TRABAJO ESPECIAL DE GRADO

CARACTERIZACIÓN QUÍMICA DE UNA SECCIÓN DE LA FORMACIÓN AGUARDIENTE, ESTADO TÁCHIRA

Presentado ante la Ilustre Universidad Central de Venezuela para optar al Título de Ingeniero Geólogo por el Br Mauricio Isaías Bavutti Vicentelli

Caracas, Junio de 2006

TRABAJO ESPECIAL DE GRADO

CARACTERIZACIÓN QUÍMICA DE UNA SECCIÓN DE LA FORMACIÓN AGUARDIENTE, ESTADO TÁCHIRA.

Tutor Académico: Dra. Olga Rey, Ph.D. Tutor Industrial: Geol. Néstor Aparicio Cotutor Industrial: Ing. Mariela Noguera

> Presentado ante la Ilustre Universidad Central de Venezuela para optar al Título de Ingeniero Geólogo por el Br Mauricio Isaías Bavutti Vicentelli

Caracas, Junio de 2006

Los abajo firmantes, miembros del jurado designado por el Consejo de Escuela de Ingeniería Geológica, para evaluar el Trabajo Especial de Grado presentado por el Bachiller Mauricio Isaías Bavutti Vicentelli, titulado:

CARACTERIZACIÓN QUÍMICA DE UNA SECCIÓN DE LA FORMACIÓN AGUARDIENTE, ESTADO TÁCHIRA.

Consideran que el mismo cumple con los requisitos exigidos por el plan de estudio conducente al Título de Ingeniero Geólogo, y sin que ello signifique que se hacen solidarios con las ideas expuestas por el autor, lo declaran APROBADO.

Prof. Olga Rey Jurado Prof. Lenin González Jurado

Prof. Manuel Martínez Jurado

CARACTERIZACIÓN QUÍMICA DE UNA SECCIÓN DE LA FORMACIÓN AGUARDIENTE, EDO. TÁCHIRA.

Tutor Académico: Dra. OLGA REY, Tutor Industrial: Geol. NESTOR APARICIO, Cotutor Industrial: Ing. MARIELA NOGUERA. Tesis. Caracas, U.C.V. Facultad de Ingeniería. Escuela de Geología, Minas y Geofísica. Año 2006, 142 p.

Palabras Claves: Formación Aguardiente, Cretácico, Cuencas Maracaibo-Barinas, Quimioestratigrafía, Unidades químicas, Fluorescencia de rayos X, Estadística univariante y multivariante.

Resumen

El siguiente estudio se desarrolla en una sección de la Formación Aguardiente (Albiense) ubicada en el sector Río Frío a unos 20 Km al sur de San Cristóbal y a unos 9 Km al sureste de Santa Ana del Táchira. La Formación Aguardiente en esta sección está caracterizada por espesos paquetes de areniscas intercaladas con delgados paquetes de arcillitas y limolitas interestratificadas.

Un total de 182 muestras fueron analizadas mediante la técnica de fluorescencia de rayos X por dispersión de energía (FRX-DE), arrojando concentraciones en porcentaje (%) de los elementos mayoritarios SiO₂, TiO₂, Al₂O₃, Fe₂O₃, MgO, CaO y K₂O y de partes por millón (ppm) de los elementos traza V, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Zr, Ba, La y Hg. Como complemento se realizó de manera selectiva el análisis de 10 muestras a lo largo de toda la sección mediante la técnica de difracción de rayos X.

Se realizaron análisis estadísticos univariantes (histogramas de frecuencia y diagramas de dispersión), multivariantes (análisis de agrupaciones (*Cluster*) y funciones discriminantes, útiles en la definición de unidades químicas y determinación de afinidades de ciertos componentes con las asociaciones litológicas.

Para esta sección se definieron 3 unidades químicas mayores y 7 subunidades, a partir de variaciones químicas observadas en perfiles de concentración y corroboradas con estadística multivariante.

Con base en base las características geoquímicas y sedimentológicas de las muestras, se propone un ambiente depositacional costero a transicional

reconociéndose la facies de "Bancos de arenas gruesos" o "Barras costeras/cordón litoral" definida por GARCIA JARPA *et al* (1983).

De acuerdo a los criterios empleados por BATHIA (1983) para la determinación del ambiente tectónico, se confirma lo propuesto en la literatura de un ambiente tectónico de margen pasivo durante la sedimentación de la Formación Aguardiente. Siendo concordante con los resultados presentados por LITOS (1996).

DEDICATORIA

- A Dios
- A mis padres, por su apoyo, abnegación, dedicación y amor, sin los cuales no hubiese podido alcanzar esta meta.
- A mis hermanos Ada por ser más que una hermana, Ivan y Franco ejemplos de trabajo y constancia y a Gustavo por ser un ejemplo a seguir, ojala llegue algún día a ser como tú.
- A Isabel, por cada instante compartido, gracias por aparecer en mi vida.
- A mis sobrinos Nathalia, Ivan E, Franco y Patricia, como ejemplo de constancia y dedicación para alcanzar los objetivos trazados.

AGRADECIMIENTOS

Agradecimientos de este Trabajo Especial de Grado

A la Universidad Central de Venezuela y a su Facultad de Ingeniería, por brindarme la oportunidad de formarme como profesional y como persona.

A la Escuela de Geología, Minas y Geofísica, sin duda centro del conocimiento geológico de nuestro país.

A PDVSA por el financiamiento de este trabajo, especialmente a todos los integrantes del proyecto "Barinas-Apure" y proyecto "Rubio", personal del Laboratorio Geológico "El Chaure" y el laboratorio de preparación de muestras de INTEVEP.

A la Prof. Olga Rey, Ing. Mariela Noguera y Prof. Lenin González, tutores de este trabajo y consejeros incondicionales.

A todo el personal de la Biblioteca de Geología, Minas y Geofísica, especialmente a la Sra. Morella Mikati y al Ing. Eduardo Castillo, por la paciencia y colaboración prestada.

Agradecimientos personales

A Dios ante todo, por darme fuerzas para superar todas las pruebas vividas.

A mis padres por la confianza y apoyo a lo largo de mi vida, por ser ejemplos de humildad, honestidad, lucha, constancia y perseverancia, les quedo debiendo mucho más que estas simples palabras.

A toda mi familia, en especial a mis hermanos: Ada por considerarme un hijo, Ivan, Franco, Juan y Gustavo, mi tía Herminia y Gabriela, por estar siempre cuando los necesito y darme ánimos para salir adelante.

A Isabel, por estar conmigo en las malas y en las buenas, por tu paciencia y ayuda en todo momento, por tu amor, por creer en mí y por ser lo más especial que ha llegado a mi vida, te amo.

A la Sra. Isabel Caballero y Sr. Antonio López, por hacerme sentir uno más de la familia, por su apoyo, preocupación y amor, un millón de gracias.

A Mariela Noguera, gracias por tu dedicación y tiempo invertidos, por tus oportunas recomendaciones y amistad incondicional. Gracias de verdad.

A la Prof. Olga Rey tutora de este trabajo, gracias por su constante vigilancia y paciencia, los cuales fueron imprescindibles para la realización de este trabajo.

A Lenin González por su invaluable ayuda y guiarme en los momentos más difíciles.

A Luís Camposano, por todo el tiempo invertido y por oportunas sugerencias en la fase estadística.

A todo el profesorado de la Escuela de Geología, Minas y Geofísica, por la formación académica necesaria, en especial a los Profesores Ricardo Alezones, Paúl Romero, Feliciano De Santis, Alfredo Mederos y Celia Bejarano.

A todos mis compañeros y amigos con quienes compartí muchas vivencias en la universidad y fuera de ella, nombrarlos no es necesario y no me gustaría dejar de nombrar a alguien... ellos saben quienes son.

A mis compañeros en Puerto la Cruz, los cuales de algún modo estuvieron conmigo, Igor Martínez, Antenor Alemán (ejemplo de excelencia), Juan Carlos Suárez, Luis Melo, Juan Berrizbeitia, Peivy Holod, Ernesto Tundidor, Néstor Aparicio.

Por último a todas aquellas personas que contribuyeron en mi formación personal y profesional y que no son nombrados en estas líneas, mis más sinceros agradecimientos.

ÍNDICE

Capítulo	Página
IINTRODUCCIÓN	1
1.1Objetivos	2
1.1.1Objetivo general	2
1.1.1Objetivos específicos	2
1.2Localización del área de estudio	3
1.2.1Fisiográfica	3
1.3Trabajos previos	5
IIASPECTOS GEOLÓGICOS	15
2.1Marco geológico regional	15
2.1.1Evolución tectono-estratigráfica	15
2.1.1.1 Cretácico Temprano-Tardío	15
2.1.1.2 Cretácico Tardío-Paleoceno	18
2.1.1.3 Paleoceno Tardío-Eoceno Medio	20
2.1.1.3Eoceno Tardío-Pleistoceno	23
2.2Estratigrafía regional	25
2.2.1 Formación Aguardiente	32
2.3Marco estructural	35
2.4Geología local	41
IIIMARCO TEÓRICO	46
3.1 Fundamentos de rayos X	46
3.2 Fluorescencia de rayos X por dispersión de energía	48
3.3 Bases teóricas de los métodos estadísticos	49
3.3.1Estadística descriptiva	49
3.3.2Estadística gráfica	51

3.3.2.1-Histogramas de frecuencia
3.3.2.2Polígono y curva de frecuencia
3.3.2.3Diagramas de dispersión
3.3.2.3.1Coeficiente de correlación54
3.3.2.4 Perfil de distribución
3.3.2.5 Estadística multivariante
3.3.2.5.1 Análisis de agrupaciones
3.3.2.5.2 Funciones discriminantes
IVMARCO METODOLÓGICO
4.1 Fase de campo61
4.2 Fase de laboratorio64
4.2.1 Pulverizado
4.3 Análisis químicos66
4.3.1 Fluorescencia de rayos x por dispersión de energía (FRX-DE) con
fuente de tubo de Rh67
4.3.2 Fluorescencia de rayos x por dispersión de energía con fuente
radiactiva de ¹⁰⁹ Cd68
4.3.3Difracción de rayos X69
4.4Procesamiento de datos70
V RESULTADOS E INTERPRETACIONES
5.1 Resultados Analíticos
5.1.1 Estadística univariante72
5.1.2 Histogramas de frecuencia químicos74
5.1.3 Diagramas de dispersión químicos
5.1.4 Análisis de perfiles de concentración
5.1.5 Análisis de agrupaciones por variables
5.1.5.1 Dendrogramas de elementos mayoritarios
5.1.5.2 Dendrograma de elementos minoritarios90

	5.1.5.3	Dendrograma	de	elementos	mayoritarios	У
	minoritar	ios				.92
	5.1.6 Difracciór	de rayos X				.93
	5.1.7 Definiciór	n de unidades quí	micas	5		.95
	5.2 Discusión		•••••		1	12
	5.3 Análisis de agrupac	iones	•••••		1	.14
	5.4 Funciones discrimin	nantes			1	16
	5.5 Interpretaciones gen	nerales			1	21
VI	CONCLUSIONES Y RE	ECOMENDACIC	NES		1	32
VII	BIBLIOGRAFÍA		•••••		1	35
VIII	APÉNDICES				1	43
IX	ANEXOS					

ÍNDICE DE FIGURAS

Figura

Pág.

1 Localización de la zona de estudio Tomado de Encarta 20004
2 Paleogeografía del Albiense tardío - Cenomaniense temprano18
3 Paleogeografía del Campaniense tardío – Maastrichtiense19
4 Paleogeografía del Maastrichtiense tardío – Paleoceno Temprano21
5 Paleogeografía del Eoceno Medio23
6 Paleogeografía del Eoceno Tardío – Oligoceno24
7 Columna estratigráfica del área de Rubio31
8 Mapa esquemático regional del occidente de Venezuela y el oriente de
Colombia
9 Mapa estructural/tectónico Tomado y modificado de CHAPLET & STEPHAN
1998
10 Sección del afloramiento entre las muestras ARF-15 a ARF-20. el rumbo de las trazas es NS45°E
11Lutitas de color gris oscuro42

12Capa de arenisca en contacto con lutitas Muestra ARF-27. Rumbo de la traza NS40°O43
13Estratificación cruzada en areniscas. Muestra ARF-72. Rumbo de la traza N12ºO35ºN44
14Rumbo de la foto N18ºO. Representa el intervalo de muestreo ARF-107 a ARF-
111.Rumbo de las trazas N10ºE42ºN45
15Niveles de oxidación dentro de una capa de arena. Muestra ARF-16045
16 Espectro electromagnético mostrando los distintos tipos de radiación y
longitudes de onda46
17Histograma y polígono de frecuencia51
18Diagrama de dispersión entre % SiO ₂ y % Al ₂ O ₃ 53
19Ejemplo de un perfil químico de distribución en el que es posible apreciar la
variación de concentración de SiO ₂ a lo largo de la sección55
20Dendrograma
21Gráfico de una función discriminante entre dos funciones bivariadas, en la que se
aprecia la superposición entre los grupos A y B a lo largo de las variables X_1 y
X ₂
22Flujograma de trabajo a seguir para la realización del presente Trabajo Especial
de Grado60
23 Parte del afloramiento del sector Río Frío61
24 Identificación y recolección de muestras en un tramo del afloramiento.
Orientación O-E. Intervalo de muestreo ARF-15, ARF-4063
25 Horno para el secado de muestras
26Equipo SHATTERBOX, con morteros de tungsteno64
27Componentes de la cápsula o mortero de tungsteno65
28Materiales y equipo utilizado para la pulverización de muestras65
29Pesado y almacenamiento de las muestras pulverizadas en bolsas
identificadas66
30Equipo de fluorescencia de rayos X67
21 Instrumente Niter VI 500 desenlagendo información de concentraciones de
51Instrumento Niton AL-500 despiegando información de concentraciones de

32Equipo de difracción de rayos X, Laboratorio Geológico El Chaure. Gerencia de
Exploración. PDVSA70
33 Histograma de frecuencia químico del SiO ₂ . Formación Aguardiente sector Río
Frío76
34Histogramas y polígonos de frecuencia químicos de TiO2, Al2O3, Fe2O3, MgO,
K2O y V en las muestras estudiadas de la Formación Aguardiente, sector Río
Frío77
35Histogramas y polígonos de frecuencia químicos de Co, Ni, As, Rb, Sr, Zr, Ba y
La
36Histograma y polígono de frecuencia químico del Hg, Formación Aguardiente,
sector Río79
37 Diagramas de dispersión químicos del CaO, Zn, Cu y Se, Formación
Aguardiente, sector Río Frío80
38 Diagramas de dispersión entre algunos elementos mayoritarios destacando el
control litológico existente
39 Perfiles de concentración de los elementos mayoritarios comparados con la
columna litológica simplificada de la Formación Aguardiente, Río Frío88
40 Perfiles de concentración de los elementos mayoritarios comparados con la
columna litológica simplificada de la Formación Aguardiente, Río Frío88
41 Dendrograma construido a partir de los elementos mayoritarios obtenidos por
análisis de fluorescencia de rayos X90
42Dendrograma construido a partir de los elementos minoritarios obtenidos por
análisis de fluorescencia de rayos X91
43Clasificación de los elementos según Goldschmidt's92
44Dendrograma construido a partir de los elementos mayoritarios y minoritarios
obtenidos por análisis de fluorescencia de rayos X92
45Perfiles químicos de los elementos mayoritarios y traza de las muestras de la
sección Río Frío, Formación Aguardiente98

46Perfiles	químicos	acumulados	de l	los	elementos	mayoritarios	у	traza	de	las
muestra	s de la seco	ción Río Frío,	Form	naci	ión Aguard	iente	•••			.99

ÍNDICE DE TABLAS

Tabla

34
50
) Frío.
73
uencia
75

Pág.

5 Valores de los coeficientes de correlación (r).c = confiabilidad; c > 99 % rojo, 95
%< c< 99 % azul, c < 95 % negro
6 Resultados de análisis por Difracción de rayos X93
7Cuadro comparativo de los elementos químicos mayoritarios y traza de las
diferentes unidades químicas mayores definidas para la sección de la Formación
Aguardiente97
8Cuadro comparativo de las relaciones elementales en las diferentes unidades
químicas definidas para la sección de la Formación Aguardiente102
9Tabla de clasificación de las unidades químicas mayores de las muestras de la
sección Río Frío, Formación Aguardiente118
10Tabla de clasificación de las subunidades químicas correspondientes a la Unidad
Mayor QARF-I de las muestras de la sección Río Frío119
12Clasificación de ambientes tectónicos, cuencas de depósito y tipo de procedencia
relacionada a partir de la concentración de elementos mayores en rocas
sedimentarias detríticas128
13 Concentración promedio de algunas relaciones de elementos mayores y traza en
diferentes ambientes tectónicos, comparados con los valores de los datos de la
Formación Aguardiente, sector Río Frío130

LISTA DE APÉNDICES

APÉNDICE I

Tablas contentivas de los resultados de los análisis de fluorescencia de rayos X para elementos mayoritarios y traza

APÉNDICE II

Tabla de coeficientes críticos de correlación según SNEDECOR (1946)

APÉNDICE III

Diagramas de dispersión generales de las muestras del sector Río Frío (Formación Aguardiente)

APÉNDICE IV

Coeficientes de las funciones discriminantes para las unidades químicas mayores y subunidades

LISTA DE ANEXOS

ANEXO I

Mapa Geológico de la zona de estudio. Escala 1:25.000

ANEXO II

Columna estratigráfica detallada. Escala 1:250

ANEXO III

Perfiles de concentración de los elementos mayoritarios y traza

ANEXO IV

Perfiles de concentración de los elementos mayoritarios y traza suavizados con promedio móvil 3

ANEXO V

Perfiles de concentración de las relaciones interelementales

CAPÍTULO I

INTRODUCCIÓN

Las rocas sedimentarias presentan ciertas características físico-químicas distintivas, las cuales son el reflejo directo de las condiciones existentes durante su formación. A partir de la caracterización química de secuencias sedimentarias se pueden generar perfiles químicos que funcionan a manera de huella digital y permiten realizar correlaciones con secciones de superficies homónimas en áreas adyacentes. Adicionalmente, son de gran utilidad en la interpretación genética de los materiales. Esta caracterización química no llega a sustituir técnicas tradicionales como registros de pozo, bioestratigrafía, estudios sedimentológicos y petrográficos, pero sí llega a ser un buen complemento de estudios geológicos.

En este trabajo se realizará la caracterización química de una sección de la Formación Aguardiente ubicada en el sector de Río Frío en estado Táchira. El área suroccidental del estado Táchira ha sido objeto de estudio en trabajos anteriores, entre ellos se puede mencionar un trabajo de reinterpretación realizado en los Andes Merideños, entre los estados Táchira-Apure-Barinas y la Cordillera Oriental de Colombia por la empresa Aguasuelos. El trabajo más detallado realizado con anterioridad en esta sección fue ejecutado por la empresa LITOS (1996) quienes estudian varias secciones estratigráficas en el área suroccidental del estado Táchira.

1.1.- OBJETIVOS

1.1.1.- Objetivo general

El presente Trabajo Especial de Grado tiene como objetivo principal la caracterización química, mediante Fluorescencia de Rayos X por dispersión de energía, de una sección estratigráfica de la Formación Aguardiente (sector Río Frío, estado Táchira).

1.1.2- Objetivos específicos

- Definición de unidades químicas, a partir de las variaciones verticales de los elementos mayoritarios y traza detectados mediante la técnica Fluorescencia de rayos X por dispersión de energía, con la finalidad de obtener un perfil químico distintivo para la Formación Aguardiente. Además del análisis de difracción de rayos X a 10 muestras de manera selectiva, como complemento de los análisis por fluorescencia.
- Interpretación de las condiciones físicas y químicas que prevalecieron durante la depositación de la Formación Aguardiente a partir del procesamiento estadístico de los datos obtenidos.
- Posible correlación del perfil químico aquí generado con otro ya publicado en TORRES (2005) para esta misma formación.

1.2.-Localización del área de estudio

El área de estudio se encuentra ubicada en el flanco sur de los Andes de Venezuela, en el sector Río Frío, suroeste del estado Táchira, a unos 20 Km al sur de San Cristóbal y a unos 9 Km al sureste de Santa Ana del Táchira, se encuentra delimitada por las coordenadas UTM-18 N: 841.000-842.000 y E 806.000-808.000 (Fig.1).

1.2.1.-Fisiografía

La sección estratigráfica correspondiente a la Formación Aguardiente se ubica en una zona de interferencia estructural entre la unidad tectónica Río Uribante y la Depresión de Rubio, en una franja limitada al norte por el río Quinimarí, al sur por el río Negro y al este por el río Frío entre los cerros El Quinchal y Las Minas. Estructuralmente la zona está limitada al oeste por la falla del Frío y al sur-sureste por la falla de Blanquisal, en el sector Santa Ana/Mesa de Tigre/La Alquitrana (CHAPLET & STEPHAN, 1998).

Geomorfológicamente la zona presenta una topografía abrupta, con cerros orientados paralelamente al rumbo de las trazas. La montañas que se encuentran alrededor tienen una elevación aproximada de 1300 m, mientras que algunos de los valles presentan elevaciones entre los 600 y 800 metros sobre el nivel del mar (m.s.n.m). El drenaje se presenta adaptado a la topografía y se distinguen dos cuencas de captación, una que orienta sus drenajes al sur con un patrón dendrítico que fluye hacia el río Negro y otra al norte con un patrón de drenaje paralelo a subparalelo y una densidad mucho menor. La sección estudiada se localiza en la divisoria de aguas. Las cotas oscilan entre 700 y 1300 m.s.n.m, con una topografía en general abrupta. Los cerros en los alrededores de la zona presentan laderas asimétricas, siendo la del flanco sureste de mayor pendiente que las del flanco noreste.

Figura 1.- Localización de la zona de estudio Tomado de Encarta 2000

1.3.-TRABAJOS PREVIOS

A continuación se presenta un resumen de algunos trabajos previos realizados en la zona de estudio.

RENZ (1959). Estratigrafía del Cretáceo en Venezuela.

Presenta una revisión de las unidades litoestratigráficas del Cretáceo en Venezuela occidental, especialmente en la región de los Andes. Incluye secciones tipo y mapas que muestran las localidades tipo de las nuevas formaciones y miembros propuestos, discute la extensión y la correlación estratigráfica de las unidades litológicas.

GARCÍA JARPA et al. (1980). Correlación estratigráfica y síntesis paleoambiental del Cretáceo de los Andes Venezolanos.

Proponen un modelo de sedimentación en función de los paleoambientes, tratando de dar una visión generalizada de la ubicación de las formaciones cretáceas en el espacio. También analizan las características litoestratigráficas para cada formación así como su contenido paleontológico y edad.

MACELLARI (1982). Tectónica compresional de los Andes Venezolanos.

Realiza estudios de campo detallados conducidos en la depresión de Táchira, así como estudios estructurales. Además, define e interpreta las principales estructuras al sur de los Andes Venezolanos.

MEIER et al. (1987) The Tectonics of Táchira: a sample of North Andean Tectonics

Identifican una pronunciada depresión estructural en la región del Táchira, la cual posee una complicada red de elementos estructurales, entre los que se pueden mencionar bloques deprimidos y levantados limitados por fallas, pliegues y estructuras en flor, éstas últimas consecuencia de un régimen transpresivo. A partir de la construcción de secciones transversales, establecen un patrón de ajuste cinemático del área de Táchira y sus alrededores.

KISER (1989). Relaciones Estratigráficas de la Cuenca Apure/Llanos con áreas adyacentes, Venezuela Suroeste y Colombia Oriental.

Basado en exploraciones en el estado Táchira se integró la geología casi desconocida de esta zona con la cuenca Barinas, Apure/Llanos y Maracaibo. Nuevas correlaciones son propuestas, solucionando u ofreciendo soluciones tentativas a problemas geológicos existentes.

LITOS (1996). Estudio de secciones estratigráficas en el área suroccidental del estado Táchira.

Realizaron el estudio de varias secciones estratigráficas en el área suroccidental del estado Táchira En este informe se presentan mapas geológicos de las secciones levantadas a escala 1:25.000, columnas detalladas y generalizadas de dichos levantamientos que incluyen perfiles de radiación gamma medidos en el campo y algunas variables geoquímicas, mapas de ubicación y croquis con litología y muestras de cada uno de los levantamientos, los resultados de los análisis geoquímicos en forma de tablas, interpretación y modelos estructurales. Toda la información estratigráfica, sedimentológica, estructural y geoquímica del área fue integrada, con la finalidad de generar un modelo geológico que sirviera de ayuda en futuros proyectos de exploración petrolera en el extremo sur-occidental de Venezuela. CHAPLET & STEPHAN (1998) Interferencia tectónica entre los Andes Merideños (estados Táchira-Apure-Barinas – Venezuela) y Cordillera Oriental (departamento Norte de Santander – Colombia)

A través de la reinterpretación de imágenes de radar y el análisis tectónico de líneas sísmicas, así como la integración de datos de campo y pozos, ellos generaron un mapa geológico detallado a escala 1:100.000 entre las zonas del departamento Norte de Santander (Colombia), Santa Bárbara (Barinas-Venezuela), San Cristóbal (Táchira-Venezuela) y Río Arauca (Apure-Venezuela). Estos autores identificaron claramente tres dominios: 1)Dominio Merideño 2) Dominio de la Cordillera Oriental y 3) Dominio de interferencia entre la tectónica Merideña y la tectónica de la Cordillera Oriental. Basados en la cronología de las deformaciones concluyen que se han generado dos respuestas mecánicas y cinemáticas, dependiendo de la herencia tectónica de los patrones paleozoicos y cenozoicos.

PARRA & NOVOA (2003). Evolución Tectono-Estratigráfica de la Terminación Meridional del Flanco Sur de los Andes de Mérida, Venezuela.

Plantean una nueva interpretación estructural en el flanco sur de los Andes de Mérida, basada en sísmica de reflexión, pozos y geología de superficie. Emplearon cerca de 120 Km de sísmica 2D y registros estratigráficos de pozos. Análisis previos fueron reinterpretados y se generó un modelo cinemático que permite validar la interpretación y reconstruir la cronología de los eventos tectónicos. El modelo tectono-estratigráfico propuesto para el área lo dividen en tres eventos principales. Trabajos previos en Geoquímica de Rocas Sedimentarias:

AI-GAILANI (1980). Geochemical identification of unconformities using semiquantitative x-ray fluorescence analysis.

Realiza estudios geoquímicos a partir de la técnica fluorescencia de rayos X en muestras de rocas, ubicadas a lo largo de discordancias, con la finalidad de establecer indicadores diagenéticos que indiquen variaciones composicionales producidas en estas superficies. Este trabajo fue llevado a cabo en el oriente medio (Irak).

JORGENSEN (1986). Chemostratigraphy of Upper Cretaceous Chalk in the Danish Subbasin.

Estudios geoquímicos de ripios, en la parte central de la subcuenca danesa. Los resultados enfatizan la aplicabilidad de los ripios para los análisis geoquímicos y de la geoquímica como herramienta para la quimioestratigrafía y análisis de cuencas en la exploración petrolera del subsuelo.

HILL (1990). Vertical distribution of elements in deposit N[•] 1, Hat Creek, British Columbia: a preliminary study.

Análisis de muestras a través de espectrómetros de masa y fluorescencia de rayos X, obteniendo relaciones entre cambios en ambientes depositacionales e incremento en el aporte de sedimentos, distinguiendo ciclos en la depositación de la secuencia sedimentaria en la zona de estudio.

MURRAY et al. (1995). Terrigenous Fe input and biogenic sedimentation in the glacial and interglacial Equatorial Pacific Ocean.

Estudio de las concentraciones de partículas de Fe a partir de núcleos de sedimentos depositados en los últimos seis ciclos glaciales, concluyendo que el aporte terrígeno no muestra patrones consistentes durante estos períodos.

PEARCE & JARVIS (1995) High-resolution chemostratigraphy of Quaternary distal turbidites: a case study of new methods for the analysis and correlation of barren sequences.

Estudio de geoquímica inorgánica de las turbiditas distales al NE del plano abisal de Madeira. Establecieron correlaciones a 500 Km de distancia, a través de la construcción de perfiles de distribución de elementos químicos y diversas técnicas estadísticas.

PEARCE et al., (1997). Chemostratigraphy: a method to improve interwell correlation in barrensequences: a case study using onshore Duckmantian/Stephanian sequences (WestMidlands, U.K.)

Estudio geoquímico en muestras de pozos y afloramiento, a través de análisis de ICP-AES. A través de la construcción de perfiles de distribución, con base en las variables químicas detectadas, permitió la caracterización química y correlaciones entre los pozos. Las variaciones químicas verticales observadas, permitieron deducir aspectos como proveniencia de sedimentos, diagénesis y condiciones de sedimentación.

YARINCIK et al., (2000) Climatically and sensitive eolian and hemipelagic deposition in the Cariaco Basin, Venezuela, over the past 578.000 years: results from Al/Ti and K/Al.

Uso de las relaciones Al/Ti y K/Al para interpretar fuentes eólicas y hemipelágicas en sedimentos pertenecientes a la cuenca del Golfo de Cariaco. Dichas relaciones se muestran altas en períodos interglaciales y bajas durante las glaciaciones. Bajo índice de la relación K/Al indica bajo nivel del mar (glaciaciones), mientras que la relación Al/Ti indica altas proporciones de rutilo proveniente de zonas desérticas transportado por el viento.

ERLICH et al (2000). Geochemical characterization of oceanographic and climatic changes recorded in Upper Albian to Lower Maastrichtian strata, western Venezuela.

Utilizaron geoquímica orgánica e inorgánica para la caracterización de condiciones paleoclimáticas y paleoceanográficas del occidente de Venezuela en sedimentos del Albiense-Maastrichtiense. Se demuestran los principales eventos depositacionales ocurridos en la zona durante ese período, relacionándolos con los niveles de oxigenación, las tasa de evaporación y con eventos globales.

BRICEÑO & CALLEJÓN (2000). Chemostratigraphic correlation of the source rock in the La Luna – K/T petroleum system in Southwestern Venezuela

Determinaron elementos minoritarios por espectrometría de emisión de plasma y los porcentajes de óxidos mayoritarios por Fluorescencia de rayos X (FRX) en secciones de la Formación La Luna y Miembro La Morita de la Formación Navay. Para cada formación definieron quimiofacies que sirvieron posteriormente para correlacionar entre sí las distintas secciones. CAMPOSANO & MARTÍNEZ (2000). Caracterización química y radiométrica de secciones estratigráficas de las formaciones Barco y Mirador, San Pedro del Río, estado Táchira.

Empleando métodos analíticos como fluorescencia de rayos X (FRX), difracción de rayos X (DRX) y espectrometría de rayos gamma, analizaron muestras de afloramiento de las formaciones Barco y Mirador en la localidad San Pedro del Río, estado Táchira. El procesamiento estadístico de los datos, así como la elaboración de perfiles con las variaciones verticales de las variables utilizadas permitieron establecer la presencia de tres unidades químico-radiométricas para la Formación Barco y cuatro para la Formación Mirador.

RODRÍGUEZ et al. (2000). Caracterización química por fluorescencia de rayos X y radioisotópica por espectrometría gamma multicanal de dos secciones estratigráficas de la Formación Guárico, El Pao, estado Cojedes.

Empleando fluorescencia de rayos X (FRX) y espectrometría gamma multicanal se determinaron las concentraciones de los óxidos mayoritarios SiO₂, TiO₂, Al₂O₃, Fe₂O₃, MnO, Ca₂O, K₂O, MgO y el elemento traza V. Concluyeron que los análisis químicos y radiométricos permiten tener una definición y caracterización precisa de las rocas estudiadas, estableciendo unidades que reflejaron las variaciones litológicas generales de la columna estratigráficas. A partir de estas unidades se dedujo la ocurrencia de dos pulsos tectónicos durante la sedimentación de una de las secciones estudiadas.

GONZÁLEZ & SÁNCHEZ (2001). Caracterización química y radiométrica de dos secciones de la Formación La Luna, en el estado Táchira.

Caracterizaron geoquímica y radiométricamente dos secciones estratigráficas de la Formación La Luna, estado Táchira. El análisis químico consistió en la medición de las concentraciones de los elementos mayoritarios y traza. Realizaron además análisis estadísticos y construyeron perfiles de distribución para definir unidades químico-radiométricas, las cuales son el reflejo de las variaciones litológicas de las columnas estratigráficas de este trabajo.

MARTÍNEZ (2001). Identificación y caracterización de quimiofacies de la Formación Barco en la localidad de San Pedro del Río, estado Táchira.

A través de ICP-AES, además de la determinación del contenido de carbonato, C.O.T. y azufre total, caracterizó e identificó quimiofacies existentes en la Formación Barco en San Pedro del Río (estado Táchira). Distinguió además cuatro quimiofacies en la zona que responden a cambios paleoclimáticos y paleoambientales.

REÁTEGUI (2001). Identificación e interpretación de quimiofacies de la Formación Mirador en la localidad de San Pedro del Río, estado Táchira.

A partir del análisis químico mediante la técnica ICP-AES y el estudio de elementos mayoritarios y traza, COT y %S, se definieron tres quimiofacies a partir de asociaciones elementales y perfiles quimioestratigráficos.

NOGUERA & YÉPEZ (2002). Caracterización química de secciones estratigráficas: formaciones Naricual y Querecual, estados Anzoátegui y Monagas.

Caracterizaron químicamente, mediante fluorescencia de rayos X, 2 secciones de las formaciones Naricual y Querecual, en los estados Anzoátegui y Monagas y las compararon con las secciones tipo. Se concluyó que la Formación Querecual en la sección Río de Oro es más carbonática y con condiciones menos reductoras que en la sección tipo, y que los depósitos de la llanura deltaica de la Formación Naricual marcan el inicio del levantamiento de la Serranía del Interior Oriental.

ARREAZA (2002). Caracterización química de las formaciones Naricual y Querecual, en sus localidades tipo, estado Anzoátegui

Realizó la caracterización química a través de elementos mayoritarios y traza de dos secciones estratigráficas pertenecientes a las formaciones Naricual y Querecual en sus localidades tipo en el estado Anzoátegui. Estableció unidades químicas que se correspondieron con un alto grado de precisión con las unidades litológicas estudiadas.

BARITTO (2003). Caracterización química de muestras de sedimentos superficiales y de núcleos de la fachada atlántica venezolana.

Realizó la caracterización química de sedimentos cuaternarios provenientes de núcleos tipo "gravity core" y muestras de sedimentos superficiales obtenidas a través de un "box core" en la fachada atlántica venezolana. Se estudiaron un total de 301 muestras y el análisis consistió en la determinación de las concentraciones de los componentes mayoritarios SiO₂, TiO₂, Al₂O₃, Fe₂O₃, MnO, CaO y K₂O, y de los elementos minoritarios V, Zr, Sr, Rb, Pb, Zn y Ni. Definió además tres unidades químicas en cada uno de los núcleos así como asociaciones químicas y dos litofacies generales, además, a través del análisis de factores y funciones discriminantes fue posible realizar diagramas de correlación químicos 2D y 3D.

CEDILLO & OLAYA (2003). Caracterización química y radiométrica de sedimentos de una zona ubicada al noroeste del delta del Orinoco en el Océano Atlántico, Venezuela.

Caracterizaron radiométricamente sedimentos del noreste del delta del río Orinoco en el Océano Atlántico. Los sedimentos fueron tomados de profundidades de entre 100 y 200 metros y provenían de cuatro núcleos tipo "piston core". Definieron dos unidades químico-radiométricas mayores para cada uno de los núcleos y cuatro asociaciones químicas que caracterizan a dichas unidades.

CHACÍN (2003). Caracterización química y radiométrica de muestras de canal correspondientes a cuatro pozos del Campo Petrolífero La Concepción, estado Zulia.

Caracterizó química y radiométricamente muestras de canal de cuatro pozos del campo petrolífero La Concepción, estado Zulia, a través de las técnicas de fluorescencia de rayos X y espectrometría gamma multicanal. La construcción de perfiles de concentración así como análisis estadísticos univariantes y multivariantes permitieron definir tres unidades químico-radiométricas mayores, algunas de éstas con subunidades.

TORRES (2005). Caracterización geoquímica de la Formación Aguardiente en la presa La Vueltosa, Santa María de Caparo, estado Mérida.

Caracterizó geoquímicamente una sección de la Formación Aguardiente a partir de datos obtenidos mediante el análisis de 108 muestras a través de la técnica fluorescencia de rayos X por dispersión de energía. Se emplearon métodos estadísticos univariantes, bivariantes y multivariantes para analizar los datos. La interpretación de los datos dio como resultado la proposición de dos ambientes sedimentarios presentes dentro de la formación, cinco quimiofacies y diez subquimiofacies.

CAPÍTULO II

ASPECTOS GEOLÓGICOS

2.1.-MARCO GEOLÓGICO REGIONAL

2.1.1 Evolución tectono-estratigráfica

En Venezuela la rotura o "rifting" de Pangea (super-continente que reunía las masas continentales de América, Europa y África actuales) produjo varias estructuraciones importantes que posteriormente influyeron en la evolución de las cuencas sedimentarias venezolanas. Esta apertura o "rifting" indujo el desarrollo de valles de extensión y grábenes con una tendencia noreste. Estos grábenes fueron rellenados durante el Jurásico por sedimentos continentales tipo "capas rojas", volcánicas de diversa índole y eventualmente por clásticos y calizas de invasiones marinas. En el occidente de Venezuela la Formación La Quinta es evidencia de esta etapa (WEC VENEZUELA, 1997)

Según PARNAUD *et al.* (1995) la evolución geológica del occidente de Venezuela a partir del Cretácico puede ser expresada en secuencias depositacionales como sigue:

2.1.1.1.- Cretácico Temprano-Tardío (Desarrollo de un margen pasivo)

En los comienzos del Cretácico (Neocomiense-Barremiense), la sedimentación continental estuvo controlada por un sistema de fallas de grábenes jurásicos. Estos sedimentos fueron depositados en tres surcos: Surco de Machiques (Perijá), Surco de Uribante (Táchira) y Surco de Barquisimeto (Trujillo). La cobertura sedimentaria para este periodo fue ampliamente distribuida excepto en la parte suroeste de Apure, inicialmente y constituyendo un componente basal en esta

secuencia de margen pasivo se deposita la Formación Río Negro, durante el Neocomiense-Aptiense.

Un extenso período transgresivo se desarrolló en el occidente de Venezuela para este intervalo de tiempo, que estuvo caracterizado por la depositación de secuencias retrogradantes. A continuación, se describe cronológicamente la historia sedimentaría que caracterizó esta fase de desarrollo de margen pasivo.

- Aptiense: El occidente de Venezuela es dominado por el evento transgresivo antes mencionado. De acuerdo con SUTTON (1946) la sedimentación durante este período ocurrió en una plataforma marino somera. Esta secuencia puede ser dividida en tres intervalos: el intervalo inferior es interpretado como un sistema encadenado transgresivo (TST), depositado en un ambiente de plataforma interna con desarrollo de barras litorales y corresponde al Miembro Tibú de la Formación Apón; el intervalo medio es interpretado como una superficie de máxima inundación (MFS), depositado en un ambiente de plataforma media y corresponde a los miembros Machiques y Guáimaros de la Formación Apón. Finalmente el intervalo superior está caracterizado por una progradación que corresponde a un sistema encadenado de alto nivel (HST), este pulso regresivo está representado por el Miembro Piché (Formación Apón) en la zona del Lago de Maracaibo, y en los Andes de Mérida por la Formación Peñas Altas (invalidada en el Léxico Estratigráfico de Venezuela (2005) y sustituida por la Formación Aguardiente).
- Albiense-Cenomaniense temprano: Luego del pulso regresivo a finales del Aptiense una nueva transgresión tuvo lugar durante el Albiense, donde se deposita una secuencia retrogradante conformada por las formaciones Lisure, Aguardiente y la parte basal de Escandalosa. Se puede subdividir en tres intervalos: uno inferior correspondiente a un sistema encadenado transgresivo (TST), representado por la Formación Lisure (depositada en un ambiente de plataforma media) y la Formación Aguardiente (depositada en una plataforma interna con

facies de línea de costa). El intervalo medio es interpretado como una superficie de máxima inundación (MFS) representada por la Formación Escandalosa en la cuenca Barinas-Apure, depositada en un ambiente de plataforma media. El intervalo superior corresponde a un sistema encadenado de nivel alto (HST) progradante y definido por la Formación Escandalosa depositada en un ambiente litoral (Fig. 2).

- Cenomaniense tardío-Campaniense temprano: En este período el evento transgresivo es más pronunciado, posiblemente como resultado de la deformación flexural regional de la cuenca originada a su vez por el inicio de una fase de transición de margen pasivo a margen activo hacia finales del Cretácico. En esta ocurre un proceso de colisión (arco volcánico del Pacifico y placa Suramericana). Las secuencias depositacionales para este período están conformadas por las formaciones La Luna, Escandalosa y Navay, las cuales presentan las siguientes características:
 - La presencia de cenizas volcánicas en la base de la Formación La Luna sugiere la presencia del arco volcánico Pacífico al oeste del área de estudio.
 - La rápida profundización de la plataforma interna a profundidades batiales, posiblemente consecuencia de la migración del *forebulge* hacia la cuenca de Barinas.
 - Las secuencias depositacionales culminan en superficies de máxima inundación (MFS).

Figura 2 Paleogeografía del Albiense tardío - Cenomaniense temprano. Leyenda: 1, napas de Lara en posición actual; 2, áreas positivas; 3, clásticos de línea de costa; 4, arenas y carbonatos de plataforma interna; 5, carbonatos y lutitas de plataforma media. Tomado y modificado de PARNAUD *et al.* (1995).

2.1.1.2.- Cretácico Tardío-Paleoceno (Etapa de transición de margen pasivo a margen activo)

Se desarrolla una nueva fase evolutiva, marcada por la colisión del arco volcánico del Pacífico con la placa Suramericana. Este evento trasformó el margen pasivo en un cinturón activo, creando una cuenca antepaís (*foreland*) con un *foredeep* asociado en el área de Perijá y un *forebulge* en el área de Barinas. Esta etapa finaliza con el emplazamiento de las napas de Lara y está caracterizada por una regresión. La evolución sedimentaria para éste intervalo puede ser explicada cronológicamente como sigue:

Campaniense tardío-Maastrichtiense: En el *foredeep* de Perijá (formado durante la colisión) se depositaron facies lutíticas transgresivas de la Formación Colón (LIDDLE, 1928). El *forebulge* asociado migra del depocentro del Lago de Maracaibo a Barinas-Apure, donde son depositadas facies arenáceas de la Formación Burguita (RENZ, 1959). La Formación Mito Juan es también depositada, en un sistema encadenado de alto nivel (HST) bajo un sistema progradante (GARNER, 1926) (Fig. 3).

Figura 3 Paleogeografía del Campaniense tardío – Maastrichtiense. Leyenda: 1, napas de Lara en posición actual; 2, áreas positivas; 3, clásticos de plataforma interna a media; 4, lutitas de plataforma externa y escasas areniscas; 5, curvas de espesor en pies. Tomado y modificado de PARNAUD *et al.* (1995).

 Maastrichtiense tardío-Paleoceno-Temprano: Hacia finales del Cretácico, el foredeep de Perijá fue rellenado y posteriormente erosionado. Un nuevo pulso transgresivo dentro del episodio regresivo dio lugar a la depositación de dos secuencias paleocenas. La secuencia inferior cubre toda la plataforma y presenta características marinas y está conformada por las formaciones Guasare, Trujillo y Catatumbo. La Formación Guasare en la cuenca del Lago de Maracaibo presenta características marino someras, la Formación Trujillo definida al noreste del Lago de Maracaibo está caracterizada por depósitos marino profundos, por último, la Formación Catatumbo al sur del Lago presenta una sedimentación deltaica. La secuencia superior está representada por las formaciones Los Cuervos y Barco al sur y la Formación Marcelina al norte.

Así se han establecido tres dominios sedimentarios, el primero en el suroeste, que consta de arenas y arcillas del Grupo Orocué y la Formación Marcelina. El segundo en el área central, donde son depositados sedimentos calcáreos y bioclásticos marino someros de la Formación Guasare. El tercer dominio está localizado hacia el norte y contiene sedimentos batiales de la Formación Trujillo (Fig. 4).

2.1.1.3.-Paleoceno Tardío-Eoceno Medio (Etapa de colisión de cuencas)

El emplazamiento de las napas de Lara comenzó al norte de la cuenca del Lago de Maracaibo a finales del Paleoceno. Esas napas gradualmente se emplazaron hacia el este formando nuevas cuencas antepaís (*foreland*). La deformación flexural de la cuenca es reflejada en pulsos transgresivos y regresivos de edad Eoceno. La evolución sedimentaria para este período se explica como sigue:

Figura 4 Paleogeografía del Maastrichtiense tardío – Paleoceno Temprano. Leyenda: 1, napas de Lara en posición actual; 2, áreas positivas; 3, clásticos continentales a deltaicos; 4, plataforma carbonática interna a externa y lutitas; 5, turbiditas, lutitas y escasas areniscas; 6, curvas de espesor en pies. Tomado y modificado de PARNAUD *et al.* (1995).

• Paleoceno Tardío-Eoceno Temprano: Se distinguen dos etapas. En la primera, el nivel del mar descendió, dando lugar a erosión y depositación de sedimentos continentales en la parte sureste de la cuenca del Lago de Maracaibo representados por la Formación Mirador (GARNER, 1926). En la parte norte de la cuenca, condiciones marino profundas permitieron la sedimentación de turbiditas de la Formación Trujillo. En una segunda etapa, un pulso transgresivo originado por la flexura generada en la parte central de la cuenca debido a la carga litostática aplicada por las napas (cuenca antepaís o *foreland*) permite la depositación de la Formación Misoa. LUGO & MANN (1995) proponen para este período una fuente de sedimentos al norte durante la depositación de la Formación

Misoa, producto de una sedimentación en cuencas tipo *foreland* en frente de fallas de cabalgamiento con vergencia sur- suroeste. En esta primera secuencia tres dominios sedimentarios son reconocidos, un primer dominio en el suroeste y sureste de la cuenca del Lago de Maracaibo está caracterizado por la sedimentación continental de la Formación Mirador, el segundo dominio de plataforma interna se encuentra en la cuenca central del Lago de Maracaibo y está reflejado en las arenas y arcillas de la Formación Misoa, y finalmente el tercer dominio sedimentario en el norte está conformado por lutitas marino profundas de la Formación Trujillo.

Eoceno Medio: En este período dos eventos cambiaron la configuración de la cuenca: Primero, el emplazamiento de las napas de Lara hacia el sureste dio como resultado la subsidencia flexural de la cuenca Barinas-Apure, generando una inundación marina donde se depositaron las arenas basales de la Formación Gobernador seguido por la sedimentación de lutitas de aguas profundas de la Formación Pagüey (PIERCE, 1960). Segundo, la flexura de la plataforma del Lago de Maracaibo producto de la carga litostática ejercida por las napas de Lara dio lugar a la sedimentación turbidítica y batial de la Formación Paují (Fig. 5).

Figura 5 Paleogeografía del Eoceno Medio. Leyenda: 1, napas de Lara; 2, áreas positivas; 3, areniscas y lutitas de plataforma interna a media; 4, plataforma externa y lutitas batiales; 5, curvas de espesor en pies. Tomado y modificado de PARNAUD *et al.* (1995).

2.1.1.4.-Eoceno Tardío-Pleistoceno (Etapa de colisión de cuencas)

Hacia finales del Eoceno toda el área es modificada. Se generan relieves positivos en el este y noreste separando la cuenca continental del Lago de Maracaibo de la cuenca de Falcón. El levantamiento de la Serranía de Perijá y de la región oriental de la cordillera de Colombia aportó sedimentos que alimentaron un sistema depositacional fluvio-deltaico al suroeste. La circulación marina del este continuó afectando la cuenca Barinas-Apure y se extendió hacia la cuenca del Lago de Maracaibo. Para este periodo se deposita al oeste, la Formación Carbonera (NOTESTEIN *et al.*, 1994) y La Sierra (HEDBERG & SASS, 1937) bajo un dominio deltaico, mientras que la "Formación Guafita" fue depositada en la parte este de la cuenca, en una zona abierta al mar (ORTEGA *et al.*, 1987) (Fig. 6).

Figura 6 Paleogeografía del Eoceno Tardío – Oligoceno. Leyenda: 1, napas de Lara; 2, áreas positivas; 3, areniscas lacustres a salobres, lutitas y carbones; 4, areniscas y lutitas deltaicas con influencia marina. Tomado y modificado de PARNAUD *et al.* (1995).

Durante el Mioceno Medio, un tectonismo compresional de gran escala se inició en el Macizo de Santander, Serranía de Perijá y los Andes de Mérida. Este evento dio lugar al aislamiento de la cuenca del Lago de Maracaibo y la cuenca Barinas-Apure, así como una sedimentación molásica a lo largo del margen de los Andes de Mérida. Esta orogénesis culminó en el Plioceno-Pleistoceno. Un nuevo pulso transgresivo durante el Mioceno Medio permitió la depositación de la Formación La Rosa (LIDDLE, 1928), seguido de una progradación regresiva que dio lugar a la sedimentación de la Formación Lagunillas (HEDBERG & SASS, 1937). Al mismo tiempo sedimentos molásicos de la Formación Betijoque fueron depositados a lo largo de los Andes (GARNER, 1926).

2.2.- Estratigrafía regional en le área de Rubio

Durante el Cretácico se produce una transgresión marina a nivel mundial, esta transgresión cubrió gran parte del norte de América del Sur. La sedimentación tuvo lugar esencialmente en una misma cuenca, dentro de la cual las aguas se mantuvieron interconectadas. La presencia de un paleorelieve irregular con zonas deprimidas y otras positivas, dio lugar a una sedimentación diferencial dentro de la cuenca. Según GARCÍA JARPA *et al.* (1980), la cuenca cretácea en Venezuela se caracteriza por secuencias sedimentarias relativamente uniformes, en las que es posible identificar intervalos clásticos y calcáreos con cierta regularidad.

En el área de estudio afloran rocas cuya edad abarca desde el Cretácico hasta el Reciente. Las rocas del Cretácico Inferior afloran en la parte meridional de la depresión de Rubio, la secuencia depositacional Cretácica se inicia durante un ciclo transgresivo del mar, que avanzó progresivamente hacia las partes más altas del Arco de Mérida, sobre un basamento ígneo-metamórfico que incluye sedimentos Jurásicos donde se deposita la Formación Río Negro, compuesta por areniscas blancas, generalmente de grano grueso, conglomerados heterogéneos, arcillas y lutitas variables. Según GARCÍA JARPA *et al.* (1980), esta secuencia se inicia con capas de areniscas de grano fino a grueso y conglomerados, estos estratos están intercalados con limolitas y lutitas calcáreas, en parte carbonosas, muy fosilíferas. Suprayacente a esta secuencia, se presenta una alternancia de capas potentes de conglomerados de grano grueso y de lutitas. En la parte media de la formación, se observan horizontes de coloración rojiza que recuerdan a la Formación La Quinta y es posible que ello se deba a erosión y resedimentación de estratos de esa formación. El ambiente bajo el cual se deposita la Formación Río Negro es variable. La secuencia calcárea-lutácea se depositó en un ambiente de lagunas costeras, llanuras de marea, presumiblemente hipersalinas con poca circulación y baja oxigenación; la secuencia de areniscas con estratificación cruzada, se depositó en un ambiente deltaico a marino costero y la secuencia de conglomerados y areniscas conglomeráticas, en un ambiente deltaico, donde cada nivel de conglomerados indica una pequeña pulsación del ciclo fluvial.

Según el COMITÉ INTERFILIAL DE ESTRATIGRAFÍA Y NOMENCLATURA (CIEN 1999), en el área de estudio el contacto basal es discordante sobre la Formación La Quinta. El contacto superior, con las calizas de la Formación Apón es generalmente abrupto y ligeramente diacrónico. En aquellas áreas en donde no se depositó la Formación Apón (ejemplo en la depresión de Táchira-cuenca de Barinas), el contacto es con la Formación Aguardiente o con la Formación Escandalosa, siendo el mismo difícil de precisar en el campo debido a las semejanzas litológicas entre estas unidades.

La Formación Apón (Aptiense) consiste de calizas gruesamente estratificadas intercaladas con cantidades subordinadas de lutitas gris oscuro, calcáreas y margas, un intervalo de lutitas dolomitizadas y lentes de limolita y por último un horizonte de calizas gruesas, nodulares y a veces fosilíferas. GARCÍA JARPA *et al.* (1980) dividieron el ambiente de sedimentación en tres facies de la siguiente manera: la inferior, depositada en un ambiente marino restringido de profundidad somera; la media, en un ambiente marino de aguas someras y con moderada circulación, y en la facies superior un ambiente de lagunas costeras a marino de aguas someras. Sobre la Formación Apón se sedimentaron en forma concordante y diacrónica las areniscas de la Formación Aguardiente (BOESI *et al.*, 1988).

La Formación Aguardiente (Albiense), está representada por areniscas cuarzosas de grano variable, a veces glauconíticas, intercaladas por lutitas micáceas y capas de calizas. GARCÍA JARPA *et al.* (1980) describieron cinco facies litológicas con sus respectivos ambientes de sedimentación, a continuación se mencionan de tope a

base: la primera facies de areniscas gruesas se depositó en un ambiente de barra litoral, la facies lutítica en un ambiente de laguna costera, la facies de calizas en un ambiente de aguas someras de mar abierto, la facies de areniscas intercaladas con limolitas y lutitas se depositó en una zona de barras emergentes y barras sumergidas de plataforma abierta. Por último para la facies de areniscas glauconíticas interpretaron un ambiente de barras sumergidas en un ambiente de plataforma somera.

La Formación Escandalosa (Cenomaniense) está compuesta por areniscas macizas, cuarzosas y muy glauconíticas, con cantidades menores de lutitas negras. Según CIEN (1999) el ambiente es definido como una facies arenosa, depositada en la zona nerítica superior. El contacto superior de esta formación es concordante con la Formación Navay.

La Formación Navay (Coniaciense) está compuesta por lutitas silíceas y calcáreas, friables a no friables y algunas ftanitas no porosas, en menor proporción areniscas lenticulares calcáreas a silíceas. FEO-CODECIDO (1972 en CIEN, 1999), afirma que el ambiente bajo el cual se depositó la formación es marino moderadamente profundo y hacia el flanco suroriental cambia a un ambiente de aguas marinas menos profundas.

Posteriormente hacia el Cenomaniense, la sedimentación muestra una tendencia hacia los ambientes carbonáticos, sin embargo prevalece todavía la sedimentación de clásticos finos, representados por la Formación Capacho. En este punto hay un cambio notable en la tectónica global que se caracteriza por el predominio de condiciones anóxicas (BOESI *et al.*, 1988).

La Formación Capacho (Cenomaniense tardío - Turoniense tardío) está compuesta de lutitas grises a negras, calizas duras, frecuentemente fosilíferas y ocasionales limolitas. Según RAMÍREZ & CAMPOS (1969 en CIEN, 1999) las lutitas

27

negras indican el avance de la transgresión y la profundización de la cuenca, las calizas superiores indican condiciones sedimentarias uniformes en toda la cuenca. El contacto superior es concordante y transicional con la Formación La Luna.

La Formación La Luna (Cenomaniense-Campaniense) está compuesta típicamente de calizas y lutitas calcáreas fétidas, con abundante materia orgánica laminada y finamente dispersa, la ftanita negra es frecuente en forma de vetas, nódulos y capas delgadas. La Formación La Luna se sedimentó en un ambiente marino, bajo condiciones de fondo euxínicas que inhibieron la vida bentónica, en este ambiente reductor se preservó la materia orgánica (GONZÁLEZ DE JUANA *et al.*, 1980). Sobre la Formación La Luna comienza la sedimentación de las lutitas de la Formación Colón.

La Formación Colón (Maastrichtiense) está compuesta casi exclusivamente de lutitas negras con intercalaciones ocasionales de limolitas y areniscas de grano fino. Además de la laminación paralela, las limolitas y areniscas de grano muy fino no presentan estructuras sedimentarias (GARCÍA JARPA *et al.*, 1980). GONZÁLEZ DE JUANA *et al.* (1980) señalan que la sección monótona de lutitas de la Formación Colón representa un intervalo marino nerítico. Para esta edad se inicia un largo período regresivo que dura hasta el Eoceno Temprano. La secuencia de formaciones pertenecientes a este ciclo regresivo está compuesta por la Formación Mito Juan, Grupo Orocué (formaciones Catatumbo, Barco, Los Cuervos) y Formación Mirador.

La Formación Mito Juan (Maastrichtiense tardío) se caracteriza por arcillas grises, localmente arenosas, en las cuales el contenido de limo y arena aumenta en sentido ascendente y en cuya parte superior se encuentran a veces capas delgadas de calizas y areniscas. El paleoambiente según SUTTON (1946) es de aguas salobres poco profundas, definido por la microfauna.

BOESI *et al.* (1988), estudiaron el Grupo Orocué en el frente norandino, reconociendo las facies Barco y Los Cuervos y excluyendo a la Formación Catatumbo, a la cual denominan "Unidad Transicional". La Formación Barco (Eoceno Temprano) está compuesta por areniscas, lutitas y limolitas intercaladas. Las areniscas son generalmente de color gris, arcillosas, de grano muy fino a medio, con estratificación cruzada o laminada, localmente contienen micas y laminaciones de lutita (CIEN, 1999), representa un ambiente deltaico bajo, en su parte inferior, a deltaico alto en la parte superior. El contacto superior de esta formación es transicional con la Formación Los Cuervos.

La Formación Los Cuervos (Paleoceno- Eoceno Temprano) está constituida principalmente por arcillitas con capas de carbón en la base y algunas capas de arenisca. El ambiente según GONZÁLEZ (1967 en CIEN 1999) está representado por un mar llano, de ciénagas de aguas salobres o dulces. Las variaciones en abundancia de la diversa flora indican fluctuaciones menores en el nivel del mar. Su contacto con la Formación Mirador, suprayacente, es concordante.

La Formación Mirador (Eoceno), en su sección tipo, se caracteriza por areniscas blancas de grano fino a medio, toda la sección presenta material carbonáceo, observándose algunas intercalaciones de lutitas y capas delgadas de carbón (GONZÁLEZ DE JUANA *et al.*, 1980). La interpretación del ambiente de depositación de esta formación varía dependiendo del autor y el área de estudio, pero en general se han establecido para la misma ambientes de transición con cierta influencia de la acción de las mareas, dentro de los cuales se han propuesto ambientes de marismas, fluviales de ríos con meandros y/o ríos trenzados, estuarios y llanura deltaica. El contacto superior es concordante con la Formación Carbonera. BOESI *et al.* (1988), señalan una discordancia entre la Formación Mirador y Formación Carbonera, que no es evidente en el campo, pero se reconoce por la ausencia de una extensa zona de palinomorfos.

La Formación Carbonera (Eoceno Tardío-Oligoceno) se compone principalmente de arcillitas grisáceas, algunas carbonosas. El ambiente sedimentario de la Formación Carbonera parece haberse desarrollado en una extensa llanura baja, con formación de pantanos, algunos con vegetación densa, lagunas de aguas salobres y ríos sinuosos (CIEN, 1999). Sobre las lutitas carbonosas de la Formación Carbonera yacen las lutitas de la Formación León, el contacto entre dichas formaciones es transicional.

La Formación León (Oligoceno-Mioceno), fue descrita por HEYBROEK (1953) como una secuencia monótona de lutitas grises a negras, blandas, con numerosos niveles de concreciones de arcillita ferruginosa, oolitas ferruginosas y muchos restos de plantas. Según CIEN (1999) la formación fue depositada en un amplio ambiente de aguas salobres de salinidad normal y de poca profundidad. El contacto superior con la Formación Palmar es concordante.

La Formación Palmar (Mioceno Temprano), es descrita por SUTTON (1946), como areniscas masivas a bien estratificadas, con marcas de rizaduras y fósiles vegetales. El ambiente de sedimentación de esta formación se puede inferir como variable entre lagunar, salobre y marino somero.

El resto de la secuencia, desde el Mioceno Medio hasta el Reciente, se compone de sedimentos molásicos, en los que predominan los intervalos de las formaciones Isnotú y Betijoque (BOESI *et al.*, 1988).

La Formación Isnotú (Mioceno Medio a Tardío) está constituida predominantemente por arcillitas, con numerosas areniscas intercaladas y capas subordinadas de arcilla laminar, carbón y conglomerado. En la región la Formación Isnotú es discordante sobre la Formación Paují (SALVADOR, 1961-b en CIEN, 1999), e infrayace concordante y transicionalmente a la Formación Betijoque. La Formación Betijoque está compuesta por arcillas macizas de color gris, generalmente arenosas y localmente carbonáceas y fosilíferas, así como capas de conglomerados macizos y areniscas mal escogidas. Esta formación es concordante y transicional por encima de la Formación Isnotú, la edad asignada a la Formación Betijoque es Mioceno Tardío-Plioceno, tiempo en el cual se eleva definitivamente la cordillera andina. En la figura 7 se muestra una columna generalizada para el área de Rubio.

Figura 7 Columna estratigráfica del área de Rubio. Modificada de (GONZÁLEZ *et al.*, 2001)

2.2.1.-Formación Aguardiente: Cretácico (Albiense)

Como el objeto de estudio es la Formación Aguardiente se describe con más detalle esta unidad.

Esta formación fue definida por NOTESTEIN *et al.* (1944), al subdividir la Formación Uribante, en la Concesión Barco, Departamento de Santander, Colombia, en tres miembros: Tibú, Mercedes y Aguardiente en orden ascendente. SUTTON (1946) lo empleó con rango de formación como componente del Grupo Cogollo. RENZ (1959) propuso el nombre de Formación Peñas Altas para designar el intervalo suprayacente a las lutitas de Guáimaros, e infrayacente a las calizas de la Formación La Puya (hoy Maraca), en Los Andes venezolanos. Refiriéndose a la Formación Peñas Altas, RENZ (1959) afirmó que ROD & MAYNC (1954) usaron el nombre de Formación Aguardiente para designar casi el mismo intervalo. SALVADOR (1961) empleó el nombre de Formación Aguardiente para designar el intervalo llamado Peñas Altas por RENZ (1959), por considerar innecesaria la introducción de un nombre nuevo.

Según CIEN (1999) la localidad tipo se encuentra en la cuesta de buzamiento de la conspícua Fila de Aguardiente, al sur de la Concesión Barco, Departamento de Santander, Colombia.

En Táchira, TRUMP & SALVADOR (1941) describieron areniscas de colores claros, duras, en capas de espesor variable, intercaladas con limolitas y lutitas carbonáceas, y señalaron que al norte y oeste de Táchira la unidad se hace más calcárea y las capas de caliza constituyen un elemento litológico característico. NOTESTEIN *et al.* (1944) mencionan la presencia de areniscas calcáreas duras, de color gris a verde claro, grano variable y estratificación cruzada, localmente glauconíticas, con intercalaciones de lutitas micáceas y carbonáceas y algunos lechos de caliza en la parte inferior; localmente las areniscas son tan calcáreas que se aproximan a calizas

32

arenosas. RENZ (1959) acertadamente insistió sobre el carácter cuarzoso y los colores claros de meteorización de las areniscas, las intercalaciones de lutitas oscuras y la presencia de calizas fosilíferas de varios tipos. Según SALVADOR (1961), en Táchira, Mérida y Trujillo, esta formación "presenta una litología muy uniforme, compuesta predominantemente por areniscas cuarzosas, a veces glauconíticas, con capas de calizas distribuidas en varios niveles".

GONZÁLEZ DE JUANA *et al.* (1980) indican que en la Formación Aguardiente abundan las areniscas bien estratificadas, predominantemente cuarzosas y limpias, de grano variable grueso a fino, con una apreciable gradación de más grueso a más fino al avanzar de sur a norte.

Las facies litológicas más importantes dentro de la Formación Aguardiente según GARCÍA JARPA *et al.* (1980) se pueden resumir en la Tabla 1.

Las cinco facies litológicas de GARCIA JARPA *et al.* (1980), se interpretan como ambientes sedimentarios que varían de "aguas someras de mar abierto" a "barras sumergidas en una plataforma somera" a "barra emergente y barras sumergidas en la plataforma abierta" a "barra o cordón litoral (restinga) y playa asociada" a finalmente "lagunas costeras pantanosas y emergentes" (GARCIA JARPA *et al.*, 1980).

FACIES	CARACTERÍSTICAS PRINCIPALES	INTERPRETACIÓN DEL AMBIENTE
Banco de arenas gruesas.	Capas gruesas con estratificación cruzada. Las arenas son limpias, bien escogidas, hay alternancia de laminación de grano grueso y medio, cementación por sílice.	Barra o cordón litoral (restinga) y playa asociada.
Lutita, lutita carbonosa y carbón	Lutita limosa, carbonácea y carbón, a veces con raíces en la base, restos de plantas muy frecuentes.	Lagunas costeras pantanosas y emergentes por encima de las barras.
Calizas puras o arenosas.	Delgadas capas de calizas tipo wackestone, packstone-grainstone, asociadas con areniscas glauconíticas. Bivalvos raros rudistas y frecuentes ejemplares de <i>Orbitolina</i> .	Aguas someras de mar abierto con circulación y salinidad normal, localmente barreras y lagunas costeras.
Facies alternantes de arenisca, limolita y lutita.	Capas delgadas con estratificación lenticular, rizaduras y películas de carbón. Areniscas muy bien escogidas, glauconita ocasional.	Zona situada entre barras emergentes y barras sumergidas en la plataforma abierta. Las areniscas indican alta energía mecánica.
Capas de areniscas glauconíticas.	Capas gruesas a delgadas, a veces calcáreas, composición entre arenisca cuarzosa y wacka cuarzosa. Glauconita llega hasta 10-12%, fuerte bioturbación al tope.	Barras sumergidas en una plataforma somera, raramente emergente. Puede llegar hasta la zona intermareal.

 Tabla 1
 Facies litológicas de la Formación Aguardiente

 Tomado y modificado de GARCÍA JARPA *et al.* (1980)

El contacto inferior es generalmente concordante y diacrónico sobre la Formación Apón; sin embargo, cerca de los núcleos andinos, descansa sobre un delgado conglomerado basal (Formación Río Negro), a su vez transgresivo sobre las formaciones La Quinta y Mucuchachí (CIEN, 1999). El contacto superior con la Formación Maraca es concordante y transicional. Según KISER (1989), hacia el noroeste, en el surco Uribante y probablemente en la Cordillera Oriental de Colombia, las areniscas inferiores de la Formación Aguardiente aparentan cambiar de facies a las calizas de la Formación Apón. GARCÍA JARPA *et al.* (1980) proponen los contacto basal y superior concordantes, a veces gradacionales y sin hiatos. El contacto basal con la Formación Apón es concordante y en algunos lugares la secuencia de la Formación Aguardiente comienza con una caliza detrítica. El contacto

superior con la suprayacente Formación Capacho es concordante y a veces gradacional. TRUMP & SALVADOR (1941) mencionaron un espesor de la Formación Aguardiente de 500 metros cerca de San Cristóbal y menos de 300 metros en el norte de Táchira.

La edad asignada a la formación es Cretácico, principalmente Albiense. Los fósiles más importantes son: *Orbitolina concava* var. *texana*, *Exogyra* sp. y el amonite *Engonoceras* sp. (CIEN 1999). Se menciona además *Chondrodonta* (Ch. *cf.* munsoni) GARCÍA JARPA *et al.* (1980).

2.1.4.-Marco estructural

La zona de estudio se encuentra localizada cerca de la zona de interferencia entre los Andes de Mérida, el macizo de Santander y la Cordillera Oriental de Colombia (NOVOA *et al.*, 2003) (Fig. 8).

La estructura del occidente de Venezuela ha sido objeto de numerosos estudios, diversos modelos han sido propuestos para explicar la evolución de los Andes. COLLETA *et al.* (1997) proponen un sistema de doble vergencia, con una subducción tipo A de la litosfera del bloque de Maracaibo por debajo de la placa de Sur América, y un retrocorrimiento cortical en el flanco sur. Según AUDEMARD & AUDEMARD (2002), la cadena montañosa representa una cuña cortical asociada a una subducción tipo A de bajo ángulo y buzamiento noroeste en el flanco sur, con un retrocorrimiento de mayor ángulo hacia el noroeste.

Figura 8 Mapa esquemático regional del occidente de Venezuela y el oriente de Colombia. Se observa en el recuadro segmentado el marco estructural que afectó la zona de estudio (zona de interferencia entre los Andes de Mérida, el macizo de Santander y la Cordillera Oriental de Colombia). Tomado y modificado de NOVOA *et al.* (2003)

Los Andes de Mérida son un cinturón montañoso con una orientación aproximada NE-SO, según MEIER *et al.* (1987) esta orientación ha sido controlada por un sistema de grábenes jurásicos que se invirtieron como parte de la deformación mio-pliocena. También señalan que Táchira es una zona de confluencia y/o acoplamiento entre los Andes de Mérida, la Cordillera Oriental de Colombia y el macizo de Santander. Esta zona es una pronunciada depresión estructural con respecto a los Andes, contiene una compleja red de estructuras como lo son fallas, pliegues, bloques levantados y deprimidos las cuales han sido deformadas en dominio frágil. Al noreste y sureste de la región las tendencias transpresivas permiten que los patrones de plegamiento y fallamiento sean interpretados como "estructuras en flor positiva".

MACELLARI (1982) señala que las características geológicas de la depresión del Táchira y de otras regiones de los Andes Venezolanos indican que el evento compresivo de mayor escala, ocurrió durante el Mioceno Tardío al Plioceno Temprano y estuvo asociado a un esfuerzo de orientación N120°, que produjo el corrimiento del sur de los Andes hacia el noroeste, sobre la cuenca de Maracaibo.

CHAPLET & STEPHAN (1998) sostienen que la tectónica de la zona puede ser dividida en Tectónica del dominio merideño, Tectónica del dominio Cordillera Oriental y Tectónica del dominio de interferencia. Cada uno de estos dominios presenta divisiones tectónicas y estructuras asociadas.

Localmente la zona de estudio se ubica en una zona intermedia entre la parte meridional de la unidad tectónica Río Uribante y la depresión de Rubio. Está limitada al oeste por la falla Cucurí, al norte por la falla del Frío y al sur-sureste por la falla de Blanquisal, en el sector Santa Ana/Mesa de Tigre/La Alquitrana, entre la unidad Río Uribante y la Depresión de Rubio (CHAPLET & STEPHAN, 1998).

En la zona de estudio se encuentran estructuras pertenecientes a las unidades tectónicas Río Uribante (perteneciente a la tectónica del dominio merideño), la parte meridional de la unidad Río Uribante, la depresión de Rubio y el área intermedia entre la unidad Río Uribante y la depresión de Rubio (pertenecientes a la tectónica del dominio de interferencia).

La tectónica del dominio merideño sugiere que los Andes de Mérida están cortados por fosas tectónicas longitudinales, de rumbo noreste-suroeste, asociadas a

un amplio levantamiento de montaña. Dichas fosas o surcos tienen un origen relacionado con la separación de la Pangea a inicios del Jurásico (GONZÁLEZ DE JUANA *et al.*, 1980).

- Unidad tectónica Río Uribante: presenta dos estructuras principales:
 - La falla de Santo Domingo: interpretada como un corrimiento que involucra basamento, de ángulo alto en superficie y disminuye su buzamiento en profundidad.
 - La falla del Frío: interpretada como un corrimiento de ángulo bajo que se conecta con la falla de Mocotíes en profundidad. Sin embargo al sur, esta falla se presenta como una rampa lateral dextral, orientada aproximadamente E-O, que viene del área Rubio-Santa Ana.

• Depresión de Rubio:

La depresión de Rubio forma un amplio sinforme de eje NE-SO con pliegues y fallas inversas. En su parte oriental está cortado por la falla Quizquiz de rumbo NNE-SSO, y al norte en su terminación meridional por la falla de Boconó. Esta falla transcurrente presenta un desplazamiento dextral entre 0,5 y 0,8 cm/año (GIRALDO, 1988). A lo largo de esta falla se desarrollan cuencas de tracción (*pull-apart*) (SCHUBERT, 1980).

• Area intermedia entre la unidad tectónica Río Uribante y la depresión de Rubio:

La tectónica del dominio de interferencia se ubica en el estado Táchira, es una zona entre la tectónica merideña y la tectónica de la Cordillera Oriental. Según MEIER *et al.* (1987) la zona se presenta como una depresión estructural constituida por una

combinación compleja entre plegamientos y fallamientos de tipo mosaico de bloques tectónicos.

El sector Mesa de Tigre se presenta como un monoclinal de buzamiento hacia el noreste. La Alquitrana es un anticlinal de rumbo N-S en su parte meridional y rumbo NE-SO en su parte septentrional y está truncado por la falla La Alquitrana. El sector Santa Ana se considera como un monoclinal de rumbo NNE-SSO buzando hacia el oeste. La noción de zona intermedia es propuesta debido a que los monoclinales de la parte meridional (Mesa de Tigre y Santa Ana) pueden ser asociados como un único y amplio sinclinal fallado de rumbo NO-SE.

• Parte meridional de la unidad Río Uribante:

En este sector la estructura más importante corresponde a un sinclinal (sinclinal los Tanques), de rumbo NNO-SSE. El mismo se encuentra truncado en su flanco oriental por la falla inversa Camello y en su flanco occidental por la falla de Blanquisal. En el área sur del río Quinimarí, se encuentra el monoclinal Cucurí, de rumbo N-S, este sobrecorre el dominio de Rubio-Santa Ana. La falla responsable de este cabalgamiento es la Falla Cucurí, de rumbo NNE-SSO (Fig. 9).

Figura 9 Mapa estructural/tectónico Tomado y modificado de CHAPLET & STEPHAN 1998.

2.4.- Geología Local

Se realizó el levantamiento de una sección de la Formación Aguardiente, ubicada aproximadamente a 9 Km al sueste de Santa Ana del Táchira. El levantamiento se realizó específicamente en el corte de carretera que comunica a la población de Santa Ana del Táchira con la población La Patria (estado Táchira). Los detalles se describen en el capítulo de introducción (Anexo I).

En esta localidad, la secuencia aflorante de la Formación Aguardiente posee un espesor de 221 m. La orientación promedio de los estratos en la sección es N14°E 40°N, excepto en sectores donde la orientación es NS 42°O. La polaridad de la sección es normal. En el Anexo I se presenta el mapa geológico de la zona de estudio.

La Formación Aguardiente en el sector Río Frío está caracterizada litológicamente por la presencia de areniscas (82%), arcillitas (10%) y limolitas (8%).

La secuencia se inicia con una intercalación de areniscas (55%) y arcillitas (45%) de 5 m de espesor. Las areniscas son cuarzosas, mal escogidas, con espesores promedio de 10 cm, muy competentes, de color fresco pardo claro que meteoriza a tonos rojizos. El tamaño de grano varía de fino a medio. Las arcillitas se observan finamente laminadas, de color gris oscuro a negro y meteorizan a gris claro, con espesores individuales de 2 cm.

A continuación, se observa un paquete de areniscas cuarzosas estratificadas de 11 m de espesor, con espesores individuales promedio de 1 m, de color fresco pardo claro meteorizando a tonos rojizos. El tamaño de grano varía de medio a fino, disminuyendo hacia el tope del paquete. El escogimiento es moderadamente bueno, incrementándose hacia el tope. El intervalo entre los 17 y 26 metros (muestras ARF-18 a ARF-26) (Fig.10), presenta una litología de granulometría fina conformada por arcillitas gris oscuro a negras y limolitas de color gris claro meteorizando a tonos rojizos, dispuestas en capas de aproximadamente 70 cm de espesor (Fig 11), intercaladas con capas de areniscas de 80 cm. Las areniscas son competentes de granos gruesos, angulares a subangulares, embebidos en una matriz de grano fino, redondeados y bien escogidos. Este intervalo culmina en un contacto abrupto con un cuerpo arenoso (muestras ARF-26 y ARF-27, Fig.12).

Figura 10 Sección del afloramiento entre las muestras ARF-15 a ARF-20.El rumbo de las trazas es NS45°E.

Figura 11 Lutitas de color gris oscuro

Figura 12 Capa de arenisca en contacto con lutitas Muestra ARF-27. Rumbo de la traza NS40°O

Desde los 26 hasta los 76 metros estratigráficos, la secuencia está caracterizada por espesos intervalos de areniscas (de 14 a 17 m de espesor) intercaladas con delgados paquetes (2-4 m de espesor) de arcillitas y lutitas interestratificadas, de color gris claro meteorizando a gris oscuro.

Las areniscas son cuarzosas, de color fresco pardo y meteorizan a pardo rojizo, friables. En ocasiones se observa estratificación cruzada (Fig. 13). El tamaño de grano varía de medio a fino, disminuyendo hacia el tope de los intervalos, los granos son subangulares a redondeados. El escogimiento varía de moderado a bueno, incrementándose hacia el tope de los intervalos. Es común la presencia de micas.

Figura 13 Estratificación cruzada en areniscas. Muestra ARF-72. Rumbo de la traza N12ºO35ºN

Subiendo en la sección hasta los 163 metros estratigráficos, la secuencia es eminentemente arenosa, observándose hacia la base media basal un intervalo de 6 metros de espesor de arcillitas y limolitas interestratificadas, friables y de color gris claro que meteorizan a tonos rojizos (muestras ARF-107 a ARF-111, Fig. 14). De nuevo las areniscas son cuarzosas, friables, de color fresco pardo claro meteorizando a pardo rojizo, el tamaño de grano varía de medio a fino, disminuyendo hacia el tope, los granos son angulares a subangulares, incrementando la redondez y variando el escogimiento de moderado a bueno hacia el tope.

Hacia el tope de la sección entre los 164 y 221 metros (muestras ARF-154 a ARF-180) aumenta el contenido de arcillitas (areniscas 50%, arcillitas 50%). Las areniscas son cuarzosas, en ocasiones cuarzo micáceas, masivas (de hasta 6 m de espesor), de grano fino y bien escogidas, de color fresco pardo claro que meteoriza a

tonos rojizos (Fig. 15). Las arcillitas son finamente laminadas (4 m de espesor), de color fresco gris claro que meteoriza a tonos rojizos.

Fig. 14

Figura 14 Rumbo de la foto N18°O. Representa el intervalo de muestreo ARF-107 a ARF-111.Rrumbo de las trazas N10°E42°N

Figura 15 Niveles de oxidación dentro de una capa de arena. Muestra ARF-160

CAPITULO III

MARCO TEÓRICO

3.1.-Fundamentos de rayos X

Los rayos X son radiaciones electromagnéticas de una corta longitud de onda y alta frecuencia, producida por la desaceleración de electrones de alta energía y/o por transiciones de electrones que se encuentran en los orbitales internos de los átomos (SKOOG *et al.*, 1992). Este tipo de radiación ocupa sólo una parte del espectro electromagnético (Fig. 16) y sus longitudes de onda varían entre 10 nm y 0,01 nm (1nm o nanómetro equivale a 10-9 m) (GRANDE, 1996).

Figura 16. Espectro electromagnético. Tomado y modificado de BARITTO 2003.

SKOOG & WEST (1984 en CAMPOSANO & MARTÍNEZ, 2000) señalan que existen tres maneras fundamentales de generar rayos X:

• Por bombardeo de un blanco metálico, por un haz de alta energía: A través de un tubo conocido como Coolidge, que contiene un cátodo o emisor

de electrones y un blanco metálico o ánodo. Los rayos X se generan cuando los electrones bombardeados tienen suficiente energía para liberar electrones de las capas más internas de los átomos del ánodo produciéndose transiciones electrónicas que emiten radiación X.

- Por empleo de una fuente radioactiva (natural) de rayos γ: la cual al interaccionar con los elementos de la muestra permite la emisión de rayos X. De acuerdo a MOORE & REYNOLDS (1989 en BARITTO, 2003), cada elemento emite una radiación característica que es una propiedad periódica, así como cada elemento absorbe diferentes longitudes de onda de radiación de manera característica.
- Por bombardeo de una sustancia a un haz primario de rayos X, lo que provoca la generación de un haz secundario de rayos X fluorescentes: En este caso los rayos X son generados por la fuente, por ejemplo los generados por el tubo Coolidge, son dirigidos hacia la muestra analizada, absorbiendo estos rayos y generando una serie de transiciones electrónicas, a partir de las cuales se generan rayos X cuyas longitudes de onda serán características de los elementos presentes en la muestra analizada. Este último es el fundamento de los métodos analíticos usados en el presente trabajo de grado.

Según CAMPOSANO & MARTÍNEZ (2000) los métodos de análisis que emplean rayos X son:

- Absorción.
- Difracción
- Fluorescencia

Los métodos analíticos empleados en este trabajo son fluorescencia de rayos X por dispersión de energía (FRX-DE) y en menor grado la difracción de rayos X. El

método de especial interés es la fluorescencia de rayos X por dispersión de energía, por ser la técnica empleada para el análisis de la totalidad de las muestras y por consiguiente los aspectos teóricos de este método son explicados a continuación.

3.2.- Fluorescencia de rayos X por dispersión de energía

Esta técnica analítica es muy versátil y permite analizar más de 80 elementos, detectando concentraciones desde 100% hasta de unas pocas partes por millón (ppm). Según ROLLINSON (1993) ésta es la técnica más usada en la determinación de elementos mayoritarios y traza en muestras de rocas, por ser un método rápido que puede llevar a cabo una gran cantidad de mediciones precisas, utilizando un espacio de tiempo relativamente corto.

La fluorescencia de rayos X por dispersión de energía (FRX-DE) se basa en irradiar la muestra con rayos X o gamma, debido a esto se produce la excitación de sus átomos constituyentes, lo que causa que estos emitan rayos X característicos conocidos como fluorescencia. Esta radiación característica se identifica separándola según su longitud de onda a través de detectores de dispersión de energía (NOGUERA & YÉPEZ, 2002). Cada elemento de la muestra emite su propia radiación característica, con una intensidad que es directamente proporcional o relacionada a la concentración del elemento en el material (ARREAZA, 2002).

A través de análisis cualitativos se logra la detección de los elementos a través del reconocimiento de los rangos de energía emitidos por cada uno de ellos, mientras que los análisis cuantitativos se basan en convertir la intensidad de la radiación emitida por cada uno de ellos en unidades de concentración (CAMPOSANO & MARTÍNEZ, 2000)

3.3.- Bases teóricas de los métodos estadísticos

A partir de técnicas estadísticas se pueden establecer comparaciones y agrupaciones de datos con la finalidad de visualizar o solucionar un problema geológico. Estas técnicas estadísticas aplicadas proveen un manejo adecuado de grandes cantidades de datos.

En este sentido los análisis estadísticos descriptivos, gráficos y multivariantes han sido empleados en la ejecución de este trabajo para facilitar el procesamiento de datos para la interpretación geológica.

3.3.1.- Estadística Descriptiva

Según DAVIS (1973 en GONZÁLEZ & SÁNCHEZ, 2001) existen dos medidas principales de interés para cualquier conjunto de datos: la localización de su centro y su variabilidad. La tendencia central de un conjunto de datos es la disposición de éstos para agruparse ya sea alrededor del centro o de ciertos valores numéricos. La variabilidad de un conjunto de datos es la dispersión de las observaciones en el conjunto.

La descripción de las medidas que fueron utilizadas en este trabajo, se resume en la Tabla 2.

MEDIDAS DE TENDENCIA CENTRAL	MEDIDAS DE VARIABILIDAD
Media o Promedio Es el promedio aritmético de un conjunto de datos. El valor de la media puede verse afectado de manera desproporcionada por la existencia de valores extremos dentro del conjunto de datos (CANAVOS 1988). $\overline{x} = \sum_{i=1}^{n} x_i/n$ $\overline{x} = Media.$ $\sum_{i=1}^{n} =$ Sumatoria desde el primero hasta el último término. xi= Observaciones (datos) de la variable X. n= Número de observaciones.	Varianza Se define como el promedio cuadrado de las distancias entre cada observación de un conjunto de datos y la media del conjunto de observaciones (CANAVOS 1988). $\sigma^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}$ $\sigma^2 = \text{Varianza de una variable X.}$ $\sum_{i=1}^{n} = \text{Sumatoria desde el primero hasta}$ el último término $x_i = \text{Observaciones (datos) de la variable}$ X. n = Número de observaciones.
Mediana Valor de la variable en un conjunto de datos ordenados tal que el número de observaciones menores a tal valor es igual al número de observaciones mayores. La existencia de algunos valores extremos no afecta su valor llegando a ser una medida de tendencia central	Desviación Estándar Es la raíz cuadrada de la varianza y siempre esta en las mismas unidades que los valores originales de los datos. Cuanto menor es el valor de la desviación estándar menor es la variabilidad del conjunto de datos (ARREAZA 2002).

3.3.2.- Estadística Gráfica

La estadística gráfica facilita la interpretación debido a la visualización en forma global del comportamiento de la totalidad de los datos y las relaciones entre las distintas variables. Además, CAMPOSANO & MARTÍNEZ (2000) señalan que la estadística gráfica es de suma utilidad, ya que permite manipular o asimilar fácilmente un conjunto de datos brutos o sin ningún tipo de análisis, de los cuales resultaría complicado hacer algún tipo de interpretación. A continuación se describen los métodos utilizados.

3.3.2.1 Histogramas de Frecuencia

En un histograma se representan las distribuciones de frecuencia de un conjunto de datos, donde en el eje de horizontal se representan los intervalos de clase y en el eje vertical la frecuencia de esos intervalos. Estos gráficos resultan de gran utilidad al momento de estudiar un conjunto amplio de observaciones que no pueden ser analizados a simple vista. SPIEGEL (1991) lo define como un conjunto de rectángulos paralelos, cuya base representa el intervalo de clase y su altura la magnitud de la frecuencia de la clase respectiva (Fig. 17).

Figura 17 Histograma y polígono de frecuencia.

3.3.2.2.-Polígono y curva de frecuencia

El polígono de frecuencia se construye dibujando segmentos de línea que unen los puntos medios de la parte superior de cada columna del histograma. Cuando los trazos rectos del polígono de frecuencia son suavizados se denomina Curva de Frecuencia (CHACÍN, 2003). Según ARREAZA (2002) estas curvas de frecuencia representan la verdadera distribución de la población de la que se ha extraído la muestra.

Las curvas adoptan diversas formas según la distribución de los datos de la población. JOHNSON (1988) en CAMPOSANO & MARTÍNEZ (2000) explican que dependiendo de la forma que muestran las curvas de frecuencia, se puede decir que se comportan de la siguiente manera:

- Curvas simétricas: las observaciones equidistan del máximo central.
- Curvas con sesgado asimétrico: el sesgo corresponde a la mayor extensión de la extremidad.
- Curva en forma de J o J invertida: el máximo se presenta en un extremo y no existe sesgo hacia el lado de mayor frecuencia.
- Curva bimodal: en el que las dos clases con mayor frecuencia están separadas por una o más clases, suelen indicar la presencia de dos poblaciones.

3.3.2.3.- Diagramas de dispersión

Es uno de los métodos más eficaces para analizar datos o variables. Básicamente permiten estudiar la relación entre dos variables XY. También permite sugerir la existencia de más de una población de datos. SPIEGEL (1991) explica que un diagrama de dispersión muestra la localización de los puntos o muestras de dos variables sobre un sistema rectangular de coordenadas, en el cual cada eje representa los valores de cada una de ellas (Fig. 18). TORRES (2005) indica que las variables pueden estar correlacionadas positiva o negativamente dependiendo de la pendiente de la línea de tendencia mostrada por el diagrama de dispersión. La relación es más estrecha mientras el área cubierta por los puntos se asemeje más a una recta. Así mismo, si la línea de regresión es horizontal indica que no existe relación entre las variables comparadas si se relacionan. Además, si se tiene una pendiente positiva, la relación entre las variables es directa, y si ocurre al contrario (pendiente negativa), la relación entre las dos variables es inversa.

Figura 18 Diagrama de dispersión entre % SiO₂ y % Al₂O₃. Elaborado a partir del programa NCSS 2000. Se observa una relación inversa entre las dos variables

3.3.2.3.1.-Coeficiente de correlación

Es un índice numérico que permite establecer una cuantificación de la relación lineal existente entre dos variables. CANAVOS (1988) indica que el coeficiente de correlación se calcula por medio de la siguiente fórmula:

$r(X,Y) = Cov(X,Y)/\sigma x^* \sigma y$

Donde:

r(X,Y)= Coeficiente de correlación de las variables X e Y

Cov(X,Y)= Covarianza entre las variables X e Y.

 σx = Desviación estándar de la variable X.

 σy = Desviación estándar de la variable Y.

CHACÍN (2003) señala que para saber cuando un coeficiente de correlación resulta estadísticamente representativo se recurre al coeficiente de correlación crítico (rc). Este valor indica a partir de qué valor los coeficientes de correlación expresan correlaciones lineales con un 95% de confiabilidad. Para obtener estos valores es necesario calcular previamente el valor de **F** (grados de libertad) el cual se obtiene a partir de la ecuación $\mathbf{F} = \mathbf{n}-\mathbf{2}$ (donde **n** es el número de muestras), y a partir de este parámetro se obtienen los coeficientes de correlación críticos (rc) a través de una interpolación no lineal en las tablas estadísticas de SNEDECOR (1946 en DIXON *et al.*, 1957) (Apéndice 1).

3.3.2.4.- Perfil de distribución

Los perfiles de distribución son representaciones gráficas de los datos que ayudan a visualizar los valores atípicos. Normalmente, las variables se representan en el eje horizontal y los valores de escala en el eje vertical. Las puntuaciones de objetos (originales o estandarizadas) se representan como puntos del gráfico (NOGUERA & YÉPEZ, 2002). Esta herramienta permite visualizar de la mejor manera el comportamiento de los datos analizados a lo largo de su distribución espacial (Fig. 19).

De acuerdo a ESTÉVEZ (2000 en BARITTO, 2003) los eventos geoquímicos que definen el patrón de los perfiles pueden reflejarse como máximos, mínimos y deflexiones de las curvas, estos patrones, definen a su vez a los marcadores quimioestratigráficos de primero y segundo orden. JORGENSEN (1986) indica que estos marcadores quimioestratigráficos de primer orden representan eventos geoquímicos caracterizados por más de un elemento o por una deflexión excepcional de las curvas. Por su parte los marcadores quimioestratigráficos de segundo orden se definen a partir de un solo elemento o por fluctuaciones elementales menos significativas.

Figura 19 Ejemplo de un perfil químico de distribución en el que es posible apreciar la variación de concentración de SiO_2 a lo largo de la sección.

3.3.3 Estadística multivariante

Los análisis estadísticos multivariantes involucran a más de una variable. El objetivo fundamental de este enfoque es identificar relaciones entre las variables. Estos métodos resultan muy eficaces ya que permiten manipular más variables de las que pueden ser asimiladas, sin embargo su estructura teórica y operacional resulta más compleja que las realizadas a una sola variable (CAMPOSANO & MARTÍNEZ, 2000).

3.3.3.1.-Análisis de agrupaciones

Es uno de los métodos estadísticos multivariantes más elementales en la asociación de las características individuales de familias de datos. El análisis de agrupaciones es una técnica de clasificación que incluye la asignación de observaciones de distintos grupos, en otras palabras, este tipo de análisis busca convertir un grupo heterogéneo de datos en grupos que reflejen las relaciones originales entre esos objetos. De esta manera, agrupa las distintas variables que son objeto de estudio, de acuerdo a la similitud entre ellas.

Según KENDALL (1980), el análisis de agrupaciones constituye una de las técnicas de clasificación estadística que ordenan o clasifican un conjunto de observaciones en diversos grupos en base a las similitudes internas de las mismas.

La representación visual del análisis de agrupaciones es el dendrograma, que es una solución jerarquizada de grupos que muestra las ramificaciones combinadas y los valores de los coeficientes de distancia en cada paso (Fig. 20). Los casos agrupados se indican mediante líneas verticales conectadas entre sí. El dendrograma no muestra las distancias reales sino que les aplica un cambio de escala para que sus valores estén comprendidos entre 0 y 1. Así se conserva la proporción entre las distancias de un paso a otro. El eje horizontal del dendrograma representa los objetos
o individuos y el eje vertical representa el número de grupos formados en cada paso del procedimiento (KAUFMAN & ROUSSEEUW, 1990 en NOGUERA & YÉPEZ, 2002).

Figura 20 Dendrograma (Tomado de CHACÍN, 2003).

3.3.3.2.- Funciones discriminantes

Con este tipo de funciones se busca encontrar una ecuación que dé la relación mínima de la diferencia entre un par de grupos multivariantes. Este es uno de los procedimientos multivariables más ampliamente usado en los análisis geoquímicos ya que permite clasificar muestras de origen desconocido en grupos previamente establecidos (ROLLINSON, 1993).

Según muestra DAVIS (1973), este método busca encontrar una combinación lineal de las variables, las cuales produzcan las máximas diferencias entre los diferentes grupos de muestras

El análisis discriminante encuentra un conjunto de combinaciones lineales de las variables (funciones discriminantes), cuyos valores están tan cerca como sea posible dentro de los grupos y tan alejados como sea posible entre ellos. De este modo, una función discriminante es una combinación lineal de las variables discriminantes (ARREAZA, 2002). Las funciones discriminantes presentan la siguiente fórmula matemática:

$$f_{km} = u_0 + u_1 X_{1km} + u_2 X_{2km} + \dots + u_p X_{pkm}$$

Donde:

 $\mathbf{f}_{\mathbf{km}} = \mathbf{el}$ valor de la función discriminante.

 X_{ikm} = valor en la variable discriminante X_i para el caso m en el grupo k, son las mediciones correspondientes a cada variable utilizada.

correspondientes a cada variable utilizada.

 \mathbf{u}_{i} =coeficientes de la función.

Cuando las funciones ya han sido determinadas y muestran que clasifican bien las muestras de los grupos definidos, entonces una muestra desconocida puede ser clasificada en uno u otro de los grupos, simplemente sustituyendo los valores correspondientes a las variables (x1, x2, x3 xn) en cada una de las funciones. Una muestra se clasifica como perteneciente a un grupo si su función da un valor mayor que el obtenido en cualquiera de las otras funciones. Esta técnica se puede extender a cualquier número de grupos definidos y a tantas variables como se tengan, y se calculará una nueva función para cada grupo adicional (URBANI, 1976).

A través de una representación gráfica (Fig. 21), podemos observar una separación adecuada entre los grupos A y B usando ambas variables X_1 y X_2 en un espacio bidimensional. En este caso, una función discriminante es una orientación a lo largo de la cual las dos agrupaciones tienen marcada separación mientras al mismo tiempo cada grupo tiene una mínima expansión (DAVIS, 1973)

Figura 21 Gráfico de una función discriminante entre dos funciones bivariadas, en la que se aprecia la superposición entre los grupos A y B a lo largo de las variables X_1 y X_2 (Tomado de CAMPOSANO & MARTÍNEZ, 2000).

CAPITULO IV

MARCO METODOLÓGICO

El flujograma de trabajo mostrado a continuación (Fig. 22), contiene en forma muy resumida las actividades que se cumplieron durante la realización del presente Trabajo Especial de Grado. Las diferentes etapas de este flujograma son descritas con más detalle a continuación.

Figura 22 Flujograma de trabajo a seguir para la realización del presente Trabajo Especial de Grado.

4.1.- Fase de campo

La fase de campo realizada comprendió la ubicación y selección del afloramiento a estudiar, levantamiento de una columna estratigráfica y recolección de muestras. Para escoger el afloramiento se tomaron en cuenta ciertos criterios, tales como buena accesibilidad, mayor continuidad y menor complejidad estructural posible. La sección escogida corresponde a un tramo de carretera localizado en el sector Río Frío donde aflora la Formación Aguardiente (objeto de estudio), al sureste de Santa Ana de Táchira (Fig. 23).

Figura 23 Parte del afloramiento del sector Río Frío.

Luego de la selección del afloramiento se procedió al levantamiento detallado de una columna estratigráfica, esta fase comprendió:

- Descripción litológica, identificación de estructuras sedimentarías, aspectos texturales y mineralógicos a nivel mesoscópico, así como las relaciones verticales entre los diferentes estratos y determinación de la polaridad de la secuencia.
- Medición de rumbos y buzamientos de capas duras.
- Recolección de muestras extraídas del afloramiento, con un peso aproximado de 500 gr. cada una.

El muestreo se realizó de la manera más sistemática posible, con un espaciamiento aproximado de 1 m entre cada una de las muestras, en ocasiones se varió el intervalo de muestreo a conveniencia (2 a 3 metros), dependiendo de la presencia de intervalos cubiertos o de la calidad física de la roca (meteorización y/o consolidación). Para esta sección se recolectó un total de 180 muestras, cada una de ellas debidamente embalada, identificada y ubicada en la columna estratigráfica (Fig. 24).

Figura 24 Identificación y recolección de muestras en un tramo del afloramiento. Orientación O-E. Intervalo de muestreo ARF-15, ARF-40

La nomenclatura definida para la identificación de las muestras está formada por las siglas ARF (Aguardiente-Río Frío), seguido por el número correspondiente al orden de extracción de la muestra. Cabe destacar que el muestreo se realizó de base a tope.

Para la construcción de la columna estratigráfica, los datos adquiridos en campo fueron procesados de manera digital a través del Software Apple Core, de Macintosh. La edición posterior fue realizada en CANVAS versión 7 en formato PC. El producto final fue una columna estratigráfica a escala 1:250 (Anexo II).

4.2 Fase de laboratorio

El tratamiento físico de las muestras se llevó a cabo en el laboratorio de preparación de muestras de INTEVEP y contempló el cumplimiento de los siguientes pasos:

4.2.1 Pulverizado

Previo al proceso de pulverizado fue necesario realizar la selección de la porción de roca más fresca, así como deshumedecerlas completamente de modo que resultara más eficiente el pulverizado. Para ello se colocaron las muestras disgregadas en un horno a una temperatura entre 80 y 90° C durante un lapso de 1 hora (Fig.25).

El pulverizado consistió en moler fragmentos de roca relativamente grandes en tamaños pequeños de aproximadamente 7.65 micras. Este proceso se realizó utilizando un equipo de molienda SHATTERBOX (Fig. 26)

Figura 25 Horno para el secado de muestras

Figura 26 Equipo SHATTERBOX, con morteros de tungsteno

Estos equipos trabajan bajo el principio de pulverización oscilante, esto quiere decir, que el juego de molienda (morteros) se sitúa sobre un sistema oscilante dentro del equipo, los cuales son acelerados por la fuerza centrífuga que ejerce el mismo, triturando la muestra por efecto de golpe y fricción. Este equipo contiene una cápsula

o mortero de carburo de tungsteno, en donde se colocan las muestras a pulverizar, previamente trituradas a un tamaño de partícula no mayor a 5 mm. Estos morteros tienen un diámetro de 17 cm. x 4 cm. de profundidad con anillos y discos de 7 cm. y 12 cm. de diámetro x 4 cm. de alto. (Figs. 27 y 28).

Figura 27 Componentes de la capsula o mortero de tungsteno

Figura 28 Materiales y equipo utilizado para la pulverización de muestras

Con la finalidad de minimizar el riesgo de contaminación de las muestras, se siguió el procedimiento de limpieza utilizado por RODRÍGUEZ *et al.*, 2000:

- Se limpió el recipiente con agua caliente y alcohol isopropílico, se secó con toallas de papel y con aire a presión.
- Se introdujo aproximadamente 10 gr. de cuarzo cristalino y se procedió a pulverizarlo por un período de 20 seg.
- Se extrajo el cuarzo pulverizado y se limpió nuevamente el recipiente.
- Una vez secas las muestras se introdujo en el recipiente una cantidad aproximada de 70 gr. de roca sólida previamente triturada. Ésta se pulverizó

por un lapso de 10 minutos. Para las siguientes muestras el procedimiento se repitió.

Después de pulverizadas, se pesan aproximadamente 50 gr. de muestra y se introdujeron en bolsas herméticas individuales, respectivamente rotuladas e identificadas (Fig. 29)

Figura 29 Pesado y almacenamiento de las muestras pulverizadas en bolsas identificadas.

4.3.- Análisis químicos

Los análisis químicos fueron realizados en la Escuela de Geología, Minas y Geofísica, Facultad de Ingeniería, UCV. Las muestras fueron analizadas con los equipos Phillips Minipal PW4025 y Niton XL-722S.

4.3.1.- Fluorescencia de rayos X por dispersión de energía (FRX-DE) con fuente de tubo de Rh

Para la determinación de los componentes mayoritarios en las muestras preparadas se utilizó un equipo de espectrometría de FRX-DE. El espectrómetro, Phillips (Minipal PW4025) (Fig. 30), está diseñado para detectar y cuantificar elementos químicos, desde Na hasta U, en muestras que pueden presentarse en cualquier forma física: sólida, líquida o pulverizada (CAMPOSANO & MARTÍNEZ 2000). Este equipo es controlado por un software (Minipal Software 1.0 A, 1999), diseñado especialmente para este equipo, el cual trabaja bajo ambiente Windows y con el que se pueden realizar las aplicaciones necesarias. En el presente trabajo no se profundizará en la explicación de la estructura de este equipo, así como el establecimiento de condiciones óptimas para la medición, ya que han sido tratadas a fondo en trabajos tales como CAMPOSANO & MARTÍNEZ (2000), GONZÁLEZ & SÁNCHEZ (2001), entre otros.

Figura 30 Equipo de fluorescencia de rayos X. Tomado de CHACÍN (2003).

4.3.2 Fluorescencia de rayos X por dispersión de energía (FRX-DE) con fuente radiactiva de ¹⁰⁹Cd

Para la determinación de los elementos traza de cada una de las muestras estudiadas se utilizó un espectrómetro portátil de fluorescencia de rayos X, marca Niton XL-722S, serie 700 (Fig. 31). Este equipo está en la posibilidad de hallar las concentraciones de 24 elementos, en su mayoría traza con pesos atómicos mayores al Fe, utilizando la técnica de fluorescencia de rayos X por energía dispersiva (CAMPOSANO, 2002).

Figura 31 Instrumento Niton XL-500 desplegando información de concentraciones de elementos traza de una muestra (Tomado de NOGUERA & YÉPEZ, 2002)

El equipo NITON es un instrumento versátil no destructivo, capaz de medir una gran variedad de muestras de rocas, dando respuesta de los análisis químicos a una gran velocidad. Las aplicaciones de dicho equipo son muy amplias permitiendo realizar análisis en suelos, rocas y cualquier otro tipo de formas físicas, su tamaño lo hace muy versátil para analizar rápidamente muchas muestras en el lugar de muestreo, sin embargo, elementos de numero atómico inferior a 16 considerados como "livianos" no pueden ser detectados por este equipo. Este equipo posee un sistema de autocalibración para cada elemento que detecta, por lo que no es necesario la realización de curvas de calibración basadas en patrones estándar, adquiriendo los datos de concentraciones elementales directamente y corrigiendo de manera automática los efectos producidos por las diferencias de matriz mediante procedimientos estadísticos (CAMPOSANO, 2002).

4.3.3.-Difracción de rayos X

Los análisis de Difracción de Rayos X (DRX) fueron realizados en el Laboratorio Geológico de El Chaure (PDVSA División Oriente).

El análisis mineralógico de una muestra por difracción de rayos X consta de dos tipos:

- Mineralogía total de la muestra (roca total): con el objetivo de obtener la identificación y cuantificación (% en peso) de los minerales presentes en la muestra. La montura de la muestra se hace en forma no orientada.
- Mineralogía de arcillas (fracción < 2 micras): consiste en la identificación y cuantificación (% en peso) de los minerales de arcilla presentes en la muestra. La montura se hace en forma orientada con la finalidad de magnificar los planos basales de los filosilicatos.

ARIAS (2004) describe de una manera detallada la fase de preparación de muestras, así como también el proceso de selección y el tratamiento final para los análisis por rayos X.

El equipo analítico utilizado en los análisis de difracción de rayos X se describe a continuación (Fig. 32):

- Difractómetro Phillips
- Generador de rayos X: PW 1792

- Goniómetro modelo "step scanning": PW 3020
- Detector de rayos X: PW 1711/90
- Monocromador PW 1752/00
- Tubo de Cu

Figura 32 Equipo de difracción de rayos X, Laboratorio Geológico El Chaure. Gerencia de Exploración. PDVSA. División Oriente.Tomado de ARIAS (2004).

4.4.-Procesamiento de datos

La etapa de procesamiento de datos consistió en tratar de agrupar y realizar análisis exploratorios a los resultados obtenidos por los métodos analíticos de fluorescencia de rayos X por dispersión de energía y de difracción de rayos X. Este análisis, fue realizado utilizando métodos estadísticos univariantes, bivariantes y multivariantes, a través de los cuales se generaron histogramas de frecuencia, diagramas de dispersión, análisis de agrupaciones (*cluster*) y funciones discriminantes. Los programas estadísticos que se utilizaron para estos análisis son: STATGRAPHICS PLUS 5.0, NCSS 2000, MVSP y MICROSOFT EXCEL 2000.

A parte de los análisis estadísticos se construyeron perfiles de concentración, estos muestran de forma gráfica la variación de las concentraciones de los componentes químicos a lo largo de la secuencia estratigráfica. En base al comportamiento de estas curvas es posible la definición de posibles unidades químicas, las cuales presentaran características químicas distintivas. Estos perfiles se construyeron utilizando el programa Microsoft Excel y PanPlot.

CAPITULO V

RESULTADOS E INTERPRETACIONES

5.1.-Resultados analíticos

Mediante la técnica de fluorescencia de rayos X (FRX-DE) se analizó un total de 182 muestras correspondientes a la Formación Aguardiente, arrojando concentraciones en porcentaje (%) de los elementos mayoritarios SiO₂, TiO₂, Al₂O₃, Fe₂O₃, MgO, CaO y K₂O y de partes por millón (ppm) de los elementos traza V, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Zr, Ba, La y Hg.

Los análisis de difracción de rayos X se realizaron de manera selectiva y como complemento de los análisis por fluorescencia de rayos X. Para esto se seleccionaron 10 muestras a lo largo de toda la sección, con el fin de determinar la mineralogía y así contribuir con resultados interpretativos.

Las tablas contentivas de los resultados obtenidos de los análisis de fluorescencia de rayos X se presentan en el apéndice 1

5.2.- Estadística univariante

La tabla 3 muestra un resumen de los parámetros descriptivos de estadística univariante (promedio, mediana, varianza, desviación estándar, valores máximos y mínimos, rango), para cada una de las veinte variables químicas obtenidas de los análisis de fluorescencia de rayos X por dispersión de energía, tanto de componentes mayoritarios como traza.

Flomonto	Modio	Modiana	Desviación	Mávimo	Mínimo	Dango	Varianza		
Liemento	wieura	Meulalla	Estandar			Kango	v al laliza		
SiO ₂	80,523	84,906	11,783	91,983	37,632	54,351	138,844		
TiO ₂	0,329	0,134	0,478	2,174	0,010	2,164	0,228		
Al ₂ O ₃	9,841	7,708	6,445	35,511	2,171	33,340	41,538		
Fe ₂ O ₃	0,305	0,010	1,134	13,488	0,010	13,478	1,285		
MgO	1,881	1,000	1,271	6,526	1,000	5,526	1,616		
CaO	0,031	0,031	0,012	0,067	0,010	0,058	0,000		
K ₂ O	K₂O 0,300		0,638	4,260	0,010	4,250	0,407		
V	95	48	113	531	28	503	12737		
Со	236	52	1035	8576	20	8556	1070910		
Ni	110	111	68	314	20	294	4671		
Cu	244	264	100	506	20	486	10029		
Zn	182	183	79	696	30	666	6170		
As	16	10	25	210	10	200	607		
Se	Se 21		9	42	5	37	79		
Rb	b 21 4		45	273	4	269	2035		
Sr	19	19 8 29		161	5	156	830		
Zr	193	115	211	1060	10	1050	44457		
Ba	33	10	61	322	10	312	3717		
La	18	10	22	125	10	115	465		
Hg	87	84	53	466	7	460	2762		

 Tabla 3. Resumen de estadística univariante de los análisis químicos de la sección Río Frío,

 Formación Aguardiente. Valores de elementos mayoritarios en porcentaje (%) y elementos traza en partes por millón (ppm)

Es de notar que el SiO_2 es el elemento que presenta la más alta concentración en promedio, así como el calcio presenta la concentración promedio más baja, sugiriendo un fuerte predominio de cuarzo y un carácter calcáreo muy bajo.

Los elementos a lo largo de la sección presentan comportamientos distintivos. Hay que destacar que la sección estudiada es predominantemente arenosa, en este sentido elementos como SiO₂, Se, Hg, Cu y Zn presentan mayores porcentajes de concentración en las arenas y bajas concentraciones en las lutitas (arcillitas y limolitas), por otro lado, elementos como el Al₂O₃, K₂O, TiO₂, Fe₂O₃, V, Sr, Zr, La, Ba y Rb presentan muy bajas concentraciones en las areniscas y altas concentraciones en las lutitas. Cabe destacar que el Fe_2O_3 presenta un valor anómalo en la muestra ARF-05, con una concentración de 13,5% siendo el promedio 0,31%; observaciones en muestra de mano indican que ésta es una muestra muy meteorizada, por lo que el valor arrojado por la medición pudiera no ser representativo. El CaO, MgO y Ni parecen no obedecer a ese control litológico mencionado anteriormente. Por otra parte, el As y Co registran concentraciones por debajo del límite de detección del equipo en casi la totalidad de la sección, excepto hacia el tope de la misma. Estos elementos tampoco parecen estar influenciados por el control litológico.

5.2.1.- Histogramas de frecuencia químicos

Con la finalidad de visualizar los resultados de los análisis químicos y destacar tendencias o patrones en la movilidad de los elementos, se realizaron histogramas con sus respectivos polígonos de frecuencia para cada una de las variables (mayoritarios y traza). El comportamiento resumido de cada una de las variables se presenta en la Tabla 4, indicando la tendencia modal, valores máximos y sesgo.

Elemento	Comportamiento										
SiO.	Unimodal con sesgo (-)										
5102	Máximo= 87%										
TiO.	Unimodal con sesgo (+)										
1102	Máximo=0,17%										
ALO	Unimodal con sesgo (+)										
111203	Máximo=5%										
Fe ₂ O ₂	Unimodal con sesgo (+)										
10203	Máximo=1%										
ΜσΟ	Unimodal con sesgo (+)										
mgo	Máximo=1,5%										
CaO	Unimodal con sesgo asimétrico (+)										
euo	Máximo=0,03%										
K ₂ O	Unimodal con sesgo (+)										
2 -	Máximo=0,35%										
V	Unimodal con sesgo (+)										
•	Máximo=75 ppm										
Со	Unimodal con sesgo (+)										
	Máximo=750 ppm										
Ni	Unimodal con sesgo (+)										
	Máximo=44 ppm										
C	Bimodal										
Cu	Máximo 1=60 ppm										
	Máximo 2=300 ppm										
Zn	Unimodal con sesgo asimétrico (+)										
	Máximo=200 ppm										
As	Unimodal con sesgo (+)										
	Maximo=28 ppm										
C.	Bimodal										
Se	Maximo 1 = 8 ppm										
	Maximo 2= 26 ppm										
Rb	Unimodal con sesgo (+)										
	Maximo=28 ppm										
Sr	Máxima 18 mm										
	Maximo=18 ppm										
Zr	Máxima-07 nnm										
	Unimodel con cospo (+)										
Ba	Méximo-27 nnm										
	Unimodal con sesso (1)										
La	Máximo-10 nnm										
	Unimodal con sosso (+)										
Hg	Máximo 47 mm										
	maximo=47 ppm										

Tabla 4. Resumen del tipo de distribución de los histogramas,
polígonos de frecuencia detectados por FRX-DE

Los histogramas de frecuencia poseen comportamientos particulares. En el caso del SiO₂, es el único elemento que tiene una distribución unimodal en forma de J con sesgo negativo y una moda de 87% de concentración en el 68% de las muestras (Fig. 33). (Esto indica que la mayoría de las muestras presenta concentraciones altas de este elemento y un porcentaje menor presenta observaciones mínimas muy alejadas del valor promedio, además de destacar el carácter silíceo de la sección).

Figura 33 Histograma de frecuencia químico del SiO₂. Formación Aguardiente sector Río Frío.

En la mayoría de los componentes como Al₂O₃, K₂O, TiO₂, Fe₂O₃, MgO, V, Sr, Zr, La, Ba, Rb, Co, Ni, As y Hg (Figuras 34, 35 y 36), se observa un comportamiento unimodal en forma de J con sesgo positivo, contrariamente al SiO₂. Dicho comportamiento indica que la mayoría de las muestras exhiben concentraciones bajas de estos elementos y un menor porcentaje observaciones máximas muy alejadas del valor promedio del elemento.

Figura 34. Histogramas y polígonos de frecuencia químicos de TiO₂, Al₂O₃, Fe₂O₃, MgO, K₂O y V en las muestras estudiadas de la Formación Aguardiente, sector Río Frío.

Figura 35. Histogramas y polígonos de frecuencia químicos de Co, Ni, As, Rb, Sr, Zr, Ba y La, en las muestras estudiadas de la Formación Aguardiente, sector Río.

Figura 36. Histograma y polígono de frecuencia químico del Hg Formación Aguardiente, sector Río.

En el caso del Fe₂O₃, la mayoría de las muestras tienen concentraciones inferiores al límite de detección (< 0,1%). Este óxido está en baja proporción en las areniscas (casi ausente), registrando concentraciones moderadas (1,25%) en las rocas de granulometría más fina.

Es importante destacar que existe un marcado control litológico en la distribución de elementos analizados. Por una lado, los valores mayores en la concentración de SiO₂ se observan en las areniscas, mientras que elementos como el Al_2O_3 , K_2O , TiO₂, Fe₂O₃, V, Sr, Zr, La, Ba, Rb y Co, dominan en las lutitas (arcillitas y limolitas).

El As solo se detectó hacia el tope de la sección a partir de la muestra ARF-167. Sin embargo, las concentraciones no son muy representativas (150 ppm), la mayoría de las muestras registran valores inferiores al límite de detección (<10 ppm). El Co presenta una distribución semejante al As, registra valores promedio de concentración de 55 ppm desde la muestra ARF-01 hasta la ARF-167. Hacia el tope se incrementan las concentraciones, alcanzando valores de hasta 8300 ppm.

El CaO y el Zn (Fig. 37) presentan una distribución unimodal con sesgo asimétrico positivo. El CaO tiene una moda de 0,03% en un 29% de las muestras, por otra parte el Zn posee una moda de 200 ppm en un 65% de las muestras.

En el caso del Cu y Se (Fig. 37) no se aprecia un patrón claro de comportamiento, este se asemeja más a un comportamiento bimodal. Diferentes trabajos como MARTÍNEZ & CAMPOSANO (2000) y GONZÁLEZ & SÁNCHEZ (2001), explican que en los casos donde hay bimodalidad pueden indicar tipos litológicos diferentes.

Figura 37. Diagramas de dispersión químicos del CaO, Zn, Cu y Se, Formación Aguardiente, sector Río Frío.

5.2.2.- Diagramas de dispersión químicos

Con la finalidad de identificar y comprobar las relaciones existentes entre las diferentes variables químicas analizadas, se realizaron diagramas de dispersión. Estos diagramas permiten establecer patrones de correlación entre elementos mayoritarios y traza.

La tabla 5 muestra los valores de los coeficientes de correlación determinados a partir de los diagramas de dispersión, identificando los valores con un 95% y 99% de confiabilidad. Para obtener estos valores, se tomaron en cuenta los datos de la tabla de valores críticos (rc) de SNEDECOR (1946 en DIXON *et al.*, 1957) (Apéndice II), que permite (a través de una interpolación no lineal) determinar el valor del coeficiente de correlación critico (rc) y a partir de ese valor se garantiza que todos los coeficientes de correlación que posean valores superiores o iguales al crítico poseen un 95% de confiabilidad.

Específicamente en esta sección y para gráficos de dos variables, se considera el valor de "f" (grados de libertad) igual a 178 (donde f=n-2, siendo n el número de muestras y 2 el número de variables), obteniéndose para esta sección un valor absoluto crítico (r_c) de 0,14724 para un nivel de confianza de 95% y un " r_c " de 0,19288 para un nivel de confianza de 99%.

r	SiO2	TiO2	AI2O3	Fe2O3	MgO	CaO	K20	v	Со	Ni	Cu	Zn	As	Se	Rb	Sr	Zr	Ва	La	Hg
SiO2		-0,873	-0,895	-0,397	0,217	0,250	-0,785	-0,800	-0,234	-0,243	0,642	0,532	0,061	0,633	-0,847	-0,796	-0,532	-0,872	-0,724	0,420
TiO2	-0,873		0,896	0,256	-0,257	-0,282	0,735	0,850	0,210	0,263	-0,618	-0,588	-0,097	-0,621	0,786	0,756	0,682	0,816	0,697	-0,446
AI2O3	-0,895	0,896		0,231	-0,201	-0,293	0,719	0,825	0,329	0,253	-0,654	-0,571	-0,065	-0,660	0,796	0,813	0,467	0,843	0,759	-0,422
Fe2O3	-0,397	0,256	0,231		-0,139	-0,140	0,311	0,258	0,208	0,126	-0,260	-0,189	-0,020	-0,255	0,320	0,253	0,184	0,298	0,243	-0,139
MgO	0,217	-0,257	-0,201	-0,139		0,464	-0,248	-0,260	0,021	-0,072	0,116	0,346	0,278	0,103	-0,223	-0,216	-0,223	-0,224	-0,194	0,359
CaO	0,250	-0,282	-0,293	-0,140	0,464		-0,141	-0,237	-0,123	-0,088	0,237	0,371	0,219	0,211	-0,124	-0,221	-0,281	-0,151	-0,197	0,345
K20	-0,785	0,735	0,719	0,311	-0,248	-0,141		0,708	0,106	0,214	-0,552	-0,526	-0,089	-0,539	0,968	0,642	0,464	0,878	0,611	-0,411
V	-0,800	0,850	0,825	0,258	-0,260	-0,237	0,708		0,192	0,224	-0,513	-0,513	-0,104	-0,544	0,762	0,706	0,445	0,795	0,693	-0,395
Со	-0,234	0,210	0,329	0,208	0,021	-0,123	0,106	0,192		-0,196	-0,270	-0,067	0,202	-0,304	0,134	0,298	-0,065	0,198	0,283	0,149
Ni	-0,243	0,263	0,253	0,126	-0,072	-0,088	0,214	0,224	-0,196		-0,216	-0,318	-0,163	-0,193	0,240	0,210	0,257	0,244	0,186	-0,328
Cu	0,642	-0,618	-0,654	-0,260	0,116	0,237	-0,552	-0,513	-0,270	-0,216		0,410	-0,365	0,944	-0,578	-0,522	-0,339	-0,566	-0,468	0,173
Zn	0,532	-0,588	-0,571	-0,189	0,346	0,371	-0,526	-0,513	-0,067	-0,318	0,410		0,651	0,393	-0,513	-0,473	-0,450	-0,494	-0,419	0,915
As	0,061	-0,097	-0,065	-0,020	0,278	0,219	-0,089	-0,104	0,202	-0,163	-0,365	0,651		-0,400	-0,067	-0,094	-0,180	-0,077	-0,076	0,835
Se	0,633	-0,621	-0,660	-0,255	0,103	0,211	-0,539	-0,544	-0,304	-0,193	0,944	0,393	-0,400		-0,580	-0,535	-0,320	-0,568	-0,480	0,122
Rb	-0,847	0,786	0,796	0,320	-0,223	-0,124	0,968	0,762	0,134	0,240	-0,578	-0,513	-0,067	-0,580		0,726	0,462	0,939	0,696	-0,405
Sr	-0,796	0,756	0,813	0,253	-0,216	-0,221	0,642	0,706	0,298	0,210	-0,522	-0,473	-0,094	-0,535	0,726		0,438	0,843	0,874	-0,378
Zr	-0,532	0,682	0,467	0,184	-0,223	-0,281	0,464	0,445	-0,065	0,257	-0,339	-0,450	-0,180	-0,320	0,462	0,438		0,435	0,417	-0,398
Ba	-0,872	0,816	0,843	0,298	-0,224	-0,151	0,878	0,795	0,198	0,244	-0,566	-0,494	-0,077	-0,568	0,939	0,843	0,435		0,783	-0,402
La	-0,724	0,697	0,759	0,243	-0,194	-0,197	0,611	0,693	0,283	0,186	-0,468	-0,419	-0,076	-0,480	0,696	0,874	0,417	0,783		-0,330
Hg	0,420	-0,446	-0,422	-0,139	0,359	0,345	-0,411	-0,395	0,149	-0,328	0,173	0,915	0,835	0,122	-0,405	-0,378	-0,398	-0,402	-0,330	

Tabla 5. Valores de los coeficientes de correlación (r).c = confiabilidad; c > 99 % rojo, 95 % < c < 99 % azul, c < 95 % negro.

Donde:

 $\begin{array}{l} f = grados \ de \ libertad \ n = n \' umero \ de \ observaciones \\ Para \ un \ c = 95\% \ y \ f = 178, \ r_c = 0.14724 \\ Para \ un \ c = 99\% \ y \ f = 178, \ r_c = 0.19288 \ (Snedecor \ 1946, \ en \ Dixon \ et \ al. \ 1957) \\ c \geq 99\% \ r \geq 0.19288 \ 95\% \leq c < 99\% \ 0.14724 \leq r < 0.19288 \\ c < 95\% \ r < 0.14724 \\ \end{array}$

Los diagramas de dispersión que serán referidos en el texto se muestran en el Apéndice III. La correlación o ajuste de las líneas de regresión, así como la separación de poblaciones, dependen del tipo litológico y de los pares químicos relacionados. Cabe destacar que estos diagramas de dispersión se realizaron de manera sistemática para todos los elementos encontrados.

Los componentes mayoritarios que al ser relacionados entre ellos presentan mejor ajuste a la línea de regresión con altos coeficientes de correlación (mayores valores de R) y con una confiabilidad mayor a 95% son: SiO₂, TiO₂, Al₂O₃ y K₂O. Estos elementos están involucrados en la mayoría de las relaciones lineales y según BRICEÑO & CALLEJÓN (2000) presentan afinidad con sedimentos terrígenos.

Los diagramas de dispersión realizados entre las variables TiO₂, Al₂O₃ y K₂O presentan correlaciones lineales positivas, excepto con el SiO₂. En estos diagramas se observa una separación de dos poblaciones de muestras, esto se debe al marcado control litológico, el cual influye directamente en la distribución de los elementos (Fig. 38).

Al realizar los diagramas de dispersión entre los elementos minoritarios, se puede apreciar que el V, Rb, Sr, Ba, La y Zr en menor cuantía, presentan buenos coeficientes de correlación entre ellos (V-Rb, R=0,762; V-Sr, R=0,706; V-Ba, R=0,795; V-La, R=0,693; V-Zr, R=0,445; Rb-Sr, R=0,726; Rb-Ba, R=0,939; Rb-La, R=0,696; Rb-ZR, R=0,462; Sr-Ba, R=0,843; Sr-La, R=0,874; Sr-Zr, R=0,438; Ba-La, R=0,783; Ba-Zr, R=0,435 y La-Zr, R=0,417). Es posible apreciar que los coeficientes de correlación del Zr con estos elementos es positiva, sin embargo los valores no son representativos, LITOS (1996) menciona que el Rb, V y La pertenecen a la asociación clástico arcillosa, así como el Zr es asociado a la fracción clástica gruesa.

En esta seccion la estadística indica que el Zr está asociado con los elementos de la Asociación Clastico-Arcillosa. Sin embargo, se observa un incremento en la

concentración de este elemento a medida que se incrementa el tamaño de grano en los sedimentos finos (arcillitas y limolitas) (CHAOSHENG et al., 2000)

Figura 38. Diagramas de dispersión entre algunos elementos mayoritarios destacando el control litológico existente

El Zn, As y Hg y por otra parte el Cu y Se son otros elementos con coeficientes de correlación altos al conjugarlos en diagramas de dispersión (Zn-As, R=0,651; Zn-Hg, R=0,915; As-Hg, R=0,835; Cu-Se, R=0,994). El coeficiente de correlación más cercano a 1 lo registra la relación Cu vs. Se

El primer grupo mencionado (Rb, V, Sr, Ba, La y Zr) presentan los coeficientes de correlación más altos al compararlos con los elementos mayoritarios SiO_2 , Al_2O_3 , K_2O y TiO_2 (coeficientes de correlación negativos con el SiO_2 y positivos con Al_2O_3 , K_2O y TiO_2), lo que indica cierta afinidad con sedimentos terrígenos, específicamente el Rb. HILL (1990, en CHACÍN, 2003) indica que por reemplazo, el Rb sustituye al K en las litologías arcillosas por poseer características similares a nivel del radio atómico. La existencia de una buena correlación entre K_2O y Rb, implica que el K_2O queda asociado los minerales de arcilla contenidos en las lutitas (MARTÍNEZ, 2001).

El Sr generalmente está asociado a sedimentos carbonáticos junto con CaO por el efecto diagenético de dolomitización, sin embargo, en este caso pareciera estar asociado más bien a feldespatos (BARITTO, 2003), por poseer un buen coeficiente de correlación con pendientes de rectas de regresión positivas cuando se le asocia a componentes que muestran afinidad con sedimentos terrígenos como son Al₂O₃, K₂O, TiO₂, La y Rb (BRICEÑO & CALLEJÓN, 2000), mientras que muestran coeficientes de correlación negativa con elementos de afinidad carbonática como CaO y MgO.

En el segundo grupo de elementos traza que poseen buenos coeficientes de correlación positiva (Zn, As y Hg y por otra parte el Cu y Se), se puede apreciar que la relación Cu vs. Se muestran el ajuste a la línea de regresión. Por su parte, el As presenta valores por debajo del limite de detección a lo largo de la sección excepto hacia el tope (a partir de la muestra ARF-167), sin embargo en este intervalo tiene una buena correlación con el Zn y Hg, pudiendo el As estar relacionado con la fase orgánica. El Zn según NOGUERA & YÉPEZ (2002) y ARREAZA (2002) forma parte de esta asociación.

El Ni así como el Co no registran coeficientes de correlación significativos con ninguna de las demás variables presentes. La distribución del Co es similar a la

del As (registran altos valores el tope de la sección). Mientras que el Ni exhibe una distribución irregular a lo largo de la sección.

Este grupo de elementos minoritarios (Zn, Hg, Cu, Se y en menor cuantía el As) presentan correlaciones positivas con el SiO₂ y negativas con el Al₂O₃, K₂O y TiO₂.

Así como existen combinaciones que generan buenos ajustes lineales, también existe gran cantidad de pares, con gran dispersión dentro de la nube de datos, específicamente las variables Fe_2O_3 , CaO, Co, Ni y As. Una de las explicaciones puede ser, la baja concentración que presentan estos elementos a lo largo de la sección, específicamente el caso del Fe_2O_3 y CaO, quienes por sus bajos potenciales iónicos favorece a que se mantengan en solución durante los procesos de meteorización y transporte, mostrando una alta movilidad dentro del sistema químico sedimentario.

Se puede apreciar que las mejores correlaciones o ajustes de las líneas de regresión, se dan entre las variables químicas de concentraciones similares y están directamente influenciadas por la afinidad que éstas tengan, con una determinada asociación (clástico arcillosa, orgánica, etc.) y, a su vez dependen del tipo litológico y de los pares químicos relacionados.

5.2.3 Análisis de perfiles de concentración

Los perfiles de concentración nos permiten visualizar el comportamiento de los datos analizados a lo largo de su distribución espacial y así tratar de establecer en qué nivel de la secuencia se producen cambios significativos. Estos perfiles se realizaron graficando las concentraciones de los elementos en función de la posición que ocupan a lo largo de la columna estratigráfica. Tal y como se ha indicado en párrafos anteriores, en los perfiles realizados con base en los datos crudos (Figs. 39 y 40), se observa un fuerte control litológico en la distribución de los elementos analizados, pudiéndose identificar tres tendencias principales:

- Los elementos TiO₂, Al₂O₃, Fe₂O₃, K₂O, V, Rb, Sr, Zr, Ba y La, tienen altos valores en los intervalos lutíticos, y valores bajos en intervalos arenosos.
- Los elementos SiO₂, Cu, Zn, Se y Hg registran altos valores en intervalos arenosos y mínimos en intervalos lutíticos.
- El MgO, CaO y Ni no poseen una distribución influenciada por cambios litológicos, la morfología de las curvas es aserrada.

El aumento en la concentración de la mayoría de los elementos detectados, está asociado a la presencia de intervalos lutíticos, o de granulometría fina, así como valores bajos o constantes de la concentración de los elementos en intervalos arenosos o de granulometría más gruesa, a excepción del As y Co, que presentan valores por debajo del límite de detección desde la base hasta la muestra ARF-167. En este nivel (parte superior de la sección) se encuentran valores relativamente altos de estos dos elementos. Lo anteriormente expuesto indica que esta variación en la concentración elemental está influenciada por los cambios litológicos presentes en la sección estudiada.

Figura 39. Perfiles de concentración de los elementos mayoritarios comparados con la columna litológica simplificada de la Formación Aguardiente, Río Frío.

Figura 40. Perfiles de concentración de los elementos mayoritarios comparados con la columna litológica simplificada de la Formación Aguardiente, Río Frío.

Es importante destacar que las unidades químicas están definidas principalmente por el comportamiento de los perfiles correspondientes a las variables químicas, a pesar que la mayoría de las variables muestran tendencias marcadas, existen algunas que se caracterizan por presentar una curva muy aserrada, en este sentido, los perfiles fueron suavizados utilizando una línea de tendencia con promedio móvil 3.

5.2.4.- Análisis de agrupaciones por variables

Estos análisis comprenden los dendrogramas o análisis *Cluster*. En este caso para los resultados de fluorescencia de rayos X se realizaron dendrogramas en base a las variables para conocer la relación existente entre las mismas, aquellas que estén unidas entre si, son las que presentan características o comportamientos similares. Los análisis se realizaron para elementos mayoritarios, minoritarios y ambos.

Dendrogramas de elementos mayoritarios

El dendrograma de elementos mayoritarios muestra dos grupos de variables (Fig. 41). En el primer grupo se observa una relación directa entre el MgO y CaO, que puede deberse al hecho que ambos pertenecen a la Asociación Carbonática (BRICEÑO *et al.*, 1996 y BRICEÑO & CALLEJÓN, 2000). A su vez éstos están relacionados con el SiO₂, lo cual pudiese indicar que estos elementos presentan una mayor afinidad con la Asociación Clástico-Silícea que con la Clástico-Arcillosa (ARREAZA, 2002).

Figura 41. Dendrograma construido a partir de los elementos mayoritarios obtenidos por análisis de fluorescencia de rayos X

El segundo grupo lo conforman el TiO₂, Al₂O₃, Fe₂O₃ y K₂O y forman parte de la Asociación Clástico-Arcillosa (BRICEÑO *et al.*, 1996 y BRICEÑO & CALLEJÓN, 2000), específicamente el TiO₂, Al₂O₃ y K₂O están asociados a sedimentos finos, por otra parte el Fe₂O₃ representa la variable más aislada de este grupo debido a su bajo contenido a lo largo de la sección.

Dendrograma de elementos minoritarios

En base al análisis de agrupación por variables de elementos minoritarios se pueden distinguir dos grupos principales (Fig. 42). Un primer grupo (Grupo # 1) constituido por los elementos Rb, Ba Sr, La, V, Zr, Co y Ni. El segundo grupo (Grupo # 2) está conformado por los elementos Cu, Se, Hg, Zn y As.

Figura 42. Dendrograma construido a partir de los elementos minoritarios obtenidos por análisis de fluorescencia de rayos X

En este dendrograma se puede apreciar que en el Grupo # 1, las variables mejor relacionadas (con una menor distancia Euclideana) son el Rb, Ba, Sr, La y V, en menor grado se relacionan el Zr, Co y Ni respectivamente. Estos elementos pertenecen a la Asociación Clástico Arcillosa, a excepción del Co y Ni que pertenecen a la Asociación Orgánica (BRICEÑO *et al.* 1996 y BRICEÑO & CALLEJÓN 2000). De acuerdo a la clasificación de GOLDSCHMIDT'S (2001) (Fig. 43), estos elementos forman parte del grupo de los litófilos (elementos con afinidad para formar silicatos), excepto el Co y Ni que pueden pertenecer tanto al grupo de los elementos siderófilos (afinidad con el hierro metálico) como litófilos.

El segundo grupo o Grupo # 2 lo conforman los elementos Cu, Se, Hg, Zn y As, pertenecientes según BRICEÑO *et al.* (1996) y BRICEÑO & CALLEJÓN (2000) a la Asociación Orgánica. Según la clasificación de GOLDSCHMIDT'S en WHITE (2001), estos elementos pertenecen al grupo de los calcófilos (elementos que presentan afinidad con el azufre). De acuerdo a ARREAZA (2002), el Cu y Zn pueden estar asociados a sulfuros en condiciones euxínicas.

Clasificación de Goldschmidt's

Figura 43. Clasificación de los elementos según Goldschmidt's. Tomado y modificado de curso de White (2001)

Dendrograma de elementos mayoritarios y minoritarios

El dendrograma representado en la figura 44 fue construido utilizando la totalidad de las variables químicas identificadas para la Formación Aguardiente.

Figura 44. Dendrograma construido a partir de los elementos mayoritarios y minoritarios obtenidos por análisis de fluorescencia de rayos X

En esta figura se observan dos agrupaciones principales, la primera la constituyen el SiO₂, MgO, CaO y los elementos minoritarios Cu, Se Zn, Hg y As
(definido anteriormente como Grupo # 2). Estos elementos se caracterizan por presentarse en altas concentraciones en areniscas y en bajas concentraciones en las lutitas, a excepción del CaO, MgO y As, cuya distribución aparentemente parece no obedecer a un control litológico.

La otra agrupación observada está conformada por los elementos mayoritarios TiO₂, Al₂O₃, K₂O y Fe₂O₃ y los elementos minoritarios V, Co, Ni, Rb, Sr, Zr, Ba y La (Grupo # 1). En este caso también existe un marcado control litológico, donde los elementos se presentan en mayor concentración en las lutitas y disminuyen su concentración en litologías arenosas, con la excepción del Ni y Co.

5.2.5.- Difracción de rayos X

Se analizaron mediante este método un total de 10 muestras, pertenecientes a la sección de Río Frío de la Formación Aguardiente (Tabla 6).

	Roca Total (% en Peso)				Mineralogía de arcillas (fracción < 2 micras)		
Muestra	Cuarzo	Feld. K	Siderita	Pirita	Min. Arcilla	Caolinita	Ilita
ARF-176	27	0	0	0	73	78	22
ARF-173	86	0	0	0	14	60	40
ARF-154	32	0	0	0	68	87	13
ARF-109	38	0	2	8	52	68	32
ARF-66	24	1	2	0	73	68	32
ARF-63	88	0	0	0	12	23	77
ARF-46	66	0	0	0	34	8	92
ARF-36	95	0	0	0	5	67	33
ARF-26	41	0	2	4	53	71	29
ARF-19	40	2	4	0	54	44	56

Tabla 6. Resultados de análisis por Difracción de rayos X

A través de los análisis de mineralogía en muestra total de roca por DRX, se detectaron un total de 5 variables mineralógicas, éstas son: cuarzo, feldespato potásico, siderita, pirita y minerales de arcilla. Por otra parte en lo que respecta a los análisis de mineralogía de arcillas (fracción < 2 micras), se detectaron solamente caolinita e illita. Los resultados de estos análisis son mostrados en la tabla 6.

Debido al dominante carácter cuarzoso de la sección, los análisis de DRX se realizaron en muestras de arcillitas, limolitas y areniscas de grano fino.

Los resultados de muestra total de roca realizados en las areniscas de grano fino y limolitas muestran un contenido de cuarzo mucho mayor al contenido de minerales de arcilla, por otra parte, ninguna de estas muestras registra otros minerales (feldespatos, siderita o pirita).

Los análisis realizados a las arcillitas muestran un predominio en los minerales de arcilla en relación al cuarzo. Solo en 4 muestras (arcillitas) se detectaron minerales como feldespatos, siderita y pirita; estos minerales no son detectados en muestras arenosas.

En general podemos apreciar hacia tope de la sección un predominio del mineral arcilloso caolinita en relación con la illita, solo es en la mitad inferior de la sección donde se registran mayores cantidades de illita con respecto a la caolinita.

La caolinita por lo general está asociada a ambientes costeros con influencia continental (RAYMOND, 1997; DUNOYER DE SEGONSAC, 1970 en SANDOVAL, 2000) la illita está asociada frecuentemente a ambientes marinos (RAYMOND, 1997)

5.3.- Definición de unidades químicas

En la definición de unidades químicas se utilizó el análisis estadístico realizado al conjunto de datos de la sección a estudiar (análisis de agrupaciones, funciones discriminantes, perfiles de concentración) y ciertos criterios que permitieron la delimitación de intervalos con características químicas distintivas, los cuales han sido empleados en trabajos anteriores (MARTÍNEZ & CAMPOSANO, 2000; NOGUERA & YÉPEZ, 2002; CHACÍN, 2003; ARREAZA, 2002).

En los perfiles construidos a partir de los análisis químicos, se identificaron eventos geoquímicos estratigráficamente significativos definidos por deflexiones máximas y mínimas, las cuales pueden representar marcadores quimioestratigráficos de primer y segundo orden. De acuerdo a PEARCE & JARVIS (1995), las deflexiones de las curvas observadas en varios perfiles de manera simultánea y al mismo nivel estratigráfico, pueden corresponder con determinados procesos geológicos tales como cambios climáticos, en las condiciones de sedimentación, cambios en la salinidad, variaciones en el aporte de sedimentos, etc.

Según NOGUERA & YÉPEZ (2002), los marcadores de primer orden corresponden con eventos geoquímicos caracterizados por deflexiones importantes en las curvas de concentración elemental (en general cinco o más elementos), y los marcadores de segundo orden se definen solamente por fluctuaciones de un solo elemento o fluctuaciones menos significativas.

MARTÍNEZ & CAMPOSANO (2000) mencionan ciertos criterios para la definición de unidades químicas:

 Los marcadores quimioestratigráficos deben corresponder a un mismo tipo de análisis y las curvas de concentración de las variables químicas deben reportar valores máximos o mínimos.

- En los tramos correspondientes a cada unidad química y para un mismo análisis químico, los valores van de un mínimo a un máximo retornando nuevamente a un valor mínimo o cercano al inicial.
- Estos marcadores deben coincidir en posición estratigráfica tanto en los elementos mayoritarios como en los elementos traza.

En este trabajo se hablará de una tendencia positiva (+) en aquellos casos que las curvas presenten tendencias a máximas culminaciones y de tendencia negativa cuando las curvas muestren inflexiones negativas (-).

Las unidades químicas permiten dividir las secuencias estratigráficas en intervalos con características químicas distintivas y propias. En la sección de la Formación Aguardiente que aflora en el sector de Río Frío, las unidades químicas que se definieron en este estudio, se encuentran limitadas por dos marcadores de primer orden o entre un marcador de primer orden y el tope o la base de la sección, en este sentido, se definieron de base a tope las siguientes unidades mayores: QARF-I, QARF-II y QARF-III (Q=quimiofacies, A=Formación Aguardiente, RF=Río Frío). Los marcadores de primer orden se representan de base a tope con las siglas L1 y L2. Dentro de estas unidades mayores es posible identificar comportamientos característicos, definiendo las siguientes subunidades: QARF-I-A, QARF-I-B, QARF-I-C, QARF-I-D y AQRF-II-A, QARF-II-B y QARF-II-C. Algunos marcadores de estas subunidades corresponden con los marcadores de la unidades químicas mayores, los otros se representan de base a tope con las siglas M1, M2, y M3 (Fig. 45)

Así mismo se presentan los perfiles químicos acumulados de cada uno de los elementos, cuando las curvas elementales experimentan un cambio de pendiente en varios de los perfiles de manera simultánea y al mismo nivel estratigráfico, pudiese

corresponder con determinados procesos geológicos (Fig 46). En los anexos III y IV se muestra el comportamiento de los perfiles de distribución de las variables estudiadas y los límites entre las unidades según estos, para los datos crudos y datos suavizados con promedio móvil 3.

La tabla 7 representa un cuadro comparativo de los valores máximos, mínimos y promedio de las variables estudiadas para cada una de las unidades químicas mayores definidas en los perfiles de concentración.

TiO₂ Al₂O₃ Fe₂O₃ MgO CaO Rb Hg SiO K₂O Со Ni Zn Sr Zr Ba V Cu As Se La 8576 88,12 1,75 35,51 3,87 5,88 0,06 1,85 519 221 400 696 210 35 162 161 1060 310 107 466 Máx QARF-III Mín 41,34 0,03 5,17 0,01 1,00 0,01 0,01 30 20 20 30 10 10 7 20 10 5 4 5 10 72,42 0,55 14,79 0,74 2,49 0,04 0,37 146 1789 79 252 63 9 38 42 67 32 163 Prom 129 162 37 111 125 Máx 91,98 2,02 29,86 2,81 6,53 0,07 1,88 462 161 254 396 264 10 150 923 224 120 QARF-II 47,65 0,01 0,01 0,01 Mín 2,17 1,00 0,01 28 20 20 41 34 10 5 4 5 25 10 10 8 0,25 9,04 1,84 0,03 75 45 120 170 10 22 11 15 77 Prom 83,18 0,08 0,16 252 15 180 21 91,08 2,17 32,75 13,49 5,67 0,05 4,26 531 612 314 334 10 42 273 141 953 322 82 148 Máx 506 QARF-I Mín 37,63 0,01 3.19 0,01 1,00 0,01 0,01 30 20 20 32 38 10 5 4 5 10 10 10 11 79,08 0,38 1,77 0,03 70 23 31 Prom 9,58 0,50 0,48 108 103 265 179 10 18 221 40 18 81

Tabla 7. Cuadro comparativo de los elementos químicos mayoritarios y traza de las diferentesunidades químicas mayores definidas para la sección de la Formación Aguardiente. Los elementosmayoritarios están en porcentaje (%) y los minoritarios en partes por millón (ppm).

Figura 45 Perfiles químicos de los elementos mayoritarios y traza de las muestras de la sección Río Frío, Formación Aguardiente, identificando los marcadores de primer orden de las unidades químicas mayores (L1 y L2) y los marcadores de las subunidades (M1, M2 y M3)

Figura 46 Perfiles químicos acumulados de los elementos mayoritarios y traza de las muestras de la sección Río Frío, Formación Aguardiente, identificando los marcadores de primer orden de las unidades químicas mayores (L1 y L2) y los marcadores de las subunidades (M1, M2 y M3)

Las principales características geoquímicas de estas unidades mayores y subunidades químicas se describen a continuación:

UNIDAD QARF-I

Esta unidad comprende los primeros 61,5 metros de espesor estratigráfico y está representada por las muestras ARF-01 (inferior) hasta la ARF-67-A (superior). Limitada por la base y el marcador L1. Una característica importante en esta unidad es que las curvas de concentración presentan mayor fluctuación que en cualquier otra.

El SiO₂, presenta altas concentraciones promedio (79,08%). A pesar de que no es la mas alta registrada en la sección, es notorio el alto porcentaje de este elemento, por otra parte en esta unidad este elemento refleja su mínimo valor en toda la sección (37,63%). Su perfil de dispersión muestra fluctuaciones significativas, donde las deflexiones negativas corresponden a litología de granulometría fina (arcillitas y limolitas). Este patrón que registran por el SiO₂ es similar al presentado por los elementos Cu, Zn, Se y Hg, con bajas concentraciones en las arcillitas y limolitas, y altas concentraciones en las areniscas.

De manera especular a la curva de concentración del SiO₂ se observan los elementos TiO₂, Al₂O₃, Fe₂O₃, K₂O, V, Rb, Sr, Zr, Ba y La. Se evidencia un control litológico, las deflexiones positivas de las curvas alcanzan máximos en litologías de granulometría fina (arcillitas y limolitas). En esta unidad los elementos K₂O, Cu, Se, Zr presentan las mayores concentraciones promedio con respecto a las otras dos unidades mayores.

El perfil de concentración del CaO muestra una morfología aserrada, a pesar de las bajas concentraciones en que está presente el elemento, se puede apreciar que en las litologías arcillosas (0,25 %) hay una disminución del porcentaje promedio en comparación con la litología arenosa (0,32 %), a pesar de ésto, no es evidente la

existencia de alguna tendencia significativa de aumento o disminución de su concentración dentro de la unidad. La distribución del MgO es similar al CaO, sin embargo es notorio un ligero incremento hacia el tope de esta unidad.

El Ni registra fluctuaciones a lo largo de la unidad, con ligeros incrementos en los intervalos lutíticos, pero la morfología de la curva de concentración no permite inferir de manera clara una tendencia en la distribución del elemento.

El As presenta concentraciones por debajo del límite de detección en toda la unidad, así como el Co, sin embargo este último registra valores muy bajos (70 ppm en promedio) en la base.

Con la finalidad de obtener mayor información acerca del comportamiento geoquímico de los elementos, se han utilizado algunas relaciones elementales definidas por diversos autores en trabajos anteriores, usados con el objetivo de obtener información que ayude a interpretar los procesos geológicos experimentados por un determinado conjunto de sedimentos. En este trabajo se presentan las siguientes relaciones elementales: SiO₂/Al₂O₃, (SiO₂+Al₂O₃)/CaO, K₂O/Al₂O₃, TiO₂/Al₂O, Zr/Rb y (Zr+Rb)/Sr. En el Anexo V se muestra el comportamiento de los perfiles de distribución de estas relaciones elementales y los límites entre las unidades según estos. Los valores máximos, mínimos y promedio de dichas relaciones para cada una de las unidades químicas mayores definidas se presentan en la tabla 8.

		SiO ₂ /Al ₂ O ₃	(AL ₂ O ₃ +SiO ₂)/CaO	K ₂ O/Al ₂ O ₃	TiO ₂ /Al ₂ O ₃	Zr/Rb	(Zr+Rb)/Sr
	Máx	37,02	0,83	0,07	0,06	265	107
QARF-III	Mín	1,36	0,14	0,00	0,01	1	1
	Prom	9,72	0,36	0,02	0,03	21	11
	Máx	13,73	0,97	0,08	0,12	199	160
QARF-II	Mín	2,08	0,15	0,00	0,00	3	3
	Prom	10,27	0,36	0,01	0,02	27	17
	Máx	27,63	0,75	0,17	0,09	83	67
QARF-I	Mín	1,52	0,13	0,00	0,00	1	2
	Prom	11,55	0,33	0,03	0,03	19	17

 Tabla 8. Cuadro comparativo de las relaciones elementales en las diferentes unidades químicas definidas para la sección de la Formación Aguardiente.

De esta manera se tiene que la curva de concentración de la relación SiO₂/Al₂O₃, muestra los valores promedio mas altos en la base de la sección (unidad QARF-I), sin embargo presenta fluctuaciones negativas en litologías mas finas, indicando variaciones en la energía del medio, así como la diferenciación entre las fases arenosas y arcillosas (BRICEÑO *et al.*, 1996; LITOS, 1996), estas fluctuaciones negativas se traducen en una disminución de la energía.

La relación $(SiO_2+Al_2O_3)/CaO$, indica según BRICEÑO *et al.*, 1996, la relación entre la sedimentación siliciclástica y carbonática, a pesar de que la presencia de CaO es muy baja (0,03% en promedio) muestra ciertas tendencias, en la base de la unidad la morfología de la curva es fluctuante, con un decrecimiento general hacia el tope de la unidad QARF-I.

Para la relación K_2O/Al_2O_3 la morfología de la curva es aserrada, no muestra un patrón definido creciente o decreciente, se observan incrementos en litologías arcillosas. Cabe destacar que en esta unidad (QARF-I) la relación tiene la mayor concentración promedio con respecto a las otras unidades. Esta relación indica el tipo de arcilla presente, en este caso, es indicativo de la mayor presencia de arcilla tipo illita, siendo el contenido de K₂O mayor. La relación TiO₂/Al₂O₃ muestra un patrón fluctuante a lo largo de la sección, en la unidad QARF-I presenta las mayores concentraciones promedio, según WINTSCH & KVALE (1994 en ARREAZA, 2002) esta relación puede utilizarse como índice de homogeneidad química, en este caso, las fluctuaciones verticales estarían indicando ligeros cambios en la fuente de sedimentación.

Por ultimo las relaciones Zr/Rb y (Zr+Rb)/Sr muestran las mismas tendencias, específicamente la relación Zr/Rb indica variaciones granulométricas (YARINCIC *et al.*, 2000, DYPVIK & HARRIS, 2001). Estas relaciones en la unidad QARF-I indican una tendencia creciente hacia el tope de la unidad, que se puede interpretar como un incremento en el tamaño de grano.

Litológicamente existe una correspondencia donde el aumento de los porcentajes de TiO₂, Al₂O₃, Fe₂O₃, K₂O, V, Rb, Sr, Zr, Ba y La están vinculados a litologías finas (arcillitas y limolitas), mientras que su disminución corresponde a intervalos arenosos.

Dentro de esta unidad es posible identificar 4 subunidades. Los límites de estas subunidades están representados por deflexiones positivas de las curvas de concentración de los elementos de la asociación Clástico-Arcillosa (TiO₂, Al₂O₃, Fe₂O₃, K₂O, V, Rb, Sr, Zr, Ba y La) y deflexiones negativas de los elementos SiO₂, Cu, Zn, Se y Hg.

Las características resumidas se presentan a continuación:

SUBUNIDAD QARF-I-A:

 Ubicada en los primeros 17 metros de la sección, y contiene las muestras ARF-01 hasta la ARF-18. Limitada por la base de la sección y el marcador M1.

- Presenta altas concentraciones de SiO₂, lo cual es evidenciado por el tipo litológico dominante en la subunidad. Las arenas son cuarzosas, muy competentes y tienden a meteorizar a tonos rojizos, lo cual indica la presencia de óxido de hierro.
- Tendencia decreciente hacia el tope de las curvas de concentración de las relaciones SiO₂/Al₂O₃ y K₂O/Al₂O₃, esto pudiese indicar una disminución en el nivel de energía del medio, sustentado por la disminución del tamaño de grano y mejor escogimiento en las arenas hacia el tope de la subunidad.
- Patrón creciente hacia el tope de la relación (SiO₂+Al₂O₃)/CaO.
- Altos valores promedio de las relaciones Zr/Rb y (Zr+Rb)/Sr denotan el predominio de litologías de grano medio a grueso.

SUBUNIDAD QARF-I-B

- Ubicada entre los 17 y 28 metros, comprende las muestras ARF-19 hasta la ARF-26. Limitada por los marcadores M1 y M2.
- Esta subunidad está caracterizada por presentar los valores promedio más bajos de SiO₂ y valores promedio más altos de los elementos de la Asociación Clástico-Arcillosa (TiO₂, Al₂O₃, Fe₂O₃, K₂O, V, Rb, Sr, Zr, Ba y La). Esto es soportado por el tipo litológico dominante, constituido por arcillitas y limolitas, ya que altas concentraciones de estos elementos están asociados a sedimentos finos. Las arcillitas y limolitas están dispuestas en capas de aproximadamente 70 cm de espesor, intercaladas con arenas de grano muy fino de aproximadamente 70 cm de espesor.

- La relación SiO₂/Al₂O₃ se hace mínima en esta subunidad, destacando el bajo nivel de energía, además de reflejar el carácter arcilloso.
- En la relación K₂O/Al₂O₃, ocurre un incremento en las concentraciones de K₂O con respecto a las de Al₂O₃, en la base de la subunidad (muestras ARF-18 y ARF-19), este comportamiento puede justificarse por la presencia del mineral de arcilla tipo illita (RATCLIFFE *et al.*, 2004).

SUBUNIDAD QARF-I-C

- Se ubica entre los 26 y 40 metros de altura estratigráfica, contiene las muestras ARF-27 hasta la ARF-43. Limitada por los marcadores M2 y M3.
- Caracterizada por presentar máximos valores promedio de SiO₂, Cu, Zn, Se y Hg y mínimos de los elementos de la Asociación Clástico-Arcillosa (TiO₂, Al₂O₃, Fe₂O₃, K₂O, V, Rb, Sr, Zr, Ba y La), lo cual es consistente con el tipo litológico de esta subunidad, constituido por arenas cuarzosas de tamaño de grano medio a grueso y mal escogidas.
- La relación K₂O/Al₂O₃ muestra una marcada tendencia decreciente, para concluir con el mayor incremento en esta relación (muestra ARF-45 y ARF-46). En este nivel se considera el límite con la subunidad QARF-I-D.
- La relación TiO₂/Al₂O₃ presenta la menor concentración promedio, mientras que SiO₂/Al₂O₃ registra su promedio máximo con cierta tendencia decreciente dentro de esta subunidad.

SUBUNIDAD QARF-I-D

- Ubicada entre los 40,5 y 61,5 metros, comprende las muestras ARF-44 hasta la ARF-67-A. limitada por los marcadores M3 y L1.
- El patrón de las curvas elementales presenta altos valores promedio de SiO₂ y bajos valores de los elementos pertenecientes a la Asociación Clástico-Arcillosa, así como en la subunidad anterior es consistente con el tipo litológico dominante. Sin embargo los cuerpos arenosos varían sus características, el tamaño de grano disminuye, los granos son redondeados y bien escogidos, resultando areniscas cuarzosas más competentes.
- La relación K₂O/Al₂O₃, en la base de esta subunidad presenta los valores más altos (muestras ARF-45 y ARF-46), la muestra ARF-46 presenta el contenido de illita más alto de las muestras analizadas (92%) lo que es consistente con el comportamiento de esta relación. En este nivel se considera el límite con la subunidad QARF-I-C. Hacia el tope esta relacion presenta una clara tendencia creciente, donde es posible apreciar el contenido de illita en la muestra ARF-63, el alto porcentaje de este mineral de arcilla corresponde con el comportamiento de la relación.
- La relación SiO₂/Al₂O₃ presenta la concentración promedio menor, con una marcada tendencia decreciente hacia el tope de esta subunidad, donde alcanza su mínimo valor (muestra ARF-67-A). Esto pudiese indicar una disminución en la energía del medio en el tope de esta unidad, donde encontramos una litología conformada por limolitas y arcillitas.
- El limite de esta subunidad QARF-I-D con la unidad mayor QARF-II esta dado por deflexiones negativas de SiO₂, Cu, Zn, Se y Hg, y deflexiones positivas de TiO₂, Al₂O₃, Fe₂O₃, K₂O, V, Rb, Sr, Zr, Ba y La.

UNIDAD AQRF-II

Esta unidad se ubica en la zona media de la sección, suprayacente a la unidad química QARF-I, con un espesor de 112 metros, se ubica entre los 62 y 177 metros de espesor acumulado y comprende las muestras ARF-67 hasta la ARF-162 (marcadores L1 y L2). En esta unidad existen dos intervalos cubiertos: entre los 77 y 84 metros (muestras ARF-82 y ARF-83) y entre los 113 y 118 metros (muestras ARF-112 y ARF-113), debido a la homogeneidad litológica de la unidad se presupone que la ausencia de información en estos intervalos no influye de manera significativa.

Esta unidad, los perfiles químicos registran gran homogeneidad. La distribución del SiO₂ esta caracterizados por valores porcentuales casi constantes (entre 81 y 85 %), el porcentaje promedio es cercano al 83 %, siendo esta unidad la que posee el mayor valor, reflejando su carácter cuarzoso. La presencia de deflexiones negativas del perfil de concentración, corresponde con intervalos lutíticos presentes en la parte media de la unidad.

Al igual que en la unidad mayor infrayacente QARF-I, elementos como TiO₂, Al₂O₃, Fe₂O₃, K₂O, V, Rb, Sr, Zr, Ba y La, presentan un comportamiento especular al SiO₂ muy homogéneo, con valores promedio mínimos en comparación con las otras unidades y con deflexiones máximas en los intervalos lutíticos. Es de destacar que los valores de Fe₂O₃, así como el Ba y La están por debajo del límite de detección en la litología arenosa, mientras que en las lutitas registran valores promedio de 0,87 %, 166 ppm y 46 ppm respectivamente.

El Al_2O_3 , por su parte exhibe una ligera tendencia creciente sostenida hacia el tope de esta unidad, podría indicar un predominio en la presencia de arcilla del tipo caolinita.

El CaO y MgO presentan patrones similares, sin fluctuaciones significativas, sin embargo, es característica una ligera disminución de la concentración en litologías de granulometría fina (arcillitas y limolitas).

De forma similar que en la unidad QARF-I el comportamiento del Cu, Se, Hg y Zn coincide con el presentando por el SiO₂, obteniendo patrones de concentración homogéneos y con un evidente control litológico, sin embargo es característico de esta unidad la tendencia de estos elementos a disminuir sus concentraciones hacia el tope de esta unidad.

El Ni presenta una morfología aserrada de los perfiles de concentración, sin ninguna tendencia aparente, los valores de concentración fluctúan entre 75 y 250 ppm. Por otra parte el As y Co se exhiben invariables por debajo del límite de detección en esta unidad.

El patrón en la relación SiO₂/Al₂O₃ es muy homogéneo, al igual que en la unidad QARF-I existe una tendencia a disminuir en los intervalos lutíticos, hacia el tope de esta unidad mostrando un incremento significativo de esta relación.

El patrón en la relación $(SiO_2+Al_2O_3)/CaO$ es constante y a partir de la muestra ARF-112, se observa un decrecimiento sostenido hasta la muestra ARF-153 donde experimenta un incremento hasta llegar al tope de la unidad (ARF-162).

La morfología de la curva de concentración de la relación K_2O/Al_2O_3 muestra un patrón constante, y es a partir de la muestra ARF-112, que comienza una disminución sostenida hasta el tope de la unidad.

La relación Zr/Rb registra su valor promedio máximo en esta unidad, pudiendo estar relacionado con la sedimentación clástica gruesa.

Al igual que en la unidad mayor QARF-I, también es posible identificar subunidades y sus límites están representados por las mismas deflexiones de las curvas elementales. Estas subunidades se caracterizan por presentar una tendencia creciente y progresiva de los elementos pertenecientes a la Asociación Clástico-Arcillosa (TiO₂, Al₂O₃, Fe₂O₃, K₂O, V, Rb, Sr, Zr, Ba y La), así como un patrón opuesto en el caso del SiO₂, Cu, Zn, Se y Hg.

Las unidades son identificadas como QARF-II-A Y QARF-II-B y se describen a continuación.

SUBUNIDAD QARF-II-A

- Entre los 62 y los 107 metros (muestras ARF-67 hasta la ARF-106), limitada por los marcadores L1 y M4.
- Caracterizada por las concentraciones promedio mayores de SiO₂ (85,97%), compuesta únicamente por areniscas cuarzosas y ocasionalmente cuarzo micáceas, de grano medio a grueso y mal escogidas. Hacia el tope de esta subunidad las areniscas disminuyen gradualmente su tamaño de grano. El espesor en estos cuerpos arenosos varían entre 10 y 12 metros.
- Los elementos de la Asociación Clástico-Arcillosa registran concentraciones muy bajas, específicamente el Rb, Ba y La se mantienen con valores cercanos al límite de detección, posiblemente por la ausencia de litologías de granulometría fina (arcillitas y limolitas). Es característico que el Fe₂O₃, registre valores por debajo del límite de detección en la totalidad de la subunidad.
- Las relaciones SiO₂/Al₂O₃ tienen un perfil constante, sin ninguna tendencia aparente, indicando invariabilidad de la energía del medio en esta subunidad.

Por otra parte la relación K_2O/Al_2O_3 muestran las concentraciones promedio más bajas, sugiriendo un enriquecimiento relativo de Al_2O_3 con respecto al K_2O , reflejándose en la presencia de mineral de arcilla tipo caolinita (RATCLIFFE *et al.*, 2004; BRICEÑO *et al.*, 1996), esto está sustentado por los análisis de difracción de rayos X, muestra ARF-66 (Tabla 6).

SUBUNIDAD QARF-II-B

- Ubicada entre los 108 y 177 metros (muestras ARF-107 hasta la ARF-162). Limitada por los marcadores M4 y L2.
- Esta subunidad comienza con un intervalo de arcillitas y limolitas (muestras ARF-107 a ARF-110), se encuentran en capas de 70 cm de espesor, este intervalo se ve reflejado en deflexiones positivas de las curvas de concentración elementales, actuando como marcador de primer orden y sirviendo de límite entre estas subunidades.
- La subunidad se caracteriza por poseer una disminución en el porcentaje promedio de SiO₂ (79,75%), con respecto a la subunidad anterior. Así mismo es notorio el aumento en el porcentaje promedio de los elementos de la Asociación Clástico-Arcillosa. Las areniscas a partir de la muestra ARF-119 se presentan cuarzosas, granos redondeados y bien escogidas.
- La disminución experimentada en el tamaño de grano corresponde con el decrecimiento de las relaciones SiO₂/Al₂O₃ y Zr/Rb, indicando una disminución en el nivel de energía del medio (BRICEÑO *et al.*, 1996).
- El caso de la relación K₂O/Al₂O₃ es similar al de la unidad anterior, los bajos valores promedios sugieren la presencia de caolinita, sustentadas en los análisis de difracción (muestras ARF-109 y ARF-154).

UNIDAD QARF-III

Con un espesor de 43 metros, esta unidad se ubica en el extremo superior de la sección, abarca desde los 178 hasta los 221 metros estratigráficos, entre las muestras ARF-163 y ARF-180. En la unidad solo se observa un intervalo cubierto entre los 188 y 196 metros (muestras ARF-167 y ARF-168).

En esta unidad se observan las concentraciones promedio más bajas en SiO₂ (73,36%), sin embargo es característica una tendencia creciente hacia el tope de la unidad, las areniscas son de grano fino, redondeados a subredondeados y bien escogidos, con espesores de que pueden alcanzar hasta 4 metros. Los elementos Cu, Zn, Se y Hg, que en las dos unidades anteriores tienen un patrón similar al SiO₂, en esta unidad solo el Zn y Hg registran un patrón creciente, por el contrario, el Cu y Se se muestran decrecientes hacia el tope, en especial el Se que llega a registra valores mínimos de detección.

La mayoría de los elementos (TiO₂, Al₂O₃, Fe₂O₃, MgO, CaO, V, Co, Ni, Cu, Zn, As, Rb, Sr, Ba, La, Hg) registran máximas concentraciones promedio en comparación con las otras unidades, probablemente debido al incremento en arcillitas y limolitas. La morfología de la mayoría de las curvas muestra varias fluctuaciones, sin embargo son distinguibles diferentes tendencias en su comportamiento a lo largo de la unidad:

- El TiO₂, Al₂O₃, Fe₂O₃, K₂O, V y Sr tiene una tendencia general de incremento al tope de la unidad.
- El CaO, Rb, Zr, Ba y La, muestran una tendencia creciente en las arcillitas y limolitas de esta unidad, alcanzando su máximo valor. Por su parte el Ni posee una tendencia de decrecimiento sostenida hacia el tope.

- El As y Co sólo en esta unidad registra concentraciones significativas (concentraciones promedio 63 ppm y 1789 ppm respectivamente), con una marcada tendencia creciente hacia el tope de la unidad. El Co se considera indicativo de rocas máficas (NYAKAIRU Y KOEBERL, 2001), pudiendo indicar un aporte de fuente máfica para la Formación Aguardiente.
- La relación SiO₂/Al₂O₃, muestra los valores promedio más bajos, marcando una tendencia decreciente y mostrando incrementos sólo en los intervalos arenosos, sugiriendo un bajo nivel de energía en esta unidad.

Las altas concentraciones promedio de los elementos de la asociación Clástico - Arcillosa, recalca el carácter arcilloso de la unidad. Es importante destacar que la presencia del intervalo cubierto entre las muestras ARF-167 y ARF-168 de 8 metros de espesor, genera una falta de información en ese tramo y hace inexactas las posibles interpretaciones realizadas con respecto a las tendencias de estas curvas de concentración.

Discusión

En la secuencia aflorante de la Formación Aguardiente, en el sector Río Frío, se aprecian comportamientos elementales característicos, como los descritos anteriormente.

En las unidades QARF-I y QARF-II, se puede apreciar con claridad en los perfiles de concentración que el SiO₂ se comporta de manera especular con los elementos de la asociación clástico arcillosa (TiO₂, Al₂O₃, Fe₂O₃, K₂O, V, Rb, Sr, Zr, Ba y La). Según REÀTEGUI *et al.* (2004) específicamente la tendencia opuesta entre el SiO₂ y Al₂O₃, refleja diferencias en el comportamiento hidráulico en arenas ricas en SiO₂ en contra de la fracción fina, enriquecida en Al₂O₃, esta tendencia es una medida de escogimiento en el sistema y refleja el tamaño de grano.

Es característico que el SiO₂ presente altos valores, mientras que en la mayoría de los demás elementos concentraciones promedio bajas. Diversos autores (PEARCE *et al.*, 2005; CHAOSHENG *et al.*, 2000) indican que el tamaño de grano en rocas sedimentarias tiene un impacto significativo en la geoquímica, donde su incremento favorece al decrecimiento de otros elementos por disolución del cuarzo, ésto pudiera sugerir el comportamiento especular del SiO₂ con respecto a los demás elementos; CHAOSHENG *et al* (2000) en su trabajo concluyen que el Ba, Zr y Sr incrementan en limos gruesos.

El K₂O es asociado a sedimentos finos y a la arcilla contenida en las lutitas. YOUNG *et al.*, (2005), citan que la abundancia de este elemento se refleja en el incremento del contenido de fases arcillosas. RACTCLIFFE *et al.* (2004), sugieren que la relación K₂O/Al₂O₃ es indicadora del tipo de arcilla, su incremento indica la abundancia relativa de K₂O y por ende la presencia de arcilla tipo illita, mientras que bajos valores en la relación indican arcilla tipo caolinita. El perfil de concentración de esta relación guarda cierta relación con los análisis de DRX realizados. Hasta la muestra ARF-63 (unidad ARF-I) el perfil de concentración presenta su mayor porcentaje promedio (Tabla 7), y es en esta unidad donde 3 de las 5 muestras presentan mayor porcentaje de illita. En el resto de la sección (unidades QARF-II y QARF-III) el porcentaje de caolinita es mayor, lo que corresponde a bajos valores de esta relación.

El TiO₂ puede encontrarse en minerales de arcilla (más notablemente en la illita), así como en minerales pesados. Si la illita es el controlador primario, se deben esperar buenas correlaciones positivas entre TiO₂ vs. Al₂O₃. Los datos indican un valor de R²=0,81; según RACTCLIFFE *et al.* (2004) un R² \ge 0,75 indica una fuerte relación lineal, e implicaría que estos elementos se encuentren en el mismo mineral en los sedimentos. El mismo autor indica que si el TiO₂ está asociado a minerales

pesados, se debería esperar una correlación lineal positiva con el Zr, sin embargo no es éste el caso.

El Fe₂O₃ presenta un marcado control litológico. Los valores en las arenas son cercanos o por debajo del limite de detección y son más altos en las lutitas. Este alta proporción en las lutitas pudiera ser debido a que en el momento de la depositación de las mismas, éstas contienen por lo menos un 5 % en peso de Fe, sin embargo como el hierro en estos análisis es reportado como hierro total (Fe₂O₃) y no como Fe⁺² o Fe⁺³, no es posible hacer interpretaciones ambientales.

El V asociado a sedimentos terrígenos de la asociación clástico arcillosa, es indicador de ambientes reductores, no siempre es relacionado con materia orgánica, puede ser físicamente huésped en minerales detríticos silicatados (JONES & MANNING, 1994).

El CaO junto con el MgO son asociados a calcita, dolomita y carbonatos. Sin embargo, debido a las bajas proporciones del CaO, se sugiere que éste podría estar asociado al influjo detrítico, transportado principalmente como componente en las plagioclasas y en algunos minerales de arcilla. Puede aparecer también en algunas arenas como cemento calcáreo.

5.4.- Análisis de agrupaciones

El objetivo principal al trabajar con este instrumento estadístico, es establecer grupos de muestras con características químicas similares, a partir de las 20 variables obtenidas a través de los análisis químicos (7 elementos mayoritarios y 13 elementos traza).

Como se explicó en el marco teórico, la representación visual del análisis de agrupaciones es el dendrograma. Este dendrograma se generó a partir de las 20

variables químicas, utilizando el programa estadístico MVSP[®] 3.1, el cual se caracteriza por mantener el orden estratigráfico de cada muestra. Para la generación de dendrogramas se utilizó el método vecino más lejano con distancias euclideanas estandarizadas.

Al realizar el dendrograma con los datos químicos de las muestras de la sección Río Frío, se observan 3 grupos principales y 7 grupos secundarios, siendo coincidentes con los límites establecidos a partir de los perfiles de concentración (Fig. 47).

Figura 47. Dendrograma constreñido generado a partir de las variables químicas, mostrando los diferentes grupos generados. (Sección correspondiente al sector Río Frío, Formación Aguardiente)

Sin embargo, existen algunos límites generados por el dendrograma que no corresponden con los establecidos para las unidades y/o subunidades definidas

anteriormente. El dendrograma genera una subunidad adicional dentro de la unidad mayor QARF-II, esta subunidad denominada QARF-II-C comprende las muestras ARF-154 hasta la ARF-162, con un espesor de 14 metros. El límite entre la subunidad QARF-II-B y QARF-II-C se caracteriza por deflexiones positivas de los elementos de la Asociación Clástico-Arcillosa. La subunidad QARF-II-C tiene las concentraciones más bajas de SiO₂ (68,74%), así como concentraciones mayores de TiO₂, Al₂O₃, K₂O, V, Rb, Sr, Zr, Ba y La. Litológicamente la subunidad presenta en la base un intervalo de arcillitas de color gris oscuro a negro que meteorizan a tonos rojizos o violáceos, con abundantes niveles de oxidación. Esto es consistente con el aumento en el porcentaje de Fe₂O₃ (0,53%). Suprayacentes a las arcillas se presentan areniscas de grano fino, bien escogidas y con niveles de oxidación.

El dendrograma a través del análisis estadístico determina grupos con características químicas similares, es importante destacar que al comparar los límites de las unidades químicas definidas a partir de los perfiles, con los límites de los grupos que se precisan con el dendrograma se aprecia una buena correspondencia, entre las unidades químicas QARF-I, QARF-II y QARF-III así como en las subunidades, los pequeños desfases presentados entre estas puede deberse a cambios muy sutiles observados en los perfiles.

5.5.- Funciones discriminantes

Las funciones discriminantes son utilizadas para predecir a cual nivel de una variable independiente dada (litofacies, quimiofacies, litología, edad, ambiente, etc.) pertenece una nueva observación (NOGUERA & YÉPEZ, 2002), por ello, se considera una excelente herramienta para la clasificación de muestras en grupos predefinidos en base a variables múltiples. En este trabajo se empleó esta técnica con la finalidad de discriminar las unidades químicas previamente establecidas a través de los perfiles de concentración y análisis de agrupaciones, usando las veinte variables químicas estudiadas y las relaciones elementales utilizadas. Para el cálculo de las funciones

discriminantes se utilizó el programa STATGRAPHICS 5.1, el cual también se encargó de generar los gráficos y las tablas de clasificación respectivas.

Separación de Unidades Químicas Mayores o Quimiofacies

Las unidades químicas mayores definidas anteriormente han sido analizadas mediante el uso de funciones discriminantes.

La Figura 48 muestra los resultados gráficamente, destacando la clara separación de la unidad química QARF-III. Por otra parte muestra solapamiento existente entre las unidades químicas QARF-I y QARF-II.

Figura48 Representación gráfica de las funciones discriminantes para las unidades químicas mayores de las muestras de la sección Río Frío, Formación Aguardiente.

La tabla 9 presenta la forma en que se clasificaron las muestras de a cuerdo a las unidades químicas definidas. Se observa que hubo un 88,46 % de casos correctamente clasificados. Al mismo tiempo se aprecia que la unidad química mejor discriminada es la QARF-III. La razón de esta buena separación se debe a la clara diferenciación litológica de esta unidad (unidad más lutítica). Contrariamente el solapamiento entre las unidades QARF-I y QARF-II se debe a la similitud litológica existente entre estas dos unidades.

 Tabla 9. Tabla de clasificación de las unidades químicas mayores de las muestras de la sección Río

 Frío, Formación Aguardiente.

		Grupo de predicción			
Grupo actual	Tamaño del grupo	QARF-III	QARF-II	QARF-I	
QARF-III	18	17 94,44%	0	1 5,56%	
QARF-II	96	0	83 86,46%	13 13,54%	
QARF-I	68	0	7 10,29%	61 89,71%	

Casos correctamente clasificados: 88,46%

Separación de Subunidades Químicas

Como se planteó anteriormente las unidades químicas mayores QARF-I y QARF-II, han sido divididas en unidades menores o subunidades, el uso de funciones discriminantes permite corroborar la existencia de las mismas. En este sentido se presentan a continuación los gráficos que representan las funciones discriminantes de cada una de las subunidades descritas anteriormente (Figs.49 y 50), así como las tablas 10 y 11 contentivas de las clasificaciones de las muestras de acuerdo a las subunidades químicas definidas.

Figura 49. Representación gráfica de las funciones discriminantes para las subunidades químicas correspondientes a la Unidad mayor QARF-I de las muestras de la sección Río Frío, Formación Aguardiente.

Tabla 10. Tabla de clasificación de las subunidades químicas correspondientes a la Unidad MayorQARF-I de las muestras de la sección Río Frío, Formación Aguardiente.

		Grupo de predicción				
Grupo actual	Tamaño del grupo	QARF-I-D	QARF-I-C	QARF-I-B	QARF-I-A	
	24	22	0	0	2	
QARF-I-D		91,67%	0		8,33%	
	17	1	16	0	0	
QARF-I-C	17	5,88%	94,12%	0	0	
QARF-I-B	10	0	0	9	1	
				90%	10%	
QARF-I-A	17	1	0	0	16	
		5,88%			94,12%	

Casos correctamente clasificados 92,65%

Figura 50. Representación gráfica de las funciones discriminantes para las subunidades químicas correspondientes a la Unidad mayor QARF-I de las muestras de la sección Río Frío, Formación Aguardiente.

 Tabla 11. Tabla de clasificación de las subunidades químicas correspondientes a la Unidad Mayor

 QARF-I de las muestras de la sección Río Frío, Formación Aguardiente

		Grupo de predicción			
Grupo actual	Tamaño del grupo	QARF-II-C	QARF-II-B	QARF-II-A	
QARF-II-C	9	7 77,78%	1 11,11%	1 11,11%	
QARF-II-B	47	0	42 89,36%	5 10,64%	
QARF-II-A	40	0	7 17,50%	33 82,50%	

Casos correctamente clasificados: 85,42%

Los coeficientes de las ecuaciones de las funciones discriminantes son presentados en el Apéndice VI.

5.5.- Interpretaciones generales

La Formación Aguardiente en el sector Río Frío presenta las siguientes características, de acuerdo a las interpretaciones hechas en base a los análisis químicos realizados mediante fluorescencia a 182 muestras.

Las distribución de los elementos en la Formación Aguardiente, sector Río Frío, están controladas principalmente por los cambios litológicos, en este sentido los diagramas de dispersión que muestran una buena correlación positiva se dan entre las muestras que presentan afinidad a determinadas asociaciones. En este caso los elementos pertenecientes a la Asociación Clástico-Arcillosa (TiO₂, Al₂O₃, K₂O y Fe₂O₃, V, Co, Ni, Rb, Sr, Zr, Ba y La) evidencian buenas correlaciones lineales positivas entre si, y negativas con el SiO₂.

Los dendrogramas realizados a partir de las variables, permite agruparlas y asociarlas a un determinado tipo litológico, donde los elementos SiO₂, MgO, CaO, Cu, Se Zn y Hg quedan asociados a las areniscas, mientas que los elementos TiO₂, Al₂O₃, K₂O y Fe₂O₃,V, Co, Ni, Rb, Sr, Zr, Ba y La están asociados a lutitas (arcillitas y limolitas).

Del mismo modo, los perfiles de concentración elemental denotan un marcado control litológico en la distribución de los elementos, sin embargo, a pesar de la homogeneidad de la secuencia (espesos intervalos de areniscas que pueden ser masivas, estratificadas (paralela o cruzada)) intercaladas con delgados paquetes de arcillitas y limolitas interestratificadas, la quimioestratigrafía permite reconocer unidades con características químicas particulares, basándose en la interpretación de los perfiles de concentración y análisis de agrupaciones.

En este sentido para esta sección se definen 3 unidades químicas mayores y 7 subunidades. Las subunidades definidas también responden a cambios litológicos,

donde cada subunidad comienza con una arenisca y culmina con las interestratificaciones de arcillitas y limolitas o viceversa. El cambio más importante lo muestran las Unidades QARF-II y QARF-III, para corroborar estadísticamente estos resultados se emplearon funciones discriminantes, la unidad que presenta una mejor separación es QARF-III con un 94,44% de casos correctamente clasificados, además de ser la unidad que en el análisis de agrupaciones presenta la mayor distancia euclideana, en esta unidad es evidente el cambio en la litología, a partir de lo que se presupone corresponda con importantes cambios en las condiciones de sedimentación.

Dentro de los objetivos específicos se plantea la posible correlación con una sección de la misma formación ubicada a unos 3 Km al norte de la población de Santa María de Caparo, en el extremo suroccidental del estado Mérida, cerca de su frontera con los estados Táchira y Barinas dentro del área de influencia de la zona de obras de la presa La Vueltosa, trabajada por TORRES (2005).

La sección de Río Frío se escogió para esa posible correlación debido a que esta es la más completa de la zona, sin embargo, existen ciertas limitaciones:

- A partir de los métodos empleados no se encontró un elemento que sirva de marcador químico a través del cual se pueda correlacionar dichas secciones.
- La distancia que existe entre los afloramientos 60 Km aproximadamente, así como la complejidad estructural que existe en la zona.
- Los resultados analíticos en las muestras correspondientes a la sección de La Vueltosa, registran elementos diferentes a los detectados en la sección de Río Frío, específicamente el MgO, Sn y Cs, así como la presencia de hematita, goethita y glauconita detectada a partir de análisis de difracción de rayos X, los cuales indican condiciones ambientales.

- Las dos secciones litológicamente se comportan de manera diferente, en La Vueltosa existe una clara predominancia de areniscas cuarzosas, mientras que en Río Frío es común la presencia de intervalos lutíticos.
- Los cambios elementales observados en La Vueltosa son drásticos y responden a cambios ambientales, mientras los marcados, en Río Frío están controlados por litología.
- En la sección de La Vueltosa se presenta de manera continua la Formación Aguardiente, observando el contacto inferior y superior con las formaciones Río Negro y Escandalosa respectivamente. En la sección de Río Frío solo se estudió la Formación Aguardiente.
- Los valores promedio de los elementos mayoritarios y trazas no presentan ninguna relación aparente, así como aumento o disminución de alguna variable específica en las dos secciones de manera simultánea, lo que no permite plantear una posible correlación a partir de estas variables.

TORRES (2005) identificó 5 unidades químicas mayores y 10 subunidades. A través de la interpretación geoquímica y los trabajos previos realizados en la zona de estudio. Las principales características químicas de esa sección es el enriquecimiento de K_2O y Fe_2O_3 en la mitad superior de la sección. Además de incrementos de V, Ni, Ba y Cs lo cual apunta hacia un periodo de sedimentación bajo condiciones anóxicas. Los ambientes propuestos para esta sección son costero a transicional y nerítico interno (Fig. 51).

Figura 51 Perfiles de concentración de elementos mayoritarios y traza de la sección de la Formación Aguardiente en el sector La Vueltosa, indicando los ambientes propuestos por TORRES (2005)

Ambiente costero a transicional:

TORRES (2005) señala que el alto contenido de SiO_2 en las unidades donde esta propuesto este ambiente indica mayor aporte de material detrítico del tipo clástico silíceo. El elevado contenido de MgO respecto a las demás unidades pueden estar indicando aporte de sedimentos de origen máfico. Por otra parte el alto contenido de caolinita señala condiciones costeras de sedimentación

Ambiente Nerítico Interno:

Este ambiente se propone fundamentalmente por la disminución de SiO_2 . El incremento de dos de los elementos mayoritarios de la asociación clástica arcillosa (K₂O y Fe₂O₃) señalan una facies sedimentaria más cercana al centro de la cuenca. Mineralógicamente la presencia de glauconita señala un ambiente de plataforma.

TORRES (2005) menciona un cambio en las condiciones de pH en el nivel estratigráfico donde propone el cambio de ambientes, atribuyendo un carácter acido al ambiente costero-transicional y alcalino al nerítico-interno.

En cuanto al aporte de sedimentos, se basa en el cambio abrupto de K_2O , lo que pudiese indicar un cambio repentino de una fuente félsica, la cual coincidiría con el cambio de ambiente. Además utiliza las relaciones Ni/Al y La/Co, para sugerir que la Formación Aguardiente tuvo un notable aporte de sedimentos máficos.

GARCIA JARPA *et al* (1983) proponen en su trabajo cinco facies importantes dentro de la Formación Aguardiente (descrita en Capítulos anteriores). La facies inferior corresponde a "Bancos de arenas gruesos", litológicamente esta compuesta de areniscas con poca variación vertical, salvo en el tope, donde se presentan mas finos los granos y las capas se hacen mas delgadas, con intercalaciones de lutita. También se ve gradación a pequeña escala (5 cm o menos). Las areniscas son generalmente bien escogidas, maduras y limpias, casi no tienen matriz. En las secciones finas dan apariencia de mosaico. En algunos casos no se ve cemento silíceo (sobrecrecimiento de cuarzo) y los granos tienen un contacto tangencial a concavoconvexo. Los feldespatos aparentemente están ausentes en esta facies. A veces se presentan cuarzo arenitas mal escogidas con granos angulares. Es posible que estas características indiquen un ambiente de barra o cordón litoral (restinga) y playa asociada.

La descripción anterior corresponde con la litología presente en el sector Río Frío. La ausencia de feldespatos reportada por GARCIA JARPA *et al* (1983) es consistente con los análisis de difracción de rayos X, los cuales no reportan feldespatos. Además la granodecrecencia hacia el tope es consistente con la disminución el los valores promedio de las concentraciones de SiO₂ y el aumento progresivo de las concentraciones de elementos de la Asociación Clástico-Arcillosa TiO₂, Al₂O₃, K₂O, Fe₂O₃, V, Co, Ni, Rb, Sr, Zr, Ba y La. LITOS (1996) realizó

125

estudios petrográficos en muestras de esta sección, reportando areniscas cuazosas, con granos en contacto tangencial y bien escogidas. Así mismo, del estudio petrográfico de 5 secciones finas en esta sección, se concluye que las muestras corresponden a areniscas cuarzosas, bien escogidas y granos en contacto tangencial a longitudinal (en raras ocasiones suturado) y con cemento silíceo, estos granos presentan extinción recta y ondulatoria (ígneo plutónico y metamórfico), se destaca la presencia de micas ligeramente plegadas así como la ausencia de feldespatos. Con una porosidad primaria aproximadamente de 12 a 14%.

En base a lo anteriormente expuesto se propone para la Formación Aguardiente en le sector Río Frío un ambiente Costero Transicional con mayor influencia continental, el límite entre las unidades químicas QARF-II y QARF-III pudiese indicar el inicio de la profundización de la cuenca y que correspondería con el inicio de la Formación Escandalosa.

LITOS (1996) en la misma sección de la Formación Aguardiente reporta dos tipos de ambientes: nerítico interior a nerítico medio, sugiere que el cambio de ambientes se presenta por cambios en las condiciones físico-químicas relacionadas con el ambiente sedimentario, cabe destacar que LITOS trabajó con menor resolución química debido a la frecuencia irregular de muestro y amplitud de la sección, la cual abarca las formaciones Apón, Aguardiente, Escandalosa y Navay.

De manera complementaria y a partir de las relaciones propuestas por BATHIA (1983) los datos se clasificaron en base al ambiente tectónico que prevaleció durante la sedimentación de la sección estudiada.

BATHIA (1983) propone una clasificación de los sedimentos en función al ambiente tectónico en el que se depositan y la procedencia de dichos sedimentos a partir de su contenido de elementos mayores. Dicha clasificación se basa principalmente en las proporciones de TiO₂ versus Fe₂O₃total+MgO, Al₂O₃/ SiO₂ versus Fe₂O₃total+MgO (Fig 52, BATHIA, 1983)

Figura 52 Diagramas de discriminación de ambientes tectónicos con base en la concentración de elementos mayores en arenas y areniscas (BATHIA, 1983), donde Fe₂ O₃ representa el Fe total. AIO=arcos de islas oceánicos; AIC=arcos de islas continentales; MCA=margen activo; MP=margen pasivo.

A partir de estas relaciones BATHIA (1983) determina cuatro ambientes tectónicos relacionados con una procedencia específica: arco de islas oceánico (AIO); arco de islas continental (AIC); margen continental activo (MCA), y margen continental pasivo (MCP) (Tabla 12)

Ambiente tectónico	Cuenca de depósito dominante	Naturaleza de la corteza adyacente a la cuenca	Tipo de procedencia
Arco de islas oceánico	Tras-arco y ante- arco	Arco formado sobre corteza oceánica o bien sobre corteza continental delgada	Arcos magmáticos no disectados
Arcos de islas continental	Intra-arco, tras- arco ante-arco	Arco formado sobre corteza continental	Arco magmático disectado u orógeno reciclado
Margen continental activo	cuencas marginales de antepaís "foreland" transtensivas y transpresivas	Corteza continental gruesa o basamento cristalino	Basamento Levantado
Margen continental pasivo	Cuencas pericratonales y margenes de "rifts" continentales	Corteza continental	Orógenos levantados e interior de cratones

 Tabla 12. Clasificación de ambientes tectónicos, cuencas de depósito y tipo de procedencia

 relacionada a partir de la concentración de elementos mayores en rocas sedimentarias detríticas

 (BATHIA,1983)

Tomando en cuenta los criterios empleados por BATHIA (1983), se construyeron los diagramas de discriminación de ambientes tectónicos con base en la concentración de los elementos mayoritarios obtenidos de las muestras analizadas de la Formación Aguardiente en el sector Río Frío (Fig 53)

Figura 53. Diagramas de discriminación tectónicos correspondientes a las muestras de la Formación Aguardiente en el sector Río Frío, mostrando los datos dentro de los límites del Margen Continental Pasivo descrito por Bathia (1983).

Cabe destacar que en los diagramas de discriminación propuestos son aplicables a muestras arenosas, las muestras que se excluyen de la zona de margen pasivo corresponde a las arcillitas y limolitas, solo una muestra registra un valor anómalo (ARF-04) que presenta un valor anómalo de Fe₂O₃.

Por otra parte BATHIA (1983); BATHIA Y CROOK (1986) establecen concentraciones promedio de algunas relaciones de elementos mayores y traza para los diferentes ambientes tectónicos. La tabla 13 muestra la comparación de dichos valores con los generados por las muestras de la Formación Aguardiente en el sector Río Frío.

 Tabla 13. Concentración promedio de algunas relaciones de elementos mayores y traza en diferentes ambientes tectónicos, comparados con los valores de los datos de la Formación Aguardiente, sector Río Frío.

Relaciones	AIO	AIC	МСА	МСР	Formación Aguardiente, Río Frío
Fe ₂ O ₃ total+MgO	8-14%	5-8%	2-5%	0,5- 3,5%	2,186%
TiO ₂	0,8- 1,4%	0,5- 0,7%	0,25- 0,45%	0,2- 0,5%	0,329%
Al ₂ O ₃ / SiO ₂	0,24- 0,33%	0,15- 0,20%	0,1- 0,2%	0,6- 1,3%	0,55%
K ₂ O/Na ₂ O	0,2- 0,4%	0,4- 0,8%	0,65- 1,45%	1,2- 2%	-
Al ₂ O ₃ /(CaO+ Na ₂ O	1-2%	0,5- 2,5%	1,5- 3,5%	2,7- 7%	-
Ti/Zr	>40	10-30	-	<10	<10
La/Sc	<1	1-3	3-6	3-9	-
La/Y	<0,5	0,5-1,0	1-1,5	-	-
Sc/Cr	<0,6	0,2-0,4	-	<0,2	-
Zr/Th	61,4- 34,6	23,8- 19,1	10,4- 8,8	13,3- 24,9	-

AIO=arco de islas oceánico; AIC=arco de islas continental; MCA=margen continetal activo; MCP=margen continental pasivo.

Estos autores resaltan la influencia del tamaño de grano en las concentraciones de elementos mayores de los sedimentos y recomiendan acompañar los estudios geoquímicos con descripciones petrográficas detalladas. Uno de los inconvenientes de las discriminaciones tectónicas y de procedencia basadas en diagramas que muestran las relaciones de elementos mayores es que las diferencias de porcentaje entre los diferentes campos son mínimas, del orden del 0,2%, las cuales pueden perderse o mal interpretarse dependiendo del margen de error de cada

laboratorio. Además, la concentración de elementos mayores se ve afectada por los procesos de intemperismo, diagénesis y de metamorfismo.

Para esta misma formación LITOS (1996) utiliza la relación K_2O/Na_2O versus SiO₂ (empleada por ROSER Y KORSH (1986) para establecer ambiente tectónico), llegando a la conclusión que todas la rocas arcillosas de la sección (Al₂O₃>10%) se ubican en el campo de "Margen Continental Pasivo".

CAPITULO VI

CONCLUSIONES

La caracterización geoquímica depende en primer término de la posibilidad de aplicar a la formación bajo estudio una frecuencia de muestreo adecuadamente continua y densa, que permita obtener el nivel de detalle requerido para una realizar una óptima y confiable interpretación geoquímica. La frecuencia de muestreo empleada en este trabajo, fue lo mas sistemática posible con un espaciamiento aproximado de 1 m entre cada muestra, variando en ocasiones el intervalo de muestreo de 2 a 3 metros a conveniencia (dependiendo de los cubiertos y las condiciones físicas de las rocas), en este sentido, se presenta una limitación en el estudio e interpretación de las variaciones químicas debido a la calidad resolutiva de los análisis químicos.

El análisis químico consistió en la determinación de concentraciones (% en peso) de los componentes mayoritarios SiO₂, TiO₂, Al₂O₃, Fe₂O₃, MgO, CaO y K₂O y de los elementos traza (ppm) V, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Zr, Ba, La y Hg, a partir de la técnica fluorescencia de rayos X (FRX-DE). De manera complementaria se realizó el análisis de difracción de rayos X (DRX) a 10 muestras con la finalidad de conocer su mineralogía.

La sección de la Formación Aguardiente en el sector Río Frío se caracteriza por ser una secuencia predominantemente arenosa, con ocasionales interrupciones de capas de arcillitas y limolitas.

Las respuestas químicas de las muestras estudiadas resultaron acordes con lo esperado para la litología presente en la sección de Río Frío, mostrando que la Formación Aguardiente en esta sección es predominantemente arenosa, siendo concordante con los altos valores promedio registrados por la variable química SiO₂. Los intervalos de arcillitas y limolitas presentes en la sección exhiben altos valores de

los elementos de la Asociación Clástico-Arcillosa TiO₂, Al₂O₃, K₂O y Fe₂O₃,V, Co, Ni, Rb, Sr, Zr, Ba y La.

El procesamiento estadístico de los datos, así como la elaboración de perfiles químicos con las variables utilizadas, permitieron establecer unidades químicas que representan posibles cambios en las condiciones de sedimentación y/o ambiente de depositación dentro las cuales fue posible identificar subunidades.

La sección de la Formación Aguardiente en el sector Río Frío se reconocieron 3 unidades químicas mayores que a su vez pueden ser divididas en 7 subunidades con características químicas distintivas, donde los límites entre ellas vienen marcados esencialmente por cambios litológicos (areniscas vs arcillitaslimolitas)

Con base en base las características geoquímicas y sedimentológicas de las muestras, se propone un ambiente depositacional costero a transicional. Reconociéndose la facies de "Bancos de arenas gruesos" o "Barras costeras/cordón litoral" definida por GARCIA JARPA *et al* (1983).

El límite entre las unidades químicas QARF-II y QARF-III pudiese indicar la transición hacia un ambiente más marino, con profundización de la cuenca y que pudiese corresponder con el inicio de la Formación Escandalosa.

De acuerdo a los criterios empleados por BATHIA (1983) para la determinación del ambiente tectónico, se confirma lo propuesto en la literatura de un ambiente tectónico de margen pasivo durante la sedimentación de la Formación Aguardiente. Siendo concordante con los resultados presentados por LITOS (1996). Los estudios y caracterización geoquímica permitieron inferir un tipo de fuente granítica.

RECOMENDACIONES

- Complementar estos análisis con otros estudios, tales como, petrográficos y sedimentológicos detallados, de ser posible bioestratigráficos. El empleo de estas herramientas dará un importante valor agregado futuros estudios de geoquímica.
- Extender el número de formaciones estudiadas con esta herramienta, con la finalidad de obtener una nueva base de datos que elevaría la precisión de estudios estratigráficos en la zona.
- Ampliar el estudio de difracción de rayos X (DRX) para obtener relaciones entre la mineralogía, así como también se recomienda el conteo e identificación de granos, a través de observación microscópica (secciones finas), para así complementar la información mineralógica que por limitaciones instrumentales pueden no ser apreciables en análisis de DRX.

BIBLIOGRAFÍA

- ANDERSSONA P., WORDENB R., HODGSONB D. AND FLINTB S. (2004) Provenance evolution and chemostratigraphy of a Palaeozoic submarine fan-complex: Tanqua Karoo Basin, South Africa. Marine and Petroleum Geology 21 (2004) 555–577
- ARIAS I., (2004). Estudio de minerales de arcilla presentes en Muestras de sedimentos superficiales y núcleos deLa fachada atlántica venezolana. Trabajo Especial de Grado, Inédito. Dpto. de Geología, UCV, 137 p.
- ARREAZA., C. (2002). Caracterización química de las formaciones Naricual y Querecual, en sus localidades tipo, estado Anzoátegui. Trabajo Especial de Grado, Inédito. Dpto. de Geología, UCV, 421 p.
- AUDEMARD, F.E. AND AUDEMARD, F.A (2002). Structure of the Mérida Andes, Venezuela: relations with the South America-Caribbean geodynamic interaction. Tectonophysics 345 (1/4). pp. 299-327.
- BARITTO, I. (2003). Caracterización química de muestras de sedimentos superficiales y de núcleos de la fachada atlántica venezolana". Trabajo Especial de Grado, Inédito. Dpto. de Geología, UCV, 456 p.
- BHATIA M.R., (1993). *Plate tectonics and geochemical composition of sandstone*. Journal of Geology, v. 91, p 611 627
- BHATIA M.R., AND CROOK, K. (1986) Trance element characteristics of grawackes and tectonic discrimination of sedimentary basic: Contrib. Mineral. Petrol., v. 92, p 181-193
- BOESI et al (1988). Excursión Geológica al frente de montañas entre Río Lobaterita y Río Chama. 28 p.
- BRICEÑO H., CALLEJÓN A. AND LANDER. R. (1996). Caracterización de quimiofacies en rocas Cretáceas del área sur del estado Táchira, Venezuela occidental. AAPG Bulletin, 80 (8):1276.
- BRICEÑO H., AND CALLEJÓN A., (2000). Chemostratigraphic correlation of the source rock in the La Luna – K/T (!) petroleum system in southwestern Venezuela. En: *Research conference. Paleogeography and hidrocarbon potential of the La Luna Formation and related cretaceous anoxic system.* SEPM, Edición en CD.
- CAMPOSANO L. AND N. MARTÍNEZ. (2000). Caracterización química y radiométrica de secciones estratigráficas de las formaciones Barco y Mirador. San Pedro del

Río. Edo. Táchira.Trabajo Especial de Grado, Inédito. Dpto. de Geología, UCV, 245 p.

- CAMPOSANO L. (2002). Resultados integrados realizados para optimizar las mediciones con el espectrómetro de fluorescencia de rayos x por energía dispersiva NITON XL-722S. Informe para el Laboratorio de Difracción y Fluorescencia de rayos X, Escuela de Geología, Minas y Geofísica, Facultad de Ingeniería, Universidad Central de Venezuela. 47 p.
- CANAVOS, G. (1988). *Probabilidad y Estadística: Aplicaciones y Métodos*. Madrid, Mc. Graw- Hill, pp 62 70, pp 191.
- CEDILLO, J. AND OLAYA, W. (2003) Caracterización química y radiométrica de sedimentos de una zona ubicada al noroeste del delta del Orinoco en el OcéanoA atlántico, Venezuela. Trabajo Especial de Grado, Facultad de Ingeniería, Dpto de Geología, Universidad Central de Venezuela, Caracas, 195 pp.
- CHACÍN C. (2003). Caracterización química y radiométrica de muestras de canal correspondientes a cuatro pozos del Campo Petrolífero La Concepción, estado Zulia. Trabajo Especial de Grado, Inédito, Departamento de Geología, UCV, 254 p.
- CHAOSHENG Z., LIJUN W., GUOSHENG L., SHUANGSHUANG D., JINGRONG Y., AND XIULI W. (2000) Grain size effect on multi-element concentrations in sediments from the intertidal flats of Bohai Bay, China. Applied Geochemistry 17 (2002) 59–68
- CHAPLET, M. AND STEPHAN, J. (1998) Interferencia tectónica entre andes merideños (estados Táchira-Apure-Barinas, Venezuela) y cordillera oriental (departamento norte de Santander, Colombia) Aguasuelos Ingeniería, INTEVEPinforme interno.57 pp.
- CIEN-COMITÉ INTERFILIAL DE ESTRATIGRAFÍA Y NOMENCLATURA (1999). Léxico Estratigráfico Electrónico de Venezuela. Edic. PDVSA - Intevep, en CD. Caracas.
- CLAYTON T., PEARCE R. AND PETERSON L. (1999) Indirect climatic control of the clay mineral composition of Quaternary sediments from the Cariaco basin, northern Venezuela (ODP Site 1002). Marine Geology 161 1999 191–206.
- COLLETA, B., ROURE, F., DE TONI B., LOUREIRO D., AND PASSALACQUA H., (1997) *Tectonic inheritance, crustal architecture, and contrasting structural styles in the Venezuela Andes:* Tectonics, v. 16, p. 777–794.

- CULLERS R. (1995) The controls on the major- and trace-element evolution of shales, siltstones and sandstones of Ordovician to Tertiary age in the Wet Mountains region, Colorado, U.S.A Chemical Geology 123 (1995) 107-131
- DAVIS J. (1973). *Statistics and Data Análisis in Geology*. New York, Wiley and Sons, 550 p.
- DIXON W. (1957) Introducción al análisis estadístico. McGraw Hill, ediciones Castillo, Madrid, 489p.
- DUNOYER DE SEGONZAC G. (1970) The transformación of clay minerals during díagénesis and low grade metamorphism: a review. Sedimentology. Vol. 15, p. 281-346.
- DYPVIK H. AND N. HARRIS. (2001). Geochemical facies analysis of fine grained siliciclastics using Th / U, Zr / Rb and (Zr + Rb) / Sr ratios. *Chemical Geology*, 181: 131-146.
- ESTÉVEZ I. (2000). Estudio quimioestratigrafico del Terciario temprano-medio y límite Cretácico-Terciario del Occidente venezolano. Facultad de Ciencias. Instituto de Cienciasde la Tierra. UCV. Inédito. Caracas.
- FEO-CODECIDO, G. (1972) *Geología de la region de Caparo, Estados Barinas y Mérida.* II Congreso Latinoamericano de Geología. Caracas. III:1756-1768.
- FRALICK P. (1997) Geochemical discrimination of sedimentary rock source. Sedimentary Geology 113. 111-124
- GARCÍA J, et al. (1980). Correlación estratigráfica y síntesis paleoambiental del Cretáceo de los Andes venezolanos, Boletín de Geología del Ministerio de Energía y Minas, XIV(26): 3-77.
- GARNER A. (1926). Suggested nomenclature and correlation of the geological formations in Venezuela, in Petroleum development and technology, 1925. Am. Inst. Min. Metall. Eng., Tr., p. 677-684.
- GEORGE W. A., NYAKAIRU AND CHRISTIAN K.(2000) Mineralogical and chemical composition and distribution of rare earth elements in clay-rich sediments from central Uganda Geochemical Journal, Vol. 35, pp. 13 to 28, 2001
- GIRALDO C. (1988) Valor del desplazamiento dextral acumulado a lo largo de la falla de Boconó, Andes venezolanos. Memoria de las jornadas, 50° aniversario de la Escuela Geológia, Minas y Geofísica. Fac. Ing., U.C.V., p.p. 186-193.

- GONZÁLEZ G, (1967). A palynological study on the upper Los Cuervos and Mirador Formations (Lower and Middle Eocene, Tibú area, Colombia. Leiden, E. J. Brill: 129 p.
- GONZÁLEZ L. Y SÁNCHEZ G. (2001). Caracterización geoquímica y radiométrica de dos secciones estratigráficas de la formación La Luna, edo. Táchira. Trabajo Especial de Grado, Inédito. Dpto. de Geología, UCV, 230 p.
- GONZÁLEZ DE JUANA C., ITURRALDE DE AROZENA J. AND X. PICARD. (1980). Geología de Venezuela y de sus Cuencas Petrolíferas. Caracas, Ed. Foninves, 2 tomos, 1021 p.
- GRANDE, S. (1996). Cristalografía de rayos X. Guías de estudio. UCV. Fac. Ingeniería. Escuela de Geología, Minas y Geofísica: 2 10.
- HEDBERG H. D. Y L. C. SASS. (1937). Sinopsis de las formaciones geológicas de la parte occidental de la cuenca de Maracaibo, Venezuela, Bol. Geol. y Min., 1(2-4): 77-120.
- HEYBROEK, (1953). Geological report on the mountain range west of block "B" (eastern rim of the Cordillera Oriental, Táchira-Apure, western Venezuela. Informe Interno, Shell. 59 p.
- HILL, P. (1990). Vertical Distribution of Elements in Deposit Nº 1. Hat Creek, British Columbia: A Preliminary Study. International Journal Coal Geologist. (15): 77 – 111.
- JOHNSON ROBERT. (1988). *Estadística elemental*. Grupo editorial Iberoamericano, México, 592 p.
- JONES B.. AND MANNING A. (1994) Comparación of geochemical indices used for the interpretation of palaeoredox condition in ancient mudstones. Elservier Science B. V.
- JORGENSEN N. (1986). Chemostratigraphy of upper Cretaceous chalk in the Danish subbasin. AAPG Bulletin, 70 (3): 309-317.
- KARAGEORGIS A., ANAGNOSTOU, AND KABERI H., (2005) Geochemistry and mineralogy of the NW Aegean Sea surface sediments: implications for river runoff and anthropogenic impact. Applied Geochemistry 69 – 88.
- KAUFFMAN L. AND P. ROSSEEUAN. (1990). *Finding groups in data*. New York, John Wiley & Sons, 25 p.

- KENDALL (1980). *Multivariate analysis*. Second edition, Ed. Charlers Griffin & Company LTD, 210 p.
- KISER G. (1989). Relaciones estratigráficas de la cuenca Apure/Llanos con áreas adyacentes de Venezuela Suroeste y Colombia Oriental. Sociedad Venezolana de Geólogos. Monografías SVG N°1 Diciembre 1989. 10-30.
- LIDDLE R. A. (1928). The geology of Venezuela and Trinidad. Texas, J. P. MacGowan, 552 p.
- LITOS (1996) Estudio de secciones estratigráficas en el área suroccidental del estado Táchira. P.D.V.S.A., Informe interno, Puerto La Cruz, Anexo I-2, Anexo I-4, Anexo I-9, Anexo III-1, Anexo III-3,Capítulo I-V, Vol. 14, Vol. 12.
- LUGO J. AND MANN P. (1995). Jurassic Eocene tectonic evolution of Maracaibo Basin, Venezuela. En: *Petroleum basins of south America*. AAPG Memoir (62): 699-725.
- MACELLARI, C. (1982). *Tectónica compresional en el sur de los andes Venezolanos*. Quinto Congreso Latinoamericano de Geología, Argentina. Actas 1: 403-418.
- MARTÍNEZ A. (2001) Identificación y Caracterización de Quimiofacies de la Formación Barco en la localidad de San Pedro del Río, estado Táchira. Trabajo Especial de Grado, Inédito. Instituto de Ciencias de la Tierra, Facultad de Ciencias, UCV, 139 p.
- MEIER, B., SCHWANDER, M., AND LAUBSCHER, H.P., (1987). The tectonics of Táchira: A sample of north Andean tectonics. In Shaer, J.-P., and Rodgers, J. (eds), The Anatomy of Mountain Ranges. Princeton University Press, Princeton, N.J., 229-237
- MOORE, D.M. AND R. C. REYNOLDS JR (1989). X-Ray Diffraction and the *Identification and Analysis of Clay Minerals*. Oxford University of Press, Oxford, 332 pp.
- NOGUERA, M. AND S. YÉPEZ. (2002). Caracterización química de secciones estratigráficas: formaciones Naricual y Querecual, estados Anzoátegui y Monagas. Trabajo Especial deGrado, Inédito. Dpto. de Geología, UCV, 282 p.
- NOTESTEIN F., HUBMAN C.W. AND BOWLER J. W. (1944). Geology of the Barco Concession, Republic of Colombia, South America, Geol. Soc. Am., Bull. 55: 1165-1216.
- NOVOA, E., A. GONZALEZ, C. ZAMBRANO, C. FINTINA, AND O. AND GALLANGO, (2003) The petroleum system of the Rubio area, Me'rida Andes, Venezuela, in

C. Bartolini, R. T. Buffler, and J. Blickwede, eds., The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics: AAPG Memoir 79, p. 797–814.

- NYAKAIRU G AND KOEBERL C. (2001) Mineralogical and chemical composition and distribution of rare earth elements in clay-rich sediments from central Uganda. Geochemical Journal, Vol. 35, pp. 13 to 28, 2001.
- ORTEGA, J. F., A. VON ERVE AND Z. DE MONROY (1987) Formación Guafita: nueva unidad litoestratigráfica del Terciario en el subsuelo de la Cuenca Barinas-Apure, Venezuela suroccidental. Bol., Soc. Venez. Geol., (31): 9-35
- PARNAUD F., GOU Y., PASCAL J.C., CAPELLO M.A., TRUSKOWSKI I., AND PASSALACQUA H. (1995). Stratigrafic synthesis of western Venezuela. En: Petroleum basins of South America. AAPG Memoir. (62): 681-698.
- PARRA AND NOVOA (2003). Evolucion Tectono-Estratigráfica de la terminación Meridional del Flanco Sur de los Andes de Mérida, Venezuela. VIII Simposio Bolivariano- Exploracion Petrolera en las Cuencas Subandinas.p- 339-347
- PEARCE T., BESLY B., WRAY D. AND WRIGHT D. (1997). Chemostratigraphy: a method to improve interwell correlation in barren sequences – a case study using onshore Duckmantian/Stephanian sequences (West Midlands, U.K.). Sedimentary Geology. 124:197-220.
- PEARCE T., WRAY K., RATCLIFFE D., WRIGHT K. AND MOSCARIELLO A. (2005) Chemostratigraphy of the Upper Carboniferous Schooner Formation, southern North Sea. in J.D. Collinson, DJ. Evans , D. W. Holliday and N. S.Jones (eds.), Carboniferous hydrocarbon geology: the southem North Sea and surrounding onshore areas, Yorkshire Geological Society, occasional Publications series v. 7 p 147-164
- PIERCE, G. R., (1960), *Geología de la cuenca de Barinas*: Congreso Geologico Venezolano III, Caracas, 1959, t. 1, p. 214–276.
- RAYMOND, L. (1997) *The study of Igneous, Sedimentary and Metamorphics rocks.* México D.F. International Thompson Editores, 675 pp.
- RAMIREZ C. AND CAMPOS V. (1969). Geología de la región de la Grita-San Cristóbal, Estado Táchira, IV Cong. Geol. Venez., 2: 861-897. (885-886).
- REÀTEGUI MARTINEZ M., ESTEVES I., GUTIERREZ J., MARTINEZ A., MELÉNDEZ W., AND URBANI F. (2004). Geochemistry of the Mirador formation (Late Eocene-Early Oligocene), southwestern Venezuela: Chemostratigraphic constraints on

provenance and the influence of the sea level. Geochemical Journal, Vol. 39, 14pp.

- RATCLIFFE K., WRIGHT A., HALLSWORTH C., MORTON A., ZAITLIN B., POTOCKI D. AND WRAY D. (2004) An example of alternative correlation techniques in a low accommodation setting, nonmarine hydrocarbon system: The (Lower Cretaceus) Mannville Basal Quartz succession of southern Alberta. AAPG Bulletin, v 88, N°10, pp. 1419-1432.
- RENZ, O. (1959) *Estratigrafía del Cretáceo en Venezuela Occidental*. Boletín de Geología, Caracas, Vol. 5, Núm. 10, pp 3 48.
- REY O., SIMO J.A., AND LORENTE M.A. (2004). A record of long- and short-term environmental and climatic change during OAE3: La Luna Formation, Late Cretaceous (Santonian–early Campanian), Venezuela Sedimentary Geology 170 (2004) 85–105
- ROD E. AND W. MAYNC. (1954). Revision of Lower Cretaceous stratigraphy of Venezuela. Am. Assoc. Petrol. Geol. Bull., 38(2): 193-283.
- RODRÍGUEZ N., A. RUIZ AND E. TUNDIDOR. (2000). Caracterización química por Fluorescencia de rayos X y radioisotópica por espectrometría gamma multicanal de dos secciones estratigráficas de la Formación Guárico, El Pao, estado Cojedes. Trabajo Especialde Grado, Inédito. Dpto. de Geología, UCV, 265 p.
- ROLLINSON H. (1993) Using Geochemical Data: Evaluation, presentation, interpretation. Longman Scientific & Technical, New York, 325 p.
- SALVADOR A. (1961). Nomenclature of the Las Piedras and related formations in easter Venezuela: Bol. Inf. Asoc. Ven. Geolo. Min. y Petró1., 4: 297-327.
- SALVADOR, (1961-b). *Guidebook to the geology of northeastern Trujillo*. Soc. Geol. Venez. Occid., Guidebook N° 3, 33 p.
- SANDOVAL, M. (2000) *Diagénesis de Areniscas*. Universidad Central de Venezuela, Consejo de Desarrollo Científico y Humanístico. 414 pp.
- SCHUBERT, C., (1980) Late Cenozoic pull-apart basins, Bocono ´ fault zone, Venezuelan Andes: Journal of Structural Geology, v. 2, p. 463–468.
- SKOOG D. AND WEST D. (1984). Análisis instrumental. 2da edición, Ed. Interamericana, México, 806 p.

SKOOG D., HOLLY J. AND NIEMAN T.. (2001). *Principios de Análisis Instrumental*. 5ta edición, McGraw-Hill, Madrid, 1028 p.

SNEDECOR G. (1946). Statical Methods. 4th ed. State College Press, Iowa, 351 p.

- SPIEGEL, M. (1991). Estadística (Serie Schaum). Madrid, Mc Graw-Hill, 532 pp.
- SUTTON F. A. (1946). Geology of Maracaibo basin, Venezuela. Am. Assoc. Petrol. Geol., Bull. 30, (10): 1621-1741.
- TORRES, J. (2005) Caracterización geoquímica de la Formación Aguardiente en la presa La Vueltosa, Santa María de Caparo, estado Mérida. Trabajo Especial de Grado, Escuela de Ciencias de la Tierra, Dpto de Geología, Universidad de Oriente, Ciudad Bolívar, 265 pp.
- TRUMP G. W. AND SALVADOR A. (1964). Guidebook to the geology of western Táchira. Asoc. Venez. Geol., Min. y Petról. 25 p.
- THYNE G., POUDREAU B., RAMM M. AND MIDBO R. (2001) Simulation of potassium feldapar dissolution and illitization in the Statffjord Formation, North Sea. AAPG Bulletin, V. 85, N°4 (April 2001), pp. 621-635
- URBANI F. (1976). Ensayo de prospección geoquímica en el Parque Nacional El Ávila, norte de Caracas. UCV, Fac. de Ingeniería. Escuela de Geología, Minas y Geofísica. Dep. de Geología. Caracas. Inédito. 126 p.
- WEC VENEZUELA (1997). Evaluación de Pozos. Schlumberger Surenco, C.A.
- WHITE W. (2001). *Geochemistry*. Conell University. Disponible: <u>http://www.geo.cornell.edu/geology/classes/geo455/chapters.htm</u> [Consulta: 2006, febrero 20].
- WINTSCH R. P., AND KUALE C. M. (1994) Differential mobility of elements in burial digenesis of siliciclastic rock. Journal of sedimentary research, 64(2): 349-361
- YARINCIK K. M., R. W. MURRAY, T. W. LYONS, L. C. PETERSON AND G. H. HAUG. (2000). Oxygenation history of bottom waters in the Cariaco Basin, Venezuela, over the past 578.000 years: Results from redox-sensitive metals (Mo, V, Mn, and Fe). Paleoceanography, 15 (6): 593-604.
- YOUNG J., YONG I., AND ZHIQUIANG B. (2005) Proveance of the qingshuijian Formation (Late Carboniferous), NE China: Implications for tectonic processes in the northern margin of the north China block, Sedimentary Geology 177 97-114

APÉNDICE I

Muestra SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ MgO Cao K ₂ O ARF-180 82.52 0.281 11.75 0.266 1.880 0.014 0.200 ARF-177 87.769 0.122 6.61 1.983 1.000 0.021 0.075 ARF-176 52.22 1.503 3.243 1.284 1.000 0.021 0.875 ARF-175 85.02 0.047 6.18 0.010 5.360 0.044 0.010 ARF-175 85.02 0.047 6.18 0.010 5.877 0.053 0.010 ARF-173 84.19 0.205 1.257 0.013 1.887 0.042 0.843 ARF-171 82.56 0.115 8.37 0.094 4.668 0.057 0.064 ARF-166 80.69 0.028 5.17 0.017 4.715 0.060 0.022 ARF-166 80.69 0.028 5.79 0.010 1.896 0.010	ELEMENTOS MAYORITARIOS (representados en porcentaje %)												
ARF-180 82,52 0,281 11,75 0,266 1,880 0,014 0,200 ARF-179 86,75 0,125 8,58 0,010 1,079 0,030 0,044 ARF-178 7,69 0,122 6,61 1,983 1,000 0,021 0,075 ARF-176 52,22 1,503 32,43 1,284 1,000 0,027 1,845 ARF-176 85,02 0,047 6,18 0,010 3,611 0,046 0,010 ARF-173 84,19 0,205 12,57 0,013 1,887 0,042 0,037 ARF-171 82,56 0,115 8,37 0,094 4,668 0,072 0,845 ARF-170 81,61 0,047 6,40 0,335 0,010 1,887 0,060 0,022 ARF-169 80,69 0,028 5,17 0,017 4,715 0,060 0,022 ARF-164 88,10 0,088 5,79 0,010 1,896 0,044	Muestra	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	CaO	K ₂ O					
ARF-179 86,75 0,125 8,58 0,010 1,079 0,030 0,044 ARF-178 77,69 0,122 6,61 1,983 1,000 0,021 0,075 ARF-177 83,04 0,074 5,76 0,010 5,360 0,024 0,013 ARF-175 85,02 0,047 6,18 0,010 3,611 0,046 0,010 ARF-173 84,19 0,025 1,257 0,013 1,887 0,042 0,033 ARF-172 53,70 1,365 35,51 1,864 3,355 0,012 0,845 ARF-170 81,61 0,047 6,40 0,353 4,971 0,053 0,010 ARF-166 80,69 0,028 5,17 0,017 4,715 0,060 0,022 ARF-168 88,07 0,088 5,79 0,010 1,896 0,044 0,010 ARF-166 53,29 1,548 29,19 0,712 1,000 0,018 0,920	ARF-180	82,52	0,281	11,75	0,266	1,880	0,014	0,200					
ARF-178 77,69 0,122 6,61 1.983 1.000 0.021 0.075 ARF-176 83,04 0,074 5,76 0,010 5,360 0,054 0,013 ARF-175 85,02 0,047 6,18 0,010 5,877 0,053 0,010 ARF-173 84,19 0,205 12,57 0,013 1,887 0,042 0,033 ARF-171 82,56 0,115 8,37 0,094 4,668 0,057 0,064 ARF-170 81,61 0,047 6,40 0,355 4,971 0,053 0,010 ARF-168 88,07 0,088 5,79 0,010 1,896 0,044 0,010 ARF-164 84,12 1,750 30,30 1,120 1,000 0,013 0,993 ARF-164 84,12 0,049 5,52 0,010 1,000 0,014 0,010 ARF-164 84,12 0,049 5,52 0,010 1,000 0,014 0,010	ARF-179	86,75	0,125	8,58	0,010	1,079	0,030	0,044					
ARF-177 83,04 0,074 5.76 0,010 5.360 0,054 0,013 ARF-176 52,22 1,503 32,43 1,284 1,000 0,027 1,845 ARF-175 85,02 0,047 6,18 0,010 3,611 0,046 0,010 ARF-173 84,19 0,205 12,57 0,013 1,887 0,042 0,033 ARF-171 82,56 0,115 8,37 0,094 4,668 0,057 0,064 ARF-170 81,61 0,047 6,40 0,353 4,971 0,053 0,010 ARF-169 80,69 0,028 5,17 0,017 4,715 0,060 0,022 ARF-166 53,29 1,548 29,19 0,712 1,000 0,018 0,920 ARF-166 53,29 1,548 29,19 0,712 1,000 0,014 0,010 ARF-164 88,12 0,049 5,52 0,010 1,000 0,010 0,701	ARF-178	77,69	0,122	6,61	1,983	1,000	0,021	0,075					
ARF-176 52.22 1.503 32.43 1.284 1.000 0.027 1.845 ARF-175 85.02 0.047 6.18 0.010 3.611 0.046 0.010 ARF-174 86.37 0.048 6.73 0.010 5.877 0.053 0.010 ARF-172 53.70 1.365 35.51 1.864 3.355 0.012 0.845 ARF-170 81.61 0.047 6.40 0.355 4.971 0.053 0.010 ARF-169 80.69 0.028 5.17 0.017 4.715 0.060 0.022 ARF-168 88.07 0.088 5.79 0.010 1.896 0.044 0.010 ARF-165 72.92 0.399 6.92 3.868 1.000 0.018 0.903 ARF-164 88.12 0.049 5.52 0.010 1.000 0.044 0.010 ARF-163 41.35 1.316 2.671 1.060 1.000 0.010 0.701	ARF-177	83,04	0,074	5,76	0,010	5,360	0,054	0,013					
ARF-175 85.02 0.047 6.18 0.010 3.611 0.046 0.010 ARF-174 86.37 0.048 6.73 0.010 5.877 0.033 0.010 ARF-172 83.70 1.365 35.51 1.864 3.355 0.012 0.033 ARF-171 82.56 0.115 8.37 0.094 4.668 0.057 0.064 ARF-170 81.61 0.047 6.40 0.355 4.971 0.053 0.010 ARF-169 80.69 0.028 5.17 0.010 1.876 0.044 0.010 ARF-168 88.07 0.088 5.79 0.010 1.876 0.044 0.010 ARF-164 81.2 0.049 5.52 0.010 1.000 0.014 0.010 ARF-164 88.12 0.049 5.52 0.010 1.000 0.044 0.010 ARF-164 88.12 0.049 5.52 0.010 1.000 0.044 0.010	ARF-176	52,22	1,503	32,43	1,284	1,000	0,027	1,845					
ARF-174 86,37 0.048 6.73 0.010 5,877 0.053 0.010 ARF-173 84,19 0.205 12,57 0.013 1,887 0.042 0.037 ARF-172 53,70 1,365 35,51 1,864 3,355 0.012 0.845 ARF-170 81,61 0.047 6.40 0.355 4.971 0.053 0.010 ARF-169 80,69 0.028 5.17 0.017 4.715 0.060 0.022 ARF-167 54,54 1.750 30,30 1.120 1.000 0.018 0.903 ARF-165 72.92 0.399 6.92 3.868 1.000 0.044 0.010 ARF-164 88.12 0.049 5.52 0.010 1.000 0.044 0.010 ARF-163 41.35 1.316 2.671 1.060 1.000 0.010 0.701 ARF-164 88.12 0.049 5.52 0.118 3.724 0.067 0.010	ARF-175	85,02	0,047	6,18	0,010	3,611	0,046	0,010					
ARF-173 84,19 0,205 12,57 0,013 1,887 0,042 0,037 ARF-172 53,70 1,365 35,51 1,864 3,355 0,012 0,845 ARF-171 82,56 0,115 8,37 0,094 4,668 0,057 0,064 ARF-169 80,69 0,028 5,17 0,017 4,715 0,060 0,022 ARF-169 80,69 0,028 5,17 0,017 4,715 0,060 0,022 ARF-166 53,29 1,548 29,19 0,712 1,000 0,013 0,920 ARF-164 88,12 0,049 5,52 0,010 1,000 0,044 0,010 ARF-163 41,35 1,316 26,71 1,060 1,000 0,012 0,701 ARF-164 88,12 0,050 5,62 0,118 3,724 0,067 0,010 ARF-161 85,50 0,220 7,98 0,010 2,110 0,039 0,311	ARF-174	86,37	0,048	6,73	0,010	5,877	0,053	0,010					
ARF-172 53.70 1,365 35.51 1,864 3,355 0,012 0,845 ARF-171 82,56 0,115 8,37 0,094 4,668 0,057 0,064 ARF-160 80,69 0,028 5,17 0,017 4,715 0,000 0,022 ARF-166 88,07 0,088 5,79 0,010 1,896 0,044 0,010 ARF-167 54,54 1,750 30,30 1,120 1,000 0,013 0,920 ARF-165 72,92 0,399 6,92 3,868 1,000 0,044 0,010 ARF-163 41,35 1,316 26,71 1,060 1,000 0,044 0,010 ARF-164 85,12 0,494 5,52 0,010 1,000 0,042 0,040 ARF-163 41,35 1,316 26,71 1,060 1,000 0,010 1,302 ARF-164 85,60 0,050 5,62 0,118 3,724 0,067 0,010	ARF-173	84,19	0,205	12,57	0,013	1,887	0,042	0,037					
ARF-171 82,56 0,115 8,37 0,094 4,668 0,057 0,064 ARF-170 81,61 0.047 6,40 0,355 4,971 0,053 0,010 ARF-169 80,69 0,028 5,17 0,017 4,715 0,060 0,022 ARF-166 88,07 0,088 5,79 0,010 1,896 0,044 0,010 ARF-166 53,29 1,548 29,19 0,712 1,000 0,013 0,920 ARF-166 72,92 0,399 6,52 0,010 1,000 0,044 0,010 ARF-163 41,35 1,316 26,71 1,060 1,000 0,044 0,010 ARF-161 85,60 0,050 5,62 0,118 3,724 0,067 0,010 ARF-158 89,58 0,161 7,57 0,678 1,426 0,024 0,100 ARF-159 80,35 0,261 9,05 0,010 3,430 0,027 0,104	ARF-172	53,70	1,365	35,51	1,864	3,355	0,012	0,845					
ARF-170 81.61 0.047 6.40 0.355 4.971 0.053 0.010 ARF-169 80.69 0.028 5.17 0.017 4.715 0.060 0.022 ARF-168 88.07 0.088 5.79 0.010 1.896 0.044 0.010 ARF-167 54.54 1.750 30.30 1.120 1.000 0.013 0.920 ARF-165 72.92 0.399 6.92 3.868 1.000 0.044 0.010 ARF-164 88.12 0.049 5.52 0.010 1.000 0.044 0.010 ARF-163 41.35 1.316 26.71 1.060 1.000 0.029 1.302 ARF-164 85.60 0.050 5.62 0.118 3.724 0.067 0.010 ARF-159 80.35 0.069 2.17 0.010 1.038 0.010 0.153 ARF-158 89.58 0.161 7.57 0.678 1.426 0.024 0.100	ARF-171	82,56	0,115	8,37	0,094	4,668	0,057	0,064					
ARF-169 80,69 0,028 5,17 0,017 4,715 0,060 0,022 ARF-168 88,07 0,088 5,79 0,010 1,896 0,044 0,010 ARF-167 54,54 1,750 30,30 1,120 1,000 0,013 0,920 ARF-166 53,29 1,548 29,19 0,712 1,000 0,014 0,010 ARF-164 88,12 0,049 5,52 0,010 1,000 0,044 0,010 ARF-163 41,35 1,316 26,71 1,060 1,000 0,010 0,701 ARF-164 85,05 0,220 7,98 0,010 2,110 0,039 0,031 ARF-150 80,35 0,069 2,17 0,010 1,038 0,010 0,153 ARF-158 89,58 0,161 7,57 0,678 1,426 0,024 0,100 ARF-155 47,65 1,597 27,67 1,230 1,000 0,010 0,994	ARF-170	81,61	0,047	6,40	0,355	4,971	0,053	0,010					
ARF-168 88,07 0,088 5,79 0,010 1,896 0,044 0,010 ARF-167 54,54 1,750 30,30 1,120 1,000 0,018 0,903 ARF-166 53,29 1,548 29,19 0,712 1,000 0,013 0,920 ARF-164 88,12 0,049 5,52 0,010 1,000 0,044 0,010 ARF-163 41,35 1,316 26,71 1,060 1,000 0,029 1,302 ARF-161 85,60 0,050 5,62 0,118 3,724 0,067 0,010 ARF-160 85,95 0,220 7,98 0,010 2,110 0,039 0,031 ARF-159 80,35 0,069 2,17 0,010 1,038 0,010 0,153 ARF-158 89,58 0,161 7,57 0,678 1,426 0,027 0,104 ARF-157 83,13 0,261 9,05 0,010 3,410 0,020 0,057	ARF-169	80,69	0,028	5,17	0,017	4,715	0,060	0,022					
ARF-167 54,54 1,750 30,30 1,120 1,000 0,018 0,903 ARF-166 53,29 1,548 29,19 0,712 1,000 0,013 0,920 ARF-165 72,92 0,399 6,92 3,868 1,000 0,042 0,040 ARF-164 88,12 0,049 5,52 0,010 1,000 0,044 0,010 ARF-162 41,35 1,316 26,71 1,060 1,000 0,029 1,302 ARF-161 85,60 0,050 5,62 0,118 3,724 0,067 0,010 ARF-159 80,35 0,069 2,17 0,010 1,038 0,010 0,153 ARF-158 89,58 0,161 7,57 0,678 1,426 0,024 0,100 ARF-156 84,38 0,215 9,47 0,010 3,410 0,027 0,104 ARF-156 84,38 0,215 9,47 0,010 3,400 0,029 0,062	ARF-168	88,07	0,088	5,79	0,010	1,896	0,044	0,010					
ARF-166 53,29 1,548 29,19 0,712 1,000 0,013 0,920 ARF-165 72,92 0,399 6,92 3,868 1,000 0,042 0,040 ARF-164 88,12 0,049 5,52 0,010 1,000 0,044 0,010 ARF-163 41,35 1,316 26,71 1,060 1,000 0,029 1,302 ARF-161 85,60 0,050 5,62 0,118 3,724 0,067 0,010 ARF-159 80,35 0,220 7,98 0,010 2,110 0,039 0,031 ARF-158 89,58 0,161 7,57 0,678 1,426 0,024 0,100 ARF-157 83,13 0,261 9,05 0,010 3,430 0,027 0,104 ARF-156 84,38 0,215 9,47 0,010 3,430 0,027 0,104 ARF-155 47,65 1,597 27,67 1,230 1,000 0,031 0,841	ARF-167	54,54	1,750	30,30	1,120	1,000	0,018	0,903					
ARF-165 72.92 0.399 6.92 3.868 1.000 0.042 0.040 ARF-164 88,12 0.049 5.52 0.010 1.000 0.044 0.010 ARF-163 41,35 1,316 26,71 1,060 1,000 0.010 0,701 ARF-162 41,34 1,373 30,45 1,319 1,000 0.029 1,302 ARF-161 85,60 0.050 5.62 0,118 3,724 0.067 0,010 ARF-150 80,35 0.220 7,98 0.010 2,110 0.039 0.033 ARF-158 89,58 0,161 7,57 0,678 1,426 0,024 0,100 ARF-156 84,38 0,215 9,47 0,010 3,410 0,020 0,057 ARF-154 48,07 1,329 29,86 0.895 1,000 0,031 0,841 ARF-153 83,13 0,178 9,17 0,010 2,403 0,029 0,062	ARF-166	53,29	1,548	29,19	0,712	1,000	0,013	0,920					
ARF-164 88,12 0,049 5,52 0,010 1,000 0,044 0,010 ARF-163 41,35 1,316 26,71 1,060 1,000 0,010 0,701 ARF-162 41,34 1,373 30,45 1,319 1,000 0,029 1,302 ARF-161 85,60 0,050 5,62 0,118 3,724 0,067 0,010 ARF-160 85,95 0,220 7,98 0,010 1,038 0,010 0,153 ARF-159 80,35 0,069 2,17 0,010 1,038 0,010 0,153 ARF-157 83,13 0,261 9,05 0,010 3,430 0,027 0,104 ARF-156 84,38 0,215 9,47 0,010 3,410 0,020 0,057 ARF-153 83,13 0,178 9,17 0,010 2,403 0,029 0,062 ARF-153 83,13 0,178 9,17 0,010 1,876 0,032 0,049	ARF-165	72,92	0,399	6,92	3,868	1,000	0,042	0,040					
ARF-163 41,35 1,316 26,71 1,060 1,000 0,010 0,701 ARF-162 41,34 1,373 30,45 1,319 1,000 0,029 1,302 ARF-161 85,60 0,050 5,62 0,118 3,724 0,067 0,010 ARF-160 85,95 0,220 7,98 0,010 2,110 0,039 0,031 ARF-159 80,35 0,669 2,17 0,010 1,038 0,010 0,153 ARF-158 89,58 0,161 7,57 0,678 1,426 0,024 0,104 ARF-157 83,13 0,215 9,47 0,010 3,430 0,020 0,057 ARF-156 84,38 0,215 9,47 0,010 3,430 0,020 0,057 ARF-154 48,07 1,329 29,86 0,895 1,000 0,031 0,841 ARF-153 83,13 0,178 9,17 0,010 1,876 0,037 0,053	ARF-164	88,12	0,049	5,52	0,010	1,000	0,044	0,010					
ARF-162 41,34 1,373 30,45 1,319 1,000 0,029 1,302 ARF-161 85,60 0,050 5,62 0,118 3,724 0,067 0,010 ARF-160 85,95 0,220 7,98 0,010 2,110 0,039 0,031 ARF-159 80,35 0,069 2,17 0,010 1,038 0,010 0,153 ARF-158 89,58 0,161 7,57 0,678 1,426 0,024 0,100 ARF-156 84,38 0,215 9,47 0,010 3,430 0,027 0,104 ARF-155 47,65 1,597 27,67 1,230 1,000 0,010 0,994 ARF-153 83,13 0,178 9,17 0,010 2,403 0,029 0,062 ARF-151 80,85 0,072 10,51 0,010 1,876 0,037 0,033 ARF-152 86,04 0,051 8,97 0,010 1,876 0,032 0,040	ARF-163	41,35	1,316	26,71	1,060	1,000	0,010	0,701					
ARF-161 85,60 0,050 5,62 0,118 3,724 0,067 0,010 ARF-160 85,95 0,220 7,98 0,010 2,110 0,039 0,031 ARF-159 80,35 0,069 2,17 0,010 1,038 0,010 0,153 ARF-158 89,58 0,161 7,57 0,678 1,426 0,024 0,100 ARF-157 83,13 0,261 9,05 0,010 3,430 0,027 0,104 ARF-156 84,38 0,215 9,47 0,010 3,110 0,020 0,057 ARF-154 48,07 1,329 29,86 0,895 1,000 0,031 0,841 ARF-153 83,13 0,178 9,17 0,010 2,403 0,029 0,062 ARF-151 80,85 0,072 10,51 0,010 1,876 0,037 0,049 ARF-151 80,85 0,072 10,51 0,010 1,876 0,032 0,040	ARF-162	41,34	1,373	30,45	1,319	1,000	0,029	1,302					
ARF-16085,950,2207,980,0102,1100,0390,031ARF-15980,350,0692,170,0101,0380,0100,153ARF-15889,580,1617,570,6781,4260,0240,100ARF-15783,130,2619,050,0103,4300,0270,104ARF-15684,380,2159,470,0103,1100,0200,057ARF-15684,380,2159,470,0103,1100,0200,057ARF-15448,071,32929,860,8951,0000,0100,994ARF-15383,130,1789,170,0102,4030,0290,062ARF-15180,850,07210,510,0101,8760,0370,049ARF-15180,850,07210,510,0101,8760,0320,040ARF-14978,990,19111,840,0101,0000,0270,076ARF-14886,930,0109,570,0101,2020,0310,042ARF-14487,160,0408,630,0101,0000,0250,051ARF-14487,160,0408,630,0101,1160,0170,078ARF-14384,810,7047,600,0102,4160,0460,049ARF-14185,550,0867,480,0101,0000,0350,040ARF-14983,640,7047,600,0102,4	ARF-161	85,60	0,050	5,62	0,118	3,724	0,067	0,010					
ARF-159 80,35 0,069 2,17 0,010 1,038 0,010 0,153 ARF-158 89,58 0,161 7,57 0,678 1,426 0,024 0,100 ARF-157 83,13 0,261 9,05 0,010 3,430 0,027 0,104 ARF-156 84,38 0,215 9,47 0,010 3,110 0,020 0,057 ARF-155 47,65 1,597 27,67 1,230 1,000 0,010 0,994 ARF-153 83,13 0,178 9,17 0,010 2,403 0,029 0,062 ARF-151 80,85 0,072 10,51 0,010 1,876 0,037 0,049 ARF-151 80,85 0,072 10,51 0,010 1,876 0,032 0,040 ARF-149 78,99 0,191 11,84 0,010 1,000 0,027 0,076 ARF-148 86,93 0,010 9,57 0,010 1,000 0,025 0,051	ARF-160	85,95	0,220	7,98	0,010	2,110	0,039	0,031					
ARF-158 89,58 0,161 7,57 0,678 1,426 0,024 0,100 ARF-157 83,13 0,261 9,05 0,010 3,430 0,027 0,104 ARF-156 84,38 0,215 9,47 0,010 3,110 0,020 0,057 ARF-155 47,65 1,597 27,67 1,230 1,000 0,010 0,994 ARF-153 83,13 0,178 9,17 0,010 2,403 0,029 0,062 ARF-151 80,85 0,072 10,51 0,010 1,876 0,037 0,049 ARF-150 79,58 0,098 9,02 0,010 1,876 0,032 0,040 ARF-149 78,99 0,191 11,84 0,010 1,000 0,027 0,076 ARF-148 86,93 0,010 9,57 0,010 1,000 0,025 0,051 ARF-147 90,61 0,050 8,47 0,010 1,000 0,035 0,040	ARF-159	80,35	0,069	2,17	0,010	1,038	0,010	0,153					
ARF-157 83,13 0,261 9,05 0,010 3,430 0,027 0,104 ARF-156 84,38 0,215 9,47 0,010 3,110 0,020 0,057 ARF-155 47,65 1,597 27,67 1,230 1,000 0,010 0,994 ARF-154 48,07 1,329 29,86 0,895 1,000 0,031 0,841 ARF-153 83,13 0,178 9,17 0,010 2,403 0,029 0,062 ARF-151 80,85 0,072 10,51 0,010 1,876 0,037 0,049 ARF-150 79,58 0,098 9,02 0,010 1,876 0,032 0,040 ARF-149 78,99 0,191 11,84 0,010 1,000 0,025 0,076 ARF-148 86,93 0,010 9,57 0,010 1,000 0,025 0,051 ARF-146 90,42 0,169 7,63 0,010 1,000 0,035 0,040	ARF-158	89,58	0,161	7,57	0,678	1,426	0,024	0,100					
ARF-156 84,38 0,215 9,47 0,010 3,110 0,020 0,057 ARF-155 47,65 1,597 27,67 1,230 1,000 0,010 0,994 ARF-154 48,07 1,329 29,86 0,895 1,000 0,031 0,841 ARF-153 83,13 0,178 9,17 0,010 2,403 0,029 0,062 ARF-152 86,04 0,051 8,97 0,010 1,000 0,037 0,049 ARF-151 80,85 0,072 10,51 0,010 1,876 0,032 0,040 ARF-150 79,58 0,098 9,02 0,010 1,876 0,032 0,040 ARF-149 78,99 0,191 11,84 0,010 1,000 0,027 0,076 ARF-148 86,93 0,010 9,57 0,010 1,000 0,025 0,051 ARF-146 90,42 0,169 7,63 0,010 1,000 0,038 0,090	ARF-157	83,13	0,261	9,05	0,010	3,430	0,027	0,104					
ARF-15547,651,59727,671,2301,0000,0100,994ARF-15448,071,32929,860,8951,0000,0310,841ARF-15383,130,1789,170,0102,4030,0290,062ARF-15186,040,0518,970,0101,0000,0370,049ARF-15286,040,0518,970,0101,8760,0370,053ARF-15180,850,07210,510,0101,8760,0320,040ARF-15079,580,0989,020,0101,8760,0320,040ARF-14978,990,19111,840,0101,0000,0270,076ARF-14886,930,0109,570,0102,2020,0370,042ARF-14690,420,1697,630,0101,0000,0350,040ARF-14589,650,0288,300,0101,0000,0350,040ARF-14384,810,7047,600,0102,4160,0460,049ARF-14185,550,0867,480,0101,3430,0330,039ARF-14083,640,0798,170,0103,1870,0310,066ARF-13885,190,0108,130,0103,8390,0520,010	ARF-156	84,38	0,215	9,47	0,010	3,110	0,020	0,057					
ARF-15448,071,32929,860,8951,0000,0310,841ARF-15383,130,1789,170,0102,4030,0290,062ARF-15286,040,0518,970,0101,0000,0370,049ARF-15180,850,07210,510,0101,8760,0370,053ARF-15079,580,0989,020,0101,8760,0320,040ARF-14978,990,19111,840,0101,0000,0270,076ARF-14886,930,0109,570,0102,2020,0370,042ARF-14690,420,1697,630,0101,0000,0250,051ARF-14690,420,1697,630,0101,0000,0350,040ARF-14384,810,7047,600,0101,1160,0170,078ARF-14384,810,7047,600,0102,4160,0460,049ARF-14185,550,0867,480,0101,3430,0330,039ARF-14083,640,0798,170,0103,8390,0520,010ARF-13885,190,0108,130,0103,8390,0520,010	ARF-155	47,65	1,597	27,67	1,230	1,000	0,010	0,994					
ARF-153 83,13 0,178 9,17 0,010 2,403 0,029 0,062 ARF-152 86,04 0,051 8,97 0,010 1,000 0,037 0,049 ARF-151 80,85 0,072 10,51 0,010 1,876 0,037 0,053 ARF-150 79,58 0,098 9,02 0,010 1,876 0,032 0,040 ARF-149 78,99 0,191 11,84 0,010 1,000 0,027 0,076 ARF-148 86,93 0,010 9,57 0,010 1,000 0,025 0,051 ARF-147 90,61 0,050 8,47 0,010 1,000 0,025 0,051 ARF-146 90,42 0,169 7,63 0,010 1,000 0,038 0,090 ARF-145 89,65 0,028 8,30 0,010 1,000 0,035 0,040 ARF-143 84,81 0,704 7,60 0,010 1,116 0,017 0,078	ARF-154	48,07	1,329	29,86	0,895	1,000	0,031	0,841					
ARF-15286,040,0518,970,0101,0000,0370,049ARF-15180,850,07210,510,0101,8760,0370,053ARF-15079,580,0989,020,0101,8760,0320,040ARF-14978,990,19111,840,0101,0000,0270,076ARF-14886,930,0109,570,0102,2020,0370,042ARF-14790,610,0508,470,0101,0000,0250,051ARF-14690,420,1697,630,0101,0000,0380,090ARF-14589,650,0288,300,0101,0000,0350,040ARF-14487,160,0408,630,0101,1160,0170,078ARF-14384,810,7047,600,0102,4160,0460,049ARF-14285,360,1217,320,0101,3430,0330,039ARF-14083,640,0798,170,0101,6480,0370,039ARF-13983,710,12410,570,0103,1870,0310,066ARF-13885,190,0108,130,0103,8390,0520,010	ARF-153	83,13	0,178	9,17	0,010	2,403	0,029	0,062					
ARF-15180,850,07210,510,0101,8760,0370,053ARF-15079,580,0989,020,0101,8760,0320,040ARF-14978,990,19111,840,0101,0000,0270,076ARF-14886,930,0109,570,0102,2020,0370,042ARF-14790,610,0508,470,0101,0000,0250,051ARF-14690,420,1697,630,0101,0000,0380,090ARF-14589,650,0288,300,0101,0000,0350,040ARF-14487,160,0408,630,0101,1160,0170,078ARF-14384,810,7047,600,0102,4160,0460,049ARF-14185,550,0867,480,0101,3430,0330,039ARF-14083,640,0798,170,0101,6480,0370,039ARF-13885,190,0108,130,0103,8390,0520,010	ARF-152	86,04	0,051	8,97	0,010	1,000	0,037	0,049					
ARF-15079,580,0989,020,0101,8760,0320,040ARF-14978,990,19111,840,0101,0000,0270,076ARF-14886,930,0109,570,0102,2020,0370,042ARF-14790,610,0508,470,0101,0000,0250,051ARF-14690,420,1697,630,0101,0000,0380,090ARF-14589,650,0288,300,0101,0000,0350,040ARF-14487,160,0408,630,0101,1160,0170,078ARF-14384,810,7047,600,0102,4160,0460,049ARF-14185,550,0867,480,0101,3430,0330,039ARF-14083,640,0798,170,0101,6480,0370,039ARF-13885,190,0108,130,0103,8390,0520,010	ARF-151	80,85	0,072	10,51	0,010	1,876	0,037	0,053					
ARF-14978,990,19111,840,0101,0000,0270,076ARF-14886,930,0109,570,0102,2020,0370,042ARF-14790,610,0508,470,0101,0000,0250,051ARF-14690,420,1697,630,0101,0000,0380,090ARF-14589,650,0288,300,0101,0000,0350,040ARF-14384,810,7047,600,0101,1160,0170,078ARF-14384,810,7047,600,0102,4160,0460,049ARF-14185,550,0867,480,0101,3430,0330,039ARF-14083,640,0798,170,0101,6480,0370,039ARF-13885,190,0108,130,0103,8390,0520,010	ARF-150	79,58	0,098	9,02	0,010	1,876	0,032	0,040					
ARF-148 86,93 0,010 9,37 0,010 2,202 0,037 0,042 ARF-147 90,61 0,050 8,47 0,010 1,000 0,025 0,051 ARF-146 90,42 0,169 7,63 0,010 1,000 0,038 0,090 ARF-145 89,65 0,028 8,30 0,010 1,000 0,035 0,040 ARF-144 87,16 0,040 8,63 0,010 1,000 0,035 0,040 ARF-143 84,81 0,704 7,60 0,010 1,116 0,017 0,078 ARF-142 85,36 0,121 7,32 0,010 2,884 0,052 0,014 ARF-141 85,55 0,086 7,48 0,010 1,343 0,033 0,039 ARF-140 83,64 0,079 8,17 0,010 1,648 0,031 0,066 ARF-138 85,19 0,010 8,13 0,010 3,839 0,052 0,010 <th>ARF-149</th> <th>78,99</th> <th>0,191</th> <th>0.57</th> <th>0,010</th> <th>1,000</th> <th>0,027</th> <th>0,076</th>	ARF-149	78,99	0,191	0.57	0,010	1,000	0,027	0,076					
ARF-147 90,61 0,030 8,47 0,010 1,000 0,023 0,031 ARF-146 90,42 0,169 7,63 0,010 1,000 0,023 0,031 ARF-146 90,42 0,169 7,63 0,010 1,000 0,038 0,090 ARF-145 89,65 0,028 8,30 0,010 1,000 0,035 0,040 ARF-144 87,16 0,040 8,63 0,010 1,116 0,017 0,078 ARF-143 84,81 0,704 7,60 0,010 2,416 0,046 0,049 ARF-142 85,36 0,121 7,32 0,010 2,884 0,052 0,014 ARF-141 85,55 0,086 7,48 0,010 1,343 0,033 0,039 ARF-140 83,64 0,079 8,17 0,010 1,648 0,037 0,039 ARF-139 83,71 0,124 10,57 0,010 3,187 0,031 0,066	ARF-148	00,95	0,010	9,37	0,010	2,202	0,037	0,042					
ARF-146 90,42 0,109 7,03 0,010 1,000 0,033 0,090 ARF-145 89,65 0,028 8,30 0,010 1,000 0,035 0,040 ARF-144 87,16 0,040 8,63 0,010 1,116 0,017 0,078 ARF-143 84,81 0,704 7,60 0,010 2,416 0,046 0,049 ARF-142 85,36 0,121 7,32 0,010 2,884 0,052 0,014 ARF-141 85,55 0,086 7,48 0,010 1,343 0,033 0,039 ARF-140 83,64 0,079 8,17 0,010 1,648 0,037 0,039 ARF-139 83,71 0,124 10,57 0,010 3,187 0,031 0,066 ARF-138 85,19 0,010 8,13 0,010 3,839 0,052 0,010	ARF-14/	90,01	0,030	0,47 7.62	0,010	1,000	0,023	0,031					
ARF-145 89,03 0,028 8,30 0,010 1,000 0,033 0,040 ARF-144 87,16 0,040 8,63 0,010 1,116 0,017 0,078 ARF-143 84,81 0,704 7,60 0,010 2,416 0,046 0,049 ARF-142 85,36 0,121 7,32 0,010 2,884 0,052 0,014 ARF-141 85,55 0,086 7,48 0,010 1,343 0,033 0,039 ARF-140 83,64 0,079 8,17 0,010 1,648 0,037 0,039 ARF-139 83,71 0,124 10,57 0,010 3,187 0,031 0,066 ARF-138 85,19 0,010 8,13 0,010 3,839 0,052 0,010	ARF-146	90,42	0,109	7,03 8 20	0,010	1,000	0,038	0,090					
ARF-144 87,10 0,040 8,03 0,010 1,110 0,017 0,078 ARF-143 84,81 0,704 7,60 0,010 2,416 0,046 0,049 ARF-142 85,36 0,121 7,32 0,010 2,884 0,052 0,014 ARF-141 85,55 0,086 7,48 0,010 1,343 0,033 0,039 ARF-140 83,64 0,079 8,17 0,010 1,648 0,037 0,039 ARF-139 83,71 0,124 10,57 0,010 3,187 0,031 0,066 ARF-138 85,19 0,010 8,13 0,010 3,839 0,052 0,010	ARF-145	89,03 87.16	0,028	8,30	0,010	1,000	0,035	0,040					
ARF-143 84,81 0,704 7,60 0,010 2,410 0,040 0,049 ARF-142 85,36 0,121 7,32 0,010 2,884 0,052 0,014 ARF-141 85,55 0,086 7,48 0,010 1,343 0,033 0,039 ARF-140 83,64 0,079 8,17 0,010 1,648 0,037 0,039 ARF-139 83,71 0,124 10,57 0,010 3,187 0,031 0,066 ARF-138 85,19 0,010 8,13 0,010 3,839 0,052 0,010	ARF-144	87,10	0,040	8,03 7,60	0,010	2.416	0,017	0,078					
ARF-142 35,50 0,121 7,52 0,010 2,884 0,052 0,014 ARF-141 85,55 0,086 7,48 0,010 1,343 0,033 0,039 ARF-140 83,64 0,079 8,17 0,010 1,648 0,037 0,039 ARF-139 83,71 0,124 10,57 0,010 3,187 0,031 0,066 ARF-138 85,19 0,010 8,13 0,010 3,839 0,052 0,010	ARF-143	04,01 85.36	0,704	7,00	0,010	2,410	0,040	0,049					
ARF-141 55,55 5,666 7,46 6,010 1,545 6,055 6,059 ARF-140 83,64 0,079 8,17 0,010 1,648 0,037 0,039 ARF-139 83,71 0,124 10,57 0,010 3,187 0,031 0,066 ARF-138 85,19 0,010 8,13 0,010 3,839 0,052 0,010	AKF-142	85 55	0,121	7.48	0.010	1 3/3	0,032	0,014					
ARF-140 35,04 0,077 3,17 0,010 1,048 0,057 0,039 ARF-139 83,71 0,124 10,57 0,010 3,187 0,031 0,066 ARF-138 85,19 0,010 8,13 0,010 3,839 0,052 0,010	AKF-141	83.64	0,000	/,40 8.17	0,010	1,343	0,035	0,039					
ARF-139 05,71 0,124 10,57 0,010 5,187 0,051 0,000 ARF-138 85,19 0,010 8,13 0,010 3,839 0,052 0,010	AKF-140	83 71	0.124	10.57	0.010	3 187	0,037	0,039					
ART-130 03,17 0,010 0,13 0,010 3,037 0,032 0,010	AKT-139 ADE 129	85 10	0,124	8.13	0.010	3,107	0.052	0,000					
ADE 137 89.53 0.187 6.82 0.010 2.977 0.046 0.010	ARF-130 ADE 127	89.53	0.187	6.87	0.010	2,977	0.046	0.010					

ELEMENTOS MAYORITARIOS (continuación)												
Muestra	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	CaO	K ₂ O					
ARF-136	86,92	0,185	8,57	0,010	2,451	0,020	0,098					
ARF-135	85,51	0,445	7,23	0,010	1,367	0,031	0,109					
ARF-134	78,69	0,092	11,94	0,010	2,540	0,022	0,149					
ARF-133	84,72	0,080	8,48	0,010	1,000	0,030	0,111					
ARF-132	83,37	0,020	8,30	0,010	1,000	0,032	0,038					
ARF-131	87,38	0,122	7,72	0,010	3,834	0,046	0,035					
ARF-130	83,54	0,050	7,65	0,010	1,000	0,038	0,032					
ARF-129	82,93	0,061	9,18	0,010	1,000	0,037	0,066					
ARF-128	85,03	0,090	7,16	0,010	1,000	0,033	0,056					
ARF-127	88,23	0,080	8,57	0,010	1,000	0,019	0,083					
ARF-126	84,66	0,114	8,72	0,010	4,420	0,031	0,010					
ARF-125	79,78	0,070	7,05	0,010	1,000	0,027	0,073					
ARF-124	81,53	0,160	7,97	0,010	1,000	0,033	0,010					
ARF-123	72,43	0,072	6,65	0,010	1,000	0,017	0,120					
ARF-122	80,65	0,335	7,94	0,010	4,364	0,035	0,050					
ARF-121	79,89	0,206	8,93	0,010	1,000	0,031	0,093					
ARF-120	86,30	0,028	7,75	0,010	2,577	0,044	0,010					
ARF-119	86,54	0,017	6,95	0,010	4,390	0,043	0,010					
ARF-118	83,95	0,118	7,57	0,010	5,227	0,048	0,010					
ARF-117	83,52	0,136	8,93	0,010	2,789	0,040	0,010					
ARF-116	76,76	1,288	10,88	0,010	1,000	0,035	0,103					
ARF-115	84,32	0,391	7,88	0,010	3,608	0,029	0,010					
ARF-114	86,90	0,029	7,35	0,010	3,781	0,049	0,010					
ARF-113	84,91	0,097	8,36	0,010	4,483	0,036	0,011					
ARF-112	83,62	0,169	7,21	0,010	1,000	0,044	0,064					
ARF-111	84,03	0,625	7,44	0,010	1,000	0,019	0,187					
ARF-110	57,81	2,020	20,18	0,412	1,000	0,028	1,560					
ARF-109	52,37	1,761	25,21	2,806	1,000	0,022	1,884					
ARF-108	68,86	0,626	16,24	0,012	1,000	0,021	0,713					
ARF-107	62,06	1,068	20,62	0,320	1,000	0,018	1,483					
ARF-106	82,80	0,052	/,61	0,010	1,000	0,024	0,084					
ARF-105	89,45	0,104	6,99	0,010	1,000	0,020	0,091					
ARF-104	84,12	0,108	8,04	0,010	2,772	0,041	0,060					
ARF-103	85,58	0,045	6,41	0,010	1,000	0,032	0,050					
ARF-102	81,95	0,208	7,80	0,010	1,000	0,027	0,147					
ARF-101	00,09	0,041	0,80	0,010	1,000	0,023	0,125					
ARF-100	85,43	0,069	7,93	0,010	1,000	0,023	0,096					
AKF-99	90,07	0,105	0,34	0,010	1,000	0,012	0,155					
AKF-98	0J,1J 87.94	0,085	7,51 874	0,010	2,600	0,017	0,131					
АКГ-У/	02,84 83.50	0,149	0,74	0,010	2,009	0,021	0,172					
AKF-96	85 70	0,038	9,40	0,010	2,490	0,029	0.137					
AKT-95	80.12	0.188	7.05	0.010	1,000	0.031	0,137					
ART-94	01.02	0.177	6.86	0.010	1,000	0.035	0.086					
AKI-93	11,70	0,177	0,00	0,010	1,000	0,055	0,000					

ELEMENTOS MAYORITARIOS (continuación)												
Muestra	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	CaO	K ₂ O					
ARF-92	88,25	0,087	9,23	0,010	1,121	0,032	0,101					
ARF-91	83,59	0,068	9,07	0,010	1,000	0,019	0,104					
ARF-90	86,93	0,217	6,85	0,010	1,000	0,034	0,087					
ARF-89	88,83	0,289	8,83	0,010	1,000	0,017	0,199					
ARF-88	85,00	0,240	9,05	0,010	1,000	0,010	0,260					
ARF-87	85,75	0,168	8,36	0,010	1,736	0,015	0,121					
ARF-86	90,26	0,052	8,51	0,010	1,000	0,027	0,085					
ARF-85	84,98	0,286	6,70	0,010	2,999	0,029	0,111					
ARF-84	87,08	0,074	7,56	0,010	2,100	0,012	0,103					
ARF-83	87,83	0,133	7,71	0,010	1,000	0,034	0,086					
ARF-82	86,40	0,442	8,08	0,010	1,000	0,027	0,158					
ARF-82-A	85,43	0,196	7,71	0,010	1,179	0,022	0,091					
ARF-81	85,62	0,148	8,79	0,010	1,000	0,010	0,168					
ARF-80	87,68	0,226	7,95	0,010	1,000	0,018	0,214					
ARF-79	82,39	0,193	6,89	0,010	1,108	0,045	0,098					
ARF-77-78	88,57	0,296	6,60	0,010	1,000	0,024	0,130					
ARF-76	83,80	0,160	8,01	0,010	2,810	0,024	0,132					
ARF-75	83,95	0,190	7,32	0,010	3,110	0,020	0,132					
ARF-74	86,63	0,456	7,66	0,010	1,000	0,032	0,087					
ARF-73	83,53	0,577	10,57	0,010	1,520	0,013	0,410					
ARF-72	86,60	0,132	8,11	0,010	1,000	0,012	0,188					
ARF-71	87,63	0,229	7,75	0,010	1,000	0,041	0,109					
ARF-70	83,44	0,056	7,79	0,010	2,501	0,031	0,039					
ARF-69	86,37	0,099	6,29	0,010	2,651	0,044	0,038					
ARF-68	81,83	0,059	7,40	0,010	6,526	0,058	0,020					
ARF-67	87,52	0,026	7,25	0,010	1,000	0,043	0,012					
ARF-67-A	52,95	1,398	32,75	0,828	1,720	0,025	1,818					
ARF-66	53,86	1,244	23,76	0,665	1,000	0,016	2,062					
ARF-65	86,64	0,144	8,85	0,010	2,792	0,015	0,259					
ARF-64	02,00	0,807	7.10	0,399	1,000	0,012	0,795					
ARF-63	00,23 76,69	0,331	7,10	0,010	1,000	0,028	0,140					
ARF-62	70,08 87.31	0,139	8 30	0,010	1,000	0,028	0,080					
ARF-01	85.00	0,070	7 38	0,010	3 186	0,043	0,073					
ARF-00	85.23	0,520	7,58	0,010	2 186	0,031	0,121					
ARF-59	85.16	0.287	6.93	0,010	2,100	0.023	0,052					
ARF-58	8/ 01	0,207	7.26	0,010	5 672	0,023	0,133					
ARF-57	80.65	0.221	6.52	0,010	4 123	0.037	0.030					
ARF-50 APE 55	86 77	0.133	6.72	0,010	2,075	0.035	0.094					
ARF-55 ARF_54	87.88	0.228	6.74	0.010	1,000	0.030	0.064					
ARE 52	82.77	0.153	5.69	0.010	2,177	0.033	0.062					
ARE-57	88.98	0.073	6.58	0.010	2.313	0.045	0.040					
ARF-51	87.84	0.028	6,14	0.010	1.000	0.033	0.050					
ARF-50	85,49	0,015	7,53	0,533	5,220	0,044	0,034					

ELEMENTOS MAYORITARIOS (continuación)												
Muestra	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	CaO	K ₂ O					
ARF-49	79,51	0,096	4,90	0,236	1,000	0,017	0,117					
ARF-48	74,34	0,270	8,03	0,061	1,000	0,020	0,157					
ARF-47	88,73	0,011	6,55	0,010	2,834	0,047	0,017					
ARF-46	65,02	0,804	16,08	2,116	1,000	0,033	2,598					
ARF-45	60,46	0,417	13,39	1,423	1,000	0,037	1,505					
ARF-44	66,18	0,557	10,53	0,583	1,000	0,030	0,887					
ARF-43	88,01	0,116	6,32	0,010	4,272	0,037	0,049					
ARF-42	88,59	0,023	6,22	0,010	1,802	0,041	0,014					
ARF-41	90,60	0,018	5,50	0,010	1,000	0,043	0,021					
ARF-40	85,96	0,126	6,91	0,010	5,404	0,031	0,024					
ARF-39	86,17	0,113	7,49	0,029	2,585	0,025	0,080					
ARF-38	90,62	0,138	5,78	0,010	1,000	0,045	0,080					
ARF-37	88,10	0,019	5,56	0,010	1,000	0,025	0,095					
ARF-36	87,30	0,113	6,17	0,010	1,000	0,040	0,082					
ARF-35	90,34	0,060	4,73	0,045	2,008	0,045	0,075					
ARF-34	90,93	0,107	5,55	0,010	1,000	0,019	0,116					
ARF-33	85,68	0,158	5,42	0,070	3,959	0,032	0,069					
ARF-32	88,08	0,023	3,19	0,158	1,000	0,043	0,063					
ARF-31	87,71	0,020	5,80	0,010	1,000	0,039	0,041					
ARF-30	78,93	0,093	6,08	0,010	1,043	0,025	0,113					
ARF-29	83,70	0,171	5,14	0,010	1,178	0,031	0,060					
ARF-28	83,85	0,027	4,89	0,010	1,574	0,049	0,046					
ARF-27	86,10	0,113	5,03	0,010	2,165	0,048	0,064					
ARF-26	45,96	1,450	26,20	0,648	1,000	0,011	1,592					
ARF-25	87,91	0,259	7,34	0,085	1,434	0,029	0,200					
ARF-24-A	45,73	2,174	26,02	0,884	1,000	0,026	0,459					
ARF-24	81,84	0,317	9,49	0,010	1,000	0,013	0,202					
ARF-23	57,42	1,832	26,52	0,276	1,000	0,032	0,355					
ARF-22	68,90	1,791	20,48	0,350	1,000	0,012	0,990					
ARF-21	81,02	0,442	8,53	0,210	1,000	0,014	0,516					
ARF-20	48,20	1,470	23,14	1,684	1,000	0,031	2,948					
ARF-19	37,63	1,464	24,81	1,245	1,000	0,050	4,260					
ARF-18	62,84	0,498	11,70	2,137	1,000	0,010	1,133					
ARF-17	88,49	0,035	6,20	0,215	1,000	0,029	0,090					
ARF-16	86,09	0,083	7,27	0,255	3,898	0,038	0,031					
ARF-15	91,08	0,039	6,22	0,010	1,000	0,048	0,067					
ARF-14	89,50	0,317	6,13	0,011	2,170	0,023	0,147					
ARF-13	80,39	0,227	5,52	0,010	1,482	0,038	0,046					
ARF-12	80,56	0,157	6,10	0,011	1,000	0,035	0,093					
AKF-11	80,72	0,073	0,84 5.40	0,010	1,000	0,036	0,039					
ARF-10	09,12 84.77	0,015	5,49	0,010	1,000	0,038	0,052					
AKF-09	04,//	0,330	5,29	0,5/1	1,028	0,022	0,030					
AKF-08	80,27	0,010	0,38	0,010	1,307	0,040	0,046					
ARF-07	88,83	0,056	6,16	0,112	2,871	0,030	0,065					

ELEMENTOS MAYORITARIOS (continuación)												
Muestra	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	CaO	K ₂ O					
ARF-06	88,48	0,017	5,34	0,116	2,528	0,042	0,057					
ARF-05	70,63	0,010	3,32	13,488	1,000	0,017	0,051					
ARF-04	85,92	0,296	7,67	0,010	2,274	0,017	0,212					
ARF-03	64,11	1,214	18,72	2,26	1,000	0,021	2,395					
ARF-02	50,74	1,699	24,04	2,161	1,000	0,051	3,808					
ARF-01	ARF-01 84,03 0,173 9,75 0,010 2,297 0,018 0,260											

ELEMENTOS TRAZA (representados en partes por millón ppm)													
Muestra	V	Co	Ni	Cu	Zn	As	Se	Rb	Sr	Zr	Ba	La	Hg
ARF-180	41	1739	20	20	284	86	5	13	15	21	10	10	201
ARF-179	30	378	47	20	453	133	5	4	5	10	10	10	307
ARF-178	95	8384	20	20	229	68	5	4	5	12	10	10	157
ARF-177	30	114	79	20	696	210	5	4	5	10	10	10	466
ARF-176	465	5280	20	115	30	10	5	86	160	130	215	97	49
ARF-175	30	295	65	78	399	129	5	4	5	10	10	10	280
ARF-174	30	130	69	151	325	103	5	4	5	10	10	10	232
ARF-173	30	762	79	89	343	106	5	4	5	13	10	10	238
ARF-172	146	8576	20	69	82	23	5	94	94	136	151	84	79
ARF-171	33	961	41	58	195	63	5	4	5	10	10	10	148
ARF-170	30	1970	62	79	348	105	5	4	5	10	10	10	244
ARF-169	30	65	126	400	253	10	35	5	5	56	10	10	123
ARF-168	102	176	80	348	330	100	5	29	7	158	10	10	227
ARF-167	519	4867	70	228	53	11	5	104	111	345	165	79	151
ARF-166	345	20	56	57	47	10	5	95	82	421	119	52	10
ARF-165	86	197	201	254	163	10	22	4	10	1060	10	10	75
ARF-164	30	34	49	328	211	10	27	4	6	79	10	10	98
ARF-163	289	20	177	68	139	10	5	87	113	376	181	69	12
ARF-162	414	20	221	57	205	10	5	162	161	205	310	107	7
ARF-161	87	66	84	324	218	10	28	4	5	36	10	10	99
ARF-160	56	50	155	299	201	10	24	4	19	264	10	10	91
ARF-159	104	48	133	236	158	10	20	8	28	273	10	10	74
ARF-158	48	58	20	146	109	10	14	6	25	168	10	24	46
ARF-157	62	45	213	275	178	10	23	8	16	456	10	10	79
ARF-156	30	32	208	202	127	10	17	7	12	201	10	10	59
ARF-155	318	20	249	49	53	10	5	98	108	340	202	81	8
ARF-154	393	03	237	03	69	10	6	88	111	411	144	91	
ARF-153	30	51	159	201	133	10	20	4	12	164	10	10	63
ARF-152	30	58	131	300	140	10	22	4	8	100	10	10	82
ARF-151	20	20	110	225	148	10	20	4	9	05	10	10	67
ARF-150	20	20	120	210	144	10	21	9	10	270	10	10	79
ARF-149	30	20	120	217	164	10	10	3	0	42	10	10	70
ARF-148	30	58	100	3/0	248	10	27	4	9 6	42 81	10	10	100
ARF-14/	30	51	156	285	240	10	27	4	13	122	10	10	86
ARF-140	98	33	52	191	143	10	15	4	5	74	10	10	69
ARF-145	60	51	20	309	220	10	27	4	9	80	10	10	95
ARI'-144 ADE 142	161	31	186	244	155	10	15	7	15	514	10	10	72
ART-145 ADE 142	28	85	85	357	256	10	32	4	5	157	10	10	118
ART-142 ADE 1/1	50	37	130	246	160	10	18	4	9	65	10	10	77
ART-141 ADE 140	28	30	113	219	155	10	19	4	8	96	10	10	68
ARF-140 ARF 120	30	58	93	278	188	10	22	4	18	123	10	10	82
ARF-139	30	49	233	2.97	187	10	26	4	10	48	10	10	86
ARF-137	30	64	20	389	255	10	37	4	8	242	10	10	120

ELEMENTOS TRAZA (continuación)													
Muestra	V	Co	Ni	Cu	Zn	As	Se	Rb	Sr	Zr	Ba	La	Hg
ARF-136	32	31	20	237	159	10	22	6	15	171	10	10	72
ARF-135	86	41	43	271	169	10	26	7	11	245	10	10	74
ARF-134	36	35	148	175	120	10	17	8	9	107	10	10	53
ARF-133	90	52	200	300	188	10	30	9	9	85	10	10	91
ARF-132	48	56	146	296	193	10	27	4	7	65	10	10	85
ARF-131	30	20	102	195	135	10	15	4	14	141	10	10	63
ARF-130	30	42	198	302	193	10	27	4	10	72	10	10	91
ARF-129	32	20	79	247	153	10	20	4	12	35	10	10	69
ARF-128	125	85	20	286	195	10	25	4	11	79	10	10	88
ARF-127	106	60	167	272	196	10	25	4	6	83	10	10	85
ARF-126	30	57	77	396	264	10	33	4	7	80	10	10	120
ARF-125	58	47	109	308	210	10	29	4	7	66	10	10	94
ARF-124	30	49	20	230	159	10	20	4	7	186	10	10	70
ARF-123	95	79	20	300	202	10	26	4	5	52	10	10	90
ARF-122	54	29	114	223	168	10	23	6	41	170	10	10	80
ARF-121	30	68	134	315	207	10	27	11	36	182	10	10	101
ARF-120	30	46	166	287	202	10	24	4	5	64	10	10	87
ARF-119	30	35	20	288	193	10	25	4	5	41	10	10	84
ARF-118	30	20	142	257	180	10	22	4	7	128	10	10	88
ARF-117	30	40	180	326	213	10	28	4	6	118	10	10	94
ARF-116	30	70	163	304	205	10	27	17	32	923	38	30	91
ARF-115	30	42	20	268	183	10	23	6	7	218	10	10	83
ARF-114	30	53	141	263	171	10	24	4	5	46	10	10	79
ARF-113	30	67	120	342	218	10	30	4	25	212	10	48	102
ARF-112	145	57	98	326	220	10	25	4	7	76	10	10	99
ARF-111	42	20	167	186	114	10	14	11	24	730	10	10	46
ARF-110	206	20	72	55	34	10	5	103	54	811	196	36	14
ARF-109	462	161	254	41	45	10	5	150	77	514	224	56	14
ARF-108	266	20	135	150	110	10	14	39	56 25	389	92	73	46
ARF-107	260	20	223	8/	/0	10	10	80	35	529	124	34	30
ARF-106	129	70	207	214	199	10	28	4	10	29	10	19	91
ARF-105	128	19	85 20	201	194	10	27	4	10	00	10	10	90
ARF-104	- 69 - 20	27	20	201	105	10	22	4	0	25	10	10	80
ARF-103	74	37 18	158	272	1/0	10	25	4	8	300	10	10	09
ARF-102	30	40	20	269	190	10	23	4	0 5	58	10	10	90
ARF-101	31	20	02	105	139	10	18	4	5	73	10	10	67
ARF-100	30	42	92	241	150	10	20	5	7	15	10	10	73
AKF-99	1/17	42 20	170	241	154	10	16	1	, 5	4.5	10	10	70
AKF-98	50	20	18/	230	134	10	17	-+	8	46	10	10	60
ARF-9/	30	56	116	213	193	10	24	4	8	-+0 67	10	10	80
AKF-90	30	60	188	303	195	10	24	-+ 	9	52	10	10	92
ARF-95	8/	74	112	262	178	10	22		6	124	10	10	81
ARF-94	138	70	103	305	209	10	20	4	5	109	10	10	03
АКГ-УЭ	150	,0	105	505	207	10	2)		5	107	10	10	,5

ELEMENTOS TRAZA (continuación)													
Muestra	V	Со	Ni	Cu	Zn	As	Se	Rb	Sr	Zr	Ba	La	Hg
ARF-92	30	34	188	209	134	10	16	4	12	87	10	10	63
ARF-91	85	30	20	195	139	10	17	4	12	81	10	10	60
ARF-90	112	52	67	275	174	10	24	6	8	217	10	10	79
ARF-89	40	57	169	263	171	10	24	12	14	212	10	10	78
ARF-88	73	36	120	246	165	10	20	13	12	188	10	10	69
ARF-87	30	37	140	266	180	10	27	5	8	130	10	10	82
ARF-86	52	36	150	240	164	10	22	4	6	88	10	10	71
ARF-85	30	61	184	319	212	10	30	6	11	626	10	10	94
ARF-84	30	51	61	335	224	10	24	4	9	58	10	10	102
ARF-83	30	20	20	206	143	10	16	4	7	146	10	10	63
ARF-82	78	20	20	158	114	10	14	9	10	355	10	10	55
ARF-82-A	88	64	20	343	245	10	30	4	5	106	10	10	105
ARF-81	71	20	127	223	162	10	18	5	8	104	10	10	77
ARF-80	99	31	90	301	207	10	26	8	6	131	24	10	96
ARF-79	56	53	104	338	221	10	28	4	5	136	10	10	100
ARF-77-78	144	20	180	184	122	10	13	6	9	212	10	10	58
ARF-76	34	73	181	265	191	10	25	5	7	163	10	10	87
ARF-75	107	50	20	283	213	10	27	4	5	794	10	10	95
ARF-74	30	20	237	160	104	10	13	25	75	485	48	125	48
ARF-73	336	20	55	230	162	10	18	5	5	38	10	10	70
ARF-72	30	20	167	154	106	10	16	9	7	87	10	10	47
ARF-71	30	35	162	223	147	10	19	6	10	129	10	10	66
ARF-70	30	39	54	253	176	10	25	4	8	49	10	10	79
ARF-69	32	40	153	245	169	10	21	4	7	25	10	10	72
ARF-68	61	65	107	345	238	10	29	4	5	87	10	10	106
ARF-67	89	20	112	222	146	10	22	4	6	58	10	10	65
ARF-67-A	313	20	197	57	44	10	5	154	43	485	198	31	12
ARF-66	355	80	96	106	80	10	5	153	57	510	193	80	36
ARF-65	79	39	272	188	118	10	17	14	11	84	10	10	57
ARF-64	37	20	88	156	113	10	14	52	13	834	56	10	47
ARF-63	60	20	87	222	143	10	19	10	10	520	10	10	64
ARF-62	30	78	20	286	198	10	24	4	6	118	10	22	94
ARF-61	73	70	20	316	210	10	27	5	7	58	10	10	97
ARF-60	30	99	77	258	174	10	22	6	10	279	10	10	79
ARF-59	30	75	20	303	197	10	26	4	5	47	10	10	94
ARF-58	230	20	138	218	138	10	18	11	9	281	10	10	62
ARF-57	30	68	91	317	221	10	26	4	6	110	10	10	101
ARF-56	63	48	20	275	182	10	23	4	5	152	10	10	86
ARF-55	48	59	119	309	213	10	51	5	6	1/1	10	10	101
ARF-54	75	58	20	341	215	10	34	4	5	122	10	10	101
ARF-53	64	90	111	372	240	10	33	4	5	140	10	10	112
ARF-52	35	20	20	270	186	10	24	4	5	85	10	10	1/2
ARF-51	30	71	138	339	222	10	27	4	5	36	10	10	102
ARF-50	66	70	147	308	193	10	27	4	5	90	10	10	94

ELEMENTOS TRAZA (continuación)													
Muestra	V	Со	Ni	Cu	Zn	As	Se	Rb	Sr	Zr	Ba	La	Hg
ARF-49	30	41	20	303	195	10	27	4	5	54	10	10	90
ARF-48	130	51	20	288	215	10	26	6	13	151	10	10	91
ARF-47	30	81	52	323	225	10	26	4	5	61	10	10	104
ARF-46	70	84	96	49	51	10	5	153	62	579	61	31	20
ARF-45	30	20	20	158	116	10	14	82	53	229	58	41	49
ARF-44	40	20	166	180	117	10	15	62	141	539	172	26	54
ARF-43	30	60	20	294	195	10	23	4	8	135	10	10	88
ARF-42	47	99	66	444	282	10	36	4	8	26	10	10	132
ARF-41	47	76	20	251	174	10	17	4	11	20	10	10	73
ARF-40	54	56	115	273	198	10	23	4	7	21	10	10	87
ARF-39	30	42	113	250	167	10	21	6	10	131	10	10	72
ARF-38	30	62	164	327	208	10	34	4	5	79	10	10	98
ARF-37	30	58	83	374	238	10	30	4	5	10	10	10	113
ARF-36	64	67	79	360	249	10	31	4	5	14	10	10	113
ARF-35	30	44	201	247	144	10	23	4	5	10	10	10	69
ARF-34	135	40	20	381	239	10	32	4	5	122	10	10	112
ARF-33	96	36	59	279	177	10	23	4	6	38	10	10	81
ARF-32	32	105	20	506	334	10	42	4	5	11	10	10	148
ARF-31	103	20	96	273	191	10	24	4	7	20	10	10	77
ARF-30	30	20	167	183	114	10	13	4	6	40	10	10	52
ARF-29	64	54	20	266	170	10	25	4	7	52	10	10	75
ARF-28	30	99	20	459	311	10	41	4	5	62	10	10	146
ARF-27	120	43	117	286	190	10	24	4	5	57	10	10	86
ARF-26	498	72	101	85	75	10	8	124	87	953	131	82	21
ARF-25	94	91	20	418	278	10	37	10	57	475	69	80	127
ARF-24-A	448	70	158	63	50	10	5	43	44	566	65	34	18
ARF-24	30	69	116	278	190	10	23	12	11	435	10	10	84
ARF-23	397	20	259	67	48	10	5	29	29	641	28	24	19
ARF-22	303	52	211	88	46	10	8	47	33	732	64	10	19
ARF-21	59	/4	/9	209	145	10	19	23	9	393	38	10	58
ARF-20	4/4	108	1/1	12	38	10	5	213	50	416	276	/1	17
ARF-19	333	120	190	100	39	10	5 14	213	50	351	322	22	51
ARF-18	95 20	62	206	225	122	10	14	4	13	202	02	10	60
ARF-17	110	02 94	174	223	220	10	21	4	12	121	10	10	107
ARF-16	20	04 41	1/4	207	101	10	32 25	4	0	62	10	10	01
ARF-15	72	41	190	207	191	10	23	4	9	127	10	10	122
ARF-14	20	62	20	222	280	10	32 26	4	0	157	10	10	125
AKF-13	30	62	20	300	220	10	20	4	0	207 182	10	10	103
AKF-12	30	13	20 84	272	102	10	20	4	9 5	70	10	10	004
AKF-11	30	43 68	20	306	264	10	22	4	5	19	10	10	125
AKT-10	73	71	20	367	204	10	33	4 1	5	4.5	10	10	123
AKT-09	30	70	129	<u>412</u>	237	10	35	-+	5	66	10	10	179
ARF-08	81	20	113	330	202	10	27	-+ 	5	60	10	10	101
AKT-U/	01	20	115	550	210	10	~ /		5	00	10	10	101

ELEMENTOS TRAZA (continuación)													
Muestra	V	Co	Ni	Cu	Zn	As	Se	Rb	Sr	Zr	Ba	La	Hg
ARF-06	149	87	165	392	265	10	32	4	5	51	10	10	118
ARF-05	68	612	129	227	193	10	19	4	5	30	10	10	88
ARF-04	56	100	168	355	232	10	28	9	11	391	10	10	107
ARF-03	223	157	161	118	83	10	10	130	53	841	137	66	39
ARF-02	531	89	163	32	40	10	5	272	104	351	296	80	11
ARF-01	68	98	20	337	227	10	29	12	10	113	10	10	100

RELACIONES											
Muestra	SiO ₂ /Al ₂ O ₃	(SiO ₂ +Al ₂ O ₃)/CaO	K ₂ O/Al ₂ O ₃	TiO ₂ /Al ₂ O ₃	Zr/Rb	(Zr+Rb)/Sr					
ARF-180	7,021	6793,378	0,0170	0,024	1,631	2,235					
ARF-179	10,114	3138,471	0,0051	0,015	2,500	2,800					
ARF-178	11,757	3993,708	0,0114	0,018	2,875	3,100					
ARF-177	14,413	1651,158	0,0023	0,013	2,500	2,800					
ARF-176	1,611	3145,545	0,0569	0,046	1,512	1,354					
ARF-175	13,764	1982,170	0,0016	0,008	2,500	2,800					
ARF-174	12,834	1759,586	0,0015	0,007	2,500	2,800					
ARF-173	6,695	2314,384	0,0030	0,016	3,200	3,360					
ARF-172	1,512	7476,639	0,0238	0,038	1,451	2,436					
ARF-171	9,863	1589,347	0,0076	0,014	2,500	2,800					
ARF-170	12,745	1646,154	0,0016	0,007	2,500	2,800					
ARF-169	15,596	1436,718	0,0042	0,005	11,180	12,180					
ARF-168	15,220	2149,417	0,0017	0,015	5,419	28,738					
ARF-167	1,800	4826,528	0,0298	0,058	3,310	4,057					
ARF-166	1,826	6588,306	0,0315	0,053	4,444	6,271					
ARF-165	10,542	1887,838	0,0057	0,058	265,000	107,475					
ARF-164	15,961	2149,934	0,0018	0,009	19,775	12,984					
ARF-163	1,548	6806,737	0,0262	0,049	4,346	4,086					
ARF-162	1,358	2485,412	0,0428	0,045	1,266	2,279					
ARF-161	15,224	1356,322	0,0018	0,009	9,075	8,060					
ARF-160	10,770	2406,351	0,0038	0,028	66,000	14,486					
ARF-159	37,015	8252,320	0,0707	0,032	35,947	10,029					
ARF-158	11,828	3971,388	0,0133	0,021	26,203	6,854					
ARF-157	9,187	3377,044	0,0115	0,029	59,273	29,750					
ARF-156	8,912	4763,508	0,0060	0,023	27,466	16,894					
ARF-155	1,722	7532,146	0,0359	0,058	3,491	4,051					
ARF-154	1,610	2478,015	0,0282	0,045	4,662	4,487					
ARF-153	9,069	3171,349	0,0067	0,019	41,100	14,643					
ARF-152	9,596	2551,701	0,0054	0,006	25,000	13,506					
ARF-151	7,691	2477,114	0,0050	0,007	20,825	10,271					
ARF-150	8,827	2778,182	0,0044	0,011	14,333	13,896					
ARF-149	6,671	3358,772	0,0064	0,016	56,208	24,301					
ARF-148	9,085	2643,386	0,0044	0,001	10,400	5,241					
ARF-147	10,702	4037,713	0,0060	0,006	20,250	13,710					
ARF-146	11,849	2597,381	0,0118	0,022	30,400	10,048					
ARF-145	10,803	2795,590	0,0049	0,003	18,550	15,640					
ARF-144	10,099	5658,158	0,0091	0,005	19,875	9,824					
ARF-143	11,158	2006,934	0,0065	0,093	75,647	35,945					
ARF-142	11,654	1782,669	0,0019	0,017	39,350	32,280					
ARF-141	11,434	2807,028	0,0052	0,012	16,250	7,931					
ARF-140	10,238	2481,623	0,0048	0,010	23,975	12,646					
ARF-139	7,922	2993,222	0,0063	0,012	30,850	6,962					
ARF-138	10,482	1803,438	0,0012	0,001	11,900	5,375					
ARF-137	13,130	2109,558	0,0015	0,027	60,400	29,590					

RELACIONES (continuación)						
Muestra	SiO ₂ /Al ₂ O ₃	(SiO ₂ +Al ₂ O ₃)/CaO	K ₂ O/Al ₂ O ₃	TiO ₂ /Al ₂ O ₃	Zr/Rb	(Zr+Rb)/Sr
ARF-136	10,143	4670,786	0,0115	0,022	27,159	11,986
ARF-135	11,828	2983,204	0,0150	0,062	37,723	23,523
ARF-134	6,588	4032,812	0,0125	0,008	12,843	12,767
ARF-133	9,992	3094,191	0,0131	0,009	9,596	11,094
ARF-132	10,049	2871,835	0,0046	0,002	16,150	9,397
ARF-131	11,323	2053,168	0,0045	0,016	35,300	10,083
ARF-130	10,913	2384,681	0,0042	0,007	17,950	7,359
ARF-129	9,036	2507,204	0,0072	0,007	8,675	3,225
ARF-128	11,878	2756,272	0,0079	0,013	19,725	7,468
ARF-127	10,296	4999,753	0,0096	0,009	20,775	15,017
ARF-126	9,708	2995,009	0,0011	0,013	19,975	12,159
ARF-125	11,320	3185,245	0,0104	0,010	16,500	10,448
ARF-124	10,227	2694,104	0,0013	0,020	46,575	27,985
ARF-123	10,884	4577,266	0,0181	0,011	13,100	11,280
ARF-122	10,162	2509,723	0,0064	0,042	27,820	4,257
ARF-121	8,949	2865,684	0,0104	0,023	16,232	5,391
ARF-120	11,138	2148,609	0,0013	0,004	15,875	13,500
ARF-119	12,449	2180,368	0,0014	0,002	10,225	8,980
ARF-118	11,097	1891,458	0,0013	0,016	32,075	18,634
ARF-117	9,355	2310,089	0,0011	0,015	29,600	19,125
ARF-116	7,053	2516,379	0,0095	0,118	53,988	29,569
ARF-115	10,698	3171,309	0,0013	0,050	37,552	31,943
ARF-114	11,820	1931,029	0,0014	0,004	11,425	9,940
ARF-113	10,151	2603,171	0,0013	0,012	53,050	8,789
ARF-112	11,592	2056,048	0,0088	0,023	18,900	11,706
ARF-111	11,293	4930,179	0,0252	0,084	68,187	31,502
ARF-110	2,864	2804,781	0,0773	0,100	7,853	16,998
ARF-109	2,077	3592,896	0,0747	0,070	3,425	8,688
ARF-108	4,239	3967,096	0,0439	0,039	9,964	7,609
ARF-107	3,010	4723,241	0,0719	0,052	6,623	17,206
ARF-106	10,876	3795,140	0,0111	0,007	7,225	3,163
ARF-105	12,799	4840,363	0,0131	0,015	19,650	8,098
ARF-104	9,734	2286,622	0,0070	0,012	22,075	14,422
ARF-103	13,006	2784,817	0,0078	0,007	8,800	7,000
ARF-102	10,511	3357,962	0,0189	0,034	77,300	41,211
ARF-101	12,775	3818,781	0,0183	0,006	14,475	12,380
ARF-100	10,773	3990,720	0,0122	0,009	18,250	15,400
ARF-99	10,799	8393,669	0,0161	0,020	8,725	7,515
ARF-98	11,649	5459,533	0,0206	0,011	19,875	16,700
ARF-97	9,480	4449,261	0,0197	0,017	8,436	6,179
ARF-96	8,886	3225,030	0,0072	0,006	15,575	8,840
ARF-95	8,947	5149,345	0,0143	0,007	13,100	6,409
ARF-94	11,254	3177,504	0,0089	0,024	30,975	22,839
ARF-93	13,414	2830,828	0,0125	0,026	27,300	22,640

RELACIONES (continuación)						
Muestra	SiO ₂ /Al ₂ O ₃	(SiO ₂ +Al ₂ O ₃)/CaO	K ₂ O/Al ₂ O ₃	TiO ₂ /Al ₂ O ₃	Zr/Rb	(Zr+Rb)/Sr
ARF-92	9,565	3071,819	0,0110	0,009	21,675	7,622
ARF-91	9,216	4777,762	0,0115	0,007	20,325	7,050
ARF-90	12,700	2746,863	0,0127	0,032	36,780	27,183
ARF-89	10,063	5813,249	0,0225	0,033	17,815	15,879
ARF-88	9,394	9404,769	0,0288	0,027	14,374	17,362
ARF-87	10,256	6115,294	0,0145	0,020	24,000	16,265
ARF-86	10,610	3722,154	0,0100	0,006	21,875	15,776
ARF-85	12,676	3132,305	0,0166	0,043	100,903	57,963
ARF-84	11,514	8042,894	0,0137	0,010	14,575	7,161
ARF-83	11,397	2811,661	0,0112	0,017	36,450	20,243
ARF-82	10,691	3472,983	0,0195	0,055	41,788	36,370
ARF-82-A	11,081	4158,481	0,0118	0,025	26,400	21,920
ARF-81	9,744	9705,323	0,0191	0,017	20,058	14,221
ARF-80	11,028	5224,009	0,0269	0,028	15,607	24,911
ARF-79	11,963	1986,937	0,0142	0,028	33,950	27,960
ARF-77-78	13,423	3892,400	0,0196	0,045	37,158	24,716
ARF-76	10,461	3825,458	0,0165	0,020	30,717	24,721
ARF-75	11,465	4642,046	0,0181	0,026	198,600	159,680
ARF-74	11,315	2944,861	0,0113	0,060	19,162	6,838
ARF-73	7,903	7008,604	0,0388	0,055	8,304	8,560
ARF-72	10,674	7867,619	0,0232	0,016	9,467	13,563
ARF-71	11,309	2347,839	0,0140	0,030	21,066	13,327
ARF-70	10,716	2988,256	0,0049	0,007	12,325	6,422
ARF-69	13,729	2093,923	0,0060	0,016	6,250	4,085
ARF-68	11,056	1532,731	0,0027	0,008	21,625	18,100
ARF-67	12,067	2192,389	0,0016	0,004	14,375	11,182
ARF-67-A	1,617	3428,288	0,0555	0,043	3,149	14,902
ARF-66	2,267	4760,248	0,0868	0,052	3,340	11,676
ARF-65	9,789	6271,248	0,0292	0,016	6,007	9,083
ARF-64	4,647	6505,646	0,0588	0,060	16,202	67,114
ARF-63	12,424	3362,304	0,0205	0,078	53,608	52,446
ARF-62	11,266	2965,113	0,0127	0,020	29,500	20,678
ARF-61	10,514	2237,301	0,0088	0,009	11,660	9,591
ARF-60	11,642	3010,795	0,0165	0,044	46,433	28,460
ARF-59	11,370	3006,384	0,0123	0,009	11,650	10,120
ARF-58	12,283	3988,564	0,0224	0,041	26,243	32,033
ARF-57	11,688	1852,827	0,0014	0,015	27,600	19,390
ARF-56	12,361	2380,588	0,0046	0,034	38,100	31,280
ARF-55	12,912	2664,670	0,0141	0,020	37,152	28,770
ARF-54	14,090	3153,455	0,0102	0,037	30,400	25,120
ARF-53	14,554	2693,086	0,0108	0,027	35,050	28,840
ARF-52	13,517	2138,565	0,0061	0,011	21,350	17,880
ARF-51	14,308	2806,571	0,0082	0,005	9,100	8,417
ARF-50	11,354	2103,492	0,0045	0,002	22,375	20,778

RELACIONES (continuación)						
Muestra	SiO ₂ /Al ₂ O ₃	(SiO ₂ +Al ₂ O ₃)/CaO	K ₂ O/Al ₂ O ₃	TiO ₂ /Al ₂ O ₃	Zr/Rb	(Zr+Rb)/Sr
ARF-49	16,236	4830,961	0,0238	0,020	13,425	11,540
ARF-48	9,263	4104,817	0,0195	0,034	23,625	12,409
ARF-47	13,554	2039,874	0,0026	0,002	15,150	12,920
ARF-46	4,043	2458,668	0,1616	0,050	3,783	11,792
ARF-45	4,516	2015,660	0,1124	0,031	2,812	5,884
ARF-44	6,287	2578,879	0,0842	0,053	8,697	4,273
ARF-43	13,916	2564,710	0,0078	0,018	33,625	17,313
ARF-42	14,251	2301,373	0,0022	0,004	6,600	3,753
ARF-41	16,482	2244,196	0,0038	0,003	4,925	2,236
ARF-40	12,444	2954,292	0,0034	0,018	5,150	3,324
ARF-39	11,510	3691,798	0,0107	0,015	23,035	13,838
ARF-38	15,671	2120,795	0,0139	0,024	19,650	16,520
ARF-37	15,832	3789,393	0,0170	0,003	2,500	2,800
ARF-36	14,157	2360,719	0,0134	0,018	3,500	3,600
ARF-35	19,082	2092,358	0,0158	0,013	2,500	3,043
ARF-34	16,370	5036,983	0,0208	0,019	30,450	23,736
ARF-33	15,799	2841,390	0,0127	0,029	9,425	7,190
ARF-32	27,633	2101,956	0,0197	0,007	2,825	3,060
ARF-31	15,113	2422,307	0,0071	0,003	4,975	3,230
ARF-30	12,973	3406,219	0,0185	0,015	9,950	6,952
ARF-29	16,291	2841,336	0,0117	0,033	12,875	8,538
ARF-28	17,137	1812,358	0,0094	0,005	15,575	13,260
ARF-27	17,129	1897,751	0,0128	0,023	14,200	12,160
ARF-26	1,754	6865,000	0,0607	0,055	7,659	12,396
ARF-25	11,972	3250,600	0,0273	0,035	48,948	8,515
ARF-24-A	1,757	2723,825	0,0177	0,084	13,032	14,000
ARF-24	8,626	7124,693	0,0213	0,033	35,934	41,380
ARF-23	2,165	2647,922	0,0134	0,069	22,034	23,437
ARF-22	3,365	7243,074	0,0484	0,087	15,666	23,729
ARF-21	9,492	6327,615	0,0605	0,052	16,876	46,798
ARF-20	2,083	2301,628	0,1274	0,064	1,957	11,317
ARF-19	1,517	1258,009	0,1717	0,059	1,288	12,610
ARF-18	5,371	7453,950	0,0968	0,043	4,056	21,454
ARF-17	14,281	3235,361	0,0146	0,006	12,175	4,583
ARF-16	11,843	2445,594	0,0043	0,011	30,175	15,395
ARF-15	14,636	2042,076	0,0107	0,006	15,700	7,422
ARF-14	14,609	4184,959	0,0240	0,052	34,150	12,782
ARF-13	14,567	2284,502	0,0083	0,041	71,800	38,316
ARF-12	13,199	2501,700	0,0152	0,026	45,550	20,689
ARF-11	12,504	2561,836	0,0057	0,011	19,850	16,680
ARF-10	16,337	2530,692	0,0095	0,003	11,275	9,820
ARF-09	16,033	4004,301	0,0069	0,064	83,200	67,360
ARF-08	13,532	2330,855	0,0072	0,002	16,550	14,040
ARF-07	14,429	3143,949	0,0105	0,009	15,000	12,800

RELACIONES (continuación)						
Muestra	SiO ₂ /Al ₂ O ₃	(SiO ₂ +Al ₂ O ₃)/CaO	K ₂ O/Al ₂ O ₃	TiO ₂ /Al ₂ O ₃	Zr/Rb	(Zr+Rb)/Sr
ARF-06	16,571	2229,326	0,0107	0,003	12,850	11,080
ARF-05	21,301	4431,591	0,0153	0,003	7,550	6,840
ARF-04	11,198	5624,392	0,0276	0,039	42,457	36,345
ARF-03	3,425	3931,079	0,1279	0,065	6,473	18,281
ARF-02	2,111	1480,508	0,1584	0,071	1,289	5,992
ARF-01	8,615	5156,347	0,0267	0,018	9,254	12,897

APÉNDICE II

Tabla de coeficientes críticos de correlación (SNEDECOR, 1946 en DIXON et al.,1957)

[•] Use explained in Sec. 6.1.4a, 6.2.5b, and 6.2.5c. The inverse square roots of the numbers of degrees of freedom, rather than the numbers themselves, should be used for linear interpolation. Reproduced, with the permission of the author and the publisher, from G. W. Snedecor, *Statistical Methods*, 4th ed., Ames, Iowa, Iowa State College Press, 1946, p. 351. Extensive tables and charts appear in F. N. David, *Tables of the Correlation Coefficient*, London, Biometrika Office, 1938.

APÉNDICE III

DIAGRAMAS DE DISPERSIÓN GENERALES DE LAS MUESTRAS DEL SECTOR RÍO FRÍO (FORMACIÓN AGUARDIENTE)

SiO₂ vs elemento

(continuación)

TiO₂ vs elemento

(continuación)

Al₂O₃ vs elemento

(continuación)

(continuación)

(continuación)

(continuación)

K₂O vs elemento

(continuación)

V vs elemento

(continuación)

Co vs elemento

Ni vs elemento

(continuación)

Zn vs elemento

Zr vs elemento

Ba vs elemento

La vs elemento

APÉNDICE IV

Funciones discriminantes por unidades químicas.

Coeficientes de las ecuaciones de las funciones discriminantes para las Unidades Químicas Mayores (AQRF)

Variables	FD1	FD2
SiO ₂	-0,435	-0,795
TiO ₂	0,742	0,753
Al ₂ O ₃	0,655	1,031
Fe ₂ O ₃	0,101	0,092
MgO	-0,109	0,234
CaO	-1,215	-2,117
K ₂ O	1,384	0,784
V	0,088	0,544
Ni	-1,063	0,103
Cu	-1,879	1,488
Zn	1,306	2,366
Se	0,060	-1,215
Rb	-0,330	3,049
Sr	1,757	0,855
Zr	-1,589	-0,316
Ba	-1,452	-4,799
La	-1,083	-0,760
Hg	1,316	-0,361
(SiO ₂ +Al ₂ O ₃)/CaO	0,366	-0,904
Zr/Rb	0,423	-0,631
(Zr+Rb)/Sr	-0,710	0,475
SiO ₂ /Al ₂ O ₃	-1,430	2,471
K ₂ O/Al ₂ O ₃	-0,995	0,917
TiO ₂ /Al ₂ O ₃	-0,523	0,030
V/Al	-0,091	-0,505
Ni/Al	0,968	-0,164
Cu/Al	3,557	-1,035
Zn/Al	-7,197	-3,037
Se/Al	-0,699	0,876
Rb/Al	0,132	-2,180
Sr/Al	-1,321	-0,719
Zr/Al	2,068	0,246
Ba/Al	0,890	2,387
La/Al	0,514	0,408
Hg/Al	3,904	0,366
Constante	4,907	0,269

Variables	FD1	FD2
SiO ₂	-2,45365	-0,03439
TiO ₂	-0,34831	-4,83569
Al ₂ O ₃	3,47382	1,10839
Fe ₂ O ₃	-2,16063	-1,98285
MgO	-0,03554	-0,0987
CaO	1,54535	5,66434
K ₂ O	4,49284	-14,2611
V	5,5828	0,23047
Ni	-0,67446	-3,57566
Cu	23,9439	9,44975
Zn	-13,8121	-41,1132
Se	1,31938	3,53954
Rb	8,86461	-4,74024
Sr	-2,54844	3,22099
Zr	-2,39072	4,67535
Ba	-19,8771	9,88226
La	0,82556	-2,33142
Hg	-9,09595	24,9333
(SiO ₂ +Al ₂ O ₃)/CaO	2,1227	2,37118
Zr/Rb	0,18504	1,04521
(Zr+Rb)/Sr	-0,71524	-0,39098
SiO ₂ /Al ₂ O ₃	3,05118	-1,52583
K ₂ O/Al ₂ O ₃	1,33816	-0,23562
TiO ₂ /Al ₂ O ₃	-0,19225	2,36775
V/Al	-2,39658	-0,28443
Ni/Al	0,8243	2,88612
Cu/Al	-34,8314	-14,1065
Zn/Al	25,6727	56,693
Se/Al	-1,78534	-2,21881
Rb/Al	-6,7514	12,7463
Sr/Al	-0,02257	-3,7991
Zr/Al	2,89861	-4,23834
Ba/Al	11,9272	-4,69404
La/Al	-1,22085	3,27418
Hg/Al	8,42258	-34,7187
Constante	7,25019	-3,776

Coeficientes de las ecuaciones de las funciones discriminantes para las Subunidades Químicas QARF-I

Variables	FD1	FD2
SiO ₂	1.62566	0.0259
TiO ₂	-4,27736	2,95993
Al ₂ O ₃	4.13611	-2.13296
Fe ₂ O ₂	1.65824	0.23226
MgO	0.37607	-0.01973
	-2,66693	1,95263
K ₂ O	-5.59616	9.91573
V	1,18632	-2,5029
Ni	1,00921	0,50824
Cu	0,07566	-4,48748
Zn	4,54433	2,8111
Se	0,16621	-1,95554
Rb	-7,93715	-4,92284
Sr	-1,54885	-0,40189
Zr	7,77842	-3,99822
Ba	7,72381	-5,51734
La	-2,87656	2,53897
Hg	-10,2771	0,74109
(SiO ₂ +Al ₂ O ₃)/CaO	-0,33207	0,0087
Zr/Rb	0,84041	0,23627
(Zr+Rb)/Sr	-0,40031	-0,57944
SiO ₂ /Al ₂ O ₃	-3,96373	-4,52148
K ₂ O/Al ₂ O ₃	2,37728	-6,83723
TiO ₂ /Al ₂ O ₃	1,35246	-1,06186
V/Al	-0,66775	1,80124
Ni/Al	-0,98363	-0,64882
Cu/Al	2,58228	5,35476
Zn/Al	-6,39368	-1,61458
Se/Al	-1,01701	3,08815
Rb/Al	3,05574	2,80024
Sr/Al	2,05498	0,61213
Zr/Al	-7,55851	3,86247
Ba/Al	-2,84114	2,46548
La/Al	1,40605	-2,63306
Hg/Al	12,965	-1,97271
Constante	-13,283	16,804

Coeficientes de las ecuaciones de las funciones discriminantes para las Subunidades Químicas QARF-II