normal (Espinace, 1979)

2.4.23. **RocData (Rocscience)**

RocData es un programa interactivo que permite a los usuarios probar fácilmente diferentes parámetros de resistencia y observar cómo afectan la envolvente de rotura, brindando una mejor comprensión de la resistencia del material. Utiliza un conjunto de herramientas versátil para el análisis de la roca y datos de la resistencia del suelo, así como para la determinación de la fuerza sobre parámetros físicos; puede emplearse para determinar los parámetros de fuerzas lineales y no lineales de roca y suelo, con base en el análisis de los datos de resistencia al corte, compresión triaxial o simple (Rocscience, 2013).

CAPITULO 2

Además ofrece cuatro de los criterios de resistencia más utilizados para aplicaciones de ingeniería geotécnica que involucran rocas, el suelo o la fuerza conjunta. Las siguientes opciones son:

- Generalizado de Hoek-Brown
- Mohr-Coulomb
- Barton-Bandis
- Curva de potencia

El criterio de resistencia se selecciona en el cuadro de diálogo configuración del proyecto. Cuando se elige un criterio de resistencia, todos los parámetros de entrada y de salida corresponderán con el criterio seleccionado (Rocscience, 2013).

2.4.22.1. Criterios Fuerza: Generalizada Hoek-Brown

El criterio generalizado de Hoek-Brown es un criterio de falla empírica para la roca, que establece la fuerza en términos de tensiones principales mayores y menores. Predice la actuación de las fuerzas, que concuerdan bien con los valores determinados a partir de ensayos triaxiales de laboratorio en roca intacta y de las fallas observadas en macizos rocosos fracturados.

El criterio generalizado de Hoek-Brown es no lineal y se relaciona con las tensiones principales eficaces mayores y menores (sigma 1 y sigma 3) (Rocscience, 2013)

$$\sigma_1 = \sigma_3 + \sigma_{ci} * \left(mb * \left(\frac{\sigma_3}{\sigma_{ci} + s} \right)^a \right)$$
(36)

Los parámetros de la Generalizado de Hoek-Brown criterio (mb, s, a) puede obtenerse a partir de relaciones empíricas sobre la base de las observaciones de GSI (índice de fuerza geológica), sigci (resistencia a la compresión uniaxial de la roca intacta), mi (parámetro m de roca intacta) y D (factor de perturbación masiva) (Rocscience, 2013).

Para un conjunto dado de parámetros de entrada (sigci, GSI, mi y D), *RocData®* calcula los valores de mb, s, a, y otros parámetros del macizo rocoso cuyos resultados son mostrados en la barra lateral (Rocscience, 2013).

2.4.24. Modelo de Elementos Finitos

Según (Pezzotti & Antico, 2007), El método de los elementos finitos (MEF en castellano o FEM en inglés) es un método de cálculo utilizado en diversos problemas de ingeniería, que se basa en considerar al cuerpo o estructura dividido en elementos discretos, con determinadas condiciones de vínculo entre sí, generándose un sistema de ecuaciones que se resuelve numéricamente y proporciona el estado de tensiones y deformaciones. También se utiliza en matemáticas como método nodal aproximado para resolver ecuaciones diferenciales en forma numérica (ver fig. 42).

Si bien fue originalmente desarrollado para el análisis de estructuras, con este método se pueden representar entre otros, los siguientes fenómenos físicos:

- Fenómenos termodinámicos: distribución de temperaturas en un sólido.
- Simulación de efectos dinámicos: Choque de dos cuerpos.
- Geomecánica: Comportamiento de la corteza terrestre.

Figura 42. Modelo de elementos finitos aplicado a un estudio de taludes (Rocscience, 2013)

2.4.25. Estribo

Según (Suarez L. M., 1989) es el material no perturbado por debajo de la superficie de excavación, comprendido entre la base de la presa y su cresta, contra el cual son colocados los extremos de la presa (ver fig. 43).

2.4.23.1. Estribo derecho

Es el estribo a la derecha de un observador que mire aguas abajo (Suarez L. M., 1989).

2.4.23.2. Estribo izquierdo

Es el estribo a la izquierda de un observador que mire aguas abajo (Suarez L. M., 1989).

Figura 43. Ubicación de los estribos en una presa (Suarez J., 1998)

3. MARCO METODOLÓGICO

3.1. TIPO DE INVESTIGACIÓN

La investigación que se realizo es de tipo Descriptiva, ya que caracterizo un hecho, fenómeno o grupo, con el fin de establecer su estructura o comportamiento. Por lo cual el estudio llevo a cabo la observación y estudios, tanto cualitativos como cuantitativos de todas las variables que entran en juego, al momento de caracterizar el comportamiento mecánico que tendrá el macizo rocoso cuando se construya la presa. También es de Campo, debido a que la información que se recolecto, se extrajo de un ambiente natural, en este caso es la zona en donde se desarrollara el proyecto de la presa.

3.2. DISEÑO DE INVESTIGACIÓN

Es de carácter experimental donde, el cual consiste en someter un objeto o grupo de individuos a determinadas condiciones o estímulos (variables independientes), para observar los efectos que se producen (variables dependientes). Donde a través de los ensayos que serán las variables independientes se obtendrán los parámetros geomecánicos tales como la resistencia a la compresión simple, resistencia a la compresión confinada, resistencia a la tracción indirecta y la resistencia al corte (variables independientes), los cuales mediante herramientas podrán definir el comportamiento de la roca.

3.3. POBLACIÓN Y MUESTRA

La población está formada por la zona de estudio y la muestra está compuesta de 15 perforaciones realizadas en cada uno de los estribos, con profundidades entre 3 a 50 m (ver mapa de estructuras de los estribos en Anexos), y 13 bloques de roca tomadas de los taludes, en zonas de afectación. De los cuales se tomó 65 especímenes para la realización de los distintos ensayos. Para compresión uniaxial, 18 muestras para triaxial, y 33 muestras para resistencia al corte, según la normas correspondientes a cada uno de ellos.

3.4. MEDIOS, INSTRUMENTOS Y TÉCNICAS

Los medios serán:

- Ensayos mecánicos de laboratorio (Compresión Uniaxial, Triaxial y Corte Directo,)
- Ensayos físicos de laboratorio (densidad, absorción y porosidad)
- Petrografías

Los instrumentos serán:

- Equipos GCTS®
- Programa Grapher 10[®]
- Programa RocData®
- Programa DIPS®
- Programa Swedge®
- Programa RocPlane®
- Programa Phase 2.0®

Las técnicas serán:

- Normas ASTM (D5607-08, D2938-95, D3967-95a, D2664-95a)
- Normas ISRM
- Análisis de estabilización de Taludes (análisis cinemáticos y mecánicos)

CAPITULO 3

3.5. METODOLOGÍA

Etapas del desarrollo metodológico:

El siguiente gráfico representa la metodología utilizada de forma esquematizada en tres etapas, desde la recopilación y análisis de información hasta los estudios y modelos geomecánicos, donde se irá describiendo cada una de ellas.

Gráfico 1 Esquema metodológico general

3.5.1. Etapa I: Recopilación de información y Análisis de la información

3.5.1.1. Recopilación de la información

Consistió en la búsqueda de información geológica publicada en Trabajos Especiales de Grado, congresos nacionales e internacionales, mapas topográficos del área de estudio, perfiles de las zonas estudiadas y publicaciones, haciendo énfasis en las que contengan datos de la zona de estudio, específicamente en "EL DINERO", estado Miranda.

3.5.1.2. Análisis de la información recopilada

El material recopilado fue estudiado para comprender los aspectos geológicos de la zona de estudio, para así poder realizar los estudios geomecánicos con parámetros adecuados.

3.5.2. Etapa II: Recolección de muestra

La recolección de muestras contemplo varias visitas a la zona de estudio para obtener muestras de mano representativas, sobre todos aquellas que estaban dentro o próximas áreas de

CAPITULO 3

discontinuidades, de igual manera el traslado de los distintos núcleos de rocas hechos a través de perforaciones, que también fueron utilizados en el laboratorio de Mecánica de Rocas; como también la obtención de datos estructurales y físicos que observaron en los frentes de los taludes (ver ubicación de las perforaciones en mapa de estructuras de los estribos).

3.5.2.1. Selección de las muestras

La escogencia de las muestras se realizó por medio de las normas existentes para cada ensayo que se realizó, descritos a continuación:

- Ensayo uniaxial (ASTM D2938-95)
- Ensayo traxial (ASTM D7012-10)
- Ensayo de corte directo (ASTM D5607-08)
- Ensayo brasilero (ASTM D5731-08)

Para los núcleos de las perforaciones y muestras de mano obtenidos, se tomó en cuenta:

- Longitud de los núcleos.
- Profundidad del núcleo de perforación.
- Características mineralógicas.
- Discontinuidades en las muestras.

3.5.2.2. Obtención de datos estructurales

Se realizó un estudio exhaustivo de búsqueda y medición de datos estructurales sobre todo aquellas discontinuidades que podrían traer una inestabilidad en el talud como consecuencia de sus configuraciones y características. Así como un estudio de descripción física en los frentes para obtener una caracterización del macizo.

3.5.3. Etapa III: Trabajo de laboratorio y oficina

Se llevó a cabo la realización de los ensayos de laboratorio (ensayo de compresión uniaxial para calcular la resistencia a la compresión simple, ensayo triaxial para calcular la resistencia confinada, ensayo de corte directo para calcular la resistencia al corte y ensayo brasilero para calcular la resistencia a la tracción), así como los análisis cinemáticos y mecánicos de los taludes, y las deformaciones e esfuerzos que actúan sobre los estribos.

3.5.3.1. Estudios Geomecánicos

Elaboración de muestras con distintos parámetros (preparación), para su posterior clasificación y estudio geomecánico se basó en:

• Preparación de muestras

Una vez tomadas las muestras se procedió a su respectiva preparación para ser ensayadas. (Para los ensayos de corte directo (ASTM D5607-08) se colocó la muestra en dos anillos de acero de alta resistencia con material cementante para evitar el corrimiento de la misma durante el ensayo). Para los demás ensayos se subdividió esta etapa en:

- Corte de muestras
- Las muestras fueron llevadas al Instituto de Materiales y Modelos Estructurales (IMME) de la Facultad de Ingeniería para reducir su longitud y tamaño hasta lo indicado en las normas de los ensayos que así lo requieran. El corte es producido con un disco de corte (Ensayo uniaxial (ASTM D2938-95), Ensayo traxial (ASTM D7012-10), Ensayo brasilero (ASTM D5731-08)).
- o Rotulado de muestras

Una vez realizado la reducción de tamaño, se procedió a rotular las muestras, con el fin de llevar un control del número de ensayos a realizar, estas se comenzarán a numerar a partir de la última muestra que haya entrado al Laboratorio de Mecánica de Rocas "Miguel Castillejo" de la Facultad de Ingeniería.

• Reparación de muestras

Durante la etapa de compresión es muy probable que los cilindros de roca muy meteorizadas fragmenten en los extremos y que las muestras de mano se disgreguen, de ser ese el caso hay que reparar las mismas utilizando una mezcla de acero al frío (Epoxy) para rellenar cualquier grieta producida. Si la muestra es reparada hay que esperar mínimo un día para volver a manipularla (Ensayo uniaxial (ASTM D2938-95), Ensayo traxial (ASTM D7012-10), Ensayo brasilero (ASTM D5731-08)).

o Refrentado ó Pulitura de las caras de los cilindros de roca (muestras)

Para garantizar la perpendicularidad de las caras y una superficie totalmente libre de rugosidades e irregularidades es necesario pulir las muestras destinadas a Ensayo uniaxial (ASTM D7012-10), Ensayo traxial (ASTM D7012-10), Ensayo brasilero (ASTM D5731-08) con el fin de garantizar una distribución de esfuerzos regular (véase sección de ensayos geomecánicos del capítulo II). Esta pulitura es

realizada con una pulidora GCTS RSG-200 (ver fig. 44) que cuenta con un carro móvil con libertad de movimiento en sus tres ejes que permite que las muestras pongan en contacto sus caras, paralelamente, con un disco giratorio de diamante.

Figura 44. Pulidora GCTS RSG-200 (GCTS, 2015)

o Medición y pesado de muestras

Se midieron, la altura y el diámetro de las muestras para todos los ensayos, al igual que área de discontinuidad en un recorrido de 6 a 15mm (muestras de mano (Ensayo de corte directo (ASTM D5607-08))), sin embargo se pesaran todas y cada una de estas. Todos estos datos se registraron en un cuaderno de anotaciones, ya que en la etapa de ensayo fueron requeridas. Ya con este último paso realizado las muestras estuvieron listas para ser ensayadas.

• Ejecución de ensayos

Los ensayos mecánicos que se realizaron fueron: compresión uniaxial, compresión triaxial y corte directo siguiendo las normas (Ensayo uniaxial (ASTM D7012-10), Ensayo traxial (ASTM D7012-10), Ensayo brasilero (ASTM D5731-08), (Ensayo de corte directo (ASTM D5607-08))), usando el equipo GCTS RDS-500 (ver fig. 45). La metodología de estos ensayos es explicada a detalle en la sección de ensayos mecánicos del capítulo II.

Figura 45. Equipo GCTS RDS-500 (GCTS, 2015)

Los ensayos físicos de roca, absorción y porosidad (por medio de la norma (ISRM, 1979) no se realizaron en el laboratorio "Miguel Castillejo" por no contar con los equipos necesarios para este fin, por lo tanto se enviaron algunas muestras al IMME, en donde se llevaron a cabo.

• Elaboración de reportes y análisis de los resultados

Una vez extraídos los datos del procesador de la máquina, son importados en formato ".txt" hasta una computadora personal en donde serán leídos a través del programa *Office Excel*. Las gráficas pertinentes a cada tipo de ensayo se realizarán con el programa *Grapher V10.0*, mientras que los reportes serán construidos con *Office Word*.

Caracterización del Macizo Rocoso

Se hicieron los estudios geológicos estructurales en los estribos con los cuales se logró realizar las distintas clasificaciones para estimar el estado del macizo de cada talud al igual que su estabilidad. Parámetros que sirvieron de guía para lograr complementar los resultados con el fin de determinar si podría haber algún problema en los estribos en sus etapas antes, durante y después de la realización de la presa.

3.5.3.2. Estudio petrográfico

A través del departamento de geología y por medio del Prof. Ricardo Alezones, se realizaron 15 petrografías de distintas muestras de rocas provenientes de los estribos, donde se identificó y describió rasgos texturales de los minerales que componen las muestras. Se determinó el porcentaje de los minerales mayoritarios, minoritarios y accesorios, de igual manera los minerales índices para caracterizar el tipo de roca.

3.5.3.3. Estudio de estabilidad de taludes

Se realizaron los análisis cinemáticos de los distintos taludes de los estribos con los distintos estudios estructurales obtenidos, donde se plasmaron los distintos datos estructurales obtenidos en campo mediante redes estereográficas, con el programa *DIPS*, para posteriormente realizar los análisis mecánicos ya sean en fallas planas o en cuñas, mediante la obtención de sus factores de seguridad en los distintos planos adquiridos anteriormente, mediante los programas *SWEDGE* y *ROCPLANE*.

3.5.3.4. Análisis de esfuerzos y deformaciones

Se analizaron los distintos esfuerzos, tanto laterales como verticales del macizo rocoso así como también el movimiento relativo que este podría sufrir ya sean horizontales o verticales, tanto con el macizo intacto, como con la colocación de la presa. Como también las líneas de esfuerzos y su dirección de aplicación al igual que su deformación. Para esto de utilizo el programa *PHASE 2*, que mediante el modelado de elementos finitos se obtuvo, los distintos comportamiento de los estribos con los parámetros geomecánicos.

4. RESULTADOS: ANÁLISIS Y DISCUSIÓN

Se definió el estudio del macizo rocoso, dividiendo este en dos partes debido a que por convención se observa hacia aguas abajo (dirección a donde fluye el afluente, ver fig. 43) (ver Estribo en capitulo II), identificando el estribo derecho y el izquierdo de esa manera. Estos pueden observarse en Ubicación de la zona en el capítulo II y en los mapas de zonificación y geomecánico a nivel topográfico en Anexos. Cabe destacar que en la zona de presa existe una falla que atraviesa la cual define litológicamente los estribos (ver fig. 7).

4.1. PROPIEDADES ÍNDICES

		LABORATORIO DE MECÁNICA DE ROCAS Ensayo de Absorción, Porosidad, PU (Húmedo y Seco)							-		
RIF: G-20	000062-7		PRE	SIST SA SOI	'EMA TU'I BRE EL R	(IV Rió cuira			RIF: J-2	RIF: J-29574492-7	
Código Proyecto: Cálculo:				F	Revisión:		Fech	a:	Página 1 d	e 1	
M. CASTILLEJO							07/0	5/2014			
		ISRM	Methods for Determ	ining Wa	ter Content	, Porosity, Densi	ty, Abs	orption (197	9)		
NORMAS UT	ILIZADAS	ASTM		-		•					
	DATOS GENERALES										
Proyecto SISTEMA TUY IV PRESA SOBRE EL RIÓ CUIRA											
Origen del Esp	écimen	Suminist	rado por el cliente			Formación Geoló	ógica	Grupo Villa	de Cura		
Clasificación		Metavolo	anicas			Profundidad		Ver Tabla			
				RE	ESULTADO	s					
Número de Muestra	Perforación	ración Muestra		Prof	fundidad (m)	Absorción	P	orosidad	P.U. Húmedo	P.U. Seco	
790	D07 FXD	9-1	Estribo Derecho	25	8 - 39	0.23		0.65	7w(g/till) 2.81	7∉(g/till') 2.80	
791	P08 FXP	10-	Estribo Derecho	22	2 - 23	0.93	+	2.57	2.01	2.75	
813	P55	FS	tribo Derecho	22.40	0 - 22.75	0.17	+	0.51	2.91	2.91	
814	Muestra de Mano	B	loque estribo echo N20E, 70S	Sup	perficie	0.65		1.77	2.74	2.72	
816	Muestra de Mano	B Izqui	loque Estribo ierdo N55W,40N	Sup	perficie	0.34		0.86	2.56	2.55	
817	817 Muestra de Mano		loque Estribo recho N20E,90	Sup	perficie	0.33		0.93	2.81	2.80	
818	Muestra de Mano	B Izqu	loque Estribo iierdo N90E,45S	Sup	perficie	0.42		1.19	2.82	2.81	

 Tabla 9.
 Resultados de las propiedades índices

58 Vicente Johan Manuel Rico

4.2 ESTUDIOS PETROGRÁFICOS

Ver fotos y secciones finas en estudios petrográficos en Anexos.

Muostro	Roca	1
iviuestra	Minerales	Nombre
790	Plagioclasa, epidoto, calcita, biotita, clorita, serpentina	Metatoba
791	Plagioclasa, epidoto, calcita, biotita, clorita y serpentina	Metatoba
813	clorita, epidoto, plagioclasa y piroxenos	Metatoba basáltica
814	clorita, fragmentos líticos de lava, epidoto y calcita	Metatoba basáltica
817	Ortopiroxeno, plagiclasas calcicas	Metagabro
823	labradorita, epidoto, augita y crisotilo	Metandesita porfídica
824	Epidoto, feldespatos, sericita y carbonatos	Metatoba

Tabla 10.	Resultados petrográficos estribo
	derecho

Musster	Roca					
wuestra	Minerales	Nombre				
816	Carbonatos, cuarzo, calcita, clorita y serpentina	Metatoba				
818	plagioclasas, piroxenos, epidoto y calcita	Metalava andesítica				
819	Plagioclasas, calcita, epidoto, augita y crisotilo	Metatoba basáltica				
820	Plagioclasa, epidoto y labradorita	Metandesita porfídica				
821	Feldespatos, epidoto, apatito, cuarzo y calcita	Metandesita porfídica				
825	Feldespatos, epidoto, apatito, cuarzo y calcita	Metandesita porfídica				
826	Plagioclasas, sericita, epidoto y calcita	Metatoba				
827	plagioclasa, sericita y epidoto	Metandesita porfidica				

Tabla 11.	Resultados petrográficos estribo
	izquierdo

Mediante los estudios petrográficos (ver tablas 10 y 11), se obtuvo los parámetros básicos para definir la litología del área de estudio, como lo son la mineralogía (minerales predominantes y minerales accesorios), textura y estructura, tratándose de rocas metaígneas como metatobas, metalavas, metandesitas y metagabro, donde se observó minerales característicos de metamorfismo como la serpentina, el crisotilo, la prehnita y la actinolita, caracterizándolas dentro de la las facies metamórficas de prehnita-pumpellita y esquistos verdes, asociándolas a un metamorfismo de bajo grado (baja temperatura, baja presión y baja profundidad), coincidiendo con (Urbani, Chirinos, & Marquina, 1991)

Como muestran los ensayos de propiedades índices (ver tabla 9), se obtuvo una densidad promedio de $2.7 ton/m^3$ y un tipo de roca poco permeable, debido a que los valores de porosidad y absorción son muy bajos, no sobrepasando el 1 %. Esto indica que el macizo no tendrá problemas de estabilidad por efectos del agua, coincidiendo con (Diaz & Ochoa, Análisis y correlación entre el parámetro RQD y la permeabilidad Lugeón, 2009), donde obtuvieron bajos niveles de permeabilidad aun cuando la roca presentaba bajos niveles de RQD.

59

4.3. ENSAYOS GEOMECÁNICOS

4.3.1. Ensayos de Corte Directo

En esta parte se analizan los ensayos de corte que se realizaron por medio del programa *ROCDATA* mediante el criterio de rotura de Mohr-Coulomb, donde los puntos en los gráficos son resultados en función del esfuerzo de corte y normal de cada etapa y las rectas representan la envolvente de falla del espécimen.

4.3.1.1. Estribo Derecho

• Ensayo 806

	Máxi	mo (Pico)	Mínimo (Residual)		Máxim	no (Pico)	Mínimo (Residual)	
Etapas	σn	$\tau = RADIO$	σn	τ	σ3	σ1	σ3	σ1
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
1	0.299	2.898	0.237	0.787	-2.599	3.197	-0.551	1.024
2	2.030	3.761	1.998	3.734	-1.731	5.791	-1.736	5.732
3	4.014	5.868	4.010	5.866	-1.854	9.882	-1.856	9.875
4	8.019	8.616	7.996	8.594	-0.596	16.635	-0.597	16.590
5	16.008	14.483	15.999	14.441	1.524	30.491	1.557	30.440
6	32.011	22.719	32.005	22.505	9.292	54.730	9.500	54.510
7	64.015	42.054	63.990	41.979	21.962	106.069	22.011	105.969

Tabla 12. Resultados del ensayo 806

Gráfico 2. Ajuste geomecánico del ensayo 806 (valores picos)

Gráfico 3. Ajuste geomecánico del ensayo 806 (valores residuales)

Etapas	Máximo (Pico)		Mínimo (Residual)		Máximo (Pico)		Mínimo (Residual)	
	σn	$\tau = RADIO$	σn	τ	σ3	σ1	σ3	σ1
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
1	8.023	13.735	7.994	13.517	-5.712	21.758	-5.522	21.511
2	16.014	22.647	15.991	22.565	-6.634	38.661	-6.573	38.556
3	32.014	32.938	31.988	32.902	-0.924	64.952	-0.914	64.890

Tabla 13Resultados del ensayo 806

Gráfico 4. Ajuste geomecánico del ensayo 810 (valores picos)

Gráfico 5. Ajuste geomecánico del ensayo 810 (valores residuales)

	Máximo (Pico)		Mínimo (Residual)		Máximo (Pico)		Mínimo (Residual)	
Etapas	σn	$\tau = RADIO$	σn	τ	σ3	σ1	σ3	σ1
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
1	4.007	5.665	3.995	5.543	-1.659	9.672	-1.548	9.538
2	8.013	10.671	8.003	10.658	-2.658	18.684	-2.656	18.661
3	16.007	17.744	15.996	14.216	-1.737	33.751	1.780	30.212
4	32.008	23.956	31.988	23.759	8.052	55.964	8.229	55.747
5	64.013	39.518	64.009	39.189	24.495	103.532	24.820	103.198

Tabla 14Resultados del ensayo 812

Gráfico 6. Ajuste geomecánico del ensayo 81 (valores pico)

Gráfico 7. Ajuste geomecánico del ensayo 812 (valores residuales)

		Máximo (Pico)		Mínimo (Residual)		Máximo (Pico)		Mínimo (Residual)			
	Etapas	σn	$\tau = RADIO$	σn	τ	σ3	σ1	σ3	σ1		
		(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)		
	1	4.007	5.665	3.995	5.543	-1.659	9.672	-1.548	9.538		
	2	7.996	10.994	7.996	10.989	-2.998	18.990	-2.993	18.985		
	3	16.008	16.749	15.993	16.524	-0.741	32.757	-0.531	32.516		
	4	32.006	29.870	32.004	29.763	2.136	61.876	2.241	61.766		

Tabla 15Resultados del ensayo 813

Gráfico 8. Ajuste geomecánico del ensayo 813 (valores pico)

Gráfico 9. Ajuste geomecánico del ensayo 813 (valores residuales)

Tabla 16

• Ensayo 814-1

	Máximo (Pico)		Mínimo (Residual)		Máximo (Pico)		Mínimo (Residual)	
Etapas	σn	$\tau = RADIO$	σn	τ	σ3	σ1	σ3	σ1
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
1	4.007	6.521	3.999	4.645	-2.514	10.528	-0.646	8.645
2	8.369	7.781	7.999	7.575	0.588	16.150	0.424	15.574
3	16.738	13.517	15.999	13.280	3.221	30.256	2.719	29.279
4	33.476	22.230	32.001	21.917	11.247	55.706	10.083	53.918

Resultados del ensayo 814-1

Gráfico 10. Ajuste geomecánico del ensayo 814-1 (valores pico)

Gráfico 11. Ajuste geomecánico del ensayo 814-1 (valores residuales)

• Ensayo 814-2

Etapas	Máximo (Pico)		Mínimo (Residual)		Máximo (Pico)		Mínimo (Residual)	
	σn	$\tau = RADIO$	σn	τ	σ3	σ1	σ3	σ1
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
1	4.126	3.935	3.998	3.349	0.191	8.061	0.649	7.347
2	8.272	6.874	8.000	6.112	1.398	15.145	1.888	14.112
3	16.540	11.739	16.076	11.549	4.800	28.279	4.527	27.625
4	32.799	19.053	31.991	16.508	13.746	51.852	15.483	48.499

Tabla 17Resultados del ensayo 814-2

Gráfico 12. Ajuste geomecánico del ensayo 814-2 (valores pico)

Gráfico 13. Ajuste geomecánico del ensayo 814-2 (valores residuales)

• Ensayo 814-3

	Máximo (Pico)		Mínimo (Residual)		Máximo (Pico)		Mínimo (Residual)	
Etapas	σn	$\tau = RADIO$	σn	τ	σ3	σ1	σ3	σ1
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
1	4.014	3.498	3.972	1.689	0.516	7.512	2.283	5.662
2	8.320	4.966	7.999	3.259	3.354	13.287	4.740	11.258
3	16.628	9.040	15.986	6.844	7.588	25.668	9.142	22.830

Tabla 18 Resultados del ensayo 814-3

Gráfico 14. Ajuste geomecánico del ensayo 814-3 (valores pico)

Gráfico 15. Ajuste geomecánico del ensayo 814-3 (valores residuales)

	Máximo (Pico)		Mínimo (Residual)		Máximo (Pico)		Mínimo (Residual)	
Etapas	σn	$\tau = RADIO$	σn	τ	σ3	σ1	σ3	σ1
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
1	4.049	4.417	4.006	3.767	-0.367	8.466	0.239	7.773
2	8.004	7.079	7.996	7.019	0.925	15.082	0.977	15.015
3	16.006	12.298	15.998	12.266	3.708	28.304	3.732	28.264
4	32.003	16.722	31.991	16.511	15.280	48.725	15.480	48.502

Tabla 19 Resultados del ensayo 814-3

Gráfico 16. Ajuste geomecánico del ensayo 817 (valores pico)

Gráfico 17. Ajuste geomecánico del ensayo 817 (valores residuales)

	Máximo (Pico)		Mínimo (Residual)		Máximo (Pico)		Mínimo (Residual)	
Etapas	σn	$\tau = RADIO$	σn	τ	σ3	σ1	σ3	σ1
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
1	0.262	0.595	0.253	0.575	-0.334	0.857	-0.322	0.828
2	0.517	0.847	0.507	0.825	-0.330	1.365	-0.319	1.332
3	1.013	1.413	1.005	1.398	-0.400	2.426	-0.393	2.402
4	2.008	2.443	2.005	1.988	-0.436	4.451	0.017	3.993
5	4.014	3.896	4.001	3.857	0.119	7.910	0.144	7.858
6	8.009	6.853	7.981	6.815	1.156	14.862	1.166	14.796
7	16.010	14.562	16.008	14.149	1.448	30.572	1.859	30.157
8	32.009	24.275	31.997	24.062	7.734	56.283	7.936	56.059
9	64.008	44.155	64.001	43.721	19.853	108.164	20.280	107.722

Tabla 20Resultados del ensayo 829

Gráfico 18. Ajuste geomecánico del ensayo 829 (valores pico)

Gráfico 19. Ajuste geomecánico del ensayo 829 (valores residuales)

	Máximo (Pico)		Mínimo (Residual)		Máximo (Pico)		Mínimo (Residual)	
Etapas	σn	$\tau = RADIO$	σn	τ	σ3	σ1	σ3	σ1
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
1	0.264	1.940	0.257	0.358	-1.676	2.204	-0.102	0.615
2	0.513	0.803	0.510	0.783	-0.290	1.317	-0.273	1.293
3	1.010	1.262	1.012	1.213	-0.252	2.272	-0.201	2.224
4	2.014	2.167	2.000	2.046	-0.153	4.181	-0.046	4.046
5	4.011	3.627	4.008	3.613	0.384	7.639	0.395	7.621
6	8.007	6.264	7.996	6.052	1.743	14.271	1.944	14.049
7	16.010	10.065	15.999	10.012	5.945	26.074	5.988	26.011
8	32.009	19.031	32.008	18.906	12.978	51.040	13.102	50.914
9	65.752	33.515	64.000	33.258	32.237	99.267	30.742	97.258

Tabla 21Resultados del ensayo 831

Gráfico 20. Ajuste geomecánico del ensayo 831 (valores pico)

Gráfico 21. Ajuste geomecánico del ensayo 831 (valores residuales)

• Ensayo 832-1

	Máximo (Pico)		Mínimo (Residual)		Máximo (Pico)		Mínimo (Residual)	
Etapas	σn	$\tau = RADIO$	σn	τ	σ3	σ1	σ3	σ1
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
1	0.278	2.222	0.254	0.388	-1.944	2.501	-0.133	0.642
2	0.509	0.815	0.494	0.777	-0.306	1.324	-0.283	1.271
3	1.005	0.994	1.000	0.936	0.011	1.999	0.064	1.936
4	2.006	1.963	1.998	1.938	0.043	3.969	0.060	3.936
5	4.007	3.831	4.004	3.817	0.177	7.838	0.186	7.821
6	8.001	6.219	7.999	5.661	1.782	14.220	2.338	13.659
7	16.014	12.076	16.001	11.964	3.938	28.090	4.036	27.965

Tabla 22Resultados del ensayo 832-1

Gráfico 22. Ajuste geomecánico del ensayo 832-1 (valores pico)

Gráfico 23. Ajuste geomecánico del ensayo 832-1 (valores residuales)

• Ensayo 832-2

	Máximo (Pico)		Mínimo (Residual)		Máximo (Pico)		Mínimo (Residual)	
Etapas	σn	$\tau = RADIO$	σn	τ	σ3	σ1	σ3	σ1
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
1	2.010	14.861	1.995	8.287	-12.851	16.870	-6.292	10.282
2	4.007	5.186	3.993	5.133	-1.180	9.193	-1.139	9.126
3	8.018	7.559	7.986	7.417	0.459	15.577	0.570	15.403
4	16.008	13.475	16.005	13.324	2.534	29.483	2.681	29.329
5	32.012	21.774	32.000	21.737	10.237	53.786	10.263	53.737
6	64.009	32.084	63.994	32.017	31.925	96.093	31.977	96.012

Tabla 23 Resultados del ensayo 832-2

Gráfico 24. Ajuste geomecánico del ensayo 832-2 (valores pico)

Gráfico 25. Ajuste geomecánico del ensayo 832-2 (valores residuales)

• Ensayo 834-1

	Máximo (Pico)		Mínimo (Residual)		Máximo (Pico)		Mínimo (Residual)	
Etapas	σn	$\tau = RADIO$	σn	τ	σ3	σ1	σ3	σ1
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
1	0.258	3.516	0.246	2.213	-3.259	3.774	-1.967	2.459
2	0.508	1.229	0.499	1.225	-0.721	1.738	-0.726	1.724
3	2.008	3.009	1.996	2.967	-1.001	5.017	-0.971	4.963
4	4.003	4.893	3.992	4.822	-0.890	8.896	-0.829	8.814
5	8.005	8.232	7.998	8.124	-0.226	16.237	-0.126	16.122
6	16.003	13.605	15.998	13.514	2.398	29.607	2.484	29.512

Tabla 24 Resultados del ensayo 834-1

Gráfico 26. Ajuste geomecánico del ensayo 834-1 (valores pico)

Gráfico 27. Ajuste geomecánico del ensayo 834-1 (valores residuales)
CAPITULO 4

4.3.1.2. Estribo Izquierdo

• Ensayo 795

	Máximo (Pico)		Mínimo (Residual)		Máximo (Pico)		Mínimo (Residual)					
Etapas	σn	$\tau = RADIO$	σn	τ	σ3	σ1	σ3	σ1				
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)				
1	2.282	7.910	2.163	7.574	-5.628	10.192	-5.411	9.737				
2	4.735	6.140	4.709	6.100	-1.405	10.875	-1.392	10.809				
3	10.013	9.639	9.991	9.617	0.374	19.652	0.374	19.609				
4	16 015	13 473	15 988	13 418	2 5 4 2	29 488	2 570	29 406				

Tabla 25Resultados del ensavo 795

Gráfico 28. Ajuste geomecánico del ensayo 795 (valores pico)

Gráfico 29. Ajuste geomecánico del ensayo 795 (valores residuales)

	Máxii	mo (Pico)	Mínimo (Residual) Má		Máxim	o (Pico)	Mínimo (Residual)
Etapas	σn	$\tau = RADIO$	σn	τ	σ3	σ1	σ3	σ1
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
1	5.023	13.220	4.983	6.550	-8.197	18.243	-1.567	11.533
2	10.010	10.519	9.994	10.477	-0.509	20.529	-0.484	20.471
3	20.017	14.602	19.995	14.576	5.415	34.618	5.419	34.571
4	40.019	21.668	40.005	21.642	18.351	61.687	18.363	61.646

Tabla 26.Resultados del ensayo 796

Gráfico 30. Ajuste geomecánico del ensayo 796 (valores pico)

Gráfico 31. Ajuste geomecánico del ensayo 796 (valores residuales)

76 Vicente Johan Manuel Rico

Ensayo 801

	Máximo (Pico)		Mínimo (Residual)		Máximo (Pico)		Mínimo (Residual)	
Etapas	σn	$\tau = RADIO$	σn	τ	σ3	σ1	σ3	σ1
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
1	5.018	6.878	5.001	6.271	-1.860	11.896	-1.270	11.272
2	10.019	9.062	9.998	9.020	0.958	19.081	0.979	19.018
3	20.023	12.059	20.012	12.027	7.964	32.082	7.985	32.038

DSH 801 PICO

Tabla 27Resultados del ensayo 801

Gráfico 32. Ajuste geomecánico del ensayo 801 (valores pico)

Gráfico 33. Ajuste geomecánico del ensayo 801 (valores residuales)

	Máximo (Pico)		Mínimo (Residual)		Máximo (Pico)		Mínimo (Residual)	
Etapas	σn	$\tau = RADIO$	σn	τ	σ3	σ1	σ3	σ1
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
1	5.023	8.554	4.998	8.398	-3.531	13.577	-3.400	13.396
2	10.019	9.062	9.998	9.020	0.958	19.081	0.979	19.018
3	20.021	15.060	19.999	15.043	4.961	35.081	4.957	35.042

Tabla 28Resultados del ensayo 802

Gráfico 34. Ajuste geomecánico del ensayo 802 (valores pico)

Gráfico 35. Ajuste geomecánico del ensayo 802 (valores residuales)

	-							
	Máximo (Pico)		Mínimo (Residual)		Máximo (Pico)		Mínimo (Residual)	
Etapas	σn	$\tau = RADIO$	σn	τ	σ3	σ1	σ3	σ1
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
1	4.021	9.783	4.002	5.088	-5.762	13.803	-1.086	9.090
2	8.010	9.460	7.993	9.384	-1.450	17.470	-1.391	17.377
3	16.010	14.475	16.009	11.798	1.535	30.485	4.211	27.806

Tabla 29 Resultados del ensayo 804

Gráfico 36. Ajuste geomecánico del ensayo 804 (valores pico)

Gráfico 37. Ajuste geomecánico del ensayo 804 (valores residuales)

CAPITULO 4

• Ensayo 805

	Máximo (Pico)		Mínimo (Mínimo (Residual)		Máximo (Pico)		Mínimo (Residual)	
Etapas	σn	$\tau = RADIO$	σn	τ	σ3	σ1	σ3	σ1	
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	
1	4.014	22.990	3.998	15.801	-18.976	27.004	-11.803	19.799	
2	8.022	20.327	8.004	17.064	-12.305	28.349	-9.060	25.067	
3	16.018	23.097	15.995	22.782	-7.078	39.115	-6.787	38.776	
4	32.015	35.911	32.017	33.083	-3.897	67.926	-1.066	65.100	

Tabla 30 Resultados del ensayo 805

Gráfico 38. Ajuste geomecánico del ensayo 805 (valores pico)

Gráfico 39. Ajuste geomecánico del ensayo 805 (valores residuales)

	Máximo (Pico)		Mínimo (Residual)		Máximo (Pico)		Mínimo (Residual)	
Etapas	σn	$\tau = RADIO$	σn	τ	σ3	σ1	σ3	σ1
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
1	4.014	22.990	3.998	15.801	-18.976	27.004	-11.803	19.799
2	8.006	21.255	7.988	20.590	-13.249	29.261	-12.602	28.577
3	16.007	24.527	15.993	24.413	-8.520	40.534	-8.420	40.406
4	32.013	34.551	31.994	34.524	-2.539	66.564	-2.530	66.518

Tabla 31 Resultados del ensayo 808

Gráfico 40. Ajuste geomecánico del ensayo 808 (valores pico)

Gráfico 41. Ajuste geomecánico del ensayo 808 (valores residuales)

CAPITULO 4

• Ensayo 816

	Máxii	mo (Pico)	Mínimo (Mínimo (Residual)		Máximo (Pico)		Mínimo (Residual)	
Etapas	σn	$\tau = RADIO$	σn	τ	σ3	σ1	σ3	σ1	
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	
1	4.007	5.436	4.001	3.249	-1.429	9.442	0.753	7.250	
2	8.000	4.861	8.004	4.836	3.139	12.861	3.168	12.840	
3	16.437	7.425	15.999	6.970	9.012	23.862	9.029	22.970	
4	32.892	13.444	31.994	13.234	19.448	46.335	18.761	45.228	

Tabla 32Resultados del ensayo 816

Gráfico 42. Ajuste geomecánico del ensayo 816 (valores pico)

Gráfico 43. Ajuste geomecánico del ensayo 816 (valores residuales)

CAPITULO 4

• Ensayo 828-2

					•			
	Máxi	mo (Pico)	Mínimo (Residual)		Máximo (Pico)		Mínimo	(Residual)
Etapas	σn	$\tau = RADIO$	σn	τ	σ3	σ1	σ3	σ1
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
1	0.265	0.894	0.249	0.678	-0.629	1.159	-0.429	0.928
2	0.522	1.210	0.498	1.177	-0.688	1.732	-0.679	1.676
3	1.024	2.386	0.983	2.103	-1.362	3.410	-1.119	3.086
4	2.044	3.464	1.994	3.363	-1.420	5.509	-1.368	5.357
5	4.020	7.426	4.017	7.393	-3.407	11.446	-3.376	11.410
6	8.013	8.706	7.978	8.582	-0.692	16.719	-0.604	16.560
7	16.022	15.412	15.970	15.179	0.610	31.435	0.792	31.149
8	32.020	28.419	32.000	28.120	3.602	60.439	3.880	60.119

Tabla 33Resultados del ensayo 828-2

Gráfico 44. Ajuste geomecánico del ensayo 828-2 (valores pico)

Gráfico 45. Ajuste geomecánico del ensayo 828-2 (valores residuales)

	Máxi	mo (Pico)	Mínimo (Residual)		Máximo (Pico)		Mínimo (Residual)	
Etapas	σn	$\tau = RADIO$	σn	τ	σ3	σ1	σ3	σ1
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
1	0.273	1.511	0.251	0.548	-1.238	1.784	-0.297	0.799
2	0.514	1.075	0.508	0.953	-0.561	1.588	-0.446	1.461
3	1.017	1.790	0.990	1.555	-0.772	2.807	-0.566	2.545
4	2.022	3.068	1.998	2.960	-1.046	5.089	-0.962	4.959
5	4.019	6.498	4.010	6.456	-2.479	10.517	-2.447	10.466
6	8.020	9.071	8.001	8.885	-1.051	17.092	-0.884	16.886
7	12.267	13.548	12.204	13.270	-1.281	25.816	-1.065	25.474

Tabla 34Resultados del ensayo 830

Gráfico 46. Ajuste geomecánico del ensayo 830 (valores pico)

Gráfico 47. Ajuste geomecánico del ensayo 830 (valores residuales)

• Ensayo 833-1

	Máxii	mo (Pico)	Mínimo (Residual)		Máximo (Pico)		Mínimo (Mínimo (Residual)	
Etapas	σn	$\tau = RADIO$	σn	τ	σ3	σl	σ3	σl	
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	
1	0.251	0.933	0.252	0.856	-0.683	1.184	-0.603	1.108	
2	0.517	1.232	0.511	1.148	-0.716	1.749	-0.637	1.659	
3	1.002	1.698	1.009	1.689	-0.696	2.700	-0.680	2.699	
4	2.011	2.803	1.989	2.777	-0.792	4.813	-0.788	4.766	
5	4.015	4.934	3.993	4.899	-0.919	8.948	-0.906	8.891	
6	8.020	6.747	7.996	6.650	1.273	14.767	1.345	14.646	
7	16.031	11.530	16.024	11.481	4.501	27.561	4.542	27.505	
8	32.027	20.058	31.978	19.907	11.969	52.084	12.071	51.885	

DSH 833-1 PICO

Tabla 35Resultados del ensayo 833-1

Gráfico 48. Ajuste geomecánico del ensayo 833-1 (valores pico)

Gráfico 49. Ajuste geomecánico del ensayo 833-1 (valores residuales)

• Ensayo 1011

	Máximo (Pico)		Mínimo (Residual)		Máximo (Pico)		Mínimo (Residual)	
Etapas	σn	$\tau = RADIO$	σn	τ	σ3	σl	σ3	σl
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
1	8.235	26.339	8.096	26.333	-18.104	34.575	-18.238	34.429
2	16.588	11.467	16.003	10.985	5.121	28.055	5.018	26.988
3	32.014	17.322	31.995	17.305	14.692	49.337	14.690	49.300
4	62.221	32.593	61.128	31.407	29.628	94.813	29.720	92.535

Gráfico 50. Ajuste geomecánico del ensayo 1011 (valores pico)

Gráfico 51. Ajuste geomecánico del ensayo 1011 (valores residuales)

	Máxi	mo (Pico)	Mínimo (Residual)	Máximo	o (Pico)	Mínimo (I	Residual)
Etapas	σn	$\tau = RADIO$	σn	τ	σ3	σl	σ3	σl
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
1	2.107	4.516	1.997	4.314	-2.409	6.623	-2.317	6.311
2	4.245	19.224	3.998	19.177	-14.979	23.469	-15.179	23.176
3	8.490	11.361	8.008	11.250	-2.872	19.851	-3.242	19.258
4	16.025	15.066	15.988	15.031	0.959	31.092	0.957	31.019
5	32.011	26.357	32.010	26.337	5.654	58.369	5.673	58.347

Tabla 37Resultados del ensayo 1013

Gráfico 52. Ajuste geomecánico del ensayo 1013 (valores pico)

Gráfico 53. Ajuste geomecánico del ensayo 1013 (valores residuales)

	Máxir	no (Pico)	Mínimo (F	tesidual)	Máxim	o (Pico)	Mínimo	Residual)
Etapas	σn	$\tau = RADIO$	σn	τ	σ3	σ1	σ3	σ1
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
1	4.178	8.123	4.096	7.806	-3.945	12.301	-3.711	11.902
2	16.591	15.155	16.014	9.720	1.436	31.746	6.294	25.734
3	8.346	8.155	8.021	8.058	0.191	16.501	-0.037	16.079

Tabla 38Resultados del ensayo 1014

Gráfico 54. Ajuste geomecánico del ensayo 1014 (valores pico)

Gráfico 55. Ajuste geomecánico del ensayo 1014 (valores residuales)

	Máxiı	no (Pico)	Mínimo (Residual)	Máxim	o (Pico)	Mínimo	(Residual)
Etapas	σn	$\tau = RADIO$	σn	τ	σ3	σ1	σ3	σ1
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
1	4.024	10.500	4.002	4.420	-6.476	14.523	-0.418	8.421
2	8.303	9.869	8.016	7.652	-1.566	18.173	0.363	15.668
3	16.586	15.989	16.046	14.451	0.597	32.575	1.595	30.497
4	33.349	25.734	31.990	25.050	7.615	59.083	6.940	57.040

Tabla 39.Resultados del ensayo 1015

Gráfico 56. Ajuste geomecánico del ensayo 1015 (valores pico)

Gráfico 57. Ajuste geomecánico del ensayo 1015 (valores residuales)

	Máxi	mo (Pico)	Mínimo (Residual)	Máxim	o (Pico)	Mínimo (Residual)
Etapas	σn	$\tau = RADIO$	σn	τ	σ3	σ1	σ3	σ1
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
1	2.023	4.207	1.992	2.324	-2.184	6.230	-0.333	4.316
2	4.154	4.385	4.041	4.334	-0.231	8.539	-0.293	8.375
3	8.257	7.514	7.993	7.390	0.743	15.771	0.603	15.383
4	16.526	12.566	15.959	12.442	3.960	29.092	3.518	28.401
5	33.227	19.802	31.991	19.405	13.425	53.029	12.586	51.397

Tabla 40.Resultados del ensayo 1016

Gráfico 58. Ajuste geomecánico del ensayo 1016 (valores pico)

91 Vicente Johan Manuel Rico

Gráfico 59. Ajuste geomecánico del ensayo 1016 (valores residuales)

	Máxi	mo (Pico)	Mínimo (Residual)	Máxim	io (Pico)	Mínimo	(Residual)
Etapas	σn	$\tau = RADIO$	σn	τ	σ3	σ1	σ3	σ1
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
1	2.019	7.679	1.996	7.653	-5.661	9.698	-5.656	9.649
2	4.010	8.876	4.006	8.862	-4.865	12.886	-4.856	12.867
3	8.012	12.568	7.994	10.371	-4.556	20.580	-2.377	18.365
4	16.014	17.567	15.996	16.545	-1.553	33.580	-0.549	32.541
5	32.013	23.810	32.008	23.767	8.203	55.822	8.241	55.775

Tabla 41.Resultados del ensayo 1042

Gráfico 60. Ajuste geomecánico del ensayo 1042 (valores pico)

Gráfico 61. Ajuste geomecánico del ensayo 1042 (valores residuales)

	Máxii	mo (Pico)	Mínimo (Residual)	Máxim	o (Pico)	Mínimo (Residual)
Etapas	σn	$\tau = RADIO$	σn	τ	σ3	σ1	σ3	σ1
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
1	4.005	4.563	3.991	4.031	-0.558	8.568	-0.040	8.022
2	8.008	5.906	7.995	5.853	2.102	13.914	2.142	13.848
3	16.008	9.436	16.011	9.341	6.572	25.444	6.670	25.352
4	32.005	14.440	32.004	14.314	17.566	46.445	17.690	46.317
5	59.992	21.082	59.982	20.969	38.910	81.075	39.013	80.952

Tabla 42. Resultados del ensayo 1049

Gráfico 62. Ajuste geomecánico del ensayo 1049 (valores pico)

Gráfico 63. Ajuste geomecánico del ensayo 1049 (valores residuales)

	Máxi	mo (Pico)	Mínimo (Residual)	Máxin	no (Pico)	Mínimo	(Residual)
Etapas	σn	$\tau = RADIO$	σn	τ	σ3	σ1	σ3	σ1
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
1	4.016	9.947	3.994	7.300	-5.931	13.963	-3.306	11.294
2	8.011	11.761	8.008	11.735	-3.749	19.772	-3.727	19.743
3	16.011	17.463	15.998	17.441	-1.453	33.474	-1.443	33.439
4	32.012	25.321	31.987	25.265	6.690	57.333	6.722	57.252
5	64.009	41.221	64.000	41.208	22.788	105.230	22.792	105.209

Tabla 43. Resultados del ensayo 1050

Gráfico 64. Ajuste geomecánico del ensayo 1050 (valores pico)

Gráfico 65. Ajuste geomecánico del ensayo 1050 (valores residuales)

4.3.1.3. Resultados de los Ensayos de Corte Directo

• Resultados de Dilatancia

Tubla 441 Resultade	
Muestra	Dilatancia (mm)
806	2.6
810	2
812	1
813	1.6
814-1	0.1
814-2	0.5
814-3	0.1
817	0.5
829	0.5
831	1.8
832-1	3.5
832-2	0.8
834	3.5
Promedio	1.4

Tabla 44. Resultados de Dilatancia del ED

Tabla 45. Resultados de Dilatancia del El

Muestra	Dilatancia (mm)
795	0.7
796	1.8
801	1.3
802	1.7
804	2
805	1.1
808	1.6
816	0.1
828-2	1.6
830	3.3
833-1	1
1011	0.4
1013	0.3
1014	3.8
1015	0.5
1016	1.6
1042	0
1049	0.4
1050	1
Promedio	1.3

Rugosidad

Tabla 46. Caracterización de las rugosidades del Estribo Derecho

Gráfico 66. Valores del JRC según su perfil de rugosidad, Estribo Derecho

Tabla 47. Caracterización de las rugosidades del Estribo Izquierdo

Gráfico 67. Valores del JRC según su perfil de rugosidad, Estribo Izquierdo

- Resultados totales y globales de los ensayos de Corte Directo
 - o Estribo Derecho

Ensayo	Cohesión (MPa)	ф
806	3.334	31.369
810	8.573	37.88
812	6.295	28.044
813	3.255	39.942
814-1	3.925	28.757
814-2	2.391	27.427
814-3	1.527	24.047
817	3.645	23.354
829	1.24	34.502
831	1.153	27.268
832-1	0.868	34.712
832-2	7.737	21.049
834	1.987	36.239

Gráfico 68. Ajuste geomecánico global del Estribo Derecho (valores pico)

Tabla 49. Resultados Globales Estribo Derecho (valores pic	ribo Derecho (valores pico)
--	-----------------------------

Cohesión (MPa)	ф
2.359	36.247

Ensayo	Cohesión (MPa)	φ
806	2.814	31.781
810	8.351	38.126
812	5.261	28.406
813	3.17	39.889
814-1	2.668	31.486
814-2	2.435	24.818
814-3	0	23.358
817	3.29	23.756
829	1.139	34.296
831	1.54	26.571
832-1	0.383	35.686
832-2	5.639	23.234
834	1 577 27 202	

 Tabla 50.
 Resultados totales Estribo Derecho (valores residuales)

Gráfico 69. Ajuste geomecánico global del Estribo Derecho (valores residuales)

Tabla 51.	Resultados Glob	oales Estribo	Derecho (valores residuales
			•	

Cohesión (MPa)	ф
2.064	34.705

o Estribo Izquierdo

Muestra	Cohesion (MPa)	ф
795	5.404	25.198
796	9.652	15.911
801	5.374	18.714
802	5.545	24.585
804	7.265	23.033
805	17.798	27.396
808	19.971	24.561
816	3.206	16.649
828-2	1.737	40.196
830	1.081	45.862
833-1	1.493	30.744
1011	15.283	12.588
1013	8.636	27.936
1014	4.565	31.221
1015	6.829	29.186
1016	3.061	27.329
1042	7.422	28.28
1049	4.007	16.431
1050	8 219	27 514

Tabla 52. **Resultados totales Estribo Izquierdo (valores pico)**

Gráfico 70. Ajuste geomecánico global del Estribo Izquierdo (valores pico)

abla	53. Resultados Globale	Resultados Globales Estribo Izquierdo (valor		
	Cohesión (MPa)	ф		
	4.255	37.486		

Tabla 53.	Resultados Globales Estribo Izquierdo (valores pico)
-----------	--

Muestra	Cohesión (MPa)	ф
795	5.218	25.741
796	5.586	22.398
801	4.77	20.381
802	5.388	24.97
804	3.886	27.556
805	12.666	32.385
808	14.27	32.528
816	1.776	19.446
828-2	1.638	40.024
830	0.756	46.377
833-1	1.453	30.653
1011	15.433	11.711
1013	8.663	27.875
1014	6.957	9.508
1015	1.851	36.336
1016	2.259	29.174
1042	6.655	28.684
1049	3.742	16.613
1050	7.103	28.54

 Tabla 54.
 Resultados totales Estribo Izquierdo (valores residuales)

Gráfico 71. Ajuste geomecánico global del Estribo Izquierdo (valores residuales)

Tabla 55.	Resultados	Globales	Estribo Iz	zquierdo	(valores	residuales)
-----------	------------	----------	------------	----------	----------	-------------

Cohesión (MPa)	ф
3.954	35.453

RESULTADOS: ANÁLISIS Y DISCUSIÓN

Como se pudo observar en los resultados, las dilatancias presentan una apertura muy prominente en la mayoría de los ensayos, con valores promedios de 1.3 mm para el estribo izquierdo y 1.4 mm para el estribo derecho (ver tablas 45 y 44), introduciéndolos dentro del tipo de rugosidad ondulada. Los valores mínimos que se obtuvieron, son poco indicativos de la rugosidad real que se encuentra en el macizo, esto pudo ser consecuencia de la gran meteorización que sufrió el espécimen ensayado al momento de aplicarle la carga normal. Por tal motivo se decidió tomar el máximo como parámetro de rugosidad, ya que estos se adecuan con lo que se observó en el macizo, teniendo así como valores JRC = 14 para el estribo derecho y JRC = 15 para el estribo izquierdo (ver tablas 47 y 46), ubicándose dentro del tipo de rugosidad ondulada e intensificada respectivamente. (Ver fig. 292 y 293).

De igual manera se analizaron los resultados de corte de directo, realizados mediante la aplicación de carga normal y sometidos a diversas etapas con cargas altas para lograr romper la cohesión de las discontinuidades (véase reporte de ensayo de corte directo en Anexos). Los datos fueron procesados mediante el criterio de Mohr-Coulomb, generando como resultado parámetros geomecánicos de cohesión y ángulo de fricción competentes, alrededor de 2 MPa y 34° para el estribo Derecho y 4 Mpa y 32° para el estribo izquierdo (ver tablas 49, 51, 53 y 55). Estos valores reflejan que el macizo requiere esfuerzos muy altos para poder ser cortado y provocar una caída de roca en los taludes.

En la relación entre los resultados de corte y el índice de rugosidad quedan evidenciados los datos obtenidos en cada caso; ya que los valores de cohesión y fricción son elevados. Esto indica que la cohesión conseguida en las muestras se logró superar las rugosidades de las discontinuidades, donde las rugosidades son muy profundas, creando saltos muy grandes (ver reporte de ensayo de corte directo en Anexos).

Tomando en cuenta lo analizado anteriormente, es posible afirmar que el macizo rocoso en cuestión es de muy buena calidad. Sin embargo, los valores indican mayor probabilidad de caída en el estribo derecho, ya que cuenta con menos cohesión y un índice de rugosidad menor. Además de contar con material mucho más meteorizado y fallado.

4.3.2. Ensayos de Corte Directo en caras lisas

Ver ensayos de corte directo en Anexos.

4.3.2.1. Resultados de Ensayos

Estribo Derecho

Ensayo	Cohesión (MPa)	ф
822	0	26.702
810	0.7	19.43
812	0.505	21.135
813	0.349	23.472
814-1	0.304	23.573

 Tabla 56.
 Resultados totales Estribo Derecho caras lisas(valores pico)

Gráfico 72. Ajuste geomecánico global del Estribo Derecho caras lisas (valores pico)

Tabla 57.	Resultados Globales Estribo Derecho caras lisas (valores i	bico	١
		1010105	p	,

Cohesión (MPa)	ф
0.549	24.554

Ensayo	Cohesión (MPa)	ф	
822	0	27.113	
810	0.404	15.08	
812	0.300	19.498	
813	0.19	24.525	
814-1	0.256	23.855	

DSH caras lisas Estribo Derecho (valores residuales)

Gráfico 73. Ajuste geomecánico global del Estribo Derecho caras lisas (valores residuales)

Tabla 59. Resultados Globales Estribo Derecho caras lisas (valores residuales)

Cohesión (MPa)	φ
0.28	23.956

Estribo Izquierdo

Ensayo	Cohesión (MPa)	ф	
825	0.7	19.43	
826	0389	32.009	
827-1	0.458	32.101	
827-2	0.383	30.815	

Tabla 60. Resultados totales Estribo Izquierdo caras lisas(valores pico)

Gráfico 74. Ajuste geomecánico global del Estribo Izquierdo caras lisas (valores pico)

Tabla 61.	Resultados Globales Estribo Izquierdo caras lisas (valores	pico)

Cohesión (MPa)	φ
0.550	30.256
0.550	30.256

Tabla 62. Resultados totales Estribo Izquierdo caras lisas(valores residuales)

Gráfico 75. Ajuste geomecánico global del Estribo Izquierdo caras lisas (valores residuales)

Tabla 63. Resultados Globales Estribo Izquierdo caras lisas (valores residuales)

Cohesión (MPa)	ф
0.452	29.622
0.452	29.022

Con los ensayos de corte directo con caras lisas realizados, se comprobó la afectación de la rugosidad en las discontinuidades del macizo, además se logró definir la variación del ángulo de fricción que oscila entre 23° en el estribo derecho y 29° en el estribo izquierdo, indicando que para ángulos mayores con valores de rugosidad muy bajos (por degradación de la roca por acción del agua o del aire), las rocas estarán más propensas a deslizarse y caer. Por otro lado, se obtuvieron valores de cohesión poco competentes 0.4 MPa para el estribo izquierdo y de 0.28 MPa para el derecho, correspondientes a un suelo duro. Esto devela que aunque los valores de rugosidad sean bajos, siempre se poseerá un valor de cohesión propenso al corte, reflejando así, una roca muy rugosa inclusive luego de sufrir altos grados de meteorización. De esta manera se observó que el estribo izquierdo es más competente al corte en condiciones desfavorables que el derecho.

4.3.2. Ensayos Triaxial Estático

4.3.2.1. Estribo Derecho

			-		
Muestra	σ1 Efectivo (MPa)	σ1 (MPa)	σ3 (MPa)	εεxial (%)	Prof (m)
980	57.659	62.159	4.5	1.203	34
997	99.52	103.02	3.5	1.566	31
1031	93.61	97.61	4	1.201	28
1032	77.522	81.522	4	1.200	28
1033	110.865	115.865	5	1.333	35
1034	207.895	212.895	5	1.816	36
1035	149.917	154.917	5	1.939	37
981	171.175	175.675	4.5	2.543	33

 Tabla 64.
 Resultados de los ensayos triaxiales Estribo Derecho

Gráfico 76. Ajuste geomecánico de los ensayos triaxiales del Estribo Derecho

Gráfico 77. Curvas esfuerzo vs deformación globales del Estribo Derecho

4.3.2.2. Estribo Izquierdo

Muestra	σ1 Efectivo (MPa)	σ1 (MPa)	σ3 (MPa)	εεxial (%)	Prof (m)
835	100.827	105.327	4.5	1.186	33
808-A	97.63	100.13	2.5	1.270	17
808-B	93.966	96.466	2.5	1.067	17
833-B	141.28	144.28	3	1.731	22
996	68.131	70.631	2.5	1.474	18
1036	58.667	64.667	6	1.276	43
1037	85.462	91.462	6	1.333	45
1044	59.89	63.89	4	1.221	23
1047	45.468	49.468	4	1.116	24
1048	95.972	99.972	4	1.181	26

 Tabla 65.
 Resultados de los ensayos triaxiales Estribo Izquierdo

Gráfico 78. Ajuste geomecánico de los ensayos triaxiales del Estribo Izquierdo

Gráfico 79. Curvas esfuerzo vs deformación globales del Estribo Izquierdo
4.3.2.3. Esfuerzos y deformaciones en función de la profundidad

	σ1 efe	ectivo (MPa)	63	ixial (%)
Estribo	Promedio	Desviación estándar	Promedio	Desviación estándar
Izquierdo	84.729	27.787	1.285	0.194
Derecho	121.020	50.880	1.600	0.478
0 -				
	-			
_	-	1 ·	Profundidad vs E	sfuerzo Efectivo
5 -	-		🔴 🔴 🔴 Estribo [Derecho
	1		Estribol	zquierdo
10 -	-		Promedi	o Estribo Izquierdo
10 -	-		— Promodi	o Estribo Izquicido
	7			O Estino Derecho
- 15 -	-			
Ē	=			
L)	∃ ♦			
- ²⁰				
ă	F		•	
Ď.	∃♦ ▼	I .		
· 7 ²⁵ -	-			
č	=			
<u> </u>	-			
o ~	-			
2	-			
<u>ч</u> ₃₅ -				
	-			
	-		Ť	
40 -	-			
	∃ 🔺			
15 -	<u> </u>			
40 -	-			
	7			
50 -		·····		
	1	1	I I	. 1
	40 60 8	80 100 120	140 160	180 200 220
		Esflierza Efa	ctivo (Mn	a)
	I			aj

Tabla 66. Resultados de los ensayos triaxiales Estribo Izquierdo

Gráfico 80. Profundidad vs Esfuerzo efectivo global

Gráfico 81. Profundidad vs deformación axial global

CAPITULO 4

RESULTADOS: ANÁLISIS Y DISCUSIÓN

Los resultados obtenidos en los ensayos triaxiales, reportaron los valores de resistencia a profundidad que puede soportar el macizo de cada estribo, en donde se puede observar valores de esfuerzo axial efectivo en promedio de alrededor de 80MPa para el estribo izquierdo y 120Mpa para derecho, y con deformaciones que no sobrepasan el 2%. Las roturas de las gráficas esfuerzo vs deformación (ver gráficos 70 y 72), de los ensayos indican un material sumamente resistente pero frágil, esto quiere decir que la falla en el mineral ocurre de forma violenta, ya que se necesita de mucha energía para poder deformarlo.

De igual manera podemos caracterizar estos esfuerzos efectivos dentro de las clasificaciones de (ISRM, 1979) y de la *Geological Society of London* en la categoría de Dura y según (Bieniawski, 1989) en Media para el estribo izquierdo (ver fig. 297), y para el estribo derecho que fue el mayor en valores de resistencia al esfuerzo axial efectivo, se clasificó como una roca muy dura para (ISRM, 1979) y la *Geological Society of London* y Alta para (Bieniawski, 1989) (véase Reportes de Ensayos Triaxiales en Anexos). Los valores de esfuerzos elevados indican que la roca estará en la capacidad de soportar una gran cantidad de carga sobre ella. (Ver clasificaciones según su resistencia a la compresión simple en Anexos)

En dichos ensayos se puede reflejar que el estribo derecho tiene mayor resistencia que el izquierdo, pero esto no quiere decir que sea de menor calidad. Como se puede observar en la gráfico 80 de profundidad vs esfuerzo efectivo, los valores del estribo izquierdo están más concentrados en la recta promedio, en cambio los del estribo derecho se encuentran mucho más dispersos. Esto quiere decir que el comportamiento del macizo rocoso en el estribo izquierdo sigue una tendencia determinada y que en el derecho esa tendencia se disipa. También se obtuvo que las deformaciones a medida que se profundizaba eran menores en el estribo izquierdo que para el derecho (ver gráfico 81), de igual manera se observa que los datos del estribo izquierdo están concentrados a la recta promedio y los del derecho dispersos en torno al promedio.

Se pudo determinar de esta manera que las roca estudiada es una roca competente a profundidad, esto quiere decir que no tendrá problemas de resistencia ni deformaciones en el macizo y que la roca del estribo derecho es en valores de resistencia menor que la del izquierdo pero tiende a sufrir más deformaciones.

4.3.3. Ensayos de Compresión Uniaxial

4.3.3.1. Estribo Derecho

	Tabla 67.	Resultados de los ensa	yos de compresión	simple del Estribo Derech
--	-----------	------------------------	-------------------	---------------------------

Muestra	Esfuerzo Axial (MPa)	Deformación Axial (%)	Módulo de Elasticidad Tangente al 50% (GPa)	Módulo de Elasticidad Secante al 50% (GPa)
1027	42.33	0.65	9.25	6.15
1028	58.07	0.76	7.04	6.69
1029	32.93	0.53	6.79	6.16
1030	17.55	0.37	15.09	4.68
789	56.74	0.64	11.37	7.94
790	102.36	0.87	10.56	9.55
792	40.35	0.57	10.17	6.69

Gráfico 82. Representación gráfica de los esfuerzos del estribo derecho

Gráfico 83. Curvas Esfuerzos vs Deformación del estribo derecho

4.3.3.2. Estribo Izquierdo

Tabla 68.	Resultados de los ensay	os de compresión sir	nple del Estribo Izquierdo
-----------	-------------------------	----------------------	----------------------------

Muestra	Esfuerzo Axial (MPa)	Deformación Axial (%)	Módulo de Elasticidad Tangente al 50% (GPa)	Módulo de Elasticidad Secante al 50% (GPa)
793	84.89	0.72	11.01	10.41
794	78.87	0.84	8.3	8.43
1038	67.76	0.69	10.65	8.58
1039	67.42	0.78	8.13	7.23
1040	33.24	0.55	12.08	5.7
1045	58.93	1.02	4.35	4.74
1046	71.80	0.86	8.07	7.78

Gráfico 84. Representación gráfica de los esfuerzos del estribo izquierdo

Gráfico 85. Curvas Esfuerzos vs Deformación del estribo izquierdo

4.3.3.3. Relación módulos de elasticidad vs resistencia a la compresión simple

		•	• •
Estribo	Muestra	Esfuerzo Axial (MPa)	Módulo de Elasticidad Tangente al 50% (GPa)
	789	42.33	9.250
	790	58.07	7.040
	792	32.93	6.790
Derecho	1027	44.33	15.090
	1028	58.06	11.370
	1029	32.92	10.560
	1030	17.54	10.170
	793	84.89	11.010
	794	78.87	8.300
	1038	67.76	10.650
Izquierdo	1039	67.42	8.130
	1040	33.24	12.080
	1045	58.93	4.350
	1046	71.80	8.070

Tabla 69. Resultados totales de los ensayos de compresión simple

Гabla 70.	Valores	promedios	de los	ensayos	UCS con	n su resp	oectiva	desviación	estándar
-----------	---------	-----------	--------	---------	---------	-----------	---------	------------	----------

Ectribo	Esfuerzo /	Axial (MPa)	Deformación Axial (%)		Módulo de Elasticidad Tangente al 50% (GPa)		
ESTIDO	Promedio	Desviación estándar	Promedio	Desviación estándar	Promedio	Desviación estándar	
Derecho	50.047	26.921	0.627	0.161	10.039	2.821	
Izquierdo	66.130	16.754	0.780	0.148	8.941	2.581	

Gráfico 86. Clasificación de (Deer & Miller, 1966) según la relación entre el módulo de elasticidad tangente al 50% y la resistencia uniaxial

De los resultados obtenidos en los ensayos de compresión simple se obtuvo, que la roca del estribo derecho es menos competente reportando un valor de 50 MPa, que la del estribo izquierdo que presenta un valor de 66 MPa, a la compresión no confinada promedio, sin embargo están dentro del mismo rango de referencia, dentro de la categoría de roca dura según él (ISRM, 1979) y la *Geological Society of London y roca media según* (Bieniawski, 1989) (ver fig. 297). El comportamiento mecánico de las rocas de los estribos es similar y está comprendido en su mayoría por un material frágil-dúctil y algunas frágiles, con roturas violentas propias de un material competente y duro (ver reportes de compresión uniaxial en Anexos).

De igual manera se observó que los resultados de los esfuerzos fueron considerables con valores máximos entre 80 y 100 MPa con deformaciones muy pequeñas. También se clasifico según sus parámetros mecánicos, como el módulo de elasticidad tangente, donde se obtuvo módulos promedios para el estribo derecho y el izquierdo, de entre 10 y 9 GPa respectivamente, obteniendo así rocas de muy alta rigidez, y un comportamiento cuasi-elástico (ver fig. 295), lo cual queda evidenciado con las gráficas 83 y 85 y los valores de módulo de elasticidad obtenidos (ver fig. 296)). Dentro de la clasificación de (Deer & Miller, 1966) la cual a partir del módulo de elasticidad tangente al 50 % y la resistencia a la compresión simple, arroja como resultado el tipo de roca (ver fig. 294), en este ámbito se consiguió tener valores para el estribo derecho de resistencia media y baja rigidez, obteniendo un tipo de roca se aproxima a un esquisto de foliación gruesa.

CAPITULO 4

4.4. ANÁLISIS DE ESTABILIZACIÓN EN LOS TALUDES

Para realizar el estudio de estabilidad en la presa, se tomó el criterio de zonificar cada uno de los estribos, dividiendo el área en distintas zonas con sus respectivos taludes (ver Plano de Zonificación en Anexos). Debido a lo dificultoso para la toma de datos estructurales y a problemas de logística o derrumbes de algunos taludes, más que todo en el estribo derecho, existen zonas donde no se pudo obtener información, pero en su mayoría si se logró la toma de valores (ver Planos estructurales de los estribos derecho e izquierdo en Anexos).

Se realizaron los análisis cinemáticos y mecánicos de estabilidad en roca, con fallas tipo plana y de cuña, las cuales fueron las observadas en los frentes de los taludes. En los casos de falla plana se estudió a través de los polos de las discontinuidades, donde todos aquellos que estaban dentro de la zona de falla presentaron inestabilidad y las de cuña con las familias principales que se obtuvieron, donde los puntos de intersección de las familias que cayeran sobre la zona de falla presentaban inestabilidad, cabe acotar que hay taludes donde se obtuvieron una sola familia y se tomó los puntos de intersección de las discontinuidades particularmente. Se utilizó la nomenclatura R para referirse al estribo derecho y L para el estribo izquierdo.

4.4.1. Estribo Derecho

Se hicieron los estudios con un ángulo de fricción promedio de 34º y de 2MPa de cohesión.

4.4.1.1. Zona 1-R

• Análisis Cinemático

	Est	ribo Derecho	The	0	Dia Diasatian	
Zona	Rumbo	Buzamiento	про	DIP	Dip Direction	
	N45W	75S	Falla	75	225	
	N80W	25S	Falla	25	190	
	N55W	70S	Diaclasa	70	215	
	N30W	70S	Diaclasa	70	240	
	N65W	75S	Falla	75	205	
	N60W	75S	Diaclasa	75	210	
	N25E	65N	Diaclasa	65	295	
	N75W	65S	Falla	65	195	
Zona 1	N72W	35S	Falla	35	198	
N10W40S	N40W	65S	Falla	65	230	
	N35W	55S	Falla	55	255	
	N55W	80S	Falla	80	215	
	N50W	65S	Falla	65	220	
	N60E	65N	Falla	65	330	
	N75W	70N	Falla	70	15	
	E-W	60S	Falla	60	180	
	N30W	57S	Falla	57	240	
	N35W	38N	Diaclasa	38	55	

Tabla 71. Discontinuidades presentes en el talud de la zona 1-R

Symbol	ΠΡΟ					Quantity
٥	Diaclasa					5
×	Falla					13
Kinem	atic Analysis	Pla	nar Slic	ling		
	Slope Dip	40	6			
Slope Dip Direction 260			0			
F	riction Angle	34	•			
L	ateral Limits	20	0			
				Critical	Total	%
	Planar S	lidin	g (All)	0	18	0.00%
	Plot Mo	de	Pole \	ectors		
	Vector Cou	nt	18 (1	B Entries)		
Hemisphere			Lower			
	Projectio	on	Equal	Angle		

Figura 46. Estudio de falla plana en zona 1-R

Familias Principales	Rumbo	Buzamiento
1	N63W	30S
2	N41W	725
3	N11W	56S

Color	Density Concentrations					
	0.00		1.90			
	1.90	-	3.80			
	3.80	-	5.70			
	5.70		7.60			
	7.60	-	9.50			
	9.50	-	11.40			
	11.40	-	13.30			
	13.30	-	15.20			
	15.20	-	17.10			
	17.10	-	19.00			
Maximum Density	18.89%					
Contour Data	Pole Vecto	ors				
Contour Distribution	Fisher					
Counting Circle Size	1.0%					
Plot Mode	Pole Vecto	ors				
Vector Count	18 (18 En	tries	.)			
Hemisphere	Lower					
Projection	Equal Ang	le				

Figura 47. Concentración de polos y familias en zona 1-R

	Color	Dip	Dip Direction	Label
	-	Us	er Planes	
1		40	260	Talud 1
		Mean	Set Planes	
1m		30	207	
2m		72	229	
3m		56	259	
	P	lot Mode	Pole Vectors	
Vector Count			18 (18 Entries)	
Hemisphere		Lower		
Projection		Equal Angle		

Figura 48. Estudio de falla en cuña en zona 1-R

Plot Mode	Rosette
Plot Data	Apparent Strike
Face Normal Trend	0.0
Face Normal Plunge	90.0
Bin Size	10°
Outer Circle	5 planes per arc
Planes Plotted	15
Minimum Angle To Plot	45.0°
Maximum Angle To Plot	90.0°

Figura 49. Roseta de orientaciones de la zona 1-R

No se encontraron planos de ningún tipo que puedan fallar en el talud de la zona 1-R.

4.4.1.2. Zona 2-R

• Análisis Cinemático

7	Estr	ibo Derecho	Tine	Din	Din Dinastian
Zona	Rumbo	Buzamiento	про	DIp	Dip Direction
	N62W	Vertical	Diaclasa	90	208
	N55W	65S	Diaclasa	65	215
	N15W	40S	Diaclasa	40	255
	N45W	35S	Falla	35	225
	N-S	70W	Falla	70	90
	N65W	75S	Diaclasa	75	205
	E-W	Vertical	Falla	90	0
	N80W	Vertical	Diaclasa	90	10
	N55W	Vertical	Falla	90	35
	N5E	72N	Diaclasa	72	275
	N55W	15S	Diaclasa	75	215
	N75E	65N	Diaclasa	65	345
	N85W	70S	Diaclasa	70	185
Zona 2	N80E	45S	Diaclasa	45	170
N65W40S	N45E	70N	Diaclasa	70	315
	N5E	80S	Diaclasa	80	95
	N20E	80S	Diaclasa	80	110
	N60E	65S	Diaclasa	65	150
	N40W	60S	Diaclasa	65	230
	N70E	63N	Diaclasa	63	340
	N85E	40S	Diaclasa	40	175
	N75E	85S	Diaclasa	85	165
	N24W	56S	Diaclasa	56	246
	N82E	385	Diaclasa	38	172
	N10E	74N	Diaclasa	74	280
	N10E	275	Diaclasa	27	280
	N25E	35N	Diaclasa	35	295
	N85W	60S	Diaclasa	60	275

Tabla 73. Discontinuidades presentes en el talud de la zona 2-R

+

Symbol	ПРО				(Quantity		
٥	Diaclasa 24			24				
×	Falla					4		
Kinem	Kinematic Analysis P			Planar Sliding				
	Slope Dip	40	0					
Slope I	Dip Direction	205						
Fi	Friction Angle			34°				
L	ateral Limits	20	0					
				Critical	Total	%		
	Planar S	lidin	g (All)	1	28	3.57%		
	Planar Slidin	ng (Set 1)	1	3	33.33%		
	Plot Mo	de	Pole V	/ectors				
	Vector Count			t 28 (28 Entries)				
	Hemisphere			e Lower				
	Projection			Angle				

Figura 50. Estudio de falla plana en zona 2-R

Familias Principales	Rumbo	Buzamiento
1	N87W	40S
2	N20E	73N
3	N46W	79S
4	N85E	64N
5	N73W	90

Tabla 74. Familias principales de la Zona 2-R

Color		Density Co	once	entrations
	-	0.00	-	1.00
		1.00	-	2.00
		2.00		3.00
		3.00	-	4.00
		4.00	-	5.00
		5.00	-	6.00
		6.00	-	7.00
		7.00	-	8.00
		8.00	-	9.00
		9.00	-	10.00
Maximum	Density	9.71%		
Conte	our Data	Pole Vecto	ors	
Contour Dist	ribution	Fisher		
Counting C	ircle Size	1.0%		
P	ot Mode	Pole Vecto	ors	
Vector Count		28 (28 En	tries	;)
Hemisphere		Lower		
Projection		Equal Angle		

Figura 51. Concentración de polos y familias en zona 2-R

Syml	bol TIPO			Q	uantity
0	Diacla	sa			24
×	Falla				4
	Color	Dip	Dip Direction	Label	
		Us	er Planes		
1		40	205	Talud	
		Mean	Set Planes		
1m		40	183		
2m		73	290		
3m		79	224		
4m		64	355		
5m		90	197		
	P	lot Mode	Pole Vectors		
Vector Count			28 (28 Entries)		
Hemisphere			Lower		
	P	rojection	Equal Angle		

Figura 52. Estudio de falla en cuña en zona 2-R

Plot Mode	Rosette
Plot Data	Apparent Strike
Face Normal Trend	0.0
Face Normal Plunge	90.0
Bin Size	10°
Outer Circle	5 planes per arc
Planes Plotted	22
Minimum Angle To Plot	45.0°
Maximum Angle To Plot	90.0°

Figura 53. Roseta de orientaciones de la zona 2-R

Tipo de Falla	Rumbo	Buzamiento
Plana 1	N82E	385
C:::=== 1	N87W	40S
Cuna I	N20E	73N

Tabla 75. Resultados cinemáticos de la zona 2-R

• Análisis Mecánico

• Falla plana 1 (N82E38S)

Figura 54. Configuración del talud y resultados del análisis mecánico de la falla plana de la zona 2-R

Figura 55. Vista en 3D de la configuración de la falla plana 1 de la zona 2-R

Tabla 76.	Resultados con Cohesión 2 MPa en
	falla plana 1 de la zona 2-R

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	34	1.938
	30	1.809
	25	1.661
2	20	1.526
2	15	1.398
	10	1.277
	5	1.159
	0	1.043

Tabla 78.	Resultados con Cohesión 1 MPa en
	falla plana 1 de la zona 2-R

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	34	1.416
	30	1.287
1	25	1.14
	20	1.004
	15	0.876
	10	0.755
	5	0.637
	0	0.521

Resultados con Cohesión 1.5 MPa en Tabla 77. falla plana 1 de la zona 2-R

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	34	1.677
	30	1.548
1.5	25	1.401
	20	1.265
	15	1.138
	10	1.016
	5	0.898
	0	0.781

Tabla 79.	Resultados con Cohesión 0.5 MPa en
	falla plana 1 de la zona 2-R

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	34	1.156
0.5	30	1.027
	25	0.879
	20	0.743
	15	0.616
	10	0.494
	5	0.376
	0	0.26

Cohesión	Angulo de	Factor de
(MPa)	Fricción φ	Seguridad
	34	0.895
	30	0.766
0	25	0.618
	20	0.483
	15	0.355
	10	0.233
	5	0.116
	0	0

Gráfico 87. Determinación de la zona límite de la falla plana 1 en la zona 2-R

o Falla en cuña 1

Factor de	Altura de Talud	Ancho de Cuña	Volumen de	Peso de Cuña	Recta de in	ntersección
Seguridad	(m)	(m)	Cuña (m3)	(ton)	Ángulo	Longitud(m)
2.72196	29	4.91471	299.171	807.762	36	49.2847

Tabla 81. Resultados del Análisis Mecánico de la Cuña 1 en la zona 2-R

Figura 56. Vista de perfil de la configuración de la falla en cuña 1 de la zona 2-R

Tabla 82.

Figura 57. Vista en 3D de la configuración de la falla en cuña 1 de la zona 2-R

Resultados con Cohesión 2 MPa en

falla en cuña 1 de la zona 2-R		
Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	34	2.719
	30	2.552
	25	2.361
2	20	2.184
2	15	2.019
	10	1.861
	5	1.708
	0	1.557

30	2.332
25	2.361
20	2 18/

Tabla 84.	Resultados con Cohesión 1 MPa en
	falla en cuña 1 de la zona 2-R

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	34	1.94
	30	1.773
1	25	1.581
	20	1.405
	15	1.24
	10	1.082
	5	0.929
	0	0.778

Tabla 83.	Resultados con Cohesión 1.5 MPa en
	falla en cuña 1 de la zona 2-R

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	34	2.329
	30	2.162
1.5	25	1.971
	20	1.795
	15	1.629
	10	1.471
	5	1.318
	0	1.168

Tabla 85.	Resultados con Cohesión 0.5 MPa en
	falla en cuña 1 de la zona 2-R

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	34	1.551
	30	1.383
	25	1.192
0.5	20	1.016
0.5	15	0.85
	10	0.693
	5	0.54
	0	0.389

Tabla 86. Resultados con Cohesión 0 MPa en falla en cuña 1 de la zona 2-R

Gráfico 88. Determinación de la zona límite de la falla en cuña 1 en la zona 2-R

En esta zona se observó que las direcciones preferenciales de las discontinuidades son N40-50W y N10-20E. Los factores de seguridad de las falla plana y en cuña fueron 1.94 y 2.72 respectivamente, indicando así que no se puede producir ningún tipo de deslizamiento.

4.4.1.3. Zona 3-R

• Análisis Cinemático

7	Estribo Derecho		Tine	Din		
zona	Rumbo	Buzamiento	про	DIP	Dip Direction	
	N30E	50S	Diaclasa	50	120	
	N-S	Vertical	Diaclasa	90	90	
	N65W	70S	Diaclasa	70	205	
	N75W	80S	Falla	80	195	
	E-W	35S	Falla	35	180	
	N10E	55S	Diaclasa	55	100	
Zona 3	N55W	75S	Falla	75	215	
N55E38S	N70E	75S	Diaclasa	75	160	
	N60W	65S	Falla	65	210	
	N70W	Vertical	Falla	90	20	
	N30W	65S	Diaclasa	65	240	
	N25E	60S	Diaclasa	60	115	
	E-W	60S	Diaclasa	60	180	
	N40W	73S	Falla	73	230	

Tabla 87. Discontinuidades presentes en el talud de la zona 3-R

Symbol	ΤΙΡΟ				Q	uantity
۰	Diaclasa					8
×	Falla					6
Kinem	atic Analysis	Pla	nar Slid	ling		
	Slope Dip	38	È.			
Slope I	Dip Direction	14	5			
Fi	Friction Angle 34°		•			
L	ateral Limits	20	0			
				Critical	Total	%
Planar Slid		lidin	g (All)	0	14	0.00%
Plot Mode		de	Pole \	/ectors		
Vector Count		nt	14 (14 Entries)			
Hemisphere		e Lower				
Projection		Equal Angle				

Figura 58. Estudio de falla plana en zona 3-R

Familias Principales	Rumbo	Buzamiento				
1	N34E	55S				
2	N60W	85S				
3	N48W	70S				
4	N23W	69S				

Tabla 88.Familias principales de la Zona 3-R

Color	Density Concentrations
	0.00 - 1.80
	1.80 - 3.60
	3.60 - 5.40
	5.40 - 7.20
	7.20 - 9.00
	9.00 - 10.80
	10.80 - 12.60
	12.60 - 14.40
	14.40 - 16.20
	16.20 - 18.00
Maximum Density	17.92%
Contour Data	Pole Vectors
Contour Distribution	Fisher
Counting Circle Size	1.0%
Plot Mode	Pole Vectors
Vector Count	t 14 (14 Entries)
Hemisphere	e Lower
Projection	Equal Angle

Figura 59. Concentración de polos y familias en zona 3-R

Figura 60. Estudio de falla en cuña en zona 3-R

Plot Mode	Rosette
Plot Data	Apparent Strike
Face Normal Trend	0.0
Face Normal Plunge	90.0
Bin Size	10°
Outer Circle	5 planes per arc
Planes Plotted	13
Minimum Angle To Plot	45.0°
Maximum Angle To Plot	90.0°

Figura 61. Roseta de orientaciones de la zona 3-R

No se encontraron planos de ningún tipo que puedan fallar en el talud de la zona 3-R.

4.4.1.4. Zona 4-R

Tabla 89. Discontinuidades presentes en el talud de la zona 4-R						
Zono Es		bo Derecho	Tino	Din	Din Direction	
2011a	Rumbo	Buzamiento	про	Ыр	Dip Direction	
	N50W	70S	Diaclasa	70	220	
	N6W	35N	Diaclasa	35	84	
	N82W	50S	Diaclasa	50	188	
	N38E	75N	Diaclasa	75	308	
Zona 4	N28E	65S	Diaclasa	65	118	
N53W40S	N60W	66S	Diaclasa	66	210	
	N10E	65S	Diaclasa	65	100	
	N80W	37S	Diaclasa	37	190	
	N75E	355	Diaclasa	35	165	
	N85E	45S	Diaclasa	45	175	

Análisis Cinemático

Symbol TIPO				0	Quantity
◊ Diaclasa	 Diaclasa 				10
Kinematic Analysis	Pla	inar Slid	ling		
Slope Dip	40	1			
Slope Dip Direction	21	7			
Friction Angle	34°				
Lateral Limits	20°				
			Critical	Total	%
Planar Slidin		ig (All)	1	10	10.00%
Planar Slidir	ıg (Set 1)	1	4	25.00%
Plot Mo	de	Pole \	/ectors		
Vector Count		t 10 (10 Entries)			
Hemisphere		Lower			
Projection		Equal Angle			

Figura 62. Estudio de falla plana en zona 4-R

Familias Principales	Rumbo	Buzamiento
1	N80W	42S
2	N43W	68S
3	N41E	65S

Tabla 90. Familias principales de la Zona 4-R

Color	Density Concentrations
	0.00 - 1.90
	1.90 - 3.80
	3.80 - 5.70
	5.70 - 7.60
	7.60 - 9.50
	9.50 - 11.40
	11.40 - 13.30
	13.30 - 15.20
	15.20 - 17.10
	17.10 - 19.00
Maximum Density	18.23%
Contour Data	Pole Vectors
Contour Distribution	Fisher
Counting Circle Size	1.0%
Plot Mode	Pole Vectors
Vector Count	10 (10 Entries)
Hemisphere	Lower
Projection	Equal Angle

Figura 63. Concentración de polos y familias en zona 4-R

	Color	Dip	Dip Direction	Label
		Us	er Planes	
1		40	217	Talud
		Mean	Set Planes	
1m		41	192	
2m		68	227	
3m		65	121	
	P	lot Mode	Pole Vectors	
	Vect	or Count	10 (10 Entries)	
	He	misphere	Lower	
	р	rojection	Equal Angle	

Figura 64. Estudio de falla en cuña en zona 4-R

Plot Mode	Rosette
Plot Data	Apparent Strike
Face Normal Trend	0.0
Face Normal Plunge	90.0
Bin Size	20°
Outer Circle	5 planes per arc
Planes Plotted	7
Minimum Angle To Plot	45.0°
Maximum Angle To Plot	90.0°

Figura 65. Roseta de orientaciones de la zona 4-R

Tabla 91.	Resultados de la zona 4-R		
Tipo de Falla	Rumbo	Buzamiento	
Plana 1	N80W	37S	

134 Vicente Johan Manuel Rico

Figura 66. Configuración del talud y resultados del análisis mecánico de la falla plana de la zona 4-R

Figura 67. Vista en 3D de la configuración de la falla plana 1 de la zona 4-R

Tabla 92.	Resultados con Cohesión 2 MPa er
	falla plana 1 de la zona 4-R

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
2	34	3.055
	30	2.925
	25	2.778
	20	2.642
	15	2.515
	10	2.393
	5	2.275
	0	2.159

Tabla 94.	Resultados con Cohesión 1 MPa en
	falla plana 1 de la zona 4-R

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	34	1.974
	30	1.845
	25	1.698
1	20	1.562
T	15	1.435
	10	1.313
	5	1.195
	0	1.079

Tabla 93.Resultados con Cohesión 1.5 MPa en
falla plana 1 de la zona 4-R

	-	
Cohesión	Angulo de	Factor de
(IVIPa)	Friccion ϕ	Seguridad
	34	2.514
	30	2.385
	25	2.238
1 5	20	2.102
1.5	15	1.975
	10	1.853
	5	1.735
	0	1.619

Tabla 95.	Resultados con Cohesión 0.5 MPa	
	falla plana 1 de la zona 4-R	

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	34	1.435
	30	1.306
	25	1.158
0.5	20	1.022
0.5	15	0.895
	10	0.773
	5	0.656
	0	0.539

Tabla 96.	Resultados con Cohesión 0 MPa en falla	plana 1 de la zona 4-R

Cohesión (MPa)	Angulo de Fricción de	Factor de
(IVIF d)	ΓΠΟΟΠΨ	Seguiluau
	34	0.895
	30	0.766
	25	0.618
0.5	20	0.483
0.5	15	0.355
	10	0.233
	5	0.116
	0	0

n Cohesión 2 MPa en 🛛 Tabla 93

Gráfico 89. Determinación de la zona límite de la falla plana 1 en la zona 4-R

En esta zona la dirección preferencial de discontinuidades es N40-50E, y el factor de seguridad obtenido en falla plana 1 es de 3.05 por lo tanto es estable. Para que pueda ocurrir un deslizamiento el valor de cohesión tiene que llegar a 0.

4.4.1.5. Zona 5-R

• Análisis Cinemático

En esta zona no se pudo obtener datos estructurales debido a la logística de la zona, ya que se encontraban excavando. Por tal motivo se utilizaron los datos de los taludes cercanos con un rumbo similar al del talud de esta zona N67W45S. Las zonas seleccionadas fueron 2,4 y 10. Las discontinuidades se pueden observar en las tablas 66, 71 y 84.

Symbol	ΤΙΡΟ				(Quantity
0	Diaclasa					34
×	Falla					12
Kinem	atic Analysis	Pla	inar Slid	ling		
	Slope Dip	45	(
Slope Dip Direction 203		3				
Friction Angle 34		4°				
L	ateral Limits	20	0			
				Critical	Total	%
Planar Slidir		lidin	ıg (All)	4	46	8.70%
	Planar Sliding (Set 1)	4	7	57.14%
	Plot Mo	de	Pole \	/ectors		
Vector Count		46 (46 Entries)				
Hemisphere		Lower				
Projection		Equal Angle				

Figura 68. Estudio de falla plana en zona 5-R

Familias Principales	Rumbo	Buzamiento
1	N83W	41S
2	N66W	77S
3	N43W	69S

Tabla 97.	Familias	principales	de la	Zona 5-R
	i annua3	principales	u L 10	

Color	Density Concentrations
	0.00 - 1.20
	1.20 - 2.40
	2.40 - 3.60
	3.60 - 4.80
	4.80 - 6.00
	6.00 - 7.20
	7.20 - 8.40
	8.40 - 9.60
	9.60 - 10.80
	10.80 - 12.00
Maximum Dens	ity 11.24%
Contour Da	ta Pole Vectors
Contour Distributi	on Fisher
Counting Circle S	ize 1.0%
Plot Mo	de Pole Vectors
Vector Cou	nt 46 (46 Entries)
Hemisphe	ere Lower
Projecti	on Equal Angle

Figura 69. Concentración de polos y familias en zona 5-R

	Color	Dip	Dip Direction	Label
		Us	er Planes	0.
1		45	203	Talud
		Mean	Set Planes	
1m		41	188	
2m		78	204	
3m		69	227	
	1	Plot Mode	Pole Vectors	
	Vec	tor Count	46 (46 Entries)	
	Hemisphere		Lower	
	Projection		Equal Angle	

Figura 70. Estudio de falla en cuña en zona 5-R

Plot Mode	Rosette	
Plot Data	Apparent Strike	
Face Normal Trend	0.0	
Face Normal Plunge	90.0	
Bin Size	10°	
Outer Circle	10 planes per arc	
Planes Plotted	37	
Minimum Angle To Plot	45.0°	
Maximum Angle To Plot	90.0°	

Figura 71. Roseta de orientaciones de la zona 5-R

Tipo de Falla	Rumbo	Buzamiento
Plana 1	E-W	38S
Plana 2	N85E	40S
Plana 3	N85E	42S
Plana 4	N82E	385

Tabla 98. Resultados de la zona 5-R

• Análisis Mecánico

o Falla plana 1 (E-W38S)

Figura 72. Configuración del talud y resultados del análisis mecánico de la falla plana 1 de la zona 5-R

Figura 73. Vista en 3D de la configuración de la falla plana 1 de la zona 5-R

Tabla 99.	Resultados con Cohesión 2 MPa en
	falla plana 1 de la zona 5-R

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	34	1.445
	30	1.32
	25	1.178
2	20	1.047
2	15	0.924
	10	0.807
	5	0.693
	0	0.581

Tabla 100. Resultados con Cohesión 1.5 MPa en falla plana 1 de la zona 5-R

Cohesión	Angulo de	Factor de
(MPa)	Fricción φ	Seguridad
	34	1.299
	30	1.175
	25	1.033
4 5	20	0.902
1.5	15	0.779
1.5	10	0.661
	5	0.548
	0	0.436
	15 10 5 0	0.779 0.661 0.548 0.436

Tabla 101.Resultados con Cohesión 1 MPa en
falla plana 1 de la zona 5-R

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	34	1.154
	30	1.029
	25	0.887
1	20	0.756
1	15	0.633
	10	0.516
	5	0.402
	0	0.29

Tabla 102.Resultados con Cohesión 0.5 MPa en
falla plana 1 de la zona 5-R

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	34	1.008
	30	0.884
	25	0.742
0.5	20	0.611
0.5	15	0.488
	10	0.371
	5	0.257
	0	0.145

Tabla 103. Resultados con Cohesión 0 MPa en falla plana 1 de la zona 5-R

Gráfico 90. Determinación de la zona límite de la falla plana 1 en la zona 5-R

o Falla plana 2 (N84E40S)

Figura 74. Configuración del talud y resultados del análisis mecánico de la falla plana 2 de la zona 5-R

Figura 75. Vista en 3D de la configuración de la falla plana 2 de la zona 5-R

Tabla 104.	Resultados con Cohesión 2 MPa en	
	falla plana 2 de la zona 5-R	

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	34	1.583
	30	1.467
2	25	1.334
	20	1.212
	15	1.098
	10	0.989
	5	0.883
	0	0.779

Tabla 106.	Resultados con Cohesión 1 MPa en
	falla plana 2 de la zona 5-R

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	34	1.193
	30	1.077
1	25	0.945
	20	0.823
	15	0.708
	10	0.599
	5	0.493
	0	0.389

Tabla 105.Resultados con Cohesión 1.5 MPa en
falla plana 2 de la zona 5-R

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	34	1.388
	30	1.272
1.5	25	1.14
	20	1.018
	15	0.903
	10	0.794
	5	0.688
	0	0.584

Tabla 107.	Resultados con Cohesión 0.5 MPa en
	falla plana 2 de la zona 5-R

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	34	0.998
	30	0.882
0.5	25	0.75
	20	0.628
	15	0.514
	10	0.404
	5	0.299
	0	0.194

Tabla 108.	Resultados con Cohesión 0 MPa en falla	plana 2 de la zona 5-R

	1	
Cohesión	Angulo de	Factor de
(MPa)	Fricción φ	Seguridad
	34	0.803
	30	0.688
0.5	25	0.555
	20	0.433
	15	0.319
	10	0.21
	5	0.104
	0	0

Gráfico 91. Determinación de la zona límite de la falla plana 2 en la zona 5-R

Figura 76. Configuración del talud y resultados del análisis mecánico de la falla plana 3 de la zona 5- R

Figura 77. Vista en 3D de la configuración de la falla plana 3 de la zona 5-R

falla plana 3 de la zona 5-R		
Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	34	1.995
	30	1.887
	25	1.764
2	20	1.65
Z	15	1.543
	10	1.442
	5	1.343
	0	1.246

Tabla 109. Resultados con Cohesión 2MPa en

Tabla 111. Resultados con Cohesión 1MPa en falla plana 3 de la zona 5-R

	-	
Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	34	1.372
	30	1.264
1	25	1.141
	20	1.027
	15	0.92
	10	0.819
	5	0.72
	0	0.623

Tabla 110.Resultados con Cohesión 1.5MPa enfalla plana 3 de la zona 5-R

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	34	1.683
	30	1.576
1.5	25	1.452
	20	1.339
	15	1.232
	10	1.13
	5	1.031
	0	0.934

Tabla 112.	Resultados con Cohesión 0.5MPa en
	falla plana 3 de la zona 5-R

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	34	1.06
	30	0.952
	25	0.829
0.5	20	0.715
0.5	15	0.609
	10	0.507
	5	0.408
	0	0.311

Tabla 113. Resultados con Cohesión OMPa en falla plana 3 de la zona 5-R

Gráfico 92. Determinación de la zona límite de la falla plana 3 en la zona 5-R

En esta zona se obtuvo las direcciones preferenciales de las discontinuidades N50 - 55W y N60 – 70W, no se tomó la discontinuidad N82W38S, debido a que existe otra con el mismo buzamiento pero el rumbo es más cercano al del talud. Los factores de seguridad fueron 1.45, 1.5 y 2 respectivamente, lo cual indica que las tres configuraciones son completamente estables. Para que pueda ocurrir un deslizamiento el valor de cohesión tiene que llegar a 0.

4.4.1.6. Zona 6-R

• Análisis Cinemático

En esta zona tampoco se pudo obtener ningún tipo de información estructural, debido a los que estaba siendo escavado el talud y resulto imposible su muestreo. De igual manera se tomaron discontinuidades de los cercanos con rumbo parecido a este talud N54W37S. Estas zonas fueron 1,7 y 8. Ver las discontinuidades en las tablas 65, 115 y 117.

Familias Principales	Rumbo	Buzamiento
1	N51W	75S
2	N23W	71S
3	N45E	40N
4	N14W	44N

 Tabla 114.
 Familias principales de la Zona 6-R

Color		Density C	onc	entrations		
		0.00	1	1.30		
		1.30	2	2.60		
		2.60	20	3.90		
		3.90	-	5.20		
		5.20	2	6.50		
		6.50	2	7.80		
		7.80	2	9.10		
		9.10	-	10.40		
		10.40	-	11.70		
		11.70	- 2	13.00		
Maximur	n Density	12.31%				
Cont	our Data	Pole Vect	ors			
Contour Dis	tribution	Fisher				
Counting (Circle Size	1.0%				
P	lot Mode	Pole Vecto	ors			
Vect	or Count	35 (35 Entries)				
He	misphere	Lower				
P	rojection	Equal Ang	le			

Figura 78. Concentración de polos y familias en zona 6-R

RE	E S	U	LT	A	D	0	S	:	A	Ν	Á	L	I	S	I	S	Y	D	I	S	C	U	Ş	5	•	Ś	N

Symbol	ΤΙΡΟ				Q	uantity			
٥	Diaclasa					18			
×	Falla					17			
Kinem	atic Analysis	Pla	inar Slic	ling					
	Slope Dip	37							
Slope I	Dip Direction	21	216						
Fi	riction Angle	34°							
L	ateral Limits	20	20°						
			- (Critical	Total	%			
	Planar S	lidin	ig (All)	1	35	2.86%			
	Plot Mo	de	Pole \	ectors/					
	Vector Cou	nt	35 (35 Entries)						
	Hemisphe	Lower							
	Projectio	on	Equal Angle						

Figura 79. Estudio de falla plana en zona 6-R

	Color	Dip	Dip Direction	Label
		Use	er Planes	
1		37	216	Talud
		Mean	Set Planes	
1m		75	219	
2m		71	247	
3m		40	315	
4m		44	76	
	P	lot Mode	Pole Vectors	
Vector Count			35 (35 Entries)	
Hemisphere		Lower		
	P	rojection	Equal Angle	

Figura 80. Estudio de falla en cuña en zona 6-R

Plot Mode	Rosette	
Plot Data	Apparent Strike	
Face Normal Trend	0.0	
Face Normal Plunge	90.0	
Bin Size	10°	
Outer Circle	5 planes per arc	
Planes Plotted	28	
Minimum Angle To Plot	45.0°	
Maximum Angle To Plot	90.0°	

Figura 81. Roseta de orientaciones de la zona 6-R

Tipo de Falla	Rumbo	Buzamiento
Plana 1	N72W	35S

Tabla 115. Resultados de la zona 6-R

• Análisis Mecánico

• Falla plana 1 (N72W35S)

Figura 82. Configuración del talud y resultados del análisis mecánico de la falla plana 1 de la zona 6-R

Análisis Geomecánico y Estabilidad de los Estribos en la Presa sobre El Río Cuira del Sistema Tuy IV en el Sector El Dinero, Municipio Acevedo, Estado Miranda

Figura 83. Vista en 3D de la configuración de la falla plana 1 de la zona 6-R

Tabla 116.	Resultados con Cohesión 2 MPa en
	falla plana 1 de la zona 6-R

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	34	4.144
	30	4.005
	25	3.847
2	20	3.701
2	15	3.564
	10	3.433
	5	3.306
	0	3.181

Tabla 117.Resultados con Cohesión 1.5 MPa en
falla plana 1 de la zona 6-R

	-	
Cohesión	Angulo de	Factor de
(MPa)	Fricción φ	Seguridad
	34	3.349
	30	3.21
	25	3.052
1 5	20	2.905
1.5	15	2.768
	10	2.637
	5	2.511
	0	2.386

Tabla 118.Resultados con Cohesión 1 MPa en
falla plana 1 de la zona 6-R

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	34	2.554
	30	2.415
	25	2.256
1	20	2.11
1	15	1.973
	10	1.842
	5	1.715
	0	1.59

Tabla 119.Resultados con Cohesión 0.5 MPa en
falla plana 1 de la zona 6-R

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	34	1.758
	30	1.619
	25	1.461
0.5	20	1.315
0.5	15	1.178
	10	1.047
	5	0.92
	0	0.795

Tabla 120. Resultados con Cohesión OMPa en falla plana 1 de la zona 6-R

Gráfico 93. Determinación de la zona límite de la falla plana 1 en la zona 6-R

En esta zona se obtuvo las direcciones preferenciales de las discontinuidades N40 - 60W y N20 - 30W. El factor de seguridad obtenido fue de 4.14, lo cual indica que la configuración es completamente estable. Para que pueda ocurrir un deslizamiento el valor de cohesión tiene que llegar a 0.

4.4.1.7. Zona 7-R

• Análisis Cinemático

Tabla 121. Discontinuidades presentes en el talud de la zona 7-R

7000	Estribo Derecho		Tine	Din	Din Direction
2011a	Rumbo	Buzamiento	про	Dip	Dip Direction
	N70W	85S	Falla	85	210
	N80W	85S	Falla	85	200
	N80W	75S	Falla	75	200
Zona 7	N80W	75S	Falla	75	200
N15W37S	N5W	70S	Diaclasa	70	265
	N15E	70S	Diaclasa	70	105
	N-S	70E	Diaclasa	70	90
	E-W	90	Diaclasa	90	0

Symbol	Symbol TIPO				Q	uantity	
0	Diaclasa					4	
×	Falla					4	
Kinem	atic Analysis	Pla	anar Slid	ling			
	Slope Dip	37	0				
Slope Dip Direction 25			255				
Friction Angle 34			4°				
L	ateral Limits	20	0				
				Critical	Total	%	
	Planar S	lidir	ig (All)	0	8	0.00%	
	Plot Mo	de	Pole \	/ectors			
Vector Count			8 (8 Entries)				
Hemisphere			Lower				
	Projectio	on	Equal Angle				

Figura 84. Estudio de falla plana en zona 7-R

Familias Principales	Rumbo	Buzamiento	
1	N55W	80S	
2	N19E	70S	

Tabla 122	Eamilias	nrincipalos	do	la Zona	7_D
	Familias	principales	ae	la zona	/-к

Color		Density Co	once	entrations	
		0.00	2	3.50	
		3.50	-	7.00	
		7.00	-	10.50	
		10.50	2	14.00	
		14.00	2	17.50	
		17.50	2	21.00	
		21.00	2	24.50	
		24.50	-	28.00	
		28.00	-	31.50	
		31.50	2	35.00	
Maximum De	ensity	34.81%			
Contour	Data	Pole Vecto	ors		
Contour Distrib	ution	Fisher			
Counting Circle	e Size	1.0%			
Plot	Mode	Pole Vecto	ors		
Vector C	ount	8 (8 Entrie	es)		
Hemis	phere	Lower			
Proje	ction	Equal Ang	le		

Figura 85. Concentración de polos y familias en zona 7-R

	Color	Dip	Dip Direction	Label
		Us	er Planes	
1		37	216	
		Mean	Set Planes	
1m		80	215	
2m		70	109	
	F	lot Mode	Pole Vectors	
	Vect	tor Count	8 (8 Entries)	
	He	emisphere	Lower	
	F	Projection	Equal Angle	

Figura 86. Estudio de falla en cuña en zona 7-R

Plot Mode	Rosette
Plot Data	Apparent Strike
Face Normal Trend	0.0
Face Normal Plunge	90.0
Bin Size	10°
Outer Circle	5 planes per arc
Planes Plotted	8
Minimum Angle To Plot	45.0°
Maximum Angle To Plot	90.0°

1 1 1 1 1 1 1 1 1 1	Figura 87.	Roseta	de	orientaciones	de	la zona	7-R
---------------------------------------	------------	--------	----	---------------	----	---------	-----

No se encontraron planos de ningún tipo que puedan fallar en el talud de la zona 7-R.

4.4.1.8. Zona 8-R

	Tabla 123. Discon	tinuidades presente	es en el talud	de la zona 8-l	R
7000	Estribo E	Derecho	Tine	Din	
2011a	Rumbo	Buzamiento	про	Dip	Dip Direction
	N22W	53N	Diaclasa	53	68
	N10E	46N	Diaclasa	46	280
	N26W	43S	Diaclasa	43	244
7000 9	N63E	51N	Diaclasa	51	333
	N34E	40N	Diaclasa	40	304
111000203	N34W	75S	Diaclasa	75	236
	N32E	40N	Diaclasa	40	302
	N35W	74S	Diaclasa	74	235
	N24W	42N	Diaclasa	42	66

• Análisis Cinemático

Figura 88. Estudio de falla plana en zona 8-R

Familias Principales	Rumbo	Buzamiento
1	N22W	74S
2	N11W	74N
3	N45E	40N

Color		Density C	onc	entrations	_
		0.00	-	2.20	_
		2.20	-	4.40	
		4.40	-	6.60	
		6.60	-	8.80	
		8.80	-	11.00	
		11.00	-	13.20	
		13.20	-	15.40	
		15.40	-	17.60	
		17.60	-	19.80	
		19.80		22.00	
Maximu	m Density	21.97%			
Con	tour Data	Pole Vecto	ors		
Contour Di	stribution	Fisher			
Counting	Circle Size	1.0%			
1	Plot Mode	Pole Vecto	ors		_
Vec	tor Count	9 (9 Entrie	es)		
He	emisphere	Lower			
1	Projection	Equal Ang	le		

Figura 89. Concentración de polos y familias en zona 8-R

Análisis Geomecánico y Estabilidad de los Estribos en la Presa sobre El Río Cuira del Sistema Tuy IV en el Sector El Dinero, Municipio Acevedo, Estado Miranda

	Color	Dip	Dip Direction	Label		
		Us	er Planes			
1		30	252	Talud		
		Mean	Set Planes			
1m		74	248	1		
2m		47	79			
3m		40	315			
	F	lot Mode	Pole Vectors			
	Vect	tor Count	9 (9 Entries)			
	He	emisphere	Lower			
Projection		Equal Angle				

No hay zona de falla

Figura 90. Estudio de falla en cuña en zona 8-R

Plot Mode	Rosette
Plot Data	Apparent Strike
Face Normal Trend	0.0
Face Normal Plunge	90.0
Bin Size	10°
Outer Circle	5 planes per arc
Planes Plotted	5
Minimum Angle To Plot	45.0°
Maximum Angle To Plot	90.0°

Figura 91. Roseta de orientaciones de la zona 8-R

No se encontraron planos de ningún tipo que puedan fallar en el talud de la zona 8-R.

4.4.1.9. Zona 9-R

• Análisis Cinemático

Zona Estribo Derecho		Time	Dia	Din Dinastian	
Zona	Rumbo	Buzamiento	про	Dip	Dip Direction
	N89W	70S	Diaclasa	70	181
	N85E	30S	Diaclasa	30	175
	N45E	40S	Diaclasa	40	135
	N64W	43S	Diaclasa	43	206
7000 0	N82W	35S	Diaclasa	35	188
	N45E	66S	Diaclasa	66	135
10000243	N88E	65S	Diaclasa	65	178
	N34W	56S	Diaclasa	56	236
	N5E	84N	Diaclasa	84	85
	N67E	48S	Diaclasa	48	157
	N10W	55N	Diaclasa	55	80

Tabla 125. Discontinuidades presentes en el talud de la zona 9-R

Symbol	Feature	Feature					
٥	Pole Vectors	1					
Kinem	atic Analysis	Pla	ınar Slid	ing			
	Slope Dip	24					
Slope (Dip Direction	22	0				
Fi	Friction Angle 34°		0				
L	ateral Limits	20	•				
				Critical	Total	%	
Planar Sliding (ıg (All)	0	11	0.00%		
	Plot Mo	de	Pole V	ectors			
Vector Count		11 (11 Entries)					
Hemisphere		Lower					
Projection 8		Equal Angle					

No hay zona de falla

Figura 92. Estudio de falla plana en zona 9-R

Familias Principales	Rumbo	Buzamiento
1	N78W	67S
2	N67W	35S
3	N69E	43S

Tabla 126. Familias principales de la Zona 9-R

Color	Density Concentrations
	0.00 - 1.80
	1.80 - 3.60
	3.60 - 5.40
	5.40 - 7.20
	7.20 - 9.00
	9.00 - 10.80
	10.80 - 12.60
	12.60 - 14.40
	14.40 - 16.20
	16.20 - 18.00
Maximum Density	17.35%
Contour Data	Pole Vectors
Contour Distribution	Fisher
Counting Circle Size	1.0%
Plot Mode	Pole Vectors
Vector Count	11 (11 Entries)
Hemisphere	Lower
Projection	Equal Angle

Figura 93. Concentración de polos y familias en zona 9-R

	Color	Dip	Dip Direction	Label	
		Use	er Planes		
1		24	220	Talud	
		Mean	Set Planes		
1m		67	192		
2m		35 203			
3m		43	159		
Plot Mode		Pole Vectors			
Vector Count		11 (11 Entries)			
Hemisphere		Lower			
		Projection	Equal Angle		

No hay zona de falla

Figura 94. Estudio de falla en cuña en zona 9-R

Plot Mode	Rosette
Plot Data	Apparent Strike
Face Normal Trend	0.0
Face Normal Plunge	90.0
Bin Size	10°
Outer Circle	5 planes per arc
Planes Plotted	7
Minimum Angle To Plot	45.0°
Maximum Angle To Plot	90.0°

Figura 95. Roseta de orientaciones de la zona 9-R

No se encontraron planos de ningún tipo que puedan fallar en el talud de la zona 9-R.

4.4.1.10. Zona 10-R

	Tabla 127. Discontinuidades presentes en el talud de la zona 10-K						
7000	Estribo I	Tine	Dia				
Zona	Rumbo	Buzamiento	про	Dip	Dip Direction		
	N75W	835	Falla	83	195		
	N75W	85S	Falla	85	195		
	N80W	90	Falla	90	190		
Zona 10	N75W	75S	Falla	75	195		
N76W56S	N83W	75S	Falla	75	187		
	N76W	75S	Falla	75	194		
	N74W	755	Falla	75	196		
	N86W	535	Falla	53	184		

• Análisis Cinemático

 Tabla 127. Discontinuidades presentes en el talud de la zona 10-R

Symbol	Feature					
٥	Pole Vectors	cors				
Kinem	atic Analysis	Pla	inar Slid	ling		
	Slope Dip	56	i č			
Slope Dip Direction 194		194				
Friction Angle 34		34°				
L	ateral Limits	20	0			
				Critical	Total	%
	Planar S	lidin	ig (All)	1	8	12.50%
	Plot Mode		e Pole Vectors			
Vector Count		nt 8 (8 Entries)				
Hemisphere		e Lower				
	Projectio	on	Equal Angle			

Estudio de falla plana en zona 10-R Figura 96.

Tabla 128. Familia principal de la Zona 10-R

78S

Color	Density Concentrations		
	0.00 - 6.30		
	6.30 - 12.60		
	12.60 - 18.90		
	18.90 - 25.20		
	25.20 - 31.50		
	31.50 - 37.80		
and the second se	37.80 - 44.10		
	44.10 - 50.40		
	50.40 - 56.70		
	56.70 - 63.00		
Maximum Density	62.29%		
Contour Data	Pole Vectors		
Contour Distribution	Fisher		
Counting Circle Size	1.0%		
Plot Mode	Pole Vectors		
Vector Count	8 (8 Entries)		
Hemisphere	Lower		
Projection	Equal Angle		

Figura 97. Concentración de polos y familias en zona 10-R

Análisis Geomecánico y Estabilidad de los Estribos en la Presa sobre El Río Cuira del Sistema Tuy IV en el Sector El Dinero, Municipio Acevedo, Estado Miranda

Sym	bol Fea	ture					
0	Criti	cal Inters	ection	í.			
Ki	nematic /	Analysis	Wed	ge S	iding		
	SI	ope Dip	56				
Slo	ope Dip D	irection	194				
	Frictio	n <mark>Angl</mark> e	34°				
					Critical	Total	%
	Wedge			ding	7	28	25.00%
	Color	Dip		Dip	Direction	Label	
			User	Plan	es		
1		56			194	Talud	
		M	ean S	et P	lanes		
1m 📕 78			8		206		
Plot Mode			de P	ole \	ectors		
Vector Count Intersection Mode		nt 8	t 8 (8 Entries)				
		de G	rid D	ata Planes			
Intersections Count		nt 2	8				
Hemisphere			re L	owe			

Projection Equal Angle

Figura 98. Estudio de falla en cuña en zona 10-R

Plot Mode	Rosette
Plot Data	Apparent Strike
Face Normal Trend	0.0
Face Normal Plunge	90.0
Bin Size	10°
Outer Circle	10 planes per arc
Planes Plotted	8
Minimum Angle To Plot	45.0°
Maximum Angle To Plot	90.0°

Figura 99. Roseta de orientaciones de la zona 10-R

Tabla 129. R	esultados de l	la zona 10-R
--------------	----------------	--------------

Tipo de Falla	Rumbo	Buzamiento
Plana 1	N86W	53S

• Análisis Mecánico

• Falla plana 1 (N86W53S)

Figura 100. Configuración del talud y resultados del análisis mecánico de falla plana 1 de la zona 10-R

Figura 101. Vista en 3D de la configuración de la falla plana 1 de la zona 10-R

Análisis Geomecánico y Estabilidad de los Estribos en la Presa sobre El Río Cuira del Sistema Tuy IV en el Sector El Dinero, Municipio Acevedo, Estado Miranda

Tabla 130.	Resultados con Cohesión 2 MPa er		
	falla plana 1 de la zona 10-R		

Cohesión (MPa)	Angulo de Factor de	
(ועוד מ)		Jegunuau 2.467
	34	2.467
	30	2.394
	25	2.31
2	20	2.233
2	15	2.16
	10	2.091
	5	2.024
	0	1.958

Tabla 132.	Resultados con Cohesión 1 MPa en
	falla plana 1 de la zona 10-R

Cohesión Angulo de (MPa) Fricción ϕ		Factor de Seguridad	
	34	1.487	
	30	1.414	
	25	1.33	
1	20	1.253	
1	15	1.181	
	10	1.112	
	5	1.045	
	0	0.979	

Tabla 131.Resultados con Cohesión 1.5 MPa en
falla plana 1 de la zona 10-R

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad	
	34	1.977	
	30	1.904	
	25	1.82	
1 5	20	1.743	
1.5	15	1.671	
	10	1.602	
	5	1.535	
	0	1.469	

Tabla 133.	Resultados con Cohesión 0.5 MPa en
	falla plana 1 de la zona 10-R

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad	
	34	0.998	
	30	0.924	
	25	0.841	
0.5	20	0.764	
0.5	15	0.691	
	10	0.622	
	5	0.555	
	0	0.489	

Tabla 134. Resultados con Cohesión 0 MPa en falla plana 1 de la zona 1
--

Cohesión	Angulo de	Factor de	
(MPa)	Fricción φ	Seguridad	
	34	0.508	
	30	0.435	
0.5	25	0.351	
	20	0.274	
	15	0.209	
	10	0.132	
	5	0.065	
	0	0	

Gráfico 94. Determinación de la zona límite de la falla plana 1 en la zona 10-R

En esta zona se obtuvo la dirección preferencial de las discontinuidades de N60 - 70W. El factor de seguridad obtenido fue de 2.47, lo cual indica que la configuración es completamente estable. Para que pueda ocurrir un deslizamiento el valor de cohesión tiene que llegar a 0, sin embargo si la cohesión bajase a 1 Mpa .se tendría que tomar previsiones para aumentar su FS, ya que el valor es 1.

4.4.2. Estribo Izquierdo

Se hicieron los estudios con un ángulo de fricción promedio de 35° y de 4MPa de cohesión.

4.4.2.1. Zona 1-L

• Análisis Cinemático

Zona	Estribo Izquierdo		Tine	D'a	
	Rumbo	Buzamiento	про	DIP	Dip Direction
	N20E	30S	Falla	30	110
	N80W	45N	Falla	45	10
	N20E	355	Falla	35	110
	N20W	355	Falla	35	250
	N35E	255	Falla	25	125
	N85W	43S	Diaclasa	43	185
	N30E	63N	Diaclasa	63	120
	N35E	40S	Diaclasa	40	125
	N60W	Vertical	Cizalla	90	120
Zona 1	N75W	Vertical	Cizalla	90	105
N60E45S	N20E	55N	Cizalla	55	290
	N85W	83S	Diaclasa	83	185
	N35W	Vertical	Diaclasa	90	235
	N30E	75S	Diaclasa	75	120
	N15W	87N	Diaclasa	87	75
	N25W	50S	Diaclasa	50	245
	N35W	70N	Diaclasa	70	55
	N22W	35S	Diaclasa	35	248
	N75E	Vertical	Diaclasa	90	165
	N50E	355	Diaclasa	35	140

Symbol	ПРО				0)uantity
٥	Diaclasa					12
×	Falla					8
Kinematic Analysis		Planar Sliding				
	Slope Dip	45				
Slope I	Dip Direction	15	0			
Friction Angle		30°				
Lateral Limits		20°				
				Critical	Total	%
Planar S		lidin	g (All)	2	20	10.00%
	Planar Slidir	ıg (Set 2)	1	4	25.00%
	Plot Mo	de	Pole \	ectors/		
Vector Count		1t 20 (20 Entries)				
Hemisphere		Lower				
Projection		Equal Angle				

Figura 102. Estudio de falla plana en zona 1-L

Familias Principales	Rumbo	Buzamiento
1	N42E	69S
2	N39E	325
3	N9W	35S

Tabla 136. Familia principal de la zona 1-L

Color		Density Co	once	entrations
		0.00	-	1.30
		1.30	-	2.60
		2.60	-	3.90
		3.90	-	5.20
		5.20	-	6.50
		6.50	-	7.80
		7.80	-	9.10
		9.10	-	10.40
		10.40	-	11.70
		11.70	-	13.00
Maximum Density		12.73%		
Contou	r Data	Pole Vect	ors	
Contour Distrib	oution	Fisher		
Counting Circ	e Size	1.0%		
Plot	Mode	Pole Vect	ors	
Vector Count		20 (20 Entries)		
Hemisphere		Lower		
Projection		Equal Ang	le	

Figura 103. Concentración de polos y familias en la zona 1-L

Figura 104. Estudio de falla en cuña en zona 1-L

Análisis Geomecánico y Estabilidad de los Estribos en la Presa sobre El Río Cuira del Sistema Tuy IV en el Sector El Dinero, Municipio Acevedo, Estado Miranda

W

Plot Mode	Rosette	
Plot Data	Apparent Strike	
Face Normal Trend	0.0	
Face Normal Plunge	90.0	
Bin Size	10°	
Outer Circle	5 planes per arc	
Planes Plotted	12	
Minimum Angle To Plot	45.0°	
Maximum Angle To Plot	90.0°	

Figura 105. Roseta de orientaciones de la zona 1-L

Tipo de Falla	Rumbo	Buzamiento
Plana 1	N35E	40S
Plana 2	N50E	355

Tabla 137. Resultados Cinemáticos de la zona 1-L

Análisis Mecánico •

o Falla plana 1 (N35E40S)

Figura 106. Configuración del talud y resultados del análisis mecánico de falla plana 1 de la zona 1 -L

Análisis Geomecánico y Estabilidad de los Estribos en la Presa sobre El Río Cuira del Sistema Tuy IV en el Sector El Dinero, Municipio Acevedo, Estado Miranda

Figura 107. Vista en 3D de la configuración de la falla plana 1 de la zona 1-L

Tabla 138.	Resultados con Cohesión 4 MPa er		
	falla plana 1 de la zona 1-L		

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	4.99
	30	4.843
	25	4.711
4	20	4.589
4	15	4.474
	10	4.365
	5	4.259
	0	4.155

Tabla 140.Resultados con Cohesión 2 MPa en
falla plana 1 de la zona 1-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
2	35	2.912
	30	2.765
	25	2.633
	20	2.511
	15	2.396
	10	2.287
	5	2.181
	0	2.077

Tabla 139.Resultados con Cohesión 3 MPa en
falla plana 1 de la zona 1-L

-				
Cohesión	Angulo de	Factor de		
(MPa)	Fricción φ	Seguridad		
	35	3.95		
	30	3.804		
	25	3.672		
2	20	3.55		
5	15	3.435		
	10	3.326		
	5	3.22		
	0	3.116		

Tabla 141.Resultados con Cohesión 1 MPa en
falla plana 1 de la zona 1-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	1.873
	30	1.726
	25	1.594
4	20	1.472
T	15	1.358
	10	1.248
	5	1.143
	0	1.038

Zona 2-R

- Cohesion 4 MPa

Cohesion 3 MPa

Cohesion 2 MPa

Cohesion 1 MPa Cohesion 0 MPa

Linea Límite

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	0.834
0	30	0.688
	25	0.555
	20	0.433
	15	0.319
	10	0.21
	5	0.104
	0	0

Gráfico 95. Determinación de la zona límite de la falla plana 1 en la zona 10-R

Figura 108. Configuración del talud y resultados del análisis mecánico de falla plana 2 de la zona 1 - L

Figura 109. Vista en 3D de la configuración de la falla plana 2 de la zona 1-L

Análisis Geomecánico y Estabilidad de los Estribos en la Presa sobre El Río Cuira del Sistema Tuy IV en el Sector El Dinero, Municipio Acevedo, Estado Miranda

Tabla 143.	Resultados con Cohesión 4 MPa en
	falla plana 2 de la zona 1-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	3.337
	30	3.162
4	25	3.003
	20	2.857
	15	2.719
	10	2.589
	5	2.462
	0	2.337

Tabla 145.	Resultados con Cohesión 2 MPa en
	falla plana 2 de la zona 1-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	2.168
	30	1.993
2	25	1.834
	20	1.688
2	15	1.551
	10	1.42
	5	1.293
	0	1.168

Tabla 144.Resultados con Cohesión 3 MPa en
falla plana 2 de la zona 1-L

	-	
Cohesión	Angulo de	Factor de
(MPa)	Fricción 🖗	Seguridad
	35	2.752
	30	2.577
3	25	2.418
	20	2.272
	15	2.135
	10	2.004
	5	1.877
	0	1.752

Tabla 146.Resultados con Cohesión 1 MPa en
falla plana 2 de la zona 1-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	1.584
1	30	1.408
	25	1.25
	20	1.104
T	15	0.966
	10	0.836
	5	0.709
	0	0.584

Tabla 147. Resultados con Conesion o IVIPa en falla plana 2 de la zona 1	ohesión 0 MPa en falla plana 2 de la zona 1-	Tabla 147. Resultados con
--	--	---------------------------

		-
Cohesión (MPa)	Angulo de Fricción d	Factor de Seguridad
	Πιτιοτιτιφ	Segundad
	35	1
	30	0.824
0	25	0.665
	20	0.519
	15	0.382
	10	0.251
	5	0.124
	0	0

Gráfico 96. Determinación de la zona límite de la falla plana 1 en la zona 1-L

En esta zona se obtuvo la dirección preferencial de las discontinuidades de N40-50E. Los factores de seguridad obtenidos fueron 4.99 y 3.33, lo cual indica que las configuraciones son completamente estables. Para que pueda ocurrir un deslizamiento el valor de cohesión tiene que llegar a 0.

4.4.2.2. Zona 2-L

• Análisis Cinemático

7000	Estribo I	Estribo Izquierdo		Tino Din Din Diroc	
Zona	Rumbo	Buzamiento	про	Dip	Dip Direction
	N70E	45S	Falla	45	150
	N55W	40S	Falla	40	125
	N40W	55N	Diaclasa	55	30
	N50W	45S	Diaclasa	45	220
	N25W	5S	Falla	5	225
Zona 2	N30W	85N	Diaclasa	85	70
N15E40S	N85W	80S	Diaclasa	80	185
	N60E	85N	Diaclasa	85	320
	N50E	55S	Diaclasa	55	140
	N30E	205	Falla	20	120
	N15E	365	Falla	36	105
	N75E	70S	Falla	70	165

Symbol	ПРО	Quantit)uantity	
0	Diaclasa					6
×	Falla					6
Kinem	atic Analysis	Pla	inar Slic	ling		
	Slope Dip	39				
Slope I	Dip Direction	105				
Fi	riction Angle	35°				
L	ateral Limits	20	0			32
				Critical	Total	%
Planar Sliding (All)		ig (All)	1	12	8.33%	
	Planar Slidin	ıg (Set 1)	1	3	33.33%
Plot Mode Pol		Pole \	ectors			
Vector Count 12 (12 (1	12 (12 Entries)			
Hemisphere Low		Lowe	Lower			
Projection Equa		Equal	Angle			

Figura 110. Estudio de falla plana en zona 2-L

Familias Principales	Rumbo	Buzamiento
1	N38E	32S
2	N67E	50S

Tabla 149. Familia principal de la zona 2-L

Color	Density Concentrations
	0.00 - 1.70
	1.70 - 3.40
	3.40 - 5.10
	5.10 - 6.80
	6.80 - 8.50
	8.50 - 10.20
	10.20 - 11.90
	11.90 - 13.60
	13.60 - 15.30
	15.30 - 17.00
Maximum Dens	ity 16.12%
Contour D	ita Pole Vectors
Contour Distribut	on Fisher
Counting Circle S	ize 1.0%
Plot Mo	de Pole Vectors
Vector Cou	nt 12 (12 Entries)
Hemisph	ere Lower
Project	on Equal Angle

Figura 111. Concentración de polos y familias en la zona 2-L

Figura 112. Estudio de falla en cuña en zona 2-L

Plot Mode	Rosette
Plot Data	Apparent Strike
Face Normal Trend	0.0
Face Normal Plunge	90.0
Bin Size	10°
Outer Circle	5 planes per arc
Planes Plotted	8
Minimum Angle To Plot	45.0°
Maximum Angle To Plot	90.0°

Figura 113. Roseta de orientaciones de la zona 2-L

Tabla 150. Resultados Cinemáticos de la zona 2-

Tipo de Falla	Rumbo	Buzamiento
Plana 1	N15E	36S

- Análisis Mecánico
 - Falla plana 1 (N15E36S)

Figura 114. Configuración del talud y resultados del análisis mecánico de falla plana 1 de la zona 2 - L

Análisis Geomecánico y Estabilidad de los Estribos en la Presa sobre El Río Cuira del Sistema Tuy IV en el Sector El Dinero, Municipio Acevedo, Estado Miranda

Figura 115. Vista en 3D de la configuración de la falla plana 1 de la zona 2-L

falla plana 1 de la zona 2-L						
Cohesión	Angulo de	Factor de				
(MPa)	Fricción φ	Seguridad				
	35	4.834				
4	30	4.665				
	25	4.512				
	20	4.371				
	15	4.239				
	10	4.113				
	5	3.991				
	0	3.87				

Tabla 151. Resultados con Cohesión 4 MPa en falla plana 1 de la zona 2-L

Tabla 153.	Resultados con Cohesión 2 MPa en
	falla plana 1 de la zona 2-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	2.899
2	30	2.73
	25	2.577
	20	2.436
	15	2.304
	10	2.178
	5	2.055
	0	1.935

Tabla 152.Resultados con Cohesión 3 MPa en
falla plana 1 de la zona 2-L

· · · · · · · · · · · · · · · · · · ·					
Angulo de	Factor de				
Fricción 🖗	Seguridad				
35	3.866				
30	3.697				
25	3.544				
20	3.404				
15	3.271				
10	3.145				
5	3.023				
0	2.903				
	Angulo de Fricción φ 35 30 25 20 15 10 5 0				

Tabla 154.	Resultados con Cohesión 1 MPa en
	falla plana 1 de la zona 2-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	1.931
1	30	1.762
	25	1.609
	20	1.468
	15	1.336
	10	1.21
	5	1.088
	0	0.967

Tabla 155. Resultados con Cohesión 0 MPa en falla plana 1 de la zona 2-L

Gráfico 97. Determinación de la zona límite de la falla plana 1 en la zona 2-L

En esta zona se obtuvo la dirección preferencial de las discontinuidades de N60-70E. El factor de seguridad obtenido fue de 4.83, lo cual indica que la configuración es completamente estable. Para que pueda ocurrir un deslizamiento el valor de cohesión tiene que llegar a 0.

4.4.2.3. Zona 3-L

• Análisis Cinemático

7000	Estribo Izquierdo		Tine	Din	
Zona	Rumbo	Buzamiento	про	Dip	Dip Direction
	N20E	255	Diaclasa	25	110
	N40E	55S	Diaclasa	55	130
	N55E	50S	Diaclasa	50	145
	N25W	70N	Diaclasa	70	65
	N80W	35N	Diaclasa	35	10
Zona 3	N25W	75N	Diaclasa	75	65
N38W30N	E-W	67S	Diaclasa	67	180
	N86W	55N	Diaclasa	55	4
	N10E	40S	Diaclasa	40	100
	N70W	80N	Diaclasa	80	20
	N27E	75N	Falla	75	297
	N66E	75N	Falla	75	336

Symbol	ΠΡΟ				Ç	uantity
٥	Diaclasa					10
×	Falla	2				2
Kinem	atic Analysis	Pla	anar Slid	ling		
Slope Dip 30						
Slope Dip Direction 52						
Fi	riction Angle	30°				
L	ateral Limits	20°				
				Critical	Total	%
Planar Slidin			ıg (All)	0	12	0.00%
Plot Mode			e Pole Vectors			
Vector Count			12 (12 Entries)			
Hemisphere Lov			Lower	Lower		
Projection			Equal Angle			

|--|

Familias Principales	Rumbo	Buzamiento
1	N13W	73N
2	N72W	45N
3	N26E	32S
4	N59E	52S

Tabla 157. Familia principal de la zona 3-L

Color	Density Concentrations
	0.00 - 1.70
	1.70 - 3.40
	3.40 - 5.10
	5.10 - 6.80
	6.80 - 8.50
	8.50 - 10.20
	10.20 - 11.90
	11.90 - 13.60
	13.60 - 15.30
	15.30 - 17.00
Maximum Density	16.25%
Contour Data	Pole Vectors
Contour Distribution	Fisher
Counting Circle Size	1.0%
Plot Mode	Pole Vectors
Vector Count	12 (12 Entries)
Hemisphere	Lower
Projection	Equal Angle

Figura 117. Concentración de polos y familias en la zona 3-L

	Color	Dip	Dip Direction	Label
	a 12	Use	er Planes	·
1		30	52	Talud 3
	888 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -	Mean	Set Planes	
1m		73	77	
2m		45	18	
3m		32	116	
4m		52	149	
	P	lot Mode	Pole Vectors	
Vector Count		12 (12 Entries)		
Hemisphere		Lower		
	P	rojection	Equal Angle	
	No ha	ay zona de	e falla	

Figura 118. Estudio de falla en cuña en zona 3-L

Plot Mode	Rosette	
Plot Data	Apparent Strike	
Face Normal Trend	0.0	
Face Normal Plunge	90.0	
Bin Size	10°	
Outer Circle	5 planes per arc	
Planes Plotted	9	
Minimum Angle To Plot	45.0°	
Maximum Angle To Plot	90.0°	

Figura 119. Roseta de orientaciones de la zona 3-L

No se encontraron planos de ningún tipo que puedan fallar en el talud de la zona 3-L

4.4.2.4. Zona 4-L

• Análisis Cinemático

7000	Estribo Izquierdo		Tine	Din	Din Dinastian	
Zona	Rumbo	Buzamiento	про	Dip	Dip Direction	
	N40W	82N	Diaclasa	82	60	
	N70E	70N	Diaclasa	70	330	
	N60E	50S	Diaclasa	50	150	
	N45E	52S	Diaclasa	52	135	
	N30W	75N	Diaclasa	75	70	
	N40E	50S	Diaclasa	50	130	
	N50W	75N	Diaclasa	75	40	
	N25E	45S	Diaclasa	45	115	
	N20W	67N	Diaclasa	67	80	
	N25W	70S	Diaclasa	70	245	
	N40E	55S	Diaclasa	55	130	
	N20W	Vertical	Diaclasa	90	250	
	E-W	45N	Diaclasa	45	0	
	N40E	40S	Diaclasa	40	130	
	N25W	56N	Diaclasa	56	65	
	N10W	42S	Diaclasa	42	240	
Zona 4 N33W40N	N10E	55S	Diaclasa	55	100	
	N55W	Vertical	Diaclasa	90	35	
	N85E	30N	Diaclasa	30	355	
	N65E	75S	Diaclasa	75	155	
	N80W	85N	Diaclasa	85	10	
	N80E	37N	Falla	37	350	
	N65W	65S	Diaclasa	65	205	
	N15E	49S	Diaclasa	49	105	
	N60W	30S	Diaclasa	30	210	
	N35W	60N	Falla	60	55	
	N50W	36N	Diaclasa	36	40	
	N60W	50S	Diaclasa	50	210	
	N35W	75S	Falla	75	235	
	N70W	40N	Diaclasa	40	20	
	N65W	75N	Diaclasa	75	25	
	N60E	Vertical	Diaclasa	90	150	
	N22W	Vertical	Falla	90	68	
	N35W	65N	Falla	90	68	
	N35W	85N	Falla	85	55	
	N60W	55S	Falla	55	210	
	N3W	355	Falla	35	267	

Tabla 158. Discontinuidades presentes en el talud de la zona 4-L

Symbol	ΤΙΡΟ				ç	uantity
٥	Diaclasa					29
×	Falla					8
Kinem	atic Analysis	Pla	anar Slid	ling		
	Slope Dip	40	í.			
Slope Dip Direction 57			57			
Friction Angle 35			35°			
L	ateral Limits	20	0			
				Critical	Total	%
	Planar S	lidir	ng (All)	1	37	2.70%
	Plot Mo	de	Pole \	/ectors		
Vector Count		t 37 (37 Entries)				
Hemisphere		Lower				
Projection			Equal Angle			

Figura 120. Estudio de falla plana en zona 4-L

Familias Principales	Rumbo	Buzamiento
1	N53E	49S
2	N28E	50S
3	N14W	87N
4	N48W	53S
5	N83W	37N

Tabla 159. Familia principal de la zona 4-L

Figura 121. Concentración de polos y familias en la zona 4-L

	Color	Dip	Dip Direction	Label
		Use	er Planes	
1		40	57	Talud 4
		Mean	Set Planes	
1m		49	143	
2m		50	118	
3m		87	76	
4m		53	222	
5m		37	7	
	P	lot Mode	Pole Vectors	
	Vect	or Count	37 (37 Entries)	
	He	misphere	Lower	
	P	rojection	Equal Angle	

Figura 122. Estudio de falla en cuña en zona 4-L

Plot Mode	Rosette	
Plot Data	Apparent Strike	
Face Normal Trend	0.0	
Face Normal Plunge	90.0	
Bin Size	10°	
Outer Circle	5 planes per arc	
Planes Plotted	29	
Minimum Angle To Plot	45.0°	
Maximum Angle To Plot	90.0°	

Figura 123. Roseta de orientaciones de la zona 4-L

Tipo de Falla	Rumbo	Buzamiento
Plana 1	N50W	36N

Tabla 160. Resultados Cinemáticos de la zona 4-L

• Análisis Mecánico

• Falla plana 1 (N50W36N)

Figura 124. Configuración del talud y resultados del análisis mecánico de falla plana 1 de la zona 4 - L

Figura 125. Vista en 3D de la configuración de la falla plana 1 de la zona 4-L

Tabla 161.	Resultados con Cohesión 4 MPa en
	falla plana 1 de la zona 4-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
4	35	2.899
	30	2.73
	25	2.577
	20	2.436
	15	2.304
	10	2.178
	5	2.055
	0	1.935

Tabla 163.	Resultados con Cohesión 2 MPa en
	falla plana 1 de la zona 4-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	1.931
	30	1.762
	25	1.609
	20	1.468
2	15	1.336
	10	1.21
	5	1.088
	0	0.967

Tabla 162.Resultados con Cohesión 3 MPa en
falla plana 1 de la zona 4-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
-	35	2.415
	30	2.246
	25	2.093
	20	1.952
3	15	1.82
	10	1.694
	5	1.572
	0	1.451

Tabla 164.	Resultados con Cohesión 1 MPa en
	falla plana 1 de la zona 4-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	1.447
	30	1.278
	25	1.125
1	20	0.984
1	15	0.852
	10	0.726
	5	0.604
	0	0.483

Tabla 165. Resultados con Cohesión 0 MPa en falla plana 1 de la zona 4-L

Cohesión	Angulo de	Factor de
(MPa)	Fricción φ	Seguridad
	35	0.963
	30	0.794
	25	0.641
	20	0.5
U	15	0.368
	10	0.242
	5	0.12
	0	0

Gráfico 98. Determinación de la zona límite de la falla plana 1 en la zona 4-L

En esta zona se obtuvo la dirección preferencial de las discontinuidades de N70-80E y N10W. El factor de seguridad obtenido fue de 2.89, lo cual indica que la configuración es completamente estable. Para que pueda ocurrir un deslizamiento el valor de cohesión tiene que llegar a 0.

4.4.2.5. Zona 5-L

• Análisis Cinemático

7000	Estribo Izquierdo		Time	0.1	
Zona	Rumbo	Buzamiento	про	Dip	Dip Direction
	N77W	60N	Diaclasa	60	13
	N75W	75N	Diaclasa	75	15
	N25E	5S	Diaclasa	5	115
	N35W	45N	Diaclasa	45	55
	N35W	15N	Diaclasa	15	55
	N84W	35N	Diaclasa	35	6
	N52W	45N	Diaclasa	45	218
Zona 5	N48W	75S	Diaclasa	75	318
N12W53N	N18E	30S	Diaclasa	30	108
	N2E	64S	Diaclasa	64	92
	N38E	67S	Diaclasa	67	128
	N71W	68N	Diaclasa	68	19
	N55W	35N	Diaclasa	35	35
	N72E	40S	Diaclasa	40	162
	N10E	355	Diaclasa	35	100
	N33W	38N	Diaclasa	38	57

Tabla 166. Discontinuidades presentes en el talud de la zona 5-L

Symbol	ΤΙΡΟ				(Quantity
0	Diaclasa					16
Kinem	atic Analysis	Plan	har <mark>Slic</mark>	ling		
	Slope Dip	53				
Slope I	Dip Direction	78				
F	riction Angle	35	2			
L	ateral Limits	209	2			
				Critical	Total	%
	Planar S	lidin	g (All)	2	16	12.50%
	Planar Slidir	ng (S	Set 3)	2	2	100.00%
	Plot Mo	de	Pole \	/ectors		
Vector Count 16 (1			16 (1	6 Entries)	0	
	Hemisphere Lower					
Projection Equal Angle						

Figura 126. Estudio de falla plana en zona 5-L

Familias Principales	Rumbo	Buzamiento
1	N9W	9N
2	N26E	325
3	N22W	41N
4	N62W	68N

Tabla 167. Familia principal de la zona 5-L

Color		Density Concentrations			
		0.00	3	1.30	
		1.30		2.60	
		2.60		3.90	
		3.90	-	5.20	
		5.20	-	6.50	
		6.50	-	7.80	
		7.80	-	9.10	
		9.10	153	10.40	
		10.40		11.70	
		11.70	-	13.00	
Maximum Der	nsity	12.37%			, j
Contour	Data	Pole Vecto	ors		
Contour Distribu	tion	Fisher			
Counting Circle	Size	1.0%			
Plot M	Plot Mode		ors		
Vector Co	Vector Count		tries)	
Hemisp	Hemisphere]
Projec	Projection Equal Angle				

Figura 127. Concentración de polos y familias en la zona 5-L

Figura 128. Estudio de falla en cuña en zona 5-L

Plot Mode	Rosette	
Plot Data	Apparent Strike	
Face Normal Trend	0.0	
Face Normal Plunge	90.0	
Bin Size	10°	
Outer Circle	5 planes per arc	
Planes Plotted	8	
Minimum Angle To Plot	45.0°	
Maximum Angle To Plot	90.09	

Figura 129. Roseta de orientaciones de la zona 5-L

Tipo de Falla	Rumbo	Buzamiento
Plana 1	N33W	38N
Plana 2	N35W	45N
Cuião 1	N22W	41N
cuna 1	N62W	68N

Tabla 168. Resultados Cinemáticos de la zona 5-L

• Análisis Mecánico

• Falla plana 1 (N33W38N)

Figura 130. Configuración del talud y resultados del análisis mecánico de falla plana 1 de la zona 5 - L

Figura 131. Vista en 3D de la configuración de la falla plana 1 de la zona 5-L

falla plana 1 de la zona 5-L			
Cohesión	Angulo de Factor de		
(MPa)	Fricción 🗄	Seguridad	
	35	1.638	
	30	1.481	
	25	1.339	
4	20	1.208	
4	15	1.085	
	10	0.968	
	5	0.854	
	0	0.742	

Tabla 169. Resultados con Cohesión 4 MPa en

Tabla 171. Resultados con Cohesión 2 MPa en falla plana 1 de la zona 5-L

	-	
Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	1.267
	30	1.11
2	25	0.968
	20	0.837
	15	0.714
	10	0.596
	5	0.483
	0	0.371

Tabla 170. Resultados con Cohesión 3 MPa en falla plana 1 de la zona 5-L

-	····· [····· - ··· · · · · · · · · ·			
Cohesión	Angulo de	Factor de		
(MPa)	Fricción φ	Seguridad		
	35	1.453		
	30	1.295		
	25	1.153		
2	20	1.022		
3	15	0.899		
	10	0.782		
	5	0.668		
	0	0.556		

Tabla 172.	Resultados con Cohesión 1 MPa en
	falla plana 1 de la zona 5-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	1.081
	30	0.924
	25	0.782
1	20	0.651
1	15	0.528
	10	0.411
	5	0.297
	0	0.185

Falla Planar N33W38N

Zona 5-L

Cohesion 4 MPa

Cohesion 3 MPa

Cohesion 2 MPa

Cohesion 1 MPa Cohesion 0 MPa Linea Límite

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	0.896
	30	0.738
0	25	0.596
	20	0.465
	15	0.342
	10	0.225
	5	0.111
	0	0

• Falla plana 2 (N35W45N)

Figura 132. Configuración del talud y resultados del análisis mecánico de falla plana 2 de la zona 5 - L

Figura 133. Vista en 3D de la configuración de la falla plana 2 de la zona 5-L

Tabla 174.	Resultados con Cohesión 4 MPa en
	falla plana 2 de la zona 5-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	1.902
	30	1.779
4	25	1.668
	20	1.566
	15	1.47
	10	1.378
	5	1.289
	0	1.202

Tabla 176.	Resultados con Cohesión 2 MPa en
	falla plana 2 de la zona 5-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	1.301
	30	1.178
2	25	1.069
	20	0.965
	15	0.869
	10	0.777
	5	0.688
	0	0.601

Tabla 175.Resultados con Cohesión 3 MPa en
falla plana 2 de la zona 5-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	1.601
3	30	1.479
	25	1.368
	20	1.265
	15	1.169
	10	1.078
	5	0.989
	0	0.901

Tabla 177.	Resultados con Cohesión 1 MPa en
	falla plana 2 de la zona 5-L

Cohesión (MPa)	Angulo deFactor dFricción φSegurida			
	35	1		
1	30	0.877		
	25	0.766		
	20	0.664		
	15	0.568		
	10	0.476		
	5	0.388		
	0	0.3		

Tabla 178.	Resultados con	Cohesión 0 MPa	en falla	plana 2 de l	a zona 5-l

	-
Angulo de Fricción d	Factor de
ΓΠΟΟΙΟΙΙ Ψ	Jegunuau
35	0.7
30	0.577
25	0.466
20	0.363
15	0.267
10	0.176
5	0.087
0	0
	Angulo de Fricción ∳ 35 30 25 20 15 10 5 0

Gráfico 100. Determinación de la zona límite de la falla plana 2 en la zona 5-L

○ Falla en Cuña 1

	Tabla 179.	Resultados del Análisis Mecánico de la Cuña 1 en la zona 5-L
--	------------	--

Factor de	Altura de Talud	Ancho de Cuña	Volumen de	Peso de Cuña	Recta de ir	ntersección
Seguridad	(m)	(m)	Cuña (m3)	(ton)	Ángulo	Longitud (m)
3.212	20	9.475	1446.11	3904.49	38	32.367

Figura 134. Vista de perfil de la configuración de la falla en cuña 1 de la zona 5-L

Figura 135. Vista en 3D de la configuración de la falla en cuña 1 de la zona 5-L

ialia eli culla 1 de la 2011a 5-1				
Cohesión	Angulo de Factor de			
(MPa)	Fricción φ	Seguridad		
	35	3.211		
	30	2.93		
	25	2.677		
4	20	2.443		
4	15	2.223		
	10	2.014		
	5	1.811		
	0	1.611		

Tabla 180.Resultados con Cohesión 4 MPa en
falla en cuña 1 de la zona 5-L

Tabla 182.	Resultados con Cohesión 2 MPa en
	falla en cuña 1 de la zona 5-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	2.406
	30	2.125
	25	1.871
2	20	1.637
2	15	1.418
	10	1.208
	5	1.005
	0	0.805

Tabla 181.Resultados con Cohesión 3 MPa en
falla en cuña 1 de la zona 5-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	2.808
	30	2.528
2	25	2.274
	20	2.04
3	15	1.82
	10	1.611
	5	1.408
	0	1.208

Tabla 183.	Resultados con Cohesión 1 MPa en
	falla en cuña 1 de la zona 5-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	2.003
	30	1.722
	25	1.468
1	20	1.234
I	15	1.015
	10	0.805
	5	0.602
	0	0.402

Tabla 184. Resultados con Cohesión 0 MPa en falla en cuña 1 de la zona 5-L

Gráfico 101. Determinación de la zona límite de la falla en cuña 1 en la zona 5-L

En esta zona se obtuvo la dirección preferencial de las discontinuidades de N60-70E. Los factores de seguridad obtenidos fueron 1.638, 1.902 y 3.212, lo cual indica que las configuraciones son completamente estables. Para que pueda ocurrir un deslizamiento el valor de cohesión tiene que llegar a 0.

4.4.2.6. Zona 6-L

• Análisis Cinemático

7000	Estribo Izo	quierdo	Tine	Din	
2011a	Rumbo	nbo Buzamiento		Dip	Dip Direction
	N25E	80N	Diaclasa	80	295
	N48W	32N	Diaclasa	32	42
	N85W	8S	Diaclasa	8	185
	N48W	73N	Diaclasa	73	42
	N8E	60N	Diaclasa	60	278
Zona 6	N70W	30N	Diaclasa	30	20
N51W45N	N75E	45N	Diaclasa	45	345
	N25E	80S	Diaclasa	80	115
	N-S	45E	Diaclasa	45	90
	N52W	38N	Diaclasa	38	38
	N25W	75N	Diaclasa	75	65
	N55E	65N	Diaclasa	65	35

Tabla 185. Discontinuidades presentes en el talud de la zona 6-L

Symbol	Feature					
٥	Pole Vectors					
Kinem	atic Analysis	Pla	inar Slid	ling		
	Slope Dip	45	6			
Slope I	Dip Direction	39	6			
Fi	riction Angle	35	0			
L	ateral Limits	20	0			va
				Critical	Total	%
	Planar S	lidir	ig (All)	1	12	8.33%
	Planar Slidin	ıg (Set 1)	1	3	33.33%
	Plot Mo	de	Pole \	/ectors		
	Vector Cou	nt	12 (1)	2 Entries)		
Hemisphere Low		Lower	Lower			
	Projectio	on	Equal	Angle		

Figura 136. Estudio de falla plana en zona 6-L

	• •	
Familias Principales	Rumbo	Buzamiento
1	N44W	33N
2	N39W	69N

Tabla 186. Familia principal de la zona 6-L

Color		Density Co	once	entrations	
		0.00	-	2.00	
		2.00	-	4.00	
		4.00	-	6.00	
		6.00	-	8.00	
		8.00	73	10.00	
		10.00	7	12.00	
		12.00	75	14.00	
		14.00	7	16.00	
		16.00	75	18.00	
		18.00	70	20.00	
Maximum Der	sity	19.24%			
Contour I	Data	Pole Vecto	ors		
Contour Distribu	tion	Fisher			
Counting Circle	Size	1.0%			
Plot M	lode	Pole Vecto	ors		
Vector Co	ount	12 (12 En	tries)	
Hemispl	here	Lower			
Projec	tion	Equal Ang	le		

Figura 137. Concentración de polos y familias en la zona 6-L

	Color	Dip	Dip Direction	Label	
		Us	er Planes		1
1		45	39	Talud	
	a	Mean	Set Planes		
1m		33	46]
2m		69	51]
		Plot Mode	Pole Vectors		
	Vec	tor Count	12 (12 Entries)		
	н	emisphere	Lower		1
		Projection	Equal Angle		

Figura 138. Estudio de falla en cuña en zona 6-L

Plot Mode	Rosette	
Plot Data	Apparent Strike	
Face Normal Trend	0.0	
Face Normal Plunge	90.0	
Bin Size	10°	
Outer Circle	5 planes per arc	
Planes Plotted	8	
Minimum Angle To Plot	45.0°	
Maximum Angle To Plot	90.0°	

Figura 139. Roseta de orientaciones de la zona 6-L

Tabla 187. Resultados Cinematicos de la zona 6-	Tabla 187.	Itados Cinemáticos de la zona 6-L
---	------------	-----------------------------------

Tipo de Falla	Rumbo	Buzamiento
Plana 1	N52W	30N

• Analisis Mecanico

• Falla plana 1 (N52W3N)

Figura 140. Configuración del talud y resultados del análisis mecánico de falla plana 1 de la zona 6 - L

Figura 141. Vista en 3D de la configuración de la falla plana 1 de la zona 6-L

falla plana 1 de la zona 6-L		
Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	2.292
	30	2.135
	25	1.993
4	20	1.862
4	15	1.739
	10	1.621
	5	1.508
	0	1.396

 Tabla 188.
 Resultados con Cohesión 4 MPa en

Tabla 190.	Resultados con Cohesión 2 MPa en
	falla plana 1 de la zona 6-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	1.594
	30	1.437
	25	1.294
2	20	1.163
2	15	1.041
	10	0.923
	5	0.81
	0	0.698

Tabla 189. Resultados con Cohesión 3 MPa en falla plana 1 de la zona 6-L

····· p····· = ••• •• -•··• •		
Cohesión	Angulo de	Factor de
(MPa)	Fricción φ	Seguridad
	35	1.943
3	30	1.786
	25	1.643
	20	1.513
	15	1.39
	10	1.272
	5	1.159
	0	1.047

Tabla 191.	Resultados con Cohesión 1 MPa en
	falla plana 1 de la zona 6-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	1.245
	30	1.088
	25	0.945
1	20	0.814
1	15	0.692
	10	0.574
	5	0.461
	0	0.349

Tabla 192. Resultados con Cohesión 0 MPa en falla plana 1 de la zona 6-L

Gráfico 102. Determinación de la zona límite de la falla plana 1 en la zona 6-L

En esta zona se obtuvo la dirección preferencial de las discontinuidades de N30-40E. El factor de seguridad obtenido fue de 2.292, lo cual indica que la configuración es completamente estable. Para que pueda ocurrir un deslizamiento el valor de cohesión tiene que llegar a 0.

4.4.2.7. Zona 7-L

• Análisis Cinemático

7000	Estribo Izquierdo		Tine	0.	
Zona	Rumbo	Buzamiento	про	Dip	Dip Direction
	N65W	35N	Diaclasa	35	25
	N50E	42N	Diaclasa	42	320
	N60W	37N	Diaclasa	37	30
	N74W	28N	Diaclasa	28	16
Zona 7	N83W	43N	Diaclasa	43	7
N88E40N	N81E	38N	Diaclasa	38	351
	N34E	66N	Diaclasa	66	304
	N7E	55S	Diaclasa	55	97
	E-W	27N	Diaclasa	27	0
	N81W	855	Diaclasa	85	189

Tabla 193. Discontinuidades presentes en el talud de la zona 7-L

Figura 142. Estudio de falla plana en zona 7-L

Familias Principales	Rumbo	Buzamiento
1	N88E	34N

|--|

Color	Density Concentrations	
	0.00 - 2.70	
	2.70 - 5.40	
	5.40 - 8.10	
	8.10 - 10.80	
	10.80 - 13.50	
	13.50 - 16.20	
	16.20 - 18.90	
	18.90 - 21.60	
	21.60 - 24.30	
	24.30 - 27.00	
Maximum Densi	y 26.19%	
Contour Da	a Pole Vectors	
Contour Distribution	n Fisher	
Counting Circle Si	e 1.0%	
Plot Mo	e Pole Vectors	
Vector Cou	t 10 (10 Entries)	
Hemisphe	e Lower	
Projectio	n Equal Angle	

Figura 143. Concentración de polos y familias en la zona 7-L

Symbo	ol Feat	ture					
0	Critical Intersection						
Kin	ematic /	Analysis	Wedg	e S	liding		
	Sl	ope Dip	40				
Slop	e Dip Di	rection	358				
	Friction	n Angle	35°	- 38			-
					Critical	Total	%
		Wed	ge Slidi	ing	6	45	13.33%
	Color	Dip		Dip	Direction	Label	
			User P	lan	ies		
1 40			358 Talud				
		Me	ean Se	t P	lanes		
1m		34	24				
Plot Mode		de Po	le \	/ectors			
Vector Count		nt 10	10 (10 Entries)				
Intersection Mode		de Gri	e Grid Data Planes				
Intersections Count		nt 45	45				
Hemisphere		re Lo	Lower				
Projection		on Eq	Equal Angle				

Figura 144. Estudio de falla en cuña en zona 7-L

Plot Mode	Rosette
Plot Data	Apparent Strike
Face Normal Trend	0.0
Face Normal Plunge	90.0
Bin Size	10°
Outer Circle	5 planes per arc
Planes Plotted	3
Minimum Angle To Plot	45.0°
Maximum Angle To Plot	90.0°

Figura 145. Roseta de orientaciones de la zona 7-L

Tipo de Falla	Rumbo	Buzamiento
Plana 1	N81E	38N
Cuño 1	N50E	42N
Cuna I	N81E	38N

- Análisis Mecánico
 - Falla Plana 1 (N81E38N)

Figura 146. Configuración del talud y resultados del análisis mecánico de falla plana 1 de la zona 7 - L

Figura 147. Vista en 3D de la configuración de la falla plana 1 de la zona 7-L

Tabla 196.	Resultados con Cohesión 4 MPa en
	falla plana 1 de la zona 7-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	2.904
	30	2.729
	25	2.57
4	20	2.424
4	15	2.287
	10	2.156
	5	2.029
	0	1.904

Tabla 198. Resultados con Cohesión 2 MPa en falla plana 1 de la zona 7-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
2	35	1.952
	30	1.777
	25	1.618
	20	1.472
	15	1.335
	10	1.204
	5	1.077
	0	0.952

Tabla 197.Resultados con Cohesión 3 MPa en
falla plana 1 de la zona 7-L

Cohesión	Angulo de	Factor de			
(MPa)	Fricción φ	Seguridad			
	35	2.428			
	30	2.253			
3	25	2.094			
	20	1.948			
	15	1.811			
	10	1.68			
	5	1.553			
	0	1.428			

Tabla 199.Resultados con Cohesión 1 MPa en
falla plana 1 de la zona 7-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	1.476
	30	1.3
	25	1.142
1	20	0.996
I	15	0.858
	10	0.728
	5	0.601
	0	0.476

Tabla 200. Resultados con Cohesión 0 MPa en falla plana 1 de la zona 7-L

Gráfico 103. Determinación de la zona límite de la falla plana 1 en la zona 7-L

o Falla en Cuña 1

Tabla 201. Resultados del Análisis Mo	ecánico de la Cuña 1 en la zona 7-L
---------------------------------------	-------------------------------------

Factor de	Altura de Talud	Ancho de Cuña	Volumen de	Peso de Cuña	Recta de ir	ntersección
Seguridad	(m)	(m)	Cuña (m3)	(ton)	Ángulo	Longitud (m)
10.184	20	1.509	52.110	140.699	38	32.490

Figura 148. Vista de perfil de la configuración de la falla en cuña 1 de la zona 7-L

Figura 149. Vista en 3D de la configuración de la falla en cuña 1 de la zona 7-L

Tabla 202.Resultados con Cohesión 4 MPa en
falla en cuña 1 de la zona 7-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	10.184
	30	10.026
4	25	9.884
	20	9.753
	15	9.63
	10	9.513
	5	9.399
	0	9.287

Tabla 204.	Resultados con Cohesión 2 MPa en
	falla en cuña 1 de la zona 7-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	5.54
	30	5.328
	25	5.24
2	20	5.109
Z	15	4.986
	10	4.869
	5	4.755
	0	4.643

Tabla 203.Resultados con Cohesión 3 MPa en
falla en cuña 1 de la zona 7-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	7.862
	30	7.704
	25	7.562
2	20	7.431
3	15	7.308
	10	7.191
	5	7.077
	0	6.965

Tabla 205.Resultados con Cohesión 1 MPa en
falla en cuña 1 de la zona 7-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	3.218
	30	3.06
	25	2.918
1	20	2.787
I	15	2.664
	10	2.547
	5	2.433
	0	2.321

Tabla 206.	Resultados con Cohesión	0 MPa en falla en	cuña 1 de la zona 7-l
------------	-------------------------	-------------------	-----------------------

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	0.896
	30	0.738
	25	0.596
0	20	0.465
U	15	0.342
	10	0.225
	5	0.111
	0	0

Gráfico 104. Determinación de la zona límite de la falla en cuña 1 en la zona 7-L

En esta zona no tiene orientaciones favorables. Los factores de seguridad obtenidos fueron 2.904 y 10.184, lo cual indica que las configuraciones son completamente estable. Para que pueda ocurrir un deslizamiento el valor de cohesión tiene que llegar a 0.

4.4.2.8. Zona 8-L

• Análisis Cinemático

7	Estribo Izquierdo		T ¹			
Zona	Rumbo	Buzamiento	Про	Dip	Dip Direction	
	N5E	45S	Falla	45	95	
	N65W	75N	Falla	75	25	
	N75E	Vertical	Falla	90	165	
	N75E	80N	Falla	80	345	
	N75W	Vertical	Falla	90	15	
	N40E	55S	Falla	55	130	
	N85W	80N	Falla	80	5	
	N10E	40S	Diaclasa	40	100	
	N30W	63S	Diaclasa	63	250	
	N72W	46N	Diaclasa	46	18	
	N80E	65N	Falla	65	340	
	N55W	80N	Falla	80	35	
	N50W	60N	Falla	60	40	
	N35E	45S	Diaclasa	45	125	
Zona 8	N-S	65E	Diaclasa	65	90	
N32W45N	N70W	55N	Diaclasa	55	20	
	N70W	45N	Diaclasa	45	20	
	N65E	80N	Diaclasa	80	335	
	N15W	Vertical	Diaclasa	90	75	
	N50W	42S	Diaclasa	42	220	
	N37E	60S	Diaclasa	60	127	
	N15E	45S	Diaclasa	45	105	
	N25W	75N	Diaclasa	75	65	
	N60W	55N	Diaclasa	55	40	
	N30W	15S	Diaclasa	15	240	
	E-W	65N	Diaclasa	65	0	
	N75E	Vertical	Falla	90	345	
	N50E	67S	Falla	67	140	
	N70W	65N	Falla	65	20	
	N15W	60S	Falla	60	235	

Tabla 207. Discontinuidades presentes en el talud de la zona 8-L

Symbol	TIPO Quantity					
0	Diaclasa					16
×	Falla					14
Kinem	atic Analysis	Pla	inar Slic	ling		
	Slope Dip	40	E.			
Slope I	Dip Direction	58	1			
Fi	riction Angle	35°				
L	ateral Limits	20°				
			j.	Critical	Total	%
	Planar S	lidir	ling (All) 0 30 0.00%			0.00%
Plot Mode		Pole Vectors				
Vector Count		30 (30 Entries)				
Hemisphere		Lower				
Projection		Equal Angle				

Figura 150. Estudio de falla plana en zona 8-L

Familias Principales	Rumbo	Buzamiento
1	N22E	43S
2	N53E	57S
3	N15W	61S
4	N50W	60N
5	N58E	85N

Tabla 208. Familia principal de la zona 8-L

Color	Density Concentrations
	0.00 - 1.00
	1.00 - 2.00
	2.00 - 3.00
	3.00 - 4.00
	4.00 - 5.00
	5.00 - 6.00
	6.00 - 7.00
	7.00 - 8.00
	8.00 - 9.00
	9.00 - 10.00
Maximum Density	9.33%
Contour Data	Pole Vectors
Contour Distribution	Fisher
Counting Circle Size	1.0%
Plot Mode	Pole Vectors
Vector Count	30 (30 Entries)
Hemisphere	Lower
Projection	Equal Angle

Figura 151. Concentración de polos y familias en la zona 8-L

Figura 152. Estudio de falla en cuña en zona 8-L

Plot Mode	Rosette
Plot Data	Apparent Strike
Face Normal Trend	0.0
Face Normal Plunge	90.0
Bin Size	10°
Outer Circle	5 planes per arc
Planes Plotted	27
Minimum Angle To Plot	45.0°
Maximum Angle To Plot	90.0°

Figura 153. Roseta de orientaciones de la zona 8-L

Tipo de Falla	Rumbo	Buzamiento
Cuño 1	N53W	57S
Cuna 1	N58E	85N
Cuña 2	N22E	43S
	N58E	85N
Cuña 3	N22E	43S
	N53W	57S

Tabla 209. Resultados Cinemáticos de la zona 8-L

• Análisis Cinemático

o Falla en Cuña 1

Factor de	Altura de Talud	Ancho de Cuña	Volumen de	Peso de Cuña	Recta de ir	ntersección
Seguridad	(m)	(m)	Cuña (m3)	(ton)	Ángulo	Longitud(m)
34.451	15	0.969	1.402	3.787	36	25.422

Tabla 210. Resultados del Análisis Mecánico de la Cuña 1 en la zona 8-L

Figura 154. Vista de perfil de la configuración de la falla en cuña 1 de la zona 8-L

Figura 155. Vista en 3D de la configuración de la falla en cuña 1 de la zona 8-L

Tabla 211.	Resultados con Cohesión 4 MPa e		
	falla en cuña 1 de la zona 8-L		

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	32.45
	30	32.062
	25	31.711
4	20	31.388
4	15	31.085
	10	30.795
	5	30.515
	0	30.238

Tabla 213.	Resultados con Cohesión 2 MPa en
	falla en cuña 1 de la zona 8-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	17.331
	30	16.943
2	25	16.592
	20	16.269
	15	15.965
	10	15.676
	5	15.395
	0	15.119

Tabla 212.Resultados con Cohesión 3 MPa en
falla en cuña 1 de la zona 8-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	24.891
	30	24.502
	25	24.152
2	20	23.828
5	15	23.525
	10	23.236
	5	22.955
	0	22.679

Tabla 214.	Resultados con Cohesión 1 MPa en
	falla en cuña 1 de la zona 8-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad	
	35	9.771	
	30	9.383	
	25	9.032	
1	20	8.709	
T	15	8.406	
	10	8.116	
	5	7.836	
	0	7.559	

Tabla 215.	Resultados con	Cohesión 0	MPa en falla	en cuña 1	de la zona 8-l
------------	-----------------------	------------	--------------	-----------	----------------

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	2.212
	30	1.823
	25	1.473
0	20	1.149
U	15	0.846
	10	0.557
	5	0.276
	0	0

Gráfico 105. Determinación de la zona límite de la falla en cuña 2 en la zona 8-L

o Falla en Cuña 2

|--|

Factor de	Altura de Talud	Ancho de Cuña	Volumen de	Peso de Cuña	Recta de intersección	
Seguridad	(m)	(m)	Cuña (m3)	(ton)	Ángulo	Longitud(m)
8.649	15	2.277	16.023	43.262	39	24.026

Figura 156. Vista de perfil de la configuración de la falla en cuña 2 de la zona 8-L

Figura 157. Vista en 3D de la configuración de la falla en cuña 2 de la zona 8-L

Tabla 217.	Resultados con Cohesión 4 MPa en	
	falla en cuña 2 de la zona 8-L	

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
4	35	8.648
	30	8.435
	25	8.242
	20	8.065
	15	7.898
	10	7.739
	5	7.585
	0	7.433

Tabla 219. Resultados con Cohesión 2 MPa en falla en cuña 2 de la zona 8-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	4.932
	30	4.718
	25	4.526
2	20	4.348
2	15	4.181
	10	4.022
	5	3.868
	0	3.716

Tabla 218.	Resultados con Cohesión 3 MPa en
	falla en cuña 2 de la zona 8-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	6.79
	30	6.577
	25	6.384
2	20	6.206
3	15	6.04
	10	5.881
	5	5.726
	0	5.574

Tabla 220.Resultados con Cohesión 1 MPa en
falla en cuña 2 de la zona 8-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	3.073
	30	2.86
	25	2.667
1	20	2.49
1	15	2.323
	10	2.164
	5	2.01
	0	1.858

Tabla 221. Resultados con Cohesión O MPa en falla en cuña 2 de la zona 8-L

Gráfico 106. Determinación de la zona límite de la falla en cuña 2 en la zona 8-L
• Falla en Cuña 3

Factor de	Altura de Talud	Ancho de Cuña	Volumen de	Peso de Cuña	Recta de ir	ntersección
Seguridad	(m)	(m)	Cuña (m3)	(ton)	Ángulo	Longitud(m)
41.978	15	0.812	1.052	2.841	40	23.356

Tabla 222. Resultados del Análisis Mecánico de la Cuña 3 en la zona 8-L

Figura 158. Vista de perfil de la configuración de la falla en cuña 3 de la zona 8-L

Figura 159. Vista en 3D de la configuración de la falla en cuña 3 de la zona 8-L

Tabla 223.	Resultados con Cohesión 4 MPa en
	falla en cuña 3 de la zona 8-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
4	35	41.977
	30	41.657
	25	41.367
	20	41.1
	15	40.849
	10	40.61
	5	40.378
	0	40.15

Tabla 225.	Resultados con Cohesión 2 MPa en
	falla en cuña 3 de la zona 8-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	21.902
	30	21.581
2	25	21.292
	20	21.025
	15	20.774
	10	20.535
	5	20.303
	0	20.075

Tabla 224.Resultados con Cohesión 3 MPa en
falla en cuña 3 de la zona 8-L

Cohesión	Angulo de	Factor de
(MPa)	Fricción φ	Seguridad
	35	31.94
	30	31.619
	25	31.329
2	20	31.062
5	15	30.812
	10	30.573
	5	30.341
	0	30.112

Tabla 226.	Resultados con Cohesión 1 MPa en
	falla en cuña 3 de la zona 8-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	11.864
	30	11.544
	25	11.254
1	20	10.987
T	15	10.736
	10	10.497
	5	10.265
	0	10.037

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	1.827
	30	1.506
	25	1.216
0	20	0.949
U	15	0.699
	10	0.46
	5	0.228
	0	0

Gráfico 107. Determinación de la zona límite de la falla en cuña 3 en la zona 8-L

En esta zona se obtuvo las direcciones preferenciales de las discontinuidades de N80-90E y N50- 60W. Los factores de seguridad obtenidos fueron 41.977, 41.978 y 8.648, lo cual indica que las configuraciones son completamente estable.

4.4.2.9. Zona 9-L

• Análisis Cinemático

7000	Estribo Izquierdo		Tino	Dim	Din Direction
Zona	Rumbo	Buzamiento	про	Ыр	Dip Direction
	N73W	50N	Diaclasa	50	17
	N15E	55N	Diaclasa	55	285
	N23W	40N	Diaclasa	40	67
	N15W	62S	Diaclasa	62	255
	N79W	60N	Diaclasa	60	11
	N25E	38S	Diaclasa	38	115
7	N62W	80N	Diaclasa	80	28
	N85W	37N	Diaclasa	37	355
NOUE47IN	N37E	67N	Diaclasa	67	307
	N89W	54N	Diaclasa	54	1
	N37W	55N	Diaclasa	55	53
	N40W	39N	Diaclasa	39	50
	N83W	57N	Diaclasa	57	7
	N30E	58N	Diaclasa	58	300
	N59W	58N	Diaclasa	58	31

Figura 160. Estudio de falla plana en zona 9-L

Familias Principales	Rumbo	Buzamiento
1	N19W	39N
2	N44E	62N
3	N69W	55N

Tabla 229.Familia principal de la zona 9-L

Análisis Geomecánico y Estabilidad de los Estribos en la Presa sobre El Río Cuira del Sistema Tuy IV en el Sector El Dinero, Municipio Acevedo, Estado Miranda

Color Density Concentrations					
		0.00	10	2.10	
		2.10		4.20	
		4.20	10	6.30	
		6.30	12	8.40	
		8.40	-	10.50	
		10.50	1	12.60	
		12.60	1	14.70	
		14.70	1	16.80	
		16.80		18.90	
		18.90	-	21.00	
Maximum I	Density	20.22%			
Contou	ır Data	Pole Vecto	ors		
Contour Distri	bution	Fisher			
Counting Cir	cle Size	1.0%			
Plo	t Mode	Pole Vecto	ors		
Vector	Count	15 (15 En	tries	.)	
Hemi	sphere	Lower			
Pro	jection	Equal Angle			

Figura 161. Concentración de polos y familias en la zona 9-L

	Color	Dip	Dip Direction	Label
		Us	er Planes	
1		47	350	Talud
		Mear	n Set Planes	
1m		39	71	
2m		62	316	
3m		55	21	
	P	lot Mode	Pole Vectors	
Vector Count 15 (15 Er		15 (15 Entries)		
	He	misphere	e Lower	
	P	rojection	Equal Angle	

Figura 162. Estudio de falla en cuña en zona 9-L

Plot Mode	Rosette
Plot Data	Apparent Strike
Face Normal Trend	0.0
Face Normal Plunge	90.0
Bin Size	10°
Outer Circle	5 planes per arc
Planes Plotted	11
Minimum Angle To Plot	45.0°
Maximum Angle To Plot	90.0°

Figura 163. Roseta de orientaciones de la zona 9-L

Tabla 230.	Resultados Cinemáticos de la zona 9-L

Tipo de Falla	Rumbo	Buzamiento
Plana 1	N85E	37N

• Análisis Mecánico

• Falla Plana 1 (N85E37N)

Figura 164. Configuración del talud y resultados del análisis mecánico de falla plana 1 de la zona 9 - L

Figura 165. Vista en 3D de la configuración de la falla plana 1 de la zona 9-L

falla plana 1 de la zona 9-L				
Cohesión	Angulo de	Factor de		
(MPa)	Fricción φ	Seguridad		
	35	2.311		
	30	2.148		
	25	2.001		
	20	1.865		
4	15	1.737		
	10	1.616		
	5	1.498		
	0	1.382		

Tabla 231. Resultados con Cohesión 4 MPa en

Tabla 233.Resultados con Cohesión 2 MPa en
falla plana 1 de la zona 9-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	1.62
	30	1.457
	25	1.31
2	20	1.174
2	15	1.046
	10	0.925
	5	0.807
	0	0.691

Tabla 232. Resultados con Cohesión 3 MPa en falla plana 1 de la zona 9-L

-				
Cohesión	Angulo de	Factor de		
(MPa)	Fricción ϕ Seguridad			
	35	1.966		
2	30	1.802		
	25	1.655		
	20	1.519		
3	15	1.392		
	10	1.27		
	5	1.152		
	0	1.036		

Tabla 234.	Resultados con Cohesión 1 MPa en
	falla plana 1 de la zona 9-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	1.274
	30	1.111
	25	0.964
1	20	0.828
1	15	0.701
	10	0.579
	5	0.461
	0	0.345

Tabla 235. Resultados con Cohesión 0 MPa en falla plana 1 de la zona 9-L

Gráfico 108. Determinación de la zona límite de la falla plana 1 en la zona 9-L

En esta zona se obtuvo las direcciones preferenciales de las discontinuidades de N60-80W, N30-40W y N40-50E. El factor de seguridad que se obtuvo fue de 2.311, lo cual indica que la configuración es completamente estable. Para que pueda ocurrir un deslizamiento el valor de cohesión tiene que llegar a 0. 4.4.2.10. Zona 10-L

• Análisis Cinemático

7000	Estribo I	zquierdo	Tine	Din	
Zona	Rumbo	Buzamiento	про	Οιρ	
	N13E	45N	Diaclasa	45	283
	N62W	70S	Diaclasa	70	208
7000 10	N15E	67S	Diaclasa	67	105
	N8E	80N	Diaclasa	80	278
N40W30N N84	N84W	56N	Diaclasa	56	6
	N84E	67N	Diaclasa	67	354
	N14W	25N	Diaclasa	25	76

Symbol	Feature					
٥	Pole Vectors	Pole Vectors				
Kinem	atic Analysis	Pla	inar Slid	ling		
	Slope Dip	30				
Slope I	Dip Direction	50				
F	riction Angle	35°				
L	ateral Limits	20	0			
				Critical	Total	%
	Planar S	lidin	ig (All)	0	7	0.00%
	Plot Mo	de	Pole V	ectors/		
	Vector Count			7 (7 Entries)		
	Hemisphere			e Lower		
Projection Equal Angle						

No hay zona de falla

Tabla 236.	Discontinuid	ades presentes en el talud de	e la zona 10-L	

Figura 166.	Estudio de	falla	plana	en zona	10-L
		J 0 0.	p	0 = 00.	

	• •	
Familias Principales	Rumbo	Buzamiento
1	N78W	61N

Tabla 237.	Familia	principa	de la	a zona	10-L
	i unnu	principu		a 2011a	TOF

Color		Density Co	once	entrations	
		0.00	140	1.50	
		1.50	14	3.00	
		3.00	1	4.50	
		4.50	1.0	6.00	
		6.00	1	7.50	
		7.50	1	9.00	
		9.00	1	10.50	
		10.50	14	12.00	
		12.00	S42	13.50	
		13.50	542	15.00	
Maximum	Density	14.68%			
Conto	ur Data	Pole Vecto	ors		
Contour Dist	ribution	Fisher			
Counting Ci	rcle Size	1.0%			
Plo	t Mode	Pole Vecto	ors		
Vecto	r Count	7 (7 Entrie	es)		
Hen	isphere	Lower			
Pro	ojection	Equal Ang	le		

Figura 167. Concentración de polos y familias en la zona 10-L

Symbol Feature							
Critical Intersection							
Kinematic Analysis W			Wed	ge S	liding		
Slope Dip 30							
Slope Dip Direction 50							
Friction Angle 35°							
					Critical	Total	%
		Wed	ge Sli	ding	0	21	0.00%
	Color	Dip		Dip	Direction	Label	
			User	Plan	ies		
1		30			50	Talud	
		M	ean S	et P	lanes		
1m		61			12		
		Plot Mo	de P	ole \	/ectors		
	Ve	ctor Cou	nt 7	(7 E	Entries)		
Intersection Mode		de G	e Grid Data Planes				
Intersections Count		nt 2	21				
Hemisphere		re L	owe	r			
		Projectio	on E	qual	Angle		

No hay zona de falla

Figura 168. Estudio de falla en cuña en zona 10-L

Plot Mode	Rosette	
Plot Data	Apparent Strike	
Face Normal Trend	0.0	
Face Normal Plunge	90.0	
Bin Size	10°	
Outer Circle	5 planes per arc	
Planes Plotted	6	
Minimum Angle To Plot	45.0°	
Maximum Angle To Plot	90.0°	

RESULTADOS: ANÁLISIS Y DISCUSIÓN

Figura 169. Roseta de orientaciones de la zona 10-L

No se encontraron planos de ningún tipo que puedan fallar en el talud de la zona 10-L

4.4.2.11. Zona 11-L

• Análisis Cinemático

En esta zona no se pudo obtener datos estructurales debido a que el talud no ha sido escavado. Por tal motivo se utilizaron los datos de los taludes cercanos con un rumbo similar al del talud de esta zona N53W40N. Las zonas seleccionadas fueron 12,13 y 14. Las discontinuidades se pueden observar en las tablas 66, 71 y 84.

Symbol	TIPOS				Q	uantity	
0	 Diaclasa 58 					58	
×	Falla					5	
Kinem	atic Analysis	Pla	anar Slid	ing			
	Slope Dip	40	6				
Slope Dip Direction 37			37				
Fi	riction Angle	35°					
L	ateral Limits	0					
				Critical	Total	%	
	Planar S	lidin	ig (Al)	1	63	1.59%	
	Plot Mo	de	Pole \	ectors			
Vector Count			t 63 (63 Entries)				
Hemisphere			Lower				
	Projectio	on	Equal Angle				

Figura 170. Estudio de falla plana en zona 11-L

Familias Principales	Rumbo	Buzamiento
1	N24E	66S
2	N48W	64S
3	N71W	56N
4	N18E	62N
5	N67E	39N

Color		Density Co	once	entrations	
-		0.00	\sim	0.65	
		0.65	÷	1.30	
		1.30	\sim	1.95	
		1.95	÷	2.60	
		2.60	-	3.25	
		3.25	-	3.90	
		3.90	-	4.55	
		4.55	-	5.20	
		5.20	-	5.85	
		5.85	2	6.50	
Maximum	Density	6.19%			
Conto	ur Data	Pole Vecto	ors		
Contour Dist	ribution	Fisher			
Counting Ci	rcle Size	1.0%			
Plo	ot Mode	Pole Vecto	ors		
Vecto	r Count	63 (63 En	tries)	
Hen	Hemisphere				
Pr	ojection	Equal Ang	le		

Figura 171. Concentración de polos y familias en la zona 11-L

S

Figura 172. Estudio de falla en cuña en zona 11-L

SI I I I	8 11
Plot Mode	Rosette
Plot Data	Apparent Strike
Face Normal Trend	0.0
Face Normal Plunge	90.0
Bin Size	10°
Outer Circle	10 planes per arc
Planes Plotted	52
Minimum Angle To Plot	45.0°
Maximum Angle To Plot	90.0°

Figura 173. Roseta de orientaciones de la zona 11-L

Tabla 239.	Resultados Cinemáticos de la zona 11-
------------	---------------------------------------

Tipo de Falla	Rumbo	Buzamiento
Plana 1	N64W	38N
Cuña 1	N18E	62N
	N67E	39N

• Análisis Mecánico

• Falla Plana 1 (N64W38N)

Figura 174. Configuración del talud y resultados del análisis mecánico de falla plana 1 de la zona 11-L

Figura 175. Vista en 3D de la configuración de la falla plana 1 de la zona 11-L

Tabla 240.	Resultados con Cohesión 4 MPa e	
	falla plana 1 de la zona 11-L	

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	4.441
	30	4.284
	25	4.142
	20	4.011
4	15	3.888
	10	3.771
	5	3.657
	0	3.545

Tabla 243.Resultados con Cohesión 2 MPa en
falla plana 1 de la zona 11-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	2.669
	30	2.511
2	25	2.369
	20	2.238
	15	2.115
	10	1.998
	5	1.884
	0	1.772

Tabla 241.Resultados con Cohesión 3 MPa en
falla plana 1 de la zona 11-L

	••••	
Cohesión	Angulo de	Factor de
(IVIPa)	Friccion φ	Segundad
	35	3.555
	30	3.398
	25	3.256
2	20	3.125
3	15	3.002
	10	2.884
	5	2.771
	0	2.659

Tabla 244.Resultados con Cohesión 1 MPa en
falla plana 1 de la zona 11-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	1.782
	30	1.625
	25	1.483
1	20	1.352
1	15	1.229
	10	1.112
	5	0.998
	0	0.886

Tabla 245. Resultados con Cohesión 0 MPa en falla plana 1 de la zona 11-L

Gráfico 109. Determinación de la zona límite de la falla plana 1 en la zona 11-L

o Falla en Cuña 1

Factor de	Altura de Talud	Ancho de Cuña	Volumen de	Peso de Cuña	Recta de ir	ntersección
Seguridad	(m)	(m)	Cuña (m3)	(ton)	Ángulo	Longitud (m)
15.237	25	2.367	16.34	44.118	35	43.286

Figura 176. Vista de perfil de la configuración de la falla en cuña 1 de la zona 11-L

Figura 177. Vista en 3D de la configuración de la falla en cuña 1 de la zona 11-L

Tabla 247.	Resultados con Cohesión 4 MPa en	
	falla en cuña 1 de la zona 11-L	

Cohesión	Angulo de	Factor de
(MPa)	Fricción φ	Seguridad
	35	15.237
	30	14.889
4	25	14.575
	20	14.286
	15	14.014
	10	13.755
	5	13.504
	0	13.256

Tabla 249.	Resultados con Cohesión 2 MPa en
	falla en cuña 1 de la zona 11-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	8.608
	30	8.261
2	25	7.947
	20	7.657
2	15	7.386
	10	7.127
	5	6.875
	0	6.628

Tabla 248.Resultados con Cohesión 3 MPa en
falla en cuña 1 de la zona 11-L

Cohesión (MRa)	Angulo de Fricción d	Factor de
(IVIF a)	πιεειοπψ	Jegunuau
	35	11.923
	30	11.575
2	25	11.261
	20	10.972
5	15	10.7
	10	10.441
	5	10.19
	0	9.942

Tabla 250.	Resultados con Cohesión 1 MPa en
	falla en cuña 1 de la zona 11-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	5.294
	30	4.947
	25	4.633
1	20	4.343
1	15	4.072
	10	3.812
	5	3.561
	0	3.314

Tabla 251. R	Resultados con (Cohesión 0 MPa	en falla en cuña	a 1 de la zona 11-l
--------------	------------------	----------------	------------------	---------------------

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	1.98
	30	1.632
	25	1.318
0	20	1.029
U	15	0.757
	10	0.498
	5	0.247
	0	0

Gráfico 110. Determinación de la zona límite de la falla en cuña 1 en la zona 8-L

En esta zona se obtuvo las direcciones preferenciales de las discontinuidades de N30-40E, N10- 20E y N40-50W. Los factores de seguridad obtenidos fueron 4.441 y 15.237, lo cual indica que las configuraciones son completamente estables. Para que pueda ocurrir un deslizamiento el valor de cohesión tiene que llegar a 0.

4.4.2.12. Zona 12-L

• Análisis Cinemático

-	Estribo Izquierdo		T ¹	Dia		
Zona	Rumbo	Buzamiento	Про	Dip	Dip Direction	
	N25E	52S	Diaclasa	52	115	
	N45W	70S	Diaclasa	70	225	
	N45W	15N	Diaclasa	15	45	
	N42E	Vertical Falla 90	132			
	N18E	55N	Diaclasa	55	288	
	N57E	31N	Diaclasa	31	327	
	N12W	68N	Diaclasa	68	78	
	N5E	46S	Diaclasa	46	95	
7000 17	N81W	56N	Diaclasa	56	9	
	N57W	33N	Diaclasa	33	33	
1150774011	N61W	48N	Diaclasa	48	29	
	N32W	38N	Diaclasa	38	58	
	N69E	53S	Diaclasa	53	159	
	N8E	60N	Diaclasa	60	278	
	N53W	78S	Diaclasa	78	217	
	N10E	66N	Diaclasa	66	280	
	N7E	80S	Diaclasa	80	97	
	N64W	38N	Diaclasa	38	26	
	N17E	85N	Diaclasa	85	287	

Tabla 252. Discontinuidades presentes en el talud de la zona 12-L

Symbol	ΠΡΟ				0	Quantity	
0	Diaclasa					18	
×	Falla					1	
Kinem	atic Analysis	Pla	nar Slic	ling			
	Slope Dip	40	6				
Slope I	Dip Direction	40	Q				
Friction Angle			35°				
L	ateral Limits	20	0				
)	Critical	Total	%	
	Planar S	lidin	g (All)	1	19	5.26%	
	Planar Slidin	ng (S	Set 3)	1	5	20.00%	
	Plot Mo	de	Pole \	/ectors			
Vector Count			t 19 (19 Entries)				
	Hemisphe	re	e Lower				
Projection			Equal Angle				

Figura 178. Estudio de falla plana en zona 12-L

Familias Principales	Rumbo	Buzamiento
1	N37W	74S
2	N24E	60N
3	N49W	41N

Tabla 253. Familia principal de la zona 12-L

Color		Density Co	once	entrations	
		0.00	1.76	1.30	1
		1.30	8.76	2.60	
		2.60	1.715	3.90	
		3.90		5.20	
		5.20	-	6.50	
		6.50		7.80	
		7.80		9.10	
		9.10	-	10.40	
		10.40	-	11.70	
		11.70	-	13.00	
Maximum	Density	12.72%			
Conto	ur Data	Pole Vecto	ors		
Contour Dist	ribution	Fisher			
Counting Ci	rcle Size	1.0%			
Plo	ot Mode	Pole Vecto	ors		
Vecto	r Count	19 (19 En	tries)	
Hen	isphere	Lower			
Pro	ojection	Equal Ang	le		

Figura 179. Concentración de polos y familias en la zona 12-L

	Color	Dip	Dip Direction	Label	
		Us	er Planes		
1		40	40	Talud	
		Mean	Set Planes		
1m		74	233		
2m		60	294		
3m		41	41		
	P	lot Mode	Pole Vectors		
	Vect	or Count	19 (19 Entries)		
	He	misphere	Lower		
	P	rojection	Equal Angle		

Figura 180. Estudio de falla en cuña en zona 12-L

Plot Mode	Rosette
Plot Data	Apparent Strike
Face Normal Trend	0.0
Face Normal Plunge	90.0
Bin Size	10°
Outer Circle	5 planes per arc
Planes Plotted	14
Minimum Angle To Plot	45.0°
Maximum Angle To Plot	90.0°

RESULTADOS: ANÁLISIS Y DISCUSIÓN

Figura 181. Roseta de orientaciones de la zona 12-L

Tabla 254.	Resultados	Cinemáticos	de	la zona	12-L
------------	------------	-------------	----	---------	------

Tipo de Falla	Rumbo	Buzamiento
Plana 1	N64W	38N

- Análisis Mecánico
 - Falla Plana 1 (N64W38N)

Figura 182. Configuración del talud y resultados del análisis mecánico de falla plana 1 de la zona 12-L

Figura 183. Vista en 3D de la configuración de la falla plana 1 de la zona 12-L

falla plana 1 de la zona 12-L				
Cohesión (MPa)	CohesiónAngulo deFac(MPa)Fricción φSeg			
	35	6.805		
	30	6.648		
	25	6.506		
	20	6.375		
4	15	6.252		
	10	6.135		
	5	6.021		
	0	5.909		

Tabla 255. Resultados con Cohesión 4 MPa en

Tabla 257.	Resultados con Cohesión 2 MPa en
	falla plana 1 de la zona 12-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	3.85
	30	3.693
2	25	3.551
	20	3.42
	15	3.297
	10	3.18
	5	3.066
	0	2.954

Tabla 256. Resultados con Cohesión 3 MPa en falla plana 1 de la zona 12-L

-					
Cohesión	Angulo de	Factor de			
(MPa)	Fricción φ	Seguridad			
	35	5.328			
	30	5.171			
2	25	5.028			
	20	4.897			
3	15	4.774			
	10	4.657			
	5	4.544			
	0	4.432			

Tabla 258.	Resultados con Cohesión 1 MPa en
	falla plana 1 de la zona 12-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	2.373
	30	2.216
1	25	2.074
	20	1.943
1	15	1.82
	10	1.703
	5	1.589
	0	1.477

Tabla 259. Resultados con Cohesión 0 MPa en falla plana 1 de la zona 12-L

Gráfico 111. Determinación de la zona límite de la falla plana 1 en la zona 12-L

En esta zona se obtuvo la dirección preferencial de las discontinuidades de N2O-30E. El factor de seguridad obtenido fue de 6.805, lo cual indica que la configuración es completamente estable. Para que pueda ocurrir un deslizamiento el valor de cohesión tiene que llegar a 0.

4.4.2.13. Zona 13-L

• Análisis Cinemático

7	Estribo Izquierdo		Time	0.		
Zona	Rumbo	Buzamiento	про	Dip	Dip Direction	
	N75W	52N	Falla	52	15	
	N70W	45N	Diaclasa	45	20	
	N-S	80W	Diaclasa	80	90	
	N10E	35S	Diaclasa	35	100	
	E-W	75N	Diaclasa	75	0	
	N50W	60N	Diaclasa	60	40	
	N46W	62N	Diaclasa	62	44	
	N10W	86N	Diaclasa	86	80	
7000 12	N5W	62N	Diaclasa	62	85	
	N3W	53N	Diaclasa	53	87	
1154775511	N26E	87N	Diaclasa	87	296	
	N25E	57N	Diaclasa	57	295	
	N12W	73N	Diaclasa	73	78	
	N43E	66N	Diaclasa	66	313	
	N23E	55S	Diaclasa	55	113	
	N80W	49N	Diaclasa	49	10	
	N40W	34N	Diaclasa	34	50	
	N13E	60N	Diaclasa	60	283	
	N85W	54N	Diaclasa	54	5	

Tabla 260. Discontinuidades presentes en el talud de la zona 13-L

Figura 184. Estudio de falla plana en zona 13-L

Familias Principales	Rumbo	Buzamiento
1	N66W	50N
2	N36W	61N
3	M31W	50N
4	N6E	71S

Tabla 261. Familia principal de la zona 13-L

Color		Density Co	once	entrations	
		0.00	-	1.60	
		1.60	-	3.20	
		3.20	-	4.80	
		4.80	-	6.40	
		6.40	-	8.00	
		8.00	-	9.60	
		9.60	-	11.20	
		11.20	-	12.80	
		12.80	-	14.40	
		14.40	1	16.00	
Maximum Der	sity	15.88%		14551 111677-551	
Contour I	Data	Pole Vecto	ors		
Contour Distribu	tion	Fisher			
Counting Circle	Size	1.0%			
Plot M	lode	Pole Vecto	ors		
Vector Co	ount	19 (19 En	tries)]
Hemisp	here	Lower			- ij
Projec	tion	Equal Ang	le		

Figura 185. Concentración de polos y familias en la zona 13-L

	Color	Dip	Dip Direction	Label
	- NO	Us	er Planes	
1		33	36	
		Mean	Set Planes	
1m		50	24	
2m		61	54	
3m		58	301	
4m		71	96	
		Plot Mode	Pole Vectors	5
	Vec	tor Count	19 (19 Entries)	
	Н	emisphere	Lower	
		Projection	Equal Angle	

Figura 186. Estudio de falla en cuña en zona 13-L

Plot Mode	Rosette
Plot Data	Apparent Strike
Face Normal Trend	0.0
Face Normal Plunge	90.0
Bin Size	10°
Outer Circle	5 planes per arc
Planes Plotted	17
Minimum Angle To Plot	45.0°
Maximum Angle To Plot	90.0°

Figura 187. Roseta de orientaciones de la zona 13-L

No se encontraron planos de ningún tipo que puedan fallar en el talud de la zona 13-L

4.4.2.14. Zona 14-L

• Análisis Cinemático

_	Estribo Izquierdo				
Zona	Rumbo	Buzamiento	Тіро	Dip	Dip Direction
-	N30W	40S	Diaclasa	40	250
	E-W	65S	Diaclasa	65	180
	N25E	735	Diaclasa	73	115
	N60W	80S	Diaclasa	80	220
	N55E	40N	Diaclasa	40	325
	N65E	45N	Diaclasa	45	315
	N75W	63S	Diaclasa	63	205
	N5E	70S	Diaclasa	70	95
	N65E	50N	Diaclasa	50	295
	N50W	55S	Diaclasa	55	220
	N45W	47S	Diaclasa	47	225
	N80W	70S	Diaclasa	70	190
	N40W	65S	Diaclasa	65	240
	E-W	50N	Diaclasa	50	0
	N5E	80S	Diaclasa	80	95
	N20E	67S	Diaclasa	67	110
	N5E	65S	Diaclasa	65	95
	N30W	50S	Diaclasa	50	250
	N70E	75N	Diaclasa	75	340
	N55W	70S	Diaclasa	70	215
	N70W	60N	Diaclasa	60	20
Zona 14	N70E	65N	Diaclasa	65	330
N48W50N	N35W	70S	Diaclasa	70	235
	N5E	60N	Diaclasa	60	355
	N35W	30S	Falla	30	235
	N65W	70S	Diaclasa	70	205
	N55E	73N	Diaclasa	73	325
	N53W	5S	Falla	55	217
	N25E	255	Falla	25	115
	N70W	65N	Diaclasa	65	30
	N33E	66S	Diaclasa	66	123
	N65E	40N	Diaclasa	40	335
	N70W	57S	Diaclasa	57	210
	N15E	70S	Diaclasa	70	105
	N20E	62S	Falla	62	110
	N70W	50N	Diaclasa	50	20
	N20E	70N	Diaclasa	70	290
	N35W	65N	Diaclasa	65	55
-	N-S	65W	Diaclasa	65	90
	N65W	80S	Diaclasa	80	205
	N21E	62N	Diaclasa	62	291
	N12E	70N	Diaclasa	70	282
	E-W	62N	Diaclasa	62	0
	N85W	25S	Diaclasa	25	185

Tabla 262. Discontinuidades presentes en el talud de la zona 14-L

Figura 188. Estudio de falla plana en zona 14-L

Familias Principales	Rumbo	Buzamiento
1	N26E	68S
2	N45W	64S
3	N30E	67N
4	N67E	41N
5	N80W	57N
6	N54W	58N
7	N74E	71N

Tabla 263. Familia principal de la zona 14-L

Figura 189. Concentración de polos y familias en la zona 14-L

	Color	Dip	Dip Direction	Label
		Us	er Planes	
1		50	42	Talud
		Mean	Set Planes	
1m		68	116	
2m		64	225	
3m		67	300	
4m		41	337	
5m		57	10	
6m		58	36	
7m		71	344	
	F	lot Mode	Pole Vectors	
	Vector Count		44 (44 Entries)	
	Hemisphere		Lower	
	Projection		Equal Angle	

Figura 190. Estudio de falla en cuña en zona 14-L

Plot Mode	Rosette
Plot Data	Apparent Strike
Face Normal Trend	0.0
Face Normal Plunge	90.0
Bin Size	10°
Outer Circle	10 planes per arc
Planes Plotted	38
Minimum Angle To Plot	45.0°
Maximum Angle To Plot	90.0°

Figura 191. Roseta de orientaciones de la zona 14-L

Tipo de Falla	Rumbo	Buzamiento
Cuño 1	N30E	67N
Cuna I	N67E	41N
C	N26E	68S
Culla 2	N80W	57N
Cuña 3	N26E	68S
	N74E	71N

Tabla 264. Resultados Cinemáticos de la zona 14-L

• Análisis Mecánico

o Falla en Cuña 1

Factor de	Altura de Talud	Ancho de Cuña	Volumen de	Peso de Cuña	Recta de ir	ntersección
Seguridad	(m)	(m)	Cuña (m3)	(ton)	Ángulo	Longitud
4.976	27	10.567	341.142	921.084	35	46.748

Tabla 265. Resultados del Análisis Mecánico de la Cuña 1 en la zona 14-L

Figura 192. Vista de perfil de la configuración de la falla en cuña 1 de la zona 14-L

Figura 193. Vista en 3D de la configuración de la falla en cuña 1 de la zona 14-L

Tabla 266.	Resultados con Cohesión 4 MPa en	
	falla en cuña 1 de la zona 14-L	

Cohesión	Angulo de	Factor de
(MPa)	Fricción φ	Seguridad
	34	4.975
	30	4.628
	25	4.314
4	20	4.024
4	15	3.753
	10	3.494
	5	3.242
	0	2.995

Tabla 268.	Resultados con Cohesión 2 MPa en
	falla en cuña 1 de la zona 14-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
2	34	3.478
	30	3.13
	25	2.816
	20	2.527
	15	2.255
	10	1.996
	5	1.745
	0	1.497

Tabla 267.Resultados con Cohesión 3 MPa en
falla en cuña 1 de la zona 14-L

Cohesión	Angulo de	Factor de
(MPa)	Fricción φ	Seguridad
	34	4.227
	30	3.879
	25	3.565
2	20	3.276
5	15	3.004
	10	2.745
	5	2.494
	0	2.246

Tabla 269.	Resultados con Cohesión 1 MPa en
	falla en cuña 1 de la zona 14-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	34	2.729
	30	2.381
	25	2.067
	20	1.778
T	15	1.506
	10	1.247
	5	0.996
	0	0.748

Tabla 270. Resultad	los con Cohesión	0 MPa en falla	en cuña 1 de la	a zona 14-L
---------------------	------------------	----------------	-----------------	-------------

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	34	1.98
	30	1.632
	25	1.318
0	20	1.029
U	15	0.757
	10	0.498
	5	0.247
	0	0

Gráfico 112. Determinación de la zona límite de la falla en cuña 1 en la zona 14-L

o Falla en Cuña 2

Tabla 271.	Resultados del Análisis Mecánico de la Cuña 2 en la zona 14-l	L
------------	---	---

Factor de	Altura de Talud	Ancho de Cuña	Volumen de	Peso de Cuña	Recta de ir	ntersección
Seguridad	(m)	(m)	Cuña (m3)	(ton)	Ángulo	Longitud (m)
12.781	27	0.892	6.756	18.243	48	36.12

Figura 194. Vista de perfil de la configuración de la falla en cuña 2 de la zona 14-L

Figura 195. Vista en 3D de la configuración de la falla en cuña 2 de la zona 14-L

Tabla 272.	Resultados con Cohesión 4 MPa en
	falla en cuña 2 de la zona 14-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	12.78
	30	12.628
	25	12.49
	20	12.362
4	15	12.243
	10	12.129
	5	12.019
	0	11.91

Tabla 274. Resultados con Cohesión 2 MPa en falla en cuña 2 de la zona 14-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	6.825
	30	6.672
2	25	6.534
	20	6.407
	15	6.288
	10	6.174
	5	6.064
	0	5.955

Tabla 273.Resultados con Cohesión 3 MPa en
falla en cuña 2 de la zona 14-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	9.802
	30	9.65
	25	9.512
2	20	9.385
5	15	9.265
	10	9.152
	5	9.041
	0	8.932

Tabla 275.Resultados con Cohesión 1 MPa en
falla en cuña 2 de la zona 14-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
	35	3.847
	30	3.695
	25	3.557
1	20	3.429
1	15	3.31
	10	3.196
	5	3.086
	0	2.977

Tabla 276. Resultados con Cohesión 0 MPa en falla en cuña 2 de la zona 14-L

Gráfico 113. Determinación de la zona límite de la falla en cuña 2 en la zona 14-L

• Falla en Cuña 3

Factor de	Altura de Talud	Ancho de Cuña	Volumen de	Peso de Cuña	Recta de ir	ntersección
Seguridad	(m)	(m)	Cuña (m3)	(ton)	Ángulo	Longitud(m)
9.878	27	1.818	13.564	36.625	37	36.690

Tabla 277. Resultados del Análisis Mecánico de la Cuña 3 en la zona 14-L

Figura 196. Vista de perfil de la configuración de la falla en cuña 3 de la zona 14-L

Figura 197. Vista en 3D de la configuración de la falla en cuña 3 de la zona 14-L

Tabla 278.	Resultados con Cohesión 4 MPa en
	falla en cuña 3 de la zona 14-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
4	35	9.878
	30	9.659
	25	9.462
	20	9.28
	15	9.109
	10	8.946
	5	8.788
	0	8.633

Tabla 280.	Resultados con Cohesión 2 MPa en
	falla en cuña 3 de la zona 14-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
2	35	5.561
	30	5.342
	25	5.145
	20	4.963
	15	4.792
	10	4.63
	5	4.472
	0	4.316

Tabla 279.Resultados con Cohesión 3 MPa en
falla en cuña 3 de la zona 14-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
3	35	7.719
	30	7.501
	25	7.303
	20	7.121
	15	6.951
	10	6.788
	5	6.63
	0	6.474

Tabla 281.Resultados con Cohesión 1 MPa en
falla en cuña 3 de la zona 14-L

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
1	35	3.403
	30	3.184
	25	2.987
	20	2.805
	15	2.634
	10	2.471
	5	2.313
	0	2.158

Tabla 282.	Resultados con	Cohesión 0 MPa e	en falla en cu	iña 3 de la zona 14-l
------------	----------------	------------------	----------------	-----------------------

Cohesión (MPa)	Angulo de Fricción φ	Factor de Seguridad
0	35	1.244
	30	1.026
	25	0.828
	20	0.647
	15	0.476
	10	0.313
	5	0.155
	0	0

Gráfico 114. Determinación de la zona límite de la falla en cuña 3 en la zona 14-L

En esta zona se obtuvo las direcciones preferenciales de las discontinuidades de N30-40E y N50- 60W. Los factores de seguridad obtenidos fueron 4.975, 12.78 y 9.878, lo cual indica que las configuraciones son completamente estables.

4.4.2.15. Zona 15-L

• Análisis Cinemático

	Estribo Izquierdo				Dip Direction	
Zona	LStribo izquieruo		Tipo	Din		
Lonia	Rumbo	Buzamiento			2.0 2	
	N10E	55S	Diaclasa	55	100	
	E-W	65N	Diaclasa	65	0	
	N35E	60N	Diaclasa	60	305	
	N85W	80N	Diaclasa	80	5	
7000 15	N85W	83N	Diaclasa	83	5	
	N10W	50S	Diaclasa	50	260	
N58W34N	N15W	80N	Falla	80	75	
	N75E	72N	Falla	72	345	
	N20W	75N	Falla	65	70	
	N15E	65S	Falla	65	105	
	N40W	60N	Falla	60	50	

Tabla 283. Discontinuidades presentes en el talud de la zona 15-L

Symbol	ΤΙΡΟ				Q	uantity	
•	Diaclasa	Diaclasa				6	
×	Falla					5	
Kinematic Analysis			nar Slic	ling			
	Slope Dip	34					
Slope I	Dip Direction	32					
Friction Angle			35°				
Lateral Limits			•				
				Critical	Total	%	
	Planar S	lidin	g (All)	0	11	0.00%	
Plot Mode			e Pole Vectors				
Vector Count			t 11 (11 Entries)				
Hemisphere			e Lower				
Projection			Equal Angle				

Figura 198.	Estudio a	le falla	plana	en	zona	15-L
-------------	-----------	----------	-------	----	------	------

Familias Principales	Rumbo	Buzamiento
1	N25E	60S
2	N79W	75N
3	N12E	68N

Tabla 284.	Familia	principa	l de	la	zona	15-	L
------------	---------	----------	------	----	------	-----	---

Color		Density Co	once	entrations	
		0.00	œ.,	1.80	_
		1.80	-	3.60	
		3.60	-	5.40	
		5.40	-	7.20	
		7.20	-	9.00	
		9.00	-	10.80	
		10.80	-	12.60	
		12.60	-	14.40	
		14.40	-	16.20	
		16.20	-	18.00	
Maximun	Density	17.89%			
Cont	our Data	Pole Vecto	ors		
Contour Dis	tribution	Fisher			
Counting C	ircle Size	1.0%			
P	ot Mode	Pole Vecto	ors		
Vect	Vector Count		11 (11 Entries)		
He	misphere	Lower			
P	rojection	Equal Ang	le		

Figura 199. Concentración de polos y familias en la zona 15-L

	Color	Dip	Dip Direction	Label	6	
		Use	er Planes		- Li	
1		34	32	Talud	ļ,	
		Mean	Set Planes			
1m		60	115	0		
2m		75	11			
3m		68	78			
	F	lot Mode	Pole Vectors		Ĩ	
	Vect	or Count	11 (11 Entries)			
Hemisphere			Lower			
	F	rojection	Equal Angle			

No	hay	zona	de	falla
and the second	1000			

Figura 200. Estudio de falla en cuña en zona 15-L

Plot Mode	Rosette
Plot Data	Apparent Strike
Face Normal Trend	0.0
Face Normal Plunge	90.0
Bin Size	10°
Outer Circle	5 planes per arc
Planes Plotted	11
Minimum Angle To Plot	45.0°
Maximum Angle To Plot	90.0°

Figura 201. Roseta de orientaciones de la zona 15-L

No se encontraron planos de ningún tipo que puedan fallar en el talud de la zona 15-L

4.4.3. Análisis global de las discontinuidades en los estribos

Color	Density Co	once	entrations
	0.00	-3	0.90
	0.90	-	1.80
	1.80	-	2.70
	2.70	-	3.60
	3.60		4.50
	4.50	1210	5.40
	5.40		6.30
	6.30	120	7.20
	7.20	1	8.10
	8.10	1	9.00
Maximum Density	8.34%		
Contour Data	Pole Vecto	ors	
Contour Distribution	Fisher		
Counting Circle Size	1.0%		
Plot Mode	Pole Vecto	ors	
Vector Count	106 (106	Entr	ies)
Hemisphere	Lower		
Projection	Equal Angl	e	

4.4.3.1. Estribo Derecho

Figura 202. Concentración de polos y familias del estribo derecho

Análisis Geomecánico y Estabilidad de los Estribos en la Presa sobre El Río Cuira del Sistema Tuy IV en el Sector El Dinero, Municipio Acevedo, Estado Miranda

	Color	Dip	Dip Direction	Label
		Us	er Planes	
1		27	222	Talud
		Mean	Set Planes	
lm		79	209	
2m		70	226	
3m		36	188	
4m		70	246	
5m		64	193	
	P	lot Mode	Pole Vectors	
Vector Count		106 (106 Entries)		
Hemisphere		Lower		
	P	rojection	Equal Angle	

Figura 203. Planos de las familias y del estribo derecho

Familias Principales	Rumbo	Buzamiento
F1	N61W	79S
F2	N44W	70S
F3	N82W	36S
F4	N24W	70S
F5	N77W	64S

Tabla 285. Familias principales del estribo derecho

Plot Mode	Rosette
Plot Data	Apparent Strike
Face Normal Trend	0.0
Face Normal Plunge	90.0
Bin Size	10°
Outer Circle	10 planes per arc
Planes Plotted	85
Minimum Angle To Plot	45.0°
Maximum Angle To Plot	90.0°

Figura 204. Roseta de orientaciones del estribo derecho

4.4.3.2. Estribo Izquierdo

Color	Density Concentrations
	0.00 - 0.45
	0.45 - 0.90
	0.90 - 1.35
	1.35 - 1.80
	1.80 - 2.25
	2.25 - 2.70
	2.70 - 3.15
	3.15 - 3.60
	3.60 - 4.05
	4.05 - 4.50
Maximum Density	4.36%
Contour Data	Pole Vectors
Contour Distribution	Fisher
Counting Circle Size	1.0%
Plot Mode	Pole Vectors
Vector Count	264 (264 Entries)
Hemisphere	Lower
Projection	Equal Angle

Figura 205. Concentración de polos y familias del estribo izquierdo

	Color	Dip	Dip Direction	Label
		Use	er Planes	
1		26	42	Talud
		Mean	Set Planes	
1m		49	121	
2m		47	30	-
3m		80	82	
4m		50	228	
5m		58	301	
	P	lot Mode	Pole Vectors	
	Vect	or Count	264 (264 Entries)	
	Hemisphere		Lower	
	P	rojection	Equal Angle	

Figura 206. Planos de las familias y del estribo izquierdo

Familias Principales	Rumbo	Buzamiento
F1	N31E	49S
F2	N60W	47N
F3	N8W	80N
F4	N42W	50S
F5	N31E	58N

Plot Mode	Rosette
Plot Data	Apparent Strike
Face Normal Trend	0.0
Face Normal Plunge	90.0
Bin Size	10°
Outer Circle	20 planes per arc
Planes Plotted	201
Minimum Angle To Plot	45.0°
Maximum Angle To Plot	90.0°

Figura 207. Roseta de orientaciones del estribo izquierdo

4.4.3.3. Resultados de las familias en los estribos

	Fiallos de los estilibos		
	Rumbo	Buzamiento	
Estribo Derecho	N48W	275	
Estribo Izquierdo	N48W	26N	

Tabla 287. Planos de los estribos

Figura 208. Representación de las familias y la dirección del eje de presa (N2OW) del estribo derecho

Figura 209. Representación de las familias y la dirección del eje de presa (N70E) del estribo izquierdo

Figura 210. Perfil del eje de presa y representación de los buzamientos de las familias más vulnerables en los estribos (vista desde aguas ARRIBA)

Los resultados obtenidos demostraron las distintas configuraciones de falla que presentan los taludes, de las cuales ninguno resulto ser inestable, con factores de seguridad mayores a 1. Los distintos bloques que se forman en su mayoría las cuñas son de un grosor muy delgado, y con configuraciones de poco espesor adentro del talud, impidiendo que estas puedan fallar. A parte de la geometría también está presente la resistencia de los macizos de los estribos, los cuales tienen una cohesión alta, de 4 MPa para el estribo izquierdo y 2 MPa para el derecho y sus ángulos de fricción de 35° y 34° respectivamente. Cabe acotar que se exceptuó el valor del coeficiente sísmico en los estudios.

También se realizó la variación del Factor de seguridad en función de la cohesión, lo cual indicó que en la totalidad de los análisis, el valor para que resulte inestable las configuraciones, se obtuvo en las curvas de cohesión 0 MPa. Esto revelo que la condición más desfavorable, es aquella en donde las discontinuidades pierden su adherencia. Según (Broch, 1974), muchas rocas muestran una disminución significativa en su resistencia a medida que aumenta su contenido de humedad. Es más típico aun, que muchas rocas sufran perdidas de resistencia de un 30 a un 100 % como resultado del deterioro químico del cemento o de la arcilla cementante. De acuerdo a (Brace & Martin , 1968), en el caso de los macizos rocosos fracturados, se puede suponer que en las discontinuidades las presiones de agua aumentarán y se disiparán más rápidamente que en los poros de los bloques de roca intacta. De esta manera se observó que el agua podría influir de manera perjudicial en las discontinuidades de los taludes logrando una caída de rocas.

Se obtuvo asimismo, distintas familias globales en cada estribo (ver fig. 208 y 209), ninguna de sus orientaciones afectarían la estabilidad de la presa en ninguno de sus lados, ya que todas son opuestas a la direcciones del eje de la presa, de igual manera sus buzamientos tampoco producirían una inestabilidad (ver fig. 210), ya que sus ángulos son mayores al de los estribos. Las familias que afectan los estribos son F1 y F2 para el derecho con un ángulo aproximado de 70° y F2 para el izquierdo con un ángulo aproximado de 50° de inclinación. (Ver disposición de orientaciones en Apéndice)

4.5. CARACTERIZACIÓN GEOMECÁNICA DE LOS ESTRIBOS

Se realizaron las clasificaciones geomecánicas, tales como RMR (*Rock Mass Rating*), GSI (*Geological Strenght Index*), SMR (*Slope Mass Rating*), y DMR (*Dam Mass Rating*), con fin de determinar la calidad de los macizos rocos de cada estribo, mencionados anteriormente en el apartado del Marco Teórico. El método de excavación utilizado en los estribos es por medio de voladuras o excavaciones mecánicas. Las zonas que no presentan clasificación RMR, es debido a que no se pudo estudiar los taludes, el SMR se estudió solo en aquellas zonas que presentaban inestabilidad, el GSI por medio de la formula GSI = RMR - 5 (Ramirez & Alejano, 2004) y el factor RQD por medio de $RQD = 115 - 3.3 * (J_V)$ (Deere & Deere , 1988), ya que los valores de RMR son mayores a 23 en su totalidad. Además se realizó el modelo geomecánico perteneciente a cada uno de los estribos.

4.5.1. Estribo Derecho

En las zonas 5-R y 6-R, no se pudo estudiar los taludes ya que estaban siendo excavados, impidiendo así apreciar las condiciones de los mismo. Se usó el valor de resistencia a la compresión promedio de 50 MPa para todas las zonas.

4.5.1.1. Zona 1-R

Clasificación RMR

Figura 211. Talud de la zona 1-R (fuente propia)

Análisis Geomecánico y Estabilidad de los Estribos en la Presa sobre El Río Cuira del Sistema Tuy IV en el Sector El Dinero, Municipio Acevedo, Estado Miranda

Zona 1-R	Resultado	Valoración
UCS (MPa)	50 4	
RQD %	45	8
Espaciamiento (m)	0.5	10
Long. Discontinuidad (m)	0.5 6	
Apertura (mm)	Cerrada 6	
Rugosidad	Muy Rugosa	6
Relleno	Limpia 6	
Alteración	Muy Alterada 2	
Flujo de Agua	Seco 15	
	Total	63

Obtuvimos para el valor del GSI, un resultado de 58, definiendo la roca como muy fracturada en bloques angulares de muchas caras delimitado por cuatro a o más familias según el índice de resistencia geológica para macizos fracturados.

Debido que no se obtuvo discontinuidades que alteraran la estabilidad del talud no se pudo realizar la clasificación SMR.

4.5.1.2. Zona 2-R

Clasificación RMR

Figura 212. Talud de la zona 2-R (fuente propia)

Análisis Geomecánico y Estabilidad de los Estribos en la Presa sobre El Río Cuira del Sistema Tuy IV en el Sector El Dinero, Municipio Acevedo, Estado Miranda

Zona 2-R	Resultado	Valoración
UCS (MPa)	50	4
RQD %	40	8
Espaciamiento (m)	0.05	5
Long. Discontinuidad (m)	3 2	
Apertura (mm)	Cerrada 6	
Rugosidad	Muy Rugosa 6	
Relleno	Limpia 6	
Alteración	Muy Alterado 2	
Flujo de Agua	Seco 15	
	Total	54

Tabla 289. Clasificación RMR zona 2-R

Se ubicó el valor de RMR obtenido, en la clase III de la clasificación de (Bieniawski, 1989), caracterizando a la roca como Regular y con una posibilidad de deslizamiento de 5 m en 1 semana.

Obtuvimos para el valor del GSI, un resultado de 49, definiendo la roca como muy fracturada en bloques angulares de muchas caras delimitado por cuatro a o más familias según el índice de resistencia geológica para macizos fracturados.

• Clasificación SMR

	Zona 2-R	
	Plana 1	Cuña 1
F1	0.15	0.85
F2	0.85	0.85
F3	-50	-50
F4	0	0
SMR	47.625	17.875

Tabla 290. Clasificación SMR zona 2-R

Se obtuvieron dos valores para el SMR, de los cuales se tomó el más desfavorable para clasificarlo, el cual arroja como resultado una clase N° V, catalogando a la roca como Muy Mala, totalmente inestable, la cual presenta grandes roturas y se aconseja la re-excavación del talud.

4.5.1.3. Zona 3-R

Figura 213. Talud de la zona 3-R (fuente propia)

Zona 3-R	Resultado	Valoración
UCS (MPa)	50	4
RQD %	42	8
Espaciamiento (m)	0.05	5
Long. Discontinuidad (m)	2	4
Apertura (mm)	Cerrada 6	
Rugosidad	Muy Rugosa 6	
Relleno	Limpia 6	
Alteración	Muy Alterada 2	
Flujo de Agua	Seca 15	
	Total	56

Tabla 291.	Clasificación	RMR zona	3-R
------------	---------------	-----------------	-----

Se ubicó el valor de RMR obtenido, en la clase III de la clasificación de (Bieniawski, 1989), caracterizando a la roca como Regular y con una posibilidad de deslizamiento de 5 m en 1 semana.

Obtuvimos para el valor del GSI, un resultado de 51, definiendo la roca como muy fracturada en bloques angulares de muchas caras delimitado por cuatro a o más familias según el índice de resistencia geológica para macizos fracturados.

Debido que no se obtuvo discontinuidades que alteraran la estabilidad del talud no se pudo realizar la clasificación SMR.

4.5.1.4. Zona 4-R

• Clasificación RMR

Figura 214. Talud de la zona 4-R (fuente propia)

Zona 4-R	Resultado	Valoración	
UCS (MPa)	50	4	
RQD %	35	8	
Espaciamiento (m)	0.2	8	
Long. Discontinuidad (m)	2.5	4	
Apertura (mm)	0.1 - 1.0mm	4	
Rugosidad	Muy Rugosa	6	
Relleno	Suave < 5mm	1	
Alteración	Muy Alterada	2	
Flujo de Agua	Seco	15	
	Total	52	

Tabla 292. Clasificación RMR zona 4-R

Se ubicó el valor de RMR obtenido, en la clase III de la clasificación de (Bieniawski, 1989), caracterizando a la roca como Regular y con una posibilidad de deslizamiento de 5 m en 1 semana.

Obtuvimos para el valor del GSI, un resultado de 47, definiendo la roca como muy fracturada en bloques angulares de muchas caras delimitado por cuatro a o más familias según el índice de resistencia geológica para macizos fracturados.

• Clasificación SMR

	Zona 4-R
	Plana 1
F1	0.4
F2	0.85
F3	-50
F4	10
SMR	45

Tabla 293. Clasificación SMR zona 4-R

El valor para el SMR que obtuvo arroja como resultado una clase Nº III, catalogando a la roca como Regular, parcialmente estable, la cual presenta alguna roturas planas o muchas cuñas y se aconseja un tratamiento sistemático del talud

4.5.1.5. Zona 7-R

• Clasificación RMR

Figura 215. Talud de la zona 7-R (fuente propia)

Zona 7-R	Resultado	Valoración	
UCS (MPa)	50	7	
RQD %	65	13	
Espaciamiento (m)	0.5	15	
Long. Discontinuidad (m)	1.25	1	
Apertura (mm)	Cerrada	6	
Rugosidad	Muy Rugosa	5	
Relleno	Limpia	6	
Alteración	Muy Alterada	3	
Flujo de Agua	Seco	10	
	Total	66	

Tabla 294.	Clasificación RMR zona 7-F

Obtuvimos para el valor del GSI, un resultado de 61, definiendo la roca como muy fracturada en bloques angulares de muchas caras delimitado por cuatro a o más familias según el índice de resistencia geológica para macizos fracturados.

Debido que no se obtuvo discontinuidades que alteraran la estabilidad del talud no se pudo realizar la clasificación SMR.

- 4.5.1.6. Zona 8-R
- Clasificación RMR

Figura 216. Talud de la zona 8-R (fuente propia)

Análisis Geomecánico y Estabilidad de los Estribos en la Presa sobre El Río Cuira del Sistema Tuy IV en el Sector El Dinero, Municipio Acevedo, Estado Miranda

Zona 8-R	Resultado	Valoración	
UCS (MPa)	50	4	
RQD %	55	13	
Espaciamiento (m)	0.15	8	
Long. Discontinuidad (m)	0.25	6	
Apertura (mm)	Cerrada	6	
Rugosidad	Muy Rugosa	6	
Relleno	Limpia	6	
Alteración	Muy Alterada	2	
Flujo de Agua	Seco	15	
	Total	66	

Tabla 295. (Clasificación	RMR	zona	8-R
--------------	---------------	-----	------	-----

Obtuvimos para el valor del GSI, un resultado de 61, definiendo la roca como muy fracturada en bloques angulares de muchas caras delimitado por cuatro a o más familias según el índice de resistencia geológica para macizos fracturados.

Debido que no se obtuvo discontinuidades que alteraran la estabilidad del talud no se pudo realizar la clasificación SMR.

4.5.1.7. Zona 9-R

• Clasificación RMR

Figura 217. Talud de la zona 9-R (fuente propia)

Análisis Geomecánico y Estabilidad de los Estribos en la Presa sobre El Río Cuira del Sistema Tuy IV en el Sector El Dinero, Municipio Acevedo, Estado Miranda

Zona 9-R	Resultado	Valoración	
UCS (MPa)	50	4	
RQD %	60	13	
Espaciamiento (m)	0.7	15	
Long. Discontinuidad (m)	5	2	
Apertura (mm)	Cerrada	6	
Rugosidad	Muy Rugosa	6	
Relleno	Limpia	6	
Alteración	Moderadamente Alterada	3	
Flujo de Agua	Seco	15	
	Total	70	

	Гabla 296.	Clasificación	RMR zona	9-R
--	------------	---------------	-----------------	-----

Obtuvimos para el valor del GSI, un resultado de 65, definiendo la roca como muy fracturada en bloques angulares de muchas caras tomando a poco fracturada.

Debido que no se obtuvo discontinuidades que alteraran la estabilidad del talud no se pudo realizar la clasificación SMR.

4.5.1.8. Zona 10-R

• Clasificación RMR

Figura 218. Talud de la zona 10-R (fuente propia)

Análisis Geomecánico y Estabilidad de los Estribos en la Presa sobre El Río Cuira del Sistema Tuy IV en el Sector El Dinero, Municipio Acevedo, Estado Miranda

Zona 10-R	Resultado	Valoración	
UCS (MPa)	50	4	
RQD %	45	8	
Espaciamiento (m)	0.5	10	
Long. Discontinuidad (m)	2	4	
Apertura (mm)	Cerrada	6	
Rugosidad	Muy Rugosa	6	
Relleno	Limpia	6	
Alteración	Moderadamente Alterada	3	
Flujo de Agua	seco	15	
	Total	62	

abla 297.	Clasificación	RMR	zona	10-R

Obtuvimos para el valor del GSI, un resultado de 57, definiendo la roca como muy fracturada en bloques angulares de muchas caras tomando a poco fracturada.

• Clasificación SMR

	Zona 10-R
	Plana 1
F1	0.7
F2	1
F3	-50
F4	10
SMR	37

Tabla 298.Clasificación SMR zona 10-R

El valor para el SMR que obtuvo arroja como resultado una clase Nº IV, catalogando a la roca como Mala e inestable, la cual presenta algunas roturas planas o grandes cuñas se aconseja un tratamiento correctivo del talud

4.5.1.9. Resultados estribo derecho

Zona		RMR		GSI			SMR	
zona	Valor	Clase	Descrip.	Valor	Descrip.	Valor	Clase	Descrip.
1-R	63	Ш	Buena	58	Muy Fracturada		No Aplica	
2-R	54	Ξ	Regular	49	Muy Fracturada	18	V	Muy Mala
3-R	56	Ш	Regular	51	Muy Fracturada		No Aplica	
4-R	52	Ш	Regular	47	Muy Fracturada	45	Ш	Regular
7-R	66	Ш	Buena	61	Muy Fracturada		No Aplica	
8-R	66	II	Buena	61	Muy Fracturada		No Aplica	
9-R	70	II	Buena	65	Poco Fracturada		No Aplica	
10-R	62	II	Buena	57	Muy Fracturada	37	IV	Mala
Promedio		61			56			

Tabla 299. Resultados globales de las clasificaciones del estribo derecho

 Tabla 300.
 Soporte sugerido según su SMR del estribo derecho

Zona	Clase SMR	Valor SMR	Soporte Sugerido
2-R	V-a	18	Muros de Contención y/o re-excavación
4-R	III-b	45	Redes y/o mallas (de talud), anclajes y/o bulones, Concreto proyectado, Muros de pie y/o Concreto dental
10-R	IV-a	37	Anclajes, Concreto proyectado, Muros de pie y/o concreto (o re- excavación), Drenaje

(Ver tabla Soportes Sugeridos para clases de SRM en Apéndice).

CAPITULO 4

4.5.2. Estribo Izquierdo

En la zona 11-R, no se pudo estudiar el talud ya que estaba siendo excavado, impidiendo así apreciar las condiciones del mismo. Se usó el valor de resistencia a la compresión promedio de 66 MPa para todas las zonas. No se logró obtener registro fotográfico de las zonas 1-L, 2-L, 3-L, 14- L y 15-L debido a que el acceso a los taludes no fue posible.

4.5.2.1. Zona 1-L

Clasificación RMR

Zona 1-L	Resultado	Valoración	
UCS (MPa)	66	7	
RQD %	65	13	
Espaciamiento (m)	1	15	
Long. Discontinuidad (m)	1	4	
Apertura (mm)	Cerrada	6	
Rugosidad	Muy Rugosa	6	
Relleno	Limpia	6	
Alteración	Ligeramente Alterada	5	
Flujo de Agua	Húmedo	10	
	Total	72	

Tabla 201	Clasificación		7002 1	1
i adia 301.	Clasification	KIVIK	zona 1.	·L

Se ubicó el valor de RMR obtenido, en la clase II de la clasificación de (Bieniawski, 1989), caracterizando a la roca como Buena y con una posibilidad de deslizamiento de 10 m en 1 años.

Obtuvimos para el valor del GSI, un resultado de 67, definiendo la roca como poco fracturada en bloques cúbicos por tres familias.

Clasificación SMR •

l abla 302.	Clasificación SIMR zona 1-L			
	Zona 1-L			
	Plana 1 Plana 2			
F1	0.4	0.85		
F2	0.85	0.7		
F3	-50	-50		
F4	0	0		
SMR	55	42.25		

.. ----

Se obtuvieron dos valores para el SMR, de los cuales se tomó el más desfavorable para clasificarlo (plana 2), el cual arroja como resultado una clase Nº III, catalogando a la roca como Regular y parcialmente inestable, la cual presenta algunas roturas planas o muchas cuñas y se aconseja un tratamiento sistemático del talud.

4.5.2.2. Zona 2-L

• Clasificación RMR

Zona 2-L	Resultado	Valoración
UCS (MPa)	66	7
RQD %	45	8
Espaciamiento (m)	1	15
Long. Discontinuidad (m)	1	4
Apertura (mm)	Cerrada	6
Rugosidad	Muy Rugosa	6
Relleno	Limpia	6
Alteración	Moderadamente Alterada	3
Flujo de Agua	Mojado	7
	Total	62

Tahla 303	Clasificación	RMR zona 2-l
1 auta 303.	Clasificación	NIVIN ZUIIA Z-L

Se ubicó el valor de RMR obtenido, en la clase II de la clasificación de (Bieniawski, 1989), caracterizando a la roca como Regular y con una posibilidad de deslizamiento de 10 m en 1 años.

Obtuvimos para el valor del GSI, un resultado de 57, definiendo la roca como muy fracturada en bloques angulares de muchas caras delimitado por cuatro a o más familias según el índice de resistencia geológica para macizos fracturados.

• Clasificación SMR

	Zona 2-L	
	Plana 1	
F1	1	
F2	F2 0.85	
F3	-50	
F4	0	
SMR	19.5	

Tabla 304. Clasificación SMR zona 2-L

El valor para el SMR que obtuvo arroja como resultado una clase Nº V, catalogando a la roca como Muy Mala y Totalmente Inestable, la cual presenta grandes roturas por planos continuos, se aconseja una re-excavación del talud. 4.5.2.3. Zona 3-L

• Clasificación RMR

Zona 3-L	Resultado	Valoración
UCS (MPa)	66	7
RQD %	52	13
Espaciamiento (m)	2	15
Long. Discontinuidad (m)	3	4
Apertura (mm)	Cerrada	6
Rugosidad	Muy Rugosa	6
Relleno	Limpia	6
Alteración	Sana	6
Flujo de Agua	Seca	15
	Total	73

Tabla 30	05. (Clasifica	ción Rl	MR 70	na 2-L
	JJ. (Slasifica		1111 201	10 Z-L

Se ubicó el valor de RMR obtenido, en la clase II de la clasificación de (Bieniawski, 1989), caracterizando a la roca como Regular y con una posibilidad de deslizamiento de 10 m en 1 años.

Obtuvimos para el valor del GSI, un resultado de 68, definiendo la roca como poco fracturada en bloques cúbicos por tres familias.

Debido que no se obtuvo discontinuidades que alteraran la estabilidad del talud no se pudo realizar la clasificación SMR.

4.5.2.4. Zona 4-L

• Clasificación RMR

Figura 219. Talud de la zona 4-L (fuente propia)

Análisis Geomecánico y Estabilidad de los Estribos en la Presa sobre El Río Cuira del Sistema Tuy IV en el Sector El Dinero, Municipio Acevedo, Estado Miranda

Zona 4-L	Resultado	Valoración
UCS (MPa)	66	7
RQD %	40	8
Espaciamiento (m)	1	15
Long. Discontinuidad (m)	2	4
Apertura (mm)	Cerrada	6
Rugosidad	Muy Rugosa	6
Relleno	Limpia	6
Alteración	Ligeramente Alterada	3
Flujo de Agua	Mojado	7
	Total	64

Tabla 306. Clasificación RMR zona 4-L

Se ubicó el valor de RMR obtenido, en la clase II de la clasificación de (Bieniawski, 1989), caracterizando a la roca como Regular y con una posibilidad de deslizamiento de 10 m en 1 años.

Obtuvimos para el valor del GSI, un resultado de 59, definiendo la roca como muy fracturada en bloques angulares de muchas caras delimitado por cuatro a o más familias según el índice de resistencia geológica para macizos fracturados.

• Clasificación SMR

	Zona 4-L	
	Plana 1	
F1	0.7	
F2	0.85	
F3 -50		
F4	0	
SMR	34.25	

Tabla 307. Clasificación SMR zona 4-L

El valor para el SMR que obtuvo arroja como resultado una clase Nº IV, catalogando a la roca como Mala e Inestable, la cual presenta roturas planas o grandes cuñas, se aconseja un tratamiento correctivo del talud.

CAPITULO 4

4.5.2.5. Zona 5-L

• Clasificación RMR

Figura 220. Talud de la zona 5-L (fuente propia)

Zona 5-L	Resultado	Valoración
UCS (MPa)	66	7
RQD %	60	13
Espaciamiento (m)	0.25	10
Long. Discontinuidad (m)	0.5	6
Apertura (mm)	Cerrada	6
Rugosidad	Muy Rugosa	6
Relleno	Limpia	6
Alteración	Ligeramente Alterada	3
Flujo de Agua	Seco	15
	Total	74

Tabla 308. (Clasificación	RMR zona	5-L
--------------	---------------	-----------------	-----

Se ubicó el valor de RMR obtenido, en la clase II de la clasificación de (Bieniawski, 1989), caracterizando a la roca como Regular y con una posibilidad de deslizamiento de 10 m en 1 años.

Obtuvimos para el valor del GSI, un resultado de 69, definiendo la roca como poco fracturada en bloques cúbicos por tres familias.

• Clasificación SMR

	Zona 5-L			
	Plana 1 Plana 2 Cuña 1			
F1	0.4	0.4	0.7	
F2	0.85	0.85	0.85	
F3	-60	-50	-60	
F4	0	0	0	
SMR	53.6	57	38	

Tabla 309. Clasificación SMR zona 5-L

Se obtuvieron tres valores para el SMR, de los cuales se tomó el más desfavorable para clasificarlo (Cuña 1), el cual arroja como resultado una clase N°IV, catalogando a la roca como Mala e inestable, la cual presenta roturas planas o grandes cuñas y se aconseja un tratamiento correctivo del talud.

4.5.2.6. Zona 6-L

• Clasificación RMR

Figura 221. Talud de la zona 6-L (fuente propia)

Zona 6-L	Resultado	Valoración
UCS (MPa)	66	7
RQD %	60	13
Espaciamiento (m)	0.1	10
Long. Discontinuidad (m)	1	4
Apertura (mm)	Cerrada	6
Rugosidad	Muy Rugosa	6
Relleno	Limpia	6
Alteración	Ligeramente Alterada	5
Flujo de Agua	Seco	15
	Total	72

Tabla 310. Clasificación RMR zona 6-L

Se ubicó el valor de RMR obtenido, en la clase II de la clasificación de (Bieniawski, 1989), caracterizando a la roca como Regular y con una posibilidad de deslizamiento de 10 m en 1 años.

Obtuvimos para el valor del GSI, un resultado de 67, definiendo la roca como poco fracturada en bloques cúbicos por tres familias.

• Clasificación SMR

	Zona 6-L	
	Plana 1	
F1	1	
F2	0.4	
F3	-60	
F4	0	
SMR	48	

Tabla 311. Clasificación SMR zona 6-L

El valor para el SMR que obtuvo arroja como resultado una clase Nº III, catalogando a la roca como Regular y parcialmente estable, la cual presenta algunas roturas planas o muchas cuñas, y se aconseja un tratamiento sistemático del talud. 4.5.2.7. Zona 7-L

• Clasificación RMR

Figura 222. Talud de la zona 7-L (fuente propia)

Zona 7-L	Resultado	Valoración
UCS (MPa)	66	7
RQD %	65	13
Espaciamiento (m)	0.15	8
Long. Discontinuidad (m)	0.75	6
Apertura (mm)	Cerrada	6
Rugosidad	Rugosa	5
Relleno	Limpia	6
Alteración	Ligeramente Alterada	5
Flujo de Agua	Seco	10
	Total	72

Tabla 312. Clasificación RMR zona 7-L

Se ubicó el valor de RMR obtenido, en la clase II de la clasificación de (Bieniawski, 1989), caracterizando a la roca como Regular y con una posibilidad de deslizamiento de 10 m en 1 años.

Obtuvimos para el valor del GSI, un resultado de 67, definiendo la roca como poco fracturada en bloques cúbicos por tres familias.

• Clasificación SMR

	Zona 7-L Plana 1 Cuña 1	
F1	0.85	0.85
F2	0.85	0.85
F3	-50	-50
F4	0	0
SMR	35.875	35.875

Tabla 313. Clasificación SMR zona 7-L

Se obtuvieron dos valores para el SMR, los cuales son iguales y es indiferente cual tomemos, este arroja como resultado una clase N° IV, catalogando a la roca como Mala e inestable, la cual presenta roturas planas o grandes cuñas y se aconseja un tratamiento correctivo del talud.

4.5.2.8. Zona 8-L

• Clasificación RMR

Figura 223. Talud de la zona 8-L (fuente propia)

Zona 8-L	Resultado	Valoración
UCS (MPa)	66	7
RQD %	59	13
Espaciamiento (m)	0.1	8
Long. Discontinuidad (m)	2	4
Apertura (mm)	Cerrada	6
Rugosidad	Muy Rugosa	6
Relleno	Limpia	6
Alteración	Moderadamente Alterada	3
Flujo de Agua	Seco	15
	Total	68

Tabla 314.	Clasificación RMR zona 8	i-L
------------	--------------------------	-----

Obtuvimos para el valor del GSI, un resultado de 63, definiendo la roca como muy fracturada en bloques angulares de muchas caras delimitado por cuatro a o más familias según el índice de resistencia geológica para macizos fracturados.

• Clasificación SMR

	Zona 6-L		
	Cuña 1 Cuña 2 Cuña 3		
F1	0.4	0.4	0.4
F2	0.85	0.85	0.85
F3	-50	-50	-25
F4	0	0	0
SMR	51	51	60

Tabla 315. Clasificación SMR zona 8-L

Se obtuvieron tres valores para el SMR, de los cuales se tomó el más desfavorable para clasificarlo (Cuña 1 y Cuña 2), el cual arroja como resultado una clase NºIII, catalogando a la roca como Regular y parcialmente estable, la cual presenta algunas roturas planas o muchas cuñas y se aconseja un tratamiento sistemático del talud.

4.5.2.9. Zona 9-L

• Clasificación RMR

Figura 224. Talud de la zona 9-L (fuente propia)

Zona 9-L	Resultado	Valoración	
UCS (MPa)	66	7	
RQD %	65	13	
Espaciamiento (m)	0.1	8	
Long. Discontinuidad (m)	1	4	
Apertura (mm)	Cerrada	6	
Rugosidad	Muy Rugosa	6	
Relleno	Limpia	6	
Alteración	Ligeramente Alterada	5	
Flujo de Agua	Seco	15	
	Total	70	

Tabla 316. Clasificación RMR zona 9-L

Se ubicó el valor de RMR obtenido, en la clase II de la clasificación de (Bieniawski, 1989), caracterizando a la roca como Buena y con una posibilidad de deslizamiento de 10 m en 1 año.

Obtuvimos para el valor del GSI, un resultado de 65, definiendo la roca como muy fracturada en bloques angulares o en poco fracturada de bloques cúbicos.

• Clasificación SMR

	Zona 9-L	
	Plana 1	
F1	0.85	
F2	0.85	
F3	-50	
F4	0	
SMR	33.875	

Tabla 317. Clasificación SMR zona 2-L

El valor para el SMR que obtuvo arroja como resultado una clase Nº IV, catalogando a la roca como Mala e Inestable, la cual presenta roturas planas o grandes cuñas, se aconseja un tratamiento correctivo del talud.

4.5.2.10. Zona 10-L

• Clasificación RMR

Figura 225. Talud de la zona 10-L (fuente propia)

Zona 10-L	Resultado	Valoración
UCS (MPa)	66	7
RQD %	48	13
Espaciamiento (m)	0.15	8
Long. Discontinuidad (m)	0.5	6
Apertura (mm)	< 0.1mm	6
Rugosidad	Rugosa	6
Relleno	Limpia	6
Alteración	Muy Alterada	2
Flujo de Agua	Seco	15
	Total	62

Tabla 3	318. C	lasificación	RMR	zona	10-L

Obtuvimos para el valor del GSI, un resultado de 57, definiendo la roca como muy fracturada en bloques angulares de muchas caras delimitado por cuatro o más familias según el índice de resistencia geológica para macizos fracturados.

Debido que no se obtuvo discontinuidades que alteraran la estabilidad del talud no se pudo realizar la clasificación SMR.

4.5.2.11. Zona 12-L

• Clasificación RMR

Figura 226. Talud de la zona 12-L (fuente propia)

Análisis Geomecánico y Estabilidad de los Estribos en la Presa sobre El Río Cuira del Sistema Tuy IV en el Sector El Dinero, Municipio Acevedo, Estado Miranda

Zona 12-L	Resultado	Valoración
UCS (MPa)	66	7
RQD %	63	13
Espaciamiento (m)	0.2	10
Long. Discontinuidad (m)	2	4
Apertura (mm)	0.1 - 1.0mm	4
Rugosidad	Muy Rugosa	6
Relleno	Duro < 5mm	4
Alteración	Moderadamente Alterada	3
Flujo de Agua	Seco	15
	Total	66

Tabla 319.	Clasificación	RMR zona 12-L
------------	---------------	---------------

Obtuvimos para el valor del GSI, un resultado de 61, definiendo la roca como muy fracturada en bloques angulares de muchas caras delimitado por cuatro o más familias según el índice de resistencia geológica para macizos fracturados.

• Clasificación SMR

CAPITULO 4

	Zona 12-L	
	Plana 1	
F1	0.7	
F2	0.85	
F3	-50	
F4	0	
SMR	36.25	

Tabla 320. Clasificación SMR zona 12-L

El valor para el SMR que obtuvo arroja como resultado una clase Nº IV, catalogando a la roca como Mala e Inestable, la cual presenta roturas planas o grandes cuñas, se aconseja un tratamiento correctivo del talud.

4.5.2.12. Zona 13-L

• Clasificación RMR

Figura 227. Talud de la zona 13-L (fuente propia)

Zona 13-L	Resultado	Valoración
UCS (MPa)	66	7
RQD %	60	13
Espaciamiento (m)	0.25	10
Long. Discontinuidad (m)	0.5	6
Apertura (mm)	Cerrada	6
Rugosidad	Muy Rugosa	6
Relleno	Limpia	6
Alteración	Moderadamente Alterada	6
Flujo de Agua	Seco	15
	Total	72

	Tabla 321.	Clasificación	RMR zona	a 13-L
--	------------	---------------	----------	--------

Se ubicó el valor de RMR obtenido, en la clase II de la clasificación de (Bieniawski, 1989), caracterizando a la roca como Buena y con una posibilidad de deslizamiento de 10 m en 1 año.

Obtuvimos para el valor del GSI, un resultado de 57, definiendo la roca como muy fracturada en bloques angulares de muchas caras delimitado por cuatro o más familias según el índice de resistencia geológica para macizos fracturados.

Debido que no se obtuvo discontinuidades que alteraran la estabilidad del talud no se pudo realizar la clasificación SMR.

4.5.2.13. Zona 14-L

• Clasificación RMR

Zona 14-L	Resultado	Valoración
UCS (MPa)	66	7
RQD %	63	13
Espaciamiento (m)	0.4	10
Long. Discontinuidad (m)	1	4
Apertura (mm)	Cerrada	6
Rugosidad	Muy Rugosa	6
Relleno	Limpia	6
Alteración	Moderadamente Alterada	3
Flujo de Agua	Seco	15
	Total	70

Tabla 322.	Clasificación	RMR zona 14-L
	Clasificación	TUNIN ZONG THE

Se ubicó el valor de RMR obtenido, en la clase II de la clasificación de (Bieniawski, 1989), caracterizando a la roca como Buena y con una posibilidad de deslizamiento de 10 m en 1 año.

Obtuvimos para el valor del GSI, un resultado de 55, definiendo la roca como muy fracturada en bloques angulares de muchas caras delimitado por cuatro o más familias según el índice de resistencia geológica para macizos fracturados.

• Clasificación SMR

	Zona 14-L			
	Cuña 1 Cuña 2 Cuña 3			
F1	0.4	0.7	0.85	
F2	0.7	1	1	
F3	-60	-50	-50	
F4	0	0	0	
SMR	53.2	35	28	

Tabla 323. Clasificación SMR zona 14-L

Se obtuvieron tres valores para el SMR, de los cuales se tomó el más desfavorable para clasificarlo (Cuña 3), el cual arroja como resultado una clase N°IV, catalogando a la roca como Mala e inestable, la cual presenta roturas planas o grandes cuñas y se aconseja un tratamiento correctivo del talud.
4.5.2.14. Zona 15-L

• Clasificación RMR

Zona 15-L	Resultado	Valoración
UCS (MPa)	66	7
RQD %	65	13
Espaciamiento (m)	0.3	10
Long. Discontinuidad (m)	1.5	4
Apertura (mm)	Cerrada	6
Rugosidad	Muy Rugosa	6
Relleno	Limpia	6
Alteración	Muy Alterada	2
Flujo de Agua	Seco	15
	Total	69

Tabla 324. Clasificación RMR zona 15-L

Se ubicó el valor de RMR obtenido, en la clase II de la clasificación de (Bieniawski, 1989), caracterizando a la roca como Buena y con una posibilidad de deslizamiento de 10 m en 1 año.

Obtuvimos para el valor del GSI, un resultado de 55, definiendo la roca como muy fracturada en bloques angulares de muchas caras delimitado por cuatro o más familias según el índice de resistencia geológica para macizos fracturados.

Debido que no se obtuvo discontinuidades que alteraran la estabilidad del talud no se pudo realizar la clasificación SMR.

4.5.2.16. Resultados estribo izquierdo

7000	RMR GSI		GSI		SMR			
Zona	Valor	Clase	Descrip.	Valor	Descrip.	Valor Clase		Descrip.
1-L	72	=	Buena	67	Poco Fracturada	42	III	Regular
2-L	62	Ш	Buena	57	Muy Fracturada	20	V	Muy Mala
3-L	73	Н	Buena	68	Poco Fracturada		No Aplica	
4-L	64	П	Buena	59	Muy Fracturada	34 IV Mala		Mala
5-L	74	=	Buena	69	Poco Fracturada	38	IV	Mala
6-L	72	=	Buena	67	Poco Fracturada	48	III	Regular
7-L	72	н	Buena	67	Poco Fracturada	36	IV	Mala
8-L	68	=	Buena	63	Muy Fracturada	51	III	Regular
9-L	70	Ш	Buena	65	Poco Fracturada	34	IV	Mala
10-L	62	Ш	Buena	57	Muy Fracturada	No Aplica		
12-L	66	Ш	Buena	61	Muy Fracturada	36	IV	Mala
13-L	72	Ш	Buena	67	Poco Fracturada	No Aplica		
14-L	70	Ш	Buena	65	Poco Fracturada	28 IV Mala		Mala
15-L	69	Ш	Buena	64	Muy Fracturada	No Aplica		
Promedio		69			64			

Tabla 325. Resultados globales de las clasificaciones del estribo izquierdo

 Tabla 326.
 Soporte sugerido según su SMR del estribo izquierdo

Zona	Clase SMR	Valor SMR	Soporte Sugerido
1-L	III-b	42	Redes y/o mallas (de talud), anclajes y/o bulones, Concreto proyectado, Muros de pie y/o Concreto dental
2-L	V-a	20	Muros de Contención y/o re-excavación
4-L	IV-a	34	Anclajes, Concreto proyectado, Muros de pie y/o concreto (o re- excavación), Drenaje
5-L	IV-a	38	Anclajes, Concreto proyectado, Muros de pie y/o concreto (o re- excavación), Drenaje
6-L	III-b	48	Redes y/o mallas (de talud), anclajes y/o bulones, Concreto proyectado, Muros de pie y/o Concreto dental
7-L	IV-a	36	Anclajes, Concreto proyectado, Muros de pie y/o concreto (o re- excavación), Drenaje
8-L	III-a	51	Redes y/o mallas (de talud), anclajes y/o bulones, Concreto proyectado
9-L	IV-a	34	Anclajes, Concreto proyectado, Muros de pie y/o concreto (o re- excavación), Drenaje
12-L	IV-a	36	Anclajes, Concreto proyectado, Muros de pie y/o concreto (o re- excavación), Drenaje
14-L	IV-b	28	Concreto proyectado reforzado, re-excavación, Drenaje profundo

4.5.3. Clasificación de los estribos como fundación de la presa según el DMR

Se utilizó para catalogar la roca sus familias principales de discontinuidades. Debido a que el tipo de presa será de gravedad y se utilizaran tres tipos de cementos del tipo compactado por rodillo, los cuales llamamos CCR 1, CCR 2 Y CCR 3. Además se analizó su comportamiento y si podría traer consigo problemas de deformabilidad.

Familias Principales	Dirección (buzamiento)	RMR (promedio)	R (factor de ajuste)	Orientación	DMR	Estabilidad
1	79-A		-2	Favorable	59	Comprobar Con atención
2	70-A	61	-2	Favorable	59	Comprobar Con atención
3	36-US		-2	Favorable	59	Comprobar Con atención
4	70-A		-2	Favorable	59	Comprobar Con atención
5	64-A		-2	Favorable	59	Comprobar Con atención
		59	Comprobar Con atención			

Tabla 327. Clasificación DMR para el estribo derecho

Familias Principales	Dirección	RMR (promedio)	R (factor de ajuste)	Orientación	DMR	Estabilidad
1	49-US		-2	Favorable	67	Sin preocupación
2	47-DS		0	Muy Favorable	69	Sin preocupación
3	80-A	69	-2	Favorable	67	Sin preocupación
4	50-DS		0	Muy Favorable	69	Sin preocupación
5	58-DS		0	Muy Favorable	69	Sin preocupación
		68	Sin preocupación			

Tabla 328. Clasificación DMR para el estribo izquierdo

Se estudió el comportamiento de la presa según la relación de los módulos de elasticidad de los distintos concretos y el material de los estribos. Los datos de los concretos son valores teóricos obtenidos en (Berga et al, 2003), según la cantidad de concreto que contengan, en este caso se tomó 125, 100 y 85 kg/m³.

Tabla 329. Módulos de elasticidad de los diferentes tipos de concretos y los estribos

CCR 1 (GPa)	CCR 2 (GPa)	CCR 3 (GPa)	Em ED (GPa)	Em El (GPa)
26	29	36	10	9

Tabla 330.Relación entre los módulos de elasticidad de los estribos con cada uno de los concretosque serán utilizados en la presa Ec/Em

	CCR 1	CCR 2	CCR 3
Em ED	2.6	2.9	3.6
Em El	2.89	3.22	4

Como podemos observar en las mayorías de las relaciones no tienen ningún tipo de influencia en el comportamiento de la presa, excepto la relación entre el estribo izquierdo y el CCR 3, donde se le da una escasa importancia y puede conllevar a algunos problemas secundarios que se pueden remediar. (Ver fig. 300).

Tampoco es considerable una inyección de consolidación ya que su RMR es mayor a 60, en los dos estribos. Sin embargo hay que tener precaución con las fallas que pudieran tener una apertura considerable o por las cuales pudiera fluir agua. (Ver fig. 301).

De igual mañanera, la infraestructura, considerando su altura que es de 122 m, su tipo que es de gravedad y el tipo de material el cual es CCR, no tendrá problemas de deformabilidad, ya que su valor de DMR está por encima de 55 (ver fig. 302). Esto indica que los estribos conforman un material lo suficientemente bueno para las fundaciones de la represa. Según (Romana, 2012), en los estribos el valor mínimo de RMRB sería 40, (límite entre las clases III y IV de (Bieniawski, 1989)) y módulo de elasticidad ~ 5,6 GPa, con esto se demostró que los valores de RMR obtenidos son lo suficientemente competentes para lograr una buena estabilidad de la presa. Con el factor DMR calculado podemos observar que el estribo donde debemos prestar un poco más de atención es el derecho debido a que tiene un coeficiente de cimentación más bajo con respecto al del izquierdo.

4.5.4. Modelo Geomecánico de los Estribos

Se obtuvo los valores de la resistencia a la tracción, mediante ensayos brasileros, para obtener un promedio de - 7.45 MPa para el estribo izquierdo y - 13.736 MPa para el derecho. (Ver ensayos brasileros en Anexos).

-	U 1.								
			V _P (m/seg)	V _s (m/seg)	Poisson				
		EI	4319	1783	0.40				
		FD	5457	1600	0.45				

Tabla 331. Resultados del Coeficiente de Poisson mediante V_p y V_s

Para estimar el coeficiente de Poisson, se utilizó los ensayos sísmicos obtenidos en la zona, con los cuales a través de las ondas V_p (Ondas primarias) y V_s (Ondas secundarias), se obtuvo mediante la formula $v = (\frac{V_p}{V_s})^2 - 2/2((\frac{V_p}{V_s})^2 - 1)$ (Zhang & Bentley, 2005). Donde se obtuvo como resultados 0.4 para el estribo izquierdo y 0.45 para el estribo derecho. (Ver perfil sísmico del eje de presa en Anexos).

De igual manera se estimó el módulo de rigidez por medio de la formula (Clyton, 2011) G = E/2(1 + v) donde E es el módulo de elasticidad, donde se obtuvo los valores de 3441.23 MPa para el estribo derecho y 3220.70 MPa para el estribo izquierdo.

4.5.4.1. Estribo Derecho

e	Parámetros		
lad as	Porosidad n (%)	N	1.286
ropied: s Física	Absorción A (%)	А	0.462
	P. Unitario húmedo (gr/cm ³)	ρh	2.81
d	P. Unitario seco (gr/cm ³)	ρs	2.796
	Resistencia a la compresión sin confinar (MPa)	σC	50.047
	Resistencia a la compresión confinada (MPa)	σ1	121.020
	Resistencia a la tracción (MPa)	σt	-13.736
0	JRC		14
soo	Cohesión (MPa)	С	2.064
Ro	Angulo de fricción (deg)	Φ	34.705
izo	Módulo de elasticidad (GPa)	E	10.039
laci	Coeficiente de Poisson	ν	0.45
2	Módulo de Rigidez (MPa)	G	3441.23
	RMR		61
	GSi		56
	DMR		59

Tabla 332. Modelo Geomecánico del estribo derecho

Gráfico 115. Ajuste Geomecánico del estribo derecho

4.5.4.2. Estribo Izquierdo

a	Parámetros		
lad	Porosidad n (%)	N	1.025
Propied s Física	Absorción A (%)	A	0.38
	P. Unitario húmedo (gr/cm ³)	ρh	2.7
	P. Unitario seco (gr/cm ³)	ρs	2.68
	Resistencia a la compresión sin confinar (MPa)	σC	66.130
	Resistencia a la compresión confinada (MPa)	σ1	84.729
	Resistencia a la tracción (MPa)	σt	-7.45
0	JRC		15
cos	Cohesión (MPa)	С	3.954
Ro	Angulo de fricción (deg)	Φ	35.453
izo	Módulo de elasticidad (GPa)	E	8.941
laci	Coeficiente de Poisson	ν	0.45
2	Módulo de Rigidez (MPa)	G	3220.70
	RMR		69
	GSi		64
	DMR		68

Tabla 333. Modelo Geomecánico del estribo izquierdo

Gráfico 116. Ajuste geomecánico del estribo izquierdo

Los resultados obtenidos mediante las distintas clasificaciones geomecánicas nos arrojan valores sumamente competentes en cada una de ellas, clasificando al macizo según el RMR en buena para el estribo derecho y en regular para el estribo derecho, se considera que no habrá problemas de deformaciones en los macizos debido a que su DMR es alto, sin embargo se debe tomar con precaución el estribo derecho ya que se encuentra en una zona limite, además existen ciertas partes donde puede llegar a generar complicaciones leves como es el caso del estribo izquierdo en su parte más alta con el CCR 3. Se debe tomar en cuenta un factor primordial como es el agua, tanto en la construcción de la presa sobre todo en épocas de lluvia y culminada esta, y tener cautela con la que estará contenida en el vaso de presa, ya que puede llegar a ocasionar deslizamientos. Esto se demuestra en los valores de SMR obtenidos en los cuales todos son bajos y necesitan un refuerzo como medida preventiva, aparte el GSI es indicativo de que se está en presencia de un macizo muy fracturado, formado por varias familias de discontinuidades y esto queda evidenciado en el RQD donde la se clasifica a la roca intacta de mala a regular.

Los coeficientes de Poisson obtenidos son en medida bajos, para la calidad de la roca, esto debido a la atenuación de las ondas V_s, por medio de la gran cantidad de fracturas que contienen los macizos rocosos.

Los valores de los modelos geomecánicos es el resumen compilado de todos los factores de la roca tanto físicos como mecánicos, donde se puede apreciar los ajustes geomecánicos completos del macizo con datos de compresiones uniaxiales, triaxiales y tracciones (ver mapa geomecánico de los estribos en Anexos).

CAPITULO 4

4.6. MODELO DE ELEMENTOS FINITOS

A continuación se presenta un estudio de elementos finitos, con el cual se estudiara las deformaciones que pudiesen ocurrir en los estribos, durante los procesos, antes, durante y después de construcción de la presa, esto con el fin de analizar que dimensiones se podrían alterar a lo largo de la ejecución de la obra. Según (Schrader, 2008) para los valores de cohesión de los distintos tipos de concretos de concreto compactado con rodillo, se tomó el 5 % de la resistencia a la compresión simple y se usa como patrón de referencia 45° para el ángulo de fricción (ver fig. 303).

Se realizó un mallado gradado, con nodos triangulares, con un factor de iteración de 0.1 y se dividió el estudio en 7 etapas, donde se estudió el macizo sin ningún tipo de carga, separando los distintos concretos en varias alturas dependiendo de su forma de vaciado.

Material	Leyenda	Peso Unitario (ton/m ³)	Módulo Elástico (MPa)	Coeficiente de Poisson	Esfuerzo a la Tracción (MPa)	Angulo de Fricción (deg)	Cohesión (MPa)
CCR 1		2.473	26000	0.22	-1.4	45	0.5
CCR 2		2.5	29000	0.18	-1.6	45	1
CCR 3		2.55	36000	0.15	-2	45	1.25
Estribo Derecho		2.8	10000	0.45	-13.736	34.705	2.064
Estribo izguierdo		2.7	9000	0.4	-7.452	35.453	3.954

Tabla 334. Características de los materiales utilizados en el Modelo de Elementos Finitos

Figura 228. Perfil estudiado de la presa con los distintos tipos de materiales (Vista desde aguas arribas)

4.6.1. Etapa 1 (Macizo rocoso sin ningún tipo de carga)

Figura 229. Representación de la etapa 1

Figura 230. Representación del mallado en la etapa 1

Figura 231. Representación de la direcciones en los esfuerzos en la etapa 1

Figura 232. Esfuerzos verticales en la etapa 1

Figura 233. Esfuerzos horizontales en la etapa 1

Figura 234. Deformaciones horizontales en la etapa 1

Figura 235. Deformaciones verticales en la etapa 1

Figura 236. Deformaciones totales en la etapa 1

Figura 237. Deformaciones a escala en la etapa 1

Esfuerzo Vertical (MPa)	Esfuerzo Horizontal (MPa)	Deformación horizontal (mm)	Deformación Vertical (mm)	Número de Elementos	Número de Nodos				
3.8	2	13.246	25.469	13396	28309				

Tabla 335. F	Resultados del	análisis de	elementos	finitos o	le la etar	oa 1
--------------	----------------	-------------	-----------	-----------	------------	------

4.6.2. Etapa 2 (vaciado de CCR 1 a la altura de 20 m)

Figura 238. Representación de la etapa 2

Figura 239. Representación del mallado en la etapa 2

Figura 240. Representación de la direcciones de los esfuerzos en la etapa 2

Figura 241. Esfuerzos verticales en la etapa 2

Figura 242. Esfuerzos horizontales en la etapa 2

Figura 243. Deformaciones horizontales en la etapa 2

Figura 244. Deformaciones verticales en la etapa 2

Figura 245. Deformaciones totales en la etapa 2

Figura 246. Deformaciones a escala en la etapa 2

Esfuerzo Vertical	Esfuerzo	Deformación	Deformación	Número de	Número de
(MPa)	Horizontal (MPa)	horizontal (mm)	Vertical (mm)	Elementos	Nodos
5.25	1.75	13.021	25.362	14941	31366

4.6.3. Etapa 3 (vaciado de CCR 1 a la altura de 40 m)

Figura 247. Representación de la etapa 3

Figura 248. Representación del mallado en la etapa 3

Figura 249. Representación de la direcciones de los esfuerzos en la etapa 3

Figura 250. Esfuerzos verticales en la etapa 3

Figura 251. Esfuerzos horizontales de la etapa 3

Figura 252. Deformaciones horizontales de la etapa 3

Figura 253. Deformaciones verticales de la etapa 3

Figura 254. Deformaciones totales de la etapa 3

Figura 255. Deformaciones a escala de la etapa 3

Esfuerzo Vertical (MPa)	Esfuerzo Horizontal (MPa)	Deformación horizontal (mm)	Deformación Vertical (mm)	Número de Elementos	Número de Nodos
6.75	2.1	12.3	25.074	18125	37704

4.6.4. Etapa 4 (vaciado de CCR 2 a la altura de 60 m)

Figura 256. Representación de la etapa 4

Figura 257. Representación del mallado en la etapa 4

Figura 258. Representación de la direcciones de los esfuerzos en la etapa 4

Figura 259. Esfuerzos verticales en la etapa 4

Figura 260. Esfuerzos horizontales de la etapa 4

Figura 261. Deformaciones horizontales de la etapa 4

Figura 262. Deformaciones verticales de la etapa 4

Figura 263. Deformaciones totales de la etapa 4

Figura 264. Deformaciones a escala de la etapa 4

Esfuerzo Vertical	Esfuerzo	Deformación	Deformación	Número de	Número de
(MPa)	Horizontal (MPa)	horizontal (mm)	Vertical (mm)	Elementos	Nodos

Tabla 338. Resultados del análisis de elementos finitos de la etapa 4

4.6.5. Etapa 5 (vaciado de CCR 2 a la altura de 80 m)

Figura 265. Representación de la etapa 5

Figura 266. Representación del mallado en la etapa 5

Figura 267. Representación de la direcciones de los esfuerzos en la etapa 5

Figura 268. Esfuerzos verticales en la etapa 5

Figura 269. Esfuerzos horizontales de la etapa 5

Figura 270. Deformaciones horizontales de la etapa 5

Figura 271. Deformaciones verticales de la etapa 5

Figura 272. Deformaciones totales de la etapa 5

Figura 273. Deformaciones a escala de la etapa 5

Esfuerzo Vertical	Esfuerzo	Deformación	Deformación	Número de	Número de
(MPa)	Horizontal (MPa)	horizontal (mm)	Vertical (mm)	Elementos	Nodos
9.6	3.50	11.291	26.676	21930	45285

Tabla 339.	Resultados del aná	lisis de elementos	finitos de la etapa	5
------------	--------------------	--------------------	---------------------	---

4.6.6. Etapa 6 (vaciado de CCR 3 a la altura de 100 m)

Figura 274. Representación de la etapa 6

Figura 275. Representación del mallado en la etapa 6

Figura 276. Representación de la direcciones de los esfuerzos en la etapa 6

Figura 277. Esfuerzos verticales en la etapa 6

Figura 278. Esfuerzos horizontales de la etapa 6

Figura 279. Deformaciones horizontales de la etapa 6

Figura 280. Deformaciones verticales de la etapa 6

Figura 281. Deformaciones totales de la etapa 6

Figura 282. Deformaciones a escala de la etapa 6

Esfuerzo Vertical	Esfuerzo	Deformación	Deformación	Número de	Número de
(MPa)	Horizontal (MPa)	horizontal (mm)	Vertical (mm)	Elementos	Nodos
12.9	4.75	11 605	22 500	25622	72640

Tabla 340. Resultados del análisis de elementos finitos de la etapa 6

4.6.7. Etapa 7 (vaciado completo de la presa a 122 m)

Figura 283. Representación de la etapa 7

Figura 284. Representación del mallado en la etapa 7

Figura 285. Representación de la direcciones de los esfuerzos en la etapa 7

Figura 286. Esfuerzos verticales en la etapa 7

Figura 287. Esfuerzos horizontales de la etapa 7

Figura 288. Deformaciones horizontales de la etapa 7

Figura 289. Deformaciones verticales de la etapa 7

Figura 290. Deformaciones totales de la etapa 7

Figura 291. Deformaciones a escala de la etapa 7

Esfuerzo Vertical	Esfuerzo	Deformación	Deformación	Número de	Número de
(MPa)	Horizontal (MPa)	horizontal (mm)	Vertical (mm)	Elementos	Nodos
13.65	5.2	12.534	21.859	45761	92858

Tabla 341.	Resultados del análisis de elementos finitos de la etapa
10010 3411	nesultados del analisis de clementos mintos de la etapa i

4.6.8. Resultados de las etapas del Modelo de Elementos Finitos

- Etapa 1: en esta etapa se modelo el macizo sin ningún tipo de carga sobre él, donde podemos observar que los esfuerzos verticales se acentúan mucho más en la división de los estribos en su cota más baja y sus direcciones apuntan hacia esa dirección. Las deformaciones horizontales ocurren en mayor proporción en el estribo derecho a aproximadamente 13 mm; por su parte las verticales ocurren en las cotas más altas de los estribos, con mayor proporción en el estribo izquierdo de aproximadamente 25 mm. Las deformaciones y esfuerzos en esta etapa se usan como parámetros patrón para las demás.
- Etapa 2: aquí se coloca una carga de CCR 1 sobre el macizo a una altura de 20 m, donde los esfuerzos verticales comienzan a someter el macizo a compresiones leves. Las deformaciones verticales comienzan a verse en el área de vaciado y las horizontales disminuyen por causa del peso de esta sección de presa. De igual manera se nota un aumento de las mismas poco representativo. Las líneas de esfuerzos se notan un poco más curveadas.
- Etapa 3: en esta etapa se coloca una carga mayor de CCR 1 pero a 40 m de altura, los esfuerzos verticales aumentan más, y se nota una leve compresión entre las secciones de CCR 1, sin embargo las deformaciones verticales comiezan a disminuir y las horizontales comienzan a aumentar con mayor presencia en el estribo derecho.
- Etapa 4: esta etapa es vaciada con CCR 2 a una altura de 60 m. sumado a eso la sección de CCR 1 comienzan a ejercer mayor peso sobre la presa, sim embargo no vemos mucha deformación entre ellas. Las deformaciones verticales se ejercen en las cotas más altas de los estribos y las horizontales siguen aumentando en el estribo derecho.
- Etapa 5: se coloca otra sección de CCR 2 a 80 m de altura, y se observó que la afectación de las secciones no influye mucho en el macizo, sin embargo se observó que las direcciones de los esfuerzos comienzan a converger hacia dentro del macizo rocoso, esta debido al peso que ejerce la parte de la presa sobre los estribos.
- Etapa 6: se comienza a vaciar el tercer tipo de concreto CCR 3, y se obtuvo que las deformaciones comienzan a disminuir en los macizos, pero aumentan en las secciones de la presa, debido al peso propio de las mismas.
- Etapa 7: en esta etapa se completa el vaciado de toda la presa, podemos observar que las deformaciones que ocurren en comparación a la etapa 1 son de apenas 4 mm en vertical y 2 mm en horizontal, esto es debido a la que la roca tiene buena respuesta esfuerzos compresivos.

5.1. CONCLUSIONES

- La roca posee metamorfismo de nivel bajo a medio, ubicándola dentro de la facies metamórfica de los esquistos verdes, afectando su estructura cristalina y mineralógica, modificando las propiedades mecánicas de su protolito ígneo (Basalto) y haciéndola menos competente.
- El tipo de roca encontrado en los estribos de la presa es impermeable y poco porosa, con una cantidad de absorción muy baja. Por tal razón la posibilidad de que exista presencia de agua en el macizo es muy poco probable, y si fuera el caso, tendría que ser por permeabilidad secundaria, a través de fallas o discontinuidades abiertas.
- Se comprobó que las discontinuidades de los macizos presentan un coeficiente de rugosidad muy alto, aumentando la cohesión e imposibilitando el movimiento de las mismas en los taludes.
- Los datos de cohesión y fricción obtenidos mediante ensayos de corte son valores de una roca de alta competencia, indicando que su resistencia al corte será muy elevada, por tanto es muy poco probable que falle cualquier tipo de plano inestable en el macizo.
- Debido a la buena calidad del macizo rocoso podemos ratificar que podrá soportar todo el peso de la presa, y no sufrirá deformaciones en sus bases ya que a profundidades mayores, la roca tendrá un mejor comportamiento. De igual manera la roca tampoco sufrirá grandes deformaciones en la parte superficial debido a que su resistencia a la compresión simple es alta.
- Las inestabilidades en los taludes que puedan ocurrir, serán causadas por la disolución del material cementante (oxido), que se encuentra entre las juntas, a causa de la percolación del agua que pueda generar factores externos como la lluvia. Ya que su adherencia será disminuida en mayor proporción, trayendo como consecuencia el desprendimiento de bloque.
- Las fallas en cuña y planas que se forman en los taludes son delgadas y acostadas, debido a que los buzamientos de las discontinuidades son muy inclinados, haciendo que los bloques no se deslicen, sino que se fracturen y caigan.
- Las familias de discontinuidades resultantes no afectan la estabilidad de los estribos, ni en orientación ya que son casi perpendiculares a la dirección de los ejes de la presa y tampoco en buzamientos ya que todas son mucho más inclinadas los estribos.
- Quedo evidenciado que la calidad de los macizo rocoso es buena incluso teniendo un RQD muy malo y taludes muy roca muy fracturada. Esto es indicativo de que nos encontramos

en una roca competente que asimilara de manera óptima cualquier tipo de esfuerzo a la que pueda ser sometida.

- Debido a que los valores de SMR obtenidos en los taludes estudiados fueron muy bajos, se deberá de colocar un sostenimiento temporal como concreto proyecto o *shotcreet*, para garantizar que el desprendimiento de roca no sea posible. en los bloques donde su configuración sea muy grande se deberá de colocar anclajes pasivos, para inmovilizarlo, asegurando las medidas de seguridad para el personal que esté trabajando, hasta que sea fundada la presa.
- Los valores de DMR demuestran que no se tendrá ningún tipo de problemas con los estribos en relación con sus orientaciones. También se garantiza la estabilidad completa de la presa y que presentara pocos problemas locales. Esto asegura que el macizo rocoso es apto para ser utilizado como zona de fundación para la presa, gracias que su material es muy resistente.
- Por medio del análisis de elementos finitos se obtuvo que las deformaciones que podría sufrir el macizo rocoso son mínimas pudiendo ser de unos poco milímetros, esto significa que el material asimilara muy bien el todo el peso de la presa. No se obtuvo deformaciones significantes entre las secciones de la presa y los esfuerzos resultantes estarán dirigidos a al terreno.

5.2. **RECOMENDACIONES**

- Se recomienda realizar un estudio geológico-geomecánico en todo el vaso de la presa, aguas arriba de la presa, para garantizar que no haya ningún desprendimiento de masa por inestabilidad y ocasione un efecto tsunami sobre la presa.
- Se debe realizar el estudio de discontinuidades y del macizo en los taludes donde no se logró obtener datos. De igual manera en los taludes que aún no han sido escavados.
- Se debe obtener los datos reales de los concretos que serán utilizados en construcción de la presa para tener un diseño más real.
- Rellenar con inyecciones de consolidación las fallas y discontinuidades que estén abiertas aguas arribas para evitar la percolación dentro del macizo rocoso, como aguas abajo para garantizar la estabilidad al deslizamiento de los taludes de esa zona.
- Realizar un estudio detallado y completo tanto geológico como geomecánico en el cauce del río para asegurarse de que el material también es competente y verificar la existencia de falla activas.
- Supervisar periódicamente los taludes para observar anomalías o problemas que puedan ocurrir en estos, sobre todo en tiempos de lluvia y así evitar cualquier accidente.
- Excavar los taludes hasta llegar a una roca clase II o III en la escala de Bieniawski, para garantizar un macizo de calidad para la fundación.

- Aguerrevere, S., & Zuloaga, G. (1937). *Lexico Estratigrafico de Venezuela*. Recuperado el 25 de 04 de 2014, de http://www.pdv.com/lexico/v16w.htm
- Alarcón, I. J. (2012). *Estabilidad de taludes en presas de relave*. Área de Planeamiento Ingeniería. Arequipa: Compañia de minas buenaventura Up Julcani.
- Alpízar Barquero, A. (2012). Metodología de análisis de estabilidad de taludes para proyectos viales. *XI Congreso Nacional de Geotecnia*. San José.
- Amanloo, F., & Hosseinitoudeshki, V. (2013). The effect of joint roughness coefficient (JRC) and joint compressive strength (JCS) on the displacement of tunnel. *International Research Journal of Applied and Basic Sciences*, 9.
- ASTM. (1995a). D2938-95, Standar test method for unconfined compressive strength of intact rock core specimens. *American society of testing and materials*.
- ASTM. (1995b). D5731-08, Standard test method for determination of de point load strength index of rock load application to rock strength classification. *American society of testing and materials*.
- ASTM. (1996a). D2664-95a, Standard test method for traxial compressive strength of undrained rock core specimens without pore pressure measurements. *American for testing and materials*.
- ASTM. (1996b). D5607-08, Standard test method for performing laboratory direct shear strength tests of rock specimens under constant normal force. *American society of testing and materials*.
- Attewell , P. B., & Farmer , I. W. (1976). *Principles of Engineering Geology.* Londres, Inglaterra: Chapman and Hall.
- Avila Baray, H. L. (1996). *Introduccion a la Metodología de la Investigacion* (electrónica ed.). Cd. Cuauthemoc, Chiguagua, Mexico: eumed.net.
- Ayala Carcedo, F. (1987). Manual de taludes (1era ed.). Madrid, España: IGME.
- Ayala Carcedo, F. J. (2009). Manual de Ingenieria Geologica. Madrid, España: IGME.
- Bañón Blázquez, L., & Beviá García, J. F. (2000). *Manual de carreteras. Volumen II: construcción y mantenimiento.* Alicante, España: Ortiz e Hijos, Contratista de Obras, S.A.
- Barton , N., & Bandis, S. (1990). Review of predictive capasibilities of JRC-JCS model in engineering practice. *Balkema*, 8.

- Barton, N., & Choubey, V. (1977). The Shear Strength of Rock Joints in Theory and Practice. Springer-Verlag, 1-54.
- Belandria, N., & Borgiorno, F. (2012). Clasificaiones Geomecanica de los Macizos Rocosos segun: Beniawski, Barton, Hoek & Brown y Romana. Universidad de los Andes, Escuela de Geologia, Merida.
- Berga, L., Buil, J., Jofré, C., & Chonggang, S. (2003). Roller Compacted Concrete Dams. Madrid: Swets & Zeitlinger.
- Bieniawski, Z. T. (1973). Engineering Classification of Jointed Rock Masses. Trans. S. African inst. Civil Engrs, 15, 335-342.
- Bieniawski, Z. T. (1989). Engineering Rock Mass Classifications. New York: Wiley.
- Brace, W. F., & Martin, R. J. (1968). A test of the law of effective stress for crystalline rocks of low. Int. J. Rock Mech. Min. Sci., (págs. 415-426).
- Broch, E. (1974). The influence of water on some rock properties. Proc. 3rd ISRM Congress, Part A, págs. 33-38. Denver.
- Brown, E. T. (1981). Rock Characterization Testing & Monitoring (1era ed.). Londres, Inglaterra: Pergamon Press.
- Canoba, C. A., & Fraga, H. R. (2004). Propiedades Elásticas de las Rocas (Traducción). En I. W. Farmer, Engineering properties of Rocks. Londres: E & F.N. Spon Ltd.
- Castells Fernández, G. (2012). Proyecto para la Estabilización Talud de Estacion de Servicio en Carretera Nacional 525. Tesis de Pregrado, Universidad Politécnica de Madrid, Departamento de Explotación de Recursos Minerales y Obras Subterráneas, Madrid.
- Castillejo, M. (1993). Análisis Comparativo de los metodos de estabilidad de taludes y su control. Parte 1. Trabajo de Ascenso, Universidad Central de Venezuela, Escuela de Geología Minas y Geofísica, Caracas.
- Clyton, C. I. (2011). Stiffness at small strain: research and practice. Ge'otechnique, 61(No. 1), 5-37.
- Cortiula, B. (1983). Estudio geológico de un area ubicada al sur de Panaquire y este del rio *Cuira.Estado Miranda.* Tesis de Pregrado, UCV, Departamento de Geología, Caracas.
- Deer, D. U., & Miller, R. P. (1966). Engineering classification and index properties. Tech Report Air Force Weapons Lab, 65-116.

- Deere, D. U., & Deere, D. W. (1988). The Rock Quality Designation (RQD) Index in the practice. En
 A. S. Materials, *Rock Classification Systems for Engineering Purposes ASTM STP 984* (págs. 91-101). Philadelphia: Louis Kirkaldie.
- Diaz, C., & Ochoa, G. (2009). *Análisis y correlación entre el parámetro RQD y la permeabilidad Lugeón.* Tesis, Facultad de Ingenieria, Deparatamento de Geologia, Caracas.
- Diaz, C., & Ochoa, G. (2009). *Análisis y correlación entre el parámetro RQD y la permeabilidad Lugeón.* Tesis, Facultad de Ingenieria, Deparatamento de Geologia, Caracas.
- Diederichs, M. s. (1990). *Dips An Interactive and Graphical Approach to The Analisys of Orientation Based Data.* Tesis de Maestria, University of Toronto, Deparhent of Civil Engineering, Toronto.
- Duque Escobar, G. (2003). *Manual de Geologia para Ingenieros* (1era ed.). Manizales, Colombia: Universidad Nacional de Colombia.
- Espinace, R. (1979). Laboratorio de Mecánica de Suelos. Valparaiso: UCV.
- Farías Rodriguez, L., & Merola Pilerci, V. (2014). *Propiedades de los fluidos del yacimiento*. Barcelona, España: Reverté.
- Garcia Gonzales, A. (1982). Modos de Falla Planar de Taludes Secos Cinematicamente Estables. *Open Journal Systems*, 22-33.
- GCTS. (2015). Obtenido de GCTS: http://www.gcts.com/?s=prod_ver&p=products&ID=62
- GIrard, D. (1981). *Lexico Estratigrafico de Venezuela*. Recuperado el 25 de 04 de 2014, de Pdvsa: http://www.pdv.com/lexico/l70w.htm
- Gonzales de Juana, C., Iturralde de Arozena, J., & Picard Cadillat, X. (1980). *Geología de Venezuela* y de sus Cuencas Petrolíferas (Vol. 1). Caracas, Venezuela: Ediciones Foninves.
- Gonzales de Vallejo, L. I. (2002). Ingeniería Geológica. Madrid, España: Pearson Educational.
- Gorakinkar, D. (2011). *Analysis of Slope Stability for Waste Dumps in a Mine*. Tesis Pregrado, National Institute of Technology Rourkela, Department of Mining Engineering, Roukela.
- Harrison, J. P., & Hudson, J. A. (2000). *Engineering Rock Mechanics* (1era ed.). Londres, Reino Unido: Pergamon.
- Herrera Rodríguez, F. (2002). *Análisis de estabilidad de Taludes*. Madrid, España: GEOTECNIA 2000.
- Herrero, N. (1995). Nociones de Geologia Estructural. En E. Fenandez, N. Herrero, J. Lario, I. Ortiz,
 R. Peiro, & c. Rossi, Introducción a la Geología Kárstica (pág. 25). Madrid, España:
 Federacion Española de Espeleologia.
- Hoek, E., & Brown, E. T. (1980). Empirical strength criterion for rock masses. *Journal of Geotechnical Engineering*, *106*, 1013-1035.
- Hoek, E., Read , J., Karzulovic, A., & Chen, Z. Y. (2000). Rock slopes in Civil and Mining Engineering. *n Proceedings of the International Conference on Geotechnical and Geological Engineering* (págs. 1-17). Melbourne: GeoEng2000.
- Hoyos Patiño, F. (2012). Geotecnia diccionario básico. Medellín, Colombia.
- Hustrulid, W. A., McCarter, M. K., & Van Zyl, D. J. (2001). *Slope Stability in Surface Mining* (1era ed.). Littleton, Colorado, Estados Unidos: SME.
- Interior, U. D. (1978). *Diseño de Presas Pequeñas* (7ma ed.). (J. L. Lepe, Trad.) Mexico, Mexico D.F., Mexico: Compañia editorial continental S.A.
- ISRM. (1975). Suggest method for determining shear strength. *International Society of Rock Mechanics*.
- ISRM. (1979). Suggested methods for determining the uniaxial compressive strength and deformability of rock materials . *International Journal of Rock Mechanics , 16*.
- ISRM. (1979). Suggested methods for determining, water content, porosity, density and absorbtion. *Internacional society of rock mechanics*, *16*, 141-156.
- Jimenez Salas, J. (1975). Geotecnia y Cimientos (Vol. I). Madrid: Rueda.
- Kerguelen Argumedo, A. (2009). *Analisis Probabilistico de Estabilidad de Taludes.* Tesis, ULA, Facultad de Ingenieria Civil y Ambiental, Merida.
- kerguelen Argumedo, A. (2009). *Análisis Probabilístico de Estabilidad de Taludes.* Tesis de Maestría, Universidad de los Andes, Departamento de Ingeniería Civil y Ambiental, Merida.
- Kliche, C. A. (1999). Rock Slope Stability (1era ed.). Littleiton, Colorado, Estados Unidos: SME.
- Melbye, T. (1994). Shotcrete para soporte de rocas. Zurich, Suiza: MBT.
- Melentijevic, S. (2005). *Estabilidad de taludes en macizos rocosos.* Tesis Doctoral, Universidad Politecnica de Madrid, Departamento de Ingenieria y Morfología del terreno, Madrid.
- Ministerio de Obras Públicas. (1973). *Grandes Presas en Venezuela*. Caracas, Distrito Capital, Venezuela: Dirección General de Recursos Hidráulicos.
- MVOTMA. (2011). Manual de Diseño de Pequeñas Presas. Montevideo, Uruguay: DINAGUA.
- Navarro, E. (Diciembre de 1983). Petrología y Petrogenesis de las rocas Metavolcánicas del Grupo Villa de Cura. *GEOS*(28), 170-317.

Análisis Geomecánico y Estabilidad de los Estribos en la Presa sobre El Río Cuira del Sistema Tuy IV en el Sector El Dinero, Municipio Acevedo, Estado Miranda

Ochoa, D. &. (2009). *Análisis y correlación entre el parámetro RQD y la permeabilidad Lugeón.* Tesis de Pregrado, Facultad de Ingenieria, Deparatamento de Geologia, Caracas.

- Ochoa, K., & Reyes, R. (2011). Propuesta de los parametros para el diseño de estabilidad de taludes y de los depositos finaels en minera Loma de Niquel, C.A. Municipio Guaicaipuro, *Estado Miranda.* Tesis de Pregrado, UCV, Departamento de Minas, Caracas.
- Ortuño Abad, L. (2004). Estabilizacion de taludes en suelos. Madrid, España: INTEVIA.
- Pariseau, W. G. (2006). Design Analysis in Rock Mechanics. Londres, Reino Unido: Taylor & Frnacis.
- Perez de Ágreda, E. A. (2005). *Estabilidad de Taludes* (4 ed.). Barcelona, Catalunya, España: Departament d'Enginyeria del Terreny, Cartogràfica i Geofísica.
- Perez D'Gregorio, A. (1986). *Estudio geológico de la cuenca del rio Cuira, Estado Miranda.* Tesis de Pregrado, UCV, Departamento de Geología, Caracas.
- Pezzotti, S., & Antico, F. (2007). *Introducción a la Teoría de Elementos Finitos*. Guia de Estudio, Universidad Nacional de la Plata, Departamento de Aeronautica, Cdad. de la Plata.
- Priest, S. D., & Brown, E. T. (1983). Probabilistic stability analysis of variable rock. *Transactions of Institution of Mining and Metallurgy*, 1-12.
- Ramirez Oyanguren, P. (1980). *Estabilidad de Taludes en Rocas Competentes*. Madrid, España: Fundacion Gomez-Pardo.
- Ramirez, P., & Alejano, L. (2004). *Mecanica de Rocas: Fundamentos e Ingenieria de Taludes.* Madrid, España.
- Rocha, M. (1964). Statement of the physical problem of the arch dam. *Symp. On Theory of arch dams.* Southampton.
- Rocha, M. (1975). Alguns problemas relativos a Mecánica das Rochas dos materiais de baixa resistencia. 5º Congreso Panamericano de Mecánica del. Buenos Aires.
- Rocscience. (2013). *Rocscience software tools for rock and soil*. Recuperado el 9 de mayo de 2013, de http://www.rocscience.com/products/4/feature/176
- Romana, M. (2003a). DMR (Dam Mass Rating). An adaptation of RMR geomechanics classification for use in dam foundation. *Inst. Cong. on Rock.* South Africa.
- Romana, M. (2003b). DMR: a new geomechanics classification for use in dams foundations, adapted from RMR. *4th International Symposium on Roller*. Madrid: CNEGP.
- Romana, M. (2012a). Cimentación de presas. Aspectos geomecánicos. XXVI RNMSeIG. Cancún.
- Romana, M. (2012b). Taludes escavados en roca. 2º Simposio Suramericano de Excavaciones en Rocas, (pág. 31). Costa Rica.

- Sabino, C. (1992). *El Proceso de la investigacion* (3 ed.). Caracas, Distrito Capital, Venezuela: Panapo.
- Schrader, E. K. (2008). RCC Dam Design: Analyzing Stress and Stability. *HRW-HYDRO REVIEW WORLDWIDE*.
- Singh, B., & Goel, R. K. (1999). Rock Mass Clasification. Oxford, UK: Elsevier.
- Sobarzo, V., Villalobos, F., & King, R. (2011). Estudio de la estabilidad de taludes en roca meteorizada de la formación Quiriquina. *Obras y Proyectos 9*, 38-48.
- Suarez, J. (1998). *Deslizamientos y Estabilidad de Taludes en zonas Tropicales*. Bucaramanga, Colombia: Instituto de Investigaciones sobre Erosión y Deslizamientos.
- Suarez, L. M. (1989). Ingeniería de presas obras de toma , descarga y desviación. Caracas, Venezuela: Ediciones Vega.
- Tomas Jover, R., Ferreiro Prieto, I., Sentana Gadea, I., & Diaz Ivorra, M. (2002). Aplicaiones de la proyección estereográfica en ingeniería geológica. *XIV Congreso Internacional de Ingeniería Gráfica*, (pág. 10). Santander.
- Turner , F. J. (1968). *Metamorphic petrology mineralogical and field aspects*. Estados Unidos: Editorial Board.
- U.S Department of Interior. (1978). *Diseño de Pequeñas Presas* (7ma ed.). (J. L. Lepe, Trad.) Mexico, Mexico: Compañia Editorial Continental S.A.
- Ucar Navarro, R. (1995). *Manual de Anclajes en Obras de Tierra* (1era ed.). Merida, Merida, Venezuela: Ministerio de Trasnporte y Comunicaciones.
- Ucar, R., Belandria, N., & Bongiorno, f. (2008). Método Analítico para Determinar la Distribución de los Esfuerzos Normales y Tangenciales sobre una Superficie Potencial de Rotura Plana en Macizos Rocosos. En *Conferencia 50 aniversario de la Sociedad Venezolana de Geotecnia* (pág. 399). Caracas, Venezuela: SVDG.
- Urbani, F., Chirinos, A., & Marquina, M. (Junio de 1990). Geología del área de Guatopo-El Guapo. Estado Miranda y Guárico. Parte 1: Grupo de Villa de Cura . *Revista de Facultad de Ingeniería*, *5*(1), 78-96.
- Urbani, F., Chirinos, A., & Marquina, M. (Julio de 1991). Geología del área de Guatopo El Guapo, Estados Miranda y Guárico. Parte 2: Formación Las Hermanas y Complejo de Apa. *Revista de la Facultad de Ingeniería, 6*(1), 5-52.
- Urbani, F., Vizcarret, P., & Pérez, A. (1986). *Lexico Estratigráfico de Venezuela*. Recuperado el 25 de 4 de 2014, de PDVSA: http://www.pdv.com/lexico//a350w.htm

329

- Wyllie, D. C. (2005). *Foundations on Rock* (2da ed.). New York, New York, Estados Unidos: E & FN SPON.
- Zagoya Armas, M. A. (2004). *Cartografia geologica estructural del Valle del Huizachal, como base para el analisis de estabilidad de taludes de la carretera Rumbo Nuevo, TAMPS., Mexico.* Tesis de Maestria, Universidad Autonoma de Nuevo Leon, Facultad de Ciencias de la Tierra, Nuevo Leon.
- Zhang, J. J., & Bentley, L. R. (2005). Factors determining Poisson's ratio. *CREWES Research Report*, *17*.

Figura 292. Clasificación según el JRC (Barton & Bandis, 1990)

Figura 293. Ábaco para determinar el JRC (Barton & Bandis, 1990)

Análisis Geomecánico y Estabilidad de los Estribos en la Presa sobre El Río Cuira del Sistema Tuy IV, en el Sector El Dinero, Municipio Acevedo, Estado Miranda

Figura 294. Clasificación de Deer & Miller (Attewell & Farmer, 1976)

Figura 295. Tipo de comportamiento de la roca según su tipo de rotura (Attewell & Farmer, 1976)

Análisis Geomecánico y Estabilidad de los Estribos en la Presa sobre El Río Cuira del Sistema Tuy IV en el Sector El Dinero, Municipio Acevedo, Estado Miranda

Quasi-elastic	_	very stiff	$E > 8000 \text{ N mm}^{-2}$
Semi-elastic		stiff	$E = 4000 - 8000 \text{ N mm}^{-2}$
Non-elastic	_	soft very soft	$E = 2000 - 4000 \text{ N mm}^{-1}$ $E = 1000 - 2000 \text{ N mm}^{-2}$ $E < 1000 \text{ N mm}^{-2}$

Figura 296. Clasificación de la roca según su módulo de elasticidad (Attewell & Farmer, 1976)

Resistencia a la compresión simple (MPa)	ISRM (1981)	Geological Society of London (1970)	Bieniawski (1973)	Ejemplos	
< 1			Suelos		
1-5	Muy blanda	Blanda > 1,25	Muy baja		
5-12,5		Moderadamente blanda		Sal, lutita, limolita, marga, toba, carbón.	
12,5-25	Blanda	Moderadamente – dura			
25-50	Moderadamente dura		Baja	Esquisto, pizarra.	
50-100	Dura	Dura	Media	Rocas metamórficas esquistosas, mármol, granito, gneiss, arenisca, caliza porosa.	
100-200	Muy dura	Muy dura	Alta	Rocas ígneas y metamórficas duras, arenisca muy cementada, caliza, dolomía.	
> 200	, unit	Extremadamente dura	Muy alta	Cuarcita, gabro, basalto.	
> 250	Extremadamente				

Figura 297. Clasificaciones según su resistencia a la compresión simple (Gonzales de Vallejo, 2002)

Figura 298. Disposición de orientaciones (Gonzales de Vallejo, 2002)

Análisis Geomecánico y Estabilidad de los Estribos en la Presa sobre El Río Cuira del Sistema Tuy IV en el Sector El Dinero, Municipio Acevedo, Estado Miranda

SMR Classes	SMR Values	Suggested Supports			
Ia	91-100	None			
Ib	81-90	None, scaling is required			
IIa	71-80	(None, toe ditch or fence), spot bolting			
IIb	61-70	(Toe ditch or fence nets), spot or systematic bolting			
IIIa	51-60	(Toe ditch and/or nets), spot or systematic bolting,			
		spot snotcrete			
IIIb	41-50	(Toe ditch and/or nets), systematic bolting/anchors, systematic shotcrete, toe wall and/or dental concrete			
IVa	31-40	Anchors, systematic shotcrete, toe wall and/or concrete (or re-excavation), drainage			
IVb	21-30	Systematic reinforced shotcrete, toe wall and/or concrete, re-excavation, deep drainage			
Va	11-20	Gravity or anchored wall, re-excavation			

Figura 299.	Soportes Su	aeridos para	a clases de SRM	(Singh & C	Goel, 1999)
5		5 1		1 2	, , ,

Ec/Em	Influencia en la presa	Problemas
< 4	Despreciable	Ninguno
4-8	Escasa importancia	Secundarios
8-16	Importante	Algunos
>16	Muy importante	Moderados a grandes

Figura 300. Efectos de relaciones entre módulos (Rocha, 1975)

TIPO DE PRESA	EXCAVACIÓN HASTA RMR _{bd} (†)	INYECCIONES DE CONSOLIDACIÓN DE ACUERDO A RMR _{BD}			
		Sistemáticas	Ocasionales	Ninguna	
MATERIALES			2		
SUELTOS	-	-	ŗ	-	
ESCOLLERA	>20 (> 30)	20-30	30-50	>50	
GRAVEDAD	>40 (> 60)	40-50	50-60	>60	
BÓVEDA	>50 (> 70)	50-60	60-70	>70	

(+) minimo (deseable)

-"GRAVEDAD" incluye presas con CVC, RCC y relleno duro (hardfill).

-"ESCOLLERA" incluye las presas de escollera sensibles al asiento

(con pantalla: de hormigón – CFRD– o asfáltica –AFRD–)

Figura 301. Recomendaciones orientativas para las inyecciones de consolidación (Romana M., 2003a)

PRESA	ALTURA	Normo ol	Drahlaman	Problemas
E _c (GPa)	(m)	Normai	Problemas	serios
Bóvedo	< 100	>50	40-50	<40
	100-150	>65	50-65	<50
30 GPa	150-200	>75	60-75	<60
Gravedad	< 50	>40	25-40	<25
CVC	50-100	>50	40-50	<40
30 GPa	100-150	>60	50-60	<50
Gravedad	< 50	>35	20-35	<20
RCC	50-100	>45	35-45	<35
20 GPa	>100	>55	45-55	<45
Relleno	<50	>30	15-30	<15
duro	50-100	>40	30-40	<30
10 GPa	50-100	270	50-40	-50

Figura 302. Problemas de deformabilidad según el DMR (Romana M., 2003b)

RCC Mix kg/m ³ *	Age days	Compresion Strength MPa	Tension Strength MPa	Elastic Module GPa
150	7	8.0	1.1	14.5
150	90	17.0	2.0	33.0
150	365	25.0	2.4	42.0
125	7	6.5	0.8	14.0
125	90	13.5	1.4	32.0
125	365	16.5	2.0	36.0
100	7	4.5	0.6	7.0
100	90	9.5	1.0	25.0
100	365	13.5	1.6	29.0
85	7	4.0	0.4	6.0
85	90	8.0	0.8	21.0
85	365	10.0	1.4	26.0

* kg of cement per mix cubic meter.

Figura 303. Valores teóricos de distintos tipos de RCC (Berga, Buil, Jofré, & Chonggang, 2003)