TRABAJO ESPECIAL DE GRADO

EVALUACIÓN DE LA INFLUENCIA DEL ACERO DE REFUERZO EN LA APLICACIÓN DEL ENSAYO DE VELOCIDAD DE PULSO ULTRASÓNICO EN ELEMENTOS DE CONCRETO ARMADO

Presentado ante la Ilustre
Universidad Central de Venezuela
Por los Brs:
Carrasco Robles, Orlando Jesús
Freites Ziegler, Antonio José
Para optar al Título de
Ingeniero Civil

TRABAJO ESPECIAL DE GRADO

EVALUACIÓN DE LA INFLUENCIA DEL ACERO DE REFUERZO EN LA APLICACIÓN DEL ENSAYO DE VELOCIDAD DE PULSO ULTRASÓNICO EN ELEMENTOS DE CONCRETO ARMADO

TUTORES ACADÉMICOS: Prof. César Peñuela

Prof. Nelson Camacho

Presentado ante la Ilustre
Universidad Central de Venezuela
Por los Brs:
Carrasco Robles, Orlando Jesús
Freites Ziegler, Antonio José
Para optar al Título de
Ingeniero Civil

ACTA

El dia 03 de Noviembre del 2015 se reunió el jurado formado por los profesores:

Cesar	Peñuela y Nelson Camacho
	Trino Baloa
N	María Eugenia Korody

Con el fin de examinar el Trabajo Especial de Grado titulado: "EVALUACIÓN DE LA INFLUENCIA DEL ACERO DE REFUERZO EN LA APLICACIÓN DEL ENSAYO DE VELOCIDAD DE PULSO ULTRASÓNICO EN ELEMENTOS DE CONCRETO ARMADO".

Presentado ante la Ilustre Universidad Central de Venezuela para optar al Titulo de INGENIERO CIVIL.

Una vez oída la defensa oral que los bachilleres hicieron de su Trabajo Especial de Grado, este jurado decidió las siguientes calificaciones:

NOMBRE		CALIFICACIÓN
NOMBRE	Números	Letras
Carrasco Robles, Orlando Jesús	20	UEINTE
Freites Ziegler, Antonio José	20	VEINTE

ecomendaciones: Se otorra	Heucian	Honorific	ca/
T	EIRMAS	DEL JURADO	
1=		74/11	

ACTA

Quienes suscriben, integrantes de la totalidad del jurado examinador del Trabajo Especial de Grado titulado: "Evaluación de la influencia del acero de refuerzo en la aplicación del ensayo de Velocidad de Pulso Ultrasónico en elementos de concreto armado" presentado por los Brs. Orlando Carrasco (CI: 17.758.131) y Antonio Freites (CI: 20.247.222), para optar al título de Ingeniero Civil, acordaron por unanimidad solicitarle a las autoridades correspondientes de la Facultad de Ingeniería, tengan a bien otorgar MENCIÓN HONORÍFICA al Trabajo de Grado antes mencionado.

Esta solicitud se hace por considerar que el trabajo es un aporte importante en el área de la aplicación práctica del ensayo de Velocidad de Pulso Ultrasónico, estableciendo de manera clara una metodología de estudio y proponiendo datos numéricos para la ejecución apropiada de tan valiosa experiencia técnica utilizada para la caracterización del Concreto con armaduras.

Se levanta la presente Acta en Caracas, a los tres días del mes de noviembre de dos mil quince.

TRINO BALÓA Jurado Principal MÁRIA EUGENIA KORODY Jurado Principal

NELSON CAMACATO

TUTOR

CESAR PEÑUELA TUTOR

A mis Padres. María Josefina y Ramón Antonio.

A mis segundos Padres Vitalia, Caridad y Julio

A mi abuela Antonieta

A mis abuelos Ramón Antonio, José Manuel y Albertina, quienes desde el cielo me acompañan

A mi compañera fiel. Jénessis Betania

A Dios y a la Virgen por permitirme culminar una etapa más de mi vida.

Antonio J. Freites Z

Dedicado
A mis padresPor entregarme todo su amor, apoyo y todo cuanto tengo
A Maryorie Emperatriz Por brindarme su amor y cariño todos estos años
Orlando J. Carrasco R

Agradecimientos

Por los materiales de construcción

A la Fábrica Nacional de Cemento (FNC), específicamente la Planta San Antonio, por apoyarnos en la obtención de los materiales para el concreto utilizado en este trabajo de grado. Especialmente al ingeniero Mario Acosta, Gerente de Optimización y a la ingeniera María Rodríguez, Jefe del Control de Calidad, por su excelente atención y buena disposición.

Al Sr. Orlando Carrasco, quien dispuso de su tiempo y vehículo para ayudarnos con el transporte de los materiales.

Por el doblado y armado de cabillas

Al Sr. Andrés Paredes, miembro del personal técnico del IMME por facilitarnos el uso de los espacios de la Nave de Ensayos del lado sur, para el doblado del acero de refuerzo.

Al Sr. Ramón Freites, quien nos brindó su apoyo durante el proceso de doblado y armado del acero de refuerzo.

Por el proceso de mezclado y vaciado

A los compañeros Bárbara Lozano, Ángelo Serrano, Daniel Pinto, Héctor Rodríguez y Melanie Osuna, quienes nos acompañaron y ayudaron en el proceso de mezclado y vaciado, sin importar la hora.

Por el equipo de ultrasonido

Al Prof. José Romero, quien de manera desinteresada dispuso amablemente de su tiempo para reparar el equipo de ultrasonido y esto hizo posible que se continuara con la investigación.

Por la estadía durante el procesamiento de la Información

A la Sra. Flor y el Sr Orlando, a la Sra. Caridad y el Sr. Julio, quienes nos recibieron en sus hogares con total amabilidad, cordialidad y hospitalidad, brindándonos su apoyo incondicional y haciendo amena y agradable las experiencias y momentos que compartimos con ellos.

Al Sr Simón García, quien nos ofreció su ayuda en la redacción de este Trabajo.

Agradecimiento Especial

Queremos brindar un sincero y especial agradecimiento a nuestra compañera Jénessis Correa, quien nos brindó en todo momento con notable dedicación su apoyo incondicional en todas las actividades antes mencionadas.

Al Sr. Eleonel Barrios, miembro del personal técnico del IMME quien siempre estuvo atento durante el desarrollo experimental de nuestro Trabajo de Grado, ayudándonos y suministrándonos oportunamente los instrumentos y equipos que necesitábamos.

A nuestros tutores Cesar Peñuela y Nelson Camacho, quienes siempre estuvieron dispuestos a escucharnos y orientarnos en la realización de este Trabajo de Grado.

Al Instituto de Materiales y Modelos Estructurales (IMME) por permitirnos desarrollar esta investigación dentro de sus instalaciones, utilizando los equipos técnicos especializados que fueran necesarios para llevar a cabo los objetivos propuestos.

Por último pero no menos importante, agradecemos a nuestra UCV, la insigne casa que vence la sombra, por formarnos e impartirnos los conocimientos necesarios para nuestra profesión y por las experiencias vividas que siempre llevaremos con nosotros.

A todo el conjunto de profesores, y diferentes personas con los que hemos hecho vida en este tiempo, nuestras más sinceras gracias.

Carrasco R. Orlando J.

Freites Z. Antonio J.

EVALUACIÓN DE LA INFLUENCIA DEL ACERO DE REFUERZO EN LA APLICACIÓN DEL ENSAYO DE VELOCIDAD DE PULSO ULTRASÓNICO EN ELEMENTOS DE CONCRETO ARMADO

Tutores Académicos: Prof. César Peñuela y Prof. Nelson Camacho. Trabajo Especial de Grado. Caracas, U.C.V. Facultad de Ingeniería. Escuela de Ingeniería Civil. 2015, n° pág. (260).

Palabras claves: ultrasonido, velocidad, pulso, ultrasónico, acero, concreto armado, ensayos

RESUMEN

El ensayo de velocidad de pulso ultrasónico (VPU) es un ensayo no destructivo utilizado frecuentemente para determinar la calidad del concreto. El ensayo es relativamente sencillo, se acoplan unos transductores a la superficie de concreto y se lee el tiempo de paso de un pulso de onda por el interior del elemento. Sin embargo, la precisión del ensayo depende de un control muy riguroso de las variables que alteran la velocidad del pulso y entre estas variables se encuentra la presencia de barras de acero en las cercanías de los transductores. Se conoce que esto aumenta la velocidad del pulso, especialmente si las barras de refuerzo están alineadas con los transductores. Para evitar este problema, la recomendación general es alejarse de las barras de refuerzo, pero entonces surge la pregunta ¿cuánto es necesario alejarse para que la influencia del acero de refuerzo ya no sea significativa?, y si fuese inevitable realizar mediciones que estén afectadas por la presencia de las barras de refuerzo, ¿cuál es el orden de magnitud del aumento en las mediciones? En base a estas interrogantes, el presente trabajo de grado tiene como objetivo evaluar la influencia del acero de refuerzo sobre el ensayo de VPU en elementos de concreto armado. Para esto se construyeron cinco probetas de sección cuadrada de 30 cm de lado y 60 cm de alto. Cuatro simularon un elemento estructural de concreto armado con distintas separaciones de refuerzo transversal, y otra fue elaborada solamente con concreto, sin armadura. Se realizaron mediciones a dos edades, 28 y 49 días y se aplicaron los tres métodos de transmisión conocidos el directo, semidirecto e indirecto. El concreto utilizado registró un promedio de la resistencia a la compresión a los 28 días de 252 kgf/cm². Para el refuerzo transversal se utilizaron barras de acero con diámetro de 3/8" y para el refuerzo longitudinal de 1/2". Se evaluaron un total de 800 puntos seleccionados estratégicamente. Finalmente, en los elementos de concreto armado se obtuvo un valor máximo de 8,5 % de aumento en la VPU con respecto al elemento sin armadura. Se elaboró un gráfico donde se muestra la variación de la VPU a medida que los transductores se alejan de las barras de refuerzo y se evidencia, que para las características particulares de los elementos construidos, a los 5 cm de alejamiento la influencia es despreciable

ÍNDICE GENERAL

	X
CIÓN	1
I. PLANTEAMIENTO DEL PROBLEMA	4
El problema de la investigación	4
Objetivos	7
1 2 1 Objetivo General	7
II. MARCO TEÓRICO	10
El Cemento	10
Clasificación del Cemento	10
Los Agregados	10
2.3.1. Tipos de agregados	11
2.3.2. Ensayos a los Agregados	11
El Concreto	12
2.4.1. Características del concreto fresco	13
2.4.1. Diseño de mezcla	14
2.4.2. Cono de Abrams	15
2.4.3. Tiempo de Fraguado	15
•	
Ensayos al concreto Endurecido	16
2.5.1. Ensayo de Compresión Simple	17
El Acero	17
2.6.1. Acero al carbono	17
Barras de Acero	18
Propiedades Normativas de las barras de refuerzo	18
Designación de las Barras de Acero.	19
Breve Descripción de los Ensayos No Destructivos y sus Princ	ipales
	_
Método de Ensayo de Velocidad de Pulso Ultrasónico	20
2.11.1. Antecedentes del Pulso Ultrasonido	
	I. MARCO TEÓRICO

		2.11.2. Fundamento Teórico de las Ondas Ultrasónicas	22
		2.11.3. Tipos de Ondas	25
		2.11.4. Atenuación Ultrasónica	29
		2.11.5. Equipo de Ultrasonido	29
		2.11.6. Cálculo de la Velocidad del Pulso Ultrasonido	
		2.11.7. Técnicas de Medición	
		2.11.8. Factores que afectan el ensayo Ultrasonido	
		2.11.9. Principales Aplicaciones del Ensayo Ultrasonido y sus Limitacio	
	2.12.	Conceptos de Estadística	46
		2.12.1. Media Aritmética	
		2.12.2. Desviación Típica de la Distribución	
		2.12.3. Ajuste por Mínimos Cuadrados	
		2.12.4. Coeficiente de Variación	48
CAPÍ	TULO I	III. MARCO METODOLÓGICO	49
	3.1.	Recopilación Bibliográfica	50
		3.1.1. Bibliotecas	50
		3.1.2. Sitios web	50
	3.2.	Restricción de Variables	51
	3.3.	Diseño de los Elemento a Ensayar	55
	3.4.	Cómputos métricos	62
	3.5.	Búsqueda y Almacenamiento de los Materiales	63
	3.6.	Combinación de Agregado Grueso	66
		3.6.1. Granulometría Agregado Grueso IMME	67
		3.6.2. Combinación	68
	3.7.	Caracterización del Agregado Grueso Combinado	68
		3.7.1. Granulometría	68
		3.7.2. Ensayo de Desgaste Los Ángeles	69
		3.7.3. Densidad y Absorción	71
		3.7.4. Contenido de Humedad	
	3.8.	Diseño de Mezcla	73
		3.8.1. Relación Beta (β)	73
		3.8.2. Resistencia promedio requerida (Fcr)	
		3.8.3. Relación agua / cemento (a)	
		3.8.4. Dosis de cemento (C)	
		3.8.5. Volumen absoluto de agua (a)	
		3.8.6. Volumen de aire atrapado (V)	
		3.8.8. Dosificación de los materiales para la mezcla	
	3.9.	Fabricación de Elementos a Ensavar	

		3.9.1.	Corte y Doblado de Barras de Acero	85
		3.9.2.	Armado	87
		3.9.3.	Mezclado, Asentamiento, Vaciado y Compactación	88
		<i>3.9.4</i> .	Desencofrado y Curado	93
	3.10.	Ensayos	5	94
		3.10.1.	Peso Unitario	95
		3.10.2.	Ensayo a Compresión de Cilindros	96
		3.10.3.	Ensayo Electromagnético (Ferroscan)	98
		3.10.4.	Ensayo de Velocidad de Pulso Ultrasónico	100
	3.11.	Procesa	miento y Análisis de los Resultados	103
		3.11.1.	Procesamiento de los Datos	103
		3.11.2.	Resultados y sus Análisis	113
CAP	ÍTULO I	V. RESU	LTADOS	114
	4.1.	Caracte	rización del Agregado Grueso	114
		4.1.1.	Granulometría	114
		4.1.2.	Ensayo de Desgaste Los Ángeles	
		4.1.3.	Ensayo de Densidad y Adsorción	
		4.1.4.	Ensayo de Contenido de Humedad	
	4.2.	Diseño o	de Mezcla	116
		4.2.1.	Relación Beta (β)	116
		4.2.2.	Datos de Entrada para el Diseño de Mezcla	117
		4.2.3.	Resistencia Promedio Requerida	117
		4.2.4.	Relación agua / cemento (α)	118
		4.2.5.	Volumen de aire, agua y agregados	119
		4.2.6.	Componentes de la Mezcla por m ³	119
	4.3.	Dosifica	ción de Materiales para la Mezcla	120
		4.3.1.	Volumen de Elementos a vaciar por Mezcla	120
		4.3.2.	Volumen de Concreto Por Mezcla	120
		4.3.3.	Dosificación de la Materiales para la mezcla	120
	4.4.	Asentan	nientos por Cono de Abrams	121
	4.5.	Caracte	rización del Concreto Endurecido	121
		4.5.1.	Peso Unitario y Ensayo a Compresión de Probetas Cilindros	121
		4.5.1.	Resistencia Promedio	122
		4.5.2.	Peso Unitario de Elementos Prismáticos	122
	4.6.	Ensayo	de Velocidad de Pulso Ultrasónico	122
		4.6.1.	Influencia de la Edad	122
		4.6.2.	Influencia del acero respecto a la posición de los transductores e	en los
		diferen	tes elementos armados.	125

	4.6.3. Variación de la Velocidad de Pulso Ultrasonido según la Separación del
	Acero de Refuerzo para una misma posición de los transductores 134
	4.6.4. Influencia de las Barras de Refuerzo Transversal de 3/8" paralelas al pulso
	Ultrasonido144
	4.6.5. Influencia de las barras de Refuerzo Transversal de 3/8" Perpendiculares
	al Pulso
	4.6.6. Error Porcentual de Medición según Método Utilizado146
CAPÍTULO '	V. ANÁLISIS DE RESULTADOS147
5.1.	Caracterización de los Agregados147
	5.1.1. Granulometría147
	5.1.2. Desgaste Los Ángeles
	5.1.3. Densidad y Absorción
	5.1.4. Contenido de Humedad
5.2.	Caracterización del Concreto Fresco148
	5.2.1. Asentamiento por Cono de Abrams
5.3.	Caracterización del Concreto Endurecido148
	5.3.1. Peso Unitario
	5.3.2. Resistencia a Compresión de Cilindros
5.4.	Velocidad de pulso ultrasónico149
	5.4.1. Influencia de la edad junto con el acero de refuerzo sobre la VPU 151
	5.4.2. Análisis de las VPU agrupadas por Casos comparándolas en un mismo
	elemento
	5.4.3. Análisis de las VPU de un mismo Caso comparándolo con los distintos
	elementos evaluados
	5.4.4. Influencia de las barras de refuerzos 3/8" paralelas a la trayectoria del pulso. 160
	5.4.5. Influencia de las barras de refuerzos de 3/8" perpendiculares a la
	trayectoria del Pulso
CAPÍTULO '	VI. CONCLUSIONES Y RECOMENDACIONES163
6.1.	Conclusiones
6.2.	Recomendaciones168
	6.2.1. Para Investigaciones futuras168
REFERENC	IAS BIBLIOGRÁFICAS169
ANEVOS	174

ÍNDICE DE TABLAS

Tabla 2.1. Contenidos Máximos de Elementos Admisibles en el Acero al carbono	18
Tabla 2.2 Designación en Octavos de Pulgada	19
Tabla 2.3 Designación en Milímetros	19
Tabla 2.4 Ensayos No Destructivos	20
Tabla 2.5 Clasificación de la Calidad del Concreto según Leslie y Cheesman	22
Tabla 2.6 Dimensión Lateral Mínima del Elemento según la Frecuencia del Transducto.	41
Tabla 3.1 Cantidades Necesarias para obtener un m³ de Concreto f'c 250Kg/cm²	62
Tabla 3.2 Cantidades Estimadas de Materiales para el Mezclado	62
Tabla 3.3 Cantidades Estimadas de Acero	63
Tabla 3.4 Gradaciones de Muestras de Ensayo	69
Tabla 3.5 Carga Abrasiva	70
Tabla 3.6 Límites granulométricos recomendados para distintos tamaños máximos del agr	egado.
Porcentajes pasantes	74
Tabla 3.7 Resistencia promedio a la compresión, Fcr, cuando no se dispone de dato	os para
establecer la desviación estándar	75
Tabla 3.8 Factor para corregir α por tamaño máximo (Kr).	76
Tabla 3.9 Factor para corregir α por tipo de agregado (Ka)	77
Tabla 3.10 Máximos valores de α para distintas condiciones de servicio o ambientales	77
Tabla 3.11 Factor para corregir la dosis de cemento por tamaño máximo (C1)	78
Tabla 3.12 Factor para corregir la dosis de cemento por tipo de agregado (C2)	79
Tabla 3.13 Contenidos mínimos de cemento en función de las condiciones de serv	vicio o
ambientales	79

ÍNDICE DE FIGURAS

Figura 2.1 Propiedades de la Onda	24
Figura 2.2 Equipo Ultrasonido	31
Figura 2.3 Barra Paralela al Pulso	33
Figura 2.4 Relación entre la Velocidad de Concreto y la Velocidad del Acero	35
Figura 2.5 Barra Perpendicular al Pulso	36
Figura 2.6 Método de Transmisión Directa	37
Figura 2.7 Método de Transmisión Semi-Directa	38
Figura 2.8 Método de Transmisión Indirecto	39
Figura 3.1 Partes de la Investigación	49
Figura 3.2 Dimensiones de los Elementos	52
Figura 3.3 Grasa utilizada para el ensayo de ultrasonido	54
Figura 3.4 Diseño del Elemento 2	58
Figura 3.5 Diseño del Elemento 3	59
Figura 3.6 Diseño del Elemento 4	60
Figura 3.7 Diseño del Elemento 5	61
Figura 3.8 Búsqueda de los Materiales para la Mezcla	64
Figura 3.9 Tamizadora Mecánica	68
Figura 3.9 Maquina de los Ángeles	70
Figura 3.11 Balanza Electrónica	72
Figura 3.12 Relación arena/agregado total, β	75
Figura 3.13 Mezcladora de Eje Vertical.	83
Figura 3.14 Doblado de Estribos	86
Figura 3.15 Corte de Barras a 1/2"	87

Figura 3.16 Armado del Acero	88
Figura 3. 17 Proceso de Mezclado	89
Figura 3.18 Proceso de Medición del Asentamiento por medio del Cono de Abrams	91
Figura 3.19 Medición de Asentamiento por Cono de Abrams	91
Figura 3.20 Proceso de Compactación por Agitación	92
Figura 3.21 Vaciado de Cilindros	93
Figura 3.22 Desencofrado y Curado	94
Figura 3.23 Dimensiones Tomadas de los Cilindros	95
Figura 3.24 Pesaje de Elementos utilizando Romana	96
Figura 3.25 Ensayo de Resistencia a Compresión	97
Figura 3.26 Falla que Presentaron los Cilindros	98
Figura 3.27 Barrido utilizado para detectar acero con el Ferroscan	99
Figura 3.28 Rango de ubicación de la Barra	99
Figura 3.29 Ensayo Electromagnético (Ferroscan)	100
Figura 3.30 Equipo Ultrasonido	100
Figura 3.31 Sistema de referencia de ubicación de los transductores	101
Figura 3.32 Ensayo de Velocidad de Pulso Ultrasónico	103
Figura 3.33 Caso 1: Acero Transversal Paralelo a la línea de Propagación del Pulso de	Onda
(Método Directo)	105
Figura 3.34 Caso 2: Acero Transversal Perpendicular a la línea de Propagación del Pu	ılso de
Onda (Método Directo)	105
Figura 3.35 Caso 3: Acero Longitudinal Perpendicular a la línea de Propagación del Pu	ılso de
Onda (Método Directo)	106

Figura 3.36 Caso 4: Acero Transversal y Longitudinal cercano a la línea de Propagación del
Pulso de Onda (Método Directo)
Figura 3.37 Caso 5: Acero Transversal y Longitudinal Perpendicular a la línea de Propagación
del Pulso de Onda (Método Semi-directo)
Figura 3.38 Caso 6: Acero Longitudinal Perpendicular a la línea de Propagación del Pulso de
Onda (Método Semi-directo)
Figura 3.39 Caso 7: Acero Longitudinal y Transversal cercano a la línea de Propagación del
Pulso de Onda (Método Semi-directo)
Figura 3.40 Caso 8: Puntos que coinciden con la Barra de Acero (Método Indirecto)108
Figura 3.41 Caso 9: Puntos por el centro de la Probeta (Método Indirecto)109
Figura 3.42 Planilla de Ubicación de Casos (Método Directo)
Figura 3.43 Planilla de Ubicación de Casos (Método Semi-Directo)
Figura 3.44 Planilla de Ubicación de Casos (Método Indirecto)

ÍNDICE DE GRÁFICOS

Gráfico 4.1 Granulometría del Agregado Grueso Combinado	114
Gráfico 4.2 Relación Beta	116
Gráfico 4.3 Influencia de la Edad en la VPU	124
Gráfico 4.4 VPU Casos medidos por Método Directo en el E2A (tabla 4.24)	128
Gráfico 4.5 VPU Casos medidos por Método Directo en el E2B (tabla 4.25)	128
Gráfico 4.6 VPU Casos medidos por Método Directo en el E3 (tabla 4.26)	129
Gráfico 4.7 VPU Casos medidos por Método Directo en el E4 (Tabla 4.27)	129
Gráfico 4.8 VPU Casos medidos por Método Directo en el E5A (Tabla 4.28)	130
Gráfico 4.9 VPU Casos medidos por Método Directo en el E5B (Tabla 4.29)	130
Gráfico 4.10 VPU Casos medidos por Método Semi-Directo en el E2A (tabla 4.24)	131
Gráfico 4.11 VPU Casos medidos por Método Semi-Directo en el E2B (tabla 4.25)	131
Gráfico 4.12 VPU Casos medidos por Método Semi-Directo en el E3 (tabla 4.26)	131
Gráfico 4.13 VPU Casos medidos por Método Semi-Directo en el E4 (tabla 4.27)	132
Gráfico 4.14 VPU Casos medidos por Método Semi-Directo en el E5A(tabla 4.28)	132
Gráfico 4.15 VPU Casos medidos por Método Semi-Directo en el E5B(tabla 4.29)	132
Gráfico 4.16 VPU Casos medidos por Método Indirecto en el E2A (tabla 4.24)	133
Gráfico 4.17 VPU Casos medidos por Método Indirecto en el E2B (tabla 4.25)	.133
Gráfico 4.18 VPU Casos medidos por Método Indirecto en el E3 (tabla 4.26)	.133
Gráfico 4.19 VPU Casos medidos por Método Indirecto en el E4 (tabla 4.27)	.133
Gráfico 4.20 VPU Casos medidos por Método Indirecto en el E5A (tabla 4.28)	133
Gráfico 4.21 VPU Casos medidos por Método Indirecto en el E5B (tabla 4.29)	.133

Gráfico 4.22 VPU obtenida por el Método Directo, cuando el Acero Transversal es Paralelo a
la Línea de Propagación de la Onda
Gráfico 4.23 VPU obtenida por el Método Directo, cuando el Acero Transversal es
Perpendicular a la Línea de Propagación de la Onda
Gráfico 4.24 VPU obtenida por el Método Directo, cuando el acero Longitudinal es
Perpendicular a la Línea de Propagación de la Onda
Gráfico 4.25 VPU obtenida por el Método, Directo cuando el Acero Transversal y Longitudina
esta cercanos a la línea de Propagación de la Onda
Gráfico 4.26 VPU obtenida por el Método Semi-Directo, cuando el Acero Transversal es
Perpendicular a la Línea de Propagación de la Onda
Gráfico 4.27 VPU obtenida por el Método Semi-Directo, cuando el Acero Longitudinal es
Perpendicular a la Línea de Propagación de la Onda
Gráfico 4.28 VPU obtenida por el Método Semi-Directo, cuando el Acero Transversal y
Longitudinal esta cercanos a la línea de Propagación de la Onda
Gráfico 4.29 VPU obtenida por el Método Indirecto, cuando recorrido de puntos es sobre el eje
de la barra longitudinal
Gráfico 4.30 VPU obtenida por el Método Indirecto, cuando recorrido de puntos es en el centro
del Elemento
Gráfico 4.31 VPU cuando la Trayectoria del Pulso es Paralelo a la Barra de 3/8"145
Gráfico 4 32 VPI I donde la Travectoria del Pulso es Paralelo a la Barra de 3/8"

ÍNDICE DE ECUACIONES

Ecuación 2.1 Resistencia Promedio del Concreto	16
Ecuación 2.2 Longitud de Onda	23
Ecuación 2.3 Impedancia Acústica	25
Ecuación 2.4 Impedancia Acústica Aproximada	25
Ecuación 2.5 Velocidad de Propagación de la Onda	32
Ecuación 2.6 Relación de la distancia que existe entre la barra y los transductores	33
Ecuación 2.7 Velocidad de la Propagación de la Onda, cuando existe influencia del acc	ero33
Ecuación 2.8 Velocidad Aparente de la Onda	34
Ecuación 2.9 <i>Factor de Corrección de la Velocidad para b≤a/2</i>	34
Ecuación 2.10 Factor de Corrección de la Velocidad para b>a/2	34
Ecuación 2.11 Relación entre la Velocidad del Concreto y el Acero	35
Ecuación 2.12 Relación entre la Velocidad real en el Concreto y la Obtenida	36
Ecuación 2.13 Constante para el Cálculo de la Velocidad de la Onda	37
Ecuación 2.14 Influencia de la Humedad en la VPU	42
Ecuación 2.15 Media Aritmética	47
Ecuación 2.16 Desviación Típica de la Distribución	47
Ecuación 2.17 Recta de Ajuste por Mínimos Cuadrados	48
Ecuación 2.18 Constante a de recta de mejor ajuste	48
Ecuación 2.19 Constante b de recta de mejor ajuste	48
Ecuación 2.20 Coeficiente de Variación	48
Ecuación 3.1 Densidad Aparente del Agregado	71
Ecuación 3.2 Absorción del Agregado	71

Ecuación 3.3 Contenido de Humedad de la Muestra	72
Ecuación 3.4 Resistencia Promedio Requerida en el Concreto	76
Ecuación 3.5 Relación Agua/Cemento	76
Ecuación 3.6 Relación agua/cemento Corregida	77
Ecuación 3.7 Dosis de Cemento	78
Ecuación 3.8 Dosis de Cemento Corregida	79
Ecuación 3.9 Volumen Absoluto de los Granos de Cemento	80
Ecuación 3.10 Volumen de Agua presente en la Mezcla	80
Ecuación 3.11 Volumen de Aire Atrapado	80
Ecuación 3.12 Peso Específico del Agregado Fino	81
Ecuación 3.13 Volumen Absoluto de los Agregados de la Mezcla	81
Ecuación 3.14 Volumen Absoluto de los Granos de Cemento	82
Ecuación 3.15 Peso del Agregado Fino	82
Ecuación 3.16 Relación Beta	82
Ecuación 3.17 Peso del Agregado Saturado con Superficie Seca	83
Ecuación 3.18 Peso del Agregado Fino Saturado con Superficie Seca	83
Ecuación 3.19 Cantidad de Agua a usar en la Mezcla	84
Ecuación 3.20 Densidad en Estado Endurecido	96
Ecuación 3.21 Resistencia a Compresión del Concreto	98
Ecuación 3.22 Velocidad de la Propagación de la Onda	102

ÍNDICE DE ANEXOS

Anexo # 1. Ensayo de Cemento (FNC)	174
Anexo # 2. Ensayo de Agregado Grueso (FNC)	175
Anexo # 3. Ensayo de Agregado Fino (FNC)	176
Anexo # 4. Ensayo de Agregado de Grueso IMME	177
Anexo # 5. Control de horas empleadas en los Ensayos Ultrasonidos	178
Anexo # 6. Dimensiones de las probetas cilíndricas para resistencia a compresión	180
Anexo # 7. Resistencia a Compresión y Peso Unitario de cada Cilindro	183
Anexo # 8. Dimensiones de los elementos de Concreto	186
Anexo # 9. Velocidades de pulso ultrasónico por casos de estudio	188
Anexo # 10. Tablas de VPU detalladas en cada punto y en cada elemento	197
Anexo # 11. Distancias utilizadas en los Ensayos de los elementos de Concreto	239
Anexo # 12. Gráficos de Ajuste de VPU por el Método Indirecto	246

INTRODUCCIÓN

Actualmente se conoce una importante diversidad de materiales para la construcción de edificaciones, sin embargo, entre esos materiales el concreto armado desde hace mucho tiempo sigue siendo reconocido como el material de mayor uso en este ámbito. Entre las principales ventajas que tiene el uso del concreto armado, esta que se ha invertido una gran cantidad de investigaciones enfocadas a entender y manejar este material como elemento estructural. De igual manera, existe un sin número de investigaciones dedicadas al control de calidad en las construcciones con este material. Para el control de calidad en las obras de concreto armado fundamentalmente se debe inspeccionar visualmente el proceso constructivo de la obra y verificar especialmente el resultado final de los elementos estructurales, sin embargo, a pesar de que se puede obtener valiosa información a partir de la inspección externa de los elementos, es también importante examinar su interior. Para esto se han desarrollado técnicas basadas en la compresión de fenómenos físicos que nos permiten interpretar lo que sucede en el interior del elemento. Entre estas técnicas se tiene la evaluación de estructuras por el ensayo de ultrasonido, el cual consiste en medir la velocidad de un pulso de onda que atraviesa al elemento y dependiendo de la magnitud de esta velocidad se puede determinar su calidad o detectar la presencia de grietas o vacíos en su interior.

Los ensayos de velocidad de pulso ultrasónico son conocidos en varias partes el mundo y los equipos utilizados para este ensayo incorporan cada vez más una mejor gestión de los datos recolectados en campo. Así mismo las investigaciones para mejorar la precisión del ensayo han ido aportando información útil para comprender mejor el fenómeno involucrado y las variaciones que presenta. Es a partir de un vasto entendimiento de las posibles causas de

alteración de la velocidad de pulso ultrasónico, que el especialista encargado del ensayo es capaz de interpretar los resultados obtenidos y tener una noción importante de las condiciones internas del material.

El ensayo consiste en colocar un par de dispositivos llamados transductores sobre la superficie del concreto de tal manera que se pueda emitir un pulso por uno de estos transductores que viaje por el interior del elemento y luego sea recibido por el otro transductor. El equipo de ultrasonido, al que están conectados los transductores, está dotado con la capacidad de medir y mostrar el tiempo de paso del pulso desde que es emitido hasta que es recibido. Adicionalmente, se mide la distancia entre los transductores y con estos datos se calcula la velocidad por la ecuación de física básica de distancia entre tiempo.

Por otro lado, llevar los modelos físicos a la aplicación práctica, involucra de alguna manera contrastar con la realidad del comportamiento del fenómeno estudiado, revelándose las simplificaciones de los modelos planteados como una imprecisión en el resultado. Para que se tengan resultados más precisos, en diversas partes del mundo se han ido haciendo una importante cantidad de aportes con relación a los factores que intervienen en la variación de la velocidad de pulso ultrasónico, de tal manera que estos factores puedan controlarse o al menos estimar su influencia para que la interpretación de los ensayos sea más precisa. Actualmente se conoce que factores como el contenido de humedad, la edad del concreto, el tipo de agregado, la relación agua-cemento, la presencia de barras de acero, entre otros, alteran la velocidad del pulso ultrasónico en el concreto y al final lo que se desea conocer con este ensayo es eso, la velocidad del pulso en el concreto.

El presente trabajo especial de grado, está enfocado en determinar bajo condiciones bien específicas, la influencia que pudiera haber sobre el ensayo de velocidad de pulso ultrasónico ocasionada por la presencia de las barras de acero inherentes al concreto armado. Con respecto a la influencia del acero de refuerzo sobre la velocidad de pulso ultrasónica, se conoce que se produce un incremento de la magnitud de la velocidad ocasionado por las barras de refuerzo. Adicionalmente se conoce que la posición de las barras de acero con respecto al alineamiento de los transductores es importante, encontrándose que por lo general, las barras que tienen su eje longitudinal paralelo y cercano a la línea imaginaria que une a los transductores colocados sobre la superficie, tienen mayor afectación sobre la velocidad del pulso ultrasónico que las barras que están perpendiculares a la línea imaginaria mencionada. Esta línea imaginaria representa teóricamente la trayectoria del pulso captado por los transductores. En esta investigación, se suministran datos cuantitativos de la influencia del acero de refuerzo sobre la velocidad del pulso ultrasónico a partir de ensayos sobre elementos de concreto armados comparándolos con elementos de concreto sin armadura

CAPÍTULO I.

PLANTEAMIENTO DEL PROBLEMA

1.1. El problema de la investigación

Los métodos de ultrasonido tienen innumerables aplicaciones en diversas áreas de la ciencia. Se utilizan fundamentalmente en la ubicación de elementos, cuerpos, o identificando heterogeneidades y defectos en los materiales. En el ámbito de la construcción, el método ultrasónico es un ensayo no destructivo que sirve para la evaluación del concreto.

Este ensayo fue desarrollado con el fin de obtener un método rápido y económico que permita determinar comparativamente la calidad del concreto mediante la interpretación de la velocidad del pulso ultrasónico que lo atraviesa. (Strafella, López y Rengel, 1991).

El método consiste en medir el tiempo que tarda un pulso ultrasónico en atravesar el elemento de concreto. Esto se logra mediante un equipo generador de pulsos de alta frecuencia que consta de un transductor emisor, un transductor receptor, un amplificador y un dispositivo electrónico para medir el intervalo de tiempo que transcurre en la transmisión del pulso. Los transductores se acoplan a la superficie del elemento a evaluar, y con la distancia comprendida entre ellos, se puede calcular la velocidad del pulso ultrasónico. La posición relativa de los transductores sobre el elemento a ensayar, es muy importante, ya que de acuerdo a la ubicación del transductor emisor y la del transductor receptor, se podrán obtener medidas con muy buena precisión o por el contrario, podrían hacerse lecturas totalmente inválidas.

Por otro lado, es bien conocido que la velocidad del pulso ultrasónico es sensible a varios factores inherentes a la heterogeneidad del concreto y a su cambio de estado durante el desarrollo de la resistencia, sin embargo para una mezcla en particular se pueden obtener

velocidades que sirvan de índice para evaluar su calidad, incluso algunos autores ofrecen intervalos de valores de las velocidades que debe tener un concreto para clasificarlo de excelente, bueno, dudoso, malo o muy malo. Sin embargo al momento de hacer ensayos sobre elementos de concreto armado se genera cierta influencia por parte del acero de refuerzo que debe ser tomada en cuenta.

Varias investigaciones indican que la presencia del acero de refuerzo en los elementos de concreto armado altera la velocidad del pulso ultrasónico dependiendo de la trayectoria del pulso con respecto a disposición de las barras, su diámetro y de la cercanía de estas barras entre sí. La velocidad del pulso ultrasónico en el acero puede llegar a ser el doble de la velocidad que alcanza el pulso en una masa de concreto sin acero. Cuando se va a evaluar el concreto armado, parte del pulso viaja en la masa de concreto y otra parte viaja directamente por el acero, lo que resulta en un aumento de la velocidad que depende de la proximidad del acero a la trayectoria del pulso ultrasónico. (Pucinotti, 2007)

Por lo tanto, lo mejor que se puede hacer es hallar una posición relativa entre los transductores sobre el elemento a ensayar, de tal manera que se tenga la menor influencia posible del acero, esto amerita conocer una medida de separación mínima para que la influencia del acero no sea apreciable. Otra alternativa sería contar con factores de corrección confiables para una cierta cantidad y disposición de barras de acero que permitan establecer la velocidad de pulso eliminando la influencia de estas. Esto no se ha logrado del todo, las investigaciones han indicado que hacer correcciones debidas a la presencia de armadura no son fáciles de establecer (Jorge-Louis Henry, 2003).

En este trabajo de grado se pretende evaluar esa influencia del acero de refuerzo en la velocidad del pulso ultrasónico en las mezclas de concreto mediante la utilización de probetas que simulen un elemento estructural armado y que permitan evaluar las diferentes técnicas de medición del pulso ultrasónico a fin de optimizar el uso de este ensayo en la evaluación de la calidad del concreto

1.2. Objetivos

1.2.1. Objetivo General

Evaluar la influencia del acero de refuerzo en la aplicación del ensayo de velocidad de pulso ultrasónico en elementos de concreto armado utilizando probetas de sección cuadrada de 30 cm de lado

1.2.2. Objetivos Específicos

- 1. Elaborar probetas de sección cuadrada de 30 cm de lado que simulen un elemento estructural de concreto armado
- 2. Calcular la velocidad de pulso ultrasónico con transmisión directa, semi-directa e indirecta en elementos de concreto armado a diferentes edades
- 3. Comparar las velocidades de pulso ultrasónico obtenidas experimentalmente entre las diferentes configuraciones de armado y la muestra patrón
- 4. Cuantificar la influencia del acero de refuerzo en las mediciones realizadas mediante el ensayo de pulso ultrasónico en elementos de concreto armado

1.3. Justificación

El desarrollo del método ultrasónico para evaluar el concreto ha sido siempre de gran interés para los ingenieros civiles, ya que ofrece una forma de evaluar las condiciones del concreto existente en la estructura (Tovar y Valenzuela, 1990).

Este trabajo de grado, busca evaluar la influencia del acero de refuerzo en las mezclas de concreto armado de tal manera que el ensayo de pulso ultrasónico sea más preciso y se apegue más a la realidad del elemento estudiado y por ende proporcione datos que permitan un mejor control de calidad.

Esta investigación proporcionara datos que servirían para optimizar la técnica del ensayo de pulso ultrasónico, de tal manera que se maneje con mayor precisión las variables que alteran la velocidad calculada.

Una mejor comprensión del comportamiento del pulso ultrasónico a través de elementos de concreto armado, serviría para mejorar las correlaciones entre la velocidad del pulso ultrasónico y la resistencia a compresión, que pudieran ser usadas para disminuir costos inherentes al ensayo de compresión simple manteniendo un buen nivel de confianza en los resultados.

Adicionalmente, este trabajo de grado pretende contribuir a la data de investigación que se tiene en la Facultad de Ingeniería de la Universidad Central de Venezuela, en la cual recientemente se retomó el tema enfocado al ensayo de pulso ultrasónico para el concreto, con el trabajo especial de grado de Miguel Gonzales (2014) titulado "Evaluación de la aplicación del ensayo de velocidad de pulso ultrasónico en la ubicación de discontinuidades o vacíos en

elementos de concreto". Anterior a ello la data disponible es de los años 1989 y 1991. A lo largo de todo este lapso de tiempo se ha hecho disponible y accesible información actualizada con respecto a este tema que contribuiría a la escasa investigación realizada de este método en la facultad.

CAPÍTULO II

MARCO TEÓRICO

2.1. El Cemento

De acuerdo con lo establecido con la Norma COVENIN 28:1993 "Cemento Portland. Especificaciones", es el producto obtenido por la pulverización de Clinker Portland, el cual consiste esencialmente en silicatos de calcio hidráulico con la adición de agua y sulfato de calcio.

2.2. Clasificación del Cemento

De acuerdo con la Norma COVENIN 28:1993 "Cemento Portland. Especificaciones" el cemento Portland se clasifica según su uso en:

- Tipo I: Usado en las construcciones de concreto en general, cuando no se requieren las propiedades especiales correspondientes a los otros tipos.
- Tipo II: Usado en obras expuestas a la acción moderada de los sulfatos, o donde se requiera un calor de hidratación moderado.
- Tipo III: Usado en construcciones que requieren altas resistencias iniciales.
- Tipo IV: Usado en obras donde sea necesario un muy bajo calor de hidratación.
- Tipo V: Usado en construcciones que requieren alta resistencia a los sulfatos.

2.3. Los Agregados

Según Porrero y otros (2012), los agregados, también denominados áridos o inertes, son fragmentos o granos, usualmente pétreos, cuyas finalidades específicas son abaratar la mezcla y dotarla de ciertas características favorables, entre las cuales se destaca la disminución de la retracción de fraguado o retracción plástica.

Los agregados constituyen la mayor parte de la masa del concreto, ya que alcanzan a representar entre el 70% y el 85% de su peso, razón por la cual sus propiedades resultan tan importantes para la calidad final de la mezcla.

2.3.1. Tipos de agregados.

De acuerdo con Porrero y otros (2012), los agregados están formados por dos fracciones:

Agregados finos: conformado por las partículas más finas es también denominado arena. Generalmente formada por granos naturales depositados por las aguas.

Agregados Gruesos: conformado por las partículas de mayor tamaño, generalmente roca triturada (piedra picada) o granos redondeados por el arrastre de las aguas (canto rodado). También son utilizados otros tipos como la grava, gravilla, arrocillo, etc

2.3.2. Ensayos a los Agregados.

Existen un conjunto de ensayos Normados que regulan los niveles mínimos de calidad que deben presentar los agregados, los mismos se citan a continuación:

Ensayo Granulométrico: COVENIN 255:1998 "Agregados. Determinación de la Composición Granulométrica". Tiene como objeto determinar por cernido la distribución de los tamaños de las partículas de agregados finos y gruesos.

Ensayo para la determinación del material pasante del tamiz #200: COVENIN 258:1977 "Método de Ensayo para la Determinación por Lavado del Contenido de Materiales más Finos que el Cedazo COVENIN 74 micras en Agregados Minerales". Tiene como objeto determinar por lavado, en un agregado la cantidad de material más fino que el cedazo COVENIN 74 micras (#200).

Ensayo de absorción y densidad: COVENIN 268:1998 "Agregado Fino. Determinación de la Densidad y la Absorción" COVENIN 269:1998 "Agregado Grueso. Determinación de la Densidad y la Absorción". Tiene como objeto determinar la densidad aparente, densidad aparente con muestra saturada y de superficie seca, la densidad nominal y la absorción del agregado fino.

Ensayo de humedad: COVENIN 1375:1979 "Método de Ensayo para la Determinación por Secado, el Contenido de Humedad Total y Superficial en el Agregado". Tiene como objeto determinar por secado el porcentaje de humedad evaporable en una muestra de agregado, así como también la humedad superficial. De acuerdo con Porrero y otros (2012), la humedad puede encontrarse en los agregados de dos formas diferentes, cuando el agua forma una película alrededor de las granos del agregado y cuando el agua rellena los poros y micro – poros internos de los granos.

Ensayo de desgaste Los Ángeles: COVENIN 266:1977: "Método de ensayo para Determinarla Resistencia al Desgaste en Agregados Gruesos Menores de 38,1 mm (1 ½ ") por medio de la Máquina de Los Ángeles". Tiene como objeto determinar la resistencia al desgaste (abrasión) en agregados gruesos menores a 38,1 mm.

2.4. El Concreto

Según Porrero y otros. (2012), el concreto u hormigón es un material que se puede considerar constituido por dos partes: una es un producto pastoso y moldeable, que tiene la propiedad de endurecer con el tiempo, la otra son trozos pétreos que quedan englobados en esa pasta. A su vez, la pasta está constituida por agua además de un producto aglomerante o conglomerante, que es el cemento. El agua cumple la doble misión de dar fluidez a la mezcla

así como de reaccionar químicamente con el cemento dando lugar, con ello, a su endurecimiento.

2.4.1. Características del concreto fresco

De acuerdo con Porrero y otros. (2012), se denomina concreto fresco al material mientras permanece en estado fluido, es decir desde el momento cuando todos los componentes son mezclados hasta que se inicia el atiesamiento de la masa (periodo plástico. En ese lapso el concreto presenta un conjunto de características que posibilitan su manejo y posterior compactación, dichas características se conoce como "reología del concreto":

- Fluidez: Para Porrero y otros. (2012), describe la calidad del fluidos o viscosidad que indica el grado de movilidad que puede tener la mezcla.
- Compactibilidad: Es la característica de la mezcla que permite la compactibilidad
 de la misma y su adaptación al molde. Está asociada a lo que se conoce como
 "tixopropia", propiedad que da al concreto atiesamiento en reposo y
 fluidificación en movimiento
- Estabilidad a la Segregación: Se define como aquella propiedad que permite la separación de cada uno de los componentes del concreto. Lo cual debe ser de cuidado, ya que existe la tendencia a colocar mezclas más fluidas para mayor trabajabilidad, agregando agua sin tomar en consideración el diseño de la mezcla, situación que puede causar grietas o un daño directo en la resistencia del material.

2.4.2. Agua para Concreto

El agua junto al cemento, son los elementos imprescindibles para la elaboración del concreto. El agua de mezclado ocupa normalmente entre 15% y 20% del volumen de concreto fresco formando con el cemento, un producto coherente, pastoso y manejable, que lubrica y soporta los agregados, acomodable en los moldes. Por otra parte el agua de curado, es necesaria para reponer la humedad que se pierde por evaporación luego que el concreto ha sido colocado, compactado y alisado en su superficie, garantizando el normal desarrollo de las reacciones de hidratación del cemento.

2.4.1. Diseño de mezcla

Existen numerosos métodos para diseñar mezclas, que pueden asemejarse o pueden diferir entre sí profundamente, de acuerdo con las variables que manejen y las relaciones que establezcan; lo que indica que ninguno de ellos es perfecto. De acuerdo con las condiciones reales de los materiales y de la tecnología del concreto, pueden ser preferidos unos u otros.

Un método de diseño de mezcla puede llegar a ser muy complejo si considera un gran número de variables y una gran precisión o exactitud en la expresión de los resultados. Pero debe al mismo tiempo ser de fácil manejo y operatividad. Lo acertado es lograr un equilibrio entre ambos extremos.

Los requisitos que una dosificación apropiada debe cumplir son:

- Economía y manejabilidad en estado fresco;
- Resistencias, aspecto y durabilidad en estado endurecido.

Inevitablemente, los diseños de mezcla tienen cierto grado de imprecisión debido a que las variables que condicionan la calidad y el comportamiento del concreto son numerosas y difíciles de precisar. Los ajustes que pueden dar más exactitud a las proporciones de los componentes sólo pueden conseguirse mediante "mezclas de prueba" tanto en laboratorio como en obra.

2.4.2. Cono de Abrams

De acuerdo con la Norma COVENIN 339:1994 "Concreto. Método para la Medición del Asentamiento del Cono de Abrams" este instrumento de medición es construido de un material rígido e inatacable por el concreto, con un espesor mínimo de 1.5 mm. Su forma interior debe ser la de un tronco de cono, de 200 ± 3 mm de diámetro de base mayor y, 100 ± 3 mm de base menor y 300 ± 3 mm de altura. Las bases deben ser abiertas, paralelas entre si y perpendiculares al eje del cono. El molde debe estar provisto de asas y aletas. El interior del molde debe ser relativamente suave y sin protuberancias tales como remaches. El objeto de este ensayo es "determinar el asentamiento del concreto fresco (en las obras y en el laboratorio)"

2.4.3. Tiempo de Fraguado

Porrero y otros. (2012), Es el lapso que transcurre desde el mezclado hasta el momento de aparición del atiesamiento. La pérdida de plasticidad de la pasta, es un proceso gradual aun cuando el fraguado debe ser definido en un tiempo preciso.

2.4.4. Ley de Abrams

Según Porrero y otros. (2012), es la principal Ley que relaciona la resistencia del concreto y la composición de su mezcla. La cual expresa que la resistencia del concreto depende

Capítulo 2: Marco Teórico

fundamentalmente de la proporción entre el peso del agua de mezclado y el peso del cemento

presente, relación que suele simbolizarse con la variable α .

Para determinados componentes de la mezcla, manteniendo el tamaño máximo y las

mismas condiciones de preparación, de ensayo y de edad, se establece la siguiente relación

algebraica:

$$\bar{R}=M/N^{\alpha}$$

Ecuación 2.1

Donde:

R: Resistencia promedio

M y N:Constates

α: Relación agua/cemento, en peso.

2.5. Ensayos al concreto Endurecido

Una vez sólida la mezcla, se puede realizar sobre la misma una amplia gama de ensayos,

los cuales podemos clasificar en:

Ensayos destructivos: Son ensayos, que una vez ejecutados modifican de manera

permanente las propiedades del concreto, por lo que debe ser desechada la probeta luego de ser

ensayada.

Ensayos No destructivos: Se definen como aquellos ensayos, que puede aplicarse a

cualquier elemento de concreto, sin modificar o alterar ninguna de sus propiedades.

Ensayos Parcialmente Destructivos: Se definen como aquellos ensayos, que causan

daños reparables o poco invasivos al elemento de concreto.

16

2.5.1. Ensayo de Compresión Simple

Según la Norma COVENIM 338: "Método para la elaboración, curado y ensayo a compresión, de cilindros de concreto", es un ensayo destructivo. El cual se realiza en probetas cilíndricas de 152.5 ± 2.5 mm de diámetro y 305 ± 6.0 mm de altura. El objetivo de este ensayo es determinar la resistencia a compresión del concreto a una edad determinada (Número de días después del vaciado).

2.6. El Acero

Según la Norma COVENIN 803:89 "Aceros Definiciones y Clasificaciones", se define acero como toda aleación de hierro-carbono, capaz de ser deformado plásticamente; con tenores mínimo y máximo de carbono del orden de 0.008% y 2,0%, respectivamente, pudiendo contener otros elementos de aleación, así como también impurezas inherentes al proceso de fabricación.

2.6.1. Acero al carbono.

La Norma COVENIN 803:89 "Aceros Definiciones y Clasificaciones", los define como una aleación de hierro-carbono que contiene además otros elementos, cuyas proporciones no exceden los límites indicados en la tabla 2.1.

Los aceros al carbono se clasifican en:

- Con bajo contendió de carbono (C≤0.25%)
- Con medio contenido de carbono (0.25%<C≤0.50%)
- Con alto contenido de carbono (C>0.50%)

Tabla 2.1. Contenidos Máximos de Elementos Admisibles en el Acero al carbono

ELEMENTO	PORCENTAJE MÁXIMO	ELEMENTO	PORCENTAJE MÁXIMO
Manganeso + Silicio	2.00	Bismuto	0.10
Manganeso	1.65	Zirconio	0.10
Silicio	0.50	Selenio	0.10
Cobre	0.40	Telurio	0.10
Plomo	0.40	Molibdeno	0.08
Níquel	0.30	Niobio	0.05
Cromo	0.30	Titanio	0.05
Aluminio	0.10	Lantánidos	0.05
Vanadio	0.1	Otros (excepto C,P,S,N,O)	0.05
Tungsteno	0.10	Boro	0.008
Cobalto	0.10	Bismuto	0.10

Fuente: Norma COVENIN 803:89 "Aceros Definiciones y Clasificaciones"

2.7. Barras de Acero

Según la Norma COVENIN 316:00 "Barras y Rollos de Acero con Resaltes para uso como Refuerzo Estructural" y la Norma COVENIN 1753:06 "Estructuras de Concreto Armado para Edificaciones. Análisis y Diseño". Son barras obtenidas por el proceso de laminación en caliente, de palanquillas de acero al carbono; utilizadas en el refuerzo del concreto.

2.8. Propiedades Normativas de las barras de refuerzo

Existen un conjunto de características y propiedades que deben ser cumplidas por las barras para garantizar su comportamiento idóneo, entre los que encontramos:

Resistencia a la tracción o resistencia de rotura (Fsu): La Norma COVENIN 1753:06
 "Proyecto y Construcción de Obras en Concreto Estructural", lo define como el
 resultado de dividir la carga máxima aplicada a la probeta de ensayo entre el área de la
 sección inicial.

• Límite Elástico Convencional (Fy): La Norma COVENIN 1753:06 "*Proyecto y Construcción de Obras en Concreto Estructural*", lo define como la tensión que produce una deformación remanente de 0.2%.

2.9. Designación de las Barras de Acero.

Designación según COVENIN 316:00 "Barras y Rollos de Acero con Resaltes para uso como Refuerzo Estructural", en Octavos de Pulgada (Ver Tabla 2.2)

Tabla 2.2 Designación en Octavos de Pulgada

N ⁰	Diámetro Nominal (mm)	Área Transversal (cm²)	Nº	Diámetro Nominal (mm)	Área Transversal (cm²)
3	9,53	0,713	9	28,65	6,446
4	12,70	1,267	10	32,25	8,174
5	15,88	1,981	11	35,81	10,072
6	19,05	2,850	14	43,00	14,522
7	22,22	3,878	18	57,33	25,814
8	25,40	5,067	-	-	-

Fuente: Norma COVENIN 316:00 "Barras y Rollos de Acero con Resaltes para uso como Refuerzo Estructural"

Designación según COVENIN 316:00 "Barras y Rollos de Acero con Resaltes para uso como Refuerzo Estructural", en Milímetros. Designación en Milímetros (ver Tabla 2.3)

Tabla 2.3 Designación en Milímetros

N ⁰	Diámetro Nominal (mm)	Área Transversal (cm²)	N ⁰	Diámetro Nominal (mm)	Área Transversal (cm²)
6 M	6,00	0,283	20 M	20,00	3,140
8 M	8,00	0,503	25 M	25,00	4,910
10 M	10,00	0,785	32 M	32,00	8,040
12 M	12,00	1,130	36 M	36,00	10,180
14 M	14,00	1,539	40 M	40,00	12,570
16 M	16,00	2,011	20 M	20,00	3,140

Fuente: Norma COVENIN 316:00 "Barras y Rollos de Acero con Resaltes para uso como Refuerzo Estructural"

2.10. Breve Descripción de los Ensayos No Destructivos y sus Principales Aplicaciones

Tabla 2.4 Ensayos No Destructivos

Método	Principio	Aplicaciones
Inspección Visual	Observación, Clasificación y documentación de daños visibles en la superficie del concreto	Constatar la calidad de la obra a partir de sus elementos constituyentes en base al juicio de un observador con la capacidad de discernir las implicaciones de lo que ve.
Velocidad de Pulso Ultrasónico	Mide el tiempo que tarda un pulso de ondas ultrasónicas en recorrer una cierta distancia.	Determinar la Condición Relativa del Concreto basado en las mediciones de Velocidad de Pulso
Ultrasonido-Eco	El transductor emite un corto pulso ultrasónico, el cual es reflejado en el lado opuesto del elemento o en un defecto interno. La llegada de la onda indirecta o reflejada se registra en el captador determinándose el tiempo de viaje de ida y vuelta.	Ubica zonas delaminadas y vacíos en elementos delgados. Es fundamentalmente una herramienta de investigación.
Eco-Impacto	El receptor adyacente a la zona de impacto monitorea la llegada de las ondas a medida que éstas sufren múltiples reflexiones entre la superficie y el lado opuesto del elemento o de defectos internos. Los análisis de frecuencia permiten determinar la distancia al reflector si la velocidad de onda se conoce	Ubica una variedad de defectos dentro de los elementos de concreto tales como, delaminación, vacíos, cangrejeras o determinación del espesor del elemento.
Eco-Sónico	Un impacto de martillo se aplica sobre la superficie y un transductor monitorea la onda reflejada. Se lleva a cabo un análisis en el dominio del tiempo para determinar distancias o dimensiones.	Determinar la longitud de fundaciones profundas (pilas y pilotes), ubicación de grietas o discontinuidades. Suministra información acerca de las características dinámicas del subsuelo.
Radiografía	La intensidad de una radiación electromagnética de alta energía que pasa a través del miembro, se registra en una película.	Ubicación de armaduras, cables de pretensado, tubos, vacíos, cangrejeras.
Evaluadores de Recubrimiento	Sobre la superficie de la estructura se aplica un campo magnético alterno de baja frecuencia. La presencia del refuerzo metálico embebido modifica el campo y la medición de éste cambio suministra información sobre el refuerzo.	Ubicación del acero de refuero, determinación de espesor de recubrimiento y estimación de diámetro de la armadura.
Potencial de Media Celda	La medición de la diferencia de potencial (voltaje) entre el acero de refuerzo y el electrodo estándar de referencia, suministra información de la posibilidad de que esté ocurriendo corrosión en el refuerzo.	Identifica la región o regiones en una estructura de concreto armado donde existe alta probabilidad de ocurrencia de corrosión en el momento de la medición.
Prueba del martillo de rebote o esclerómetro	Se basa en el principio de que el rebote de una masa elástica depende de la dureza de la superficie contra la cual choca	Mide la dureza superficial de un elemento de concreto.

Fuente: Porrero S. Joaquín (2012) y otros "Manual del Concreto Estructural".

2.11. Método de Ensayo de Velocidad de Pulso Ultrasónico

2.11.1. Antecedentes del Pulso Ultrasonido

Diversos especialistas en concreto se han interesado por décadas en la determinación de las propiedades de este material. A mediados de 1930 se aceleró la investigación en ensayos no

destructivos y surgieron métodos de prueba utilizando técnicas de vibración. (Valencia e Ibarra, 2013)

Los primeros estudios realizados con ultrasonido se remontan a 1929 y 1935, donde Sokolov con el uso de ondas ultrasónicas realiza sus estudios en la detección de objetos metálicos. Para 1931, Mulhauser, obtenía una patente por usar ondas ultrasónicas, mediante el uso de dos transductores para detectar fallas en sólidos. En 1940 Firestone y luego Simons en 1945 desarrollaron métodos de test ultrasónico usando la técnica de pulso/eco. (Vázquez, 2003)

Poco después de la segunda guerra mundial, investigadores en Japón empezaron a explorar las posibilidades del ultrasonido en el diagnóstico médico.

El primer informe de la medición de la velocidad de los pulsos generados mecánicamente a través del concreto apareció en los EE.UU. a mediados de la década de 1940. Donde se encontró que la velocidad depende principalmente de las propiedades elásticas del material y era casi independiente de la geometría. El valor potencial de este enfoque era evidente, pero los problemas de medición eran considerables (Aguado y Henry, 2003)

Entre los años 1946 y 1950 se inició en Canadá la experimentación original del método ultrasónico aplicado al concreto por J.R. Leslie y W.J. Cheesman, utilizando dicho método para el diagnosticar el estado del concreto en cortinas de presas. Al mismo tiempo en Inglaterra R. Jones en la Road Research Laboratory, desarrollaba trabajos similares que ofrecían un mayor control sobre el tipo y la frecuencia de los pulsos generados, este tipo de pruebas mostraron que se podía aplicar el método ultrasónico al concreto, así como que existía una tendencia a la correlación entre la resistencia y la velocidad de pulso ultrasónico. (Vásquez, 2003) (Ver Tabla2.5)

 Calidad del Concreto
 Velocidad de Pulso Ultrasónico (m/s)

 Excelente
 >4570

 Buena
 De 3650 a 4570

 Regular
 De 3050 a 3650

 Pobre
 De 2130 a 3050

 Muy Pobre
 < 2130</td>

Tabla 2.5 Clasificación de la Calidad del Concreto según Leslie y Cheesman

Fuente: Vásquez C, Luis A. "Estudio y Caracterización mediante ensayos no Destructivos con Ultrasonido de Materiales compuesto Concreto-Raspadura de Caucho (Ripio)"

Por su parte Chung y Law pusieron en duda este tipo de clasificación para el concreto, ya que encontraron que pequeñas diferencias en la velocidad de pulso, en ocasiones reflejan diferencias relativamente grandes en la calidad de los concretos. (Carcayo y Pereira, 2003)

Más tarde pruebas más detalladas realizadas en Inglaterra así como una recopilación bastante extensa de investigaciones realizada por la Asociación del Cemento Portland, mostraron que la relación velocidad de pulso-resistencia, dependía de factores tales como el curado, tipo de agregado, contenido de humedad y composición del concreto. (Coraspe, 2003)

A principio de los años setenta se desarrollan tanto en Holanda como en Inglaterra los primeros aparatos portátiles para la medición de la velocidad de pulso ultrasónico, siendo uno de estos instrumentos el "Portable Ultrasonic Non-Destructive Digital Indicator Tester" conocido también por sus siglas como "PUNDIT". Dicho instrumento fue diseñado para ser usado en ensayos en obra, por lo que es de fácil uso y fácil de transportar. (Coraspe, 2003)

2.11.2. Fundamento Teórico de las Ondas Ultrasónicas

El espectro acústico divide el sonido en niveles de frecuencia, Sub sónico (0 Hz-20 Hz), audible (20 Hz- 20 KHz), ultrasónico (20 KHz- 500 MHz) e hipersónico (500 MHz- GHz). (Vásquez 2003)

Para Tovar y Valenzuela (1990) Las ondas ultrasónicas son ondas acústicas de idéntica naturaleza mecánica o elástica que las ondas sónicas por lo que, tienen una longitud de onda (l) mucho menor y se caracterizan por operar a frecuencias por encima de la zona audible del espectro acústico. Tal como se observa en el diagrama del espectro acústico

Adicionalmente, las velocidades ultrasónicas tienen un valor único, a temperatura y presión fijas en sustancias perfectamente elásticas. Estas propiedades son las que permiten que el ultrasonido sea utilizado en ensayos no destructivos, tanto para caracterizar los materiales como para la detección de defectos y/o discontinuidades. (Vásquez 2003)

Las frecuencias utilizadas en los ensayos ultrasonidos comienzan en la proximidad de la zona audible y se extienden hasta los 250 KHz para ensayos de concreto KHz, siendo el intervalo de 40 KHz a 150 KHz el mayormente utilizado. En metales se trabaja normalmente con frecuencias comprendidas entre 0,5 MHz- 25 MHz, en contacto directo entre 0,5 MHz- 15 MHz y a mayores de 15 MHz para inmersión. (Vásquez 2003)

Para Flores (2008) muchas de las propiedades de las ondas acústicas no dependen de la frecuencia, por lo que son comunes tanto a las ondas sónicas como a las ultrasónicas. Algunos parámetros de las ondas son:

Frecuencia (f), es el número de vibraciones o ciclos de una partícula por segundo.

Longitud de Onda (λ), es la distancia entre dos planos los cuales se encuentran en el mismo estado de movimiento. Existe una relación entre la longitud y la frecuencia de onda, producto de dicha relación es la velocidad (V) con que se propaga dicha onda. (ver figura 2.1)

$$\lambda = \frac{V}{f}$$
 Ecuación 2.2

Amplitud de oscilación (A), es el desplazamiento máximo de una partícula de su posición cero.

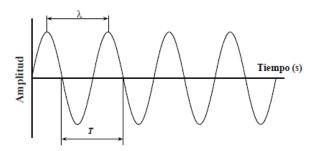


Figura 2.1 Propiedades de la Onda

Fuente: Flores G, Jesús. "Estimación del Coeficiente de Estimación de Clorurosen concreto utilizando la técnica de velocidad de Pulso Ultrasonido"

Para Vásquez (2003), cuando se realiza la prueba de Velocidad de Pulso Ultrasonido en el concreto la frecuencia proporcionada por el equipo es constante; de acuerdo a las propiedades de cada tipo de concreto lo que varía es la longitud de onda y como consecuencia la velocidad de arribo de la señal al otro extremo.

Tiempo de tránsito (t), es el tiempo que tarda el pulso en atravesar un espesor conocido de concreto entre los dos transductores. (Vásquez 2003)

Presión Acústica, es la amplitud de oscilación alrededor del valor 0, en los puntos de gran densidad de partículas, la presión es mayor que la presión normal, mientras que en las zonas dilatadas es menor. Para las ondas longitudinales, la presión acústica resulta ser una fuerza por unidad de superficie, mientras que para las ondas transversales, la presión acústica es una fuerza

de empuje por unidad de superficie, perpendicular a la dirección de propagación. (Vásquez 2003)

Impedancia acústica del medio, representa la oposición que presentan las partículas de un material a ser desplazadas por el sonido, definida como el cociente entre la presión acústica (*P*) y la velocidad de la partícula en vibración (u) que emite una onda sonora. (Vásquez 2003)

$$Z = \frac{P}{u}$$
 Ecuación 2.3

Sin embargo para efectos prácticos se usa una formula resultante de la teoría de ondas elásticas.

$$Z \approx \rho * v = Ra$$
 Ecuación 2.4

Donde

Z = Impedancia acústica

P = Densidad del medio

V = Velocidad de la fase

2.11.3. Tipos de Ondas

Existen cuatro tipos de ondas generadas por un impulso ultrasónico aplicado a un sólido como es el caso con el hormigón:

- Las ondas longitudinales
- Las ondas transversales
- Las ondas superficiales o de Rayleig
- Las ondas de Lamb

Cada tipo de onda se caracteriza por su dirección, su velocidad y su energía transportada (ligadas con la dirección de oscilación de las partículas con relación a la dirección de propagación de la onda). Las diferentes velocidades de estas ondas se relacionan y dependen de los parámetros intrínsecos al material como su módulo dinámico elástico E, su coeficiente de Poison, su módulo de Coulomb su densidad. (Henry y Aguado. 2003)

Onda longitudinal

La onda longitudinal o de compresión se propaga perpendicularmente al plano del transductor emisor. Las oscilaciones de las partículas ocurren en la dirección de propagación de la onda. Se denomina también una onda de presión o de densidad. La energía transportada por esta onda es la más importante con respecto a los otros tipos de ondas. En efecto eso es dado al hecho que son las ondas más rápidas y que suministran la mayor información sobre la estructura del hormigón. (Henry y Aguado. 2003)

Ondas Transversales

Son aquellas ondas en las cuales el movimiento de las partículas del material sigue una trayectoria perpendicular a la dirección de propagación.

En los cuerpos sólidos, tal fuerza cortante se transmite a las partículas de los planos adyacentes, dando lugar a oscilaciones transversales retardadas según su distancia al plano de excitación. Esta onda se conoce también como onda de cizalladura o de corte. (Tovar y Valenzuela. 1990)

Onda de Rayleigh

La onda de superficie o de Rayleigh se propaga solo en la periferia plana o curva de un sólido "semi-infinito", siguiendo las irregularidades de la superficie o contorno del mismo; se puede considerar como un tipo especial de onda transversal, en la que el movimiento oscilatorio es elíptico. A profundidades mayores de la superficie, la amplitud de oscilación decrece rápidamente, de manera tal que a una profundidad del orden de una longitud de onda, las partículas están prácticamente en reposo. Su velocidad de propagación es independiente de la

frecuencia y por tanto es una constante del material, aunque varía con el estado de tensiones de la superficie, ya que se ha comprobado que las tensiones de tracción aumentan su velocidad, mientras que las de compresión la disminuyen. (Tovar y Valenzuela. 1990)

Ondas de Lamb

Las ondas de Lamb o de chapas ocurren cuando el sólido tiene un espesor mucho menor que su anchura o su longitud (así que el modelo de un sólido semi-infinito ya no es válido). El sólido puede ser asimilado a una chapa en la que la onda de superficie pura ya no existe como tal, a no ser que su longitud de onda sea mucho menor que el espesor de la chapa. Cuando el espesor es del mismo orden de magnitud que la longitud de la onda, ocurren ondas de Lamb que presentan componentes de la oscilación de partículas perpendiculares a la superficie.

En una onda se pueden producir, en primer lugar, una onda puramente transversal cuya dirección de propagación sea paralela a la superficie. En el caso especial de una chapa adherida a un cuerpo solido diferente, esta onda puramente transversal se denomina Onda de Love. Sin embargo, para el ensayo de materiales, este tipo de ondas no ha alcanzado gran importancia, comparada con las ondas de Lamb. Estas ondas de Lamb presentan componentes de la oscilación de partículas en ángulo recto a la superficie, conociéndose dos modos básicos: Onda simétrica o de dilatación y onda asimétrica o de flexión. En el caso del primer tipo de onda, las partículas se comportan según oscilaciones puramente longitudinales, y en el caso de la onda de flexión, según oscilaciones puramente transversales. Las otras partículas oscilan, en ambos tipos de ondas, elípticamente. Para cada onda existe un número arbitrario de armónicos.

Si la chapa esta además limitada en su ancho, se pueden propagar una gran variedad de ondas de flexión, torsión y radiales junto con sus armónicos. (Tovar y Valenzuela. 1990)

2.11.4. Atenuación Ultrasónica

No se ha podido establecer hasta el presente una teoría general sobre la atenuación ultrasónica en medios policristalinos, debido al gran número de parámetros que intervienen, sin embargo, de los estudios realizados se puede decir que existen dos causas principales en los procesos de atenuación ultrasónicas, a saber: la dispersión y la absorción.

La dispersión ultrasónica puede ser por difusión y por difracción, ésta se realiza en la estructura discreta del medio, en discontinuidades tales como poros, inclusiones, etcétera.

Durante la propagación de una onda ultrasónica a través de un medio, ocurre una transformación de energía acústica a energía calórica, entonces se dice que ocurre una pérdida de energía en forma de calor.

La absorción se produce a través de una serie de fenómenos tales como: pérdida energía por roce interno (viscosidad), conductividad térmica, radiación térmica, fenómenos de relajación, variación de las energías cinéticas de las moléculas, variaciones de densidad, difusión debido a las diferencias de presión, termodifusión, etc. (Vásquez. 2003)

2.11.5. Equipo de Ultrasonido

El equipo ultrasonido está compuesto por:

Generador de pulso eléctrico – Transductor transmisor

El generador de pulso consiste en un circuito para producir pulsaciones de voltaje, el transductor transforma estas pulsaciones en ondas intermitentes de energía mecánica, las cuales deben tener una frecuencia de resonancia con intervalo de 20 a 100 kHz. El generador de pulso

debe producir las pulsaciones en forma repetitiva con un valor no menor de 3 pulsos por segundo y para iniciar la medición del tiempo del circuito producirá un pulso de disparo.

El amplificador – Transductor receptor

El voltaje generado debe ser amplificado tanto como sea necesario, para producir pulsaciones que se detecten en el circuito medidor de tiempo. El amplificador tendrá una respuesta clara entre la mitad y tres veces la frecuencia de resonancia del transductor receptor.

Los transductores

Los transductores, emisor y receptor, pueden ser construidos con elementos piezoeléctricos, magneto estrictivos, u otro material sensible al voltaje, ellos pueden ser: cuarzo, sulfato de litio, titanato de bario, metaniobato de bario y zirconato titanato de plomo.

Circuito de medición de tiempo

El circuito de medición de tiempo y los pulsos de disparo asociados deberán estar en condiciones de ofrecer una precisión de tiempo de medición de al menos 1 µs y deben ser insensibles a una temperatura de funcionamiento que oscile entre 0 y 40 °C. La medición debe iniciarse mediante una descarga de voltaje procedente del generador de pulsos, y operar respectivamente con la misma frecuencia. El circuito medidor de tiempo debe estar provisto de una salida acoplada a una unidad de respuesta de tiempo, esta se utiliza para determinar el tiempo de tránsito que se muestra en la pantalla del equipo.

Unidad de pantalla

Existen dos tipos: uno que utiliza un tubo de rayos catódicos, en el que los pulsos transmitidos y recibidos se transforman en deflexiones de trayectoria para una escala de tiempo; y otro que utiliza un cronómetro con respuestas digitales

Barra Calibradora

Es una barra de metal u otro material resistente del cual se conoce el tiempo de tránsito de las ondas longitudinales. Dicho tiempo de tránsito deberá estar marcado permanentemente en la barra como referencia.

Cables de conexión

En el caso de necesitar cables de conexión muy largos se recomienda usar cables coaxiales blindados de baja capacitancia.

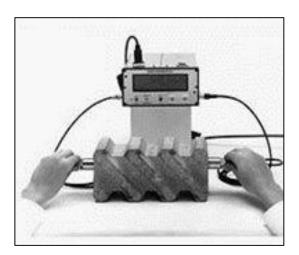


Figura 2.2 Equipo Ultrasonido

Fuente: Valencia e Ibarra "Estudio Experimental para Determinar Patrones de Correlación entre la Resistencia a Compresión y la Velocidad de Pulso Ultrasónico en Concreto Simple"

2.11.6. Cálculo de la Velocidad del Pulso Ultrasonido

Como ya conocemos, el ensayo de pulso ultrasonido, tiene como principal objetivo ser un ensayo no destructivo que suministra información sobre el estado del concreto, a partir de la velocidad obtenida.

En Venezuela la Norma COVENIN1681-80 "Método de Ensayo para Determinar la Velocidad de Propagación de Ondas en el Concreto", establece el cálculo de la velocidad de propagación de la onda en el seno del concreto, la cual deberá ser calculada con aproximación de 1 m/seg, como se indica a continuación:

$$V = \frac{l}{t}$$
 Ecuación 2.5

Dónde:

V: Velocidad de la propagación de la onda [km/seg].

l: Base de medición [mm].

t: tiempo de paso de la onda $[\mu s]$.

Sin embargo, dicha norma no considera la influencia del acero en la aplicación del ensayo, ya que la misma considera que en el caso de concreto armado, para que la lectura no sea falseada por la mayor velocidad de la propagación de la onda en el acero, debe evitarse que en la línea que une los dos transductores quede incluida una cantidad importante del acero de refuerzo. A su vez apunta que en ningún caso se permiten mediciones cuando el eje de la barra de acero coincida con la línea imaginaria que une los transductores (dirección de propagación de la onda).

Pero ¿qué sucede en zonas de confinamiento donde la separación entre los aceros es bastante pequeña?

Al respecto, Bungey, Millard & Grantham (2006) en su libro "Testing of concrete in structures" plantean ecuaciones, donde se considera la influencia del acero de refuerzo en el cálculo de la velocidad de la onda, distinguiéndose dos casos:

1. Barras de refuerzo paralelo a la dirección de propagación. (Figura 2.3)

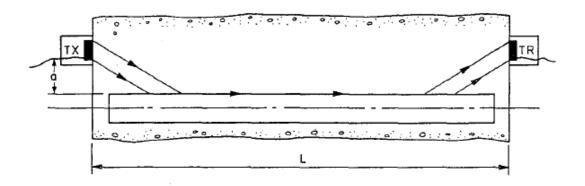


Figura 2.3 Barra Paralela al Pulso

Fuente: Jones y Facaoaru "Recommendations for testing concrete by the ultrasonid pulse method"

Para Henry y Aguado (2003), el efecto de la armadura en las medidas, desaparece cuando tenemos:

$$\frac{a}{l} \le \frac{1}{2} \sqrt{\frac{v_s - v_c}{v_s + v_c}}$$
 Ecuación 2.6

En caso contrario, la velocidad de la Onda se calcula por medio de la siguiente expresión:

$$Vc = \frac{2av_s}{\sqrt{4a^2 + (Tv_s - L)^2}}$$
, cuando $Vc < Vs$

Dónde:

Vc = Velocidad de la propagación de la onda en el concreto, en Km/seg.

Vs = Velocidad de la propagación de la onda en el acero, en Km/seg.

a = es la menor distancia desde la superficie de la barra a la línea que une el punto los dos transductores, en mm.

l = Base de medición, en mm.

 \mathbf{t} = Tiempo de paso de la onda, en microsegundos.

La utilización de la fórmula depende del valor real de la velocidad del impulso en el acero Vs la cual en un sólido de acero infinito se acerca a 5.9 Km/s, pero se reduce esta velocidad con el diámetro de la barra corrugada real, y puede alcanzar valores como 5.1 km/s en una barra de 10 mm de diámetro ubicada en el aire. Sin embargo, Chung (1978) ha mostrado que para los impulsos que viajan en la dirección del eje de las barras de refuerzo a través de una medio acerohormigón, la velocidad de pulso eficaz en el acero Ve, es menor que el valor mencionado anteriormente.

Mientras que Vc se puede expresar como:

$$Vc = kVm$$
 Ecuación 2.8

Donde:

Vm = Velocidad aparente, medida como lo establece la Norma Venezolana.

K = Factor de corrección.

Este factor de corrección k tiene por expresión,

$$k = \gamma + 2\frac{a}{L}\sqrt{1 - \gamma^2}$$
 $para \ b \le a/2$ Ecuación 2.9

$$k = \gamma + 2\left(\frac{\sqrt{a^2 + b^2} - \gamma b}{L}\right) \qquad para \ b > a/2$$
 Ecuación 2.10

Con

$$\gamma = \frac{Vc}{Vs}$$
 Ecuación 2.11

El cual se obtiene de la siguiente gráfica (Ver Figura 2.4)

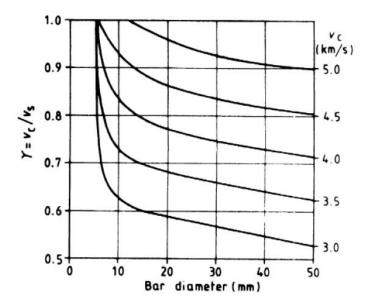


Figura 2.4 Relación entre la Velocidad de Concreto y la Velocidad del Acero

Fuente: Henry, Jorge-Louis y Aguado, Antonio. "Optimización Del Control De La Resistencia Del Hormigón De La Obra De La Depuradora Del Besos Mediante Ultrasonidos"

2. Barras de refuerzo perpendiculares a la dirección de propagación.

La influencia máxima de la presencia de las barras de refuerzo se puede calcular, suponiendo que el pulso atraviesa a sección plena el diámetro de cada barra (Qn) durante su trayectoria. (Ver figura 2.5)

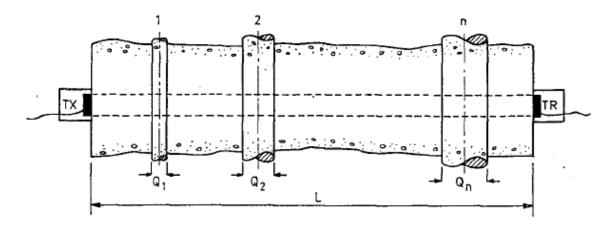


Figura 2.5 Barra Perpendicular al Pulso

Fuente: Jones y Facaoaru "Recommendations for testing concrete by the ultrasonid pulse method"

Por lo que se establece la siguiente ecuación:

$$\frac{Vc}{V} = \frac{1 - \frac{Ls}{L}}{1 - \frac{Ls}{Vs}L}$$

Ecuación 2.12

Donde:

Vc = velocidad de pulso en el concreto

Vs=Velocidad de pulso del acero

V= Velocidad de Pulso en el concreto reforzado

L= Longitud total del elemento

Ls= $\sum_{i=1}^{n} Qi$ =Longitud de los diámetros del acero

Considerando que solo una pequeña fracción del pulso de energía realmente atraviesa el diámetro pleno de cada barra. (Jones y Facaoaru. 2003)

Por su parte Henry y Aguado (2003), consideran que la velocidad de pulso se calcula utilizando la expresión mostrada en la ecuación (la del cálculo de la velocidad de la onda), para la cual el valor de k viene dado como:

$$k = 1 - \frac{Ls}{L}(1 - \gamma)$$
 Ecuación 2.13

Donde los valores de Υ se obtienen de la Fig. 2.3

2.11.7. Técnicas de Medición

Existen diversas técnicas de medición de velocidad de pulso ultrasonido en elementos de concreto, las cuales varían de acuerdo a la posición de los transductores en el elemento a ensayar.

Método de Transmisión directa (caras opuestas).

Consiste en colocar los transductores emisor y receptor enfrentados en superficies opuestas del concreto. Este método ofrece la manera más eficiente de controlar el tiempo de viaje de los pulsos, debido a que presenta una mayor sensibilidad y una ruta de viaje mejor definida. (Ver figura 2.6)

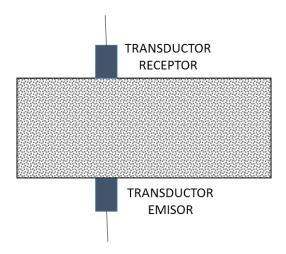


Figura 2.6 Método de Transmisión Directa

Fuente: Porrero S. Joaquín (2009) "Manual del Concreto Estructural"

Método de Transmisión semi-directa (Caras adyacentes).

Consiste en colocar los transductores en caras adyacentes formando un ángulo recto entre ellos. La exactitud de determinación de la velocidad es similar al de la disposición directa a pesar de que puede existir alguna reducción en la precisión de la medición de la longitud de la trayectoria, en general esta longitud se calcula por medio del teorema de Pitágoras como la distancia medida centro a centro de las caras de los transductores. Este método presenta la desventaja de que la medida del tiempo en elementos pequeños puede estar influenciada por las capas de concreto de la superficie, y además es un método que depende de la forma del elemento de ensayo. (Ver figura 2.7)

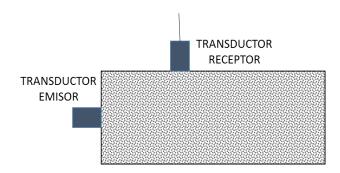


Figura 2.7 Método de Transmisión Semi-Directa

Fuente: Porrero S. Joaquín (2009) "Manual del Concreto Estructural"

Método de Transmisión Indirecto (Sobre la misma cara).

Es utilizada generalmente cuando sólo una de las caras del concreto es accesible, cuando la profundidad de una grieta superficial debe ser determinada o cuando la calidad de la superficie del concreto en relación a la calidad global es de interés. Esta disposición proporciona mediciones de la velocidad del pulso que son influidas por el concreto cercano a la superficie, esta región es a menudo de composición diferente a la del concreto dentro del cuerpo del

elemento estudiado y los resultados de la prueba pueden no ser representativos del concreto. Generalmente la velocidad indirecta es mucho menor que la velocidad directa en el mismo elemento de concreto, aproximadamente entre un 5 y un 20 % menor que la velocidad establecida en la transmisión directa.

En el método de transmisión indirecta no está bien definida la longitud de la trayectoria del pulso, y no es recomendable tomar la longitud media de centro a centro de los transductores.

Para determinar la velocidad del pulso es necesario fijar el transductor emisor e ir desplazando el transductor receptor sobre la misma superficie en posiciones sucesivas a lo largo de una línea recta (ver figura), la distancia centro a centro, así como el tiempo de propagación respectivo se obtiene directamente para cada punto. (ver figura 2.8)

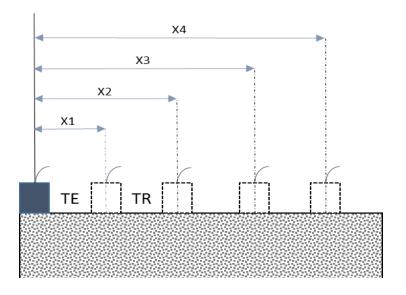


Figura 2.8 Método de Transmisión Indirecto

Fuente: Porrero S. Joaquín (2009) "Manual del Concreto Estructural"

De esta manera se puede graficar la distancia contra el tiempo de tránsito del pulso, la línea resultante tiene una pendiente cuyo inverso da el valor de la velocidad promedio con la que se propagan los pulsos en la superficie del concreto.

2.11.8. Factores que afectan el ensayo Ultrasonido

Existen diversos factores que pueden alterar la veracidad en los resultados obtenidos por medio del ensayo ultrasonido, los cuales podemos dividir en dos grandes grupos:

Influencia de las condiciones del Ensayo:

Tipo de cemento: El tipo de cemento no tiene un efecto significativo en la Velocidad de Pulso Ultrasónico. El índice de la hidratación, sin embargo, es diferente para diversos cementos e influenciará la velocidad de pulso. Si el grado de hidratación aumenta, el módulo de la elasticidad aumentará por consecuencia la velocidad de pulso también se incrementa. (Pardo y Pérez, 2010)

Tipo y tamaño de los agregados: Por su parte J.H. Bungey y Madandoust realizaron un estudio (publicado en la revista Cement and Concrete Composites) en el que constata que la velocidad aumenta con el tamaño del agregado, mientras que la resistencia a compresión se mantiene constante.

Relación agregado cemento: La velocidad del pulso ultrasónico en el agregado, es mayor que la velocidad en el cemento, así que al aumentar la cantidad de pasta en el volumen de la muestra, se presenta una importante reducción de la velocidad ultrasónica, sin embargo la resistencia no se reduce en la misma proporción. (Vásquez, 2003)

Dimensiones del elemento a ensayar: Las dimensiones laterales del elemento a ensayar únicamente tienen influencia en la transmisión de las ondas ultrasónicas, solo si son menores que la longitud de onda de las vibraciones del pulso. (Vásquez, 2003)

La Norma Técnica Colombiana 4325, establece una relación entre la velocidad del pulso en el concreto, la frecuencia de los transductores y la mínima dimensión lateral permisible para el espécimen (Ver Tabla 2.6). Efecto de las Dimensiones del espécimen en la transmisión del pulso

Tabla 2.6 Dimensión Lateral Mínima del Elemento según la Frecuencia del Transductor

	Velocidad de Pulso en el Concreto (Km/s)			
Frecuencia del Transductor	Vc= 3.5	Vc= 4.0	Vc= 4.5	
Transauctor	Dimensión Lateral Mínima Permisible del Elemento			
KHz	mm	mm	mm	
24	146	167	183	
54	65	74	83	
82	43	49	50	
150	23	27	30	

Fuente: Vásquez C, Luis A. "Estudio Y Caracterización Mediante Ensayos"

Temperatura del Concreto: Según Henry y Aguado (2003), la temperatura del ambiente y la del hormigón no tienen una influencia importante en la velocidad de los impulsos ultrasónicos. Por su parte, la norma española UNE 83-308-86 especifica que las variaciones de temperatura del hormigón entre 5°C y 30°C no producen cambios significativos en las velocidades. Fuera de este intervalo de temperaturas, los resultados obtenidos cambian sin que necesariamente se hayan producido cambios en las propiedades del hormigón ensayado.

Longitud de la trayectoria del pulso. La longitud de la trayectoria recorrida por el pulso ultrasónico va a depender del tamaño del agregado utilizado en el diseño de mezcla.

En la medida en la que el tamaño del agregado es mayor, mayor será la distancia que recorre el pulso ultrasónico, por lo que debe ser mayor la longitud del elemento a ensayar. (Cabanas, 1984).

Contenido de humedad: La velocidad de un impulso en un hormigón saturado puede ser el 5% mayor que la velocidad en el mismo hormigón en condiciones secas, aunque la diferencia fuera menor por hormigón de alta resistencia.

V humedad =V seco + 5% Ecuación 2.14

El efecto de la humedad, tanto en la velocidad del impulso como en la resistencia del hormigón, es uno de los factores que genera dificultades de calibración, puesto que la humedad claramente disminuye con la edad del hormigón. Un elemento húmedo presentara una velocidad de impulso más grande, pero una resistencia más pequeña que el mismo tipo de elemento seco. (Henry y Aguado, 2003)

Edad del concreto: Para Vásquez (2003), la velocidad del pulso ultrasónico aumenta conforme aumenta la edad del concreto, ya que también se incrementa la densidad del mismo. Esto se debe a que, conforme pasa el tiempo, una mayor cantidad de cemento se hidrata, lo que aumenta la resistencia del concreto, con lo que se hace más fácil el desplazamiento del pulso ultrasónico.

Por su parte, Henry y Aguado (2003), sostienen que a medida que se desarrolla este fenómeno, pequeñas variaciones de velocidades pueden significar diferencias importantes en la

resistencia a compresión del hormigón. Por este motivo, la aplicación de este método para estimar la resistencia a compresión de hormigones de edades muy superiores a 28 días ha sido cuestionada.

Acoplamiento entre los Transductores y la superficie de concreto: Debe haber un esencial contacto acústico; las superficies moldeadas en general no presentan problemas y si presentan alguna rugosidad se pueden eliminar frotando con piedras de pulir (disco de esmeril). Los transductores deben estar alineados entre si y nivelarse contra el concreto para mejorar el contacto, se suele colocar una capa de acoplante (vaselina, grasa, gel) entre el concreto y los transductores. (Pardo y Pérez, 2010)

Relación agua/cemento: Según Neville (1973) sostiene que la relación agua/cemento, no solamente tienen influencia sobre la resistencia del concreto, sino que también afecta la velocidad del pulso ultrasónico. Esto se debe a que una relación baja implica un peso específico alto en la mezcla, debido a que al incrementarse la cantidad de cemento se incrementa la densidad, con lo cual se obtienen menores tiempos de viaje de la onda en el concreto y rápidos desarrollos de resistencia. Así al aumentarse la relación agua cemento, se tiene una disminución de la velocidad de pulso ultrasónico, así como de la resistencia a la compresión del concreto.

Influencia de las limitaciones en la exactitud de las mediciones:

Para Strafella A., Rangel H. y Thomas F. se encuentran algunos errores asociados a las mediciones, que dependen de la buena aplicación del ensayo. Entre estos tenemos:

➤ Error del Operador: Entre los errores cometidos por el operador al manejar los equipos podemos citar:

- Falta de experiencia en el manejo del equipo de medición y el desconocimiento del método a ser usado para el ensayo del elemento.
- Descuido al leer los valores en el instrumento o uso inadecuado de la escala de trabajo.
- Variaciones debido a los operadores: El cambio de presión aplicado en los transductores sobre la superficie del elemento a ensayar. Por lo que se recomienda que todas las mediciones sean realizadas por un mismo operador.
- Efectos de paralaje, especialmente en la alineación tanto en el sentido longitudinal como transversal de los transductores.
- > Error de Operación en Equipo: Entre los errores más comunes de operación del equipo tenemos:
 - Calibración del aparato: Se realiza haciendo pasar el pulso ultrasonido a través de la barra normalizada.
 - Conexión inadecuada entre los terminales de los transductores y cables.
 - Acoplamiento entre los transductores y el elemento a ensayar.

2.11.9. Principales Aplicaciones del Ensayo Ultrasonido y sus Limitaciones

El objetivo fundamental del Ensayo de Ultrasonido, es determinar por medio de un ensayo no destructivo la calidad de los materiales evaluados, mediante la interpretación de la velocidad obtenida.

Entre las aplicaciones del ensayo ultrasonido en el concreto encontramos:

- Establecer la homogeneidad en el concreto.
- Estimar el desarrollo de la resistencia del concreto

- Determinar la presencia de huecos o de grietas y la profundidad que presentan las mismas
- Establecer criterios de aceptación
- Determinar la capa en la superficie del concreto
- Estimar los cambios que pueden ocurrir en el concreto con el tiempo.
- Estimar la resistencia del concreto después de la acción del fuego, heladas, corrosión, desgaste, ataque químico, hidratación del concreto, etc.
- Estimar el módulo de Elasticidad y la relación de Poisson del concreto.
- Como método de control en plantas de premezclado y de elementos prefabricados de concreto.

Por su parte Strafella, Rangel y Thoomas (1991) mencionan en su Trabajo de Grado, la aplicación de ultrasonido en otras áreas, tales como:

Procesos Industriales

- Medición de espesores y detención de grietas, burbujas y otros defectos internos en piezas industriales.
- Homogeneización de las disoluciones y emulsiones.
- Desgasificación de líquidos y metales fundidos (las burbujas pueden desprenderse y ascender a la superficie).
- Pulvimetalurgía: Obtención de estados metálicos finamente divididos
- Tratamientos superficiales: Agitación y activación de los baños de electroplaqueados.
- Procesos de limpieza y depuración: Aceleración de la limpieza y floculación del humo.

• Proceso de soldadura: En sustitución del fundente.

Medicina

- Diagnóstico: Exploración del cuerpo humano.
- Terapéuticos: Usado en cirugías, odontología y producción de hormonas y antígenos.

Comunicación

• En señales submarinas y otros sistemas de mensajes.

Navegación

• Ayuda la navegación marina mediante sondas detectoras de profundidad.

Ensayos de Laboratorio.

• Sirve para el estudio sobre la difracción de la luz, sobre la velocidad del sonido y sobre el calor.

Biología

• Pregerminación de semillas y homogeneización de la leche.

Fotografía

• Preparación de emulsiones.

Química

• Aceleración de emulsiones y floculación.

2.12. Conceptos de Estadística

2.12.1. Media Aritmética

Según la Norma COVENIN 3549-1999 "Tecnología del Concreto. Manual de Elementos de Estadística y Diseño de Experimentos", se define como el promedio aritmético de un conjunto de datos.

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} Xi$$

Ecuación 2.15

Donde:

Xi= Punto de la Muestra

n= Número de medidas

 \overline{X} = Media Aritmética

2.12.2. Desviación Típica de la Distribución.

Según la Norma COVENIN 1976:2003 "Concreto. Evaluación y Métodos de Ensayo" se define como la dispersión del conjunto de datos estudiados.

$$s = \sqrt{\frac{1}{(n-1)} \sum_{i=1}^{n} (Xi - \bar{X})^2}$$

Ecuación 2.16

Donde:

Xi= Punto de la Muestra

n= Número de medidas

 \overline{X} = Media Aritmética

S= Desviación Típica de la Distribución.

2.12.3. Ajuste por Mínimos Cuadrados

Según la Norma COVENIN 3549-1999 "Tecnología del Concreto. Manual de Elementos de Estadística y Diseño de Experimentos", es una técnica de análisis numérico enmarcada dentro de la optimización matemática, en la que, dados un conjunto de pares ordenados: variable independiente, variable dependiente, se intenta encontrar la función, que mejor se aproxime a los datos (un "mejor ajuste"), de acuerdo con el criterio de mínimo error cuadrático.

Para esta investigación, se realizó un ajuste a la función que describe una recta, por medio de la siguiente ecuación:

$$y = ax + b$$
 Ecuación 2.17

Siendo,

$$a = \frac{n(\sum Xi Yi) - (\sum Xi)(\sum Yi)}{n(\sum Xi^2) - (\sum Xi)^2}$$
 Ecuación 2.18

$$b = \frac{(\sum yi) - a(\sum Xi)}{n}$$
 Ecuación 2.19

Donde:

n = Número de Medidas

Xi y Yi= Conjunto de pares ordenados obtenidos durante la medición

2.12.4. Coeficiente de Variación

La forma de medir el error muestral se hace a través del coeficiente de variación estimado (CV), el cual mide la magnitud de la variabilidad de la distribución muestral de varios grupos de datos. Se define como el cociente entre la desviación típica y la media, se utiliza para comparar las dispersiones de datos de distinta media. Generalmente se expresa en forma porcentual, se puede entender como el error porcentual entre datos representados por un promedio distinto.

$$CV = \frac{s}{\bar{r}} * 100$$
 Ecuación 2.20

Donde:

CV = Coeficiente de Variación Porcentual

 \overline{x} = Media Aritmética

s= Desviación Típica de la Distribución.

CAPÍTULO III MARCO METODOLÓGICO

En este capítulo, se dará a conocer a continuación cada una de las actividades y ensayos desarrollados en esta investigación con el fin de cumplir con los objetivos planteados en el

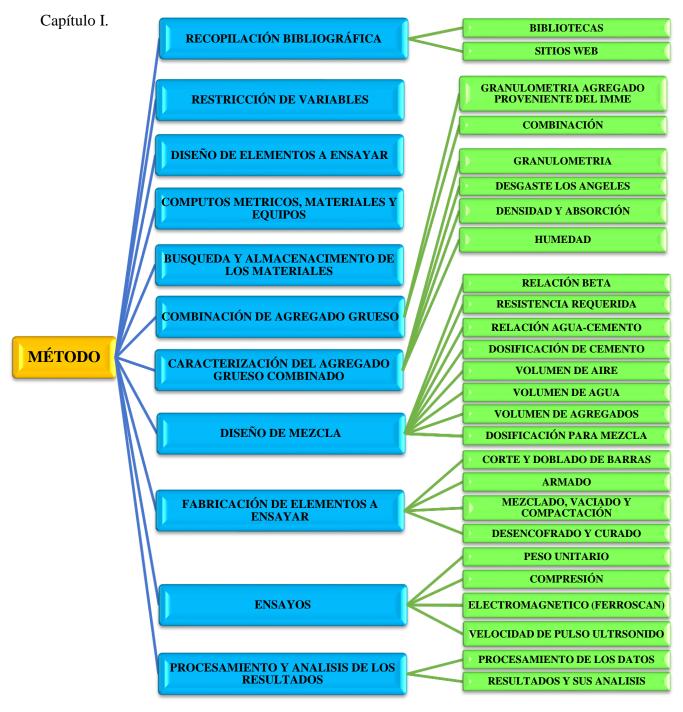


Figura 3.1 Partes de la Investigación

3.1. Recopilación Bibliográfica

En la presente investigación se realizó una búsqueda de información tanto impresa como electrónica concerniente al método de velocidad de pulso ultrasónico en el concreto, específicamente la influencia del acero de refuerzo en las mediciones del ensayo, donde se logró recaudar investigaciones, normativas y textos referentes al tema, tanto nacionales como internacionales. Junto, se consultó información acerca de los procedimientos necesarios para la elaboración de los elementos de concreto y los ensayos pertinentes para su caracterización.

3.1.1. Bibliotecas

Para recaudar información bibliográfica se consultó las investigaciones realizadas en la Universidad Central de Venezuela concernientes al ultrasonido, así como los textos y artículos disponibles en la misma casa de estudio, encontrando solo cinco investigaciones involucradas con el ensayo de velocidad de pulso ultrasónico en la evaluación del concreto.

3.1.2. Sitios web

Una parte importante de la información donde se contempla la influencia del acero en el ensayo de velocidad de pulso ultrasónico, se obtuvo de fuentes electrónicas, por medio de la descarga de libros, normas extranjeras, trabajos de grado y artículos publicados en revistas y congresos, muchos de ellos de autoría internacional.

Cabe mencionar, que toda la información consultada en la web para la elaboración de este trabajo corresponde a sitios electrónicos de acceso libre y gratuito.

3.2. Restricción de Variables

El ensayo de velocidad de pulso ultrasónico (VPU) se ve afectado por diversas variables. Estas son descritas con más detalle en el apartado 2.11.8. Sin embargo, por ahora se muestra como se buscó controlar estas variables de tal manera que se pudiera medir la influencia del acero de refuerzo en la medición de la Velocidad del Pulso en cada una de las probetas de concreto de manera aislada. Así el control de estos otros factores que afectan la VPU se presentan de la siguiente manera:

Tipo de Cemento: En cada una de las mezclas utilizadas para este Trabajo de Grado, se utilizó el mismo tipo de cemento. El cemento utilizado fue Portland tipo I proveniente de un mismo lote suministrado por la Fábrica Nacional de Cemento (FNC), Planta San Antonio. (Ver anexo 1)

Tipo y Tamaño de los Agregados: La FNC, Planta San Antonio proporcionó el total del agregado fino, y parte del agregado grueso. El IMME-UCV proporcionó la otra parte de los agregados gruesos. Para que en todas las mezclas existiera un agregado grueso de características similares, estos fueron combinados en un proceso descrito en la sección 3.6.2, Luego, este agregado grueso combinado fue su vez mezclado con el agregado fino según las cantidades indicadas en el diseño de mezcla. De esta manera, se tuvo que cada una de las mezclas tuvo agregados de características y cantidades similares. (Ver anexos del 2 al 4 y gráfico 4.1)

Relación agua/cemento: En cada proceso de mezclado se consideró el mismo diseño de mezcla, manteniendo la relación agua-cemento. Adicionalmente, la dosificación de los materiales fue igual en cada mezcla, ya que las cantidades requeridas de cada uno de los elementos fabricados eran iguales.

Dimensiones del Elemento: Los elementos diseñados para el ensayo de Velocidad de Pulso Ultrasonido presentaban las mismas dimensiones (30 x 30 x 60 cm). La muestra patrón se diseñó con estas dimensiones también poder realizar el ensayo por los métodos semidirecto e indirecto en las mismas condiciones que en los elementos con armadura. (Ver figura 3.2)

Figura 3.2 Dimensiones de los Elementos

Curado de los Elementos de Concreto: Los elementos construidos para ser evaluados por ultrasonido, fueron sometidos a un proceso de curado bajo condiciones similares. El curado tardo en total 21 días y se realizó en 2 etapas, una primera etapa que consistió en mantener los elementos sumergidos durante 14 días y luego una segunda etapa en la que los elementos dejaron de estar sumergidos y se colocaron al aire libre pero eran frecuentemente regados con agua durante los siguientes 7 días. A fin de garantizar el buen estado del concreto, se les disminuyo de manera progresiva, la cantidad de agua utilizada en el curado por riego. Por otra parte, los cilindros obtenidos para medir la resistencia a compresión de la mezcla, estuvieron bajo un proceso de curado por inmersión de 21 días, momento en el cual se dejaron secar por 7 días

antes de ser sometidos al ensayo de compresión simple. Donde se pudo constatar que el concreto había desarrollado la resistencia especificada en el diseño.

Temperatura del Concreto: Luego del curado, los elementos fueron llevados a la Nave de Ensayos Norte del IMME- UCV, donde se colocaron en un mismo mesón, quedando expuestos a la temperatura ambiente del lugar durante todo el proceso de medición de ultrasonido.

Contenido de Humedad: Luego del proceso de curado que se realizó por 21 días, los elementos a ser evaluados se dejaron secar por 7 días al aire libre antes de iniciar el proceso de ensayo de ultrasonido.

Edad del Concreto: Tal como se establece en los objetivos de esta investigación el ensayo de Velocidad de Pulso Ultrasonido, se realizó a diferentes edades, una primera edad de 28 ± 2 días, correspondiente al momento en que el concreto desarrolla su resistencia de cálculo y una segunda de 49 ± 2 días, correspondiente a una edad posterior a los 28 días, considerando que el concreto ya ha desarrollado su resistencia de diseño y tiende a estabilizarse.

Acoplamiento entre los transductores y la Superficie del Concreto: Para tener un mejor acoplamiento entre la superficie del concreto y los transductores, se utilizó grasa de mecánica general de uso industrial (Grasa de Litio), aplicando una pequeña capa de esta en cada uno de los puntos donde se hizo lectura de los pulsos ultrasonido. (Ver figura 3.3)

Figura 3.3 Grasa utilizada para el ensayo de ultrasonido

Operador del Equipo de Ultrasonido: La recomendación general para controlar la influencia de la operación del equipo, es que sea una misma persona la que haga los ensayos, sin embargo dada la cantidad de puntos que se requerían evaluar y el tiempo del que se disponía para la realización de los ensayos, fue necesario que dos operadores realizaran las mediciones, es decir, que ambos autores de este trabajo realizaran los ensayos. Se acordó hacer una importante presión sobre los transductores pero de tal manera que no se esparciera por completo la grasa que servía de acoplante. Adicionalmente se llevó un registro del operador en turno al momento de realizar cada medición, por si surgían variaciones importantes que pudieran deberse a la operación del equipo. (Véase Anexo 5).

Entrenamiento previo a las mediciones: Antes de iniciar el proceso de medición de VPU en los elementos construidos, se recibieron las instrucciones por parte del personal del IMME-UCV, encargado de llevar a cabo este ensayo en campo para la institución. Adicionalmente, a los 21 días de edad de los elementos construidos, se realizó una primera

evaluación al elemento patrón y de uno de los elementos con acero de refuerzo, donde se constató como era la operación del equipo y la mejor forma de realizar las mediciones siguientes.

3.3. Diseño de los Elemento a Ensayar

Los elementos utilizados para evaluar la velocidad de pulso ultrasónico en este trabajo, se diseñaron de tal manera que simularan un elemento estructural para edificaciones de concreto armado. Vale la pena mencionar que el diseño de estos elementos no se realizó en función de algún tipo de carga o solicitación estructural porque estos elementos realmente son unas probetas de ensayo para la evaluación con ultrasonido. Sí se utilizaron criterios de diseño geométrico porque la disposición relativa del acero y los transductores sí es importante para el ensayo.

Las dimensiones de la sección transversal se decidieron en base a los requerimientos mínimos geométricos exigidos en la normativa venezolana Fondonorma 1753 *Proyecto y construcción de obras en concreto estructural (2006)* donde se indica en el inciso "a" de la sección 18.4.2 que para estructuras tipo columnas "La menor dimensión transversal, medida a lo largo de una recta que pase por su centro geométrico, no sea menor que 30 cm". De allí que se escogiera una sección transversal cuadrada de 30 x 30 cm. La altura se escogió principalmente por la longitud de los encofrados metálicos disponibles en el IMME, que adicionalmente cumplían con la longitud necesaria para colocar las separaciones del refuerzo transversal predeterminadas.

Para la determinación del diámetro del acero de refuerzo transversal se escogió 3/8" por ser un diámetro de uso común en la construcción y adicionalmente porque se contaba con la disponibilidad inmediata de este material. Con respecto al diámetro del refuerzo longitudinal se utilizaron barras de 1/2" por razones similares, es de uso común e igualmente se contaba con la

disponibilidad del material. Todo el acero utilizado en esta investigación, corresponde a barras de acero estriadas, de fabricación nacional. Es importante mencionar que el acero longitudinal de los elementos estructurales reales, estarán en la gran mayoría de los casos perpendiculares a la trayectoria del pulso y de acuerdo a lo investigado, en esta condición no habrá una influencia importante del acero. Aunque es posible que se requiera aplicar el ensayo de manera indirecta donde sí podría haber una influencia preponderante del acero longitudinal, en la gran mayoría de los casos se procura realizar el ensayo de VPU por el método directo y en segunda instancia por el método semidirecto, y en este arreglo de transductores el acero longitudinal ira perpendicular a la barra y la mayor influencia provendrá del acero de refuerzo transversal cuando el alineamiento de los transductores este paralelo a alguna de las ramas.

Para la escogencia de la separación del acero de refuerzo transversal se decidió utilizar separaciones de 7, de 10 y de 15 cm para evaluar la influencia de las barras de acero en función de la cercanía o alejamiento de las barras a los transductores. Cuando se habla de la separación del acero de refuerzo transversal desde el punto de vista del diseño de elementos resistentes a solicitaciones externas, se requiere una separación máxima que es dada por el cálculo estructural o por criterios normativos sismorresistentes. La norma venezolana Fondonorma 1753:2006 establece en el caso de diseño más exigente (ND3) en la sección 18.3.4 que "la separación S no debe exceder el menor de los valores siguientes valores: d/4, 8 veces el diámetro de la barra longitudinal de menor diámetro, 24 veces el diámetro del estribo o 30 cm". Esta separación *máxima* se escogió de 15 cm por ser un valor promedio factible en el diseño de algún elemento estructural. Con respecto a la distancia *mínima* entre las barras de refuerzo transversal se escogió 7 cm ya que es una separación que desde un punto de vista constructivo, para elementos tipo columnas o vigas, garantiza un proceso de armado factible. También con esa distancia se

pretende que se pueda realizar un vibrado óptimo. Adicionalmente esta distancia de separación garantiza que el agregado grueso no quede obstruido entre las barras de refuerzo.

Se realizaron cinco elementos, uno sin armadura y cuatro con armadura. Con respectos a los elemento armados, dos de ellos se diseñaron con un refuerzo transversal de dos (2) ramas que es lo más típico para elementos de las dimensiones establecidas y los otros dos restantes con refuerzo transversal de tres (3) ramas, para evaluar por el comportamiento de la velocidad del pulso ultrasónico de una barra intermedia en el elemento y evaluar el efecto de tres barras paralelas y cercanas a la trayectoria del pulso (Ver Figura 3.4 al 3.7). El elemento sin armadura, o muestra patrón se identificó como "E1", los elementos armados se identificaron como E2, E3, E4, E5, donde los primeros dos tienen armadura con refuerzo transversal de 2 ramas y los últimos dos presentan armaduras con refuerzo transversal de 3 ramas. En los elementos E3 y E4 se presenta una sola separación del acero transversal de 15 cm, pero en los Elementos E2 y E5 se colocaron dos separaciones, 7 cm y 10 cm por lo que se decidió identificar las zonas con separación de 10 cm como una parte A del elemento y la separación de 7 cm como una parte B del elemento. En resumen, la identificación de los elementos tomando en cuenta la separación del acero transversal queda así:

- 1) Elemento E1: Concreto sin Armadura
- 2) Elemento E2A: Tiene armadura de 2 ramas con separación de 10 cm
- 3) Elemento E2B: Tiene armadura de 2 ramas con separación de 7 cm
- 4) Elemento E3: Tiene armadura de 2 ramas con separación de 15 cm
- 5) Elemento E4: Tiene armadura de 3 ramas con separación de 15 cm
- 6) Elemento E5A: Tiene armadura de 3 ramas con separación de 10 cm
- 7) Elemento E5B: Tiene armadura de 3 ramas con separación de 7 cm

A continuación se muestran las figuras que muestran los planos de detalle de los elementos diseñados para este trabajo de grado

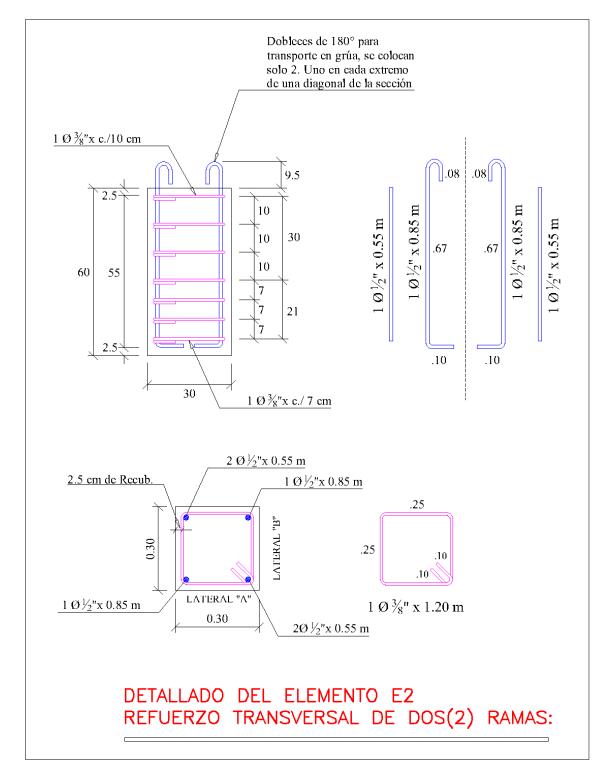


Figura 3.4 Diseño del Elemento 2

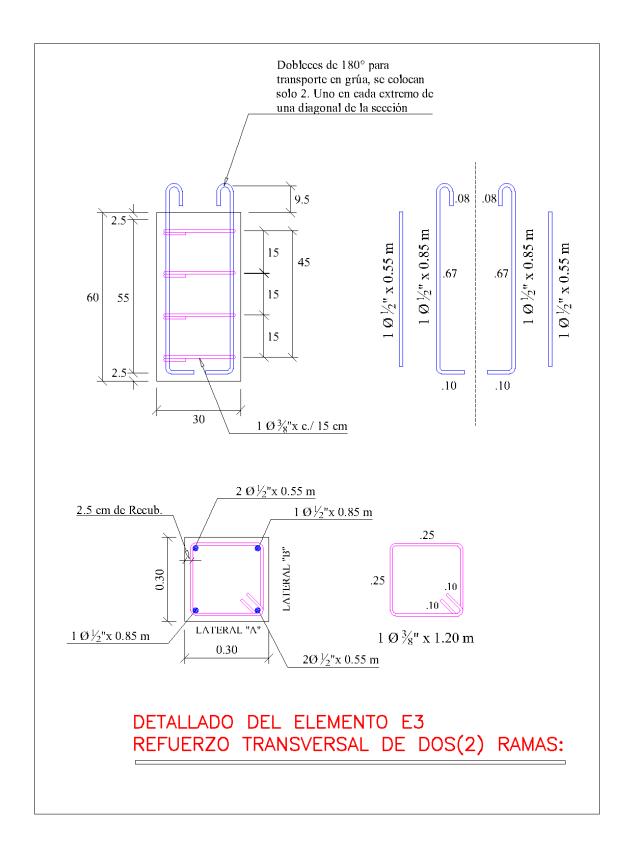


Figura 3.5 Diseño del Elemento 3

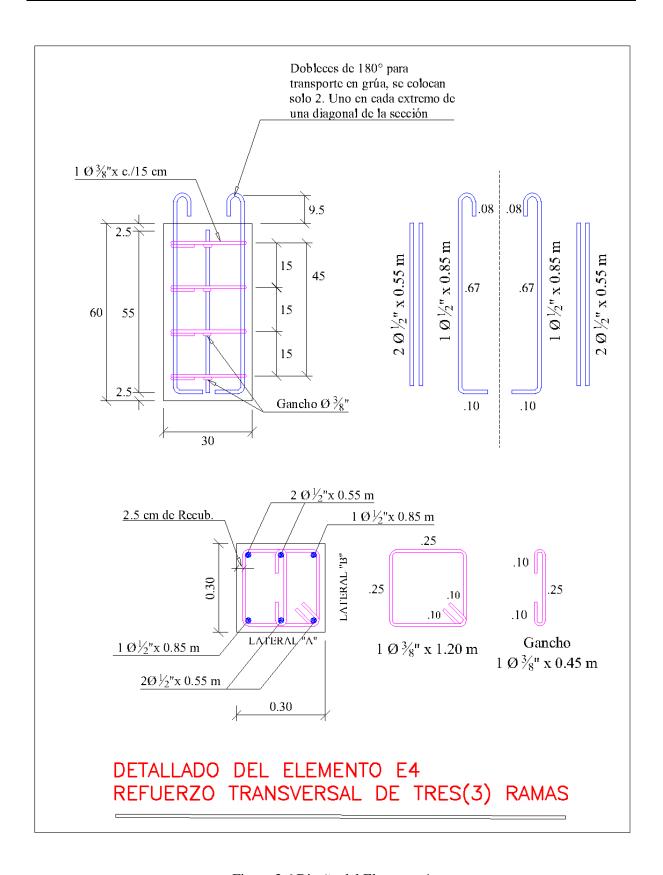


Figura 3.6 Diseño del Elemento 4

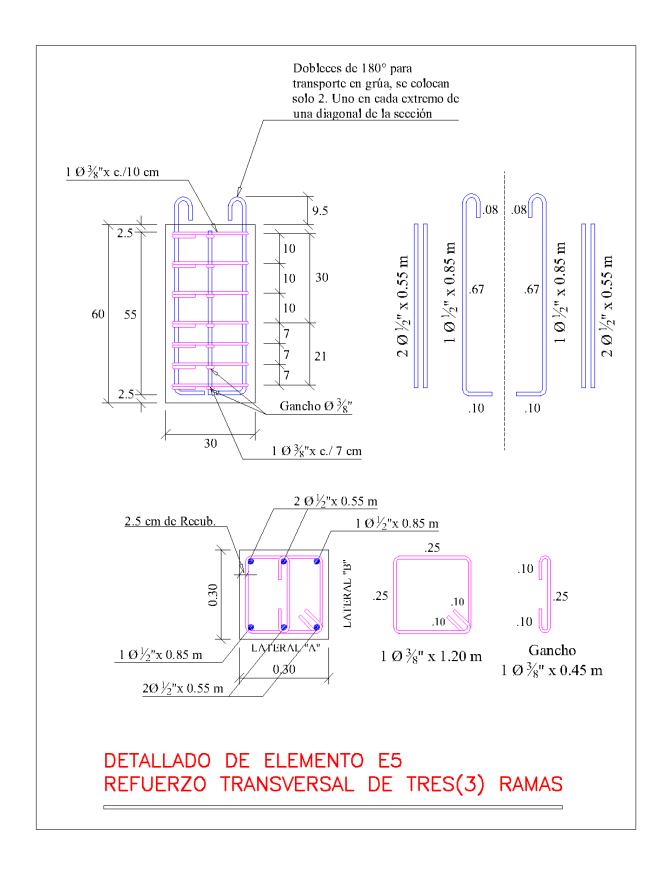


Figura 3.7 Diseño del Elemento 5

3.4. Cómputos métricos

Teniendo en cuenta el diseño de los Elementos a evaluar para el Ensayo de Velocidad de Pulso Ultrasónico (Figuras 3.3 a 3.6). Se realizó una estimación de los Materiales que se requerían para desarrollar está investigación. Basados en los materiales establecidos por el Colegio de Ingenieros de Venezuela, necesarios para obtener un m³ de concreto de f²c 250 Kg/cm². (Ver tabla 3.1)

Tabla 3.1 Cantidades Necesarias para obtener un m³ de Concreto f'c 250Kg/cm²

Cantidades Necesarias para obtener un m³ de Concreto f'c= 250Kgf/cm²							
Materiales Unidad Factor							
Cemento Portland Gris Saco 42.5 Kg	Saco	8.925					
Arena Lavada	m3	0.4725					
Agua	m3	0.1785					
Piedra Triturada de 1"	m3	0.945					

Dado que el volumen requerido para cada mezcla era de aproximadamente 110 litros considerando un 10% de error, cubriendo el vaciado de un Elemento y 9 probetas cilíndricas normadas para resistencia a compresión, y además que se tienen que realizar 5 mezclas una para cada elemento, se obtuvieron las siguientes cantidades de materiales:

Tabla 3.2 Cantidades Estimadas de Materiales para el Mezclado

Cantidades Estimadas de Materiales para el Mezclado							
Materiales	Unidad	Cantidad					
Cemento Portland Gris	Kg	190					
Arena Lavada (ρ=2.6 Kg/l)	Kg	590.6					
Agua	lts	89.25					
Piedra Triturada de 1" (2.6Kg/l)	Kg	578.5					

Por otra parte, se calculó en base al diseño planteado en el apartado anterior, la cantidad de acero necesario para la investigación y se consideró un desperdicio del 10%, obteniendo como resultado los valores expresados en la tabla 3.3.

Tabla 3.3 Cantidades Estimadas de Acero

Cantidades Estimadas de Acero							
Materiales Unidad Cantidad							
Barra estriada ø 1/2"	m	15					
Barra estriada ø 3/8"	m	29					
Alambre	rollo	1					

Las cantidades obtenidas anteriormente sirvieron como base, para la solicitud de los materiales necesarios para llevar a cabo el desarrollo de este Trabajo de Grado.

3.5. Búsqueda y Almacenamiento de los Materiales

El material utilizado para la mezcla fue donado por la Fábrica Nacional de Cemento (F.N.C.), desde su Planta San Antonio ubicada en Caracas en la Avenida Intercomunal del Valle, Sector San Antonio y el Instituto de Materiales y Modelos Estructurales (IMME) de la Universidad Central de Venezuela.

La Planta F.N.C. San Antonio otorgó 700 Kg de arena lavada proveniente del saque Puenteareas, 700 Kg de piedra N° 1 provenientes de Distrito Capital y 200 Kg de cemento Portland Tipo I provenientes de la Planta de San Sebastián de los Reyes. Posteriormente se realizó una segunda donación de 100 Kg adicionales de cemento Portland tipo I (ambas donaciones correspondientes al mismo lote de cemento Portland tipo I suministrado a la F.N.C. Planta San Antonio) (Ver Figura 3.8)

El IMME-UCV suministró 300 Kg de piedra picada, los cuales fueron utilizados en conjunto con los obtenidos de la Planta ya antes mencionada. Siguiendo el procedimiento que se describe en la sección 3.6 de este documento.

Figura 3.8 Búsqueda de los Materiales para la Mezcla

Cabe mencionar, que el material donado por la Planta fue compartido para el desarrollo de este trabajo de Grado y el del Ing. Serrano, Angelo. Titulado "Análisis del Comportamiento del Concreto Endurecido en probetas de menor dimensión a la estipulada en las Normas COVENIN".

Los ensayos necesarios para la caracterización de los agregados y el cemento fueron suministrados por la Planta F.N.C. San Antonio, quienes se rigen por los procedimientos descritos en la Norma Venezolana Fondonorma (NVF) y La Comisión Venezolana de Normas Industriales (COVENIN) (Ver Anexos del 1 al 3).

Ensayos aplicados al agregado grueso

• NVF 255:1998. "Agregados. Determinación de la Composición Granulométrica"

- NVF 258:2009. "Método de Ensayo para la Determinación por Lavado del Contenido de Materiales más Finos que el Cedazo COVENIN 74 micras en Agregados Minerales"
- NVF 263: 2008. "Método de Ensayo para Determinar el Peso Unitario del Agregado"
- NVF 264:2007. "Método de Ensayo para Determinar el Cociente entre la Dimensión Máxima y Dimensión Mínima en Agregados Gruesos para Concreto"
- NVF 269: 2006. "Agregado grueso. Determinación de la Densidad y La Adsorción"

Ensayos aplicados al agregado fino

- NVF 255:1998. "Agregados. Determinación de la Composición Granulométrica"
- NVF 256:1977. "Método de Ensayos para Determinar el Efecto de Impurezas Orgánicas de Agregado Fino en la resistencia de Morteros"
- NVF 258:2009. "Método de Ensayo para la Determinación por Lavado del Contenido de Materiales más finos que el Cedazo COVENIN 74 micras en Agregados Minerales"
- NVF 259: 2009. "Método de Ensayo para la Determinación por Suspensión de Partículas Menores de 20 Micras en Agregados Finos"
- NVF 263: 2008. "Método de Ensayo para Determinar el Peso Unitario del Agregado"
- NVF 268:1998. "Agregado Fino. Determinación de la Densidad y La Adsorción"

Ensayos aplicados al Cemento Portland

 COVENIN 487:93. "Cemento Portland. Determinación de la Finura por Medio del Aparato Blaine de Permeabilidad" COVENIN 493:92. "Cemento portland. Determinación del tiempo de Fraguado por la Aguja de Vicat"

Las barras de acero utilizadas en el armado de los elementos de concreto, fueron donadas por el IMME-UCV luego de ser sometidas a ensayos de tracción. La cantidad requerida fue la siguiente:

- 22 barras de 3/8" de longitud 1.20 m.
- 14 barras de 3/8" de longitud 0.45 m.
- 20 barras de 1/2" de longitud 0.60 m.

Las gomas de caucho utilizadas para armar el encofrado en los bordes con el fin de evitar la pérdida de agua de la mezcla de concreto al momento de vaciado y compactado, fueron donadas por "Cauchos San Martín", ubicada en la Av. San Martín, Edif. San Martín, Caracas.

Todos estos materiales fueron almacenados en las instalaciones del IMME, donde posteriormente fueron realizados los trabajos y ensayos.

3.6. Combinación de Agregado Grueso

Dada la granulometría del agregado grueso proveniente de la FNC San Antonio y en virtud de que la misma no cumplía con los límites dispuestos en la Norma COVENIN 255:1998. "Agregados. Determinación de la Composición Granulométrica", se buscó otro agregado grueso que combinado con éste, permitiera obtener una curva granulométrica que cumpliera con los límites normativos. Para lo cual se tomó un material sobrante de Trabajos de Grado anteriores llevados a cabo en el IMME (300 kg).

Para comprobar la dosificación que se usaría para la combinación, se procedió a caracterizar el material por medio de su granulometría.

3.6.1. Granulometría Agregado Grueso IMME

A fin de evaluar el comportamiento de este material, se realizó la granulometría, siguiendo los pasos establecidos en la norma COVENIN 255:1998. "Agregados. Determinación de la Composición Granulométrica":

- 1. Se seca la muestra a una temperatura constante (110 ± 5) ⁰C.
- 2. Se seleccionan los tamaños adecuados de los cedazos para proporcionar la información requerida por las especificaciones que cubren el material ensayado.
- 3. Se ensamblan los cedazos en orden de tamaño de aberturas decrecientes desde arriba hacia abajo colocando la muestra en el cedazo superior. Se agita la muestra a mano o por medio de aparatos mecánicos, por un tiempo determinado por tanteo. (Ver figura 3.9)
- 4. Se limita la cantidad de material en un cedazo determinado, para que todas las partículas tengan la oportunidad de alcanzar las aberturas del mismo.
- 5. Se pesa el material retenido en cada uno de los cedazos.
- 6. Se calcula el porcentaje de material pasante de cada tamiz, el cual se grafica abertura del cedazo pasante en el eje de las ordenadas y porcentaje pasante en el eje de las abscisas. Utilizando una escala logarítmica

Así se comprobó que el agregado grueso, cumplía con los límites normativos. (Ver Anexo 4)

Figura 3.9 Tamizadora Mecánica

3.6.2. Combinación

Ya que el material disponible en el IMME no cubría la cantidad necesaria para el desarrollo de nuestra investigación, se procedió a combinar ambos agregados.

El proceso de combinación se llevó a cabo utilizando una mezcladora de eje vertical, en la cual se colocaba agregado grueso en las siguientes proporciones 60 Kg de agregado proveniente del IMME. y 40 Kg proveniente de la Planta FNC "San Antonio".

3.7. Caracterización del Agregado Grueso Combinado

Con el fin de evaluar el agregado obtenido y verificar que este cumplía con los parámetros normativos se realizaron los siguientes ensayos:

3.7.1. Granulometría

Se realizó siguiendo el procedimiento descrito en el apartado 3.6.1, donde se constató que la combinación había sido efectiva ya que el agregado cumplía con los límites

granulométricos dispuestos en la Norma COVENIN 277-2000. "Concreto. Agregados. Requisitos".

3.7.2. Ensayo de Desgaste Los Ángeles

Por medio de este ensayo, se determinó la resistencia al desgaste (abrasión) que presenta el agregado. Para ello se siguió el procedimiento descrito en la Norma COVENIN 266-77 "Método de Ensayo para Determinar la Resistencia al Desgaste en Agregados Gruesos e Menores de 25.4 mm (1") por Medio de la Maquina de Los Ángeles".

 Se toma una muestra representativa del agregado limpio que ha sido secado en un horno a temperatura comprendida entre 105 y 110 °C, la cual debe cumplir con las gradaciones indicadas en la tabla 3.4.

Tabla 3.4 Gradaciones de Muestras de Ensayo

TAMAÑO D		PESO DE LOS TAMAÑOS INDICADOS (g)				
Pasa	Retenido en	A	В	С	D	
38,1 mm (1 ½")	25,4 mm (1")	1250 ± 25				
25,4 mm (1")	19,0 mm (3/4")	1250 ± 25				
19,0 mm (3/4")	12,7 mm (1/2")	1250 ± 25	2500 ± 10			
12,7 mm (1/2")	9,51 mm (3/8")	1250 ± 25	2500 ± 10			
9,51 mm (3/8")	6,35 mm (1/4")			2500 ± 10		
6,35 mm (1/4")	4,76 mm (#4)			2500 ± 10		
4,76 mm (#4)	2,38 mm (#8)				5000 ± 10	
TOT	ΓAL	5000 ± 10	5000 ± 10	5000 ± 10	5000 ± 10	

Fuente: Norma COVENIN 266-77 "Método de Ensayo para Determinar la Resistencia al Desgaste en Agregados Gruesos e Menores de 25.4 mm (1") por Medio de la Maquina de Los Ángeles".

2. Se anota antes del ensayo el peso de la muestra a ensayar con aproximación de 1 g.

3. Se coloca la muestra de ensayo y la carga abrasiva (Tabla 3.5) en la Máquina de Los Ángeles y se hace rotar el tambor a una velocidad de 30 a 33 rpm durante 500 revoluciones (Ver Figura 3.9)

Tabla 3.5 Carga Abrasiva

GRADACIÓN	NUMERO DE ESFERAS	PESO DE LA CARGA (gr)
A	12	5000 ± 25
В	11	4584 ± 25
С	8	3330 ± 20
D	6	2500 ± 15

Fuente: Norma COVENIN 266-77 "Método de Ensayo para Determinar la Resistencia al Desgaste en Agregados Gruesos e Menores de 38,1 mm (1 ½") por Medio de la Maquina de Los Ángeles".

4. Después del número de revoluciones prescritas, se descarga el material y se hace una separación preliminar de la muestra, en un cedazo más grueso que el de 1,68 mm (# 12), luego se cierne la porción más fina en un cedazo de 1,68 mm (#12) y se pesa con una aproximación de 1 g.

La diferencia entre el peso original y el peso final de la muestra ensayada se expresa como porcentaje del peso original, lo que representa el porcentaje de desgaste del agregado

Figura 3.10 Maquina de los Ángeles

3.7.3. Densidad y Absorción

Se determinó la densidad y absorción del agregado siguiendo el procedimiento descrito en la Norma COVENIN 269:1998"Agregado Grueso. Determinación de la Densidad y la Absorción".

- 1. Se obtiene la masa de la muestra bajo la condición de saturada y de superficie seca.
- 2. Se coloca inmediatamente la muestra en el recipiente o cesta de alambra, y se determina su masa en el agua a una temperatura de (23±2) ⁰C con un valor de densidad el agua de 1 g/ml. Antes de pesar se agita el recipiente para eliminar todo el aire atrapado mientras está sumergido.
- 3. Se seca la muestra introduciéndola en el horno a una temperatura entre 100 y 110 °C hasta que el valor de su masa sea constante. Se deja enfriar a temperatura ambiente de 1h a 3h, o hasta que el agregado se haya enfriado a una temperatura de cómoda manipulación (±50 °C) y se determina su masa.

Posteriormente se determina la densidad como:

$$\rho_{a=\frac{(d)(M1)}{M2-M3}}$$
 Ecuación 3.1

Y la absorción como:

$$A = \left(\frac{M2 - M1}{M1}\right) * 100$$
 Ecuación 3.2

Donde:

ρa: es la densidad aparente [g/ml].

A: Absorción (%)

d: es la densidad del agua , aproximándola a 1 g/ml.

M1: es la masa en el aire de la muestra secada al horno [g].

M2: es la masa en el aire de la muestra saturada y de superficie seca [g].

M3: es la masa en el aire de la muestra saturada [g].

Figura 3.11 Balanza Electrónica

3.7.4. Contenido de Humedad

Se determinó el contenido de humedad del agregado utilizado, siguiendo el procedimiento descrito en la Norma COVENIN 1375-79 "Método de Ensayo para determinar por Secado, el Contenido de Humedad Total y Superficial en el Agregado".

- 1. Se pesa la muestra con una aproximación de 0,1% del peso de la misma, evitando en lo posible la pérdida de humedad. (Ver figura 3.11)
- 2. Se coloca la muestra en el envase y se seca utilizando la fuente de calor, evitando la perdida de partículas del agregado.

El contenido total de humedad se calcula como:

$$H = 100 \left(\frac{Wo - Ws}{Ws} \right)$$
 Ecuación 3.3

Donde:

H: Contenido de Humedad de la muestra [%].

Wo: Peso original de la muestra [g]

Ws: Peso de la muestra seca [g]

3.8. Diseño de Mezcla

El método de diseño de mezcla que se presenta en este trabajo de investigación, es el aplicado en el "Manual del concreto estructural", Porrero y otros. (2012).

Este método considera, en primer término, un grupo de variables que constituyen su esqueleto fundamental: dosis de cemento, trabajabilidad, relación agua/cemento y resistencia. Éstas se vinculan a través de dos leyes básicas: relación triangular y Ley de Abrams.

3.8.1. Relación Beta (β).

El valor de (β), representa el cociente entero entre el peso del fino (arena) y el del agregado total (suma del agregado grueso y fino). Dado que este valor se debe seleccionar de forma que el agregado tenga, para su tamaño máximo, una granulometría dentro de la zona recomendada, se utilizó el siguiente método gráfico:

- 1. Se construye una gráfica como la mostrada en la figura 3.12, en donde los ejes verticales representan los porcentajes pasantes de los agregados finos y gruesos respectivamente.
- 2. Luego se marca en cada eje, el porcentaje pasante correspondiente a cada tamaño de tamiz; seguidamente, se unen con líneas los puntos de ambos ejes que pertenecen a un mismo número de cedazo. Sobre cada una de las rectas de proporcionalidad ya generadas, se señalan los límites normativos, en función del tamaño máximo de agregado. (Tabla 3.6)

Tabla 3.6 Límites granulométricos recomendados para distintos tamaños máximos del agregado.

Porcentajes pasantes

Lín	Límites Granulométricos Recomendados para Distintos Tamaños del Agregado, Porcentajes Pasantes										
Ced	Cedazo Tamaños Máximos: mm (Pulgadas)										
Abe	rtura	88.9	76.2	63.5	50.8	38.1	25.4	19.1	12.7	9.53	6.35
mm	pulg	(3 1/2)	(3)	(2 1/2)	(2)	(1 1/2)	(1)	(3/4)	(1/2)	(3/8)	(1/4)
88.9	3 ½	100-90	-	-	-	-	-	-	-	-	-
76.2	3	95-80	100-90	-	-	-	-	-	-	-	-
63.5	2 ½	92-60	92-70	100-90	-	-	-	-	-	-	-
50.8	2	85-50	87-55	87-65	100-90	-	-	-	-	-	-
38.1	1 ½	76-40	80-45	80-55	87-73	100-90	-	-	-	-	-
25.4	1	68-33	72-38	73-47	77-59	84-70	100-90	-	-	-	-
19.1	3/4	63-30	68-35	68-43	73-53	77-61	90-70	100-90	-	-	-
12.7	1/2	57-28	62-32	62-37	68-44	70-49	75-55	85-65	100-90	-	-
9.53	3/8	53-25	58-30	60-35	65-40	65-43	68-45	75-55	98-90	100-90	-
6.35	1/4	45-22	48-25	58-30	60-35	60-35	60-35	65-45	65-51	73-61	100-90
4.76	#4	45-22	48-25	50-28	55-30	55-30	55-30	60-38	58-42	62-48	65-52
2.38	#8	40-20	43-20	45-20	45-20	45-20	45-20	45-20	43-37	40-26	38-26
1.19	#16	35-15	35-15	35-15	35-15	35-15	35-15	35-15	31-17	26-14	21-9
0.59	#30	25-10	25-10	25-10	25-10	25-10	25-10	25-10	20-10	13-5	8-2
0.29	#50	16-7	16-7	16-7	16-7	16-7	16-5	16-5	11-5	7-3	5-1
0.14	#100	8-2	8-2	8-2	8-2	8-2	8-1	8-1	6-1	5-1	2-0

Fuente: Porrero S. Joaquín (2012) y otros "Manual del Concreto Estructural".

- 3. Seguidamente, se trazarán dos líneas verticales, una por cada punto crítico (mayor y menor) de los límites granulométricos del conjunto de tamices, estableciendo así, un rango de valores para la relación β.
- 4. Por último, se escoge el valor de la relación β , que se encuentre dentro del rango obtenido.

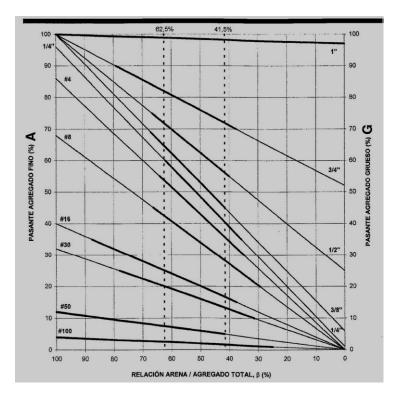


Figura 3.12 Relación arena/agregado total, β

Fuente: Porrero, J. Ramos, C. Grases, J. Velazco, G.J. (2012), Manual del Concreto Estructural 4ta edición.

3.8.2. Resistencia promedio requerida (Fcr).

Partiendo de que la desviación estándar es desconocida, ya que no se tiene un registro de ensayos, del cual se pueda obtener este valor, se utilizó la tabla 3.7 para estimar el sumando zσ en función del grado del control de calidad previsto en obra y la resistencia especificada a la compresión.

Tabla 3.7 Resistencia promedio a la compresión, Fcr, cuando no se dispone de datos para establecer la desviación estándar

Resistencia Especificada a la	Resistencia Requerida a la Compresión Fcr (kgf/cm2)						
Compresión Fc (Kgf/cm2)	Control de Calidad Excelente	Control de Calidad Intermedio	Sin Control de Calidad				
Menor de 210	Fc + 45	Fc + 80	Fc + 130				
De 210 a 350	Fc + 60	Fc + 95	Fc + 170				
Más de 350	Fc + 75	Fc + 110	Fc + 210				

Fuente: Porrero S. Joaquín (2009) y otros "Manual del Concreto Estructural".

La resistencia a la compresión con la cual se trabajo fue Fc=210 kgf/cm2 y con un control de calidad excelente. La ecuación utilizada para el cálculo de la resistencia promedio requerida (Fcr) fue:

$$Fcr = Fc + 60$$
 Ecuación 3.4

Donde:

Fcr: Resistencia promedio requerida [kgf/cm2].

Fc: Resistencia a compresión especificada en el proyecto [kgf/cm2].

3.8.3. Relación agua / cemento (α).

Esta relación se obtuvo a través de la Ley de Abrams utilizando la siguiente ecuación:

$$\alpha = 3.147 - 1.065 * Log(\bar{R}_{28})$$
 Ecuación 3.5

Donde:

 $\alpha = \alpha/C$: Relación agua / cemento.

 \overline{R}_{28} : Resistencia media esperada a los 28 días. [kgf/cm2]

El valor obtenido anteriormente es corregido, tomando en consideración la influencia del tamaño máximo del agregado, la cual se simboliza como "Kr" y la influencia del tipo de agregado, la cual se simboliza como "Ka". Tablas 3.8 y 3.9 respectivamente.

Tabla 3.8 Factor para corregir α por tamaño máximo (Kr).

Kr Factor para Corregir α por Tamaño Máximo, mm (Pulgadas)									
Tamaño	6.35	9.53	12.7	19.1	25.4	38.1	50.8	63.5	76.2
Máximo	(1/4)	(3/8)	(1/2)	(3/4)	(1)	(1 ½)	(2)	(2 1/2)	(3)
Factor Kr	1.60	1.30	1.10	1.05	1.00	0.91	0.82	0.78	0.74

Fuente: Porrero S. Joaquín (2009) y otros "Manual del Concreto Estructural".

Tabla 3.9 Factor para corregir α por tipo de agregado (Ka).

K _A Factor para Corregir α por Tipo de Agregado								
Gruesos Triturados Semitriturados Canto Rodado								
Arena Natural	1.00	0.93	0.90					
Arena Triturada	1.28	1.23	0.96					

Fuente: Porrero S. Joaquín (2009) y otros "Manual del Concreto Estructural".

La ecuación utilizada para realizar las correcciones fue la siguiente:

$$\alpha_c = \alpha * Kr * Ka$$
 Ecuación 3.6

Dónde:

 α : es la relación agua /cemento.

 α_c : es la relación agua /cemento corregida.

Kr: es el factor para corregir α por tamaño máximo de agregado grueso.

Ka: es el factor para corregir α por tipo de agregado grueso.

Una vez determinada la relación agua /cemento corregida se realizó la revisión por durabilidad, tomando el menor valor entre el requerido por resistencia estructural y el requerido por condiciones de servicio. (Ver tabla 3.10)

Tabla 3.10 Máximos valores de α para distintas condiciones de servicio o ambientales

Relación Agua/Cemento Máxima Permisible cuando No Existen de Ensayos de Resistencia o Experiencia en Obra						
Relación Agua/Cemento por Peso						
Resistencia Especificada Fc a los 28 días (kgf/cm2)	Concreto sin Aire Incorporado	Concreto con Aire Incorporado				
150	0.62	0.51				
210	0.52	0.42				
250	0.44	0.34				
300	0.37	-				

Fuente: Porrero S. Joaquín (2009) y otros "Manual del Concreto Estructural".

.

3.8.4. Dosis de cemento (C).

Utilizando la relación triangular se determinó la dosis de cemento a través de la siguiente ecuación:

$$C = \frac{k * T^n}{\alpha^m}$$
 Ecuación 3.7

Dónde:

C: es la dosis de cemento [kg/m3].

α: es la relación agua / cemento.

T: es el asentamiento del cono de Abrams [cm].

K,n,m: son constantes que dependen de las características de los materiales componentes de la mezcla y de las condiciones en que se elabora.

Debido a que se utilizó piedra triturada de 25,4 mm de tamaño máximo, arena natural y cemento Portland Tipo I los valores utilizados para k, n y m fueron 117,2; 0,16 y 1,3 respectivamente.

Posteriormente se corrige el valor de la dosis de cemento obtenida por un procedimiento análogo al utilizado para corregir la relación agua / cemento. Los coeficientes utilizados son C1 y C2; el primero está relacionado con el tamaño máximo del agregado y el segundo con el tipo de agregado utilizado. (Ver tabla 3.11 y 3.12)

Tabla 3.11 Factor para corregir la dosis de cemento por tamaño máximo (C1).

C1 Factor para Corregir C por Tamaño Máximo, mm (Pulgadas)									
Tomoão Márimo	6.35	9.53	12.7	19.1	25.4	38.1	50.8	63.5	76.2
Tamaño Máximo	(1/4)	(3/8)	(1/2)	(3/4)	(1)	(1 ½)	(2)	(2 ½)	(3)
Factor C1	1.33	1.20	1.14	1.05	1.00	0.93	0.88	0.85	0.82

Fuente: Porrero S. Joaquín (2009) y otros "Manual del Concreto Estructural".

Tabla 3.12 Factor para corregir la dosis de cemento por tipo de agregado (C2).

K _A Factor para Corregir α por Tipo de Agregado								
Gruesos Triturados Semitriturados Canto Rodado								
Arena Natural	1.00	0.93	0.90					
Arena Triturada	1.28	1.23	0.96					

Fuente: Porrero S. Joaquín (2009) y otros "Manual del Concreto Estructural".

La ecuación utilizada para realizar las correcciones fue la siguiente:

$$Cc = C * C1 * C2$$
 Ecuación 3.8

Donde:

Cc: es la dosis de cemento corregida [kg/m³].

C: es la dosis de cemento. $[kg/m^3]$.

C1: es el factor para corregir C por tamaño máximo de agregado grueso.

C2: es el factor para corregir C por tipo de agregado grueso.

Una vez determinada la dosis de cemento corregida se realizó la revisión por durabilidad, tomando el mayor valor de entre el requerido por trabajabilidad y el que asegura la durabilidad. (Ver tabla 3.13)

Tabla 3.13 Contenidos mínimos de cemento en función de las condiciones de servicio o ambientales

Contenidos Mínimos de Cemento en Función de las Condiciones de Servicio o Ambientales	
Condiciones Ambientales	Dosis Mínima de Cemento (kgf/m3)
En cualquier circunstancia. Exceptuando los concretos masivos de represa son un caso especial	270
En ambientes agresivos, marinos o concretos sometidos a desgaste	350

Fuente: Porrero S. Joaquín (2009) y otros "Manual del Concreto Estructural".

Por último, para obtener el volumen absoluto de los granos de cemento, en la práctica, se recomienda multiplicar el peso del cemento por el valor de 0,30.

$$Vc = 0.30 * C$$
 Ecuación 3.9

Donde:

Vc: es el volumen absoluto de los granos de cemento [1/m3].

C: es la dosis de cemento [kg/m3].

3.8.5. Volumen absoluto de agua (a).

Para determinar el peso de agua en la mezcla se utilizó la siguiente ecuación:

$$a = C * \alpha$$
 Ecuación 3.10

Donde:

a: es el volumen del agua presente en la mezcla [l/m3].

C: es la dosis de cemento [kg/m3].

α: es la relación agua / cemento.

3.8.6. Volumen de aire atrapado (V).

Para determinar el volumen del aire en la mezcla se utilizó la siguiente ecuación:

$$V = C/P$$
 Ecuación 3.11

Donde:

V: es el volumen de aire atrapado [1/m3].

C: es la dosis de cemento [kg/m3].

P: es el tamaño máximo de agregado [mm].

3.8.7. Volumen de los agregados.

Para simplificar el cálculo, primero se determinó el peso específico de los agregados combinados utilizando el promedio ponderado basado en la relación β.

$$\gamma_{(A+G)} = \beta * \gamma_A + (1-\beta) * \gamma_G$$
 Ecuación 3.12

Donde:

 γ_A : Peso específico del agregado fino [L/m3].

 γ_G : Peso específico del agregado grueso [kgf/m3].

β: Relación beta.

 $\gamma_{(A+G)}$: Peso específico del agregado combinado [mm].

Luego se utilizó la ecuación 3.13 para determinar el volumen absoluto de los agregados en la mezcla.

$$V_{(A+G)} = (A+G)/\gamma_{(A+G)}$$
 Ecuación 3.13

Donde:

 $V_{(A+G)}$: Volumen absoluto de los agregados en la mezcla [l/m3].

A: Peso del agregado fino [kgf/m3].

G: Peso del agregado grueso [kgf/m3].

 $\gamma_{(A+G)}$: Peso específico del agregado combinado [mm].

Una vez conocido el peso específico de los agregados combinados y sabiendo que la suma de los volúmenes absolutos de todos los componentes de la mezcla debe ser igual a 1000 litros, entonces:

$$Vc + Va + a + V_{(A+G)} = 1000 \ litros$$
 Ecuación 3.14

Donde:

Vc: Volumen absoluto de los granos de cemento [l/m3].

V: Volumen de aire atrapado [l/m3].

a: Volumen absoluto de agua [l/m3].

 $V_{(A+G)}$: Volumen absoluto de los agregados en la mezcla [L/m3].

Para calcular los pesos de los agregados finos y gruesos respectivamente se utilizó la relación β de acuerdo a las ecuaciones.

$$A = \beta * (A + G)$$
 Ecuación 3.15

$$G = (1 - \beta) * (A + G)$$
 Ecuación 3.16

Donde:

β: Relación beta.

A: Peso del agregado fino [kg/m3].

G: Peso del agregado grueso [kg/m3].

3.8.8. Dosificación de los materiales para la mezcla.

Para el diseño de mezcla se consideró que el grado de humedad de los agregados se encontraba en la condición ideal de saturados con superficie seca, pero en la práctica esta condición no se da y la cantidad de agua de mezclado debe ser revisada con el fin de no incorporar más agua a la mezcla de la necesaria, evitando que se altere la relación agua / cemento.

Para nuestra investigación se utilizó una mezcladora de eje vertical de capacidad Nominal máxima 110 litros (Ver Figura 3.11). Por lo que se dosificó para preparar volúmenes menores a 110 litros. Para el mezclado, se recomienda verter 1/3 de los materiales primero

siguiendo el procedimiento que se describe en la sección 3.9.3, posteriormente se introduce a la mezcladora el resto de los materiales bajo el mismo orden establecido, lo que hace que el material se humedezca y no se produzca derramamiento de material en el proceso de mezclado. (Ver figura 3.13)

Figura 3.13 Mezcladora de Eje Vertical.

La corrección por humedad fue realizada tanto para el agregado fino como para el agregado grueso utilizando las siguientes formulas:

$$Gsss = Gw * \frac{(100 + Ab_G)}{(100 + w_G)}$$
 Ecuación 3.17

$$Asss = Aw * \frac{(100 + Ab_A)}{(100 + w_A)}$$
 Ecuación 3.18

Donde:

Gsss: Peso del agregado grueso saturado con superficie seca [kgf/m³].

Asss: Peso del agregado fino saturado con superficie seca [kgf/m³].

Gw: Peso del agregado grueso húmedo [kgf/m³].

Aw: Peso del agregado fino húmedo [kgf/m³].

 Ab_G : Absorción del agregado grueso [%].

 Ab_A : Absorción del agregado fino [%].

 W_G : Humedad del agregado grueso [%].

 W_A : Humedad del agregado fino [%].

Corrección de la cantidad de agua de mezclado.

La corrección de la cantidad de agua de mezclado fue realizada con la siguiente ecuación:

$$a_M = a_D + Asss - Aw + Gsss - Gw$$

Ecuación 3.19

Donde:

 a_M : es la cantidad de agua a usar en la mezcla [kgf/m3].

 a_D : es la dosis de agua calculada en el diseño de mezcla [kgf/m3].

Asss, Gsss: son las dosis de agregados que se consideran saturados con superficie seca (fino y grueso) [kgf/m3].

Aw, Gw: son los pesos de los agregados en cualquier condición de humedad [mm].

3.9. Fabricación de Elementos a Ensayar

La fabricación de los elementos de concreto diseñados como probeta rectangular no normada de 30 cm de lado, semejan a escala real un fragmento de un elemento estructural tipo Viga o Columna. Los mismos solo se elaboraron con el fin de cumplir con los objetivos propuestos para este Trabajo de Grado, es decir, no cuentan con una distribución de acero correspondiente a ningún calculo estructural, simplemente se tomó una configuración de acero en base a las opiniones de Profesores de la misma Casa de Estudio y de los casos comúnmente encontrados en el diseño estructural.

3.9.1. Corte y Doblado de Barras de Acero

Corte y Doblado del Acero Transversal

El proceso de corte y doblado del acero transversal que se colocó en el armado, se realizó en base a los criterios establecidos en el capítulo 7 de la NVF *Proyecto y Construcción de Obras en Concreto Estructural (2006)*, en donde se establece:

- Los estribos y ligaduras cerradas requeridos deben tener en ambos extremos gancho con un doblez no menor de 135°, con una extensión de 6 veces el diámetro de la barra pero no menor de 7,5 cm, que abrace el refuerzo longitudinal y se proyecte hacia el interior de la sección del miembro.
- Cuando excepcionalmente se usen estribos o ligaduras de una rama, el dobles en uno de los extremos debe ser un gancho de no menos de 180°, con una extensión de 6 veces el diámetro de la barra pero no menor de 7,5 cm y en el otro extremo un gancho de no menos de 135° con una extensión de 6 veces el diámetro de la barra.

Cumpliendo tales condiciones, se elaboraron 22 estribos o ligaduras de dos ramas de 25cm x 25cm cerrados con dobleces de 10 cm de largo a 135° proyectados hacia el interior y 10 de una sola rama de 25 cm y ganchos de 10 cm doblados a 180° proyectados hacia el interior (Figura 3.14). Todos ellos elaborados con barras de acero de Ø 3/8", bajo procedimientos manuales, lo que dificultó la precisión en los dobleces.

Figura 3.14 Doblado de Estribos

Corte y Doblado del Acero Longitudinal

El acero longitudinal colocado corresponde a barras de acero de \varnothing 1/2", ubicadas en cada una de las esquinas de los elementos armados con acero transversal de 2 ramas. Mientras que aquellas probetas armadas con 3 ramas, presentan 6 barras de acero de \varnothing 1/2", dispuestas en las esquinas y en el punto medio de las caras en las cuales se encuentran los estribos o ligaduras de una sola rama (grapas) (Ver figura 3.15)

Dos de las barras ubicadas en las esquinas de cada uno de los elementos armados, presentaban ganchos a 90° en la parte inferior y ganchos a 135° en la parte superior, los cuales permitían el alzado en grúa de estos elementos, herramienta necesaria para poder transportarlos.

Figura 3.15 Corte de Barras ø 1/2"

3.9.2. Armado

Las probetas diseñadas son de sección cuadrada de 30 cm de lado, ya que la misma corresponde a la sección mínima que puede tener un elemento estructural columna en un edificio sismorresistente según lo establecido en el capítulo 18 de la normativa venezolana Fondonorma *Proyecto y Construcción de Obras en Concreto Estructural* (2006) y a la vez cumple con la sección mínima de un elemento estructural viga (25 cm de lado) según lo establecido en la Norma antes mencionada.

El armado de las probetas se realizó tal como se muestra en cada una de las configuraciones de armado expuestas en el apartado 3.3 de este Trabajo.

El ensamblaje de cada uno de estos elementos para formar el armado del acero, se llevó a cabo en las instalaciones del IMME-UCV, donde se organizó un pequeño mesón de trabajo que permitiría llevar a cabo adelante esta labor. (Ver figura 3.16)

Figura 3.16 Armado del Acero

3.9.3. Mezclado, Asentamiento, Vaciado y Compactación

Los materiales utilizados fueron:

- Piedra Picada con tamaño máximo de 1"
- Arena lavada natural
- Cemento Portland Tipo I
- Agua Potable

Mezclado

El proceso de elaboración de las mezclas se llevó a cabo siguiendo los procedimientos descritos en la Norma COVENIN 354:2001. "Concreto. Método para mezclado en laboratorio":

1. Se dosifican todos los materiales por medio de una balanza calibrada, colocándolos en recipientes completamente secos y en buen estado.

- 2. Se enciende la mezcladora.
- 3. Se vierte en la mezcladora la piedra picada conjuntamente se va agregando parte del agua (aproximadamente la mitad), con la finalidad de que esta se humedezca.
- 4. Se agrega la arena y se espera a que se unifique con la piedra.
- 5. Se agrega el cemento y el resto del agua faltante y se deja mezclar por 2 minutos aproximadamente hasta obtener una masa completamente homogénea.

Nota: La dosificación del mezclado se dividió en tres porciones iguales, las cuales se colocaban en la mezcladora en el orden descrito anteriormente, sin embargo se iba realzando en 3 partes, es decir, sin parar la mezcladora se colocaba un tercio del material se mezclaba, luego un segundo lote de material y por último el restante, evitando así que se derramara (Ver figura 3.17)

Figura 3. 17 Proceso de Mezclado

Asentamiento

El ensayo para medir el asentamiento por medio del de cono de Abrams, el cual para esta investigación se proyectó de 10 cm. El mismo, se realizó conforme a lo establecido en

la Norma COVENIN 339:2003 "Método para la Medición de Asentamiento con el Cono de Abrams", la cual establece los siguientes pasos:

- Se humedece el interior del molde y se coloca sobre una superficie horizontal rígida, plana y no absorbente (se recomienda una lámina metálica que garantice las condiciones anteriores). El molde se sujeta firmemente por las aletas con los pies y se llena con la muestra de concreto, vaciando ésta en tres capas, cada una de ellas de un tercio del volumen del molde. Estos volúmenes corresponden respectivamente a las alturas de 6.5 cm y 15 cm a partir de la base.
- Cada capa se compacta con 25 golpes de la barra compactadora, distribuidos uniformemente en toda la sección transversal. Para la capa inferior es necesario inclinar ligeramente la barra y dar aproximadamente la mitad de los golpes cerca del perímetro, acercándose progresivamente en espiral hacia el centro de la sección.

Esta capa debe compactarse en todo su espesor, las capas siguientes se compactan, en su espesor respectivo de modo que la barra penetre ligeramente en la capa inmediata inferior.

- El molde se llena por exceso antes de compactar la última capa. Si después de compactar, el concreto se asienta por debajo del borde superior, se agrega concreto hasta lograr un exceso sobre el molde. Luego se enrasa mediante la barra compactadora o una cuchara de albañilería. Inmediatamente se retira el molde alzándolo cuidadosamente en dirección vertical. Deben evitarse los movimientos laterales o de torsión. Esta operación debe realizarse en un tiempo aproximado de 5 a 10 segundos.
- La operación completa desde que se comienza a llenar el molde hasta que se retira, debe hacerse sin interrupción y en un tiempo máximo de 1 min 30 s.
- El asentamiento se mide inmediatamente después de alzar el molde y se determina por la diferencia entre la altura del molde y la altura promedio de la base superior del cono deformado (Figura 3.18).

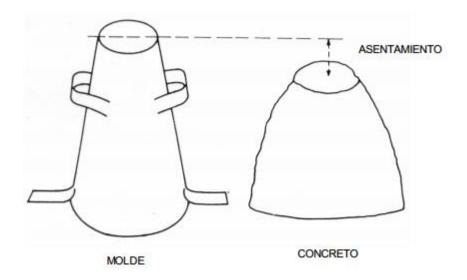


Figura 3.18 Proceso de Medición del Asentamiento por medio del Cono de Abrams

Fuente: COVENIN 339:03 "Método para la Medición de Asentamiento con el Cono de Abrams"

- En caso de que se presente una falla o corte, donde se aprecie separación de una parte de la masa, debe rechazarse el ensayo, y se hace nuevamente la determinación con otra parte de la mezcla.
 - Si dos ensayos consecutivos sobre una misma mezcla de concreto presentan separación, el concreto probablemente carece de la plasticidad y cohesión necesaria para la validez del ensayo.

Figura 3.19 Medición de Asentamiento por Cono de Abrams

Vaciado y Compactación

El proceso de Vaciado y Compactación se realizó en base a las recomendaciones dadas por los tutores de este trabajo, los cuales establecieron el procedimiento descrito a continuación:

- 1. Se vacía la mezcla, hasta alcanzar un volumen de un tercio de la altura del recipiente presentando una primera capa.
- 2. Se compacta por medio de una barra con punta redondeada, aplicando 50 golpes en sentido horario u anti horario en el perímetro y centro del elemento. Posteriormente es agitada la probeta aplicando una fuerza en la parte superior del encofrado, por aproximadamente 30 segundos. (Figura 3.18)

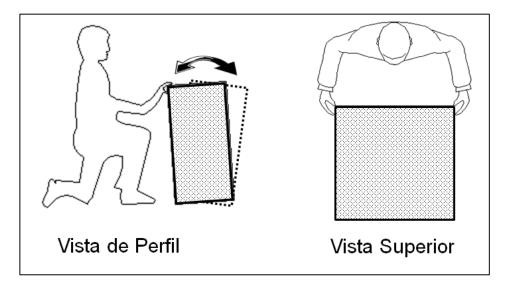


Figura 3.20 Proceso de Compactación por Agitación

- 3. Se repite el procedimiento para 2 capas sucesivas. Hasta llenar el molde en la última capa vaciada.
- 4. Se enraza el elemento utilizando la barra compactadora o algún otro elemento de albañilería tal como cuchara.

Cabe mencionar, que antes del mezclado se limpiaron, armaron y engrasaron los moldes utilizados para la fabricación de estos elementos.

Posteriormente se tomaron muestras cilíndricas de cada una de las mezclas realizadas siguiendo los parámetros que establece la Norma COVENIN 338:02 "*Método para la Elaboración, Curado y Ensayo a Compresión de Cilindros de Concreto*", con el fin de conocer un valor de la resistencia obtenida en cada una de las mezclas (Ver figura 3.21)

Figura 3.21 Vaciado de Cilindros

3.9.4. Desencofrado y Curado

El proceso de desencofrado se llevó a cabo el día siguiente del vaciado de los elementos, este se realizó apoyando las probetas en anime y cartón, al momento de inclinarlas para poder extraer la tapa inferior del molde evitando en todo momento se produjera alguna grieta o fisura en el elemento.

Finalizado el proceso de desencofrado, las mismas fueron sometidas a un proceso de curado por inmersión durante los primeros 14 días y luego por riego durante los siguientes 7 días. El proceso de inmersión se llevó a cabo de la siguiente manera: La probeta fue forrada por sus 6 caras con cartón sujeto con cinta adhesiva de embalaje, garantizando que la probeta se encontrara húmeda en todo momento, incluso si el nivel de agua que las cubriera bajase.

Seguidamente eran colocadas dentro de dos bolsas plásticas, a las cuales se les colocó madera y láminas metálicas firmemente unidas al elemento de concreto, con el fin de llenarlas de agua, creando una pequeña piscina o tanque de curado.

Para dar continuidad al curado, se llevó a cabo un proceso de riego luego de que las probetas fueran extraídas de la inmersión, el cual se realizó mojando dos veces al día por 7 días todas las caras del elemento fabricado. (Ver figura 3.22)

Una vez cumplido este ciclo de 21 días de curado se dejó secar la probeta a temperatura ambiente, para que la misma se encontrara con superficie seca al momento de hacer las primeras mediciones de ultrasonido, evitando que la humedad alterara los resultados obtenidos.

Figura 3.22 Desencofrado y Curado

3.10. Ensayos

Con el fin de caracterizar el concreto endurecido obtenido de cada una de las mezclas, se realizaron los siguientes ensayos:

3.10.1. Peso Unitario

Con el fin de caracterizar en el concreto obtenido se tomó el peso unitario de cada una de las probetas cilíndricas normadas para ensayos a compresión y los elementos tipo columnaviga construidos siguiendo el procedimiento descrito a continuación:

• Se midió por medio de un Vernier, la altura y el diámetro (ø) de cada una de las probetas (evaluado en la base, centro y tope del cilindro, siendo el tope la cara enrazada de la probeta) haciendo tres lecturas en cada uno de los puntos mencionados. Lo que permitió obtener un valor promedio de las dimensiones, las cuales fueron utilizados en la determinación del volumen de la misma. (Figura 3.23)

Dimensiones de la Probeta Cilíndrica

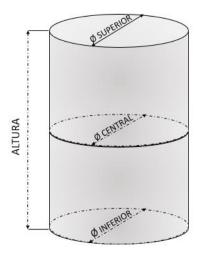


Figura 3.23 Dimensiones Tomadas de los Cilindros

- Se pesó por medio de una balanza electrónica cada una de las probetas.
- Para el caso de los elementos prismáticos fabricados, se tomó un promedio de las
 distancias medidas entre caras para el cálculo de la velocidad de pulso. Para medir la
 altura del elemento se utilizó una cinta métrica, la misma se midió por cada una de las
 caras del prisma y se calculó un promedio para posteriormente obtener el volumen del
 elemento.

- El peso de cada uno de los prismas se realizó por medio de una Romana (Ver figura 3.24)
- Finalmente se obtuvo el peso unitario de cada una de las probetas prismáticas y cilíndricas por medio de la ecuación 3.20:

$$\rho = Pe/V$$
 Ecuación 3.20

Donde:

 ρ : es la densidad en estado endurecido [kg/m3].

Pe: es el peso de la probeta en estado endurecido [kgf].

V: es el volumen de la probeta [m3].

Figura 3.24 Pesaje de Elementos utilizando Romana

3.10.2. Ensayo a Compresión de Cilindros

El ensayo a compresión de las probetas se realizó según la Norma COVENIN 338:2002 "Método para la Elaboración, Curado y Ensayo a Compresión de Cilindros de Concreto", siguiendo el procedimiento aquí descrito:

- Los cilindros se colocan en la máquina de ensayo, se centran cuidadosamente, nivelan y se colocan dos almohadillas de neopreno en ambas caras de la probeta, luego se comprimen hasta fallar (Ver figura 3.25)
- 2. En el caso de las máquinas de tipo mecánico el desplazamiento del cabezal debe ser aproximadamente de 1,3 mm por minuto; en las máquinas operadas hidráulicamente se aplicará una presión a una tasa constante dentro del rango de 1,4 kg/cm²/seg a 3,5 kg/cm²/seg. Durante la aplicación de la primera mitad de la presión, se permite incrementar dicha tasa. (Ver figura 3.26)

En nuestro caso se utilizó una maquina hidráulica para ensayar las probetas en las dos primeras edades (14 y 28 días), mientras que las correspondientes a los 49 días fueron ensayadas con una maquina mecánica. Ambas siguiendo el procedimiento descrito en el paso 1.

Figura 3.25 Ensayo de Resistencia a Compresión

La resistencia a compresión de cada una de las probetas se calculó por medio de la siguiente ecuación:

$$\bar{R} = \frac{Q}{A}$$
 Ecuación 3.21

Donde:

 \overline{R} : Resistencia a compresión del concreto [kg/m2].

Q: Carga a compresión aplicada a la probeta [kgf].

A: área promedio de la sección de la probeta [m3].

Figura 3.26 Falla que Presentaron los Cilindros

3.10.3. Ensayo Electromagnético (Ferroscan)

La ubicación del acero de refuerzo en el elemento una vez vaciado, se realizó por medio de un equipo marca Hilti Ferroscan, siguiendo el procedimiento que se describe a continuación:

- Se verificó el buen funcionamiento del equipo en una probeta de muestra existente en el IMME, la cual presenta aceros a diferentes separaciones y profundidades ya conocidos.
- 2. Se realizaron dos barridos en dirección perpendicular a la barra de acero que se quería determinar su ubicación, considerando que el eje de la barra, se encuentra paralelo al eje del equipo. En un primer barrido de izquierda a derecha, se marcó una línea en la cual el equipo comienza a detectar acero. Un segundo barrido de derecha a izquierda, detecta al igual que el anterior acero y se marca el punto

donde comienza a detectarlo. Dejando un rango entre ambas líneas. (Ver figura 3.27 y 3.29)

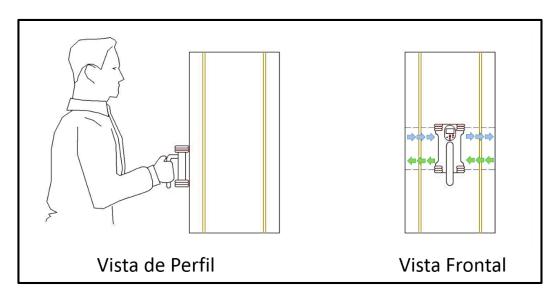


Figura 3.27 Barrido utilizado para detectar acero con el Ferroscan

3. Por último se marca el punto medio del rango obtenido entre ambas rectas, lo que se consideró como el eje por el cual se encuentra la barra de acero. (Ver figura 3.28)

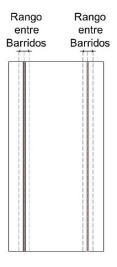


Figura 3.28 Rango de ubicación de la Barra

Figura 3.29 Ensayo Electromagnético (Ferroscan)

3.10.4. Ensayo de Velocidad de Pulso Ultrasónico

El ensayo de velocidad de Pulso Ultrasonido se realizó con un equipo marca "NDT JAMES INSTRUMENT INC. NON DESTRUCTIVE TESTING SYSTEM. V-meter MK-II". (Figura 3.28), siguiendo el procedimiento descrito a continuación:

Figura 3.30 Equipo Ultrasonido

1. Se analizaron, cuáles serían los puntos más representativos del elemento sobre los cuales tendría mayor o menor efecto el acero presente en el armado.

2. Se enmarcaron por medio de círculos, los puntos previamente establecidos, sobre los cuales se colocarían los transductores, para esto, se estableció un orden alfanumérico, correspondiente a la ubicación que tendría cada uno de los mismos en las caras de la probeta. Dicho orden consistía en un par (letra-numero), donde la letra recorre la cara del elemento de manera horizontal de izquierda a derecha, mientras que el número lo recorre aumentando de arriba abajo (Figura 3.31).

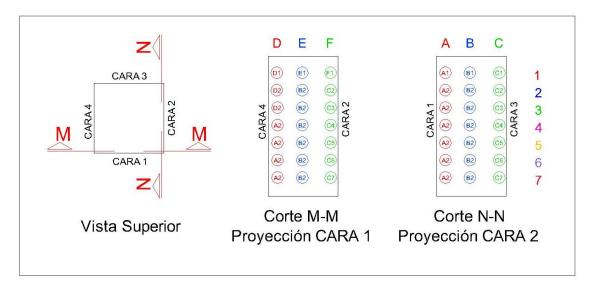


Figura 3.31 Sistema de referencia de ubicación de los transductores

- 3. Se conectaban los transductores a los cables de transmisión y estos al equipo.
- Se encendió el equipo conectándolo a una fuente de poder que sustituía las pilas, ya que las mismas presentaban fallas que no permitían el funcionamiento del mismo.
- 5. Luego se probaba el equipo por medio de la barra calibradora, donde se constataba el buen funcionamiento del mismo.
- 6. Antes de cada lectura, se aplica una pequeña capa de grasa de litio en cada uno de los puntos donde se colocarían los transductores, garantizando un buen acoplamiento entre el transductor y el elemento, y disminuyendo el efecto que pueda tener sobre el ensayo la presencia de alguna irregularidad, poro o hueco en la superficie. Lo que permite que la onda se propague con mayor facilidad por el concreto.

- 7. Se colocaba en cero la pantalla antes de cada medición. Para ello, se unían ambos transductores y luego se separaban rápidamente estirando los brazos y apuntando el transductor al suelo, evitando que se produjeran lecturas antes de tener contacto con el elemento.
- 8. Se realizó la medición siguiendo un orden entre las técnicas de medición, primero se trabajó ensayos directos, luego semidirectos y por último indirectos. (Ver figura 3.32)
- 9. En el caso del ensayo directo se colocaban los transductores, alineados entre sí a simple vista, y se movían suavemente hasta registrar la menor medida de tiempo en el equipo.
- 10. Se tomaba nota del valor repetido de manera consecutiva por lo menos tres veces en la pantalla del equipo.
- 11. Se realizaron tres lecturas por cada uno de los puntos, buscando disminuir el error de operación del equipo.
- 12. Se tomaba nota por medio de una planilla previamente elaborada de cada uno de los tiempos obtenidos por medición en cada punto.

La velocidad de pulso ultrasonido medida utilizando los métodos directos y semidirectos, se obtuvo aplicando la ecuación descrita en la Norma COVENIN 1681-80 "Método de Ensayo para Determinar la Velocidad de Propagación de Ondas en el Concreto":

$$V = \frac{l}{t}$$
 Ecuación 3.22

Donde:

V= Velocidad de la propagación de la onda [km/seg].

L= Distancia que separa los transductores, medida in situ [mm].

T= tiempo de paso de la onda $[\mu s]$.

Por su parte, la velocidad de pulso ultrasonido medida utilizando el método indirecto, se obtuvo por medio de un ajuste de mínimos cuadrados. Obteniendo la pendiente de la recta de mejor ajuste entre los puntos.

Figura 3.32 Ensayo de Velocidad de Pulso Ultrasónico

3.11. Procesamiento y Análisis de los Resultados

Los datos suministrados en campo, por medio de cada uno de los ensayos realizados, permiten obtener información del estado en que se encuentra cada uno de los elementos en estudio, así como dar respuesta a los objetivos planteados en esta investigación.

3.11.1. Procesamiento de los Datos

En base a los conocimientos adquiridos durante esta investigación y la experiencia de nuestros tutores, se procedió a agrupar, graficar y tabular los datos obtenidos en cada uno de los ensayos realizados en campo de la siguiente manera:

Asentamiento de la mezcla

En la tabla 4.15 se expresan los niveles de asentamiento, obtenidos en cada una de las mezclas siguiendo el procedimiento descrito en la sección 3.9.3.

Peso Unitario de Probetas

El peso unitario del concreto endurecido de cada una de las mezclas se muestra en la tabla 4.16, en la cual se presenta el promedio de cada agrupo de tres cilindros clasificados por edad y día de vaciado.

Peso Unitario de Elementos

El peso unitario de cada uno de los elementos prismáticos elaborados para el ensayo ultrasonido se expresa en la tabla 4.18, donde se visualiza la diferencia en peso que existe entre las diferentes configuraciones de armado.

Ensayo a Compresión

La resistencia a compresión de cada una de las muestras obtenidas por día de vaciado y edad a la que se ensayó (una muestra representa tres cilindros) se encuentran expresadas en la tabla 4.17, la cual se muestra la desviación estándar y el porcentaje de error presente entre las diferentes muestras correspondientes a una misma edad de ensayo.

Ensayo de Velocidad de Pulso Ultrasónico

En el apartado 4.6, se observan los valores obtenidos de las agrupaciones hechas, en función de la posición de los transductores respecto al armado del elemento.

• Caso 1: Posición del transductor emisor y receptor en la cual se encuentra acero transversal perpendicular y paralelo a su línea de propagación de onda. (Ver figura 3.33)

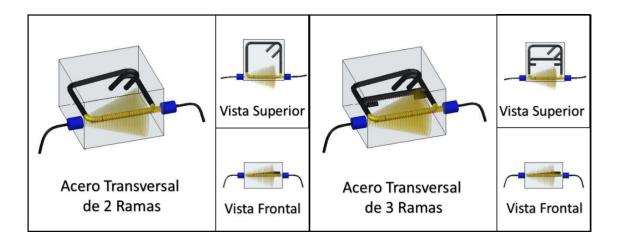


Figura 3.33 Caso 1: Acero Transversal Paralelo a la línea de Propagación del Pulso de Onda (Método Directo)

• Caso 2: Posición del transductor emisor y receptor en los elementos 1 y 2 definidos en la sección 3.3, en la cual se encuentra acero transversal perpendicular a su línea de propagación de onda, y la distancia a la que se encuentra una barra paralela a la dirección de propagación es constante. En el caso de los elementos 3 y 4 definidos en la sección ya mencionada, la línea de propagación de la onda encuentra acero transversal en forma perpendicular y paralelo a la dirección de la misma, sin embargo viaja por el centro del elemento y no por las esquinas como se muestra en el caso 1 (Ver figura 3.34)

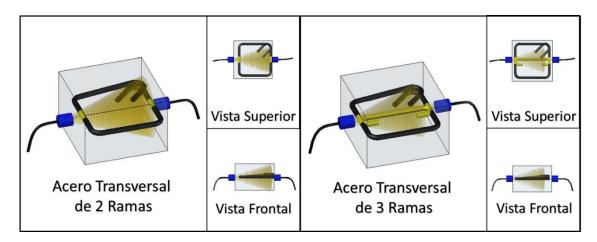


Figura 3.34 Caso 2: Acero Transversal Perpendicular a la línea de Propagación del Pulso de Onda (Método Directo)

• Caso 3: Posición del transductor emisor y receptor en la cual se encuentra acero longitudinal perpendicular a su línea de propagación de onda. Y la distancia a la cual se encuentra una barra paralela varía según el armado del elemento (Ver figura 3.35)

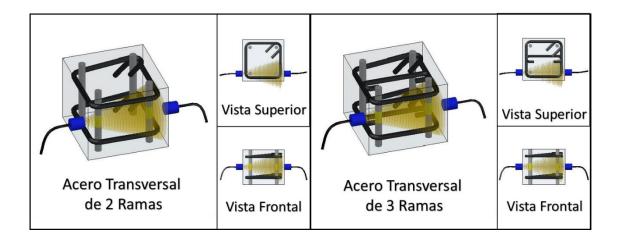


Figura 3.35 Caso 3: Acero Longitudinal Perpendicular a la línea de Propagación del Pulso de Onda (Método Directo)

 Caso 4: Posición del transductor emisor y receptor en la cual no se encuentra acero en su línea de propagación de onda, sino a una distancia que varía según la configuración de armado del elemento (Ver figura 3.36)

Figura 3.36 Caso 4: Acero Transversal y Longitudinal cercano a la línea de Propagación del Pulso de Onda (Método Directo)

• Caso 5: Posición del transductor emisor y receptor en la cual encuentra acero transversal y longitudinal perpendicular a la línea de propagación de la onda (Ver figura 3.37)

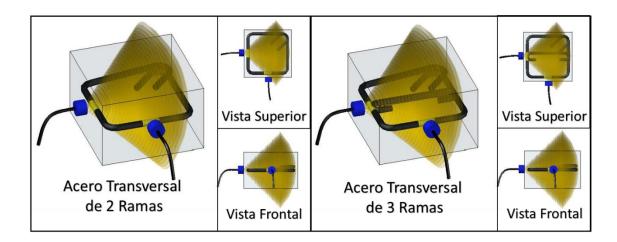


Figura 3.37 Caso 5: Acero Transversal y Longitudinal Perpendicular a la línea de Propagación del Pulso de Onda (Método Semi-directo)

• Caso 6: Posición del transductor emisor y receptor en la cual encuentra acero longitudinal perpendicular a la línea de propagación de la onda (Ver figura 3.38)

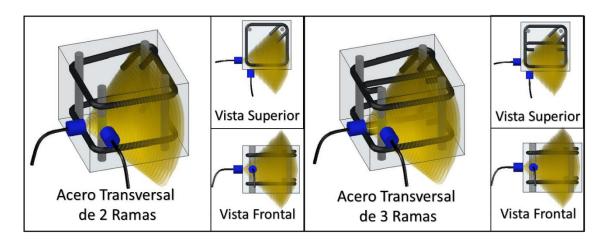


Figura 3.38 Caso 6: Acero Longitudinal Perpendicular a la línea de Propagación del Pulso de Onda (Método Semi-directo)

 Caso 7: Posición del transductor emisor y receptor en la cual no se encuentra acero en su línea de propagación de onda, sino a una distancia que varía según la configuración de armado del elemento (Ver figura 3.39)

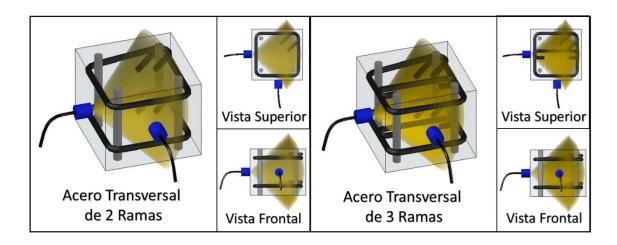


Figura 3.39 Caso 7: Acero Longitudinal y Transversal cercano a la línea de Propagación del Pulso de Onda (Método Semi-directo)

 Caso 8: Posición del emisor fija en el punto A1 o C1, según corresponda con la columna que se esté ensayando A o C (ver figura), y posición del receptor varia de manera descendente recorriendo cada columna que se esté ensayando (A2, A3, A4....An). El conjunto de puntos se ubican sobre las barras de refuerzo longitudinales (Ver figura 3.40)

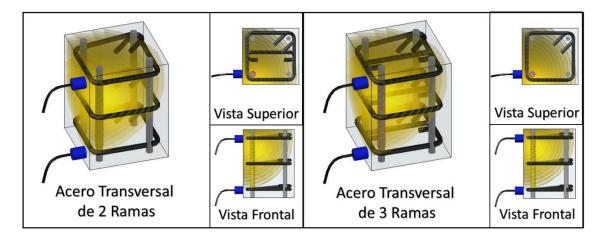


Figura 3.40 Caso 8: Puntos que coinciden con la Barra de Acero (Método Indirecto)

• Caso 9: Posición del emisor fija en el punto B1, y posición del receptor varia de manera descendente recorriendo cada columna que se esté ensayando (B2, B3, B4.....Bn). El eje

por el cual se realiza el recorrido corresponde al punto medio de la cara de la probeta (Ver figura 3.41)

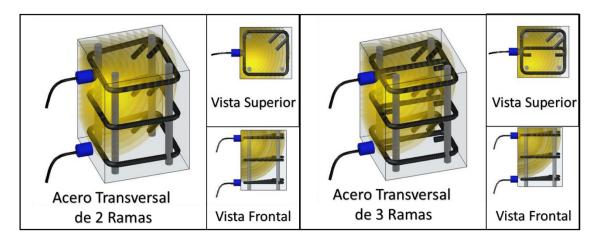


Figura 3.41 Caso 9: Puntos por el centro de la Probeta (Método Indirecto)

En las figuras 3.42 al 3.44, encontramos de manera resumida, la ubicación de cada uno de los transductores en cada uno de los métodos utilizados, información que servirá de guía para el análisis de cada uno de los gráficos.

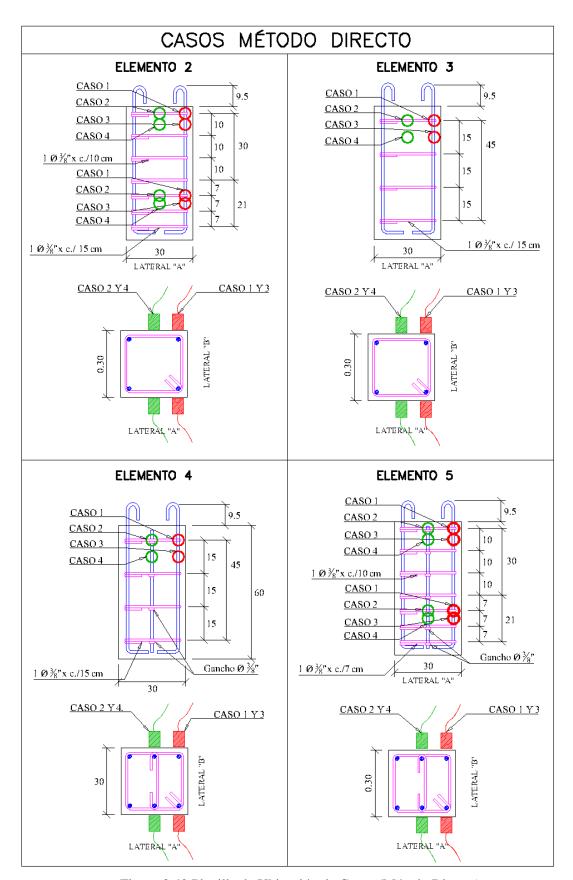


Figura 3.42 Planilla de Ubicación de Casos (Método Directo)

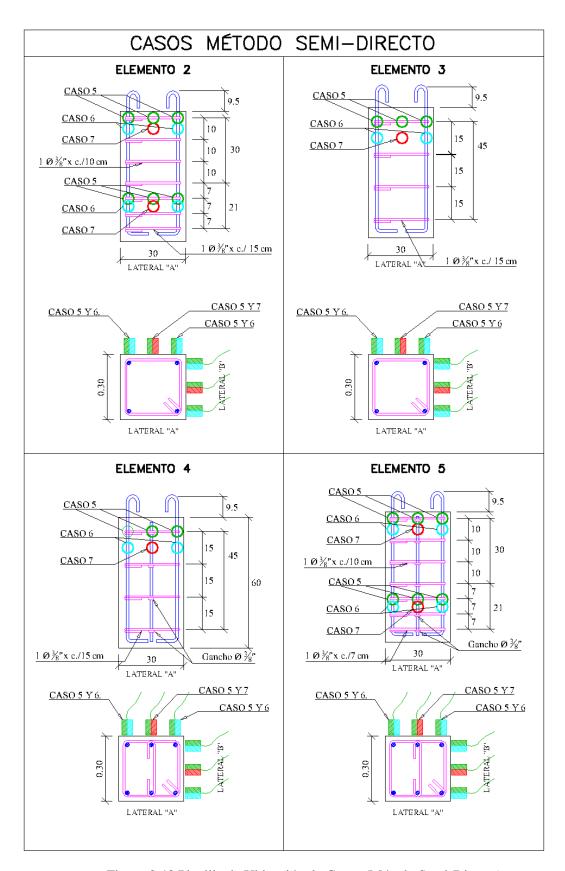


Figura 3.43 Planilla de Ubicación de Casos (Método Semi-Directo)

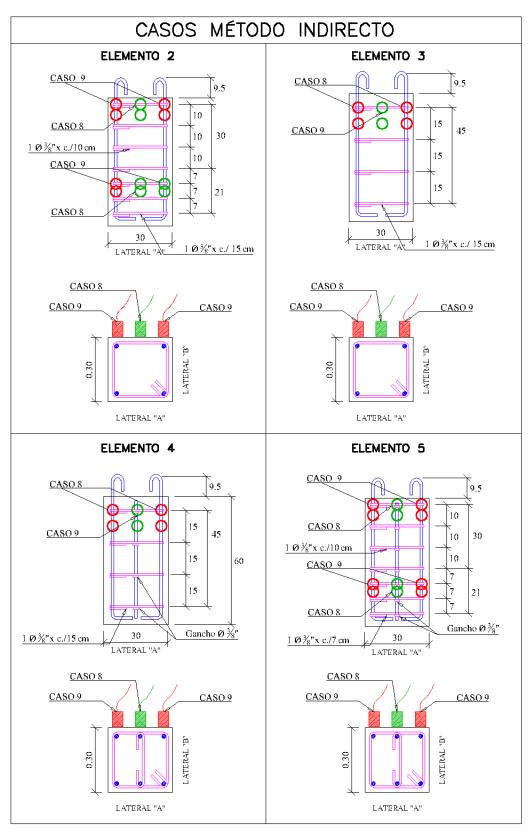


Figura 3.44 Planilla de Ubicación de Casos (Método Indirecto)

3.11.2. Resultados y sus Análisis

Los resultados obtenidos en cada uno de los ensayos aplicados en esta investigación, fueron contrastados con parámetros normativos e investigaciones anteriormente realizadas, según corresponda, lo que permitió mostrar por medio de gráficos, tablas y esquemas el fenómeno que se presentaba y las consecuencias que se producían en el ensayo.

Es importante mencionar que las agrupaciones de datos seleccionados son representadas en este trabajo por el valor promedio de ese conjunto de datos agrupados entendido según las indicaciones del apartado 2.12.1. Por otro lado la medida de dispersión utilizada en las tablas de este trabajo están referidas principalmente a dos formas; la primera se calculó a partir de la desviación estándar del conjunto de datos según la ecuación 2.16 y por otro lado se calculó también un coeficiente de variación según la ecuación 2.20. Este coeficiente de variación es expresado en las tablas como "Error Porcentual".

CAPÍTULO IV

RESULTADOS

En este Capítulo se muestran mediante tablas y gráficos los valores obtenidos de los procedimientos descritos en el Capítulo III.

4.1. Caracterización del Agregado Grueso.

4.1.1. Granulometría

Tabla 4.1 Granulometría del Agregado Grueso

Granulometría Agregado Grueso Combinado							
Abertura Cedazo Peso Retenido % Retenido % Pasante							
[mm]	[pulgadas]	[g]	0,00 3,40 26,72				
0,074	1 1/2"	0	0,00	100,0			
0,149	1"	510	3,40	96,6			
0,298	3/4"	4008	26,72	69,9			
0,595	1/2"	4134	27,56	42,3			
1,19	3/8"	3436	22,91	19,4			
2,38	1/4"	2125	14,17	5,2			
-	FONDO	787	5,25	0,0			
	TOTAL	15000	100,00				

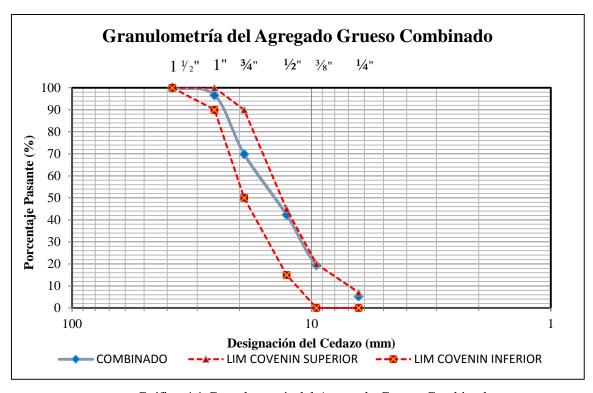


Gráfico 4.1 Granulometría del Agregado Grueso Combinado

4.1.2. Ensayo de Desgaste Los Ángeles

Tabla 4.2 Porcentaje de Desgaste Los Ángeles de la Piedra Picada.

Desgaste Los Ángeles			
Peso Inicial [g]	5000		
Peso Final [g]	3725		
Desgaste [%]	25,5		

4.1.3. Ensayo de Densidad y Adsorción

Tabla 4.3 Ensayo de Densidad y Adsorción de la Piedra Picada

	Densidad Y Absorción De La Piedra Picada						
d	Densidad del Agua	[g/ml]	1,0				
M1	Masa en el aire de la Muestra de Ensayo Secada al Horno	[g]	4943,8				
M2	Masa en el aire de la Muestra de Ensayo Saturada y de Superfiie Seca	[g]	5001,9				
М3	Masa en el agua de la Muestra de Ensayo Saturada	[g]	3143,9				
ρа	Densidad Aparente de la Muestra	[g/ml]	2,66				
A	Absorción	[%]	1,18				

4.1.4. Ensayo de Contenido de Humedad

Tabla 4.4 Ensayo de Contenido de Humedad de la Piedra Picada

Contenido De Humedad De La Piedra Picada					
Wo	Peso de la Muestra Original	[g]	4000,7		
Ws	Peso de la Muestra Seca	[g]	3996		
Н	Contenido de Humedad de la Muestra	[%]	0,12		

Tabla 4.5 Ensayo de Contenido de Humedad de la Arena

Contenido De Humedad De La Arena						
Wo	Peso de la Muestra Original	[g]	500			
Ws	Peso de la Muestra Seca	[g]	496,5			
Н	Contenido de Humedad de la Muestra	[%]	0,70			

4.2. Diseño de Mezcla

4.2.1. Relación Beta (β)

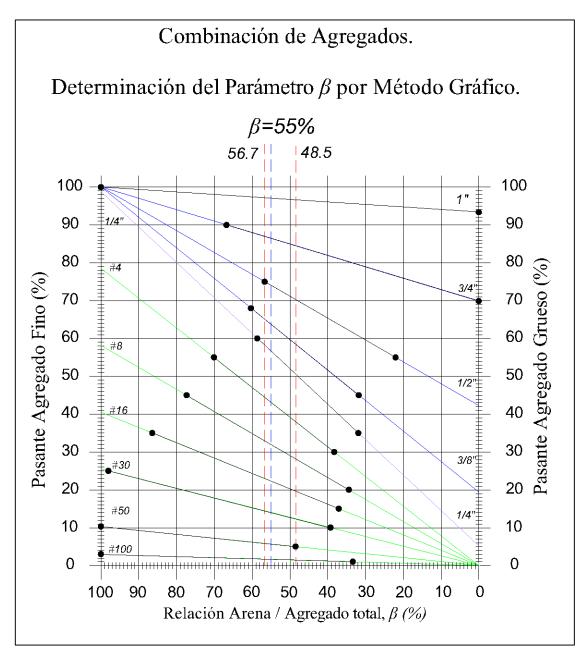


Gráfico 4.2 Relación Beta

4.2.2. Datos de Entrada para el Diseño de Mezcla

Tabla 4.6 Datos de Entrada utilizados para el Diseño de Mezcla

	Datos De Entrada							
#	Parámetro	Unidad	Magnitud Descripción					
1	Fc	[Kgf/cm²]	Resistencia a Compresión Especificada en el Pro (también conocida como Resistencia de Cálcu					
2	Т	[cm]	10	Trabajabilidad: Asentamiento en el Cono de Abrams				
3	σ	[Kgf/cm²]	No conocida Ver "Tabla 3,8"	Desviación Estándar				
4	Р	[mm]	25,4	Tamaño Máximo del Agregado (Agregado Grueso o Piedra)				
5	β	[%]	55	Relación del Agregado Fino con respecto al Agregado Total en Peso				
6	γΑ	[Adim.]	2,626	Peso Específico del Agregado Fino o Arena				
7	γG	[Adim.]	2,66	Peso Específico del Agregado Grueso				
8	wA	[%]	0,7	Porcentaje de Humedad de la Arena				
9	wG	[%]	0,12	Porcentaje de Humedad del Grueso				
10	AbA	[%]	1,83	Porcentaje de Absorción de la Arena				
11	AbG	[%]	1,18	Porcentaje de Absorción del Grueso				
12	αMÁX	[Adim.]	0,75	Ambiente expuesto: Atmósfera Común				

4.2.3. Resistencia Promedio Requerida

Tabla 4.7 Resistencia Promedio Requerida en el Concreto

Resistencia Promedio Requerida: Fcr = R				
Parámetro Unidad Magnitud Descripción				
Fcr	[Kgf/cm ²]	270	Resistencia Promedio Requerida (también conocida como resistencia del Diseño de Mezcla. Tabla 3.8)	

4.2.4. Relación agua / cemento (α)

Tabla 4.8 Relación Agua-Cemento

Relación Agua-Cemento en Peso: α (Ley de Abrams)					
Parámetro	Unidad	Magnitud	Descripción		
α	[Adim.]	0,558	Relación Agua-Cemento en Peso		
		Correct	ciones de α por Agregado		
		Factor	por Tamaño Máximo:K _R		
K _R	[Adim.]	1,000	Factor de influencia del Tamaño Máximo del Agregado		
	Factor por Tipo de Agregado:KA				
KA	[Adim.]	1,000	1,000 Factor de influencia por el Tipo de Agregado		
		Relación A	Agua-Cemento Corregida: α _C		
ας	[Adim.]	0,558			
		Verific	ar α _{MÁX} por Durabilidad		
		Límites	de α por Durabilidad:α _{ΜÁΧ}		
αMáx.	[Adim.]	0,750			
		Relación A	Agua-Cemento de Diseño: α _D		
αр	[Adim.]	0,558			

Tabla 4.9 Contenido de Cemento (Relación Triangular)

Co	Contenido De Cemento Por M³: C (Relación Triangular)					
Parámetro	Unidad	Magnitud	Descripción			
С	[Kg/m³]	361,662	Dosis o Contenido de Cemento			
		Correcci	ones de C <i>por Agregado</i>			
		Factor 1	por Tamaño Máximo:C _I			
C ₁	[Adim.]	1	Factor de influencia del Tamaño Máximo del Agregado			
	Factor por Tipo de Agregado:C2					
C_2	[Adim.]	1	1 Factor de influencia por el Tipo de Agregado			
		Relación A	gua-Cemento Corregida: a_C			
Cc	[Kg/m³]	361,662	361,662			
		Verifica	r $C_{ ext{M\'N}.}$ por Durabilidad			
		Límites d	e C por Durabilidad: C _{Mín.}			
C _{Mín.}	[Kg/m³]	270,000				
	Contenido de Cemento de Diseño por m ³ : C _D					
C_D	[Kg/m³]	361,662	Factor de influencia por el Tipo de Agregado			

4.2.5. Volumen de aire, agua y agregados

Tabla 4.10 Volumen de Aire, Agua y Agregados presentes en la Mezcla

Volumen de Aire Atrapado: V_a					
Parámetro	etro Unidad Magnitud				
Va	[litros/m³]	14,239			
Volu	men Absoluto de Cer	nento: VC			
VC	[litros/m³]	108,499			
Volu	men de Absoluto de A	Agua: VW			
VW	[litros/m³]	201,807			
Peso Específi	co de los Agregados (Combinados : γ(A+G)			
γ(A+G)	$\gamma(A+G)$ [litros/m³] 2,641				
Cantidad o	de los Agregados Com	nbinados : (A+G)			
(A+G)	[Kg/m³]	1783,876			
Cantio	lad de los Agregados	Finos: (A)			
A =Asss	A = Asss [Kg/m³] 981,132				
Cantida	Cantidad de los Agregados Gruesos : (G)				
G = Gsss	$[Kg/m^3]$	802,744			

4.2.6. Componentes de la Mezcla por m³

Tabla 4.11 Componentes de la Mezcla corregidos por Humedad

Componentes De La Mezcla Por M ³ Corregidos Por Humedad					
Parámetro	Unidad	Magnitud			
Cemento	$[Kg/m^3]$	361,662			
Agua	[Kg/m³]	221,105			
Agregado Fino	$[Kg/m^3]$	970,244			
Agregado Grueso	[Kg/m³]	794,334			

4.3. Dosificación de Materiales para la Mezcla.

4.3.1. Volumen de Elementos a vaciar por Mezcla

La dosificación de materiales para la mezcla, se realizó en función del volumen de concreto que se necesitaba para el vaciado.

Tabla 4.12 Volumen de Elementos a Vaciar por mezcla Preparada

Volumen De Elementos A Vaciar Por Mezcla							
Elemento Vaciado Unidad Magnitud Cantidad Volumen							
Prisma de 30 cm * 30 cm *60 cm	[m³]	0,054	1	0,0540			
Cilindro de 15 cm de diámetro* 30 cm de Altura	[m³]	0,005	9	0,0477			

4.3.2. Volumen de Concreto Por Mezcla

Tabla 4.13 Volumen de Concreto por Mezcla

Volumen De Concreto Por Mezcla						
Volumen de Concreto Necesario	Unidad	Cantidad				
	[m³]	0,100				
Desperdicio (10%)	[%]	0,010				
Volumen Mezclado	[m³]	0,110				

4.3.3. Dosificación de la Materiales para la mezcla

Tabla 4.14 Componentes de la Mezcla por Vaciado

Componentes De La Mezcla Por Vaciado							
Parámetro	Unidad	Magnitud					
Cemento	[Kg]	40,506					
Agua	[Kg]	24,764					
Agregado Fino	[Kg]	108,667					
Agregado Grueso	[Kg]	88,965					

4.4. Asentamientos por Cono de Abrams

Tabla 4.15 Asentamientos por Cono de Abrams

Asentamientos Por Cono De Abrams					
Elemento Vaciado	Asentamiento				
Diemento vaerado	[cm]				
Elemento 1 (Sin Armado)	10,5				
Elemento 2 (2RS7-10)	11				
Elemento 3 (2RS15)	9,5				
Elemento 4 (3RS7-10)	10				
Elemento 5 (3RS15)	10,5				

4.5. Caracterización del Concreto Endurecido

4.5.1. Peso Unitario y Ensayo a Compresión de Probetas Cilindros

Tabla 4.16 Resistencia a Compresión y Pesos Unitarios Promedio por Elemento Vaciado

Resistencia A Compresión Y Pesos Unitario Promedio								
Edad de Ensayo	Mezcla	Peso	Área	Volumen	Peso Unitario	Carga de Falla	Resistencia a Compresión	
		[Kg]	[cm ²]	[m³]	[Kg/m³]	[Tn]	[Kg/cm ²]	
14 días	Elemento 1 (Sin Armado)	13,04	185,14	0,0057	2308	45,7	247	
	Elemento 2 (2RS7-10)	12,41	177,91	0,0054	2302	38,7	218	
	Elemento 3 (2RS15)	12,32	176,04	0,0053	2328	33,0	187	
21 dias	Elemento 4 (3RS15)	12,15	176,11	0,0053	2303	41,3	234	
	Elemento 4 (3RS7-10)	12,24	176,34	0,0053	2307	43,7	247	
28 días	Elemento 1 (Sin Armado)	12,87	180,75	0,0055	2344	48,5	268	
	Elemento 2 (2RS7-10)	12,41	175,36	0,0053	2361	46,8	267	
	Elemento 3 (2RS15)	12,09	176,04	0,0053	2290	43,5	247	
	Elemento 4 (3RS15)	12,26	176,45	0,0053	2314	42,7	242	
	Elemento 5 (3RS7-10)	12,26	177,77	0,0053	2302	41,7	235	
	Elemento 1 (Sin Armado)	13,18	185,42	0,0056	2351	56,9	307	
56 días	Elemento 2 (2RS7-10)	12,36	175,88	0,0052	2357	50,5	287	
	Elemento 3 (2RS15)	12,17	177,71	0,0053	2281	49,5	279	
	Elemento 4 (3RS15)	12,33	178,52	0,0054	2298	49,6	278	
	Elemento 5 (3RS7-10)	12,31	177,67	0,0053	2305	50,6	285	

Nota: Todos estos datos, fueron obtenidos de las mediciones hechas en campo (Ver Anexos 6 y 7)

4.5.1. Resistencia Promedio

Tabla 4.17 Resistencia a Compresión

Resis	stencia A Compresión
Edad	Resistencia a Compresión [Kg/cm²]
14 Días	217
21 Días	240
28 Días	252
56 Días	287

4.5.2. Peso Unitario de Elementos Prismáticos

Tabla 4.18 Peso Unitario de Elementos diseñados para el Ensaño de VPU

			I	Peso Un	itario d	e Eleme	ntos Pri	smáticos	5			
Elemento	Alt. Cara 1	Alt. Cara 2	Alt. Cara 3	Alt. Cara 4	Alt. Prom.	Ancho Cara 1	Ancho Cara 2	Ancho Cara 3	Ancho Cara 4	Peso	Volumen	Peso Unitario
	[cm]	[cm]	[cm]	[cm]	[cm]	[cm]	[cm]	[cm]	[cm]	[Kg]	$[m^3]$.	$[Kg/m^3].$
1 (Patrón)	60	59,9	59,8	59,9	59,9	30,15	29,79	30,13	29,96	124,0	0,0539	2299
2 (S7;10 2R)	59,8	59,7	59,8	59,9	59,8	30,19	29,72	30,11	29,72	127,4	0,0536	2377
3 (S15 2R)	60	60,1	59,7	59,9	59,9	30,09	29,72	30,20	29,76	126,4	0,0537	2353
4 (S15 3R)	59,6	59,8	59,9	60,2	59,9	30,21	29,76	30,10	29,76	127,0	0,0537	2363
5 (S7;10 3R)	59,7	59,8	59,5	59,8	59,7	30,01	30,26	29,73	30,31	131,1	0,0540	2428

Nota: Todos estos datos, fueron obtenidos de las mediciones hechas en campo (Ver Anexo 8)

4.6. Ensayo de Velocidad de Pulso Ultrasónico

4.6.1. Influencia de la Edad

Tabla 4.19 Influencia de la Edad en la VPU (Elemento 2A)

	In	fluenci	ia de la	Edad	en la V	elocid:	ad De	Pulso	Ultrase	onido				
	Elemento #2a: Armado de 2 Ramas con Separación 10 Cm													
Edad			Mé	todo Dir	recto		M	étodo S	emi-Dire	ecto	Mét	odo Indii	recto	
Edad		Patrón	Caso 1	Caso 2	Caso 3	Caso 4	Patrón	caso 5	caso 6	caso 7	Patrón	caso 8	caso 9	
Vel. Prom. 28 días	[m/s]	4064	4197	4099	4152	4100	4133	4236	4218	4182	3072	3162	3164	
Vel. Prom. 49 días	[m/s]	4141	4416	4235	4294	4196	4235	4371	4334	4250	3151	3309	3163	
Diferencia entre Edades	[m/s]	78	219	136	142	96	102	135	116	68	78	147	-2	
Diferencia entre Edades	[%]	1,91%	5,21%	3,31%	3,43%	2,35%	2,47%	3,19%	2,76%	1,63%	2,55%	4,66%	-0,05%	

Tabla 4.20 Influencia de la Edad en la VPU (Elemento 2B)

	Inf	luenc	ia de l	a Edad	l en la V	Velocida	nd de l	Pulso 1	Ultraso	nido					
	Elemento #2b: Armado de 2 Ramas con Separación 7 Cm														
Edad			M	létodo E	irecto		M	étodo S	emi-Dir	ecto	Me	étodo Inc	lirecto		
Edad		Patrón	Caso 1	Caso 2	Caso 3	Caso 4	Patrón	caso 5	caso 6	caso 7	Patrón	caso 8	caso 9		
Vel. Prom. 28 días	[m/s]	4064	4409	4177	4340	4121	4133	4288	4232	4179	3072	3088	3102		
Vel. Prom. 49 días	[m/s]	4141	4465	4219	4390	4176	4235	4329	4352	4269	3151	3129	3200		
Diferencia entre Edades	[m/s]	78	56	42	51	55	102	41	120	90	78	41	98		
Diferencia entre Edades	[%]	1,91%	1,27%	0,99%	1,17%	1,34%	2,47%	0,95%	2,83%	2,16%	2,55%	1,32%	3,17%		

Tabla 4.21 Influencia de la Edad en la VPU (Elemento 3)

	Inf	luenc	ia de l	la Edad	l en la V	elocida	ıd de	Pulso	Ultras	onido				
	Elemento #3: Armado de 2 Ramas con Separación 15 Cm													
Edad			M	Iétodo D	irecto		Me	étodo S	emi-Di	recto	Mét	odo Indi	recto	
Edad		Patrón	Caso 1	Caso 2	Caso 3	Caso 4	Patrón	caso 5	caso 6	caso 7	Patrón	caso 8	caso 9	
Vel. Prom. 28 días	[m/s]	4064	4261	4099	4131	4080	4133	4281	4193	4235	3072	3075	3140	
Vel. Prom. 49 días	[m/s]	4141	4380	4212	4211	4187	4235	4320	4334	4283	3151	3217	3144	
Diferencia entre Edades	[m/s]	78	119	114	80	107	102	39	141	48	78	142	4	
Diferencia entre Edades	[%]	1,91%	2,80%	2,77%	1,95%	2,63%	2,47%	0,91%	3,35%	1,14%	2,55%	4,62%	0,12%	

Nota: Todos estos datos, fueron obtenidos de las mediciones hechas en campo (Ver Anexos 9 al 11)

Tabla 4.22 Influencia de la Edad en la VPU (Elemento 4)

	Influe	ncia d	e la Ec	lad en	la Velo	cidad	de Pul	so Ult	rason	ido					
	Elemento #4: Armado de 3 Ramas con Separación 15 Cm														
Edad			Mé	todo Di	recto		Méto	odo Sei	mi-Dire	ecto	Mé	étodo Ind	irecto		
Edad		Patrón	Caso 1	Caso 2	Caso 3	Caso 4	Patrón	caso 5	caso 6	caso 7	Patrón	caso 8	caso 9		
Vel. Prom. 28 días	[m/s]	4064	4195	4180	4094	4074	4133	4320	4264	4211	3072	3075	3064		
Vel. Prom. 49 días	[m/s]	4141	4427	4391	4177	4167	4235	4356	4363	4261	3151	3180	3244		
Diferencia entre Edades	[m/s]	78	232	211	83	93	102	36	99	50	78	106	180		
Diferencia entre Edades	[%]	1,91%	5,53%	5,04%	2,04%	2,27%	2,47%	0,83%	2,32%	1,19%	2,55%	3,45%	5,86%		

Tabla 4.23 Influencia de la Edad en la VPU (Elemento 5A)

	Influe	ncia d	e la Ed	lad en	la Velo	cidad d	le Puls	o Ult	rasoni	ido			
	Eleme	ento #5	a: Arr	nado d	le 3 Rai	mas co	n Sepa	ració	n 10 (Cm			
Edad			Mé	todo Di	recto		Méto	odo Se	mi-Dir	ecto	Mét	odo Indi	irecto
Edad		Patrón	Caso 1	Caso 2	Caso 3	Caso 4	Patrón	caso 5	caso 6	caso 7	Patrón	caso 8	caso 9
Vel. Prom. 28 días	[m/s]	4064	4282	4226	4225	4149	4133	4200	4163	4135	3072	3086	3143
Vel. Prom. 49 días	[m/s]	4141	4404	4402	4263	4195	4235	4388	4379	4297	3151	3156	3173
Diferencia entre Edades	[m/s]	78	122	176	39	46	102	188	216	162	78	70	30
Diferencia entre Edades	[%]	1,91%	2,84%	4,17%	0,91%	1,10%	2,47%	4,48%	5,19%	3,92%	2,55%	2,28%	0,97%

Tabla 4.24 Influencia de la Edad en la VPU (Elemento 5B)

		Ir	ıfluencia	De La Ed	Influencia De La Edad En La Velocidad De Pulso Ultrasonido														
	Elemento #5b: Armado De 3 Ramas Con Separación 7 Cm																		
EDAD			M	létodo Di	recto		М	étodo Se	mi-Dire	cto	Mét	odo Indi	recto						
EDAD		Patrón	Caso 1	Caso 2	Caso 3	Caso 4	Patrón	caso 5	caso 6	caso 7	Patrón	caso 8	caso 9						
Vel. Prom. 28 días	[m/s]	4064	4407	4359	4357	4303	4133	4264	4263	4218	3072	3149	3148						
Vel. Prom. 49 días	[m/s]	4141	4464	4423	4409	4407	4235	4316	4331	4257	3151	3209	3243						
Diferencia entre Edades	[m/s]	78	57	64	53	104	102	52	68	39	78	59	95						
Diferencia entre Edades	[%]	1,91%	1,30%	1,48%	1,21%	2,42%	2,47%	1,22%	1,60%	0,92%	2,55%	1,89%	3,01%						

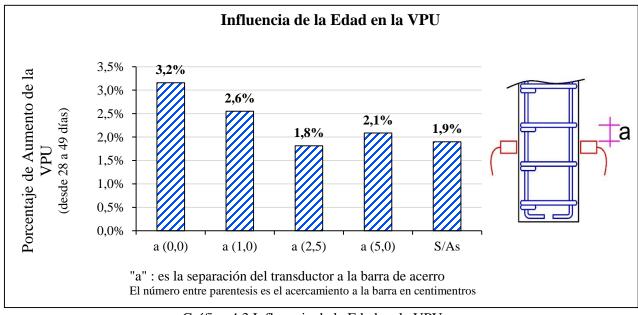


Gráfico 4.3 Influencia de la Edad en la VPU

4.6.2. Influencia del acero respecto a la posición de los transductores en los diferentes elementos armados.

Tabla 4.25 Influencia del Acero de Refuerzo en la VPU (Elemento 2B)

Infl	Influencia del Acero de Refuerzo en la Velocidad de Pulso Ultrasonido														
IIII	Elemento #2a: Armado de 2 Ramas con Separación 10 cm														
Método Directo Método Semi-Directo Método Indirecto															
Edad			Me	étodo Di	recto		M	étodo S	emi-Dire	ecto	Mét	odo Indi	recto		
Eddu		Patrón	Caso 1	Caso 2	Caso 3	Caso 4	Patrón	caso 5	caso 6	caso 7	Patrón	caso 8	caso 9		
Vel. Prom. 28 días	[m/s]	4064	4197	4099	4152	4100	4133	4236	4218	4182	3072	3162	3164		
Vel. Prom. 49 días	[m/s]	4141	4416	4235	4294	4196	4235	4371	4334	4250	3151	3309	3163		
Dif. Patrón y E2A (28 días)	[m/s]		134	35	88	36		102	85	49		90	92		
Dif. Patrón y E2A (28 días)	[%]		3,29%	0,87%	2,16%	0,89%		2,48%	2,05%	1,19%		2,92%	3,00%		
Dif. Patrón y E2A (49 días)	[m/s]		275	94	152	55		136	99	15	·	158	12		
Dif. Patrón y E2A (49 días)	[%]		6,63%	2,26%	3,68%	1,32%		3,20%	2,34%	0,36%		5,03%	0,38%		

Nota: Todos estos datos, fueron obtenidos de las mediciones hechas en campo (Ver Anexos 9 al 11)

Tabla 4.26 Influencia del Acero de Refuerzo en la VPU (Elemento 2A)

Influ	encia	del A	Acero d	le Refu	erzo en	la Velo	ocidad	de Pu	lso Ultı	rasonid	lo				
	Elemento #2b: Armado de 2 Ramas con Separación 7 cm														
Edad			M		M	étodo S	emi-Dire	ecto	Méi	todo Ind	irecto				
Edad		Patrón	Caso 1	Caso 2	Caso 3	Caso 4	Patrón	caso 5	caso 6	caso 7	Patrón	caso 8	caso 9		
Vel. Prom. 28 días	[m/s]	4064	4409	4177	4340	4121	4133	4288	4232	4179	3072	3088	3102		
Vel. Prom. 49 días	[m/s]	4141	4465	4219	4390	4176	4235	4329	4352	4269	3151	3129	3200		
Dif. Patrón y E2B (28 días)	[m/s]		346	114	276	57		155	99	46		16	30		
Dif. Patrón y E2B (28 días)	[%]		8,51%	2,80%	6,79%	1,40%		3,74%	2,39%	1,10%		0,51%	0,96%		
Dif. Patrón y E2B (49 días)	[m/s]		324	78	249	34		93	117	34		-22	49		
Dif. Patrón y E2B (49 días)	[%]		7,83%	1,87%	6,02%	0,83%		2,20%	2,75%	0,80%		-0,70%	1,57%		

Tabla 4.27 Influencia del Acero de Refuerzo en la VPU (Elemento 3)

Infl	uencia	a del .	Acero (de Refu	erzo er	ı la Vel	ocida	d de Pı	ılso Ult	rasonio	do			
	Elemento #3: Armado de 2 Ramas con Separación 15 cm													
Edad			M	étodo Di	recto		M	létodo S	emi-Dir	ecto	Mé	todo Ind	lirecto	
Edad		Patrón	Caso 1	Caso 2	Caso 3	Caso 4	Patrón	caso 5	caso 6	caso 7	Patrón	caso 8	caso 9	
Vel. Prom. 28 días	[m/s]	4064	4261	4099	4131	4080	4133	4281	4193	4235	3072	3075	3140	
Vel. Prom. 49 días	[m/s]	4141	4380	4212	4211	4187	4235	4320	4334	4283	3151	3217	3144	
Dif. Patrón y E3 (28 días)	[m/s]		197	35	67	16		148	60	101		3	68	
Dif. Patrón y E3 (28 días)	[%]		4,86%	0,86%	1,65%	0,39%		3,57%	1,45%	2,45%		0,09%	2,20%	
Dif. Patrón y E3 (49 días)	[m/s]		239	71	70	46		85	98	48		66	-7	
Dif. Patrón y E3 (49 días)	[%]		5,77%	1,71%	1,69%	1,10%		2,00%	2,32%	1,13%		2,10%	-0,22%	

Tabla 4.28 Influencia del Acero de Refuerzo en la VPU (Elemento 4)

Infl	uenci	a del .	Acero o	le Refu	erzo ei	ı la Ve	locidad	de Pul	so Ultı	rasoni	do			
	Elemento #4: Armado de 3 Ramas con Separación 15 Cm													
Ed. 4		Mé	todo Sen	ni-Direc	to	Méto	do Indii	recto						
Edad		Patrón	Caso 1	Caso 2	Caso 3	Caso 4	Patrón	caso 5	caso 6	caso 7	Patrón	caso 8	caso 9	
Vel. Prom. 28 días	[m/s]	4064	4195	4180	4094	4074	4133	4320	4264	4211	3072	3075	3064	
Vel. Prom. 49 días	[m/s]	4141	4427	4391	4177	4167	4235	4356	4363	4261	3151	3180	3244	
Dif. Patrón y E4 (28 días)	[m/s]		131	116	30	11		187	131	78		2	-8	
Dif. Patrón y E4 (28 días)	[%]		3,22%	2,86%	0,74%	0,26%		4,52%	3,17%	1,88%		0,08%	-0,26%	
Dif. Patrón y E4 (49 días)	[m/s]		285	249	36	26		121	128	26		30	93	
Dif. Patrón y E4 (49 días)	[%]		6,89%	6,02%	0,87%	0,62%		2,85%	3,02%	0,61%		0,95%	2,95%	

Nota: Todos estos datos, fueron obtenidos de las mediciones hechas en campo (Ver Anexos 9 al 11)

Tabla 4.29 Influencia del Acero de Refuerzo en la VPU (Elemento 5A)

Iı	Influencia del Acero de Refuerzo en la Velocidad de Pulso Ultrasonido												
	Elem	ento #	#5a: Aı	rmado (de 3 Ra	mas co	n Sep	aració	n 10 cm	1			
Edad			Mo	étodo Di	recto		M	étodo S	emi-Dire	ecto	Méto	do Indi	recto
Edad		Patrón	Caso 1	Caso 2	Caso 3	Caso 4	Patrón	caso 5	caso 6	caso 7	Patrón	caso 8	caso 9
Vel. Prom. 28 días	[m/s]	4064	4282	4226	4225	4149	4133	4200	4163	4135	3072	3086	3143
Vel. Prom. 49 días	[m/s]	4141	4404	4402	4263	4195	4235	4388	4379	4297	3151	3156	3173
Dif. Patrón y E5A (28 días)	[m/s]		219	162	161	85		66	30	2		13	71
Dif. Patrón y E5A (28 días)	[%]		5,38%	4,00%	3,96%	2,09%		1,61%	0,73%	0,05%		0,44%	2,31%
Dif. Patrón y E5A (49 días)	[m/s]		263	261	122	53		153	144	62		6	23
Dif. Patrón y E5A (49 días)	[%]		6,34%	6,30%	2,94%	1,29%		3,61%	3,40%	1,47%		0,18%	0,72%

Tabla 4.30 Influencia del Acero de Refuerzo en la VPU (Elemento 5B)

Influ	Influencia del Acero de Refuerzo en la Velocidad De Pulso Ultrasonido												
Elemento #5b: Armado de 3 Ramas con Separación 7 Cm													
Edad			Mé	todo Dire	cto		Método Semi-Directo				Método Indirecto		
Edad		Patrón	Caso 1	Caso 2	Caso 3	Caso 4	Patrón	caso 5	caso 6	caso 7	Patrón	caso 8	caso 9
Vel. Prom. 28 días	[m/s]	4064	4407	4359	4357	4303	4133	4264	4263	4218	3072	3149	3148
Vel. Prom. 49 días	[m/s]	4141	4464	4423	4409	4407	4235	4316	4331	4257	3151	3209	3243
Dif. Patrón y E5B (28 días)	[m/s]		343	295	293	240		131	129	84		77	76
Dif. Patrón y E5B (28 días)	[%]		8,45%	7,26%	7,21%	5,90%		3,17%	3,13%	2,04%		2,51%	2,47%
Dif. Patrón y E5B (49 días) [m/s] 323 282 268 266 81 96 21								58	92				
Dif. Patrón y E5B (49 días)	[%]		7,80%	6,80%	6,47%	6,43%		1,92%	2,26%	0,50%		1,85%	2,93%

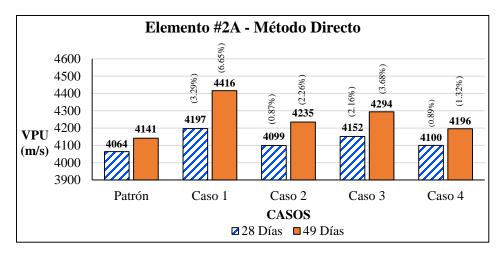


Gráfico 4.4 VPU Casos medidos por Método Directo en el E2A (tabla 4.24)

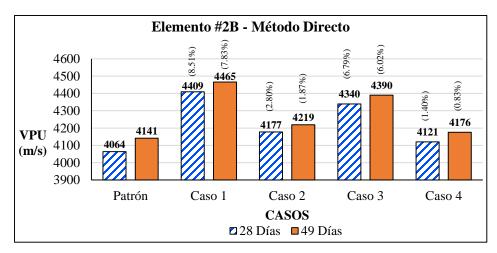


Gráfico 4.5 VPU Casos medidos por Método Directo en el E2B (tabla 4.25)

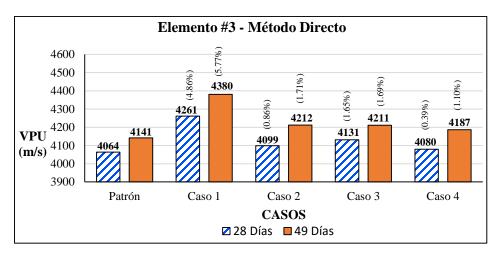


Gráfico 4.6 VPU Casos medidos por Método Directo en el E3 (tabla 4.26)

NOTA: El porcentaje expresado las gráficas, corresponde al incremento de la VPU respecto al Elementó Patrón (Sin armado)

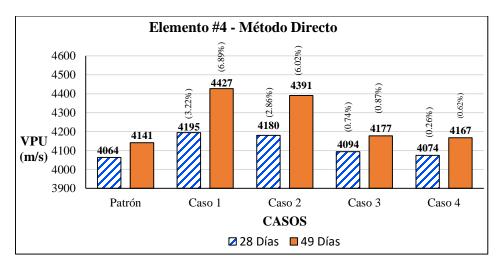


Gráfico 4.7 VPU Casos medidos por Método Directo en el E4 (Tabla 4.27)

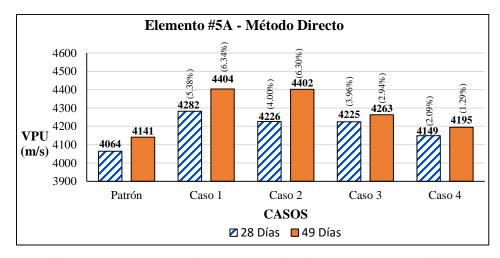


Gráfico 4.8 VPU Casos medidos por Método Directo en el E5A (Tabla 4.28)



Gráfico 4.9 VPU Casos medidos por Método Directo en el E5B (Tabla 4.29)

NOTA: El porcentaje expresado las gráficas, corresponde al incremento de la VPU respecto al Elementó Patrón (Sin armado)

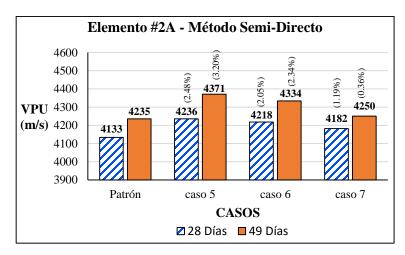


Gráfico 4.10 VPU Casos medidos por Método Semi-Directo en el E2A (tabla 4.24)

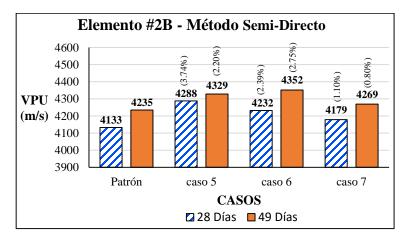


Gráfico 4.11 VPU Casos medidos por Método Semi-Directo en el E2B (tabla 4.25)

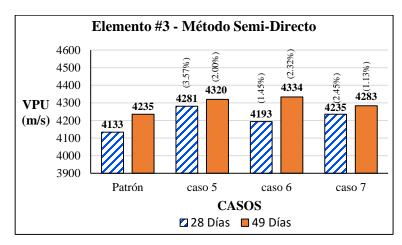


Gráfico 4.12 VPU Casos medidos por Método Semi-Directo en el E3 (tabla 4.26)

NOTA: El porcentaje expresado las gráficas, corresponde al incremento de la VPU respecto al Elementó Patrón (Sin armado)

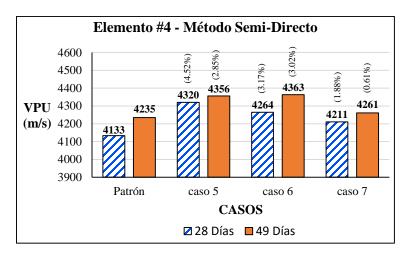


Gráfico 4.13 VPU Casos medidos por Método Semi-Directo en el E4 (tabla 4.27)

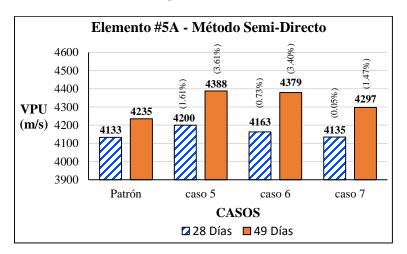


Gráfico 4.14 VPU Casos medidos por Método Semi-Directo en el E5A(tabla 4.28)

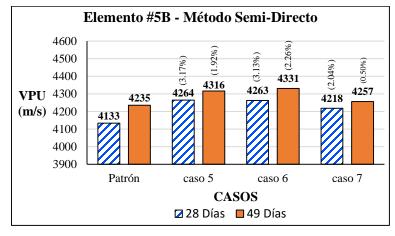
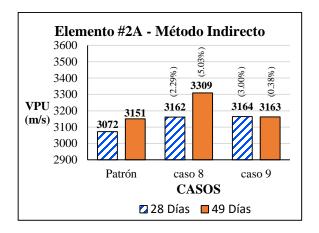



Gráfico 4.15 VPU Casos medidos por Método Semi-Directo en el E5B(tabla 4.29)

NOTA: El porcentaje expresado las gráficas, corresponde al incremento de la VPU respecto al Elementó Patrón (Sin armado)

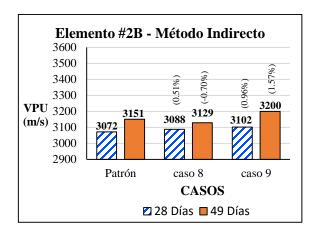
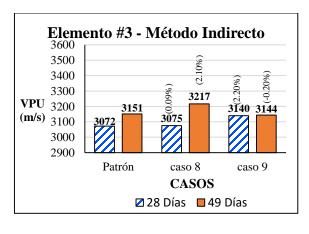



Gráfico 4.16 VPU Casos medidos por Método Indirecto en el E2A (tabla 4.24)

Gráfico 4.17 VPU Casos medidos por Método Indirecto en el E2B (tabla 4.25)

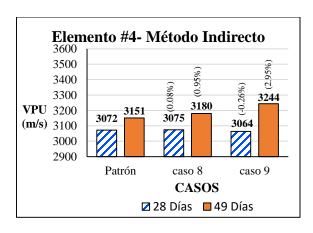
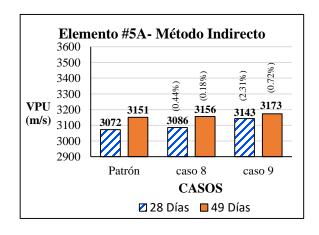



Gráfico 4.18 VPU Casos medidos por Método Indirecto en el E3 (tabla 4.26)

Gráfico 4.19 VPU Casos medidos por Método Indirecto en el E4 (tabla 4.27)

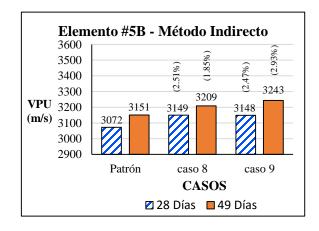


Gráfico 4.20 VPU Casos medidos por Método Indirecto en el E5A (tabla 4.28)

Gráfico 4.21 VPU Casos medidos por Método Indirecto en el E5B (tabla 4.29)

4.6.3. Variación de la Velocidad de Pulso Ultrasonido según la Separación del Acero de Refuerzo para una misma posición de los transductores

Tabla 4.31 Variación de la VPU según la Separación del Acero de Refuerzo (Caso 1)

Velocidades de Pulso Ultrasónico por el Método Directo									
Caso 1: Acero Transversal Paralelo a la Línea de Propagación se la Onda									
		28 Días			49 Días				
Elemento Evaluado	Veloc. Prom.	Desv Est.	Error Porc.	Veloc. Prom.	Desv Est.	Error Porc.			
	[m/s]	[m/s]	[%]	[m/s]	[m/s]	[%]			
Elemento 1	4064	10	0,25	4141	1	0,03			
Elemento 2a	4197	96	2,30	4416	52	1,18			
Elemento 2b	4409	81	1,83	4465	65	1,45			
Elemento 3	4261	216	5,08	4380	95	2,17			
Elemento 4	4195	223	5,32	4427	71	1,61			
Elemento 5a	4282	145	3,39	4404	89	2,02			
Elemento 5b	4407	86	1,96	4464	81	1,82			

Nota: Todos estos datos, fueron obtenidos de las mediciones hechas en campo (Ver Anexos 9 al 11)

Tabla 4.32 Variación de la VPU según la Separación del Acero de Refuerzo (Caso 2)

7	Velocidades de Pulso Ultrasónico por el Método Directo								
Caso 2: Acero Transversal Perpendicular a la Línea de Propagación de la Onda									
		28 Días			49 Días				
Elemento Evaluado	Veloc. Prom.	Desv Est.	Error Porc.	Veloc. Prom.	Desv Est.	Error Porc.			
	[m/s]	[m/s]	[%]	[m/s]	[m/s]	[%]			
Elemento 1	4064	10	0,25	4141	1	0,03			
Elemento 2a	4099	120	2,94	4235	49	1,16			
Elemento 2b	4177	43	1,04	4219	45	1,06			
Elemento 3	4099	77	1,87	4212	110	2,62			
Elemento 4	4180	95	2,28	4391	188	4,28			
Elemento 5a	4226	42	1,00	4402	38	0,86			
Elemento 5b	4359	147	3,38	4423	98	2,21			

Tabla 4.33 Variación de la VPU según la Separación del Acero de Refuerzo (Caso 3)

7	Velocidades de Pulso Ultrasónico por el Método Directo								
Caso 3: Acero Longitudinal Perpendicular a la Línea de Propagación de la Onda									
		28 Días 49 Días							
Elemento Evaluado	Veloc. Prom.	Desv Est.	Error Porc.	Veloc. Prom.	Desv Est.	Error Porc			
	[m/s]	[m/s]	[%]	[m/s]	[m/s]	[%]			
Elemento 1	4064	10	0,25	4141	1	0,03			
Elemento 2a	4152	113	2,72	4294	87	2,04			
Elemento 2b	4340	85	1,96	4390	142	3,24			
Elemento 3	4131	79	1,91	4211	90	2,14			
Elemento 4	4094	32	0,78	4177	72	1,72			
Elemento 5a	4225	72	1,70	4263	45	1,07			
Elemento 5b	4357	79	1,81	4409	79	1,79			

Tabla 4.34 Variación de la VPU según la Separación del Acero de Refuerzo (Caso 4)

•	Velocidades de Pulso Ultrasónico por el Método Directo									
Caso 4: Acero Tr	Caso 4: Acero Transversal y Longitudinal Cercano a la Línea de Propagación de la Onda									
		28 Días			49 Días					
Elemento Evaluado	Veloc. Prom.	Desv Est.	Error Porc.	Veloc. Prom.	Desv Est.	Error Porc.				
	[m/s]	[m/s]	[%]	[m/s]	[m/s]	[%]				
Elemento 1	4064	10	0,25	4141	1	0,03				
Elemento 2a	4100	65	1,59	4196	58	1,39				
Elemento 2b	4121	112	2,71	4176	45	1,08				
Elemento 3	4080	39	0,97	4187	51	1,21				
Elemento 4	4074	52	1,27	4167	44	1,06				
Elemento 5a	4149	168	4,06	4195	129	3,08				
Elemento 5b	4303	113	2,62	4407	142	3,22				

Tabla 4.35 Variación de la VPU según la Separación del Acero de Refuerzo (Caso 5)

Vel	Velocidades de Pulso Ultrasónico por el Método Semi-Directo								
Caso 5: Acero Transversal Perpendicular a la Línea de Propagación de la Onda									
		28 Días			49 Días				
Elemento Evaluado	Veloc. Prom.	Desv Est.	Error Porc.	Veloc. Prom.	Desv Est.	Error Porc.			
	[m/s]	[m/s]	[%]	[m/s]	[m/s]	[%]			
Elemento 1	4133	101	2,43	4235	448	10,59			
Elemento 2a	4236	1291	30,48	4371	849	19,43			
Elemento 2b	4288	1605	37,42	4329	859	19,84			
Elemento 3	4281	860	20,08	4320	611	14,14			
Elemento 4	4320	632	14,63	4356	687	15,77			
Elemento 5a	4200	959	22,84	4388	1035	23,58			
Elemento 5b	4264	923	21,64	4316	1471	34,07			

Tabla 4.36 Variación de la VPU según la Separación del Acero de Refuerzo (Caso 6)

Vel	Velocidades De Pulso Ultrasónico Por El Método Semidirecto								
Caso 6: Acero Longitudinal Perpendicular A La Linea De Propagación De La Onda									
		28 Días			49 Días				
Elemento Evaluado	Veloc. Prom.	Desv Est.	Error Porc.	Veloc. Prom.	Desv Est.	Error Porc.			
	[m/s]	[m/s]	[%]	[m/s]	[m/s]	[%]			
Elemento 1	4133	101	2,43	4235	448	10,59			
Elemento 2a	4218	1395	33,06	4334	532	12,27			
Elemento 2b	4232	1366	32,29	4352	785	18,03			
Elemento 3	4193	709	16,90	4334	569	13,13			
Elemento 4	4264	818	19,17	4363	764	17,50			
Elemento 5a	4163	739	17,74	4379	956	21,83			
Elemento 5b	4263	506	11,88	4331	1643	37,94			

Tabla 4.37 Variación de la VPU según la Separación del Acero de Refuerzo (Caso 7)

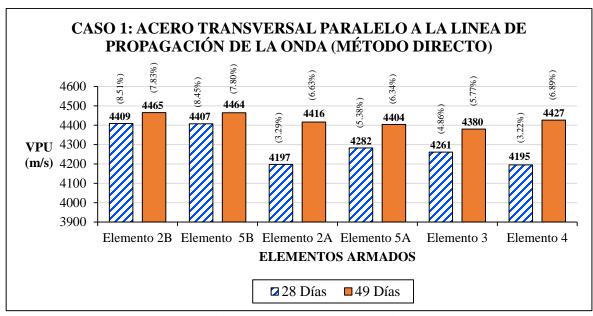
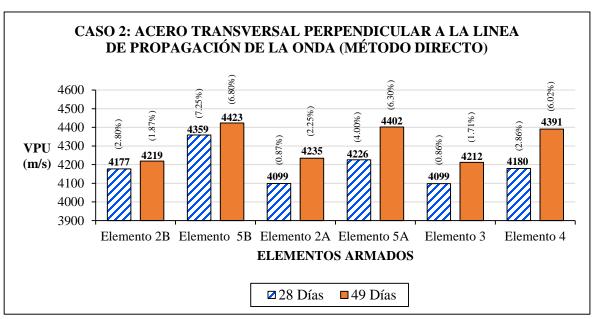

Ve	Velocidades De Pulso Ultrasónico Por El Método Semidirecto								
Caso 7: Acero Transversal Y Longitudinal Cercano A La Linea De Propagación De La Onda									
		28 Días 49 Días							
Elemento Evaluado	Veloc. Prom.	Desv Est.	Error Porc.	Veloc. Prom.	Desv Est.	Error Porc.			
	[m/s]	[m/s]	[%]	[m/s]	[m/s]	[%]			
Elemento 1	4133	101	2,43	4235	448	10,59			
Elemento 2a	4182	56	1,33	4250	52	1,23			
Elemento 2b	4179	49	1,17	4269	106	2,48			
Elemento 3	4235	117	2,76	4283	139	3,25			
Elemento 4	4211	59	1,39	4261	47	1,09			
Elemento 5a	4135	150	3,62	4297	100	2,32			
Elemento 5b	4218	118	2,79	4257	74	1,73			

Tabla 4.38 Variación de la VPU según la Separación del Acero de Refuerzo (Caso 8)

Ve	Velocidades De Pulso Ultrasónico Por El Método Indirecto								
Caso 8: Recorrido De Puntos Sobre El Eje De La Barra Longitudinal									
		28 Días		49 Días					
Elemento Evaluado	Veloc. Prom.	Desv Est.	Error Porc.	Veloc. Prom.	Desv Est.	Error Porc.			
	[m/s]	[m/s]	[%]	[m/s]	[m/s]	[%]			
Elemento 1	3072	14	0,47	3151	46	1,45			
Elemento 2a	3162	93	2,95	3309	287	8,67			
Elemento 2b	3088	106	3,45	3129	98	3,12			
Elemento 3	3075	122	3,98	3217	211	6,57			
Elemento 4	3075	10	0,32	3180	215	6,75			
Elemento 5a	3086	14	0,45	3156	460	14,57			
Elemento 5b	3149	24	0,77	3209	295	9,18			


Tabla 4.39 Variación de la VPU según la Separación del Acero de Refuerzo (Caso 9)

V	Velocidades De Pulso Ultrasónico Por El Método Indirecto								
Caso 9: Recorrido De Puntos Por El Centro Del Elemento.									
	28 DÍAS				49 DÍAS				
Elemento Evaluado	Veloc. Prom.	Desv Est.	Error Porc.	Veloc. Prom.	Desv Est.	Error Porc.			
	[m/s]	[m/s]	[%]	[m/s]	[m/s]	[%]			
Elemento 1	3072	14	0,47	3151	46	1,45			
Elemento 2a	3164	-	-	3163	-	-			
Elemento 2b	3102	-	-	3200	-	-			
Elemento 3	3140	-	-	3144	-	-			
Elemento 4	3064	-	-	3244	-	-			
Elemento 5a	3143	-	-	3173	-	-			
Elemento 5b	3148	-	-	3243	-	-			

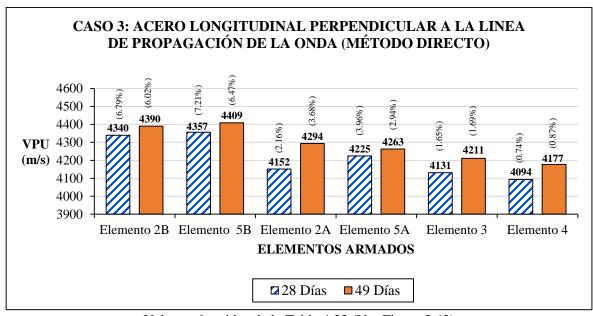

Valores obtenidos de la Tabla 4.31 (Ver Figura 3.42)

Gráfico 4.22 VPU obtenida por el Método Directo, cuando el Acero Transversal es Paralelo a la Línea de Propagación de la Onda

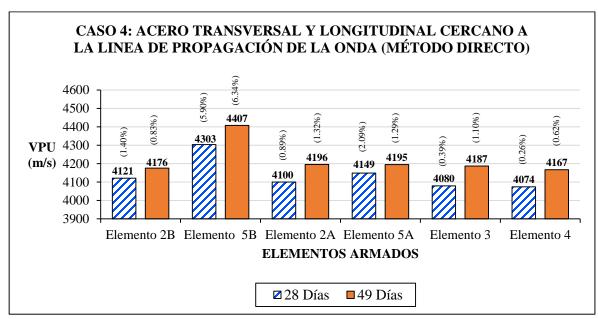

Valores obtenidos de la Tabla 4.32 (Ver Figura 3.42)

Gráfico 4.23 VPU obtenida por el Método Directo, cuando el Acero Transversal es Perpendicular a la Línea de Propagación de la Onda

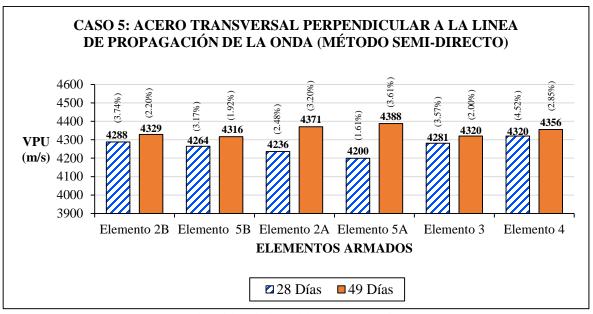

Valores obtenidos de la Tabla 4.33 (Ver Figura 3.42)

Gráfico 4.24 VPU obtenida por el Método Directo, cuando el acero Longitudinal es Perpendicular a la Línea de Propagación de la Onda

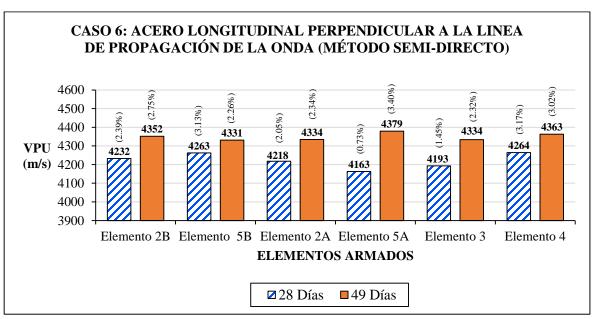

Valores obtenidos de la Tabla 4.34 (Ver Figura 3.42)

Gráfico 4.25 VPU obtenida por el Método, Directo cuando el Acero Transversal y Longitudinal esta cercanos a la línea de Propagación de la Onda

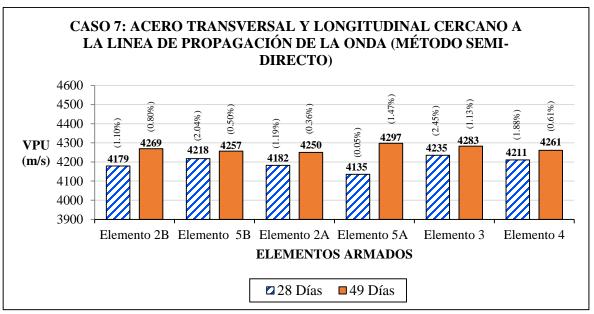

Valores obtenidos de la Tabla 4.35 (Ver Figura 3.43)

Gráfico 4.26 VPU obtenida por el Método Semi-Directo, cuando el Acero Transversal es Perpendicular a la Línea de Propagación de la Onda

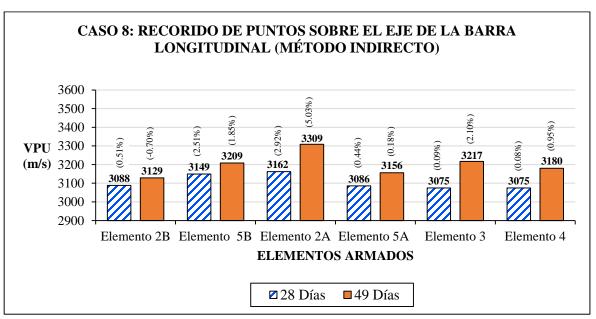

Valores obtenidos de la Tabla 4.36 (Ver Figura 3.43)

Gráfico 4.27 VPU obtenida por el Método Semi-Directo, cuando el Acero Longitudinal es Perpendicular a la Línea de Propagación de la Onda

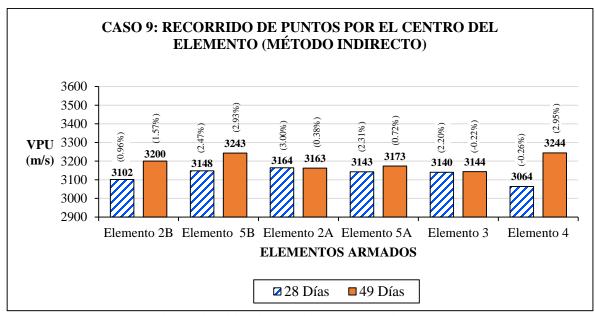

Valores obtenidos de la Tabla 4.37 (Ver Figura 3.43)

Gráfico 4.28 VPU obtenida por el Método Semi-Directo, cuando el Acero Transversal y Longitudinal esta cercanos a la línea de Propagación de la Onda

Valores obtenidos de la Tabla 4.38 (Ver Figura 3.44)

Gráfico 4.29 VPU obtenida por el Método Indirecto, cuando recorrido de puntos es sobre el eje de la barra longitudinal

Valores obtenidos de la Tabla 4.39 (Ver Figura 3.44)

Gráfico 4.30 VPU obtenida por el Método Indirecto, cuando recorrido de puntos es en el centro del Elemento

4.6.4. Influencia de las Barras de Refuerzo Transversal de 3/8" paralelas al pulso Ultrasonido

Tabla 4.40 Casos donde la Trayectoria del Pulso Ultrasonido es Paralelo a la Barra de Refuerzo Transversal 3/8"

	•		ulso Ultrasonio Transversal 3	do es Paralelo 8/8''
Sep. Entre la Barra y el Transd.	Armado	Caso	28 Días Veloc. Prom. [m/s]	49 Días Veloc. Prom. [m/s]
	Elemento 2A	1	4197	4416
	Elemento 2B	1	4409	4465
a= 0cm	Elemento 3	1	4261	4380
a= ociii	Elemento 4	1	4195	4427
	Elemento 5A	1	4282	4404
	Elemento 5B	1	4407	4464
	Elemento 2B	2	4177	4219
	Elemento 4	2	4180	4391
a= 1cm	Elemento 5A	2	4226	4402
u= Telli		2	4359	4423
	Elemento 5B	3	4357	4409
		4	4303	4407
	Elemento 2A	3	4152	4294
a = 2.5cm	Elemento 5A	3	4225	4263
		4	4149	4195
	Elemento 3	3	4131	4211
a = 5cm	Elemento 4	3	4094	4177
	Licinciiio 4	4	4074	4167

Tabla 4.41 VPU donde la Trayectoria del Pulso es Paralelo a la Barra de Refuerzo Transversal de 3/8"

VPU donde la Trayectoria del Pulso es Paralelo a la Barra de Refuerzo Transversal de 3/8''						Refuerzo
	Veloc.	Desv	Error	Veloc.	Desv	Error
Sep. Entre	Prom.	Est.	Porc.	Prom.	Est.	Porc.
Barra y Transd.	[m/s]	[m/s]	[adim.]	[m/s]	[m/s]	[adim.]
Transu.	28 Días			49 Días		
a=0 cm	4292	96	2,2%	4426	34	0,8%
a =1 cm	4267	84	2,0%	4375	77	1,8%
a = 2,5cm	4175	43	1,0%	4250	51	1,2%
a = 5cm	4100	29	0,7%	4185	23	0,6%

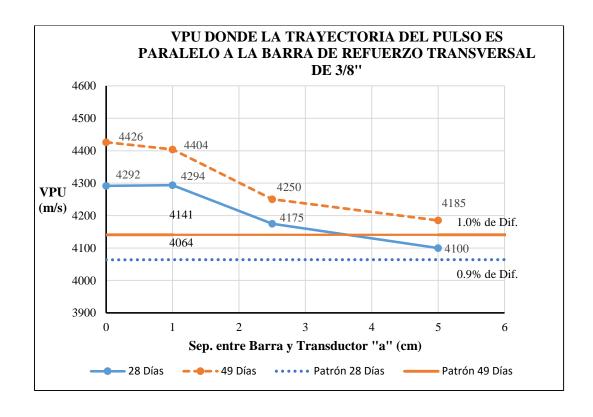


Gráfico 4.31 VPU cuando la Trayectoria del Pulso es Paralelo a la Barra de 3/8"

4.6.5. Influencia de las barras de Refuerzo Transversal de 3/8" Perpendiculares al Pulso

Tabla 4.42 Casos donde la Trayectoria del Pulso es Perpendicular a la Barra de Refuerzo Transversal de 3/8"

VPU donde la trayectoria del Pulso es Perpendicular a la Barra de Refuerzo Transversal de 3/8"					
Dame and		Caso	28 Días	49 Días	
Barra que atraviesa el pulso	Armado		Veloc. Prom.	Veloc. Prom.	
araviesa er parso			[m/s] 4131	[m/s]	
a 1/2	Elemento 3	3	4131	4211	
ø 1/2	Elemento 4	3	4094	4177	
ø 3/8	Elemento 2A	2	4099	4235	
	Elemento 2B	2	4177	4219	
	Elemento 3	2	4099	4212	
No atraviesa ninguna barra	Elemento 2A	4	4100	4196	
	Elemento 2B	4	4121	4176	
	Elemento 3	4	4080	4187	

Tabla 4.43 VPU cuando la Trayectoria del Pulso es Perpendicular a la Barra de Refuerzo Transversal de 3/8"

VPU donde la Trayectoria del Pulso es Perpendicular a la Barra de Refuerzo Transversal de 3/8"						
Sep. Entre Barra y Transd.	Veloc. Prom.	Desv Est.	Error Porc.	Veloc. Prom.	Desv Est.	Error Porc.
	[m/s]	[m/s]	adim.	[m/s]	[m/s]	adim.
		28 Días			49 Días	
ø 1/2	4112	26	0,6%	4194	24	0,6%
ø 3/8	4125	45	1,1%	4222	12	0,3%
No atraviesa barra	4100	20	0,5%	4186	10	0,2%

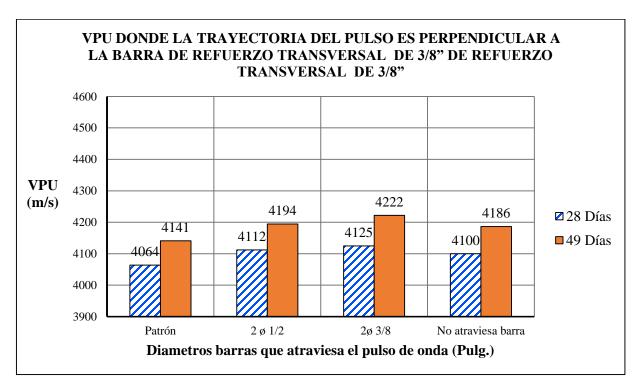


Gráfico 4.32 VPU donde la Trayectoria del Pulso es Paralelo a la Barra de 3/8"

4.6.6. Error Porcentual de Medición según Método Utilizado

Tabla 4.44 Error Porcentual de Medición según el Método Utilizado

Error En La VPU Según El Método De Ensayo Utilizado					
Error	Método Directo	Método Semi-Directo	Método Indirecto		
Error Porcentual [%]	2,04%	14,84%	19,33%		

CAPÍTULO V

ANÁLISIS DE RESULTADOS

5.1. Caracterización de los Agregados

5.1.1. Granulometría

En la tabla 4.1 se puede observar que el Tamaño Máximo Nominal del agregado grueso es de 1" ya que el 96,6% de la muestra es retenida por el tamiz de 1", lo que representa un porcentaje mayor a 95%, criterio establecido en la Norma COVENIN 221:2001 "Materiales de Construcción. Terminología y Definiciones" para establecer el tamaño máximo del agregado. La curva granulométrica corresponde a una piedra picada Nº 1, cumpliendo los límites granulométricos establecidos en la Norma COVENIN 277:2000 "Concreto. Agregados. Requisitos".

La granulometría presente en el agregado fino (Ver anexo 3) cumple con los límites presentes en la Norma COVENIN 277:2000 "Concreto. Agregados. Requisitos".

5.1.2. Desgaste Los Ángeles

Basados en los datos de la curva granulométrica, se utilizó una gradación tipo B establecida en la Norma COVENIN 266:1977: "Método de ensayo para Determinarla Resistencia al Desgaste en Agregados Gruesos Menores de 38,1 mm (1 ½ ") por medio de la Máquina de Los Ángeles", la cual arrojo un 25,5 % de desgaste con respecto al peso de la muestra inicial, tal como se observa en la Tabla 4.2, lo que nos permite afirmar que la misma cumple con el porcentaje máximo (50%) establecido en Norma.

5.1.3. Densidad y Absorción

Para el agregado grueso y agregado fino se obtuvieron densidades de 2,660 y 2,626 Kgf/litro, respectivamente (Tabla 4.3). Valores que cumplen con el rango establecido por Porrero y Otros (2012) como referencia. Por su parte los porcentajes de absorción obtenidos para el agregado grueso y fino, fueron 1,18% y 1,83%, respectivamente (Tabla 4.3). Cifras que se consideraron al momento de mezclar ya que el agregado puede absorber parte del agua de mezclado.

5.1.4. Contenido de Humedad

La humedad presente en el agregado grueso y fino fue de 0,12% y 0,70%, respectivamente, lo que representa un porcentaje de humedad bastante bajo, lo que podemos considerar que el material se encuentra prácticamente seco. (Tabla 4.4).

5.2. Caracterización del Concreto Fresco

5.2.1. Asentamiento por Cono de Abrams

Los asentamientos expresados en la tabla 4.15 se encuentran comprendidos en un rango entre 9,5 cm y 11,0 cm. Por lo que cumple con el asentamiento proyectado en el diseño de mezcla (10 cm), considerando un error máximo de 1 pulgada (2,54 cm).

5.3. Caracterización del Concreto Endurecido

5.3.1. Peso Unitario

Los pesos unitarios de las probetas cilíndricas expresados en la Tabla 4.16 están comprendidos, entre 2.281 y 2361 Kgf/m³, con una media de 2.317 Kgf/m³. Dicho rango difiere

en un mínimo con lo establecido por Porrero y Otros (2012), quienes establecen como referencia un rango usualmente comprendido entre 2.200 y 2.350 Kg/m³.

Por su parte los elementos Prismáticos diseñados para evaluar la Velocidad de Pulso Ultrasonido, presentaron valores de pesos unitarios entre 2.299 y 2.428 Kgf/m³ tal como se observa en la Tabla 4.18, donde se incrementa el peso del elemento, en la medida en que aumenta su contenido de acero, teniendo así el menor valor del rango ya expuesto representado por el Elemento Patrón (Sin acero) y el máximo por el elemento armado con tres ramas de acero transversal y separación entre estribos de 7 y 10 cm.

5.3.2. Resistencia a Compresión de Cilindros

Los resultados por ensayo a compresión obtenidos en la tabla 4.17, corroboran la calidad de la mezcla proyectada. La misma cumple con los valores de resistencia mínima exigidos para esta investigación (210 Kgf/cm²). Por otra parte, se evidencia un aumento de la resistencia en función del tiempo. Partiendo de un valor de resistencia promedio a los 14 días de 217 Kgf/cm² correspondientes a la mezcla de los elementos 1, 2 y 3, posteriormente a los 21 días encontramos que la mezcla utilizada para los elementos 4 y 5 presentaba un valor promedio de 240 Kgf/cm². Luego se produce un aumento resistencia arrojando un valor promedio de 252 Kgf/cm² a los 28 días. Por último se obtuvo un tercer valor de resistencia promedio a los 56 días de 286 Kgf/cm².

5.4. Velocidad de pulso ultrasónico

A continuación se presenta el análisis de resultados de los ensayos de velocidad de pulso ultrasónico (VPU) realizados en los elementos construidos para este trabajo de grado. Es importante destacar que estos resultados tienen un contexto muy específico con respecto a las características de los materiales utilizados, el diseño del armado, los diámetros de las barras de

acero, entre otros. El análisis de esta sección se realizó desde cinco puntos de vista de interés, y en base a la organización de la información obtenida de los resultados. Un primer análisis está en función de la influencia de la edad en la evaluación del ensayo de VPU. En este sentido, se realizaron 2 conjuntos de mediciones, bajo condiciones similares, una a los 28 días y otra a los 49 días. Otro análisis está en función de la agrupación de puntos por "Casos", los cuales aparecen descritos en el apartado 3.11.1, comparando los distintos casos presentes en un mismo elemento de concreto armado. Esto permite identificar como influye la posición de los transductores en un mismo elemento, es decir, ver cómo varía cada caso para una misma separación de las barras de refuerzo transversal. Luego se presenta otro análisis, en el que se estudia a un mismo caso para distintos elementos, es decir, ahora se analiza el comportamiento de la VPU en una misma posición de los transductores con respecto a distintas separaciones del acero transversal; lo único que varía entre cada elemento es eso, la separación del refuerzo transversal, con este análisis se busca identificar la influencia del acero cuando la separación del armado está cada vez más cerca (o más lejos) del alineamiento entre los transductores. Seguidamente, se muestra un análisis mucho más específico con la información reagrupada, con el objetivo de determinar la influencia de la separación de los transductores en una transmisión directa, con respecto a una barra de 3/8" que esta paralela a la trayectoria del pulso, es decir, al alineamiento de los transductores. Finalmente se analiza la influencia de las barras que estén perpendiculares al pulso con respecto a un alineamiento de los transductores que no involucre directamente acero de refuerzo en su trayectoria.

Antes de iniciar con los análisis, se destaca que el elemento de concreto sin armadura (muestra patrón) resultó con una velocidad promedio de 4064 m/s para los 28 días de edad y

4141 m/s para los 49 días, y según la tabla 2.5 este concreto se califica para ambas edades como un "Concreto Bueno" tendiendo a "Excelente"

5.4.1. Influencia de la edad junto con el acero de refuerzo sobre la VPU

Las edades a las que fueron evaluadas las velocidades de pulso ultrasónico en este trabajo fueron de 28 y 49 días. Es bien conocido que a medida que aumenta la edad del concreto, sus características internas van consolidándose y esto se traduce en una mayor resistencia del material. Este aumento de la resistencia, de alguna manera está relacionado directamente con un aumento de la velocidad del pulso ultrasónico, y esto es precisamente lo que se evidencia en los resultados de las lecturas mostradas en este trabajo de grado. Basta observar cualquiera de los gráficos desde el 4.4 al 4.30 para verificar que cualquiera de las lecturas de VPU, realizadas a la edad de 28 días, tienen una magnitud inferior a las lecturas de los 49 días, repitiéndose este comportamiento en cada uno de los elementos evaluados. Esto va en concordancia con los resultados de los ensayos de compresión simple de las probetas cilíndricas normativas, que presentan un incremento de la resistencia del 14% en el lapso de tiempo mencionado, tal como se muestra en la tabla 4.17.

Adicionalmente, al cuantificar la influencia de la edad en la VPU, en los elementos evaluados, sale a relucir que esta no aumenta en la misma proporción cuando existe alguna cantidad de acero en el trayecto del pulso. Esto se puede ver en el grafico 4.3 El gráfico está basado en los resultados de la tabla 4.31 donde se muestran las velocidades de pulso cuando se tiene la mayor influencia del acero sobre las lecturas, es decir, cuando la trayectoria del pulso es paralela y cercana a una barra de acero; allí aparecen clasificadas las velocidades de un mismo elemento con su respectiva configuración de armado, tanto para los 28 días como para los 49 días. Se lee que el porcentaje de aumento de la VPU en ese lapso de tiempo, es de 1,9 %

para el elemento de concreto sin armadura (E1), es decir, que la velocidad medida en la edad 49 en el elemento "E1" es casi 2% mayor que la edad medida en el mismo elemento pero a la edad de 28 días. En base a los factores dados por Strafella, Thomas y Rengel (1991), este valor de aumento de 1,9 % es un valor razonablemente esperado, ya que ellos indican que el aumento de la VPU por edad entre los 7 y 28 días es aproximadamente del 4% y teniendo en cuenta que a partir de los 28 días, las propiedades del concreto comienzan a estabilizarse, es de esperar que en edades futuras, ese aumento se mantenga en menor medida, en este caso prácticamente a la mitad.

Por otro lado, cuando las mediciones se hacen aproximadamente a 1 cm de separación de alguna barra de refuerzo paralela al pulso, teniendo en cuenta que se está evaluando el mismo elemento con presencia de acero pero a distintas edades, el porcentaje de aumento por edad es de 2,6 % y seguidamente cuando la lectura se realiza haciendo coincidir la trayectoria del pulso con el eje de la barra de refuerzo, el porcentaje de aumento por edad es de 3,2 %. Por lo tanto, el factor de aumento de velocidad por edad varía si hay presencia de acero o no. Esto evidencia que existe una superposición de los efectos del aumento de la VPU por la presencia del acero, junto con el efecto del desarrollo de la resistencia del concreto.

La variación de los porcentajes de aumento de la VPU por edad, mencionadas en el párrafo anterior, corrobora que el pulso registrado por el equipo, estuvo propagándose por los dos materiales simultáneamente, es decir, parte del pulso se propagó por el concreto, y otra parte se propagó por la barra de acero; si hubiese ocurrido lo contrario, es decir que el pulso se hubiese propagado en solo uno de los dos materiales, se hubiese mantenido constante el porcentaje de aumento de VPU entre las edades indicadas.

Finalmente, si se desea obtener una estimación de las velocidades futuras a partir de 28 días de edad, el factor de aumento será mayor si las lecturas han sido tomadas bajo la influencia de barras paralelas al pulso. Es decir que el factor de incremento de la VPU por edad en elementos por armadura será el más pequeño.

5.4.2. Análisis de las VPU agrupadas por Casos comparándolas en un mismo elemento.

Las distintas alternativas consideradas para la ubicación de los transductores sobre cada elemento y según cada método, se agruparon en un conjunto de "Casos" que van desde el 1 al 9 explicados en el apartado 3.11.1 Una comparación entre estos casos permite resaltar las posibles diferencias entre las mediciones de velocidad dependiendo de la posición en la que se ubiquen los transductores en un mismo elemento de concreto armado.

Casos de Transmisión Directa (Casos 1, 2, 3 y 4)

A partir de los gráficos 4.4 al 4.9 correspondiente al arreglo de transductores por el método directo, se tiene que si se escoge un solo elemento a la vez y se analiza el caso 1 en comparación con los demás casos, se tiene que este registra un aumento notable de la VPU con respecto a los demás casos. Esto es debido a que el caso 1 tiene las barras de acero de refuerzo alineadas con los transductores, y de acuerdo a la vasta mayoría de los investigadores, esa configuración genera la mayor afectación del acero sobre la VPU, por lo que este comportamiento reflejado en los gráficos es coherente.

Para los elementos 2A y 3 se cumple que las velocidades de los casos 2, 3 y 4 son bastante similares entre sí, manteniendo un incremento de la VPU con respecto a la muestra patrón de alrededor del 3%. Estos casos involucran barras de 3/8" y de 1/2" colocadas perpendiculares a

la trayectoria del pulso (Casos 2 y 3), incluyendo también aquellas trayectorias en las que no se encuentra acero directamente en la alineación de los transductores (caso 4), por lo tanto, el hecho de que tengan un comportamiento similar implica que el efecto de las barras perpendiculares al pulso es despreciable. Adicionalmente, es importante agregar que estos elementos tienen una separación del acero de refuerzo transversal de 10 y 15 cm entre sí, por lo que a pesar de que existe un aumento en la VPU en el caso 4, que es el punto más alejado de las barras de refuerzo, este aumento es pequeño, así que la influencia de las barras de refuerzo sobre la VPU con este armado, pudiera estar en el orden de los 5 o 7 cm de separación del transductor con respecto a la barra de acero. (Más adelante se aborda nuevamente este análisis con mayor detalle)

En los elementos que poseen un refuerzo transversal de 3 ramas, el caso 2 tiende a parecerse al caso 1, y esto es un comportamiento bastante lógico ya que la rama intermedia adicional de refuerzo transversal, está muy cercana al alineamiento de los transductores, e influye de manera similar a como lo hacen las ramas de los bordes, cuando los transductores se alinean con el eje de la barra como en el caso 1. Aun así, el caso 1 sigue presentando la mayor VPU y eso se debe a que la alineación con el eje de la barra en el caso 2 no es completamente exacta por los dobleces en la rama que la alejan unos cuantos centímetros del alineamiento de los transductores. Esto asoma la idea de que en pequeñas distancias de alejamiento de los transductores a la barra de acero, el efecto de incremento de la VPU tiende a ser muy parecido. Por lo tanto, tomando en cuenta lo que se analizaba al final del párrafo anterior, existe un rango de distancias en el que no se percibe influencia del acero de aproximadamente 5-7 cm, y luego a partir de un punto específico comienza a percibirse una influencia notable. Esto también se analiza con mayor detalle más adelante

Casos de Transmisión Semi-Directa (Casos 5, 6 y 7)

Los casos para el análisis de la VPU obtenidas por transmisión semidirecta corresponden al 5, 6 y 7 descritos en el apartado 3.11.1. Con este método hay una considerable dispersión de los datos en comparación con los obtenidos por trasmisión directa. En la tabla 4.44 se expresa el error porcentual de medición según el método utilizado, basado en una comparación de la desviación estándar obtenida del conjunto de velocidades por punto, con respecto a la velocidad promedio. Allí se lee que el método directo posee un error porcentual del 2.04 %, por lo que se puede decir que sus valores son muy precisos, mientras que para el método semi-directo se lee un 14.84 % de error en las velocidades obtenidas. Este aumento en la dispersión de los datos, generalmente se atribuye a que el cálculo de la velocidad en este método se obtiene a partir de la determinación indirecta de la longitud entre los transductores. Por otro lado, al momento de hacer la toma de lecturas del tiempo, se notó una importante dificultad del equipo para arrojar lecturas estables. Esto pudiera deberse a que la trasmisión de la energía con este método no es tan efectiva, por lo que al equipo, específicamente el cristal piezoeléctrico dentro del transductor, le costaba captar la vibración de manera estable.

En los gráficos 4.7 a 4.12 se comparan los casos 5, 6 y 7 para cada elemento de concreto con armadura y también aparece el promedio de la velocidad para la muestra patrón (elemento sin armadura). En estos casos se mantiene que la velocidad en los elementos de concreto armado es mayor que la velocidad en el elemento sin armadura. Adicionalmente, se nota que las velocidades obtenidas en su correspondiente edad mantienen una baja dispersión entre los distintos casos de este método. Al parecer no existe una influencia muy grande del acero de refuerzo en este método, ya que el porcentaje de incremento de la velocidad ronda el 2% y el 3% en estos casos. Esto se pudiera deber a que la trayectoria del pulso viaja casi perpendicular

a las barras de acero de refuerzo (caso 5 y 6) o no tienen ninguna barra que atraviese la alineación de los transductores (caso 7).

El orden de magnitud en las velocidades obtenidas por el método directo y semidirecto es parecido, sin embargo las velocidades obtenidas por el método semidirecto en la muestra patrón (4133 m/s a los 28 días y 4235 a los 49 días) fueron levemente mayores que los obtenidas por transmisión directa (4064 m/s a los 28 días y 4141 m/s los 49 días). Para los elementos con armadura los datos son un poco más dispersos pero se leen valores de velocidad más altos en los obtenidos por trasmisión directa.

Casos de Transmisión Indirecta (Casos 8 y 9)

A este método corresponden los casos 8 y 9 y de acuerdo a la tabla 4.44, este método posee el mayor error con respecto a la media de los datos con un 19.33%. Este error se atribuye generalmente a que no sé conoce con exactitud la trayectoria del pulso, por lo que para calcular la velocidad se toma la distancia entre los transductores a sabiendas que la longitud real de la transmisión del pulso puede ser mayor. Adicionalmente, el cálculo de la velocidad se hace de una manera muy particular, diferente de los métodos anteriores en el que no se considera la velocidad punto a punto de manera individual sino que se asume una velocidad "promedio" para el conjunto de puntos mediante la gráfica de tiempo versus distancia. (Ver procedimiento en el apartado 2.12.3). Otro factor que pudiera justificar o contribuir a este aumento de la dispersión de los datos, es que solo se obtienen 3 velocidades por cada cara del elemento (por ejemplo véase lo anexos 8) y solo se evaluó una sola cara.

Una característica que se muestra claramente en las velocidades obtenidas por este método en comparación con las velocidades obtenidas a los otros dos métodos, es una

disminución en la magnitud de la velocidad. Basándose en los valores de la velocidad obtenida a los 28 días, por el método directo, en la muestra patrón, se tiene una velocidad promedio de 4064 m/s, por otro lado, a la misma edad, pero por el método indirecto, se tiene una velocidad promedio de 3072 m/s, lo que representa una disminución del 24,4% de la velocidad entre los métodos. Y para la edad de 49 días se tiene que en el método directo hay una VPU de 4141 m/s, mientras que por el método indirecto se obtuvo 3151 m/s lo que implica que las velocidades del método directo son un 23.9% mayores que la VPU con las mediciones con el método indirecto.

Los valores de los casos indirectos se pueden apreciar en los gráficos 4.16 a 4.21 donde se puede ver que los elementos de concreto armado mantienen una velocidad bastante parecida y tampoco se muestra una influencia apreciable del acero de refuerzo, a pesar de que la trayectoria del pulso, se supone, se encuentra paralela a las barras de acero longitudinal de ½", correspondientes al caso 8. Sin embargo, debido a que con el método directo, se ha registrado un incremento de la VPU relativamente bajo (un máximo de 8,5%) y adicionalmente se cuantificó la dispersión de los datos para el método indirecto y se demostró que es alta, entonces, es posible que la influencia del acero en el método indirecto quede absorbida por esta dispersión ocasionada por factores independientes del acero de refuerzo.

5.4.3. Análisis de las VPU de un mismo Caso comparándolo con los distintos elementos evaluados.

Para el conjunto de velocidades agrupadas en el caso 1, en las cuales la barra de acero transversal está alineada con los transductores, se encuentra el máximo valor de velocidad promedio registrada, correspondiente al Elemento 2B, con una VPU de 4409 m/s para los 28 días y 4465 m/s para los 49 días. Si se comparan estos valores con la VPU en la muestra patrón (Elemento 1) se tiene que los mayores incrementos en la VPU son de 7,8 % para la edad de 28

días y un 8,5% para la edad de 49 días. La comparación de las velocidades en cada elemento evaluadas según el caso 1 se puede ver en el gráfico 4.22 que provienen de la tabla 4.31. Vale la pena resaltar que en esta tabla se están comparando los valores de las VPU de los elementos reforzados con acero en comparación con el elemento 1, que no tiene acero de refuerzo, siempre en la misma edad, de tal manera que no hay influencia alguna de la edad en los porcentajes de incremento de la VPU en esta tabla.

Este valor de 8,5% de incremento de la velocidad de pulso ultrasónico es relativamente bajo, debido a que la calidad del concreto es muy buena, así, la velocidad en el concreto también es alta disminuyendo la brecha entre la velocidad aumentada por el acero y la velocidad obtenida en la muestra patrón.

Herrera, Cruz y Quintero (2013) hallaron un aumento debido al acero de refuerzo en sus resultados del 6 % para 3 barras de refuerzo de ½" que iban paralelas a la trayectoria del pulso, por otro lado, a pesar de que no se especifican valores de la calidad del concreto en términos de la resistencia a compresión, se deduce que debe ser un concreto de calidad similar al del este trabajo de grado porque su velocidad promedio es de 4052 m/s, teniendo en cuenta que la VPU sin refuerzo en este trabajo es de 4064 m/s para los 28 días. El porcentaje de aumento de la velocidad por influencia del acero de refuerzo para barras con diámetros menores debiera ser más bajo y sin embargo para este trabajo, que se usó 3/8" está resultando 7,8%. La diferencia se pudiera deber a que la barra de acero en las mediciones de VPU para Herrera, Cruz y Quintero no estuvieran suficientemente alineadas con la trayectoria del pulso, y como se explica más adelante con pequeños alejamientos (1 a 2.5 cm) del transductor al eje de la barra, se pueden presentar diferencias notables en la influencia del acero.

Para el caso 2 del conjunto de gráficos, 4.4 a 4.9, donde se mide la influencia de las barras de acero de refuerzo transversal perpendiculares a la trayectoria del pulso, cabe destacar que se produce un aumento en la velocidad de pulso ultrasonido que varía entre el 0.86% y el 2.80 % para los elementos armados con 2 ramas. Mientras que para aquellos armados con 3 ramas, los transductores se posicionaban cercanos o sobre el eje de la barra como gancho o rama intermedia del acero de refuerzo transversal, ubicada en el centro del elemento, lo que produjo un incremento máximo en la VPU de 7.26 % en el caso 2 del elemento 5B, lo que se asemeja a los valores obtenidos en el Caso 1.

En el caso 3, se encuentra el acero de refuerzo longitudinal perpendicular a la línea de propagación del pulso de onda, sin embargo existe también una afectación de las barras paralelas al pulso del refuerzo transversal que influirán en mayor o menor medida dependiendo de la separación del refuerzo transversal. Esto se evidencia en la configuración del armado de menor separación del refuerzo transversal que corresponde al elemento 2B con una separación de 7 cm, la velocidad en este caso tiene un aumento de 6.8 % a los 28 días y 6% a los 49, mostrando un claro y considerable aumento con respecto al Caso 3 del Elemento 3 donde la separación entre el refuerzo transversal es de 15 cm, allí se lee solo un 1.7 % aproximadamente de aumento en la VPU.

El caso 4 corresponde a la evaluación de la zona con mayor alejamiento de las barras de acero para las configuraciones de armado del refuerzo transversal y es allí donde se esperaban los menores valores velocidad de pulso, y esto es lo que reflejan los gráficos 4.4 a 4.9, sin embargo en todas se registró un pequeño aumento, este aumento está comprendido entre 0.26% a 2.09 %. Este aumento se puede considerar despreciable. En el caso 4 del Elemento 5B sucede un aumento relativamente alto de VPU de un 5,9% con respecto al Elemento 1 sin acero de

refuerzo, debido a la presencia del gancho que tiene como tercera rama del acero de refuerzo transversal. De hecho en este elemento todas las lecturas dieron aumentos considerables en la VPU.

5.4.4. Influencia de las barras de refuerzos 3/8" paralelas a la trayectoria del pulso.

En este apartado del análisis de resultados se expresa de manera más enfocada la influencia del acero de refuerzo sobre la VPU ya que se agrupan los casos de manera más objetiva basados en los resultados arrojados en primera agrupación de velocidades por Casos.

A modo de describir con mayor precisión esta influencia se consideraron solamente los datos del método directo, en donde se aprecia una considerable diferencia en las velocidades según la posición de los transductores con respecto a las barras de acero. En la tabla 4.40 se muestran reagrupadas las mediciones de los casos en función de la separación de la barra con mayor influencia sobre la VPU, es decir la separación con respecto a las barras que estén paralelas a la trayectoria del pulso. Se eligieron 4 separaciones, a=0 cm, a=1, a=2,5 y finalmente a=5. En la tabla 4.41 se muestra el valor promedio representativo de estas agrupaciones de velocidad y en el gráfico 4.31 se grafican estos resultados.

El gráfico mencionado en el párrafo anterior, muestra el comportamiento de las VPU a medida que el transductor se localiza cada vez más lejos de la influencia del acero de refuerzo, partiendo de un valor máximo, que representa la mayor velocidad de pulso que se puede tener en el elemento de concreto armado y llegando a un valor en el que la diferencia entre la VPU medida en elementos de concreto armado no dista mucho de la VPU en el concreto solo. De esta grafica se puede deducir que a partir de 5 cm de alejamiento la influencia del acero ya no es apreciable.

En esta gráfica se evidencia también que el comportamiento en ambas edades es muy similar. Se aprecian tres tramos bien definidos que corresponden a la ubicación de los transductores con respecto a las barras que van paralelas al pulso ultrasónico. De acuerdo al gráfico 4.31 para una edad de 49 días el incremento máximo de la velocidad en un concreto con acero de refuerzo con respecto a un concreto sin refuerzo es aproximadamente del 6.9 % y esto sucede con un alineamiento total de los transductores con el eje de la barra de acero, es decir en a=0. Por otro lado en a = 5 la diferencia de la velocidad en el concreto armado con respecto a uno sin armadura es de un 1%, lo cual puede despreciarse.

Analizando el comportamiento de la edad de 49 días, por tramos, se tiene que el primer tramo de 0 a 1 cm tiene una pequeña variación de velocidades que van desde 4426 m/s hasta 4375 m/s, esto resulta en una diferencia relativa entre ellas de 51 m/s. En el siguiente tramo de 1,0 a 2,5 cm, se tiene que la variación de velocidades esta entre 4375 m/s y 4250 m/s lo que implica diferencia relativa entre ellas de 125 m/s, finalmente se tiene un último tramo que va desde 4250 m/s a 4185 m/s lo que implica diferencia relativa entre ellas de 65 m/s. Esto muestra que para distancia de separación entre 1,0 y 2,5 cm el cambio en las velocidades es más brusco.

Es importante recordar que estos valores expresados en esta graficas se cumplen para unas características muy específicas del concreto utilizado y las barras de acero de refuerzo consideradas.

Estos valores de separaciones de los transductores del acero de refuerzo que va paralelo a la propagación del pulso coinciden en el mismo orden de magnitud con el modelo matemático propuesto por Jones y Facaoaru (1969) cuya expresión matemática se encuentra en la ecuación 2.6. La dificultad en aplicar esta ecuación es obtener un valor de la velocidad en el acero solo

"Vs". Sin embargo utilizando los valores de referencia para "Vs" que ofrecen los mismos autores y teniendo en cuanta que el diámetro de la barra de acero es pequeño, y además utilizando como "Vc", el valor que se tiene en la VPU en la muestra patrón, se puede estimar la separación "a" resultando en un rango de 5,5 a 6,7 cm de separación. Por lo tanto, estos resultados experimentales respaldan esta expresión matemática para estas condiciones particulares, resultando bastante precisa.

5.4.5. Influencia de las barras de refuerzos de 3/8" perpendiculares a la trayectoria del Pulso

Básicamente, este análisis se reduce a los resultados expuestos en el gráfico 4.32 donde se muestra que cuando el pulso atraviesa de forma perpendicular al eje de una barra y este pasa por dos barras de 3/8", o dos barras de 1/2", el valor de la velocidad está comprendido entre 4186 y 4222 m/s, es decir, con una variación muy pequeña, por lo que se puede decir que para el conjunto de espesores de barra que atravesó el pulso ultrasónico comprendidos entre 1.9 cm (2ø 3/8") y 2.5 cm (2ø 1/2"), la velocidad es prácticamente igual, y además el máximo incremento que se puede tener con respecto a las velocidades registradas en el concreto sin armadura es de un máximo del 2%, valor que se puede despreciar.

CAPÍTULO VI

CONCLUSIONES Y RECOMENDACIONES

6.1. Conclusiones

En este trabajo experimental quedó en evidencia que existe una considerable alteración de la Velocidad de Pulso Ultrasonido (VPU) en elementos de concreto armado con respecto a elementos de concreto sin armadura.

Para los elementos evaluados en esta investigación, se puede concluir que la mayor influencia del acero de refuerzo sobre la VPU, corresponde a la ubicación de los transductores alineados con la barra de refuerzo transversal de 3/8", y para esta disposición particular de los transductores, se registró una velocidad promedio, a los 28 días, de 4407 m/s. Esto representa un incremento del 8,5% de la velocidad promedio medida respecto al elemento sin armadura, donde se registró una velocidad promedio de 4064 m/s a la misma edad. El valor puntual de mayor velocidad obtenido fue de 4621 m/s, lo que representa un aumento máximo individual de 11,6 % en uno de los elementos con armadura evaluados en comparación con la velocidad media en un elemento sin armadura.

Por otro lado, cuando las barras se encontraban perpendiculares a la trayectoria del pulso, se tuvo una escasa influencia del acero sobre la VPU, mostrándose un aumento de la velocidad de alrededor del 2% para una transmisión directa. Esto ratifica que la posición de los transductores respecto a las barras de acero, es importante, y que la mayor influencia se produce cuando en el alineamiento de los transductores se involucra al menos una barra alineada con la trayectoria del pulso, siendo este incremento en el peor de los casos de alrededor del 8 % para los valores promedio y en los valores puntuales un aumento máximo alrededor del 11%. Por lo

que se puede considerar despreciable la influencia de una barra perpendicular al alineamiento de los transductores.

Adicionalmente, se obtuvo que para las condiciones particulares de los elementos evaluados, con 5 cm de alejamiento de las barras paralelas a la trayectoria del pulso respecto al borde más cercano del transductor, la influencia del acero deja de ser importante, pudiendo haber un incremento de la velocidad en solo un 1% con respecto al valor de la velocidad media en el concreto sin armadura. Esta distancia de alejamiento, teóricamente se entiende como la distancia del borde inferior entre el material piezoeléctrico y el borde exterior de la barra de acero, pero de manera práctica, se puede entender como la distancia del borde del transductor al eje de la barra paralela al pulso ultrasónico, siempre y cuando el diámetro sea pequeño y el transductor tenga dimensiones típicas.

La separación mínima de 5 cm que se menciona en el párrafo anterior, obtenida experimentalmente, se aproxima de manera muy cercana a la obtenida por la expresión matemática sugerida para evaluar el efecto de las barras de acero sobre la VPU. La expresión matemática para el cálculo de la separación del transductor del acero de refuerzo, aparece en este trabajo en la ecuación 2.6. Si se evalúa la velocidad del concreto sin armadura (4064 m/s a los 28 días y 4141 m/s a los 49 días) y tomando en cuenta que la velocidad del pulso ultrasónico en el acero solo está entre 5200 m/s y 6000 m/s resulta por cálculo una separación entre 5,0 y 6.6 cm coincidiendo de manera con los resultados experimentales por lo que para estos valores particulares se puede concluir que el modelo matemático funciona.

Por otro lado, cuando el transductor se acerca a la barra paralela al pulso, entre 5 y 2,5 cm se identifica un aumento paulatino de la VPU, con una taza de cambio del valor promedio

de la velocidad de aproximadamente de 28 m/s por centímetro, pero si la ubicación del transductor se acerca a la barra de refuerzo entre 2.5 cm y 1 cm se identifica un aumento repentino de aproximadamente 100 m/s por centímetro. Finalmente es necesario indicar que cuando los acercamientos fueron menores a 1 cm, se produjeron resultados casi iguales a cuando el arreglo de transductores se alinea totalmente con la barra.

Es importante resaltar que esta influencia del acero, percibida como un aumento de la velocidad de pulso ultrasónico, se obtuvo bajo condiciones muy específicas y controladas en las instalaciones del IMME. Los valores ofrecidos en la gráfica 4.31 están relacionados para las configuraciones de armado particulares de los elementos construidos.

La presencia de una tercera rama en el refuerzo transversal en los elementos de concreto armado evaluados en este trabajo (sección trasversal cuadrada de 30 cm), puede cambiar determinantemente el comportamiento de la velocidad del pulso, dependiendo de la separación del refuerzo transversal. La escogencia del punto de evaluación debe realizarse con más cuidado, ya que por lo general se evalúa hacia el centro del elemento para alejarse de las barras paralelas al pulso, pero en casos de una rama intermedia el centro no es la mejor opción, ya que estará fuertemente afectada por la rama intermedia. Para separaciones del refuerzo transversal menores de 7 cm con una rama intermedia es prácticamente imposible alejarse de la influencia de las barras paralelas al pulso y es muy probable que las lecturas estén incrementadas entre un 6 y 8% con respecto a un concreto sin armadura para una configuración como la evaluada en este trabajo.

De los tres métodos de ensayos de ultrasonido conocidos, en este trabajo se evidencia que el método de transmisión directa tiene una precisión bastante alta, arrojando para la mayoría de los casos una dispersión de solo el 2 % de la velocidad promedio.

Se pudo verificar que los valores de la VPU aumentan con la edad del ensayo entre los 28 y 49 días. Para las mediciones de un mismo punto a diferentes edades se percibe un incremento relativamente pequeño de la VPU, entre 1 y 3 % aproximadamente. Es importante recalcar que existen registros de incrementos de la velocidad mayores para edades tempranas, por ejemplo, Strafella, Thomas y Rengel (1991) indican que el incremento es de un 4 % entre 7 y 28 días y advierten que en los primeros días puede ser mayor.

Se observó también que el incremento de la VPU por edad no es constante en los distintos puntos escogidos de los elementos de concreto armado, sino que dependen también de la cantidad de acero involucrada en la alineación de los transductores. Por lo tanto, a medida que aumenta la cantidad de acero en la trayectoria del pulso, existe un mayor incremento de la VPU con la edad, como lo evidenciamos en el gráfico 4.3.

Para el método semidirecto se registró una dispersión de los datos de 14.8 % lo que representa una dispersión mayor que la obtenida con el método directo, en el cual se registró solo el 2 % de dispersión. Sin embargo, con este método, al igual que en el directo, pudimos constatar que existe un aumento sostenido de la velocidad promedio en elementos de concreto armado que varían entre 0.3 y 4.7 %, con respecto a aquellos que no presentan acero en su configuración.

El método indirecto resultó con más dispersión aún que el método semi-directo, llegando alrededor del 19 % de dispersión de los datos. Los valores promedios obtenidos no evidenciaron

mucha variabilidad entre las zonas evaluadas con presencia de acero en comparación con las zonas sin presencia de acero, tampoco se distinguía diferencia alguna entre la muestra patrón evaluada por el método indirecto con respecto a los elementos con armadura evaluadas por el mismo método pero sobre elementos con armadura, por lo que pudimos apreciar que con este método no se cuantifica ni se concluye algún comportamiento de la VPU en elementos de concreto armado.

Por otro lado, al compararse los valores promedios de la VPU evaluados por el método directo con respecto a los valores promedios evaluados por el método indirecto, se muestra una notable disminución de la VPU en las mediciones tomadas por el método indirecto de aproximadamente 24 % menos de los valores del método directo.

6.2. Recomendaciones

6.2.1. Para Investigaciones futuras

- Realizar estudios de la influencia del acero de refuerzo en la medición del pulso ultrasónico
 en elementos con un concreto de mala calidad, es decir, de baja resistencia con presencia
 de acero de refuerzo, para simular una mezcla mal diseñada y evidenciar cuanto es capaz
 de incrementar la VPU, ante la presencia del acero de refuerzo.
- Realizar estudios de la influencia del acero de refuerzo en la medición del pulso ultrasónico en probetas de concreto armado, con barras de acero longitudinal y transversal de mayor calibre.
- 3. Realizar estudios de la influencia del acero de refuerzo en la medición del pulso ultrasónico en probetas de concreto armado, que simulen un elemento estructural tipo losa o muro.
- 4. Realizar estudios de la influencia del acero de refuerzo en la medición del pulso ultrasónico en probetas de concreto armado que hayan sido expuestas a incendios.
- 5. Realizar estudios de la influencia del acero de refuerzo en la medición del pulso ultrasónico en probetas de concreto armado, que hayan sido expuestas a ambientes abrasivos.
- 6. Realizar estudios de la influencia del acero de refuerzo en la medición del pulso ultrasónico en probetas de concreto armado, utilizando dispositivos mecánicos que regulen la fuerza que se le aplica al transductor al momento del ensayo.

REFERENCIAS BIBLIOGRÁFICAS

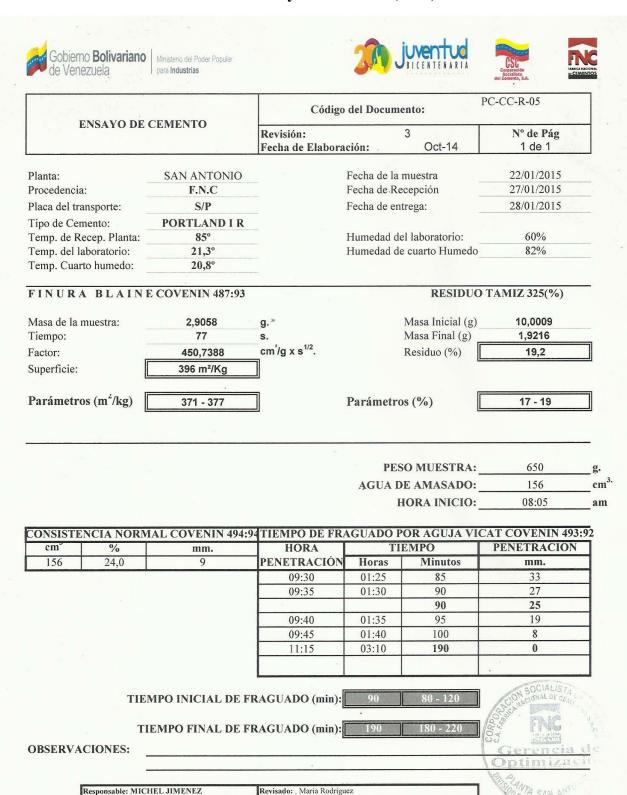
- Bungey John H., Millard, Steve G., Grantham, Michael G. (2006). *Testing of Concrete in Structures*. 4th ed.
- Cartulano V. Mara G. (2007). *Implementación de Técnicas no destructivas para la evaluación de estructuras de hormigón*. Trabajo especial de grado. Inédito. Universidad Simón Bolívar, Caracas. Disponible: http://159.90.80.55/tesis/000142023.pdf
- Cruz, R., Quintero, L. A., & Herrera, J. (2014). Evaluación del efecto de barras de refuerzo en concreto sobre las medidas de velocidad de pulso ultrasónico (VPU). Revista Colombiana de Materiales, (5), 107-113.
- Elguera Gabriela V., Ibarra N. Miguel A. (2013). Estudio experimental para determinar patrones de correlación entre la resistencia a compresión y la velocidad de pulso ultrasónico en concreto simple. Trabajo especial de grado. Inédito. Pontificia Universidad Católica del Perú. Lima, Perú. Disponible: http://tesis.pucp.edu.pe/repositorio/handle/123456789/5343
- Gómez D. y Pérez I. (1990). *Métodos Combinados no destructivos (ultrasonido-rebote) en la estimación de la resistencia del concreto*. Trabajo especial de grado. Inédito. Universidad Central de Venezuela, Caracas.
- Gonzales, M. (2014). Evaluación de la aplicación del ensayo de velocidad de pulso ultrasónico en la ubicación de discontinuidades o vacíos en elementos de concreto. Trabajo especial de grado. Inédito. Universidad Central de Venezuela, Caracas.
- Gutiérrez, Jesús Flores (2008). Estimación del coeficiente de difusión de cloruros en concreto utilizando la técnica de velocidad de pulso ultrasónico. Trabajo especial de grado. Inédito. Instituto Politécnico Nacional. Oaxaca, México. Disponible: http://tesis.ipn.mx/bitstream/handle/123456789/149/Estimacion%20del%20coefici ente%20de%20difusion%20de%20cloruros%20en%20concre.pdf?sequence=1

- Henry, Jorge-Louis (2003). *Optimización del control de la resistencia del hormigón de la obra de la depuradora del Besós mediante ultrasonidos*. Trabajo especial de grado. Inédito. Universidad Politécnica de Cataluña. Barcelona, España. Disponible: https://upcommons.upc.edu/pfc/handle/2099.1/6154
- International Atomic Energy Agency, Training Course Series No 17 (2002). *Guidebook on non-destructive testing of concrete structures.* Vienna.
- Jones, R., & Facaoaru, I. (1969). *Recommendations for testing concrete by the ultrasonic pulse method*. Materials and Structures, 2(4), 275-284.
- Martínez R. Jairo A., Vitola O Jaime, Sandoval Susana del Pinar C, (2007) *Fundamentos teórico-prácticos del ultrasonido*. Tecnura, 10(20) 4-18. Disponible en http://tecnura.udistrital.edu.co/ojs/index.php/revista/article/viewFile/201/199
- Norma COVENIN 28:1993. Cemento Portland. Especificaciones.
- Norma COVENIN 255:1998. Agregados. Determinación de la composición granulométrica.
- Norma COVENIN 258:1977. Método de ensayo para la determinación por lavado del contenido de materiales más finos que el cedazo COVENIN 74 micras en agregados minerales.
- Norma COVENIN 266:1977. Método de ensayo para determinar la resistencia al desgaste de agregados gruesos de menores de 38,1 mm (1 ½") por medio de la máquina de Los Ángeles.
- Norma COVENIN 268:1998. Agregado Fino. Determinación de la densidad y la absorción.
- Norma COVENIN 269:1998. Agregado Grueso. Determinación de la densidad y la absorción.
- Norma COVENIN 277:2000. Concreto. Agregado. Requisitos.
- Norma COVENIN 316:00. Barras y rollos de acero con resaltes para uso como refuerzo estructural.

- Norma COVENIN 338:2002. Concreto. Método para la elaboración, curado y ensayo a compresión de cilindros de concreto.
- Norma COVENIN 339:2003. Concreto. Método para la medición del asentamiento con el Cono de Abrams.
- Norma COVENIN 354:2001. Concreto. Método para el mezclado en el laboratorio.
- Norma COVENIN 487:1993. Cemento Portland. Determinación de la Finura por Medio del Aparato Blaine de Permeabilidad.
- Norma COVENIN 493:1992. Cemento Portland. Determinación del Tiempo de Fraguado por la Aguja de Vicat.
- Norma COVENIN 803:89. Aceros Definiciones y Clasificaciones
- Norma COVENIN 1375:1979. Método de ensayo para determinar por secado el contenido de humedad total y superficial en el agregado.
- Norma COVENIN 1609:1980. Metodo de Ensayo para la Determinación de la Dureza Esclerometrica en Superficies de Concreto Endurecidas.
- Norma COVENIN 1681:1980. Método de ensayo para determinar la velocidad de propagación de ondas en el concreto.
- Norma COVENIN 1753:1987. Estructuras de concreto armado para edificaciones análisis y diseño.
- Norma COVENIN 1976:2003. Evaluación y métodos de ensayo.
- Norma COVENIN 3549:1999. Tecnología del Concreto. Manual de Elementos de Estadística y Diseño de Experimentos
- Pardo R. Francisco J. y Pérez G. Eduar R., Jorge-Louis (2003). Evaluación del efecto de las barras de refuerzo del concreto sobre las medidas de velocidad de pulso ultrasónico. Trabajo especial de grado. Inédito. Universidad Industrial de

- Santander. Bucaramanga, Colombia. Disponible: http://repositorio.uis.edu.co/jspui/handle/123456789/1302
- Porrero S., J., Ramos R, C., Grases G., J., y Gilberto J., V. (2012). Manual del Concreto Estructural. Caracas: SIDETUR. 3ra. Edición.
- Pucinotti, R. y otros (2007). *Influence of steel reinforcement on ultrasonic pulses velocity*.

 Disponible:http://www.ndt.net/article/hsndt2007/files/Pucinotti_Hinterholz_etal.p
- Quintero Ortíz, L. A., Herrera, J., Corzo, L., & García, J. (2011). Relación entre la resistencia a la compresión y la porosidad del concreto evaluada a partir de parámetros ultrasónicos. Revista Ion, 24(1), 69-76.
- Rodríguez Fadragas, C., & Rodríguez González, M. (2012). Dependence of ultrasonic pulse propagation velocity on free water content in concrete structure under tropical climate conditions. Materiales de Construcción, 62(305), 39-53.
- Strafella, A., Thomas F. y Rengel, H. (1991). *Influencia de algunos factores en la evaluación ultrasónica del concreto*. Trabajo especial de grado. Inédito. Universidad Central de Venezuela, Caracas.
- Toralles-Carbonaria, B. M., Cavalaro, S. H., Castanha, J. C., Guacelli, P. A. G., & Silva, C. C. (2010). *Utilization of the ultrasonic method to evaluate the properties of high performance concrete.* Revista IBRACON de Estruturas e Materiais, 3(4), 494-511.
- Tovar, R. y Valenzuela, A. (1990). Técnicas de medición ultrasónica en la calidad del concreto. Trabajo especial de grado. Inédito. Universidad Central de Venezuela, Caracas
- Vásquez, C. Luis A. (2003). Estudio y caracterización mediante ensayos no destructivos con ultrasonido de materiales compuestos concreto raspadura de caucho (ripio).


 Trabajo especial de grado. Inédito. Universidad Central de Venezuela, Caracas.

Disponible:http://saber.ucv.ve/xmlui/bitstream/123456789/2192/1/TRABAJO%20 ESPECIAL%20DE%20GRADO%20.pdf

Yaman, I. O., Inci, G., Yesiller, N., & Aktan, H. M. (2001). *Ultrasonic pulse velocity in concrete using direct and indirect transmission*. ACI Materials Journal, 98(6), 450.

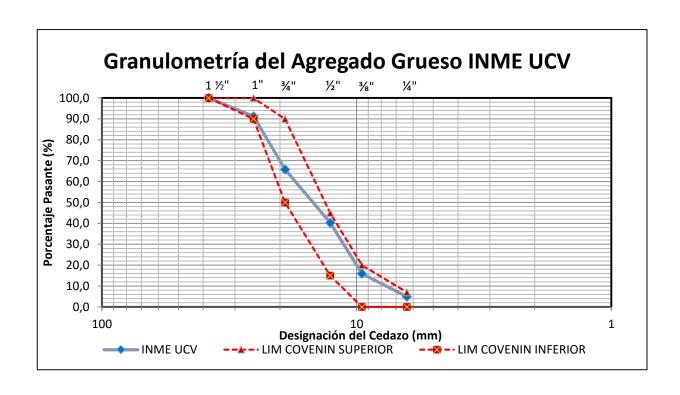
ANEXOS

Anexo # 1. Ensayo de Cemento (FNC)

Cargo: Jefe de Control de Calidad

Cargo : Analista de l

Anexo # 2. Ensayo de Agregado Grueso (FNC)


ENSA MATERIAL:	YO DE AG			Código del Doc	umanta-		PC-CC-R-02)	
MATERIAL:		REGADO GR	UESO	Revisión: Fecha de Elabo		AND THE RESERVE	3 Abr-11	Nº	de Pág de 1
MATERIAL:			DIEDDA NO	1			Carac	cas, 2-Feb-2015	_
ENSAYO SOLICITA	DO DOD		PIEDRA N°1 F.N.C. CONCRETO						-
MUESTRA SACADA		2.	INFORME MENSUA	I		FECHA: ENERO			_
MUESTRA SACABA		5.	IN ORDER MENSON			FECHA: ENERO			_
PROCEDENCIA:		DISTRITO CAPITAL							1
JSO REQUERIDO:		AGREGADO PARA	CONCRETO						_
MATERIAL PRODU	CIDO O VENDI	DO POR:	DISTRITO CA	PITAL				-	_
		ENS	SAYO GRANULO	METRICO NVF 25	5:2006				7
CEDAZO	MASA	% RETENIDO	RETENIDOS	% PASANTES		GRAFICO GRANUI AGREGADO G		· · · · · · · · · · · · · · · · · · ·	
	RETENIDA		ACUMULADOS	ACUMULADOS	110 100	AGREGADO G	RUESU		
3 mm (2½")				 	90				
0 mm (2")					80 70				-
7,5 mm (1½")		0,0	0,0	100,0	PASANTES 00 00 00 00	X			
25 mm (1")	4032	40,3	40,3	59,7	50 BAS				
9 mm (3/4")	4391	43,9	84,3	15,7	40				
12,5 mm (1/2")	1373	13,7	* 98,0	2,0	0 10 00 00 00 00 00 00 00 00 00 00 00 00				
,5 mm (3/8")	116	1,2	99,2	0,8	D 10	X			
,3 mm (1/4")	22	0,2	99,4	0,6	<u>8</u> 0		***	* *	
. 1/4	62	0,6	100,0	0,0	37,5 m	n (11/2") 25 mm (1") 19 mm (3/4")	nm (1 ^{12")} TAMJEE'S 6,3 mm (1)	4") P.114	
Peso T.	9.996 g				37,5 m	25" 19 m. 125	TAMJEËS 63 m		
cs0 1.	9.990 g					Pic found	Large de Home	Date to Norre	
DENSIDAD NVF 26	9:2006				PORCE	ENTAJE DE ABSORCION N	NVF 269:2006		_
Desidad del H2O (d):		997,97000 g/ml							
Masa en el Aire (M2):		8,000 g			Masa S	SŞ (M ₂): 8.000 g			
Masa en el Agua (M ₃)):	5.050 g			Masa Se	eco (M ₁): 7.916 g			
DENSIDAD (ρ)		2,707 g/ml			PORC	ABS (A):	1,06 %		
MASA UNITARIA S	SUELTA NVF 2	63:2008			MASA	UNITARIA COMPACTA N	VF 263:2008		
emperatura:					Tempe	ratura:	Land the same of		
Masa Unitario H2O:		1002,7	ř.		Masa L	Initario H2O:	1002,7	_	
Masa del Agua (m _{na}	e de la company	14,108 Kg				lel Agua(m _{na)} (m _b -t):	14,108 Kg		
Masa Recipiente (t)).	7,530 Kg				Recipiente(t):	7,530 Kg		
/lasa Muest. + Reci	ip. (m _{ba}):	27,695 Kg				Muest. + Recip. (m _{ba}):	29,925 Kg		
Masa Muestra:		20,165 Kg				Auestra:	22,395 Kg	-	
actor (F):		71,07315 m³		1	Factor		71,07315 m³		7
IASA UNITARIA S	SUELTA (MU ss:	_s):	1.433 Kg\m³		MASA	UNITARIA COMPACTA (M	U sss):	1.592 Kg\m³	
'AMIZ # 200 NVF 2	258:2009			PORCENTAJE DE P		S, LARGAS O PLANI-LAR	RGAS) NVF 264:2007		
Masa seca inic. (Mo):		5.000 g		CONTEO MANUAL	ACION ACION	AL DE CEMEN CO			
Aasa seca D. Lav. (M	(₁);	4.956 g		Número Particulas M	95	60	Masa Particulas	and the second second second	
FAMIZ # 200:		0,88%		Numero de Part Large	is:	7 26	Masa Particulas	Series and the series and	
				% Part. Largas	a CS	> 43	% Particulas Lar		#¡DIV/0!
				Numero de Part. Plana		ncia de 20	Masa Particula I		4.757
				% Part. Planas:	Br	11ZACIOH33	% Particulas Pla		#¡DIV/0!
				Numero de Part. Plani	largas:	3/46		anas+Larg. (N _{p+l})	#-DIME
				% Part. Planilargas:	ON OF CONC	AN ANTO 77	% Particulas Pla	nas+Largas	#¡DIV/0
					-1843				

Anexo # 3. Ensayo de Agregado Fino (FNC)

, GO VOI 102	Bolivarian uela	Ministerio del Pode para Industrias	r Popular		2M J	UVENTUA BICENTENARIA	Corporacion Socialista del Comento, S.A.	ABBIGA NACIO- PL CEMENT
				Co	ódigo del Docum	ento:	PC-CC-R-01	
ENS	SAYO DE A	GREGADO FIN	0	Revisión:	The second secon	3		Nº de Pá
				Fecha de Elabora	ación:	Mar-11		1 de 1
		ADENA (Estados I	214-1		-		Caracas,	4-Feb-2015
MATERIAL:	o non.	LABORATORIO	Planta)					
ENSAYO SOLICITAD		JONATHAN BENITEZ	,		FECHA:	ENERO		
IUESTRA SACADA I INTREGADO POR:	POR:	JONATHAN BENITEZ			FECHA:	ENERO		
ROCEDENCIA:		FNC CONCRETO PL	The state of the s		- Theria.	LINERO		
ISO REQUERIDO:		AGREGADO PARA O						
ROCEDENCIA::		PUENTEAREAS	ONOILE					
ROCEDENCIA		TOENTERNERO	ENGLY COLL	W OMETRICO NAT	255 2007			
	1 11.01	1		ULOMETRICO NVF				
CEDAZO	MASA RETENIDA	% RETENIDO	RETENIDOS ACUMULADOS	% PASANTES ACUMULADOS	100 ***	AFICO GRANULOMETRIC	O AGREGADO FINO	
37,5mm (1/2")		•			90 1	1000		
9,5 mm (3/8")	13	1,3	1,3	98,7	80 N	1.00		
6,3 mm (1/4")		0,0	1,3	98,7	48 70	. 11 "	``	
4,75 mm (# 4)	203	20,2	21,5	> 78,5	POR CENTAL PASANTE 20 20 20 20 20 20 20 20 20 20 20 20 20	1.	0 1	
2,76 mm (# 8)	203	20,2	41,8	58,2	40 A0	1, 1	(1)	
1,18 mm (# 16)	178	17,7	59,5	40,5	N 30	1.	11:00	
600 μm (# 30)	150	15,0	74,5	25,5		- '		
300 μm (#50)	153	15,3	89,7	10,3	10			
150 µm (# 100)	73	7,3	, 97,0	3,0	9,5 6,3	4,75 2,76 1,	18 600 300	150 75 µm
75 μm (# 200)	15	1,5	98,5	1,5	mm mm	mm (# mm (#FANN	F(%) μm (# μm	µm (# (# 200)
Fondo	15	1,5	100,0	0,0	(3/8") (1/4"		6) 30) (#50)	100) Limite Grueso
Peso T.	1.003 g				— — — Limite N	tedio — — — Lin	nita Medio	W
DENSIDAD NVF 268:	1998	205 g			PORCENTAJE DE A Masa SSS (M):	MODULO DE BSORCION NVF 268:19 500 g	FINURA (MF) =	3,85
DENSIDAD NVF 268: Masa del Envase (Mo): Masa del Envase+H2O (M. del Envase+H2O+Ma Masa de La Muestra S. S Desidad del H2O (d):	(Ma): uestra (Mp) S.S (M):	704 g 1.014 g 500 g 0,99797 cm ³				BSORCION NVF 268:1		3,85
DENSIDAD NVF 268: Masa del Envase (Mo): Masa del Envase+H2O (M. del Envase+H2O+Ma Masa de La Muestra S. S Desidad del H2O (d):	(Ma): uestra (Mp) S.S (M):	704 g 1.014 g 500 g			Masa SSS (M): Masa Seco (M ₁):	BSORCION NVF 268:1 500 g 491 g		3,85
DENSIDAD NVF 268: Masa del Envase (Mo): Masa del Envase+H2O (M. del Envase+H2O+M. Masa de La Muestra S.S. Desidad del H2O (d): DENSIDAD (ps (ch))::	(Ma): uestra (Mp) S.S (M):	704 g 1.014 g 500 g 0,99797 cm ³ 2.626 g/cm ³			Masa SSS (M): Masa Seco (M ₁): PORC ABS (A):	BSORCION NVF 268:1 500 g 491 g	998	3,85
DENSIDAD NVF 268: fasa del Envase (Mo): fasa del Envase+H2O (f. del Envase+H2O+M: fasa de La Muestra S. Desidad del H2O (d): DENSIDAD (ps (ch)):: ### ASA UNITARIA SU	(Ma): uestra (Mp) S.S (M):	704 g 1.014 g 500 g 0,99797 cm ³ 2.626 g/cm ³			Masa SSS (M): Masa Seco (M ₁): PORC ABS (A): MASA UNITARIA C Temperatura:	500 g 491 g 1,83 %	998 	3,85
DENSIDAD NVF 268: fasa del Envase+H2O (f. del Envase+H2O+Mt fasa de La Muestra S. S residad del H2O (d): DENSIDAD (ps (ch)):: fasa Unitaria SU femperatura: fasa Unitario H2O:	(Ma): uestra (Mp) S.S (M): :	704 g 1.014 g 500 g 0,99797 cm³ 2,626 g/cm³ 2008 22 °C 997,6268			Masa SSS (M): Masa Seco (M ₁): PORC ABS (A): MASA UNITARIA C Temperatura: Masa Unitario H2O:	BSORCION NVF 268:1: 500 g 491 g 1,83 % OMPACTA NVF 263:20	998 	3,85
DENSIDAD NVF 268: fasa del Envase+H2O (f. del Envase+H2O+Mt fasa de La Muestra S. S residad del H2O (d): DENSIDAD (ps (ch)):: fasa Unitaria SU femperatura: fasa Unitario H2O:	(Ma): uestra (Mp) S.S (M): :	704 g 1.014 g 500 g 0,99797 cm³ 2,626 g/cm³ 2008 22 °C 997,6268 2,815 Kg			Masa SSS (M): Masa Seco (M ₁): PORC ABS (A): MASA UNITARIA C Temperatura: Masa Unitario H2O: Masa del Agua (m _{na})	BSORCION NVF 268:1: 500 g 491 g 1,83 % OMPACTA NVF 263:20	998 08 22 °C 997,6268 2,815 Kg	3,85
DENSIDAD NVF 268: Masa del Envase+H2O (M. de	(Ma): uestra (Mp) S.S (M): : : : : : : : : : : : : : : : : : :	704 g 1.014 g 500 g 0,99797 cm³ 2,626 g/cm³ 2008 22 °C 997,6268 2,815 Kg 6,558 Kg			Masa SSS (M): Masa Seco (M ₁): PORC ABS (A): MASA UNITARIA C Temperatura: Masa Unitario H2O: Masa del Agua (m _{na}) Masa Recipiente (t):	BSORCION NVF 268:1: 500 g 491 g 1,83 % OMPACTA NVF 263:20 (m _b -t):	998 08 22 °C 997,6268 2,815 Kg 6,558 Kg	3,85
DENSIDAD NVF 268: Masa del Envase+H2O (M. de	(Ma): uestra (Mp) S.S (M): : : : : : : : : : : : : : : : : : :	704 g 1.014 g 500 g 0,99797 cm³ 2,626 g/cm³ 2008 22 °C 997,6268 2,815 Kg 6,558 Kg 11,098 Kg			Masa SSS (M): Masa Seco (M ₁): PORC ABS (A): MASA UNITARIA C Temperatura: Masa Unitario H2O: Masa del Agua (m _{na}) Masa Recipiente (t): Masa Muest. + Recip	BSORCION NVF 268:1: 500 g 491 g 1,83 % OMPACTA NVF 263:20 (m _b -t):	998 22 °C 997,6268 2,815 Kg 6,558 Kg 11,605 Kg	3,85
DENSIDAD NVF 268: flasa del Envase (Mo): flasa del Envase+H2O (fl. del Envase+H2O (fl. del Envase+H2O (fl. del Envase+H2O (flasa de La Muestra S. S. desidad del H2O (d): densibad (ps (ch)):: flasa Unitario H2O: flasa del Agua (mna) (flasa Recipiente (t): flasa Muestra:	(Ma): uestra (Mp) S.S (M): : : : : : : : : : : : : : : : : : :	704 g 1.014 g 500 g 0,99797 cm³ 2,626 g/cm³ 2008 22 °C 997,6268 2,815 Kg 6,558 Kg 11,098 Kg 4,540 Kg			Masa SSS (M): Masa Seco (M ₁): PORC ABS (A): MASA UNITARIA C Temperatura: Masa Unitario H2O: Masa del Agua (m _{na}) Masa Recipiente (t): Masa Muest. + Recipimasa Muestra:	BSORCION NVF 268:1: 500 g 491 g 1,83 % OMPACTA NVF 263:20 (m _b -t):	998 22 °C 997,6268 2,815 Kg 6,558 Kg 11,605 Kg 5,047 Kg	3,85
ENSIDAD NVF 268: fasa del Envase (Mo): fasa del Envase+H2O (f. del Envase+H2O (d): fasa de La Muestra S. S. fasidad del H2O (d): fensidad del H2O (d): fensidad del H2O (d): fensidad del H2O (d): fensidad del H2O (d): fasa Unitario H2O: fasa del Agua (mna) (fasa del Agua (mna) (fasa Recipiente (t): fasa Muestra: fasa Muestra:	(Ma): uestra (Mp) S.S (M): : : : : : : : : : : : : : : : : : :	704 g 1.014 g 500 g 0,99797 cm³ 2,626 g/cm³ 2008 22 °C 997,6268 2,815 Kg 6,558 Kg 11,098 Kg			Masa SSS (M): Masa Seco (M ₁): PORC ABS (A): MASA UNITARIA C Temperatura: Masa Unitario H2O: Masa del Agua (m _{na}) Masa Recipiente (t): Masa Muest. + Recip	BSORCION NVF 268:1: 500 g 491 g 1,83 % OMPACTA NVF 263:20 (m _b -t):	998 22 °C 997,6268 2,815 Kg 6,558 Kg 11,605 Kg	3,85
ENSIDAD NVF 268: fasa del Envase (Mo): fasa del Envase+H2O (f. del Envase+H2O (d): fasa de La Muestra S.S. residad del H2O (d): fensibad (ps (ch)):: fasa Unitaria SU remperatura: fasa Unitario H2O: fasa del Agua (mna) (fasa Recipiente (t): fasa Muest. + Recipiente fasa Muestra: fasa Muestra: fasa Muestra: factor (F):	(Ma): uestra (Mp) S.S (M): : : (m _b -t): (m _{ba}):	704 g 1.014 g 500 g 0,99797 cm³ 2,626 g/cm³ 2008 22 °C 997,6268 2,815 Kg 6,558 Kg 11,098 Kg 4,540 Kg	1.609 Kg\m²	so(th.	Masa SSS (M): Masa Seco (M ₁): PORC ABS (A): MASA UNITARIA C Temperatura: Masa Unitario H2O: Masa del Agua (m _{na}) Masa Recipiente (t): Masa Muest. + Recip Masa Muestra: Factor (F):	BSORCION NVF 268:1: 500 g 491 g 1,83 % OMPACTA NVF 263:20 (m _b -t):	22 °C 997,6268 2,815 Kg 6,558 Kg 11,605 Kg 5,047 Kg 354,39673 m³	3,85
DENSIDAD NVF 268: dasa del Envase (Mo): dasa del Envase+H2O (M. del Envase+H2O+M. dasa de La Muestra S. Desidad del H2O (d): DENSIDAD (ps (ch)):: dasa UNITARIA SU dasa del Agua (m _{na)} (dasa del Agua (m _{na)} (dasa Muestra: dasa Muestra: dasa Muestra: dasa Muestra:	(Ma): uestra (Mp) S.S (M): : : : : : : : : : : : : : : : : : :	704 g 1.014 g 500 g 0,99797 cm³ 2,626 g/cm³ 2008 22 °C 997,6268 2,815 Kg 6,558 Kg 11,098 Kg 4,540 Kg	1000	SOCIALIS A	Masa SSS (M): Masa Seco (M ₁): PORC ABS (A): MASA UNITARIA C Temperatura: Masa Unitario H2O: Masa del Agua (m _{na}) Masa Recipiente (t): Masa Muest. + Recip Masa Muestra: Factor (F):	BSORCION NVF 268:1: 500 g 491 g 1,83 % OMPACTA NVF 263:20 (m _b -t): 0. (m _{ba}):	998 22 °C 997,6268 2,815 Kg 6,558 Kg 11,605 Kg 5,047 Kg 354,39673 m³	
MENSIDAD NVF 268: fasa del Envase (Mo): fasa del Envase+H2O (Mo): fasa del Envase+H2O (Mo): fasa del Envase+H2O (Mo): fasa del La Muestra S. Sesidad del H2O (Mo): fasa del H2O (Mo): fasa UNITARIA SU fasa UNITARIA SU fasa del Agua (Mo) fasa Muestra: fasa Mue	(Ma): uestra (Mp) S.S (M): : : : : : : : : : : : : : : : : : :	704 g 1.014 g 500 g 0,99797 cm³ 2,626 g/cm³ 2008 22 °C 997,6268 2,815 Kg 6,558 Kg 11,098 Kg 4,540 Kg	1000	SOCIALIS COMMANDE CEMPLE COMMANDE CEMPLE COMMANDE CEMPLE C	Masa SSS (M): Masa Seco (M ₁): PORC ABS (A): MASA UNITARIA C Temperatura: Masa Unitario H2O: Masa del Agua (m _{na}) Masa Recipiente (t): Masa Muest. + Recip Masa Muestra: Factor (F):	BSORCION NVF 268:1: 500 g 491 g 1,83 % OMPACTA NVF 263:20 (m _b -t): 0. (m _{ba}): DMPACTA (MU sss): USPENSIÓN NVF 259:2	998 22 °C 997,6268 2,815 Kg 6,558 Kg 11,605 Kg 5,047 Kg 354,39673 m³	
MENSIDAD NVF 268: fasa del Envase (Mo): fasa del Envase+H2O (f. del Envase+H2O (d): fasa de La Muestra S.S. fesidad del H2O (d): fensibad (g): fensibad (g): fensibad (g): fasa de La Muestra S.S. fesidad del H2O (d): fensibad (g): fensibad (g): fasa Unitario H2O: fasa del Agua (mna) (fasa Recipiente (f): fasa del Agua (g): fasa Muestra: fasa Muestra: factor (F): fasa Aunitaria SU AMIZ # 200 NVF 25: fasa sec. inic (Mo):	(Ma): uestra (Mp) S.S (M): : : : : : : : : : : : : : : : : : :	704 g 1.014 g 500 g 0,99797 cm ³ 2.626 g/cm ³ 2008 22 °C 997,6268 2,815 Kg 6,558 Kg 11,098 Kg 4,540 Kg 354,39673 m ³	1000	SCCIALIS COMMANDE COM	Masa SSS (M): Masa Seco (M ₁): PORC ABS (A): MASA UNITARIA C Temperatura: Masa Unitario H2O: Masa del Agua (m _{na}) Masa Recipiente (t): Masa Muest. + Recip Masa Muestra: Factor (F): MASA UNITARIA C PORCENTAJE EN S	BSORCION NVF 268:1: 500 g 491 g 1,83 % OMPACTA NVF 263:20 (m _b -t): 0. (m _{ba}): DMPACTA (MU sss): USPENSIÓN NVF 259:2	998 22 °C 997,6268 2,815 Kg 6,558 Kg 11,605 Kg 5,047 Kg 354,39673 m³	
DENSIDAD NVF 268: dasa del Envase (Mo): dasa del Envase+H2O (d. del Envase+H2O (d): DENSIDAD (ps (ch)):: DENSIDAD (ps (ch)):: dasa del Agua (mna) (dasa Unitario H2O: dasa del Agua (mna) (dasa Recipiente (t): dasa Muest. + Recip. dasa Muest. + Recip. dasa Muestra: actor (F): dasa sec. inic. (Mo): dasa sec. inic. (Mo): dasa sec. inic. (Mo): dasa Sec.D.Lav (Mi):	(Ma): uestra (Mp) S.S (M): : : : : : : : : : : : : : : : : : :	704 g 1.014 g 500 g 0,99797 cm³ 2.626 g/cm³ 2008 22 °C 997,6268 2,815 Kg 6,558 Kg 11,098 Kg 4,540 Kg 354,39673 m³	1000	SOCIALIS A	Masa SSS (M): Masa Seco (M ₁): PORC ABS (A): MASA UNITARIA C Temperatura: Masa Unitario H2O: Masa del Agua (m _{na}) Masa Recipiente (t): Masa Muest. + Recip Masa Muestra: Factor (F): MASA UNITARIA CC PORCENTAJE EN S Cant de Mat en Suspen	BSORCION NVF 268:1: 500 g 491 g 1,83 % OMPACTA NVF 263:20 (m _b -t): DMPACTA (MU sss): USPENSIÓN NVF 259:2 ción:	998 22 °C 997,6268 2,815 Kg 6,558 Kg 11,605 Kg 5,047 Kg 354,39673 m³	
MASA UNITARIA SU MASA U	(Ma): uestra (Mp) S.S (M): : : (mb-4): (mb-5): ELTA (MU sss): 8:2009	704 g 1.014 g 500 g 0,99797 cm³ 2,626 g/cm³ 2008 22 °C 997,6268 2,815 Kg 6,558 Kg 11,098 Kg 4,540 Kg 354,39673 m³ 1.063 g 1.011 g 4,89%	1000	SOCIALIS COMAL DE CENTRAL DE CENT	Masa SSS (M): Masa Seco (M ₁): PORC ABS (A): MASA UNITARIA C Temperatura: Masa Unitario H2O: Masa del Agua (m _{na}) Masa Recipiente (t): Masa Muestra: Factor (F): MASA UNITARIA CC PORCENTAJE EN S Cant de Mat en Suspen Cant de Muestra: PORCENTAJE EN S	BSORCION NVF 268:1: 500 g 491 g 1,83 % OMPACTA NVF 263:20 (m _b -t): DMPACTA (MU sss): USPENSIÓN NVF 259:2 ción: USPENSIÓN	998 22 °C 997,6268 2,815 Kg 6,558 Kg 11,605 Kg 5,047 Kg 354,39673 m³	
DENSIDAD NVF 268: dasa del Envase (Mo): dasa del Envase+H2O (M. del Envase+H2O (M. del Envase+H2O) di del Envase+H2O (M. del Envase+H2O) di del Envase+H2O (M. del Envase+H2O) dasa del La Muestra S. S. desidad del H2O (d): DENSIDAD (ps (ch)):: disasa Unitario H2O; diasa Unitario H2O; diasa del Agua (mna) (Masa Muestra: Factor (F): diasa Muestra: Factor (F): diasa sec. inic. (Ma): diasa Sec.D.Lav (M1): CAMIZ # 200 (F): MPUREZAS ORGAN	(Ma): uestra (Mp) S.S (M): : : (mb-4): (mb-5): ELTA (MU sss): 8:2009	704 g 1.014 g 500 g 0,99797 cm³ 2,626 g/cm³ 2008 22 °C 997,6268 2,815 Kg 6,558 Kg 11,098 Kg 4,540 Kg 354,39673 m³ 1.063 g 1.011 g 4,89%	1000	SOCIALIS COMMANDE CENTRAL COMMANDE COMM	Masa SSS (M): Masa Seco (M ₁): PORC ABS (A): MASA UNITARIA C Temperatura: Masa Unitario H2O: Masa del Agua (m _{na}) Masa Recipiente (t): Masa Muestra: Factor (F): MASA UNITARIA CC PORCENTAJE EN S Cant de Mat en Suspen Cant de Muestra: PORCENTAJE EN S	BSORCION NVF 268:1: 500 g 491 g 1,83 % OMPACTA NVF 263:20 (m _b -t): OMPACTA (MU sss): USPENSIÓN NVF 259:2 ción: USPENSIÓN DRUROS Y SULFATOS	998 22 °C 997,6268 2,815 Kg 6,558 Kg 11,605 Kg 5,047 Kg 354,39673 m³	
DENSIDAD NVF 268: fasa del Envase (Mo): fasa del Envase+H2O (M. del Envase+H2O) f. del Envase+H2O+Mt fasa de La Muestra S. S fesidad del H2O (d): DENSIDAD (ps (ch)):: fasa Unitario H2O: fasa del Agua (mna) (Masa del Agua (mna) (Masa del Agua (mna) (Masa Muestra: fasca Muestra: factor (F): fasa Muestra: factor (F): fasa sec. inic. (Ma): fasa Sec.D.Lav (M1): famiz # 200 (F):	(Ma): uestra (Mp) S.S (M): : : (mb-4): (mb-5): ELTA (MU sss): 8:2009	704 g 1.014 g 500 g 0,99797 cm³ 2,626 g/cm³ 2008 22 °C 997,6268 2,815 Kg 6,558 Kg 11,098 Kg 4,540 Kg 354,39673 m³ 1.063 g 1.011 g 4,89%	1000	SOCIALIS A COMMANDE CONCERNATION OF THE COMMAND OF	Masa SSS (M): Masa Seco (M ₁): PORC ABS (A): MASA UNITARIA C Temperatura: Masa Unitario H2O: Masa del Agua (m _{na}) Masa Recipiente (t): Masa Muest. + Recip Masa Muestra: Factor (F): MASA UNITARIA C PORCENTAJE EN S Cant de Mat en Suspen Cant de Muestra: PORCENTAJE EN S PRESENCIA DE CLO	BSORCION NVF 268:1: 500 g 491 g 1,83 % OMPACTA NVF 263:20 (m _b -t): OMPACTA (MU sss): USPENSIÓN NVF 259:2 ción: USPENSIÓN ORUROS Y SULFATOS ros: SI V NO	998 22 °C 997,6268 2,815 Kg 6,558 Kg 11,605 Kg 5,047 Kg 354,39673 m³	
DENSIDAD NVF 268: fasa del Envase (Mo): fasa del Envase+H2O+M fasa del Envase+H2O+M fasa del Envase+H2O+M fasa del La Muestra S.S. fesidad del H2O (d): fensidad del H2O (ps (ch)):: fasa Unitario H2O: fasa Unitario H2O: fasa del Agua (m-a) (fasa Muestra: fasa Muestra: factor (F): fasa Aunitaria SU famiz # 200 NVF 25: fasa sec. inic. (Ma): fasa Sec.D.Lav (M1): famiz # 200 (F): fam	(Ma): LUESTRA (Mp) S.S. (M): LUELTA NVF 263:2 (mb-4): LUELTA (MU sss): ELTA (MU sss): 8:2009	704 g 1.014 g 500 g 0,99797 cm³ 2,626 g/cm³ 2008 22 °C 997,6268 2,815 Kg 6,558 Kg 11,098 Kg 4,540 Kg 354,39673 m³ 1.063 g 1.011 g 4,89%	1000	SOCIALIS A COMMANDE CONTROL OF CO	Masa SSS (M): Masa Seco (M ₁): PORC ABS (A): MASA UNITARIA C Temperatura: Masa Unitario H2O: Masa del Agua (m _{na}) Masa Recipiente (t): Masa Muestra: Factor (F): MASA UNITARIA C PORCENTAJE EN S Cant de Mat en Suspen Cant de Muestra: PORCENTAJE EN S PRESENCIA DE CLO Cloru	BSORCION NVF 268:1: 500 g 491 g 1,83 % OMPACTA NVF 263:20 (m _b -t): OMPACTA (MU sss): USPENSIÓN NVF 259:2 ción: USPENSIÓN ORUROS Y SULFATOS TOS: SI ✓ NO	998 22 °C 997,6268 2,815 Kg 6,558 Kg 11,605 Kg 5,047 Kg 354,39673 m³	
ENSIDAD NVF 268: fasa del Envase (Mo): fasa del Envase+H2O (f. del Envase+H2O+Mt fasa de La Muestra S. S residad del H2O (d): fensidad del H2O (d): fensidad del H2O (d): fensidad del H2O (d): fasa Unitario H2O: fasa Unitario H2O: fasa del Agua (mna) (f. fasa del Agua (mna) (f. fasa Huestra: fasa del Agua (mna) (f. fasa Muestra: fasa Muestra: fascipiente (f): fasa Muestra: fasa Unitario H2O: fasa Sec.D.Lav (Mn):	(Ma): LUESTRA (Mp) S.S. (M): LUELTA NVF 263:2 (mb-4): LUELTA (MU sss): ELTA (MU sss): 8:2009	704 g 1.014 g 500 g 0,99797 cm³ 2,626 g/cm³ 2008 22 °C 997,6268 2,815 Kg 6,558 Kg 11,098 Kg 4,540 Kg 354,39673 m³ 1.063 g 1.011 g 4,89%	1000	SOCIALIS COMMANDE CENTRAL DE CENT	Masa SSS (M): Masa Seco (M ₁): PORC ABS (A): MASA UNITARIA C Temperatura: Masa Unitario H2O: Masa del Agua (m _{na}) Masa Recipiente (t): Masa Muestra: Factor (F): MASA UNITARIA C PORCENTAJE EN S Cant de Mat en Suspen Cant de Muestra: PORCENTAJE EN S PRESENCIA DE CLO Cloru	BSORCION NVF 268:1: 500 g 491 g 1,83 % OMPACTA NVF 263:20 (m _b -t): OMPACTA (MU sss): USPENSIÓN NVF 259:2 ción: USPENSIÓN ORUROS Y SULFATOS ros: SI ✓ NO tos: SI ✓ NO	998 22 °C 997,6268 2,815 Kg 6,558 Kg 11,605 Kg 5,047 Kg 354,39673 m³	

Anexo # 4. Ensayo de Agregado de Grueso IMME

GRAN	GRANULOMETRÍA AGREGADO GRUESO IMME-UCV										
Abertura [mm]	Cedazo [pulgadas]	Peso Retenido [g]	% Retenido	% Pasante							
38,1	1 1/2"	0	0,00	100,0							
25,4	1"	320	2,13	97,9							
19,1	3/4"	3809	25,39	72,5							
12,7	1/2"	3822	25,48	47,0							
9,53	3/8"	4663	31,09	15,9							
6,35	1/4"	1643	10,95	5,0							
-	FONDO	743	4,95	0,0							
	TOTAL	15000	100,00								

Anexo # 5. Control de horas empleadas en los Ensayos Ultrasonidos

		TABL	A A6.1: TIEMPO	OS DE MEI	DICIONES	DE VPU A	LOS 28 D	ÍAS			
ID	FECHA	TIPO	NOMBRE	HORA DE INICIO	HORA FINAL	DURA	CIÓN	CANT. LECT.	CANT. PUNTOS	TIEMPO APROX. POR LECTURA	TIEMPO APROX. POR PUNTO*
						[horas:min.]	[horas]			[min./lect.]	[min/pto.]
		Directo	Antonio Freites	08:00 a.m.	10:45 a.m.	02:45	2,75	63	21	2,6	7,8
Patrón	jueves, 07 de mayo de 2015	Semidirecto	Orlando Carrasco	10:45 a.m.	01:07 p.m.	02:22	2,37	63	21	2,3	6,9
Pat Pat	jueves, 07 de mayo de 2015	Indirecto	Antonio Freites	02:12 p.m.	04:34 p.m.	02:22	2,37	54	18	2,6	7,8
						Total:	7,48	180	60		
		Directo	Antonio Freites	07:17 a.m.	10:26 a.m.	03:09	3,15	114	38	1,7	5,1
E2 2RS7-10	viernes, 08 de mayo de 2015	Semidirecto	Orlando Carrasco	10:26 a.m.	01:30 p.m.	03:04	3,07	114	38	1,6	4,8
ZRS	vieines, oo de mayo de 2013	Indirecto	Orlando Carrasco	02:00 p.m.	05:08 p.m.	03:08	3,13	108	36	1,7	5,1
						Total:	9,35	336	112		
		Directo	Antonio Freites	07:41 a.m.	10:05 a.m.	02:24	2,40	63	21	2,3	6,9
315 315	l 11 da da 2015	Semidirecto	Orlando Carrasco	10:27 a.m.	12:35 p.m.	02:08	2,13	63	21	2,0	6,0
E3 SES 15	lunes, 11 de mayo de 2015	Indirecto	Antonio Freites	01:42 p.m.	04:10 p.m.	02:28	2,47	54	18	2,7	8,1
						Total:	7,00	180	60		
		Directo	Antonio Freites	07:10 a.m.	09:42 a.m.	02:32	2,53	63	21	2,4	7,2
E4 SRS 15	miércoles, 13 de mayo de 2015	Semidirecto	Orlando Carrasco	10:00 a.m.	12:21 p.m.	02:21	2,35	63	21	2,2	6,6
3R.8		Indirecto	Antonio Freites	01:30 p.m.	03:45 p.m.	02:15	2,25	54	18	2,5	7,5
						Total:	7,13	180	60		
	jueves, 14 de mayo de 2015	Directo	Antonio Freites	09:48 a.m.	01:45 p.m.	03:57	3,95	114	38	2,1	6,3
E5 Z2-10	viernes, 15 de mayo de 2015	Semidirecto	Orlando Carrasco	07:20 a.m.	10:27 a.m.	03:07	3,12	114	38	1,6	4,8
3RS7_1	vieines, 13 de mayo de 2013	Indirecto	Antonio Freites	10:38 a.m.	02:03 p.m.	03:25	3,42	108	36	1,9	5,7
						Total:	10,48	336	112		

^{*} A cada punto del elemento de concreto armado se le cálculo la Velocidad de Pulso Ultrasónico a partir de tres (3) lecturas de tiempo. Notas

^{1.-} En conjunto se evaluaron 404 puntos de los cinco elementos de concreto armado a partir de un total de 1212 lecturas de tiempo del equipo de ultrasonido

^{2.-} El tiempo necesario para realizar cada lectura es aproximadamente 2.1 ± 0.4 min

^{3.-} Se recomienda hacer al menos 3 lecturas para determinar la velocidad de pulso en un punto, con este criterio el tiempo necesario por punto es de 6.4 ± 1.1 min.

^{4.-} Se invirtieron 41.5 horas en la realización de los ensayos de velocidad de pulso ultrasónico para la edad de 28 días

			TABLA	A A6.2: TIEMPO	OS DE ME	DICIONES 1	DE VPU A L	OS 49 DÍ	AS			
ID	1	FECHA	TIPO	NOMBRE	HORA DE INICIO	HORA FINAL	DURAC	CIÓN	CANT. LECT.	CANT. PUNTOS	TIEMPO APROX. POR LECTURA	TIEMPO APROX. POR PUNTO*
							[horas:min.]	[horas]			[min./lect.]	[min/pto.]
			Directo	Antonio Freites	08:15 a.m.	10:21 a.m.	02:06	2,10	63	21	2,0	6,0
E1	jueves, 28 de mayo de 2015	Semidirecto	Orlando Carrasco	10:42 a.m.	12:55 p.m.	02:13	2,22	63	21	2,1	6,3	
EI	Pat	jueves, 28 de mayo de 2013	Indirecto	Antonio Freites	02:00 p.m.	04:09 p.m.	02:09	2,15	54	18	2,4	7,2
							Total:	6,47	180	60		
	<u> </u>	lunes, 01 de junio de 2015	Directo	Orlando Carrasco	07:07 a.m.	10:18 a.m.	03:11	3,18	114	38	1,7	5,1
E2	7-10	iunes, or de junio de 2013	Semidirecto	Orlando Carrasco	10:30 a.m.	01:48 p.m.	03:18	3,30	114	38	1,7	5,1
LZ	2RS7	martes, 02 de junio de 2015	Indirecto	Antonio Freites	02:06 p.m.	05:22 p.m.	03:16	3,27	108	36	1,8	5,4
							Total:	9,75	336	112		
			Directo	Orlando Carrasco	08:47 a.m.	11:10 a.m.	02:23	2,38	63	21	2,3	6,9
E3	2RS15	miércoles, 03 de junio de 2015	Semidirecto	Antonio Freites	11:20 a.m.	01:32 p.m.	02:12	2,20	63	21	2,1	6,3
ES	2R;	iniercoles, 03 de junio de 2013	Indirecto	Orlando Carrasco	02:10 p.m.	04:05 p.m.	01:55	1,92	54	18	2,1	6,3
							Total:	6,50	180	60		
			Directo	Antonio Freites	07:30 a.m.	09:40 a.m.	02:10	2,17	63	21	2,1	6,3
E4	3RS15	jueves, 04 de junio de 2015	Semidirecto	Orlando Carrasco	09:45 a.m.	11:58 a.m.	02:13	2,22	63	21	2,1	6,3
LŦ	38		Indirecto	Antonio Freites	01:00 p.m.	03:04 p.m.	02:04	2,07	54	18	2,3	6,9
							Total:	6,45	180	60		
	<u> </u>	jueves, 04 de junio de 2015	Directo	Antonio Freites	03:15 p.m.	05:50 p.m.	02:35	2,58	114	38	1,4	4,2
E5	3RS7-10	viernes, 05 de junio de 2015	Semidirecto	Orlando Carrasco	08:30 a.m.	11:19 a.m.	02:49	2,82	114	38	1,5	4,5
LJ	3RS	vicines, 05 de junio de 2015	Indirecto	Orlando Carrasco	11:30 a.m.	02:15 p.m.	02:45	2,75	108	36	1,5	4,5
							Total: 8	8,15	336	112		

^{*} A cada punto del elemento de concreto armado se le cálculo la Velocidad de Pulso Ultrasónico a partir de tres (3) lecturas de tiempo.

Notas

^{1.-} En conjunto se evaluaron 404 puntos de los cinco elementos de concreto armado a partir de un total de 1212 lecturas de tiempo del equipo de ultrasonido

^{2.-} El tiempo necesario para realizar cada lectura es aproximadamente 1.9 ± 0.3 min

^{3.-} Se recomienda hacer al menos 3 lecturas para determinar la velocidad de pulso en un punto, con este criterio el tiempo necesario por punto es de 5.8 ± 1 min.

^{4.-} Se invirtieron 37.3 horas en la realización de los ensayos de velocidad de pulso ultrasónico para la edad de 49 días

^{5.-} Entre las dos edades ensayadas (28 y 49) se invirtieron 78.8 horas en la realización de los ensayos de velocidad de pulso ultrasónico

Anexo # 6. Dimensiones de las probetas cilíndricas para resistencia a compresión

TABLA A6.1: DIMENSIONES Y PESO DE CILINDROS								
Me	ezcla E			Armado)				
Cilindro	Altura	Radio Inferior	Radio Central	Radio Superior	Peso			
	[cm]	[cm]	[cm]	[cm]	[Kg]			
	30,47	15,66	15,50	15,55				
1	30,51	15,60	15,64	15,62	13,31			
	30,44	15,61	15,36	15,54	13,31			
Promedio	30,47	15,62	15,50	15,57				
	30,61	15,17	15,46	15,10				
2	30,60	15,60	15,20	15,55	13,21			
	30,64	15,70	15,71	15,10	13,21			
Promedio	30,62	15,49	15,46	15,25				
	30,49	15,23	15,16	15,10				
3	30,54	14,92	15,10	15,10	12,61			
	30,49	15,06	15,15	15,09	12,01			
Promedio	30,51	15,07	15,14	15,10				
	30,09	14,96	14,91	14,87				
4	30,43	-	-	-	12,38			
	30,42	-	-	-	12,36			
Promedio	30,31	14,96	14,91	14,87				
	30,55	15,77	-	15,53				
5	30,56	15,53	-	15,79	13,60			
	30,49	15,55	-	15,61	13,00			
Promedio	30,53	15,62	-	15,64				
	30,36	15,14	14,99	14,74				
6	30,22	-	-	-	12,63			
	30,32	-	-	-	12,03			
Promedio	30,30	15,14	14,99	14,74				
	30,44	15,18	15,32	14,87				
7	30,43	15,37	15,26	14,96	12.15			
	30,29	15,51	15,57	14,91	13,15			
Promedio	30,39	15,35	15,38	14,91				
	30,43	15,35	15,35	15,24				
8	30,43	15,36	15,36	15,25	10.11			
	30,40	15,47	15,47	15,27	13,11			
Promedio	30,42	15,39	15,39	15,25				
	29,83	15,59	15,63	15,61				
9	29,92	15,75	15,14	15,50				
	29,90	15,70	15,40	15,45	13,27			
Promedio	29,88	15,68	15,39	15,52				
- I officult	2,00	10,00	10,00	10,02				

TABLA	A6.2:]	DIMENS CILINI		S Y PESC) DE					
Mezcla Elemento 2 (2RS7-10)										
Cilindro	Altura	Radio Inferior	Radio Central	Radio Superior	Peso					
	[cm]	[cm]	[cm]	[cm]	[Kg]					
	29,99	14,98	14,94	14,90						
1	29,97	15,09	15,05	14,94	12,24					
	29,96	15,12	15,08	14,89	12,24					
Promedio	29,98	15,06	15,02	14,91						
	30,61	15,09	15,14	15,40						
2	30,60	14,93	15,18	14,98	12,58					
•	30,64	15,08	15,11	15,01	12,36					
Promedio	30,62	15,03	15,14	15,13						
	29,90	14,92	15,00	14,98						
3	29,95	14,96	14,93	15,01	12,45					
•	30,02	15,02	15,03	15,00	12,43					
Promedio	29,96	14,97	14,99	15,00						
	30,00	14,94	14,95	14,92						
4	30,02	14,89	14,88	14,88	12,38					
•	29,99	14,89	14,87	14,89	12,36					
Promedio	30,00	14,91	14,90	14,90						
	28,89	15,02	14,99	14,88						
5	29,93	14,96	14,92	14,93	12.26					
	29,95	14,97	14,96	14,91	12,36					
Promedio	29,59	14,98	14,96	14,91						
	29,97	15,04	14,99	15,00						
6	30,04	15,02	14,92	14,85	_ 12.25					
,	30,10	15,02	14,96	15,02	12,35					
Promedio	30,04	15,03	14,96	14,96						

TABLA A6.3: DIMENSIONES Y PESO DE CILINDROS								
Aezcla	Elemen	to 3 (2R	(S15)					
Altura	Radio Inferior	Radio Central	Radio Superior	Peso				
[cm]	[cm]	[cm]	[cm]	[Kg]				
30,04	14,96	15,02	15,03					
30,02	15,03	14,96	14,92	10.52				
30,06	15,01	15,00	14,86	12,53				
30,04	15,00	14,99	14,94	-				
30,04	15,05	14,98	14,94					
30,03	14,96	15,24	14,99	10.24				
30,00	14,99	15,01	14,96	12,34				
30,02	15,00	15,07	14,96	-				
30,04	15,05	14,98	14,94					
30,03	14,96	15,24	14,99	10.10				
30,00	14,99	15,01	14,96	12,10				
30,02	15,00	15,07	14,96	-				
29,93	14,94	14,90	15,02					
29,96	14,88	14,99	14,95					
29,98	14,97	15,02	15,02	12,17				
29,96	14,93	14,97	15,00					
30,11	14,87	14,97	14,99					
30,09	14,94	15,08	14,98					
30,09	14,94	15,03	14,93	12,02				
30,10	14,92	-	14,97					
29,88	15,03	14,91	14,98					
29,91	15,07	14,97	14,88					
29,91	15,03	15,09	14,85	12,08				
29,90	15,04	14,99	14,90	_				
30,04	15,08	15,10	15,00					
30,00	15,11	15,04	15,02					
30,08	15,04	15,11	15,04	12,44				
30,04	15,08	15,08	15,02	_				
29,98	15,04	15,02	14,96					
30,01	15,06	15,09	14,95					
30,03	15,03	14,97	15,01	12,10				
30,01	15,04		14,97					
30,09	15,09		15,01					
		•						
				11,97				
	·							
	Mezcla Altura [cm] 30,04 30,02 30,06 30,04 30,03 30,00 30,02 30,04 30,03 30,00 30,02 29,93 29,96 29,98 29,96 30,11 30,09 30,10 29,88 29,91 29,91 29,90 30,04 30,00 30,08 30,04 29,98 30,01 30,03 30,01	CILINI Mezcla Elemen Altura Radio Inferior [cm] [cm] 30,04 14,96 30,02 15,03 30,04 15,00 30,04 15,05 30,03 14,96 30,00 14,99 30,02 15,00 30,04 15,05 30,03 14,96 30,00 14,99 30,02 15,00 29,93 14,94 29,96 14,88 29,98 14,97 29,96 14,93 30,11 14,87 30,09 14,94 30,10 14,92 29,88 15,03 29,91 15,07 29,91 15,03 29,90 15,04 30,04 15,08 30,04 15,08 30,00 15,11 30,08 15,04 30,01 15,06 30,03 15,04 30,01 15,06 30,03 15,04 30,00 15,11 30,08 15,04 30,01 15,06 30,03 15,04 30,00 15,11 30,08 15,04 30,01 15,06 30,03 15,03 30,01 15,04 30,09 15,09 30,02 15,11 30,09 15,09 30,02 15,11 30,09 15,09 30,02 15,11 30,03 15,10	CILINDROS Mezcla Elemento 3 (2R Altura Radio Inferior Radio Central [cm] [cm] [cm] 30,04 14,96 15,02 30,02 15,03 14,96 30,06 15,01 15,00 30,04 15,05 14,98 30,03 14,96 15,24 30,00 14,99 15,01 30,02 15,00 15,07 30,03 14,96 15,24 30,00 14,99 15,01 30,02 15,00 15,07 30,02 15,00 15,07 30,02 15,00 15,07 29,93 14,94 14,90 29,96 14,88 14,99 29,98 14,97 15,02 29,96 14,94 15,08 30,09 14,94 15,08 30,09 14,94 15,08 30,10 14,92 - 29,88 15,03 14,91 <td>CILINDROS Mezcla Elemento 3 (2RS15) Altura Radio Inferior Radio Central Superior Radio Superior [cm] [cm] [cm] 30,04 14,96 15,02 15,03 30,06 15,01 15,00 14,86 30,04 15,00 14,99 14,94 30,04 15,05 14,98 14,94 30,03 14,96 15,24 14,99 30,00 14,99 15,01 14,96 30,02 15,00 15,07 14,96 30,02 15,00 15,07 14,96 30,02 15,00 15,07 14,96 30,01 14,99 15,01 14,96 30,02 15,00 15,07 14,96 30,02 15,00 15,07 14,96 30,02 15,00 15,07 14,96 29,93 14,94 14,90 15,02 29,96 14,88 14,99 14,95 29,98</td>	CILINDROS Mezcla Elemento 3 (2RS15) Altura Radio Inferior Radio Central Superior Radio Superior [cm] [cm] [cm] 30,04 14,96 15,02 15,03 30,06 15,01 15,00 14,86 30,04 15,00 14,99 14,94 30,04 15,05 14,98 14,94 30,03 14,96 15,24 14,99 30,00 14,99 15,01 14,96 30,02 15,00 15,07 14,96 30,02 15,00 15,07 14,96 30,02 15,00 15,07 14,96 30,01 14,99 15,01 14,96 30,02 15,00 15,07 14,96 30,02 15,00 15,07 14,96 30,02 15,00 15,07 14,96 29,93 14,94 14,90 15,02 29,96 14,88 14,99 14,95 29,98				

TABL				ES Y PE	SO
	D	E CILII	NDROS		
I	Mezcla	Elemen	to 4 (3)	RS15)	
Cilindro	Altura	Radio Inferior	Radio Central	Radio Superior	Peso
	[cm]	[cm]	[cm]	[cm]	[Kg]
	29,99	15,02	14,95	14,85	
1	29,94	14,95	14,91	14,90	12,01
	30,02	14,93	15,01	14,87	12,01
Promedio	29,98	14,97	14,96	14,87	
	29,91	14,96	15,16	14,97	
2	29,94	15,08	14,93	14,97	12,38
	30,00	14,95	14,94	15,10	12,30
Promedio	29,95	15,00	15,01	15,01	
	29,94	15,06	14,97	14,96	
3	29,98	14,95	14,98	14,98	12,07
	29,90	15,07	14,98	14,92	12,07
Promedio	29,94	15,03	14,98	14,95	
	30,09	14,91	14,91	14,92	
4	30,06	14,89	15,09	14,90	12,42
	30,05	14,91	15,10	14,92	12,42
Promedio	30,07	14,90	15,03	14,91	
	30,01	14,94	14,94	14,92	
5	29,95	15,04	14,98	14,97	12,33
	30,10	14,96	15,05	14,91	12,33
Promedio	30,02	14,98	14,99	14,93	
	30,01	15,22	15,07	14,93	
6	30,02	15,11	15,06	14,89	12,03
	30,01	15,12	15,09	14,94	12,03
Promedio	30,01	15,15	15,07	14,92	
	30,10	15,06	15,11	15,07	
7	30,12	15,09	15,09	15,06	12,27
	30,11	15,10	15,12	15,05	12,27
Promedio	30,11	15,08	15,11	15,06	
	30,01	15,35	15,24	14,84	
8	30,03	15,07	14,91	15,05	12.22
	30,02	15,08	15,13	15,08	12,33
Promedio	30,02	15,17	15,09	14,99	
	30,01	15,02	15,10	15,18	
9	30,04			15,01	12,39
	30,07			15,00	
Promedio	30,04	15,08	15,05	15,06	

TABL				ES Y PE	SO
	D	E CILII	NDROS		
\mathbf{N}	lezcla l	Element	to 5 (3R	S7-10)	
Cilindro	Altura	Radio Inferior	Radio Central	Radio Superior	Peso
	[cm]	[cm]	[cm]	[cm]	[Kg]
	29,91	14,89	14,91	14,87	
1	30,03	14,92	14,98	14,89	12,06
	30,01	14,93	15,01	14,92	12,00
Promedio	29,98	14,91	14,97	14,89	
	30,01	15,06	14,99	15,03	
2	30,01	15,02	14,96	15,00	12,37
	29,80	15,04	14,96	15,00	12,37
Promedio	29,94	15,04	14,97	15,01	
	30,10	14,99	15,09	15,00	
3	30,07	15,02	15,03	15,01	12,29
	30,05	15,05	15,00	15,00	12,2)
Promedio	30,07	15,02	15,04	15,00	
	29,98	14,87	14,99	14,98	
4	29,93	14,92	14,95	14,87	12,07
	29,93	14,96	14,99	14,91	12,07
Promedio	29,95	14,92	14,98	14,92	
	29,99	15,07	15,07	15,10	
5	29,90	15,12	15,05	15,09	12,23
	29,96	15,10	15,07	15,11	12,23
Promedio	29,95	15,10	15,06	15,10	
	29,95	15,11	15,10	15,11	
6	29,95	15,15	15,10	15,15	12,48
	29,99	15,05	15,08	15,13	12,40
Promedio	29,96	15,10	15,09	15,13	
	30,10	15,13	15,03	14,99	
7	30,11	15,30	15,08	14,97	12,38
	30,12	15,10	15,10	14,93	12,30
Promedio	30,11	15,18	15,07	14,96	
	30,01	15,01	14,96	14,98	
8	30,03	14,87	14,98	15,02	12,14
	30,01	14,95	14,91	15,01	12,17
Promedio	30,02	14,94	14,95	15,00	
	30,02	15,06	15,02	15,03	
9	30,07	15,20	15,15	15,03	12,41
	30,00	15,10	15,08	15,10	12,41
Promedio	30,03	15,12	15,08	15,05	

Anexo # 7. Resistencia a Compresión y Peso Unitario de cada Cilindro

TABLA	A7.1: R	ESISTE	ENCIA A	A COMPI	RESIÓN '	Y PESO U	INITARIO					
	Mezcla Elemento 1 (Sin Armado)											
Edad de Ensayo	Cilindro	Peso	Área	Volumen	Peso Unitario	Carga de Falla	Resistencia a Compresión					
		[Kg]	[cm ²]	[m ³]	$[Kg/m^3]$	[Tn]	[Kg/cm ²]					
	1	13,31	190,18	0,0058	2296	46,3	243					
14 días	2	13,21	186,18	0,0057	2318	47,6	256					
	3	12,61	179,05	0,0055	2309	43,1	241					
	4	12,38	174,68	0,0053	2339	45,6	261					
28 días	5	13,60	191,87	0,0059	2322	51,8	270					
	6	12,63	175,70	0,0053	2373	48,2	274					
	7	13,15	181,86	0,0055	2380	55,0	302					
56 días	8	13,11	184,98	0,0056	2329	58,637	317					
	9	13,27	189,42	0,0057	2345	57,0	301					

TABL	TABLA A7.2: RSISTENCIA A COMPRESIÓN Y PESO UNITARIO Mezcla Elemento 2 (2RS7-10)										
Edad de Ensayo	Cilindro	Peso	Área	Volumen	Peso Unitario	Carga de Falla	Resistencia a Compresión				
		[Kg]	[cm ²]	[m ³]	[Kg/m³]	[Tn]	[Kg/cm ²]				
14 días	1	12,24	176,69	0,0053	2311	38,2	216				
14 dias	2	12,58	179,13	0,0055	2293	39,2	219				
20 4/	3	12,45	176,32	0,0053	2356	47,3	268				
28 días	4	12,38	174,39	0,0052	2367	46,2	265				
56.14	5	12,36	175,51	0,0052	2381	49,8	283				
56 días	6	12,35	176,24	0,0053	2333	51,2	290				

TABLA	TABLA A7.3: RESISTENCIA A COMPRESIÓN Y PESO UNITARIO													
	Mezcla Elemento 3 (2RS15)													
Edad de Ensayo	Cilindro	Peso	Área	Volumen	Peso Unitario	Carga de Falla	Resistencia a Compresión							
		[Kg]	[cm ²]	[m ³]	[Kg/m ³]	[Tn]	[Kg/cm ²]							
	1	12,53	176,15	0,0053	2368	34,4	195							
14 días	2	12,34	175,73	0,0053	2339	35,2	200							
	3	12,10	176,98	0,0053	2277	29,4	166							
	4	12,17	175,89	0,0053	2309	42,2	240							
28 días	5	12,02	176,01	0,0053	2269	43,6	248							
	6	12,08	176,22	0,0053	2292	44,6	253							
	7	12,44	178,13	0,0054	2325	50,8	285							
56 días	8	12,10	177,06	0,0053	2278	51,8	293							
	9	11,97	177,95	0,0053	2239	46,0	259							

TABLA A7.4: RESISTENCIA A COMPRESIÓN Y PESO UNITARIO														
	Mezcla Elemento 4 (3RS15)													
Edad de Ensayo	Cilindro	Peso	Área	Volumen	Peso Unitario	Carga de Falla	Resistencia a Compresión							
		[Kg]	[cm ²]	[m ³]	[Kg/m ³]	[Tn]	[Kg/cm ²]							
	1	12,01	175,12	0,0053	2287	41,2	235							
21 días	2	12,38	176,86	0,0053	2337	42	237							
	3	12,07	176,34	0,0053	2285	40,6	230							
	4	12,42	175,54	0,0053	2354	44,0	251							
28 días	5	12,33	175,96	0,0053	2334	42,0	239							
	6	12,03	177,84	0,0053	2253	42,2	237							
	7	12,27	178,68	0,0054	2280	46,2	259							
56 días	8	12,33	178,68	0,0054	2299	49,4	276							
	9	12,39	178,18	0,0054	2314	53,3	299							

TABLA	TABLA A7.5: RESISTENCIA A COMPRESIÓN Y PESO UNITARIO Mezcla Elemento 5 (3RS7-10)												
Edad de Ensayo	Cilindro	Peso	zcla Ele Área	Mento 5 () Volumen	Peso Unitario	Carga de Falla	Resistencia a Compresión						
		[Kg]	[cm ²]	[m ³]	[Kg/m ³]	[Tn]	[Kg/cm ²]						
	1	12,06	174,94	0,0052	2299	38,7	221						
21 días	2	12,37	176,87	0,0053	2336	39,2	222						
•	3	12,29	177,21	0,0053	2306	38,6	218						
	4	12,07	175,25	0,0052	2300	42,2	241						
28 días	5	12,23	178,76	0,0054	2284	40,3	225						
	6	12,48	179,29	0,0054	2323	42,6	238						
	7	12,38	178,37	0,0054	2305	50,6	284						
56 días	8	12,14	175,90	0,0053	2299	51,4	292						
,	9	12,41	178,74	0,0054	2312	49,8	279						

Anexo # 8. Dimensiones de los elementos de Concreto

T	TABLA A8.1: DIMENSIONES DETALLADAS DEL ELEMENTO #1 (CONCRETO SIN ARMADURA)												
	CARA	\ 1	CARA 2			CARA 3			CARA 4				
Desde	Hasta	Dist. [cm]	Desde	Hasta	Dist. [cm]	Desde	Hasta	Dist. [cm]	Desde	Hasta	Dist. [cm]		
A1	A1 '	30,12	F1	F1 '	29,78	C1	C1 '	30,07	D1	D1 '	29,99		
A2	A2 '	30,20	F2	F2 '	29,85	C2	C2 '	30,16	D2	D2 '	30,02		
A3	A3 '	30,26	F3	F3 '	29,76	C3	C3 '	30,17	D3	D3 '	29,98		
A4	A4 '	30,12	F4	F4 '	29,81	C4	C4 '	30,12	D4	D4 '	29,97		
A5	A5 '	30,22	F5	F5 '	29,78	C5	C5 '	30,19	D5	D5 '	29,94		
A6	A6 '	30,05	F6	F6 '	29,79	C6	C6 '	30,15	D6	D6 '	29,95		
A7	A7 '	30,09	F7	F7 '	29,74	C7	C7 '	30,05	D7	D7 '	29,90		

7	TABLA A8.2: DIMENSIONES DETALLADAS DEL ELEMENTO #2 (ARMADO 2RS7-10)												
	CARA	\ 1	CARA 2				CARA	A 3	CARA 4				
Desde	Hasta	Dist. [cm]	Desde	Hasta	Dist. [cm]	Desde	Hasta	Dist. [cm]	Desde	Hasta	Dist. [cm]		
M1	M1 '	30,00	I1	I1 '	29,64	J1	J1 '	29,98	G1	G1 '	29,65		
A1	A1 '	30,08	F1	F1 '	29,68	C1	C1 '	30,02	D1	D1 '	29,54		
M2	M2 '	30,17	I2	I2 '	29,64	J2	J2 '	30,08	G2	G2 '	29,58		
A2	A2 '	30,22	F2	F2 '	29,74	C2	C2 '	30,09	D2	D2 '	29,65		
M3	M3 '	30,24	I3	I3 '	29,69	J3	J3 '	30,06	G3	G3 '	29,67		
А3	A3 '	30,19	F3	F1 '	29,72	C3	C3 '	30,04	D3	D3 '	29,72		
M4	M4 '	30,17	I4	I4 '	29,82	J4	J4 '	30,05	G4	G4 '	29,71		
A4	A4 '	30,20	F4	F1 '	29,78	C4	C4 '	30,16	D4	D4 '	29,75		
M5	M5 '	30,28	I5	I5 '	29,79	J5	J5 '	30,20	G5	G5 '	29,76		
A5	A5 '	30,29	F5	F1 '	29,81	C5	C5 '	30,25	D5	D5 '	29,84		
M6	M6 '	30,25	I6	I6 '	29,75	J6	J6 '	30,24	G6	G6 '	29,81		
A6	A6 '	30,26	F6	F1 '	29,69	C6	C6 '	30,17	D6	D6 '	29,83		
M7	M7 '	30,18	I7	I7 '	29,66	J7	J7 '	30,12	G7	G7 '	29,85		

	TABLA A8.3: DIMENSIONES DETALLADAS DEL ELEMENTO #3 (ARMADO 2RS15)												
	CARA	. 1	CARA 2			CARA 3				CARA 4			
Desde	Hasta	Dist. [cm]	Desde	Hasta	Dist. [cm]	Desde	Hasta	Dist. [cm]	Desde	Hasta	Dist. [cm]		
A1	A1 '	30,00	F1	F1 '	29,53	C1	C1 '	30,05	D1	D1 '	29,65		
A2	A2 '	30,08	F2	F2 '	29,61	C2	C2 '	30,14	D2	D2 '	29,74		
A3	A3 '	30,07	F3	F3 '	29,68	C3	C3 '	30,22	D3	D3 '	29,72		
A4	A4 '	30,00	F4	F4 '	29,78	C4	C4 '	30,21	D4	D4 '	29,83		
A5	A5 '	30,17	F5	F5 '	29,77	C5	C5 '	30,28	D5	D5 '	29,92		
A6	A6 '	30,19	F6	F6 '	29,87	C6	C6 '	30,34	D6	D6 '	29,77		
A7	A7 '	30,12	F7	F7 '	29,79	C7	C7 '	30,18	D7	D7 '	29,68		

	TABLA A8.4: DIMENSIONES DETALLADAS DEL ELEMENTO #4 (ARMADO 3RS7-10)												
	CARA 1			CARA 2			CARA	13		CARA	4		
Desde	Hasta	Dist. [cm]	Desde	Hasta	Dist. [cm]	Desde	Hasta	Dist. [cm]	Desde	Hasta	Dist. [cm]		
A1	A1 '	30,03	F1	F1 '	29,67	C1	C1 '	30,00	D1	D1 '	29,52		
A2	A2 '	30,16	F2	F2 '	29,74	C2	C2 '	30,10	D2	D2 '	29,68		
A3	A3 '	30,26	F3	F3 '	29,72	C3	C3 '	30,09	D3	D3 '	29,77		
A4	A4 '	30,19	F4	F4 '	29,81	C4	C4 '	30,00	D4	D4 '	29,80		
A5	A5 '	30,23	F5	F5 '	29,90	C5	C5 '	30,13	D5	D5 '	29,81		
A6	A6 '	30,32	F6	F6 '	29,84	C6	C6 '	30,27	D6	D6 '	29,88		
A7	A7 '	30,30	F7	F7 '	29,66	C7	C7 '	30,14	D7	D7 '	29,85		

	TABLA A8.5: DIMENSIONES DETALLADAS DEL ELEMENTO #5 (ARMADO 3RS15)												
	CARA	1	CARA 2				CARA	3	CARA 4				
Desde	Hasta	Dist. [cm]	Desde	Hasta	Dist. [cm]	Desde	Hasta	Dist. [cm]	Desde	Hasta	Dist. [cm]		
A1	A1 '	29,98	F1	F1 '	30,03	C1	C1 '	29,81	D1	D1 '	30,09		
A2	A2 '	29,83	F2	F2 '	30,07	C2	C2 '	29,75	D2	D2 '	30,15		
A3	A3 '	29,95	F3	F3 '	30,17	C3	C3 '	29,83	D3	D3 '	30,24		
A4	A4 '	29,93	F4	F4 '	30,28	C4	C4 '	28,81	D4	D4 '	30,35		
A5	A5 '	29,95	F5	F5 '	30,36	C5	C5 '	29,76	D5	D5 '	30,42		
A6	A6 '	30,02	F6	F6 '	30,32	C6	C6 '	29,79	D6	D6 '	30,43		
A7	A7 '	30,00	F7	F7 '	30,46	C7	C7 '	29,81	D7	D7 '	30,46		
A8	A8 '	30,02	F8	F8'	30,47	C8	C8 '	29,76	D8	D8 '	30,49		
A9	A9 '	30,05	F9	F9 '	30,32	C9	C9 '	29,84	D9	D9 '	30,46		
A10	A10 '	30,15	F10	F710'	30,27	C10	C10 '	29,88	D10	D10 '	30,35		
A11	A11 '	30,05	F11	F11'	30,22	C11	C11 '	29,81	D11	D11'	30,26		
A12	A12 '	30,06	F12	F12 '	30,18	C12	C12 '	29,81	D12	D12 '	30,18		
A13	A13 '	30,14	F13	F13 '	30,19	C13	C13 '	29,89	D13	D13 '	30,14		

Anexo # 9. Velocidades de pulso ultrasónico por casos de estudio

TABL	A A9.1: V		DADES D MÉTODO		O ULTRA	ASÓNIC	O POR						
CAS	CASO 1: ACERO TRANSVERSAL PARALELO A LA LINEA DE PROPAGACIÓN DE LA ONDA												
TRAN	SDUC.		LOCIDAD			LOCIDAD	ES						
ъ.		Veloc.	Desv	Error	Veloc.	Desv	Error						
Emisor	Recep.	Prom.	Est.	Porc.	Prom.	Est.	Porc.						
Cara 2	Cara 4	[m/s]	[m/s]	[%]	[m/s]	[m/s]	[%]						
		,	28 DÍAS	, ,	. ,	49 DÍAS	,						
			ELEME	NTO 2A									
M1	M1'	4236	72	1,69	4509	33	0,72						
M2	M2'	4274	10	0,22	4398	50	1,13						
M3	M3'	4304	29	0,66	4444	28	0,64						
J1	J1'	4191	42	0,99	4396	42	0,96						
J2	J2'	4138	20	0,49	4369	27	0,61						
J3	J3'	4041	32	0,79	4381	35	0,79						
			ELEME										
M5	M5'	4454	135	3,02	4425	16	0,36						
M6	M6′	4496	85	1,88	4398	41	0,93						
M7	M7'	4442	120	2,69	4558	37	0,81						
J5	J5'	4262	41	0,97	4411	16	0,36						
J6	J6'	4389	118	2,69	4484	73	1,64						
J7	J7'	4413	69	1,56	4518	55	1,22						
			ELEME										
A1	A1´	4324	36	0,82	4344	55	1,26						
A3	A3´	4320	43	0,99	4389	19	0,43						
A5	A5′	4417	47	1,06	4352	67	1,53						
A7	A7′	4478	20	0,44	4548	17	0,37						
C1	C1′	4502	14	0,31	4286	18	0,43						
C3	C3′	4066	177	4,36	4424	39	0,87						
C5	C5′	3932	40	1,02	4452	69	1,55						
C7	C7′	4051	112 ELEMI	2,77	4248	58	1,37						
A 1	A 1 ′	4420	ELEME		1516	12	0.04						
A1 A3	A1′ A3′	4428 4439	25 16	0,57	4546 4522	43 71	0,94 1,56						
A5	A5′	4351	14	0,37	4370	54	1,36						
A5 A7	A5 A7′	4130	50	1,20	4420	9	0,21						
C1	C1'	4289	153	3,56	4420	16	0,21						
C3	C3′	3791	38	1,01	4421	4	0,37						
C5	C5′	4062	181	4,46	4360	24	0,56						
C7	C7′	4069	124	3,06	4357	48	1,11						
		.007	ELEME				-,-1						
A1	A1´	4227	35	0,83	4426	29	0,67						
A3	A3´	4017	58	1,43	4438	68	1,53						
A5	A5′	4337	6	0,15	4442	31	0,70						
C1	C1′	4421	40	0,89	4467	27	0,61						
C3	C3′	4374	24	0,56	4426	40	0,90						
C5	C5′	4318	81	1,87	4225	15	0,36						
			ELEME	NTO 5B									
A9	A9´	4287	30	0,69	4484	42	0,95						
A11	A11′	4314	17	0,39	4524	17	0,38						
A13	A13′	4471	31	0,70	4584	152	3,31						
C9	C9′	4497	19	0,43	4422	29	0,67						
C11	C11′	4427	30	0,67	4397	9	0,21						
C13	C13′	4447	13	0,28	4374	30	0,68						

TABLA A9.2: VELOCIDADES DE PULSO ULTRASÓNICO POR EL MÉTODO DIRECTO

CASO 2: ACERO TRANSVERSAL PERPENDICULAR A LA LINEA DE PROPAGACIÓN DE LA ONDA

TRAN	SDUC.	VE	LOCIDAD	ES	VE	LOCIDAD	ES
Emiss.	Dagge	Veloc.	Desv	Error	Veloc.	Desv	Error
Emisor	Recep.	Prom.	Est.	Porc.	Prom.	Est.	Porc.
Cara 2	Cara 4	[m/s]	[m/s]	[%]	[m/s]	[m/s]	[%]
			28 DÍAS			49 DÍAS	
			ELEME	NTO 2A			
K1	K1′	4219	7	0,18	4278	22	0,52
K2	K2´	4100	26	0,63	4246	19	0,45
K3	K3′	3979	4	0,11	4181	16	0,38
			ELEME				
K5	K5′	4128	38	0,93	4171	41	0,99
K6	K6′	4208	45	1,07	4227	20	0,47
K7	K7´	4197	37	0,89	4259	39	0,92
			ELEME	ENTO 3			
B1	B1′	4141	30	0,73	4074	8	0,19
В3	B3′	4014	35	0,87	4180	17	0,41
B5	B5′	4058	9	0,21	4268	8	0,20
В7	B7´	4182	37	0,88	4327	40	0,92
			ELEME	ENTO 4			
B1	B1′	4045	18	0,46	4538	17	0,36
В3	B3′	4209	160	3,80	4213	77	1,83
B5	B5′	4196	44	1,06	4567	47	1,02
B7	B7´	4270	82	1,92	4245	3	0,07
			ELEME				
B1	B1′	4247	5	0,12	4425	109	2,47
В3	B3′	4254	38	0,89	4359	26	0,60
B5	B5′	4178	68	1,62	4423	33	0,74
			ELEME				
B9	B9′	4189	12	0,28	4331	91	2,11
B11	B11′	4434	40	0,89	4413	43	1,02
B13	B13′	4453	47	1,05	4525	68	1,51

TABLA A9.3: VELOCIDADES DE PULSO ULTRASÓNICO POR EL MÉTODO DIRECTO

CASO 3: ACERO LONGITUDINAL PERPENDICULAR A LA LINEA DE PROPAGACIÓN DE LA ONDA

PROPAGACIÓN DE LA ONDA											
TRAN	SDUC.	VE	LOCIDAD	ES	VE	LOCIDAD	ES				
Emisor	Dagan	Veloc.	Desv	Error	Veloc.	Desv	Error				
Ellisoi	Recep.	Prom.	Est.	Porc.	Prom.	Est.	Porc.				
Cara 2	Cara 4	[m/s]	[m/s]	[%]	[m/s]	[m/s]	[%]				
			28 DÍAS			49 DÍAS					
			ELEME	NTO 2A							
A1	A1'	4222	66	1,56	4218	10	0,23				
A2	A2'	4223	27	0,63	4224	49	1,16				
A3	A3'	4277	66	1,54	4255	58	1,37				
C1	C1'	4139	37	0,90	4455	32	0,72				
C2	C2'	4074	62	1,52	4302	15	0,35				
C3	C3'	3973	48	1,21	4309	27	0,63				
			ELEME								
A4	A4´	4448	82	1,84	4298	40	0,92				
A5	A5´	4396	56	1,28	4402	50	1,13				
A6	A6´	4307	48	1,12	4621	9	0,20				
C4	C4´	4246	23	0,55	4263	29	0,69				
C5	C5′	4248	14	0,34	4273	14	0,32				
C6	C6′	4393	49	1,11	4488	75	1,68				
			ELEME								
A2	A2´	4118	18	0,43	4233	36	0,84				
A4	A4′	4058	23	0,56	4100	3	0,07				
A6	A6′	4251	68	1,59	4348	9	0,20				
C2	C2′	4035	14	0,36	4139	21	0,50				
C4	C4´	4153	5	0,12	4182	15	0,36				
C6	C6′	4169	29	0,70	4266	35	0,82				
			ELEME								
A2	A2´	4113	16	0,38	4144	17	0,42				
A4	A4´	4107	7	0,18	4125	34	0,83				
A6	A6′	4143	30	0,72	4268	16	0,37				
C2	C2′	4068	8	0,20	4093	39	0,94				
C4	C4′	4070	17	0,42	4175	9	0,21				
C6	C6′	4063	15 ELEMEN	0,37	4258	53	1,23				
4.0	A2´	1055	ELEME		12.10	2.4	0.70				
A2		4255	16	0,37	4249	34	0,79				
A4	A4′	4182 4306	15	0,35	4202 4320	13	0,32				
A6 C2	A6′ C2′		19	0,43	4320	34	0,79				
C2	C4′	4177 4130	23 8	0,54	4242	21 19	0,49 0,46				
	C6′	4130	43		4251	16					
C6	C0	4297	ELEMEI	1,01 NTO 5R	4314	10	0,37				
A8	A8′	4240	46	1,09	4271	43	1,01				
A10	A10′	4358	22	0,51	4371	43	1,00				
A10	A10'	4338	36	0,80	4443	21	0,46				
C8	C8'	4290	25	0,58	4444	85	1,91				
C10	C10′	4382	8	0,38	4430	42	0,94				
C10	C10′	4438	27	0,60	4498	9	0,94				
C1Z	CIZ	4430	41	0,00	4470	7	0,41				

TABLA A9.4: VELOCIDADES DE PULSO ULTRASÓNICO POR EL MÉTODO DIRECTO

CASO 4: ACERO TRANSVERSAL Y LONGITUDINAL CERCANO A LA LINEA DE PROPAGACIÓN DE LA ONDA

TRANSDUC. VELOCIDADES VELOCIDADES											
TRAN	SDUC.		LOCIDAD			LOCIDAD	ES				
Emisor	Recep.	Veloc.	Desv	Error	Veloc.	Desv	Error				
Ellisoi	кесер.	Prom.	Est.	Porc.	Prom.	Est.	Porc.				
Cara 2	Cara 4	[m/s]	[m/s]	[%]	[m/s]	[m/s]	[%]				
			28 DÍAS			49 DÍAS					
			ELEME	NTO 2A							
B1	B1′	4101	29	0,70	4185	29	0,69				
B2	B2´	4034	16	0,39	4144	21	0,51				
В3	B3′	4164	69	1,66	4259	38	0,89				
			ELEME	NTO 2B							
B4	B4´	4198	120	2,85	4192	29	0,70				
B5	B5´	3993	26	0,64	4125	17	0,40				
B6	B6´	4171	44	1,06	4211	48	1,15				
			ELEME	ENTO 3							
B2	B2´	4052	38	0,95	4137	27	0,66				
B4	B4´	4063	26	0,65	4186	28	0,66				
B6	B6′	4125	22	0,53	4238	34	0,80				
			ELEME	ENTO 4							
B2	B2´	4025	18	0,46	4116	41	0,99				
B4	B4´	4128	23	0,56	4190	13	0,30				
B6	B6′	4069	42	1,04	4195	75	1,79				
			ELEME	NTO 5A							
B2	B2´	4221	19	0,45	4106	12	0,28				
B4	B4´	3957	6	0,14	4135	12	0,29				
B6	B6′	4269	28	0,65	4343	19	0,43				
			ELEME	NTO 5B							
В8	B8′	4432	69	1,55	4500	13	0,30				
B10	B10′	4256	49	1,16	4244	43	1,02				
B12	B12′	4222	25	0,58	4479	23	0,52				

TABLA A9.5: VELOCIDADES DE PULSO ULTRASÓNICO POR EL MÉTODO SEMIDIRECTO												
CASO 5: ACERO TRANSVERSAL PERPENDICULAR A LA LINEA DE PROPAGACIÓN DE LA ONDA												
TRANSDUC.		VELOCIDADES			VELOCIDADES							
Emisor	Recep.	Veloc. Prom.	Desv Est.	Error Porc.	Veloc. Prom.	Desv Est.	Error Porc.					
Cara 2	Cara 1	[m/s]	[m/s]	[%]	[m/s]	[m/s]	[%]					
28 DÍAS 49 DÍAS												
ELEMENTO 2A												
M1	I1	6350	393	6,19	4766	43	0,90					
M2	I2	6040	943	15,61	6030	278	4,62					
M3	I3	5368	664	12,37	5443	184	3,38					
K1	H1	3634	19	0,53	3972	61	1,53					
K2	H2	3410	14	0,42	3631	24	0,67					
K3	Н3	3279	39	1,19	3787	53	1,39					
J1	G1	3310	75	2,27	3874	46	1,18					
J2	G2	3357	195	5,82	3868	27	0,70					
J3	G3	3374	142	4,74	3967	28	0,72					
			ELEME	ENTO 2B								
M5	I5	5718	331	5,79	5169	90	1,75					
M6	I6	7223	712	9,86	5422	229	4,23					
M7	I7	5409	626	11,58	5459	170	3,11					
K5	H5	3164	94	2,96	3553	60	1,69					
K6	Н6	3437	35	1,02	3890	34	0,87					
K7	H7											
J5	G5	3095	21	0,66	3774	31	0,83					
J6	G6	3174	92	2,90	3541	39	1,09					
J7	G7	3082	76	2,48	3820	39	1,01					
			ELEM	ENTO 3								
A1	F1	4303	37	0,87	4960	55	1,26					
A3	F3	4089	152	3,71	4596	19	0,43					
A5	F5	4986	118	2,38	5228	67	1,53					
A7	F7	6611	129	1,94	5562	17	0,37					
B1	E1	4198	45	1,06	3867	8	0,19					
В3	E3	4304	50	1,15	4040	17	0,41					
B5	E5	4192	43	1,03	4127	8	0,20					
В7	E7	4436	58	1,31	3937	40	0,92					
C1	D1	3401	23	0,67	3810	18	0,43					
C3	D3	3751	318	8,48	3941	39	0,87					
C5	D5	3545	62	1,75	3853	69	1,55					
C7	D7	3556	13	0,38	3919	58	1,37					

TABLA A9.5 VELOCIDADES DE PULSO ULTRASÓNICO POR EL MÉTODO SEMIDIRECTO

CASO 5: ACERO TRANSVERSAL PERPENDICULAR A LA LINEA DE PROPAGACIÓN DE LA ONDA (CONTINUACIÓN)

TROTAGACION DE LA ONDA (CONTINCACION)												
TRAN	SDUC.	VELOCIDADES			VELOCIDADES							
Emisor	Recep.	Veloc. Prom.	Desv Est.	Error Porc.	Veloc. Prom.	Desv Est.	Error Porc.					
Cara 2	Cara 1	[m/s]	[m/s]	[%]	[m/s]	[m/s]	[%]					
			28 DÍAS			49 DÍAS						
ELEMENTO 4												
A1	F1	4837	72	1,49	4653	170	3,65					
A3	F3	5534	45	0,81	4989	151	3,02					
A5	F5	5160	449	8,70	4619	96	2,07					
A7	F7	5049	471	9,32	6177	173	2,80					
B1	E1	3876	7	0,17	4027	27	0,68					
В3	E3	3925	95	2,41	3853	35	0,92					
B5	E5	3894	90	2,32	4188	66	1,58					
В7	E7	4061	112	2,75	4210	49	1,15					
C1	D1	3810	39	1,02	3855	19	0,49					
C3	D3	3858	67	1,73	3753	21	0,56					
C5	D5	3834	24	0,64	3961	10	0,26					
C7	D7	4003	33	0,81	3989	24	0,61					
				ENTO 5A		<u> </u>						
A1	F1	4967	260	5,24	5257	406	7,73					
A3	F3	4652	311	6,69	5397	265	4,92					
A5	F5	6310	330	5,23	6419	653	10,18					
B1	E1	3736	24	0,65	3724	21	0,58					
В3	E3	3974	8	0,21	3886	122	3,14					
B5	E5	3822	24	0,63	3954	32	0,81					
C1	D1	3490	21	0,60	3536	9	0,25					
C3	D3	3405	40	1,17	3709	64	1,72					
C5	D5	3443	34	1,00	3612	25	0,69					
ELEMENTO 5B												
A9	F9	5386	94	1,75	5773	227	3,93					
A11	F11	5978	113	1,89	5858	323	5,51					
A13	F13	4963	455	9,16	7020	136	1,94					
В9	E9	3590	38	1,05	3376	18	0,54					
B11	E11	3798	20	0,54	3417	40	1,17					
B13	E13	3719	160	4,30	3564	56	1,56					
C9	D9	3561	44	1,23	3196	9	0,28					
C11	D11	3613	61	1,68	3277	17	0,51					
C13	D13	3774	30	0,79	3368	23	0,68					

TABLA	A A9.6: V		DADES D		O ULTR	ASÓNIC	O POR
CASO	. A CEDO					A T A T T	MEA DE
CASO 6	: ACERO		UDINAL . AGACIÓ		DICULAR	A LA LI	NEA DE
TRAN	CDUC		LOCIDAD			LOCIDAD	TC
IKAN	SDUC.			Error	Veloc.		
Emisor	Recep.	Veloc.	Desv Est.			Desv Est.	Error
C 2	C 1	Prom.		Porc.	Prom.		Porc.
Cara 2	Cara 1	[m/s]	[m/s]	[%]	[m/s]	[m/s] 49 DÍAS	[%]
			28 DÍAS ELEME	NTO 2A		49 DIAS	
F1	A 1	6035	94	1,55	4620	24	0,53
F2	A1 A2	4861	208	4,28	4775	150	3,14
F3	A3	5437	406	7,47	5019	339	6,76
D1	C1	3075	91	2,95	3919	66	1,69
D2	C2	2906	84	2,93	3851	2	0,06
D3	C3	2995	142	4,74	3822	40	1,05
<i>D</i> 3		2993		NTO 2B	3022	40	1,03
F4	A4	5839	433	7,42	4546	328	7,21
F5	A5	4816	515	10,70	5272	126	2,39
F6	A6	5662	264	4,66	5262	202	3,84
D4	C4	3051	50	1,63	3705	43	1,17
D5	C5	3044	75	2,47	3640	66	1,81
D6	C6	2982	70	2,34	3687	41	1,10
D0		2902	70	2,34	3067	41	1,10
			ELEMI	ENTO 3			
F2	A2	4325	760	17,57	4993	254	5,09
F4	A4	4178	121	2,90	4807	240	5,00
F6	A6	5516	73	1,33	4736	226	4,76
D2	C2	3601	18	0,51	3748	16	0,42
D4	C4	3639	25	0,68	3810	22	0,42
D6	C6	3899	147	3,78	3908	26	0,67
Do	CO	3077		ENTO 4	3700	20	0,07
F2	A2	4950	91	1,84	5124	199	3,88
F4	A4	4999	343	6,86	5385	226	4,20
F6	A6	5077	438	8,63	4520	117	2,59
D2	C2	3441	39	1,14	3684	21	0,57
D4	C4	3591	74	2,07	3648	39	1,06
D6	C6	3528	48	1,35	3818	9	0,23
В0		3320		NTO 5A	3010		0,23
F2	A2	5162	190	3,68	5426	69	1.27
F4	A4	4740	208	4,38	4979	88	1,77
F6	A6	4529	161	3,56	5319	217	4,09
D2	C2	3519	42	1,20	3487	23	0,67
D4	C4	3443	45	1,32	3529	34	0,97
D6	C6	3588	63	1,76	3536	56	1,58
D0		3300	ELEME		3330	20	1,50
F8	A8	4828	311	6,44	4914	371	7,55
F10	A10	4480	275	6,13	5306	487	9,18
F12	A12	4820	194	4,03	6891	311	4,51
D8	C8	3879	64	1,65	2890	11	0,39
D10	C10	3767	16	0,42	2966	14	0,39
D10	C12	3803	20	0,53	3019	8	0,48
D12	C12	3003	20	0,55	5017	Ü	0,47

TABLA	S A9.7: V			DE PULS SEMIDIR		ASÓNIC	O POR							
CASO 7	: ACERO LI				TUDINAL E LA ONI		O A LA							
TRAN	SDUC.	VE	LOCIDAD	ES	VE	LOCIDAD	ES							
Emisor	Recep.	Veloc. Prom.	Desv Est.	Error Porc.	Veloc. Prom.	Desv Est.	Error Porc.							
Cara 2	Cara 1	[m/s]	[m/s]	[%]	[m/s]	[m/s]	[%]							
			28 DÍAS			49 DÍAS								
			ELEME	NTO 2A										
E1	ELEMENTO 2A E1 B1 4164 76 1,82 4290 33 0,76 E2 B2 4138 97 2,35 4191 8 0,18 E3 B3 4245 44 1,04 4271 45 1,04 ELEMENTO 2B													
E2	B2	4138	97	2,35	4191	8	0,18							
E3	В3	4245	44	1,04	4271	45	1,04							
			ELEME	NTO 2B										
E3 B3 4245 44 1,04 4271 45 1,04 ELEMENTO 2B E4 B4 4235 24 0,57 4166 82 1,96 E5 B5 4151 178 4,28 4265 12 0,27														
E5	B5	4151	178	4,28	4265	12	0,27							
E6	В6	4151	138	3,31	4377	71	1,63							
				ENTO 3										
E2	B2	4135	6	0,16	4131	58	1,41							
E4	B4	4206	20	0,47	4405	43	0,98							
E6	B6	4364	17	0,38	4313	40	0,93							
				ENTO 4										
E2	B2	4144	81	1,95	4269	27	0,64							
E4	B4	4235	16	0,37	4304	35	0,82							
E6	В6	4254	33	0,77	4211	61	1,45							
				NTO 5A										
E2	B2	4308	33	0,76	4235	43	1,02							
E4	B4	4058	43	1,06	4245	57	1,34							
E6	В6	4040	32	0,80	4413	127	2,88							
70	70	4424		NTO 5B	1225	•	0.21							
E8	В8	4124	41	0,98	4325	9	0,21							
E10	B10	4179	35	0,84	4179	26	0,61							
E12	B12	4350	33	0,76	4266	36	0,84							

TABLA A9.8: VELOCIDADES DE PULSO ULTRASÓNICO POR EL MÉTODO INDIRECTO CASO 8: RECORIDO DE PUNTOS SOBRE EL EJE DE LA BARRA												
CA	ASO 8: RECOR	_		_	L EJE DE	LA BARI	RA					
			ONGITUD									
TR	ANSDUC.	VE	LOCIDAD	ES	VE	LOCIDAD	ES					
Emisor	Recep.	Veloc.	Desv	Error	Veloc.	Desv	Error					
Lillisoi	жесер.	Prom.	Est.	Porc.	Prom.	Est.	Porc.					
Cara 2	Cara 4	[m/s]	[m/s]	[%]	[m/s]	[m/s]	[%]					
			28 DÍAS			49 DÍAS						
			ELEMENTO	O 2A								
G1	D1,G2,,D3	3228	349	0,95	3512	438	0,93					
I1	F1, I2,, F3	3096	218	0,98	3106	348	0,95					
			ELEMENT	O 2B								
G4	D4,G5,,G7	3163	306	0,96	3060	147	0,99					
I4	F4, I5,, I7	3013	214	0,98	3198	136	0,99					
			ELEMENT	О 3								
D1	D2,D3,,D7	3161	450	0,91	3366	67	1,00					
F1	F2, F3,, F7	2988	183	0,98	3067	264	0,97					
			ELEMENT	O 4								
D1	D2,D3,,D7	3081	207	0,98	3332	111	1,00					
F1	F2, F3,, F7	3068	134	0,99	3029	173	0,99					
			ELEMENTO	O 5A								
D1	D2,D3,,D6	3076	152	0,99	3481	210	0,99					
F1	F2, F3,, F6	3096	221	0,98	2831	348	0,94					
			ELEMENT	O 5B								
D7	D8,D9,, D13	3166	114	0,99	3000	261	0,97					
F2	F8, F9,, F13	3132	144	0,99	3417	289	0,97					

TABLA A9.9: VELOCIDADES DE PULSO ULTRASÓNICO POR EL MÉTODO INDIRECTO												
CASO	9: RECORRIE	O DE PU	NTOS PO	R EL CE	NTRO DE	LA PRO	ВЕТА					
TRANSDUC. VELOCIDADES VELOCIDADES												
Emisor	Recep.	Veloc. Prom.	Desv Est.	Error Porc.	Veloc. Prom.	Desv Est.	Error Porc.					
Cara 2	Cara 4	[m/s]	[m/s]	[%]	[m/s]	[m/s]	[%]					
			28 DÍAS			49 DÍAS						
			ELEMENT	O 2A								
H1	E1,H2,E3	3164	142	0,99	3163	376	0,94					
			ELEMENT	O 2B								
H4	E4,H5,, H7	3102	266	0,97	3200	159	0,99					
			ELEMENT	TO 3								
E1	E2,E3,,E7	3140	184	0,99	3144	115	0,99					
			ELEMENT	O 4								
E1	E2,E3,,E7	3064	212	0,98	3244	97	1,00					
			ELEMENT	O 5A								
E1	E2,E3,,E6	3143	274	0,97	3173	141	0,99					
			ELEMENT	O 5B								
E7	E8,E9,,E13	3148	106	1,00	3243	242	0,98					

Anexo # 10. Tablas de VPU detalladas en cada punto y en cada elemento

TABLA A10.1: `	VELOCI	IDADES	DE P	ULSO	ULTR	ASÓNIC	CO PO	R EL N	1ÉTOI	OO DIR	ЕСТО	
El	LEMENT	O #1: C	ONCRE	ETO SI	N ARM	ADURA	E	DAD: 2	8 DÍAS			
]	Fecha de I	Ensayo :		jueves, (07 de ma	yo de 20	15
Mediciones Tomadas	por:	Ant	onio Fr	eites	Hor	a Inicio:	08:00	a.m.	Но	ra Final:	10:4	5 a.m.
UBICACIÓN	TRAN	SDUC.	LECT	. DE TI	EMPO	DIST.		CÁLC	ULO DE	VELOC	IDADES	
Vista en Planta	Emisor	Recep.	T1	T2	Т3	Entre Transd.	V1	V2	V3	Veloc. Prom.	Desv Est.	Error Porc.§
	Cara 2	Cara 4	[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]	[%]
CARA 3	A1	A1´	72,3	72,4	72,3	30,12	4169	4158	4163	4163	6	0,13
4 6	A2	A2´	71,5	71,7	72,0	30,20	4225	4213	4196	4211	14	0,34
CARA	A3	A3′	74,9	73,3	73,7	30,26	4038	4127	4106	4090	47	1,15
A' D D D A	A4	A4´	72,7	74,4	74,2	30,12	4141	4050	4061	4084	50	1,22
CARA 1	A5	A5´	74,2	76,0	75,2	30,22	4074	3976	4017	4022	49	1,22
	A6	A6′	75,5	75,4	75,4	30,05	3980	3985	3985	3983	3	0,07
	A7	A7′	72,2	73,9	72,4	30,09	4165	4073	4154	4130	50	1,22
# CARA2 O	B1	B1′	73,2	74,8	74,7	30,10	4111	4021	4031	4054	49	1,21
CARA 2 CARA 4	B2	B2´	72,3	73,1	73,0	30,18	4171	4128	4133	4144	24	0,58
	В3	B3′	74,7	76,1	72,5	30,22	4047	3971	4165	4061	98	2,41
B' B	B4	B4′	73,0	73,5	73,7	30,12	4125	4098	4087	4103	19	0,47
CARA 1	B5	B5′	76,9	76,5	76,6	30,21	3930	3949	3945	3941	10	0,26
	В6	B6′	74,1	73,7	75,3	30,10	4063	4085	3996	4048	46	1,14
	В7	B7′	72,4	72,7	72,5	30,07	4151	4135	4146	4144	8	0,20
C CARA 3 C	C1	C1′	72,6	74,4	72,9	30,07	4140	4044	4124	4102	51	1,26
C' CARA 3 C	C2	C2´	74,9	73,8	74,1	30,16	4024	4087	4071	4061	33	0,80
ARA 4	C3	C3′	75,1	75,4	75,1	30,17	4016	4000	4016	4010	9	0,22
	C4	C4′	75,9	75,8	76,8	30,12	3968	3973	3924	3955	27	0,69
(G CARA I P)	C5	C5′	77,5	77,7	77,3	30,19	3894	3884	3904	3894	10	0,25
	C6	C6′	75,0	74,7	75,2	30,15	4018	4034	4008	4020	13	0,32
	C7	C7′	74,0	74,3	73,6	30,05	4062	4046	4083	4064	19	0,46
Tot	al de puni	os evalua	dos: 21			Total de	Lectura	ıs Realiz	adas: 6.	3		

^{*} La distancia entre los transductores en este método se mide directamente sobre el elemento. Varían un poco entre sí por pequeñas variaciones en las dimensiones del prisma de concreto. Las dimensiones del elemento están indicadas en el Anexo 11

^{**} La desviación estándar se calcula con el método "n-1". Véase su expresión matemática en la Ecuación 2.16

[§] El error porcentual mostrado es una medida relativa de la desviación estándar con respecto a la velocidad promedio

TABLA A10.2: V	ELOCID	ADES I	E PUI	LSO UI	LTRAS	ÓNICO	POR E	L MÉ	rodo s	SEMI-D	IRECT	0
	ELEMEN	TO #1: (CONCR	ETO SI	N ARM	ADURA	E	DAD: 2	28 DÍAS			
						Fecha de	Ensayo :		jueves,	07 de ma	yo de 201	5
Mediciones Tomada	s por:	Orl	ando Ca	rrasco	Н	ora Inicio:	10:45	ā.m.	Н	Iora Final	: 01:0	7 p.m.
UBICACIÓN	TRAN	SDUC.	LECT	. DE TII	ЕМРО	DIST.		CÁL	CULO DI	E VELOC	IDADES	
Vista en Planta	Emisor	Recep.	T1	T2	Т3	* Entre Transd	V1	V2	V3	Veloc. Prom.	Desv Est.**	Error Porc.§
	Cara 1	Cara 2	[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]	[%]
CARA 3	A1	F1	11,2	9,9	10,6	4,95	4415	5001	4648	4688	295	6,29
4 4	A2	F2	11,0	10,0	11,3	4,95	4490	4954	4379	4607	305	6,62
CARA	A3	F3	10,4	9,3	9,9	4,95	4774	5304	5001	5026	266	5,29
CARA I	A4	F4	10,0	10,6	10,6	4,95	4954	4648	4648	4750	177	3,72
T _F	A5	F5	10,4	9,2	10,1	4,95	4774	5358	4907	5013	306	6,11
	A6	F6	9,7	9,4	11,5	4,95	5098	5251	4307	4885	506	10,36
	A7	F7	13,6	12,4	13,2	4,95	3634	3985	3761	3793	178	4,69
0)	B1	E1	50,6	50,7	50,2	20,93	4136	4128	4166	4143	20	0,49
CARA 3	B2	E2	52,2	50,5	49,1	20,93	4010	4143	4260	4138	125	3,03
CARA4	В3	E3	49,0	48,9	49,6	20,93	4268	4276	4220	4255	30	0,71
200	B4	E4	50,8	48,2	51,3	20,93	4120	4342	4082	4181	141	3,36
CARA 1	B5	E5	51,4	52,3	52,1	20,91	4071	3999	4013	4028	38	0,95
	В6	E6	47,4	48,9	48,0	20,88	4401	4267	4349	4339	68	1,56
)	В7	E7	47,0	48,7	48,5	20,88	4444	4291	4308	4348	84	1,94
CARA 3	C1	D1	106,3	109,2	107,3	37,19	3498	3405	3466	3456	47	1,36
4	C2	D2	107,5	107,9	106,2	37,23	3463	3451	3505	3473	28	0,81
ARA JULIA	C3	D3	107,5	107,3	109,3	37,27	3466	3472	3408	3449	35	1,03
2 } \	C4	D4	109,2	109,6	110,5	37,27	3415	3400	3372	3396	22	0,64
D CARA 1	C5	D5	108,2	110,1	108,0	37,26	3443	3386	3452	3427	36	1,05
	C6	D6	110,3	110,3	108,9	37,27	3381	3381	3423	3395	25	0,72
	C7	D7	106,5	105,6	106,3	37,27	3500	3530	3506	3512	16	0,46
7	otal de pu	ntos evalı	ıados: 2	1		Total de	e Lecture	ıs Reali:	zadas: 63	}		

^{*} La distancia en este método se determina indirectamente, calculándola como la hipotenusa del triángulo que forma la ubicación de los transductores en el elemento de sección cuadrada ensayado. Las dimensiones del elemento están indicadas en el Anexo 11

^{**} La desviación estándar se calcula con el método "n-1". Véase su expresión matemática en la Ecuación 2.16

[§] El error porcentual mostrado es una medida relativa de la desviación estándar con respecto a la velocidad promedio

TABLA A1	0.3: VELOCIDADE	S DE PU	JLSO U	LTRA	SÓNI	CO PO	R EL M	IÉTOD	O INDII	RECTO	
	ELEMENTO #1:	CONCRI	ETO SIN	N ARM	ADURA	4	EDAD:	28 DÍAS	5		
					Fech	na de Er	isayo :	jueves	s, 07 de m	ayo de 20)15
Mediciones To		ntonio Fre	ites				2:12 p.m.		Hora F	Final: 04:	34 p.m.
UBIO	CACIÓN	TRAN	SDUC.	I	LECT. D	E TIEM		DIST.		LOCIDA	
Vista en Planta	Vista de Perfil	Emisor	Recep.	T1	T2	Т3	Tiempo Prom.		Veloc. Prom.*	Desv Est.**	R ² ***
		Cara 1	Cara 1	[µs]	[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[adim]
CARA 3	D.	D1	D2	35,6	37,4	38,6	37,2	7,30			
CARA 4	CA GO	D1	D3	48,3	47,7	49,2	48,4	14,90			
	E STATE OF THE STA	D1	D4	70,1	70,8	71,8	70,9	22,30	3135	188	0,985
D CARA I	S Di	D1	D5	99,7	96,9	99,5	98,7	29,80		(6%)	
		D1	D6	124,7	125,9	129,3	126,6	37,20			
	•	D1	D7	155,2	147,5	151,0	151,2	44,60			
CARA 3		E1	E2	33,2	32,9	31,6	32,6	7,50			
CARA 4	CA GEI	E1	E3	42,9	46,8	41,8	43,8	15,00			
CA		E1	E4	75,9	76,3	75,9	76,0	22,40	3062	152	0,990
CARA 1 E	E S	E1	E5	101,0	103,1	105,5	103,2	29,90		(5%)	
		E1	E6	126,8	126,6	128,0	127,1	37,40			
		E1	E7	148,6	150,6	146,1	148,4	45,00			
CARA 3		F1	F2	35,7	33,0	32,0	33,6	7,60			
CARA 4	G G G	F1	F3	49,8	50,0	50,2	50,0	15,00			
		F1	F4	73,1	69,9	68,9	70,6	22,40	3030	186	0,985
CARA 1 F	(SFi	F1	F5	100,3	100,6	99,7	100,2	30,10		(6.1%)	
		F1	F6	134,7	138,0	135,7	136,1	37,60			
		F1	F7	148,0	147,8	153,7	149,8	45,20			
	Total de _l	ountos eve	ıluados:	21		To	tal de Lec	turas Re	alizadas:	63	

^{*} La Velocidad Promedio para este método está calculada como el reciproco de la pendiente de la recta de mejor ajuste de los pares ordenados representados en la gráfica de tiempo vs distancia.(Ver Anexos 12)

^{**} El valor de Desviación Estándar mostrado en esta tabla es calculada por la ecuación del "Error Estándar de Aproximación" el cual mide la dispersión de los valores observados alrededor de la línea de regresión.

^{***} El valor R² es el Coeficiente de Determinación calculado como el cuadrado del coeficiente de correlación de Pearson. Es un índice adimensional acotado entre 0 y 1 entendido como una medida del ajuste de una función para describir el comportamiento de un conjunto de puntos relacionados por dos variables covariantes.

TABLA A10.4:	VELOC	IDADES	S DE P	ULSO	ULTR	ASÓNIC	CO PO	R EL N	AÉTO I	DO DIR	ЕСТО	
ELEMENTO	#2A: AF	RMADO I	DE 2 RA	AMAS (CON SI	EPARAC	IÓN 10	CM	EDA	D: 28 DÍ	AS	
							ha de Eı	nsayo :	vierr	nes, 08 de	mayo de	2015
Mediciones Tomadas 1	or:		Antonio	Freites		Hora Inicio:	07:17	7 a.m.	Но	ra Final:	10:2	6 a.m.
UBICACIÓN	TRAN	SDUC.	LECT	. DE TII	ЕМРО	DIST.		CÁLO	CULO DI	E VELOC	IDADES	
Vista en Planta	Emisor	Recep.	T1	T2	Т3	* Entre Transd.	V1	V2	V3	Veloc. Prom.	Desv Est.**	Error Porc.§
	Cara 2	Cara 4	[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]	[%]
CARA 3	M1	M1'	72,2	70,4	69,92	30,00	4155	4262	4291	4236	72	1,69
IRA 2	A1	A1'	70,1	71,4	72,3	30,08	4293	4210	4163	4222	66	1,56
M'C OM SM	M2	M2'	70,6	70,8	70,4	30,17	4274	4264	4283	4274	10	0,22
G CARA I	A2	A2'	71,1	72,0	71,6	30,22	4252	4200	4218	4223	27	0,63
	М3	M3'	69,7	70,6	70,5	30,24	4336	4283	4292	4304	29	0,66
	A3	A3'	69,4	71,2	71,2	30,19	4353	4239	4239	4277	66	1,54
CARA 3	K1	K1'	70,9	71,2	71,1	29,99	4227	4213	4218	4219	7	0,18
3 (2)	B1	B1'	72,7	73,6	73,5	30,05	4134	4082	4087	4101	29	0,70
(K' K	K2	K2'	73,3	74,0	73,1	30,13	4107	4071	4121	4100	26	0,63
G CARA 1	B2	B2'	74,5	75,1	74,7	30,16	4049	4017	4035	4034	16	0,39
	К3	K3'	75,9	75,8	75,7	30,15	3974	3979	3983	3979	4	0,11
	В3	B3'	73,7	71,9	71,4	30,12	4086	4191	4216	4164	69	1,66
J' CARA 3 J	J1	J1'	71,3	71,0	72,4	29,98	4207	4222	4144	4191	42	0,99
4 2 077770	C1	C1'	72,1	72,2	73,3	30,02	4165	4156	4096	4139	37	0,90
CARA	J2	J2'	72,4	73,1	72,6	30,08	4156	4116	4142	4138	20	0,49
G CARA 1	C2	C2'	73,9	75,0	72,7	30,09	4074	4013	4137	4074	62	1,52
	J3	J3'	73,8	74,4	75,0	30,06	4074	4040	4010	4041	32	0,79
	C3	C3'	74,6	76,0	76,3	30,04	4028	3952	3940	3973	48	1,21
Total de puntos evaluados: 18 Total de Lecturas Realizadas: 54												

^{*} La distancia entre los transductores en este método se mide directamente sobre el elemento. Varían un poco entre sí por pequeñas variaciones en las dimensiones del prisma de concreto. Las dimensiones del elemento están indicadas en el Anexo 11

^{**} La desviación estándar se calcula con el método "n-1". Su expresión matemática está en la Ecuación 2.16

[§] El error porcentual mostrado es una medida relativa de la desviación estándar con respecto a la velocidad promedio

TABLA A10.5: VE	LOCIDA	ADES D	E PUL	SO UL	TRAS	ÓNICO I	POR E	L MÉ	горо	SEMI-D	DIRECT	О
ELEMENTO	#2A: AI	RMADO	DE 2 RA	MAS (CON SE	PARACI	ÓN 10	CM	EDA	D: 28 DÍ	AS	
								de Ensa	yo: vie	rnes, 08 d	le mayo	de 2015
Mediciones Tomadas	por:	Orla	ando Car	rasco	Но	ra Inicio:	10:2	26 a.m.		Hora Fin	al: 01:3	30 p.m.
UBICACIÓN	TRAN	SDUC.	LECT	DE TIE	МРО	DIST.		CÁLC	CULO DI	E VELOC	IDADES	
Vista en Planta	Emisor	Recep.	T1	T2	Т3	* Entre Transd	V1	V2	V3	Veloc. Prom.*	Desv Est ^{**}	Error Porc.§
	Cara 1	Cara 2	[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]	[%]
CARA 4	I1	M1	7,9	8,8	7,9	5,17	6577	5896	6577	6350	393	6,19
RAI	F1	A1	8,4	8,6	8,5	5,13	6129	5941	6034	6035	94	1,55
	I2	M2	8,2	7,4	10,2	5,10	6218	6880	5020	6040	943	15,61
CARA 2	F2	A2	10,2	10,9	10,0	5,03	4945	4624	5014	4861	208	4,28
(A) B	I3	M3	10,5	9,2	8,2	4,96	4707	5361	6035	5368	664	12,37
	F3	A3	8,6	9,9	9,0	4,95	5790	4993	5529	5437	406	7,47
CARA 4	H1	K1	58,6	59,0	59,3	21,43	3654	3631	3616	3634	19	0,53
> (0 0)	E1	B1	52,0	51,0	50,1	21,25	4089	4163	4240	4164	76	1,82
H CARA 3	H2	K2	61,7	62,1	61,6	21,08	3414	3393	3421	3410	14	0,42
CARA 2	E2	B2	49,8	50,6	52,2	21,04	4223	4160	4032	4138	97	2,35
The state of the s	НЗ	К3	64,8	64,1	63,3	21,00	3243	3274	3320	3279	39	1,19
	E3	В3	49,9	49,3	50,3	21,14	4235	4293	4206	4245	44	1,04
CARA 4	G1	J1	116,0	112,1	111,1	37,41	3225	3337	3367	3310	75	2,27
B O D O S	D1	C1	125,7	118,5	122,1	37,52	2986	3167	3072	3075	91	2,95
	G2	J2	116,7	115,2	105,0	37,62	3224	3266	3581	3357	195	5,82
CARA 2	D2	C2	126,5	127,2	133,4	37,48	2962	2946	2809	2906	84	2,90
	G3	Ј3	109,7	111,9	110,4	37,34	3402	3337	3383	3374	33	0,99
	D3	СЗ	118,7	130,2	126,3	37,41	3151	2873	2962	2995	142	4,74
To	tal de pui	ntos evalu	ados: 18	3		Total de l	Lectura	s Realiz	adas: 54	1		

^{*} La distancia en este método se determina indirectamente calculándola como la hipotenusa del triángulo que forma la ubicación de los transductores en el elemento de sección cuadrada ensayado. Las dimensiones del elemento están indicadas en el Anexo 11

^{**} La desviación estándar se calcula con el método "n-1". Véase su expresión matemática en la Ecuación 2.16

[§] El error porcentual mostrado es una medida relativa de la desviación estándar con respecto a la velocidad promedio

).6: VELOCIDADE										
ELEMI	ENTO #2A: ARMADO	O DE 2 1	RAMAS	CONS	SEPARA	ACIÓN	10 CM		D: 28 DÍ		
						a de Ens			08 de ma		15
Mediciones Toma		ndo Cari					:00 p.m.		ora Final:		
UBICA	ACIÓN	TRAN	ISDUC.]	LECT. D	E TIEM		DIST.		LOCIDA	D
Vista en Planta	Vista de Perfil	Emisor	Recep.	T1	T2	Т3	Tiempo Prom.	Entre Transd.	Veloc. Prom.*	Desv Est.**	R ² ***
	<u> </u>	Cara 1	Cara 1	[µs]	[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[adim]
CARA 3		G1	D1	21,5	21,6	22,3	21,8	5,00			
ARA		G1	G2	41,2	44,3	40,8	42,1	9,70			
G CARA 1		G1	D2	47,9	48,4	47,9	48,1	14,50	3228	349	0,951
SA.		G1	G3	57,1	53,1	55,1	55,1	19,50		(10,8%)	
	1 3	G1	D3	87,1	86,8	85,2	86,4	24,50			
		G1	G4	95,4	98,0	101,3	98,2	28,80			
CARA 3		H1	E1	24,8	23,8	23,3	24,0	4,70			
ARA 4	CA GUILLAND	H1	Н2	35,9	35,7	37,6	36,4	9,30			
CARA I H		H1	E2	49,8	50,2	51,2	50,4	14,20	3164	142	0,992
A CONTRACTOR	3 3	H1	НЗ	71,3	75,4	74,1	73,6	19,20		(4,5%)	
	\$ \$	H1	E3	83,4	82,0	83,9	83,1	24,10			
		H1	H4	96,4	99,1	100,4	98,6	28,80			
CARA 3		I1	F1	27,2	27,1	28,7	27,7	4,50			
CARA	C GHI	I1	I2	38,7	37,8	34,9	37,1	9,30			
CARA I I		I1	F2	53,8	51,7	54,7	53,4	14,30	3096	218	0,980
S. A.		I1	I3	71,8	70,4	71,2	71,1	19,20		(7%)	
	A A A	I1	F3	94,4	99,8	92,8	95,7	24,30			
	. 1	I1	I4	103,8	96,9	97,9	99,5	28,80			
	Total de	puntos	evaluado	os: 18		T	otal de Le	cturas Re	alizadas:	54	

^{*} La Velocidad Promedio para este método está calculada como el reciproco de la pendiente de la recta de mejor ajuste de los pares ordenados representados en la gráfica de tiempo vs distancia.(Ver Anexos 12)

^{**} El valor de Desviación Estándar mostrado en esta tabla es calculado por la ecuación del Error Estándar de Aproximación el cual mide la dispersión de los valores observados alrededor de la línea de regresión.

^{***} El valor R² es el Coeficiente de Determinación calculado como el cuadrado del coeficiente de correlación de Pearson. Es un índice adimensional acotado entre 0 y 1 entendido como una medida del ajuste de una función para describir el comportamiento de un conjunto de puntos relacionados por dos variables covariantes.

TABLA A10.7:	VELOC	IDADES	S DE P	ULSO	ULTR	ASÓNIC	CO PO	R EL N	MÉTOI	OO DIR	ЕСТО	
ELEMENTO) #2B: Al	RMADO	DE 2 R	AMAS	CON S	EPARAC	IÓN 7 (СМ	EDAI): 28 DÍ <i>A</i>	S	
					F	echa de E	nsayo:	,	viernes,	08 de ma	yo de 20	15
Mediciones Tomadas p	or:	Anto	nio Fre	ites	Ho	a Inicio:	07:17	7 a.m.	Но	ra Final:	10:2	6 a.m.
UBICACIÓN	TRAN	SDUC.	LECT	. DE TII	ЕМРО	DIST.		CÁLC	CULO DI	E VELOC	IDADES	
Vista en Planta	Emisor	Recep.	T1	T2	Т3	Entre Transd.	V1	V2	V3	Veloc. Prom.	Desv Est.**	Error Porc.§
	Cara 2	Cara 4	[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]	[%]
CARA 3	A4	A4'	69,3	67,7	66,8	30,20	4360	4463	4522	4448	82	1,84
CARA	M5	M5'	70,3	67,7	66,2	30,28	4310	4475	4576	4454	135	3,02
M' M	A5	A5'	69,8	68,1	68,8	30,29	4336	4448	4402	4396	56	1,28
G CARA I	M6	M6'	67,3	68,5	66,0	30,25	4492	4414	4583	4496	85	1,88
	A6	A6'	70,6	69,4	70,8	30,26	4284	4362	4274	4307	48	1,12
	M7	M7'	68,4	66,0	69,5	30,18	4410	4574	4341	4442	120	2,69
CARA 3	B4	B4'	73,3	72,8	69,6	30,18	4117	4143	4336	4198	120	2,85
3 0 3	K5	K5'	72,8	74,0	73,0	30,24	4155	4084	4144	4128	38	0,93
(K' K)	B5	B5'	75,6	75,4	76,4	30,27	4002	4012	3964	3993	26	0,64
G CARA 1	K6	K6'	72,7	71,8	71,2	30,25	4160	4213	4250	4208	45	1,07
	В6	B6'	71,8	72,2	73,3	30,22	4206	4185	4121	4171	44	1,06
	K7	K7'	72,4	72,0	71,2	30,15	4164	4190	4237	4197	37	0,89
J' CARA 3 J	C4	C4'	71,5	70,8	70,8	30,16	4219	4257	4262	4246	23	0,55
C 2 077770 C 2	J5	J5'	71,6	70,3	70,6	30,20	4216	4295	4276	4262	41	0,97
CARA	C5	C5'	71,3	71,0	71,4	30,25	4245	4263	4235	4248	14	0,34
G CARA 1	J6	J6'	71,1	68,0	67,7	30,24	4253	4449	4464	4389	118	2,69
	C6	C6'	69,5	68,5	68,0	30,17	4341	4402	4438	4393	49	1,11
	J7	J7'	69,1	68,6	67,1	30,12	4358	4392	4490	4413	69	1,56
To	Total de puntos evaluados: 18 Total de Lecturas Realizadas: 54											

^{*}La distancia entre los transductores en este método se mide directamente sobre el elemento. Varían un poco entre sí en el mismo elemento por pequeñas variaciones en las dimensiones del prisma de concreto. Las dimensiones del elemento están indicadas en el Anexo 11

^{**} La desviación estándar se calcula con el método "n-1". Véase su expresión matemática en la Ecuación 2.16

[§] El error porcentual mostrado es una medida relativa de la desviación estándar con respecto a la velocidad promedio

TABLA A10.8: VE	LOCIDA	ADES DI	E PULS	SO UL	TRAS	ÓNICO I	POR E	L MÉ	горо	SEMI-I	DIRECT	ГО
ELEMENTO	O #2B: Al	RMADO	DE 2 R	AMAS	CON SI	EPARAC	IÓN 7 (CM	EDAI): 28 DÍ <i>A</i>	\S	
					F	echa de E	nsayo:	,	viernes,	08 de ma	yo de 20	15
Mediciones Tomadas 1	or:	Orlan	do Carra	asco	Hor	ra Inicio:	10:26	5 a.m.	Но	ra Final:	01:30	0 p.m.
UBICACIÓN	TRAN	SDUC.	LECT	. DE TII	ЕМРО	DIST.		CÁLC	CULO DI	E VELOC	IDADES	
Vista en Planta	Emisor	Recep.	T2	Т3	* Entre Transd	V1	V2	V3	Veloc. Prom.	Desv Est. **	Error Porc.§	
	Cara 1	Cara 2	[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]	[%]
CARA 4	F4	A4	8,1	8,0	9,1	4,88	6038	6137	5342	5839	433	7,42
RAID	I5	M5	8,9	8,1	9,0	4,95	5569	6098	5488	5718	331	5,79
	F5	A5	9,4	10,6	11,6	5,02	5364	4743	4340	4816	515	10,70
CARA 2	I6	M6	7,0	6,3	7,6	4,99	7140	7974	6557	7223	712	9,86
	F6	A6	9,1	8,9	8,3	4,96	5436	5599	5952	5662	264	4,66
	17				10,1	4,82	5472	6001	4753	5409	626	11,58
S CARA 4	E4	B4	49,8	50,4	50,0	21,21	4256	4209	4240	4235	24	0,57
H 2 6 0 5	H5	K5	69,3	65,4	66,5	21,21	3060	3242	3190	3164	94	2,96
CARA	E5	B5	52,7	52,1	48,7	21,21	4024	4074	4354	4151	178	4,28
CARA 2	Н6	K6	61,9	61,0	62,2	21,21	3426	3477	3409	3437	35	1,02
	E6	В6	52,5	51,6	49,3	21,21	4038	4111	4304	4151	138	3,31
	H7	K7	-	-	-	-	-	-	-	-	-	-
CARA 4	D4	C4	122,1	120,9	124,8	37,41	3065	3093	2997	3051	50	1,63
E COLL OF	G5	J5	120,9	120,4	122,0	37,48	3101	3113	3073	3095	21	0,66
ARA RA	D5	C5	125,7	124,5	120,0	37,55	2988	3015	3129	3044	75	2,47
CARA 2	G6	J6	114,7	121,6	117,5	37,41	3261	3077	3184	3174	92	2,90
	D6	C6	128,4	123,0	123,7	37,27	2902	3030	3014	2982	70	2,34
G7 J7 123,3 117,6 122,0 37,27 3024 3169									3055	3082	76	2,48
Total de puntos evaluados: 17 Total de Lecturas Realizadas: 51												

^{*} La distancia en este método se determina indirectamente calculándola como la hipotenusa del triángulo que forma la ubicación de los transductores en el elemento de sección cuadrada ensayado. Las dimensiones del elemento están indicadas en el Anexo 11

Observación: H7 – K7 NO se evaluó porque se evidenciaba en la superficie que el separador de madera utilizado para garantizar la distancia de recubrimiento del acero se atravesaba en la trayectoria del pulso.

^{**} La desviación estándar se calcula con el método "n-1". Véase su expresión matemática en la Ecuación 2.16

[§] El error porcentual mostrado es una medida relativa de la desviación estándar con respecto a la velocidad promedio

	.9: VELOCIDADE										
ELEMI	ENTO #2B: ARMAD	O DE 2	RAMAS						28 DÍAS		
М 1:		0.11	<u>C</u>		ha de E			iernes, 08 d	<u> </u>		<u> </u>
Mediciones T UBICA		TRAN	Carrasco		LECT. D		00 p.m.	DIST.	Iora Final	LOCIDA	
				1			Tiempo	Entre	Veloc.	Desv	
Vista en Planta	Vista de Perfil	Emisor	Recep.	T1	T2	Т3	Prom.	Transd.	Prom.*	Est.**	R ² ***
		Cara 1	Cara 1	[µs]	[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[adim]
CARA 3		G4	D4	29,1	28,8	30,5	29,5	4,00			
ARA 2		G4	G5	35,1	34,8	35,0	35,0	8,00			
G CARA I	₹ §	G4	D5	45,2	48,1	48,4	47,2	11,50	3163	306	0,961
A.	G4	G4	G6	54,5	55,3	55,4	55,1	14,70		(9,7%)	
		G4	D6	71,0	66,4	63,5	67,0	18,30			
	> 4	G4	G7	85,2	84,6	88,2	86,0	21,50			
CARA 3		H4	E4	31,8	31,5	31,7	31,7	4,00			
ARA 4		H4	Н5	35,3	34,7	35,3	35,1	7,70			
CARA 1 H	W S	H4	E5	48,5	45,2	47,0	46,9	11,30	3102	266	0,970
CARAT	H4	H4	Н6	59,8	56,8	56,4	57,7	14,60	5102	(8,6%)	0,570
		H4	E6	70,1	71,7	71,0	70,9	17,70			
	<i>y</i> 4 '	H4	H7	85,3	87,2	85,0	85,8	21,40			
CARA 3		I4	F4	30,1	31,6	30,4	30,7	4,00			
ARA 4	-	I4	I5	36,4	34,1	34,8	35,1	7,50			
		I4	F5	44,3	49,4	49,2	47,6	10,80	3013	214	0,978
CARATUI	3	I4	I6	56,3	59,4	57,9	57,9	14,20	3013	(7,1%)	0,978
		I4	F6	66,0	74,3	68,2	69,5	17,30			
	> Y	I4	I7	85,4	88,2	84,2	86,8	21,20			
	Total de	puntos e	evaluado	s: 36		7	otal de Le	cturas Real	izadas: 10	08	

^{*} La Velocidad Promedio para este método está calculada como el reciproco de la pendiente de la recta de mejor ajuste de los pares ordenados representados en la gráfica de tiempo vs distancia.(Ver Anexos 12)

^{**} El valor de Desviación Estándar mostrado en esta tabla es calculado por la ecuación del Error Estándar de Aproximación el cual mide la dispersión de los valores observados alrededor de la línea de regresión.

^{***} El valor R2 es el Coeficiente de Determinación calculado como el cuadrado del coeficiente de correlación de Pearson. Es un índice adimensional acotado entre 0 y 1 entendido como una medida del ajuste de una función para describir el comportamiento de un conjunto de puntos relacionados por dos variables covariantes.

TABLA A10.10:	VELO	CIDADE	S DE I	PULSO	ULTI	RASÓNI	CO PC	R EL	MÉTO	DO DII	RECTO	
ELEMENTO) #3: ARN	AADO DI	E 2 RAI	MAS C	ON SEI	PARACIO	ÓN 15 C	M	EDA	.D: 28 DÍ	AS	
					F	echa de E	nsayo:		lunes, 1	11 de may	o de 201	5
Mediciones Tomadas p	oor:	Anto	nio Fre	ites	Ho	ra Inicio:	07:41	a.m.	Но	ora Final:	10:0	5 a.m.
UBICACIÓN	TRAN	SDUC.	LECT	. DE TII	ЕМРО	DIST.		CÁL	CULO D	E VELOC	CIDADES	
Vista en Planta	Emisor	Recep.	T1	T2	Т3	Entre Transd.	V1	V2	V3	Veloc. Prom.	Desv Est.**	Error Porc.§
	Cara 2	Cara 4	[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]	[%]
CARA 3	A1	A1′	69,0	69,2	70,0	30,00	4350	4338	4283	4324	36	0,82
CARA	A2	A2´	73,1	73,3	72,7	30,08	4116	4101	4137	4118	18	0,43
5	A3	A3′	69,0	70,3	69,6	30,07	4360	4275	4323	4320	43	0,99
	A4	A4´	73,7	74,4	73,7	30,00	4071	4032	4071	4058	23	0,56
CARA 1	A5	A5´	68,6	67,5	68,9	30,17	4400	4470	4381	4417	47	1,06
	A6	A6′	71,9	71,4	69,8	30,19	4197	4229	4327	4251	68	1,59
	A7	A7′	67,6	67,2	67,0	30,12	4456	4482	4495	4478	20	0,44
CARA 3	B1	B1′	72,8	72,8	71,9	30,03	4123	4123	4176	4141	30	0,73
7 0 3	B2	B2´	74,4	73,6	75,0	30,11	4046	4092	4016	4052	38	0,95
B' B'	В3	B3′	74,6	74,9	75,8	30,15	4043	4023	3975	4014	35	0,87
	B4	B4′	74,2	73,6	74,5	30,11	4056	4092	4041	4063	26	0,65
CARA 1	В5	B5´	74,6	74,6	74,3	30,23	4053	4053	4068	4058	9	0,21
	В6	B6′	72,9	73,7	73,5	30,27	4149	4107	4118	4125	22	0,53
	В7	B7′	71,8	72,8	71,6	30,15	4198	4140	4208	4182	37	0,88
C' CARA 3 C	C1	C1′	66,8	66,5	66,9	30,05	4498	4518	4491	4502	14	0,31
4 077770	C2	C2´	74,7	75,0	74,4	30,14	4035	4021	4050	4035	14	0,36
CARA	C3	C3′	76,9	70,8	75,5	30,22	3930	4267	4001	4066	177	4,36
	C4	C4′	72,8	72,6	72,7	30,21	4148	4159	4153	4153	5	0,12
CARA 1	C5	C5′	77,9	76,9	76,3	30,28	3889	3938	3968	3932	40	1,02
	C6	C6′	72,2	73,2	72,9	30,34	4201	4145	4160	4169	29	0,70
	C7	C7′	74,2	72,7	76,8	30,18	4070	4152	3930	4051	112	2,77
To	tal de pun	tos evalua	idos: 21			Total de	e Lecture	as Reali	zadas: 6	3		

^{*}La distancia entre los transductores en este método se mide directamente sobre el elemento. Varían un poco entre sí en el mismo elemento por pequeñas variaciones en las dimensiones del prisma de concreto. Las dimensiones del elemento están indicadas en el Anexo 11

^{**} La desviación estándar se calcula con el método "n-1". Véase su expresión matemática en la Ecuación 2.16

[§] El error porcentual mostrado es una medida relativa de la desviación estándar con respecto a la velocidad promedio

TABLA A10.11: VEI	LOCIDA	DES D	E PUL	SO UI	LTRAS	SÓNICO	POR I	EL MÉ	TODO S	EMI-DI	RECTO)
ELEMENTO:	#3: ARM	ADO DI	E 2 RAN	MAS C	ON SEI	PARACIO	ÓN 15 C	M	EDAD	: 28 DÍAS		
						Fecha de	Ensayo :		lunes, 11	de mayo d	le 2015	
Mediciones Tomadas p			do Carı	rasco	Ho	ra Inicio:	10:27	7 a.m.		Hora Final		p.m.
UBICACIÓN	TRANS	SDUC.	LECT	. DE TII	ЕМРО	DIST.		CÁLC	ULO DE V	ELOCIDA	DES	
Vista en Planta	Emisor	Recep.	T1	T2	Т3	* Entre Transd	V1	V2	V3	Veloc. Prom.	Desv Est. **	Error Porc.§
	Cara 1	Cara 2	[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]	[%]
CARA 4	A1	F1	11,0	11,1	11,0	4,74	4324	4260	4324	4303	37	0,87
ARA O	A2	F2	9,7	13,8	10,5	4,81	4936	3474	4565	4325	760	17,57
	A3	F3	11,7	11,7	12,5	4,88	4162	4191	3915	4089	152	3,71
CARA 2	A4	F4	12,0	12,3	11,6	4,99	4166	4063	4304	4178	121	2,90
CARAZ	A5	F5	10,1	10,5	10,1	5,10	5054	4849	5054	4986	118	2,38
	A6	F6	9,3	9,5	9,2	5,16	5532	5436	5581	5516	73	1,33
	A7	F7	7,7	8,0	7,7	5,17	6686	6463	6686	6611	129	1,94
CARA 4	B1	E1	49,5	50,5	49,6	20,93	4231	4147	4217	4198	45	1,06
	B2	E2	51,6	51,6	51,7	21,36	4135	4142	4129	4135	6	0,16
GCARA	В3	E3	51,2	50,6	50,1	21,79	4253	4309	4352	4304	50	1,15
	B4	E4	51,1	51,4	50,9	21,50	4206	4186	4226	4206	20	0,47
CARA 2	В5	E5	51,0	50,0	50,8	21,21	4157	4240	4178	4192	43	1,03
()	В6	E6	48,9	48,9	48,6	21,28	4354	4354	4383	4364	17	0,38
	В7	E7	48,7	47,5	47,7	21,29	4370	4478	4462	4436	58	1,31
CARA 4	C1	D1	111,3	109,8	110,1	37,55	3375	3419	3409	3401	23	0,67
6 9 9	C2	D2	103,9	104,6	104,9	37,62	3622	3596	3586	3601	18	0,51
CAR	C3	D3	101,7	92,2	109,0	37,69	3705	4089	3458	3751	318	8,48
	C4	D4	102,6	103,5	104,0	37,62	3666	3635	3617	3639	25	0,68
CARA 2	C5	D5	107,2	106,8	103,8	37,55	3502	3515	3616	3545	62	1,75
Charles and the second	C6	D6	92,7	99,9	96,3	37,51	4049	3754	3893	3899	147	3,78
	C7	D7	105,6	105,7	104,9	37,48	3549	3547	3571	3556	13	0,38
Tota	ıl de punt	os evalua	dos: 21			Total d	e Lecturo	as Realiz	zadas: 63			

^{*} La distancia en este método se determina indirectamente calculándola como la hipotenusa del triángulo que forma la ubicación de los transductores en el elemento de sección cuadrada ensayado. Las dimensiones del elemento están indicadas en el Anexo 11

^{**} La desviación estándar se calcula con el método "n-1". Véase su expresión matemática en la Ecuación 2.16

[§] El error porcentual mostrado es una medida relativa de la desviación estándar con respecto a la velocidad promedio

TABLA A10.	12: VELOCIDADE	S DE P	PULSO	ULTR	RASÓNIC	CO PO	R EL M	ÉTODO	INDIR	ЕСТО	
ELEME	ENTO #3: ARMADO I	DE 2 RA	MAS C	ON SE	PARACI	ÓN 15 (СМ	EDAD	: 28 DÍAS	8	
					Fecha de		: l	unes, 11	de mayo	de 2015	
Mediciones Toma		nio Frei	tes		ra Inicio:		2 p.m.		Hora Fin		
UBICA	ACIÓN	TRAN	SDUC.		LECT. DE	E TIEMP		DIST.		LOCIDA	D
Vista en Planta	Vista de Perfil	Emisor	Recep.	T1	T2	Т3	Tiempo Prom.	Entre Transd.	Veloc. Prom.*	Desv Est.**	R ² ***
		Cara 1	Cara 1	[µs]	[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[adim]
CARA 3		D1	D2	34,2	35,8	35,2	35,1	7,50			
ARA 4	DI C	D1	D3	32,0	31,8	33,9	32,6	15,00			
3 6 3		D1	D4	59,7	50,7	56,5	55,6	22,80	3161	450	0,911
D CARA I	CARA	D1	D5	78,3	79,0	79,7	79,0	31,20		(14,2%)	
		D1	D6	102,6	104,3	114,0	107,0	37,70			
(4)	> Y IIII	D1	D7	155,5	154,8	155,1	155,1	45,60			
CARA 3		E1	E2	43,8	44,0	44,3	44,0	7,50			
CARA 4	C LEI	E1	ЕЗ	59,8	58,8	59,3	59,3	15,20			
5 5		E1	E4	87,7	85,9	92,2	88,6	22,70	3140	184	0,986
CARA 1 E	CAR	E1	E5	126,7	116,5	122,3	121,8	30,10		(5,9%)	
		E1	E6	135,4	139,6	140,3	138,4	37,50			
	, , , , , , , , , , , , , , , , , , , ,	E1	E7	155,9	158,8	159,5	158,1	45,40			
CARA 3		F1	F2	34,9	33,2	34,2	34,1	7,50			
ARA 4	FI C	F1	F3	60,7	55,6	56,8	57,7	15,50			
		F1	F4	72,3	75,9	79,4	75,9	22,70	2988	183	0,985
CARA 1 F	No.	F1	F5	92,3	95,9	99,4	95,9	30,00		(6,1%)	
		F1	F6	130,6	129,3	129,3	129,7	37,70		(0,1%)	
(4)	> 1	F1	F7	163,4	162,4	160,6	162,1	45,10			
	Total de	puntos e	evaluado	s: 18		Tota	al de Lecti	uras Real	lizadas: 5	4	

^{*} La Velocidad Promedio para este método está calculada como el reciproco de la pendiente de la recta de mejor ajuste de los pares ordenados representados en la gráfica de tiempo vs distancia.(Ver Anexos 12)

^{**} El valor de Desviación Estándar mostrado en esta tabla es calculado por la ecuación del Error Estándar de Aproximación el cual mide la dispersión de los valores observados alrededor de la línea de regresión.

^{***} El valor R2 es el Coeficiente de Determinación calculado como el cuadrado del coeficiente de correlación de Pearson. Es un índice adimensional acotado entre 0 y 1 entendido como una medida del ajuste de una función para describir el comportamiento de un conjunto de puntos relacionados por dos variables covariantes.

TABLA A10.13: ELEMENTO										D: 28 DÍ		
						echa de E				, 13 de m		015
Mediciones Tomadas p	por:	Anto	nio Fre	ites	Ho	a Inicio:	07:10) a.m.	Но	ra Final:	09:4	2 a.m.
UBICACIÓN	TRAN	SDUC.	LECT	. DE TI	ЕМРО	DIST.		CÁLO	CULO DI	E VELOC	IDADES	
Vista en Planta	Emisor	Recep.	T1	T2	Т3	Entre Transd.	V1	V2	V3	Veloc. Prom.	Desv Est.**	Error Porc.§
	Cara 2	Cara 4	[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]	[%]
CARA 3	A1	A1′	68,2	67,9	67,4	30,03	4405	4424	4455	4428	25	0,57
ARA CARA	A2	A2´	73,5	73,2	73,7	30,16	4124	4119	4095	4113	16	0,37
4 5 5	A3	A3′	68,5	68,0	68,1	30,26	4420	4451	4445	4439	16	0,37
	A4	A4´	73,5	73,7	73,4	30,19	4108	4099	4113	4107	7	0,18
CARA 1	A5	A5′	69,6	69,6	69,2	30,23	4343	4343	4367	4351	14	0,32
	A6	A6´	73,8	73,1	72,7	30,32	4110	4149	4169	4143	30	0,72
	A7	A7′	74,4	73,0	72,8	30,30	4073	4153	4164	4130	50	1,20
CARA 3	B1	B1′	74,6	74,1	73,9	30,02	4025	4051	4060	4045	18	0,46
2 0 3	B2	B2´	74,5	75,2	74,9	30,13	4044	4007	4025	4025	18	0,46
B' B	В3	B3′	73,5	73,1	68,7	30,18	4107	4126	4393	4209	160	3,80
	B4	B4′	72,4	73,2	73,0	30,10	4154	4110	4120	4128	23	0,56
CARA 1	B5	B5′	71,6	71,4	72,8	30,18	4216	4226	4145	4196	44	1,06
	В6	B6′	74,5	75,2	73,7	30,30	4069	4027	4112	4069	42	1,04
	В7	B7′	70,4	72,3	69,7	30,22	4295	4178	4336	4270	82	1,92
C' CARA 3 C	C1	C1′	69,2	68,0	72,8	30,00	4334	4414	4118	4289	153	3,56
4	C2	C2′	73,9	73,9	74,2	30,10	4073	4073	4059	4068	8	0,20
CARA (C3	C3′	79,8	79,9	78,5	30,09	3771	3767	3835	3791	38	1,01
	C4	C4′	74,1	73,5	73,6	30,00	4051	4084	4075	4070	17	0,42
(G CARA 1	C5	C5′	76,9	70,7	75,2	30,13	3916	4264	4005	4062	181	4,46
	C6	C6′	74,7	74,6	74,2	30,27	4052	4056	4080	4063	15	0,37
	C7	C7′	75,9	71,6	74,9	30,14	3971	4209	4027	4069	124	3,06
To	tal de pun	tos evalua	idos: 21			Total de	Lectura	s Realiz	zadas: 6.	3		

^{*}La distancia entre los transductores en este método se mide directamente sobre el elemento. Varían un poco entre sí en el mismo elemento por pequeñas variaciones en las dimensiones del prisma de concreto. Las dimensiones del elemento están indicadas en el Apexo 11

^{**} La desviación estándar se calcula con el método "n-1". Véase su expresión matemática en la Ecuación 2.16

[§] El error porcentual mostrado es una medida relativa de la desviación estándar con respecto a la velocidad promedio

TABLA A10.14: VE	LOCID	ADES D	E PUL	SO UL	TRAS	ÓNICO	POR I	EL MÉ	TODO	SEMI-l	DIREC'	ГО
ELEMENTO	#4: ARN	IADO D	E 3 RAN	AAS CO	ON SEP	PARACIÓ	N 15 C	M	EDA	D: 28 DÍ	AS	
					F	echa de E	nsayo :	n	niércoles	, 13 de m	ayo de 20)15
Mediciones Tomadas p			do Carra	asco	Hot	ra Inicio:	10:00) a.m.		ora Final:		l p.m.
UBICACIÓN	TRAN	SDUC.	LECT	. DE TII	ЕМРО	DIST.		CÁLO	CULO DI	E VELOC		
Vista en Planta	Emisor	Recep.	T1	T2	Т3	* Entre Transd	V1	V2	V3	Veloc. Prom.	Desv Est.**.	Error Porc.§
	Cara 1	Cara 2	[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]	[%]
CARA 4	A1	F1	12,9	13,3	13,0	6,30	4895	4757	4860	4837	72	1,49
2 PAPS	A2	F2	12,6	13,0	13,1	6,38	5052	4920	4877	4950	91	1,84
	A3	F3	11,6	11,8	11,7	6,45	5579	5490	5534	5534	45	0,81
CARA 2	A4	F4	12,3	14,1	13,2	6,56	5349	4663	4984	4999	343	6,86
CARAZ	A5	F5	13,8	11,8	13,4	6,67	4821	5669	4990	5160	449	8,70
	A6	F6	12,0	12,7	14,3	6,58	5460	5171	4599	5077	438	8,63
	A7	F7	14,4	12,1	12,2	6,48	4506	5341	5300	5049	471	9,32
S CARA 4	B1	E1	53,6	53,6	53,7	20,79	3882	3876	3869	3876	7	0,17
	B2	E2	50,4	50,1	51,9	21,04	4178	4203	4052	4144	81	1,95
E CARA	В3	E3	54,4	55,5	52,9	21,28	3910	3839	4026	3925	95	2,41
	B4	E4	50,8	51,2	51,0	21,60	4249	4218	4237	4235	16	0,37
CARA 2	В5	E5	57,4	56,7	54,9	21,92	3822	3865	3995	3894	90	2,32
	В6	E6	50,9	51,6	51,6	21,85	4292	4235	4235	4254	33	0,77
	В7	E7	54,7	52,0	54,3	21,78	3984	4189	4011	4061	112	2,75
CARA 4	C1	D1	94,3	94,7	96,1	36,20	3839	3824	3766	3810	39	1,02
G PAP	C2	D2	105,3	105,0	107,2	36,42	3458	3470	3397	3441	39	1,14
ARA	C3	D3	96,8	94,3	93,7	36,63	3783	3882	3909	3858	67	1,73
	C4	D4	105,1	101,3	101,4	36,84	3506	3636	3632	3591	74	2,07
CARA 2	C5	D5	96,8	96,0	97,2	37,05	3828	3861	3814	3834	24	0,64
	C6	D6	105,1	106,6	103,7	37,09	3527	3480	3576	3528	48	1,35
	C7	D7	93,6	92,1	92,6	37,12	3967	4031	4011	4003	33	0,81
То	tal de pun	tos evalud	idos: 21			Total de	Lectura	as Realiz	zadas: 6.	3		

^{*} La distancia en este método se determina indirectamente calculándola como la hipotenusa del triángulo que forma la ubicación de los transductores en el elemento de sección cuadrada ensayado. Las dimensiones del elemento están indicadas en el Anexo 11

^{**} La desviación estándar se calcula con el método "n-1". Véase su expresión matemática en la Ecuación 2.16

[§] El error porcentual mostrado es una medida relativa de la desviación estándar con respecto a la velocidad promedio

TABLA A10.	.15: VELOCIDADE	S DE P	ULSO I	ULTRA	SÓNIC	O POF	R EL MÉ	TODO	INDIR	ЕСТО	
ELEME	ENTO #4: ARMADO 1	DE 3 RA	MAS C	ON SEP	ARACIÓ	ÓN 15 C	M	EDAD:	28 DÍAS	S	
				F	Fecha de I	Ensayo :	mié	rcoles, 1	3 de may	o de 201	15
Mediciones Toma	das por: Anto	onio Frei	tes	Но	ra Inicio	: 01:3	30 p.m.	I	Hora Fina	1: 03:4	5 p.m.
UBICA	ACIÓN	TRAN	SDUC.		LECT. DI	E TIEMI	90	DIST.	VE	LOCIDA	D
Vista en Planta	Vista de Perfil	Emisor	Recep.	T1	T2	Т3	Tiempo Prom.	Entre Transd	Veloc. Prom.*	Desv Est.**	R ² ***
		Cara 1	Cara 1	[µs]	[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[adim]
CARA 3		D1	D2	38,3	39,5	38,6	38,8	7,60			
A CANA	DI 🕜	D1	D3	50,1	52,7	49,1	50,6	15,00			
5 5		D1	D4	79,6	80,8	80,8	80,4	23,00	3081	207	0,982
CARA 1 D	CARA	D1	D5	101,3	106,9	109,5	105,9	31,00		(6,7%)	
		D1	D6	134,7	150,9	139,3	141,6	38,20			
	} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	D1	D7	147,9	148,9	148,0	148,3	44,30			
CARA 3		E1	E2	38,5	41,8	37,6	39,3	7,40			
ARA 4	н, 🕞	E1	E3	57,7	59,3	56,7	57,9	14,80			
5 5		E1	E4	73,6	79,5	71,3	74,8	22,70	3064	212	0,981
CARA 1 E	VARA	E1	E5	104,2	106,4	103,8	104,8	30,60		(6,9%)	
	1350	E1	E6	139,4	141,3	140,6	140,4	37,50			
		E1	E7	156,9	149,6	152,8	153,1	44,00			
										•	
CARA 3		F1	F2	36,9	35,8	36,4	36,4	7,30			
CARA 4	FI C	F1	F3	57,2	57,8	57,2	57,4	14,50			
		F1	F4	75,8	76,0	73,5	75,1	22,50	3068	134	0,992
F CARA I	A S	F1	F5	108,8	112,2	109,2	110,1	30,30		134 (4,4%)	
	130	F1	F6	128,9	129,4	128,3	128,9	36,60			
	} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	F1	F7	154,7	153,5	149,8	152,7	43,40			
	Total de	puntos e	valuados	: 18		Tota	l de Lectu	ras Real	izadas: 5	4	

^{*} La Velocidad Promedio para este método está calculada como el reciproco de la pendiente de la recta de mejor ajuste de los pares ordenados representados en la gráfica de tiempo vs distancia.(Ver Anexos 12)

^{**} El valor de Desviación Estándar mostrado en esta tabla es calculado por la ecuación del Error Estándar de Aproximación el cual mide la dispersión de los valores observados alrededor de la línea de regresión.

^{***} El valor R2 es el Coeficiente de Determinación calculado como el cuadrado del coeficiente de correlación de Pearson. Es un índice adimensional acotado entre 0 y 1 entendido como una medida del ajuste de una función para describir el comportamiento de un conjunto de puntos relacionados por dos variables covariantes.

TABLA A10.16:	VELO	CIDADI	ES DE	PULS	O ULI	ΓRASÓN	NICO P	OR EI	L MÉT	ODO DIF	есто	
ELEMENTO) #5A: Al	RMADO	DE 3 l	RAMAS	S CON	SEPARA	CIÓN 1	0 CM	ED	AD: 28 DÍ	AS	
					F	echa de E	nsayo :		jueves,	14 de may	o de 201:	5
Mediciones Tomadas p	or:	Anto	nio Fre	eites	Hor	a Inicio:	09:48	a.m.	I	Iora Final:	01:4	5 p.m.
UBICACIÓN	TRAN	SDUC.	LECT	r. DE TI	EMPO	DIST.		CÁL	CULO D	E VELOCI		
Vista en Planta	Emisor	Recep.	T1	T2	Т3	Entre Transd.	V1	V2	V3	Veloc. Prom.	Desv Est.**	Error Porc.§
	Cara 2	Cara 4	[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]	[%]
CARA 3	A1	A1´	71,2	70,3	71,4	29,98	4213	4267	4201	4227	35	0,83
CARA PJ O	A2	A2´	70,1	70,4	69,9	29,83	4258	4237	4268	4255	16	0,37
A'C CALLES CA	A3	A3´	73,4	75,0	75,4	29,95	4082	3995	3973	4017	58	1,43
G CARA 1	A4	A4´	71,7	71,7	71,3	29,93	4174	4174	4199	4182	15	0,35
	A5	A5′	69,1	69,0	69,2	29,95	4337	4343	4330	4337	6	0,15
	A6	A6´	70,0	69.4	69.7	30,02	4288	4326	4304	4306	19	0,43
CARA 3	B1	B1′	70,4	70,5	70,3	29,90	4247	4242	4252	4247	5	0,12
	B2	B2´	70,2	70,9	70,6	29,79	4241	4203	4219	4221	19	0,45
B' B	В3	B3′	71,0	70,0	69,9	29,89	4210	4273	4278	4254	38	0,89
CARA 1	B4	B4´	74,2	74,2	74,4	29,37	3960	3960	3950	3957	6	0,14
	B5	B5′	71,8	70,2	72,5	29,86	4160	4252	4121	4178	68	1,62
	В6	B6′	70,5	70,0	69,6	29,91	4240	4273	4295	4269	28	0,65
C' CARA 3 C	C1	C1´	68,1	66,9	67,4	29,81	4380	4459	4425	4421	40	0,89
A 2 2 A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	C2	C2´	70,8	71,2	71,6	29,75	4201	4176	4156	4177	23	0,54
CARA CARA	СЗ	C3′	67,8	68,4	68,5	29,83	4402	4363	4357	4374	24	0,56
G CARA 1	C4	C4´	69,6	69,9	69,8	28,81	4138	4123	4128	4130	8	0,19
ILall	C5	C5′	69,7	69,7	67,5	29,76	4272	4272	4411	4318	81	1,87
	C6	C6´	70,1	69,0	68,8	29,79	4247	4316	4327	4297	43	1,01
To	tal de pur	ıtos evalu	ıados: 1	18		Total d	de Lectu	ras Rea	ılizadas:	54		

^{*}La distancia entre los transductores en este método se mide directamente sobre el elemento. Varían un poco entre sí en el mismo elemento por pequeñas variaciones en las dimensiones del prisma de concreto. Las dimensiones del elemento están indicadas en el Anexo 11

^{**} La desviación estándar se calcula con el método "n-1". Véase su expresión matemática en la Ecuación 2.16

[§] El error porcentual mostrado es una medida relativa de la desviación estándar con respecto a la velocidad promedio

TABLA A10.17: VE	LOCID	ADES I	DE PU	LSO U	JLTRA	SÓNIC	O POR	R EL M	ÉTOD	O SEMI-	DIREC	ТО
ELEMENTO	#5A: Al	RMADO	DE 3 I	RAMAS	S CON	SEPARA	CIÓN 1	10 CM	ED	AD: 28 DÍ	AS	
					F	echa de E	Ensayo :		viernes,	15 de may	o de 201	5
Mediciones Tomadas p			do Carı	rasco	Hora	Inicio:	07:20	a.m.	ŀ	Hora Final:	10:2	7 a.m.
UBICACIÓN	TRAN	SDUC.	LECT	. DE TI	ЕМРО	DIST.		CÁL	CULO D	E VELOCI	DADES	
Vista en Planta	Emisor	Recep.	T1	T2	Т3	* Entre Transd	V1	V2	V3	Veloc. Prom.	Desv Est.	Error Porc.§
			[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]	[%]
CARA 4	F1	A1	10,7	9,7	10,5	5,09	4769	5262	4871	4967	260	5,24
RAID M SICA	F2	A2	9,5	10,0	10,1	5,09	5379	5081	5025	5162	190	3,68
	F3	A3	11,0	11,7	10,2	5,09	4623	4356	4977	4652	311	6,69
CARA 2	F4	A4	10,7	10,6	11,5	5,16	4833	4884	4502	4740	208	4,38
	F5	A5	8,8	7,9	8,2	5,23	5960	6616	6354	6310	330	5,23
	F6	A6	11,7	11,1	10,9	5,09	4350	4571	4665	4529	161	3,56
CARA 4	E1	B1	57,2	56,6	56,5	21,21	3708	3746	3753	3736	24	0,65
	E2	B2	49,1	49,3	49,8	21,28	4337	4313	4273	4308	33	0,76
CARA	E3	В3	53,6	53,7	53,9	21,36	3982	3974	3965	3974	8	0,21
CARA 2	E4	B4	53,3	52,2	52,6	21,39	4011	4096	4067	4058	43	1,06
	E5	B5	55,7	56,4	56,1	21,43	3848	3801	3817	3822	24	0,63
	E6	В6	53,3	52,8	52,5	21,36	4005	4047	4068	4040	32	0,80
CARA 4	D1	C1	106,9	107,7	108,2	37,55	3513	3487	3472	3490	21	0,60
S PPP ?	D2	C2	107,9	105,3	106,6	37,51	3477	3562	3519	3519	42	1,20
ARA	D3	C3	111,1	108,6	110,5	37,48	3374	3450	3391	3405	40	1,17
CARA 2	D4	C4	110,5	110,1	107,8	37,69	3410	3424	3495	3443	45	1,32
MA CARAZE	D5	C5	111,3	109,2	109,7	37,90	3404	3469	3455	3443	34	1,00
	D6	C6	104,7	103,8	107,4	37,76	3607	3639	3517	3588	63	1,76
To	otal de pu	ntos evali	uados:	18		Total	de Lectu	ras Rea	lizadas: .	54		

^{*} La distancia en este método se determina indirectamente calculándola como la hipotenusa del triángulo que forma la ubicación de los transductores en el elemento de sección cuadrada ensayado. Las dimensiones del elemento están indicadas en el Anexo 11

^{**} La desviación estándar se calcula con el método "n-1". Véase su expresión matemática en la Ecuación 2.16

[§] El error porcentual mostrado es una medida relativa de la desviación estándar con respecto a la velocidad promedio

TABLA A10	.18: VELOCIDADI	ES DE I	PULSO	ULTR	ASÓN	ICO P	OR EL M	IÉTODO	INDIRI	ЕСТО	
ELEM	ENTO #5A: ARMAD	O DE 3 I	RAMAS	CON S	EPARA	CIÓN	10 CM	EDAD:	28 DÍAS		
					cha de l			iernes, 15 d	•		
Mediciones Tomad	1	nio Freit			Inicio:		38 a.m.		Hora Final		_
UBIC	ACIÓN	TRAN	SDUC.	I	LECT. D	E TIEM		DIST.		OCIDA	
Vista en Planta	Vista de Perfil	Emisor	Recep.	T1	T2	Т3	Tiempo Prom.	Entre Transd.	Veloc. Prom.*	Desv Est.**	R ² ***
		Cara 1	Cara 1	[µs]	[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[adim]
CARA 3		D1	D2	12,4	11,0	12,9	12,1	5,00			
SARA CARA	CZ BDI	D1	D3	21,0	20,8	21,5	21,1	10,00			
CARA I D	\(\frac{1}{2}\) \(\frac{1}{2}\)	D1	D4	35,9	35,6	35,2	35,6	14,80	3076	152	0,990
		D1	D5	55,5	54,9	53,8	54,7	19,60		(4,9%)	
	A S	D1	D6	75,9	75,3	74,3	75,2	25,30			
		D1	D7	92,1	89,4	90,3	90,6	30,20			
CARA 3		E1	E2	13,0	12,8	13,6	13,1	4,80			
ARAZ ARAZ	C3 (Ei	E1	E3	31,3	31,0	29,8	30,7	10,00			
CARA I E		E1	E4	39,1	38,8	38,5	38,8	15,40	3143	274	0,969
		E1	E5	62,4	60,1	60,4	61,0	20,00		(8,7%)	
	A A A A A A A A A A A A A A A A A A A	E1	E6	87,5	88,3	84,1	86,6	25,50			
		E1	E7	86,6	86,6	93,2	88,8	30,30			
CARA 3		F1	F2	11,3	12,6	13,0	12,3	5,30			
ARA.	F ₁	F1	F3	20,6	21,0	23,0	21,5	10,20	1		
F CARA 1		F1	F4	36,8	37,9	40,0	38,2	15,70	3096	221	0,979
Q.		F1	F5	50,5	51,7	49,3	50,5	20,50	1	(7,2%)	
		F1	F6	74,0	72,1	73,3	73,1	26,00			
) 7 °H-11	F1	F7	93,6	94,7	93,3	93,9	30,40			
	Total de	e puntos (evaluado.	s: 18		T	otal de Lec	turas Real	izadas: 54		

^{*} La Velocidad Promedio para este método está calculada como el reciproco de la pendiente de la recta de mejor ajuste de los pares ordenados representados en la gráfica de tiempo vs distancia.(Ver Anexos 1)2

^{**} El valor de Desviación Estándar mostrado en esta tabla es calculado por la ecuación del Error Estándar de Aproximación el cual mide la dispersión de los valores observados alrededor de la línea de regresión.

^{***} El valor R2 es el Coeficiente de Determinación calculado como el cuadrado del coeficiente de correlación de Pearson. Es un índice adimensional acotado entre 0 y 1 entendido como una medida del ajuste de una función para describir el comportamiento de un conjunto de puntos relacionados por dos variables covariantes.

TABLA A10.19:	VELOC	CIDADE	S DE	PULSO) ULT	RASÓNI	ICO PO	OR EL	MÉTO	DO DIR	есто	
ELEMENTO) #5B: A	RMADO	DE 3 F	RAMAS	CONS	SEPARA	CIÓN 7	СМ	EDA	D: 28 DÍA	AS	
						echa de E				14 de may		5
Mediciones Tomadas p			onio Fre			ra Inicio:	09:48			ora Final:		5 p.m.
UBICACIÓN	TRAN	SDUC.	LECT	DE TI	ЕМРО	DIST.		CÁL	CULO DI	E VELOC		
Vista en Planta	Emisor	Recep.	T1	T2	Т3	Entre Transd.	V1	V2	V3	Veloc. Prom.	Desv Est.**	Error Porc.§
	Cara 2	Cara 4	[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]	[%]
CARA 3	A8	A8′	71,7	70,1	70,6	30,02	4190	4281	4250	4079	46	1,09
CARA	A9	A9´	69,7	70,6	70,0	30,05	4312	4254	4294	4287	30	0,69
A'CO CONTROL OF A	A10	A10′	69,5	69,3	68,8	30,15	4340	4383	4350	4358	22	0,51
G CARA 1	A11	A11′	70,0	69,5	69,5	30,05	4294	4324	4324	4314	17	0,39
	A12	A12′	67,4	67,6	68,4	30,06	4459	4448	4392	4433	36	0,80
	A13	A13′	67,4	66,9	67,9	30,14	4470	4502	4439	4471	31	0,70
CARA 3	B8	B8′	66,4	67,4	68,5	29,89	4499	4436	4362	4432	69	1,55
	В9	B9′	71,6	71,6	71,3	29,95	4182	4182	4202	4189	12	0,28
B' B	B10	B10′	70,9	71,1	69,9	30,02	4233	4222	4313	4256	19	1,16
G CARA 1	B11	B11′	67,2	67,2	68,2	29,93	4457	4457	4388	4434	40	0,89
	B12	B12′	70,6	70,7	71,4	29,94	4239	4233	4194	4222	25	0,58
	B13	B13′	68,2	66,9	67,1	30,02	4400	4486	4474	4453	47	1,05
C' CARA 3 C	C8	C8′	69,1	69,8	69,2	29,76	4309	4262	4298	4290	25	0,58
A 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C9	C9′	66,1	66,6	66,4	29,84	4516	4478	4497	4497	19	0,43
CARA CARA	C10	C10′	68,2	68,1	68,3	29,88	4384	4390	4373	4382	8	0,19
G CARA 1	C11	C11′	67,5	67,7	66,8	29,81	4417	4404	4460	4427	30	0,67
	C12	C12′	66,9	67,6	67,0	29,81	4458	4408	4447	4438	27	0,60
	C13	C13′	67,2	67,0	67,4	29,89	4447	4459	4434	4447	13	0,28
Total	tal de pun	tos evalu	ados: 18	8		Total d	e Lectur	as Real	izadas: 5	54		

^{*}La distancia entre los transductores en este método se mide directamente sobre el elemento. Varían un poco entre sí en el mismo elemento por pequeñas variaciones en las dimensiones del prisma de concreto. Las dimensiones del elemento están indicadas en el Anexo 11

^{**} La desviación estándar se calcula con el método "n-1". Véase su expresión matemática en la Ecuación 2.16

[§] El error porcentual mostrado es una medida relativa de la desviación estándar con respecto a la velocidad promedio

TABLA A10.20: VF	ELOCID	ADES I	DE PU	LSO U	JLTRA	SÓNIC	O POR	EL M	ÉTOD	O SEMI	-DIREC	то
ELEMENT	O #5B: A	RMADO	DE 3	RAMA	S CON	SEPARA	CIÓN '	7 CM	ED	AD: 28 Di	ÁS	
					F	echa de E	nsayo:		viernes	, 15 de ma	yo de 20	15
Mediciones Tomadas p	or:	Orlan	do Carı	asco	Hor	a Inicio:	07:20	a.m.	Но	ra Final:	10:2	7 a.m.
UBICACIÓN	TRAN	SDUC.	LECT	. DE TI	ЕМРО	DIST.		CÁL	CULO I	E VELOC	CIDADES	
Vista en Planta	Emisor	Recep.	T1	T2	Т3	* Entre Transd	V1	V2	V3	Veloc. Prom.	Desv Est.**	Error Porc.§
			[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]	[%]
CARA 4	F8	A8	11,2	10,6	9,9	5,09	4532	4799	5153	4828	311	6,44
RAI	F9	A9	9,6	9,4	9,7	5,16	5364	5489	5304	5386	94	1,75
	F10	A10	10,9	12,2	12,1	5,23	4796	4303	4340	4480	275	6,13
CARA 2	F11	A11	8,9	8,6	9,0	5,27	5952	6101	5880	5978	113	1,89
	F12	A12	10,8	11,5	10,7	5,30	4908	4598	4955	4820	194	4,03
	F13	A13	10,6	11,8	9,8	5,30	5004	4489	5395	4963	455	9,16
CARA 4	E8	В8	51,3	52,3	51,7	21,36	4162	4081	4128	4124	41	0,98
E P P 9 C	E9	В9	59,1	59,0	60,1	21,32	3608	3615	3546	3590	38	1,05
5	E10	B10	51,4	50,9	50,5	21,28	4142	4184	4212	4179	35	0,84
CARA 2	E11	B11	55,8	56,2	56,4	21,32	3822	3791	3783	3798	20	0,54
	E12	B12	49,5	48,8	48,9	21,35	4312	4372	4365	4350	33	0,76
	E13	B13	56,9	56,0	60,8	21,50	3778	3840	3538	3719	160	4,30
CARA 4	D8	C8	97,5	99,3	100,8	38,48	3946	3875	3818	3879	64	1,65
S PPP S	D9	C9	106,0	108,6	107,1	38,19	3603	3516	3564	3561	44	1,23
AR RA	D10	C10	100,2	100,7	101,0	37,91	3784	3764	3752	3767	16	0,42
CARA 2	D11	C11	107,3	104,3	104,1	38,01	3543	3644	3652	3613	61	1,68
	D12	C12	100,8	100,2	99,7	38,12	3782	3805	3821	3803	20	0,53
	D13	C13	102,4	100,9	101,4	38,33	3741	3800	3779	3774	30	0,79
To	otal de pu	ntos evali	uados:	18		Total a	le Lectu	ras Rea	lizadas:	54		

^{*} La distancia en este método se determina indirectamente calculándola como la hipotenusa del triángulo que forma la ubicación de los transductores en el elemento de sección cuadrada ensayado. Las dimensiones del elemento están indicadas en el Anexo 11

^{**} La desviación estándar se calcula con el método "n-1". Véase su expresión matemática en la Ecuación 2.16

[§] El error porcentual mostrado es una medida relativa de la desviación estándar con respecto a la velocidad promedio

TABLA A10	.21: VELOCIDADI	ES DE I	PULSO	ULTR	ASÓNIC	CO POI	R EL M	ÉTODO	INDIR	ЕСТО	
ELEM	ENTO #5B: ARMAD	O DE 3	RAMAS	CON S	SEPARA	CIÓN 7	CM	EDAD:	28 DÍAS		
					Fecha de	Ensayo	: v		de mayo		
Mediciones Toma		tonio Fre			ra Inicio:		8 a.m.		Hora Fin		
UBICA	ACIÓN	TRAN	SDUC.]	LECT. DE	TIEMPO		DIST.		LOCIDA	D
Vista en Planta	Vista de Perfil	Emisor	Recep.	T1	T2	Т3	Tiempo Prom.	Entre Transd.	Veloc. Prom.*	Desv Est.**	R ² ***
		Cara 1	Cara 1	[µs]	[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[adim]
CARA 3		D1	D2	21,3	19,7	20,8	20,6	4,60			
ARA ARA		D1	D3	30,9	29,8	31,8	30,8	7,10			
CARA 1 D	(2)	D1	D4	40,8	40,0	39,4	40,1	11,30	3166	114	0,995
Q.	730	D1	D5	51,8	51,3	50,7	51,3	14,00		(3,6%)	
		D1	D6	63,2	62,4	62,6	62,8	17,50			
	7	D1	D7	69,0	73,2	71,0	71,1	20,50			
CARA 3		E1	E2	22,2	20,0	19,6	20,6	3,50			
ARA 2		E1	E3	34,2	34,0	34,1	34,1	7,22			
CARA I E	\(\frac{1}{2}\)	E1	E4	47,2	42,4	42,3	44,0	11,00	3148	106	0,995
ASA.		E1	E5	53,0	53,4	54,4	53,6	14,30		(3,4%)	
		E1	E6	67,7	67,0	66,7	67,1	17,40			
		E1	E7	73,3	76,5	78,3	76,0	21,00			
CARA 3		F1	F2	18,3	18,6	19,0	18,6	3,60			
ARAZ		F1	F3	31,5	32,1	32,0	31,9	7,70			
F CARA I		F1	F4	45,7	43,2	41,1	43,3	11,20	3132	144	0,991
		F1	F5	50,7	51,7	53,6	52,0	14,50		(4,6%)	
		F1	F6	61,7	61,6	62,9	62,1	18,20			
	> 7 	F1	F7	78,5	79,4	72,4	76,8	21,00			
	Total de	e puntos	evaluado	s: 18		Tota	ıl de Lecti	uras Real	lizadas: 5	4	

^{*} La Velocidad Promedio para este método está calculada como el reciproco de la pendiente de la recta de mejor ajuste de los pares ordenados representados en la gráfica de tiempo vs distancia.(Ver Anexos 12)

^{**} El valor de Desviación Estándar mostrado en esta tabla es calculado por la ecuación del Error Estándar de Aproximación el cual mide la dispersión de los valores observados alrededor de la línea de regresión.

^{***} El valor R2 es el Coeficiente de Determinación calculado como el cuadrado del coeficiente de correlación de Pearson. Es un índice adimensional acotado entre 0 y 1 entendido como una medida del ajuste de una función para describir el comportamiento de un conjunto de puntos relacionados por dos variables covariantes.

TABLA A10.22:	VELOC	CIDADE	ES DE	PULS	O ULT	RASÓN	ICO P	OR EI	L MÉT	ODO DII	RECTO	
E	LEMEN	ГО #1: С	ONCE	RETO S	IN ARI	MADURA	1	EDAD:	: 49 DÍA	S		
					F	echa de E	nsayo:		jueves,	28 de may	o de 201:	5
Mediciones Tomadas p	or:	Anto	nio Fre	eites	Hor	a Inicio:	08:15	5 a.m.	I	Hora Final:	10:2	1 a.m.
UBICACIÓN	TRAN	SDUC.	LECT	r. DE TI	ЕМРО	DIST.		CÁL	CULO D	E VELOCI	DADES	
Vista en Planta	Emisor	Recep.	T1	T2	Т3	Entre Transd.	V1	V2	V3	Veloc. Prom.	Desv Est.	Error Porc.§
			[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]	[%]
CARA 3	A1	A1´	72,1	72,3	72,1	30,12	4178	4166	4178	4174	7	0,16
A 2	A2	A2´	72,3	72,5	72,1	30,20	4177	4166	4189	4177	12	0,28
CARA	A3	A3´	71,9	71,6	72,1	30,26	4209	4226	4197	4211	15	0,35
A' \\	A4	A4´	72,2	72,5	72,3	30,12	4172	4154	4166	4164	9	0,21
CARA 1	A5	A5´	72,7	72,8	73,3	30,22	4157	4151	4123	4144	18	0,44
	A6	A6′	72,9	72,8	72,6	30,05	4122	4128	4139	4130	9	0,21
	A7	A7′	72,7	72,9	72,5	30,09	4139	4128	4150	4139	11	0,28
₹ CARA 3 N	B1	B1´	72,8	72,1	72,5	30,10	4134	4174	4151	4153	20	0,48
CARA 2	B2	B2´	72,5	73,0	72,4	30,18	4163	4134	4169	4155	18	0,44
	В3	B3′	73,1	73,0	72,5	30,22	4133	4139	4168	4147	18	0,44
B' B	B4	B4′	72,4	72,8	73,1	30,12	4160	4137	4120	4139	20	0,48
CARA 1	B5	B5′	72,3	74,8	74,2	30,21	4178	4038	4071	4096	73	1,78
	В6	B6′	73,3	72,6	72,6	30,10	4106	4146	4146	4133	23	0,55
	В7	B7′	72,7	72,0	72,1	30,07	4136	4176	4171	4161	22	0,52
C CARA 3 C	C1	C1′	72,1	71,7	72,3	30,07	4171	4194	4159	4175	18	0,42
C' CARA 3 C	C2	C2´	72,8	72,5	72,1	30,16	4143	4160	4183	4162	20	0,48
ARA 4	C3	C3′	74,3	73,2	73,3	30,17	4061	4122	4116	4099	34	0,82
CARA	C4	C4´	73,8	73,3	73,8	30,12	4081	4109	4081	4091	16	0,39
(G CARA I	C5	C5′	73,9	73,8	73,7	30,19	4085	4091	4096	4091	6	0,14
	C6	C6′	73,3	73,6	73,3	30,15	4113	4096	4113	4108	10	0,24
	C7	C7′	73,3	72,4	72,7	30,05	4100	4151	4133	4128	26	0,63
То	tal de pun	tos evalu	ados: 2	21		Total	de Lectu	ras Rea	lizadas:	63		

^{*}La distancia entre los transductores en este método se mide directamente sobre el elemento. Varían un poco entre sí en el mismo elemento por pequeñas variaciones en las dimensiones del prisma de concreto. Las dimensiones del elemento están indicadas en el Anexo 11

^{**} La desviación estándar se calcula con el método "n-1". Véase su expresión matemática en la Ecuación 2.16

[§] El error porcentual mostrado es una medida relativa de la desviación estándar con respecto a la velocidad promedio

TABLA A10.23: VE	LOCID	ADES D	E PUL	SO UL	TRAS	ÓNICO	POR I	EL MÉ	TODO	SEMI-I	DIREC'	ТО
E	LEMEN	ГО #1: С	ONCRE	TO SIN	N ARM.	ADURA	E	DAD: 4	19 DÍAS			
					F	echa de E	nsayo:		jueves, 2	28 de may	o de 201	15
Mediciones Tomadas p	oor:	Orlai	ndo Carr	asco	Hor	a Inicio:	10:42	2 a.m.	Но	ora Final:	12:5	5 p.m.
UBICACIÓN	TRAN	SDUC.	LECT	DE TIE	СМРО	DIST.		CÁLO	CULO DI	E VELOC	IDADES	
Vista en Planta	Emisor	Recep.	T1	T2	Т3	* Entre Transd	V1	V2	V3	Veloc. Prom.	Desv Est.	Error Porc.§
			[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]	[%]
CARA 3	A1	F1	9,4	8,8	9,2	4,95	5260	5599	5391	5416	171	3,15
4 \	A2	F2	9,4	9,4	9,5	4,95	5260	5260	5197	5239	36	0,70
CARA 4	A3	F3	9,2	9,4	8,7	4,95	5391	5260	5671	5441	210	3,87
CARA 1	A4	F4	9,1	9,3	9,4	4,95	5458	5324	5260	5347	101	1,89
F Ch	A5	F5	9,0	9,2	9,2	4,95	5528	5391	5391	5436	79	1,46
	A6	F6	9,5	9,1	8,7	4,95	5197	5458	5671	5442	238	4,37
	A7	F7	9,4	9,3	9,0	4,95	5260	5324	5528	5371	140	2,60
CARA 3	B1	E1	53,0	53,2	52,4	20,93	3951	3934	3996	3961	32	0,82
4 AR	B2	E2	56,2	53,5	53,8	20,93	3723	3916	3890	3843	104	2,71
CARA B	В3	E3	53,2	53,6	54,9	20,93	3933	3907	3813	3884	63	1,63
<u> </u>	B4	E4	55,9	56,8	56,2	20,93	3747	3683	3723	3718	32	0,86
CARA 1	В5	E5	54,3	54,9	53,1	20,91	3851	3808	3937	3865	66	1,70
	В6	E6	50,3	50,6	50,7	20,88	4155	4126	4116	4132	20	0,49
	В7	E7	51,4	52,5	51,7	20,88	4059	3976	4040	4025	43	1,08
CARA 3	C1	D1	101,6	100,5	100,3	37,19	3660	3700	3709	3690	26	0,70
4	C2	D2	99,3	98,1	98,3	37,23	3749	3795	3785	3776	24	0,64
ARA JULIA	C3	D3	100,3	98,2	99,7	37,27	3717	3794	3739	3750	40	1,06
CAR CAR	C4	D4	101,7	102,0	101,0	37,27	3664	3656	3691	3670	18	0,50
D CARA 1	C5	D5	103,0	102,6	103,3	37,26	3616	3633	3608	3619	13	0,36
Jan	C6	D6	99,7	99,3	97,5	37,27	3740	3753	3823	3772	45	1,18
	C7	D7	99,7	99,7	97,7	37,27	3740	3740	3813	3764	43	1,13
To	tal de pun	tos evalu	ados: 21			Total de	Lectura	ıs Reali:	zadas: 6.	3		

^{*} La distancia en este método se determina indirectamente calculándola como la hipotenusa del triángulo que forma la ubicación de los transductores en el elemento de sección cuadrada ensayado. Las dimensiones del elemento están indicadas en el Anexo 11

^{**} La desviación estándar se calcula con el método "n-1". Véase su expresión matemática en la Ecuación 2.16

[§] El error porcentual mostrado es una medida relativa de la desviación estándar con respecto a la velocidad promedio

TABLA A10.	.24: VELOCIDADI	ES DE P	PULSO	ULTR	ASÓN	ICO P	OR EL I	MÉTODO	INDIR	ЕСТО	
	ELEMENTO #1:	CONCR	RETO SI	N ARM	IADUR	A	EDAD:	49 DÍAS			
				I	Fecha de	Ensayo):	jueves, 28	de mayo	de 2015	
Mediciones Toma		tonio Fre	eites	Но	ra Inici	o: 02	:00 p.m.		Hora Fir	nal: 04:0)9 p.m.
UBICA	ACIÓN	TRA	NSDUC.		LECT.	DE TIE	MPO	DIST.		ELOCID	AD
Vista en Planta	Vista de Perfil	Emisor	Recep.	T1	T2	Т3	Tiempo Prom.	Entre Transd.	Veloc. Prom.*	Desv Est.**	R ² ***
	<u> </u>	Cara 1	Cara 1	[µs]	[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[adim]
CARA 3		D1	D2	12,8	12,9	12,9	12,9	7,30			
CARA 4	CA GODI	D1	D3	29,6	30,0	32,4	30,7	14,90			
		D1	D4	51,3	53,1	52,7	52,4	22,30	3120	125	0,994
D CARA I	300	D1	D5	86,0	85,0	85,1	85,4	29,80		(4%)	
		D1	D6	104,3	103,7	103,5	103,8	37,20		(1,0)	
		D1	D7	129,7	129,8	129,4	129,6	44,60			
CARA 3		E1	E2	14,3	13,6	13,8	13,9	7,50			
CARA 2	C G G EI	E1	ЕЗ	31,7	31,2	30,5	31,1	15,00			
		E1	E4	48,6	48,5	48,5	48,5	22,40	3183	160	0,990
CARA 1 E	Z Ei	E1	E5	83,6	84,2	83,8	83,9	29,90		(5%)	
		E1	E6	104,4	103,0	103,8	103,8	37,40		(370)	
		E1	E7	128,0	127,7	128,3	128,0	45,00			
CARA 3		F1	F2	14,1	14,1	14,2	14,1	7,60			
CARA 4	C GFI	F1	F3	32,2	33,4	31,8	32,5	15,00			
	K) A ()	F1	F4	53,1	54,1	52,1	53,1	22,40	3116	126	0,993
CARA 1 F	3 F.	F1	F5	86,1	85,2	85,3	85,6	30,10		(4,1%)	
		F1	F6	110,9	110,2	112,0	111,0	37,60		(7,1/0)	
	I	F1	F7	130,4	129,5	128,7	129,5	45,20			
	Total de	puntos e	evaluados	s: 21		T	otal de Le	cturas Rea	lizadas: 6	3	

^{*} La Velocidad Promedio para este método está calculada como el reciproco de la pendiente de la recta de mejor ajuste de los pares ordenados representados en la gráfica de tiempo vs distancia.(Ver Anexos 12)

^{**} El valor de Desviación Estándar mostrado en esta tabla es calculado por la ecuación del Error Estándar de Aproximación el cual mide la dispersión de los valores observados alrededor de la línea de regresión.

^{***} El valor R² es el Coeficiente de Determinación calculado como el cuadrado del coeficiente de correlación de Pearson. Es un índice adimensional acotado entre 0 y 1 entendido como una medida del ajuste de una función para describir el comportamiento de un conjunto de puntos relacionados por dos variables covariantes.

TABLA A10.25:	VELO	CIDADI	ES DE	PULS	O ULT	TRASÓN	ICO P	OR EI	L MÉT	ODO DIF	ЕСТО	
ELEMENTO) #2A: Al	RMADO	DE 2 1	RAMAS	S CON	SEPARA	CIÓN 1	0 CM	ED.	AD: 49 DÍ	AS	
					F	echa de E	nsayo :		lunes,	01 de junio	de 2015	
Mediciones Tomadas p	oor:	Orlan	do Car	rasco	Hor	a Inicio:	07:07	a.m.	H	Hora Final:	10:1	8 a.m.
UBICACIÓN	TRAN	SDUC.	LECT	. DE TI	ЕМРО	DIST.		CÁL	CULO D	E VELOCI	DADES	
Vista en Planta	Emisor	Recep.	T1	T2	Т3	Entre Transd.	V1	V2	V3	Veloc. Prom.	Desv Est.	Error Porc.§
	Cara 2	Cara 4	[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]	[%]
CARA 3	M1	M1'	67,0	66,5	66,1	30,00	4476	4509	4542	4509	33	0,72
RA 2	A1	A1'	71,1	71,4	71,4	30,08	4229	4210	4215	4218	10	0,23
M. S. W. S. W.	M2	M2'	68,5	69,4	67,9	30,17	4406	4345	4444	4398	50	1,13
(G CARA I	A2	A2'	72,5	71,1	71,1	30,22	4167	4252	4252	4224	49	1,16
Tan	M3	M3'	68,5	67,6	68,1	30,24	4416	4473	4441	4444	28	0,64
	A3	A3'	71,1	71,9	69,9	30,19	4248	4201	4316	4255	58	1,37
CARA 3	K1	K1'	69,9	70,5	69,9	29,99	4288	4252	4293	4278	22	0,52
3 0 3	B1	B1'	71,7	72,3	71,4	30,05	4190	4154	4211	4185	29	0,69
(K' K	K2	K2'	71,3	70,8	70,7	30,13	4224	4254	4259	4246	19	0,45
G CARA 1	B2	B2'	73,1	72,9	72,4	30,16	4127	4137	4168	4144	21	0,51
	К3	K3'	72,4	72,0	71,9	30,15	4163	4188	4193	4181	16	0,38
	В3	B3'	71,4	70,7	70,1	30,12	4220	4262	4295	4259	38	0,89
J' CARA 3 J	J1	J1'	68,0	67,7	68,9	29,98	4410	4429	4349	4396	42	0,96
4 2 4 2 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	C1	C1'	67,9	67,4	66,9	30,02	4422	4454	4487	4455	32	0,72
CARA	J2	J2'	68,7	69,3	68,6	30,08	4381	4339	4387	4369	27	0,61
G CARA 1	C2	C2'	70,0	70,2	69,7	30,09	4299	4289	4319	4302	15	0,35
Ilall	Ј3	J3'	69,2	68,5	68,2	30,06	4342	4391	4409	4381	35	0,79
	С3	C3'	69,4	69,5	70,2	30,04	4327	4322	4278	4309	27	0,63
To	tal de pur	ıtos evalu	ıados: İ	18		Total d	de Lectu	ıras Rea	lizadas:	54		

^{*}La distancia entre los transductores en este método se mide directamente sobre el elemento. Varían un poco entre sí en el mismo elemento por pequeñas variaciones en las dimensiones del prisma de concreto. Las dimensiones del elemento están indicadas en el Anexo 11

^{**} La desviación estándar se calcula con el método "n-1". Véase su expresión matemática en la Ecuación 2.16

[§] El error porcentual mostrado es una medida relativa de la desviación estándar con respecto a la velocidad promedio

TABLA A10.26: VE	LOCID	ADES D	E PUL	SO UL	TRAS	ÓNICO	POR I	EL MÉ	TODO	SEMI-DI	RECT	О
ELEMENTO	#2A: AF	MADO I	DE 2 RA	AMAS (CON SE	EPARAC	IÓN 10	CM	EDAI	D: 49 DÍAS	1	
					F	echa de E	nsayo:		lunes, 0	1 de junio d	le 2015	;
Mediciones Tomadas p	or:	Orlan	do Carr	asco	Hor	a Inicio:	10:30) a.m.	F	Hora Final:	01:4	8 p.m.
UBICACIÓN	TRAN	SDUC.	LECT	. DE TII	ЕМРО	DIST.		CÁL	CULO DE	E VELOCID	ADES	
Vista en Planta	Emisor	Recep.	T1	T2	Т3	* Entre Transd	V1	V2	V3	Veloc. Prom.	Desv Est.	Error Porc.§
			[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]	[%]
CARA 4	I1	M1	10,7	10,8	10,9	5,17	4809	4766	4723	4766	43	0,90
RAI	F1	A1	11,2	11,1	11,1	5,13	4592	4634	4634	4620	24	0,53
	I2	M2	8,9	8,1	8,4	5,10	5735	6287	6068	6030	278	4,62
CARA 2	F2	A2	10,7	10,8	10,2	5,03	4712	4667	4947	4775	150	3,14
	I3	M3	9,5	9,0	8,9	4,96	5233	5517	5578	5443	184	3,38
	F3	A3	10,7	9,7	9,4	4,95	4639	5126	5292	5019	339	6,76
CARA 4	H1	K1	53,2	53,8	54,8	21,43	4030	3979	3909	3972	61	1,53
<u> </u>	E1	B1	49,8	49,1	49,7	21,25	4264	4327	4278	4290	33	0,76
G ARA3	H2	K2	58,5	57,7	58,0	21,08	3605	3653	3635	3631	24	0,67
CARA 2	E2	B2	50,3	50,3	50,1	21,04	4187	4187	4200	4191	8	0,18
The state of the s	НЗ	К3	55,8	56,0	54,6	21,00	3767	3747	3847	3787	53	1,39
	E3	В3	48,9	49,7	49,9	21,14	4321	4252	4238	4271	45	1,04
CARA 4	G1	J1	96,0	95,9	97,9	37,41	3898	3902	3821	3874	46	1,18
S 0 0 0 2	D1	C1	97,6	94,6	95,1	37,52	3844	3968	3946	3919	66	1,69
AR REPUBLICATION OF THE SECOND	G2	J2	97,9	97,3	96,6	37,62	3843	3865	3896	3868	27	0,70
CARA 2	D2	C2	97,3	97,4	97,3	37,48	3852	3848	3852	3851	2	0,06
	G3	J3	94,8	94,1	93,5	37,34	3938	3967	3995	3967	28	0,72
	D3	C3	98,8	96,8	98,0	37,41	3785	3865	3817	3822	40	1,05
Ta	tal de pur	itos evalu	ados: 18	3		Total de	Lectura	s Realiz	adas: 54			

^{*} La distancia en este método se determina indirectamente calculándola como la hipotenusa del triángulo que forma la ubicación de los transductores en el elemento de sección cuadrada ensayado. Las dimensiones del elemento están indicadas en el Anexo 11

^{**} La desviación estándar se calcula con el método "n-1". Véase su expresión matemática en la Ecuación 2.16

[§] El error porcentual mostrado es una medida relativa de la desviación estándar con respecto a la velocidad promedio

	.27: VELOCIDADE										
ELEMI	ENTO #2A: ARMADO	DE 2 RA	AMAS (CON SI	EPARA	ACIÓN	10 CM		49 DÍAS		
					ha de E			martes, 02 d			
Mediciones Tomad		onio Freite			Inicio:		_		Hora Fin		
UBICA	ACIÓN	TRANS	SDUC.	LF	ECT. DI	E TIEM		DIST.		LOCIDA	.D
Vista en Planta	Vista de Perfil	Emisor	Recep.	T1	T2	Т3	Tiempo Prom.	Entre Transd.	Veloc. Prom.*	Desv Est.**	R ² ***
		Cara 1	Cara 1	[µs]	[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[adim]
CARA 3		G1	D1	18,7	18,9	19,5	19,0	5,00			
ARA 4	G G G	G1	G2	27,6	28,1	26,8	27,5	9,70			
G CARA I		G1	D2	30,8	30,6	30,5	30,6	14,50	3512	438	0,933
ASA.		G1	G3	48,1	46,0	46,2	46,8	19,50		(12,5%)	
	7 8	G1	D3	67,9	67,2	66,5	67,2	24,50			
		G1	G4	87,7	88,3	88,1	88,0	28,80			
CARA 3		H1	E1	18,7	18,8	19,0	18,8	4,70			
ARA ARA Z		H1	H2	31,5	27,5	27,0	28,7	9,30			
CARA I H		H1	E2	36,9	35,0	36,2	36,0	14,20	3163	376	0,940
SA.		H1	НЗ	48,5	47,1	48,6	48,1	19,20		(11,9%)	
	J 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	H1	E3	73,1	73,2	72,7	73,0	24,10			
		H1	H4	97,3	97,7	96,8	97,3	28,80			
CARA 3		I1	F1	19,2	19,2	19,5	19,3	4,50			
ARA		I1	I2	27,9	28,1	26,3	27,4	9,30			
CARAI		I1	F2	34,5	34,4	34,1	34,3	14,30	3106	348	0,947
S. A.		I1	I3	57,5	57,0	57,7	57,4	19,20		(11,2%)	
	A S S S S S S S S S S S S S S S S S S S	I1	F3	71,0	70,8	71,2	71,0	24,30			
	,	I1	I4	99,9	98,2	99,3	99,1	28,80			
· · · · · · · · · · · · · · · · · · ·	Total de	puntos ev	aluados.	: 18			Total de	Lecturas Real	izadas: 5	4	

^{*} La Velocidad Promedio para este método está calculada como el reciproco de la pendiente de la recta de mejor ajuste de los pares ordenados representados en la gráfica de tiempo vs distancia.(Ver Anexos 12)

^{**} El valor de Desviación Estándar mostrado en esta tabla es calculado por la ecuación del Error Estándar de Aproximación el cual mide la dispersión de los valores observados alrededor de la línea de regresión.

^{***} El valor R^2 es el Coeficiente de Determinación calculado como el cuadrado del coeficiente de correlación de Pearson. Es un índice adimensional acotado entre 0 y 1 entendido como una medida del ajuste de una función para describir el comportamiento de un conjunto de puntos relacionados por dos variables covariantes.

TABLA A10.28:	VELOC	CIDADE	S DE P	ULSO	ULTR	ASÓNI	СО РО	R EL	MÉTO	DO DIRE	СТО	
ELEMENTO) #2B: AI	RMADO	DE 2 R	AMAS (CON S	EPARAC	IÓN 7 (CM	EDAI): 49 DÍAS		
					F	echa de E	nsayo:		lunes, 0	1 de junio o	de 2015	
Mediciones Tomadas p	or:	Orlan	do Carr	asco	Hoı	a Inicio:	07:07	a.m.	F	Hora Final:	10:18	3 a.m.
UBICACIÓN	TRAN	SDUC.	LECT	. DE TII	ЕМРО	DIST.		CÁLO	CULO DI	E VELOCID	ADES	
Vista en Planta	Emisor	Recep.	T1	T2	T3	Entre Transd.	V1	V2	V3	Veloc. Prom.	Desv Est.	Error Porc.
	Cara 2	Cara 4	[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]	[%]
CARA 3	A4	A4'	71,0	70,2	69,7	30,20	4256	4303	4335	4298	40	0,92
O O ARA	M5	M5'	68,7	68,4	68,2	30,28	4408	4427	4439	4425	16	0,36
M'C OM	A5	A5'	69,6	68,8	68,0	30,29	4352	4401	4452	4402	50	1,13
G CARA I	M6	M6'	69,4	68,9	68,1	30,25	4360	4391	4441	4398	41	0,93
	A6	A6'	65,5	65,6	65,3	30,26	4619	4612	4631	4621	9	0,20
	M7	M7'	66,8	65,9	66,0	30,18	4515	4583	4576	4558	37	0,81
CARA 3	B4	B4'	72,5	72,0	71,5	30,18	4163	4190	4222	4192	29	0,70
2 0 3	K5	K5'	73,3	72,3	71,9	30,24	4125	4183	4205	4171	41	0,99
K' K	В5	B5'	73,6	73,5	73,0	30,27	4113	4118	4144	4125	17	0,40
G CARA 1	K6	K6'	71,9	71,5	71,3	30,25	4205	4233	4244	4227	20	0,47
I N and	В6	B6'	72,6	71,8	70,9	30,22	4163	4210	4259	4211	48	1,15
	K7	K7'	71,3	71,1	70,1	30,15	4231	4242	4304	4259	39	0,92
_{J'} CARA 3 д	C4	C4'	70,4	70,6	71,3	30,16	4287	4271	4230	4263	29	0,69
4 077770	J5	J5'	68,5	68,7	68,2	30,20	4409	4396	4428	4411	16	0,36
) ARA (C5	C5'	70,5	70,9	71,0	30,25	4288	4267	4262	4273	14	0,32
G CARA 1	J6	J6'	68,4	67,7	66,3	30,24	4421	4466	4564	4484	73	1,64
I Nan	C6	C6'	68,4	67,2	66,1	30,17	4413	4487	4563	4488	75	1,68
	J7	J7'	67,6	66,2	66,2	30,12	4455	4547	4553	4518	55	1,22
Tot	tal de pun	tos evalua	dos: 18			Total de	Lectura	ıs Reali	zadas: 54	4		

^{*}La distancia entre los transductores en este método se mide directamente sobre el elemento. Varían un poco entre sí en el mismo elemento por pequeñas variaciones en las dimensiones del prisma de concreto. Las dimensiones del elemento están indicadas en el Anexo 11

^{**} La desviación estándar se calcula con el método "n-1". Véase su expresión matemática en la Ecuación 2.16

[§] El error porcentual mostrado es una medida relativa de la desviación estándar con respecto a la velocidad promedio

TABLA A10.29: VE	LOCIDA	ADES D	E PUL	SO UL	TRAS	ÓNICO	POR I	EL MÉ	TODO	SEMI-	DIREC'	ТО
ELEMENTO) #2B: AF	RMADO I	DE 2 R	AMAS	CON S	EPARAC	IÓN 7 (СМ	EDAI): 49 DÍ <i>A</i>	S	
					F	echa de E	nsayo:		lunes, 0	1 de juni	o de 201	5
Mediciones Tomadas	por:	Orlan	do Carr	asco	Hoi	ra Inicio:	10:30) a.m.	Но	ra Final:	01:4	8 p.m.
UBICACIÓN	TRANS	SDUC.	LECT	. DE TII	ЕМРО	DIST.		CÁLO	CULO DI	E VELOC	IDADES	
Vista en Planta	Emisor	Recep.	T1	T2	Т3	* Entre Transd	V1	V2	V3	Veloc. Prom.	Desv Est.	Error Porc.§
			[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]	[%]
CARA 4	F4	A4	11,2	11,3	9,9	4,88	4379	4335	4923	4546	328	7,21
RAID	I5	M5	9,4	9,8	9,5	4,95	5249	5071	5188	5169	90	1,75
	F5	A5	9,5	9,4	9,8	5,02	5311	5374	5131	5272	126	2,39
CARA 2	I6	M6	9,1	9,7	8,9	4,99	5481	5169	5616	5422	229	4,23
	F6	A6	9,7	9,6	9,0	4,96	5117	5176	5493	5262	202	3,84
	I7	M7	9,1	8,8	8,6	4,82	5280	5478	5618	5459	170	3,11
CARA 4	E4	B4	49,8	51,6	51,5	21,21	4260	4115	4122	4166	82	1,96
> (0 0)	H5	K5	58,6	60,4	60,2	21,21	3622	3512	3525	3553	60	1,69
CARA	E5	B5	49,9	49,7	49,6	21,21	4252	4267	4275	4265	12	0,27
CARA 2	Н6	K6	54,7	54,9	54,0	21,21	3879	3863	3928	3890	34	0,87
The state of the s	E6	В6	48,7	47,6	49,1	21,21	4352	4457	4321	4377	71	1,63
	H7	K7										
CARA 4	D4	C4	100,0	102,3	100,7	37,41	3742	3657	3716	3705	43	1,17
S 0 0 2	G5	J5	98,4	100,0	99,5	37,48	3809	3748	3765	3774	31	0,83
ARA RA	D5	C5	104,7	103,8	101,1	37,55	3587	3619	3714	3640	66	1,81
CARA 2	G6	J6	106,8	104,5	105,7	37,41	3503	3581	3538	3541	39	1,09
	D6	C6	102,1	101,3	99,9	37,27	3651	3680	3731	3687	41	1,10
	G7	J7	97,8	98,4	96,5	37,27	3812	3786	3862	3820	39	1,01
To	otal de pun	itos evalu	ados: 17	7		Total de l	Lectura	s Realiza	adas: 51			

^{*} La distancia en este método se determina indirectamente calculándola como la hipotenusa del triángulo que forma la ubicación de los transductores en el elemento de sección cuadrada ensayado. Las dimensiones del elemento están indicadas en el Anexo 11

^{**} La desviación estándar se calcula con el método "n-1". Véase su expresión matemática en la Ecuación 2.16

[§] El error porcentual mostrado es una medida relativa de la desviación estándar con respecto a la velocidad promedio

	.30: VELOCIDADI										
ELEM	ENTO #2B: ARMAD	O DE 2 F	RAMAS					EDAD:			
					cha de I			nartes, 02 o	U		
Mediciones Tom		ntonio Fre			Inicio:		6 p.m.		Hora Fin		
UBICA	ACIÓN	TRAN	SDUC.	I	ECT. D	E TIEM		DIST.		LOCIDA	
Vista en Planta	Vista de Perfil	Emisor	Recep.	T1	T2	Т3	Tiempo Prom.	Entre Transd.	Veloc. Prom.*	Desv Est.**	R ² ***
	_	Cara 1	Cara 1	[µs]	[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[adim]
CARA 3		G4	D4	11,73	11,63	11,55	11,6	4,00			
O O IRA 4		G4	G5	21,95	22,05	22,30	22,1	8,00			
	(c) §	G4	D5	30,24	30,16	30,97	30,5	11,50	3060	147	0,991
G CARA 1	304	G4	G6	45,96	46,16	46,32	46,1	14,70		(4,8%)	
		G4	D6	55,10	56,73	56,64	56,2	18,30			
		G4	G7	67,80	68,11	67,40	67,8	21,50			
CARA 3		H4	E4	12,20	12,15	12,10	12,2	4,00			
CARA		H4	Н5	23,70	22,60	24,70	23,7	7,70			
CARA 1 H	\(\frac{8}{4}\)	H4	E5	31,40	33,40	32,60	32,5	11,30	3200	159	0,990
	13 H4	H4	Н6	46,30	45,70	46,10	46,0	14,60		(5%)	
		H4	E6	58,10	57,00	58,60	57,9	17,70			
	<i>x</i> 9	H4	Н7	65,20	64,40	63,10	64,2	21,40			
CARA 3		I4	F4	13,00	13,80	13,50	13,4	4,00			
ARA ARA		I4	I5	22,68	23,16	23,28	23,0	7,50			
CARALOI		I4	F5	32,34	32,46	32,25	32,4	10,80	3198	136	0,994
		I4	I6	46,36	46,77	45,18	46,1	14,20		(4,3%)	
		I4	F6	57,56	55,10	57,74	56,8	17,30			
		I4	I7	64,10	65,00	65,50	64,9	21,20			
	Total de	puntos ev	aluados:	36		Tot	al de Lecti	uras Realiz	zadas: 10	8	

^{*} La Velocidad Promedio para este método está calculada como el reciproco de la pendiente de la recta de mejor ajuste de los pares ordenados representados en la gráfica de tiempo vs distancia.(Ver Anexos 12)

^{**} El valor de Desviación Estándar mostrado en esta tabla es calculado por la ecuación del Error Estándar de Aproximación el cual mide la dispersión de los valores observados alrededor de la línea de regresión.

^{***} El valor R² es el Coeficiente de Determinación calculado como el cuadrado del coeficiente de correlación de Pearson. Es un índice adimensional acotado entre 0 y 1 entendido como una medida del ajuste de una función para describir el comportamiento de un conjunto de puntos relacionados por dos variables covariantes.

ELEMENTO	#3: ARN	1ADO DI	E 2 RAN	MAS CO	ON SEF	ARACIÓ	N 15 C	M	EDA	D: 49 DÍ.	AS	
					F	echa de E	nsayo :	n	niércoles	, 03 de ju	nio de 20	015
Mediciones Tomadas I	or:	Orlan	do Carr	asco	Ho	a Inicio:	08:47	7 a.m.	Но	ora Final:	11:1	0 a.m.
UBICACIÓN	TRAN	SDUC.	LECT	. DE TI	ЕМРО	DIST.		CÁLO	CULO DI	E VELOC	IDADES	
Vista en Planta	Emisor	Recep.	T1	T2	Т3	Entre Transd.	V1	V2	V3	Veloc. Prom.	Desv Est.	Error Porc.§
			[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]	[%]
CARA 3	A1	A1′	68,5	70,1	68,6	30,00	4379	4281	4373	4344	55	1,26
ARA O	A2	A2´	71,4	70,4	71,5	30,08	4215	4274	4210	4233	36	0,84
15	A3	A3′	68,5	68,8	68,2	30,07	4389	4370	4408	4389	19	0,43
	A4	A4´	73,1	73,2	73,1	30,00	4102	4097	4102	4100	3	0,07
CARA 1	A5	A5′	68,1	69,8	70,1	30,17	4429	4323	4305	4352	67	1,53
	A6	A6′	69,4	69,3	69,6	30,19	4350	4355	4338	4348	9	0,20
	A7	A7′	66,0	66,3	66,5	30,12	4566	4546	4532	4548	17	0,37
CARA 3	B1	B1′	73,7	73,9	73,6	30,03	4075	4065	4080	4074	8	0,19
2 0 3	B2	B2´	73,2	72,3	72,9	30,11	4114	4167	4130	4137	27	0,66
(B' B)	В3	B3′	72,2	72,3	71,8	30,15	4173	4168	4200	4180	17	0,41
	B4	B4′	72,4	71,8	71,5	30,11	4155	4193	4209	4186	28	0,66
CARA 1	В5	B5′	71,0	70,8	70,7	30,23	4259	4270	4275	4268	8	0,20
	В6	B6′	70,8	71,5	71,9	30,27	4275	4231	4209	4238	34	0,80
	В7	B7′	69,7	70,3	69,0	30,15	4327	4287	4367	4327	40	0,92
C' CARA 3 C	C1	C1′	70,4	69,8	70,2	30,05	4271	4306	4282	4286	18	0,43
4 0777770	C2	C2´	72,4	73,2	72,9	30,14	4161	4120	4135	4139	21	0,50
CARA	СЗ	C3′	68,7	68,6	67,6	30,22	4398	4404	4468	4424	39	0,87
	C4	C4′	72,1	72,5	72,1	30,21	4190	4165	4190	4182	15	0,36
(G CARA 1 S)	C5	C5′	69,2	67,7	67,1	30,28	4376	4470	4509	4452	69	1,55
	C6	C6′	71,8	70,6	71,0	30,34	4228	4298	4271	4266	35	0,82
	C7	C7′	72,0	71,1	70,1	30,18	4190	4247	4307	4248	58	1,37
To	tal de pun	tos evalua	idos: 21			Total de	Lectura	ıs Realiz	zadas: 6.	3		

^{*}La distancia entre los transductores en este método se mide directamente sobre el elemento. Varían un poco entre sí en el mismo elemento por pequeñas variaciones en las dimensiones del prisma de concreto. Las dimensiones del elemento están indicadas en el Anexo 11

^{**} La desviación estándar se calcula con el método "n-1". Véase su expresión matemática en la Ecuación 2.16

[§] El error porcentual mostrado es una medida relativa de la desviación estándar con respecto a la velocidad promedio

TABLA A10.32: VE												10
ELEMENTO) #3: ARN	1ADO DI	E 2 RAN	AAS CO						D: 49 DĹ		015
M I'' T 1		A 4	· F ·			echa de E				, 03 de ju		
Mediciones Tomadas publicación			onio Frei	. DE TII		a Inicio:	11:20) a.m.		ora Final: E VELOC		2 p.m.
UBICACION	IRAN	SDUC.	LECT	. DE TII	EMPO	* Entre		CALC	JULU DI	Veloc.	Desv	Error
Vista en Planta	Emisor	Recep.	T1	T2	Т3	Transd	V1	V2	V3	Prom.	Est.	Porc.§
			[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]	[%]
CARA 4	A1	F1	9,1	10,0	9,6	4,74	5207	4738	4936	4960	235	4,74
AR POOL	A2	F2	10,2	9,4	9,3	4,81	4701	5110	5167	4993	254	5,09
	A3	F3	10,4	11,0	10,5	4,88	4696	4440	4651	4596	137	2,98
	A4	F4	9,8	10,7	10,6	4,99	5084	4647	4692	4807	240	5,00
CARA 2	A5	F5	9,3	9,8	10,2	5,10	5483	5203	4999	5228	243	4,65
$\mathcal{O}\mathcal{M}$	A6	F6	11,1	10,3	11,3	5,16	4628	4996	4586	4736	226	4,76
	A7	F7	9,8	8,6	9,6	5,17	5280	6016	5390	5562	397	7,15
C GIRL	B1	E1	54,4	53,7	54,3	20,93	3848	3898	3855	3867	27	0,70
CARA 4	B2	E2	50,9	52,1	52,1	21,36	4199	4098	4098	4131	58	1,41
CAR	В3	E3	54,4	54,2	53,2	21,79	4005	4020	4095	4040	48	1,20
	B4	E4	48,3	49,0	49,2	21,50	4454	4388	4372	4405	43	0,98
CARA 2	B5	E5	51,7	51,3	51,2	21,21	4103	4135	4143	4127	21	0,51
O RES	В6	E6	49,9	49,2	49,0	21,28	4269	4323	4347	4313	40	0,93
	В7	E7	54,3	53,7	54,2	21,29	3920	3964	3927	3937	23	0,60
CARA 4	C1	D1	99,0	97,7	99,0	37,55	3793	3843	3793	3810	29	0,76
	C2	D2	100,7	99,9	100,4	37,62	3734	3765	3746	3748	16	0,42
A STULL AR	C3	D3	95,5	96,2	95,2	37,69	3946	3918	3959	3941	21	0,54
	C4	D4	98,2	99,3	98,8	37,62	3832	3788	3808	3810	22	0,58
CARA 2	C5	D5	98,6	96,6	97,2	37,55	3808	3887	3863	3853	40	1,05
Charles Constitution of the constitution of th	C6	D6	96,5	96,2	95,3	37,51	3887	3899	3937	3908	26	0,67
	C7	D7	94,7	95,2	97,0	37,48	3958	3937	3864	3919	49	1,26
To	tal de pun	tos evalud	ıdos: 21			Total de	Lectura	ıs Realiz	zadas: 6.	3		

^{*} La distancia en este método se determina indirectamente calculándola como la hipotenusa del triángulo que forma la ubicación de los transductores en el elemento de sección cuadrada ensayado. Las dimensiones del elemento están indicadas en el Anexo 11

^{**} La desviación estándar se calcula con el método "n-1". Véase su expresión matemática en la Ecuación 2.16

[§] El error porcentual mostrado es una medida relativa de la desviación estándar con respecto a la velocidad promedio

TABLA A10.33: VELOCIDADES DE PULSO ULTRASÓNICO POR EL MÉTODO INDIRECTO											
ELEMENTO #3: ARMADO DE 2 RAMAS CON SEPARACIÓN 15 CM EDAD: 49 DÍAS											
					Fecha de Ensayo : miércoles, 03 de junio de 2015						
Mediciones Tomadas por:		Orlando Carrasco			Hora Inicio: 02:10 p.m			m. Hora Final: 04:05 p.m.			
UBICACIÓN		TRANSDUC.			LECT. DE TIEMPO			DIST. VELOCIDAD			
Vista en Planta	Vista de Perfil	Emisor	Recep.	T1	T2	Т3	Tiempo Prom.	Entre Transd.	Veloc. Prom.*		R ² ***
	,	Cara 1	Cara 1	[µs]	[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[adim]
CARA 3 CARA 1	Da Cake	D1	D2	34,2	34,3	33,7	34,1	7,50	3366		
		D1	D3	56,0	55,4	55,6	55,7	15,00			
		D1	D4	86,4	57,5	88,1	77,3	22,80		67	0,998
		D1	D5	105,3	104,4	104,4	104,7	31,20		(2%)	
		D1	D6	125,8	126,4	126,0	126,1	37,70		(270)	
		D1	D7	145,8	144,8	144,4	145,0	45,60			
CARA 2 CA	LAND EN	E1	E2	36,6	36,4	35,2	36,1	7,50	3144		
		E1	E3	57,9	58,1	57,7	57,9	15,20			
		E1	E4	86,5	86,2	87,3	86,7	22,70		115	0,995
		E1	E5	100,9	101,6	100,9	101,1	30,10		(3,7%)	
		E1	E6	127,4	129,5	131,4	129,4	37,50		(3,770)	
		E1	E7	158,6	157,0	158,5	158,0	45,40			
CARA 3 CARA 5 CARA 5	SARA I SARA I	F1	F2	37,4	37,7	36,7	37,3	7,50			
		F1	F3	56,4	59,4	8,2	41,3	15,50	3067		
		F1	F4	75,2	76,8	76,5	76,2	22,70		264	0,969
		F1	F5	92,2	93,3	93,7	93,1	30,00		(8,6%)	
		F1	F6	118,9	123,1	129,7	123,9	37,70		(0,070)	
		F1	F7	156,2	155,1	154,8	155,4	45,10			
Total de puntos evaluados: 18 Total de Lecturas Realizadas: 54									4		

^{*} La Velocidad Promedio para este método está calculada como el reciproco de la pendiente de la recta de mejor ajuste de los pares ordenados representados en la gráfica de tiempo vs distancia.(Ver Anexos 12)

^{**} El valor de Desviación Estándar mostrado en esta tabla es calculado por la ecuación del Error Estándar de Aproximación el cual mide la dispersión de los valores observados alrededor de la línea de regresión.

^{***} El valor R² es el Coeficiente de Determinación calculado como el cuadrado del coeficiente de correlación de Pearson. Es un índice adimensional acotado entre 0 y 1 entendido como una medida del ajuste de una función para describir el comportamiento de un conjunto de puntos relacionados por dos variables covariantes.

TABLA A10.34: VELOCIDADES DE PULSO ULTRASÓNICO POR EL MÉTODO DIRECTO ELEMENTO #4: ARMADO DE 3 RAMAS CON SEPARACIÓN 15 CM EDAD: 49 DÍAS													
ELEMENTO	#4: ARN	IADO DE	3 RAN	IAS CO	ON SEP	ARACIÓ	N 15 C	M	EDA	D: 49 DÍA	S		
					F	echa de E	nsayo :		jueves, (04 de junio	de 2015		
Mediciones Tomadas J	oor:	Anto	nio Fre	ites	Hor	a Inicio:	07:30) a.m.		Hora Final:) a.m.	
UBICACIÓN	TRAN	SDUC.	LECT	. DE TI	ЕМРО	DIST.		CÁL	CULO DI	E VELOCII	DADES		
Vista en Planta	Emisor	Recep.	T1	T2	Т3	Entre Transd	V1	V2	V3	Veloc. Prom.	Desv Est.	Error Porc.	
			[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]	[%]	
CARA 3	A1	A1′	65,4	66,1	66,7	30,03	4589	4543	4504	4546	43	0,94	
ARA CARA	A2	A2´	72,7	72,5	73,1	30,16	4146	4161	4126	4141	17	0,42	
4 5 6 5	A3	A3′	68,0	65,9	66,9	30,26	4449	4590	4525	4522	71	1,56	
	A4	A4´	73,8	72,6	73,2	30,19	4091	4160	4125	4125	34	0,83	
CARA 1 2	A5	A5´	69,1	70,1	68,4	30,23	4378	4313	4420	4370	54	1,24	
	A6	A6′	71,3	71,0	70,8	30,32	4252	4268	4284	4268	16	0,37	
	A7	A7′	68,6	68,7	68,4	30,30	4418	4412	4430	4420	9	0,21	
CARA 3	B1	B1′	66,4	66,0	66,0	30,02	4520	4545	4551	4538	17	0,36	
3 0 3	B2	B2´	73,9	73,2	72,5	30,13	4076	4114	4158	4116	41	0,99	
B' B	В3	B3′	73,2	70,7	71,1	30,18	4125	4268	4246	4213	77	1,83	
	B4	B4′	71,6	72,0	71,9	30,10	4203	4178	4188	4190	13	0,30	
CARA 1	В5	B5′	65,3	66,6	66,3	30,18	4620	4531	4550	4567	47	1,02	
	В6	B6′	71,0	72,1	73,6	30,30	4265	4204	4116	4195	75	1,79	
	В7	B7′	71,2	71,3	71,2	30,22	4247	4241	4247	4245	3	0,07	
C' CARA 3 C	C1	C1′	68,0	68,1	67,6	30,00	4412	4406	4437	4418	16	0,37	
	C2	C2´	72,4	74,2	73,6	30,10	4133	4056	4090	4093	39	0,94	
SARA (СЗ	C3′	68,1	68,1	68,0	30,09	4419	4419	4425	4421	4	0,08	
	C4	C4′	71,9	71,7	71,9	30,00	4170	4185	4170	4175	9	0,21	
(G CARA I	C5	C5′	69,3	69,3	68,7	30,13	4346	4346	4388	4360	24	0,56	
Lall	C6	C6′	71,9	71,2	70,2	30,27	4210	4251	4314	4258	53	1,23	
	C7	C7′	69,0	70,0	68,5	30,14	4365	4306	4401	4357	48	1,11	
Total	tal de puni	tos evalua	dos: 21			Total de	Lectura	s Reali	zadas: 6.	3			

^{*}La distancia entre los transductores en este método se mide directamente sobre el elemento. Varían un poco entre sí en el mismo elemento por pequeñas variaciones en las dimensiones del prisma de concreto. Las dimensiones del elemento están indicadas en el Anexo 11

^{**} La desviación estándar se calcula con el método "n-1". Véase su expresión matemática en la Ecuación 2.16

[§] El error porcentual mostrado es una medida relativa de la desviación estándar con respecto a la velocidad promedio

TABLA A10.35: VE												ТО
ELEMENTO	#4: ARN	IADO DI	E 3 RAN	MAS CO				M		D: 49 DÍ		-
M I'' T 1		0.1	1.0			echa de E		_		04 de jun		
Mediciones Tomadas p UBICACIÓN		SDUC.	do Carr	. DE TII		na Inicio:	09:43	a.m.		ora Final: E VELOC		8 a.m.
Vista en Planta	Emisor	Recep.	T1	T2	T3	* Entre	V1	V2	V3	Veloc. Prom.	Desv Est.	Error Porc.§
			[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]	[%]
	A1	F1	13,0	13,6	14,0	6,30	4834	4627	4498	4653	170	3,65
CARA 4	A2	F2	12,9	12,5	12,0	6,38	4935	5104	5331	5124	199	3,88
RAI	A3	F3	12,9	13,3	12,6	6,45	4985	4840	5141	4989	151	3,02
R. B. B. d	A4	F4	12,6	11,6	12,4	6,56	5212	5640	5302	5385	226	4,20
CARA 2	A5	F5	14,7	14,1	14,5	6,67	4536	4724	4597	4619	96	2,07
	A6	F6	14,9	14,5	14,2	6,58	4399	4530	4632	4520	117	2,59
Y	A7	F7	10,8	10,2	10,5	6,48	6005	6352	6174	6177	173	2,80
0	B1	E1	51,9	51,7	51,2	20,79	4005	4020	4058	4027	27	0,68
CARA 4	B2	E2	49,7	49,1	49,1	21,04	4237	4284	4284	4269	27	0,64
CARA	В3	E3	55,5	54,7	55,5	21,28	3833	3894	3833	3853	35	0,92
	B4	E4	50,6	49,8	50,2	21,60	4267	4337	4306	4304	35	0,82
CARA 2	В5	E5	53,2	51,6	52,3	21,92	4118	4250	4195	4188	66	1,58
Drev "	В6	E6	52,7	51,3	51,7	21,85	4143	4260	4230	4211	61	1,45
	В7	E7	52,2	51,1	51,9	21,78	4168	4263	4199	4210	49	1,15
CARA 4	C1	D1	93,7	93,6	94,4	36,20	3862	3870	3834	3855	19	0,49
	C2	D2	99,3	98,2	99,0	36,42	3666	3707	3678	3684	21	0,57
	C3	D3	97,4	97,2	98,2	36,63	3759	3770	3729	3753	21	0,56
	C4	D4	102,2	100,3	100,5	36,84	3604	3675	3667	3648	39	1,06
CARA 2	C5	D5	93,3	93,6	93,8	37,05	3972	3959	3951	3961	10	0,26
(True	C6	D6	97,0	97,1	97,4	37,09	3825	3821	3808	3818	9	0,23
	C7	D7	93,5	93,3	92,4	37,12	3971	3979	4017	3989	24	0,61
То	tal de pun	tos evalua	idos: 21			Total de	Lectura	ıs Reali	zadas: 6.	3		

^{*} La distancia en este método se determina indirectamente calculándola como la hipotenusa del triángulo que forma la ubicación de los transductores en el elemento de sección cuadrada ensayado. Las dimensiones del elemento están indicadas en el Anexo 11

^{**} La desviación estándar se calcula con el método "n-1". Véase su expresión matemática en la Ecuación 2.16

[§] El error porcentual mostrado es una medida relativa de la desviación estándar con respecto a la velocidad promedio

TABLA A10.36: VELOCIDADES DE PULSO ULTRASÓNICO POR EL MÉTODO INDIRECTO													
ELEME	NTO #4: ARMADO I	DE 3 RA	MAS C	ON SEF	ARACIÓ	N 15 CN	Л	EDAD:	49 DÍAS	8			
					Fecha de			ieves, 04	de junio	de 201:	5		
Mediciones Tom		tonio Fre			ora Inicio:) p.m.		Iora Fina				
UBICA	ACIÓN	TRAN	SDUC.]	LECT. DE	ГІЕМРС		DIST.		LOCID	AD		
Vista en Planta	Vista de Perfil	Emisor	Recep.	T1	T2	Т3	Tiempo Prom.	Entre Transd.	Veloc. Prom.*	Desv Est.**	R ² ***		
1		Cara 1	Cara 1	[µs]	[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[adim]		
CARA 3		D1	D2	34,8	35,5	35,3	35,2	7,60					
ARA OLIVERA Ol	DI DI	D1	D3	57,0	58,1	58,6	57,9	15,00					
2 6 8 2		D1	D4	81,3	82,7	81,8	81,9	23,00	3332	111	0,996		
CARA 1 D	CARA	D1	D5	98,0	100,8	99,2	99,3	31,00		(3,3%)			
		D1	D6	127,0	127,4	127,9	127,4	38,20		(3,370)			
	> Y IIII	D1	D7	148,0	147,1	146,0	147,0	44,30					
CARA 3		E1	E2	36,0	35,5	35,2	35,6	7,40					
RA 4	E. 🙃	E1	E3	58,5	58,5	59,1	58,7	14,80					
5 5	M GO	E1	E4	84,0	83,6	82,8	83,5	22,70	3244	97	0,996		
CARA 1 LE	NAM	E1	E5	101,1	102,3	101,3	101,6	30,60		(20/)			
		E1	E6	130,3	129,7	129,6	129,9	37,50		(3%)			
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	E1	E7	149,6	149,1	148,8	149,2	44,00					
CARA 3		F1	F2	36,4	35,8	35,5	35,9	7,30					
ARA OLO	FI C	F1	F3	53,9	54,7	50,4	53,0	14,50					
3 6 8 5		F1	F4	82,2	89,6	88,8	86,9	22,50	3029	173	0,987		
F CARA I	AARA	F1	F5	104,6	104,0	104,6	104,4	30,30		(5.70/ \			
		F1	F6	124,7	123,6	122,2	123,5	36,60		(5,7%)			
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	F1	F7	158,9	158,4	158,2	158,5	43,40					
	Total de puntos evaluados: 18 Total de Lecturas Realizadas: 54												

^{*} La Velocidad Promedio para este método está calculada como el reciproco de la pendiente de la recta de mejor ajuste de los pares ordenados representados en la gráfica de tiempo vs distancia.(Ver Anexos 12)

^{**} El valor de Desviación Estándar mostrado en esta tabla es calculado por la ecuación del Error Estándar de Aproximación el cual mide la dispersión de los valores observados alrededor de la línea de regresión.

^{***} El valor R² es el Coeficiente de Determinación calculado como el cuadrado del coeficiente de correlación de Pearson. Es un índice adimensional acotado entre 0 y 1 entendido como una medida del ajuste de una función para describir el comportamiento de un conjunto de puntos relacionados por dos variables covariantes.

TABLA A10.37:	TABLA A10.37: VELOCIDADES DE PULSO ULTRASÓNICO POR EL MÉTODO DIRECTO ELEMENTO #5A: ARMADO DE 3 RAMAS CON SEPARACIÓN 10 CM EDAD: 49 DÍAS													
ELEMENTO	#5A: AR	MADO I	DE 3 RA	AMAS (CON SI	EPARAC1	IÓN 10	CM	EDA	D: 49 DÍ	AS			
					F	echa de E	nsayo :		jueves, (04 de juni	io de 201	.5		
Mediciones Tomadas 1	por:	Anto	onio Fre	ites	Ho	ra Inicio:	03:15	5 p.m.		ra Final:		0 p.m.		
UBICACIÓN	TRANS	SDUC.	LECT	. DE TII	EMPO	DIST.		CÁLO	CULO DI	E VELOC	IDADES			
Vista en Planta	Emisor	Recep.	T1	T2	Т3	Entre Transd.	V1	V2	V3	Veloc. Prom.	Desv Est.	Error Porc.§		
	Cara 2	Cara 4	[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]	[%]		
CARA 3	A1	A1´	68,2	67,3	67,7	29,98	4396	4455	4428	4426	29	0,67		
CARA CARA	A2	A2´	69,6	70,6	70,4	29,83	4287	4225	4235	4249	34	0,79		
A'C CALLED CA	A3	A3´	68,7	67,0	66,8	29,95	4360	4470	4484	4438	68	1,53		
G CARA 1	A4	A4´	71,5	71,1	71,1	29,93	4187	4207	4212	4202	13	0,32		
	A5	A5´	67,8	67,6	66,9	29,95	4417	4430	4477	4442	31	0,70		
	A6	A6´	69,3	69,1	70,1	30,02	4334	4345	4281	4320	34	0,79		
CARA 3	B1	B1′	66,9	66,4	69,5	29,90	4470	4504	4300	4425	109	2,47		
	B2	B2´	72,5	72,8	72,4	29,79	4110	4094	4116	4106	12	0,28		
B' B	В3	B3′	68,4	68,3	69,0	29,89	4367	4379	4330	4359	26	0,60		
CARA 1	B4	B4′	71,1	70,8	71,2	29,37	4131	4148	4125	4135	12	0,29		
	В5	B5′	68,0	67,6	67,0	29,86	4393	4419	4458	4423	33	0,74		
	В6	B6′	69,2	68,6	68,9	29,91	4324	4361	4343	4343	19	0,43		
C' CARA 3 C	C1	C1′	66,8	66,3	67,1	29,81	4463	4496	4443	4467	27	0,61		
A 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C2	C2´	70,5	69,8	70,1	29,75	4219	4261	4245	4242	21	0,49		
CARA	СЗ	C3′	67,1	67,0	68,1	29,83	4446	4452	4380	4426	40	0,90		
G CARA 1	C4	C4´	67,7	67,5	68,1	28,81	4257	4267	4230	4251	19	0,46		
	C5	C5′	70,7	70,4	70,2	29,76	4209	4227	4239	4225	15	0,36		
	C6	C6′	69,3	69,1	68,8	29,79	4298	4314	4330	4314	16	0,37		
Total	tal de punt	os evalua	dos: 18			Total de	Lectura	ıs Realiz	zadas: 54	4				

^{*}La distancia entre los transductores en este método se mide directamente sobre el elemento. Varían un poco entre sí en el mismo elemento por pequeñas variaciones en las dimensiones del prisma de concreto. Las dimensiones del elemento están indicadas en el Anexo 11

^{**} La desviación estándar se calcula con el método "n-1". Véase su expresión matemática en la Ecuación 2.16

[§] El error porcentual mostrado es una medida relativa de la desviación estándar con respecto a la velocidad promedio

TABLA A10.38: VE	LOCID	ADES D	E PUL	SO UL	TRAS	ÓNICO	POR I	EL MÉ	TODO	SEMI-l	DIREC'	ТО
ELEMENTO	#5A: AF	RMADO I	DE 3 RA	MAS (CON SE	EPARAC	IÓN 10	CM	EDA	D: 49 DĹ	AS	
					F	echa de E	nsayo:		viernes,	05 de jun	io de 20	15
Mediciones Tomadas p	or:	Orlan	do Carra	asco	Hor	ra Inicio:	08:30) a.m.		ra Final:		9 a.m.
UBICACIÓN	TRAN	SDUC.	LECT	. DE TII	ЕМРО	DIST.		CÁLO	CULO DI	E VELOC	IDADES	
Vista en Planta	Emisor	Recep.	T1	T2	Т3	* Entre Transd	V1	V2	V3	Veloc. Prom.	Desv Est.	Error Porc.§
			[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]	[%]
CARA 4	F1	A1	10,0	8,9	10,3	5,09	5115	5715	4940	5257	406	7,73
RA III 9 1 9 1 CAR	F2	A2	9,5	9,4	9,3	5,09	5358	5426	5496	5426	69	1,27
- Bob	F3	A3	10,0	9,4	9,0	5,09	5115	5433	5642	5397	265	4,92
CARA 2	F4	A4	10,6	10,3	10,2	5,16	4883	4998	5057	4979	88	1,77
(A)	F5	A5	8,8	8,5	7,3	5,23	5965	6124	7167	6419	653	10,18
	F6	A6	9,1	9,9	9,7	5,09	5567	5163	5226	5319	217	4,09
CARA 4	E1	B1	57,1	57,2	56,6	21,21	3716	3708	3749	3724	21	0,58
	E2	B2	49,8	50,3	50,8	21,28	4278	4235	4192	4235	43	1,02
	E3	В3	55,1	53,2	56,7	21,36	3878	4012	3768	3886	122	3,14
CARA 2	E4	B4	51,2	50,1	50,0	21,39	4179	4273	4282	4245	57	1,34
	E5	B5	54,1	53,8	54,7	21,43	3963	3981	3918	3954	32	0,81
	E6	B6	50,0	48,1	47,2	21,36	4275	4438	4525	4413	127	2,88
CARA 4	D1	C1	106,4	105,9	106,3	37,55	3529	3546	3533	3536	9	0,25
S PAP S	D2	C2	108,1	107,9	106,8	37,51	3471	3476	3514	3487	23	0,67
AR	D3	C3	102,8	101,1	99,3	37,48	3646	3708	3773	3709	64	1,72
CARA 2	D4	C4	105,7	107,6	107,2	37,69	3567	3503	3515	3529	34	0,97
CARA Z	D5	C5	105,8	104,4	104,7	37,90	3583	3630	3622	3612	25	0,69
	D6	C6	105,6	106,0	108,7	37,76	3575	3562	3472	3536	56	1,58
To	tal de pur	ntos evalu	ados: 18	}		Total de	Lectura	s Realiz	adas: 54	!		

^{*} La distancia en este método se determina indirectamente calculándola como la hipotenusa del triángulo que forma la ubicación de los transductores en el elemento de sección cuadrada ensayado. Las dimensiones del elemento están indicadas en el Anexo 11

^{**} La desviación estándar se calcula con el método "n-1". Véase su expresión matemática en la Ecuación 2.16

[§] El error porcentual mostrado es una medida relativa de la desviación estándar con respecto a la velocidad promedio

	.39: VELOCIDADE										
ELEMI	ENTO #5A: ARMADO) DE 3 F	RAMAS								
					cha de E			viernes, 05 de			
Mediciones Toma		ndo Carr			Inicio:				Hora Fir		
UBICA	ACIÓN	TRAN	SDUC.	L	ECT. DE	TIEM		DIST.		LOCID	
Vista en Planta	Vista de Perfil	Emisor	Recep.	T1	T2	Т3	Prom.	Entre Transd.	Veloc. Prom.*	Desv Est.**	R ² ***
		Cara 1	Cara 1	[µs]	[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[adim]
CARA 3		D1	D2	10,3	11,4	10,0	10,6	5,00			
ARA ARA		D1	D3	18,9	19,0	20,5	19,5	10,00			
CARA I D		D1	D4	32,6	32,5	31,7	32,3	14,80	3481	210	0,985
		D1	D5	52,0	51,9	52,6	52,2	19,60		(6%)	
		D1	D6	61,5	62,3	62,5	62,1	25,30			
		D1	D7	82,3	84,4	81,1	82,6	30,20			
CARA 3		E1	E2	11,3	11,1	10,6	11,0	4,80			
ARA ARA	C A E	E1	E3	22,0	21,9	21,2	21,7	10,00			
CARA I DE		E1	E4	44,8	41,2	37,5	41,2	15,40	3173	141	0,992
SA		E1	E5	54,9	55,0	53,3	54,4	20,00		(4,5%)	
		E1	E6	71,1	70,7	69,9	70,6	25,50			
		E1	E7	92,3	90,3	92,4	91,7	30,30			
CARA 3		F1	F2	10,3	9,7	9,0	9,7	5,30			
ARA ARA	G Fi	F1	F3	18,7	18,4	18,5	18,5	10,20			
F CARA 1		F1	F4	32,9	32,3	32,5	32,6	15,70	2831	348	0,936
		F1	F5	72,8	73,9	73,0	73,2	20,50		(12,3%)	
		F1	F6	85,5	83,9	81,3	83,6	26,00			
) ~ ~ ~ 	F1	F7	87,0	87,9	88,9	87,9	30,40			
	Total de	otal de I	Lecturas Realiz	adas: 5	4						

^{*} La Velocidad Promedio para este método está calculada como el reciproco de la pendiente de la recta de mejor ajuste de los pares ordenados representados en la gráfica de tiempo vs distancia.(Ver Anexos 12)

^{**} El valor de Desviación Estándar mostrado en esta tabla es calculado por la ecuación del Error Estándar de Aproximación el cual mide la dispersión de los valores observados alrededor de la línea de regresión.

^{***} El valor R^2 es el Coeficiente de Determinación calculado como el cuadrado del coeficiente de correlación de Pearson. Es un índice adimensional acotado entre 0 y 1 entendido como una medida del ajuste de una función para describir el comportamiento de un conjunto de puntos relacionados por dos variables covariantes.

TABLA A10.40:	TABLA A10.40: VELOCIDADES DE PULSO ULTRASÓNICO POR EL MÉTODO DIRECTO ELEMENTO #5B: ARMADO DE 3 RAMAS CON SEPARACIÓN 7 CM EDAD: 28 DÍAS													
ELEMENTO	O #5B: A	RMADO	DE 3	RAMA	S CON	SEPARA	CIÓN '	7 CM	EDA	AD: 28 DÍ	AS			
					F	echa de E	nsayo :		jueves,	04 de junio	o de 2015	5		
Mediciones Tomadas p	or:	Anto	nio Fre	eites	Hor	a Inicio:	03:15	p.m.	F	Hora Final:	05:5	0 p.m.		
UBICACIÓN	TRAN	SDUC.	LECT	. DE TI	EMPO	DIST.		CÁL	CULO D	E VELOCI	DADES			
Vista en Planta	Emisor	Recep.	T1	T2	Т3	Entre Transd.	V1	V2	V3	Veloc. Prom.	Desv Est.	Error Porc.§		
	Cara 2	Cara 4	[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]	[%]		
CARA 3	A8	A8′	69,6	71,0	70,3	30,02	4314	4228	4271	4271	43	1,01		
ARA ARA	A9	A9´	67,6	67,2	66,3	30,05	4448	4473	4531	4484	42	0,95		
A'O O A	A10	A10′	68,6	69,8	68,5	30,15	4394	4321	4400	4371	44	1,00		
CARA 1	A11	A11′	66,5	66,6	66,1	30,05	4518	4511	4544	4524	17	0,38		
	A12	A12´	68,0	67,6	67,4	30,06	4422	4445	4463	4443	21	0,46		
	A13	A13′	68,0	65,7	63,7	30,14	4430	4590	4734	4584	152	3,31		
CARA 3	B8	B8′	66,3	66,6	66,4	29,89	4511	4485	4504	4500	13	0,30		
	В9	B9′	69,4	70,5	67,6	29,95	4313	4250	4430	4331	91	2,11		
B' B	B10	B10′	70,1	70,6	71,5	30,02	4282	4253	4197	4244	45	1,02		
G CARA I	B11	B11′	68,3	67,0	68,2	29,93	4382	4468	4388	4413	48	1,10		
	B12	B12′	66,5	66,9	67,1	29,94	4504	4472	4459	4479	23	0,52		
	B13	B13′	65,9	65,7	67,5	30,02	4558	4572	4447	4525	68	1,51		
C' CARA 3 C	C8	C8′	68,5	66,3	66,2	29,76	4346	4486	4499	4444	85	1,91		
4 2 5	С9	C9′	67,8	67,6	67,0	29,84	4399	4412	4455	4422	29	0,67		
CARA (C10	C10′	68,1	67,3	66,9	29,88	4385	4438	4467	4430	42	0,94		
G CARA 1	C11	C11′	67,8	67,9	67,6	29,81	4395	4389	4407	4397	9	0,21		
	C12	C12′	66,4	66,3	66,2	29,81	4487	4500	4506	4498	9	0,21		
	C13	C13′	68,9	68,0	68,1	29,89	4340	4394	4388	4374	30	0,68		
То	tal de pur	ıtos evalu	ıados: 1	18		Total d	de Lectu	ıras Rea	lizadas:	54				

^{*}La distancia entre los transductores en este método se mide directamente sobre el elemento. Varían un poco entre sí en el mismo elemento por pequeñas variaciones en las dimensiones del prisma de concreto. Las dimensiones del elemento están indicadas en el Anexo 11

^{**} La desviación estándar se calcula con el método "n-1". Véase su expresión matemática en la Ecuación 2.16

[§] El error porcentual mostrado es una medida relativa de la desviación estándar con respecto a la velocidad promedio

TABLA A10.41: VI	ELOCID	ADES D	E PUL	SO UI	TRAS	SÓNICO	POR I	EL MÉ	TODO	SEMI-	DIREC	ТО
ELEMENTO	O #5B: A	RMADO	DE 3 R	AMAS	CON S	EPARAC	CIÓN 7	CM	EDAI	D: 28 DÍ	AS	
					I	Fecha de E	nsayo:		viernes,	05 de jun	io de 20	15
Mediciones Tomadas p	oor:	Orlar	ndo Carr	asco	Но	ra Inicio:	08:30) a.m.	Но	ora Final:	11:1	9 a.m.
UBICACIÓN	TRAN	SDUC.	LECT.	DE TIE	MPO	DIST.		CÁL	CULO DI	E VELOC	CIDADES	
Vista en Planta	Emisor	Recep.	T1	T2	Т3	* Entre Transd	V1	V2	V3	Veloc. Prom.	Desv Est.	Error Porc.§
			[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]	[%]
CARA 4	F8	A8	10,4	9,6	11,2	5,09	4899	5292	4550	4914	371	7,55
RAI	F9	A9	8,8	8,7	9,4	5,16	5856	5946	5516	5773	227	3,93
	F10	A10	10,9	9,7	9,1	5,23	4782	5391	5744	5306	487	9,18
CARA 2	F11	A11	9,6	8,7	8,8	5,27	5489	6088	5996	5858	323	5,51
(A) B	F12	A12	8,1	7,7	7,4	5,30	6565	6925	7184	6891	311	4,51
	F13	A13	7,5	7,7	7,5	5,30	7099	6863	7099	7020	136	1,94
CARA 4	E8	В8	49,5	49,3	49,4	21,36	4316	4334	4325	4325	9	0,21
	E9	В9	63,4	62,8	63,3	21,32	3361	3396	3370	3376	18	0,54
CARA3	E10	B10	50,9	50,6	51,2	21,28	4179	4205	4153	4179	26	0,61
CARA 2	E11	B11	61,6	62,4	63,1	21,32	3459	3414	3379	3417	40	1,17
	E12	B12	50,5	50,0	49,7	21,35	4227	4271	4298	4266	36	0,84
	E13	B13	61,0	60,7	59,3	21,50	3523	3541	3627	3564	56	1,56
CARA 4	D8	C8	133,6	132,6	133,2	38,48	2880	2902	2889	2890	11	0,39
5 999 8	D9	C9	119,5	119,8	119,2	38,19	3196	3187	3205	3196	9	0,28
ARA RATE	D10	C10	128,3	127,9	127,1	37,91	2953	2963	2981	2966	14	0,48
CARA 2	D11	C11	116,7	115,5	115,8	38,01	3258	3291	3282	3277	17	0,51
	D12	C12	126,5	125,9	126,5	38,12	3014	3029	3014	3019	8	0,27
	D13	C13	114,4	114,1	112,9	38,33	3350	3360	3394	3368	23	0,68
To	otal de pu	ntos evalu	iados: 18	8		Total de	Lectura	s Realiz	adas: 54	1		

^{*} La distancia en este método se determina indirectamente calculándola como la hipotenusa del triángulo que forma la ubicación de los transductores en el elemento de sección cuadrada ensayado. Las dimensiones del elemento están indicadas en el Anexo 11

^{**} La desviación estándar se calcula con el método "n-1". Véase su expresión matemática en la Ecuación 2.16

[§] El error porcentual mostrado es una medida relativa de la desviación estándar con respecto a la velocidad promedio

	.42: VELOCIDADE										
ELEM	ENTO #5B: ARMAD	O DE 3 R	AMAS (EDAD: 2			
3.5.11.1					ha de E			viernes, 05 de			
Mediciones Toma		ando Carra			Inicio:				Hora Fi		
UBICA	ACIÓN	TRANS	SDUC.	L.	ECT. DI	ETIEM		DIST.		LOCID	
Vista en Planta	Vista de Perfil	Emisor	Recep.	T1	T2	Т3	Prom.	Entre Transd	Veloc. Prom.*	Est.**	R ² ***
	T	Cara 1	Cara 1	[µs]	[µs]	[µs]	[µs]	[cm]	[m/s]	[m/s]	[adim]
CARA 3		D7	D8	20,9	20,8	21,0	20,9	4,60			
ARA		D7	D9	29,9	28,9	28,7	29,2	7,10			
CARA I D	\(\frac{1}{2} \)	D7	D10	33,8	34,0	33,9	33,9	11,30	3000	261	0,969
	37	D7	D11	51,8	51,3	50,7	51,3	14,00		(8,7%)	
		D7	D12	63,2	62,4	62,6	62,8	17,50			
	> ~1	D7	D13	74,0	73,5	72,5	73,3	20,50			
CARA 3		E7	E8	20,0	20,8	20,8	20,5	3,50			
ARA ARA		E7	E9	29,0	29,9	29,1	29,3	7,22			
CARA I E	(A) (B)	E7	E10	49,6	49,8	49,6	49,7	11,00	3243	242	0,977
S. C.		E7	E11	55,9	55,8	55,6	55,7	14,30		(7,5%)	
		E7	E12	64,2	64,5	64,3	64,3	17,40			
	(E7	E13	74,3	73,2	71,2	72,9	21,00			
CARA 3		F7	F8	20,7	20,7	20,7	20,7	3,60			
CARA		F7	F9	28,3	28,2	27,0	27,8	7,70			
F CARA 1	(A) (5)	F7	F10	33,0	34,8	34,8	34,2	11,20	3417	289	0,971
		F7	F11	53,2	52,0	52,8	52,7	14,50		(8,5%)	
		F7	F12	60,9	60,2	59,2	60,1	18,20			
	1	F7	F13	70,1	69,3	68,5	69,3	21,00			
	Total de	puntos ev	aluados:	18		T_{ϵ}	otal de L	ecturas Realiz	adas: 54	4	

^{*} La Velocidad Promedio para este método está calculada como el reciproco de la pendiente de la recta de mejor ajuste de los pares ordenados representados en la gráfica de tiempo vs distancia.(Ver Anexos 12)

^{**} El valor de Desviación Estándar mostrado en esta tabla es calculado por la ecuación del Error Estándar de Aproximación el cual mide la dispersión de los valores observados alrededor de la línea de regresión.

^{***} El valor R^2 es el Coeficiente de Determinación calculado como el cuadrado del coeficiente de correlación de Pearson. Es un índice adimensional acotado entre 0 y 1 entendido como una medida del ajuste de una función para describir el comportamiento de un conjunto de puntos relacionados por dos variables covariantes.

Anexo # 11. Distancias utilizadas en los Ensayos de los elementos de Concreto

		TABLA	A11.1	: ELE	MENT	O #1 :	Concreto	sin A	rmadu	ra	
		AS PARA IRECTO]	DIST MÉTOD		S PARA I- DIRE] M	DISTAN IÉTODO	ICIAS P. D INDIR	ARA ECTO
Transd	uctores	Distancia*	Transd	uctores		Distan	cias	Transd	uctores	Dis	stancias
Emisor	Recep.	Distancia**	Emisor	Recep.	Dist. 1	Dist. 2	Hipotenusa	Emisor	Recep.	Parcial	Acumulado
Cara 2	Cara 4	[cm]	Cara 1	Cara 2	[cm]	[cm]	[cm]	Cara 1	Cara 2	[cm]	[cm]
A1	A1′	30,12	A1	F1	3,50	3,50	4,95	D1	D2	7,30	7,30
A2	A2´	30,20	A2	F2	3,50	3,50	4,95	D1	D3	7,60	14,90
A3	A3′	30,26	A3	F3	3,50	3,50	4,95	D1	D4	7,40	22,30
A4	A4´	30,12	A4	F4	3,50	3,50	4,95	D1	D5	7,50	29,80
A5	A5′	30,22	A5	F5	3,50	3,50	4,95	D1	D6	7,40	37,20
A6	A6′	30,05	A6	F6	3,50	3,50	4,95	D1	D7	7,40	44,60
A7	A7′	30,09	A7	F7	3,50	3,50	4,95				
B1	B1′	30,10	В1	E1	15,10	14,50	20,93	E1	E2	7,50	7,50
B2	B2´	30,18	В2	E2	15,00	14,60	20,93	E1	E3	7,50	15,00
В3	B3´	30,22	В3	E3	14,90	14,70	20,93	E1	E4	7,40	22,40
В4	B4´	30,12	B4	E4	14,80	14,80	20,93	E1	E5	7,50	29,90
В5	B5´	30,21	В5	E5	14,80	14,77	20,91	E1	E6	7,50	37,40
В6	B6′	30,10	В6	E6	14,80	14,73	20,88	E1	E7	7,60	45,00
В7	B7′	30,07	В7	E7	14,80	14,73	20,88				
C1	C1´	30,07	C1	D1	26,40	26,20	37,19	F1	F2	7,60	7,60
C2	C2´	30,16	C2	D2	26,25	26,40	37,23	F1	F3	7,40	15,00
С3	C3´	30,17	C3	D3	26,10	26,60	37,27	F1	F4	7,40	22,40
C4	C4´	30,12	C4	D4	26,23	26,48	37,27	F1	F5	7,70	30,10
C5	C5′	30,19	C5	D5	26,35	26,35	37,26	F1	F6	7,50	37,60
C6	C6′	30,15	C6	D6	26,48	26,23	37,27	F1	F7	7,60	45,20
C7	C6′	30,05	C7	D7	26,48	26,23	37,27				

ŗ	FABL	A A11.2: H	ELEMI	ENTO #	#2A : A	rmado	de 2 Ramas	s con Se	eparaci	ón de 1	0 cm
		S PARA IRECTO				AS PAR II- DIRE				NCIAS P. D INDIR	
Transd	uctores	Distancia	Transd	uctores		Distan	cias	Transd	uctores	Dis	stancias
Emisor	Recep.	Distancia	Emisor	Recep.	Dist. 1	Dist. 2	Hipotenusa	Emisor	Recep.	Parcial	Acumulado
Cara 2	Cara 4	[cm]	Cara 1	Cara 2	[cm]	[cm]	[cm]	Cara 1	Cara 2	[cm]	[cm]
M1	M1'	30,00	I1	M1	3,80	3,50	5,17	G1	D1	5,00	5,00
A1	A1'	30,08	F1	A1	3,80	3,45	5,13	G1	G2	4,70	9,70
M2	M2'	30,17	I2	M2	3,80	3,40	5,10	G1	D2	4,80	14,50
A2	A2'	30,22	F2	A2	3,75	3,35	5,03	G1	G3	5,00	19,50
М3	M3'	30,24	I3	М3	3,70	3,30	4,96	G1	D3	5,00	24,50
A3	A3'	30,19	F3	A3	3,60	3,4	4,95	G1	G4	4,30	28,80
K1	K1'	29,99	Н1	K1	15,30	15,00	21,43	H1	E1	4,70	4,70
B1	B1'	30,05	E1	B1	15,25	14,80	21,25	H1	H2	4,60	9,30
K2	K2'	30,13	H2	K2	15,20	14,60	21,08	H1	E2	4,90	14,20
B2	B2'	30,16	E2	B2	15,15	14,60	21,04	H1	Н3	5,00	19,20
К3	K3'	30,15	НЗ	К3	15,10	14,60	21,00	H1	ЕЗ	4,90	24,10
В3	B3'	30,12	Е3	В3	15,10	14,8	21,14	Н1	H4	4,70	28,80
J1	J1'	29,98	G1	J1	26,90	26,00	37,41	I1	F1	4,50	4,50
C1	C1'	30,02	D1	C1	26,95	26,10	37,52	I1	12	4,80	9,30
J2	J2'	30,08	G2	J2	27,00	26,20	37,62	I1	F2	5,00	14,30
C2	C2'	30,09	D2	C2	26,90	26,10	37,48	I1	I3	4,90	19,20
Ј3	J3'	30,06	G3	J3	26,80	26,00	37,34	I1	F3	5,10	24,30
С3	C3'	30,04	D3	СЗ	26,70	26,20	37,41	I1	I4	4,50	28,80

	TABL	A A11.3:	ELEM	ENTO	#2B : A	Armado	de 2 Rama	s con S	eparac	ión de 7	7 cm
		S PARA IRECTO		DIS MÉTOI		AS PAR II- DIRE				NCIAS P. D INDIR	
Transd	uctores	Distancia	Transd	uctores		Distan	cias	Transd	uctores	Dis	stancias
Emisor	Recep.	Distancia	Emisor	Recep.	Dist. 1	Dist. 2	Hipotenusa	Emisor	Recep.	Parcial	Acumulado
Cara 2	Cara 4	[cm]	Cara 1	Cara 2	[cm]	[cm]	[cm]	Cara 1	Cara 2	[cm]	[cm]
A4	A4'	30,20	F4	A4	3,60	3,30	4,88	G4	D4	4,00	4,00
M5	M5'	30,28	I5	M5	3,65	3,35	4,95	G4	G5	4,00	8,00
A5	A5'	30,29	F5	A5	3,70	3,40	5,02	G4	D5	3,50	11,50
M6	M6'	30,25	I6	M6	3,70	3,35	4,99	G4	G6	3,20	14,70
A6	A6'	30,26	F6	A6	3,70	3,30	4,96	G4	D6	3,60	18,30
M7	M7'	30,18	I7	M7	3,60	3,20	4,82	G4	G7	3,20	21,50
В4	B4'	30,18	E4	B4	15,00	15,00	21,21	H4	E4	4,00	4,00
K5	K5'	30,24	Н5	K5	15,00	15,00	21,21	H4	Н5	3,70	7,70
В5	B5'	30,27	E5	В5	15,00	15,00	21,21	H4	E5	3,60	11,30
K6	K6'	30,25	Н6	K6	15,00	15,00	21,21	H4	Н6	3,30	14,60
В6	B6'	30,22	E6	В6	15,00	15,00	21,21	H4	E5	3,10	17,70
K7	K7'	30,15	Н7	K7	15,00	14,70	21,00	H4	Н7	3,70	21,40
C4	C4'	30,16	D4	C4	26,50	26,40	37,41	I4	F4	4,00	4,00
J5	J5'	30,20	G5	J5	26,60	26,40	37,48	I4	I5	3,50	7,50
C5	C5'	30,25	D5	C5	26,70	26,40	37,55	I4	F5	3,30	10,80
J6	J6'	30,24	G6	J6	26,65	26,25	37,41	I4	I6	3,40	14,20
C6	C6'	30,17	D6	C6	26,60	26,10	37,27	I4	F6	3,10	17,30
J7	J7'	30,12	G7	J7	26,60	26,10	37,27	I4	I7	3,90	21,20

	TABLA A11.4: ELEMENTO #3 : Armado de 2 Ramas con Separación de 15 cm											
		S PARA IRECTO	DISTANCIAS PARA MÉTODO SEMI- DIRECTO						DISTANCIAS PARA MÉTODO INDIRECTO			
Transductores Distancia		Distancia	Transd	uctores	Distancias			Transd	uctores	Dis	Distancias	
Emisor	Recep.	Distancia	Emisor	Recep.	Dist. 1	Dist. 2	Hipotenusa	Emisor	Recep.	Parcial	Acumulado	
Cara 2	Cara 4	[cm]	Cara 1	Cara 2	[cm]	[cm]	[cm]	Cara 1	Cara 2	[cm]	[cm]	
A1	A1´	30,00	F1	A1	3,40	3,30	4,74	D1	D2	7,50	7,50	
A2	A2´	30,08	F2	A2	3,50	3,30	4,81	D1	D3	7,50	15,00	
A3	A3´	30,07	F3	A3	3,60	3,30	4,88	D1	D4	7,80	22,80	
A4	A4´	30,00	F4	A4	3,70	3,35	4,99	D1	D5	8,40	31,20	
A5	A5′	30,17	F5	A5	3,80	3,40	5,10	D1	D6	6,50	37,70	
A6	A6′	30,19	F6	A6	3,88	3,40	5,16	D1	D7	7,90	45,60	
A7	A7′	30,12	F7	A7	3,90	3,40	5,17					
В1	B1′	30,03	E1	B1	14,90	14,70	20,93	E1	E2	7,50	7,50	
B2	B2´	30,11	E2	B2	14,95	15,25	21,36	E1	E3	7,70	15,20	
В3	B3′	30,15	E3	В3	15,00	15,80	21,79	E1	E4	7,50	22,70	
B4	B4′	30,11	E4	B4	15,00	15,40	21,50	E1	E5	7,40	30,10	
В5	B5′	30,23	E5	В5	15,00	15,00	21,21	E1	E6	7,40	37,50	
В6	B6′	30,27	E6	В6	15,20	14,90	21,28	E1	E7	7,90	45,40	
В7	B6′	30,15	E7	В7	15,30	14,80	21,29					
C1	C1′	30,05	D1	C1	26,80	26,30	37,55	F1	F2	7,50	7,50	
C2	C2´	30,14	D2	C2	26,70	26,50	37,62	F1	F3	8,00	15,50	
С3	C3´	30,22	D3	C3	26,60	26,70	37,69	F1	F4	7,20	22,70	
C4	C4′	30,21	D4	C4	26,65	26,55	37,62	F1	F5	7,30	30,00	
C5	C5′	30,28	D5	C5	26,70	26,40	37,55	F1	F6	7,70	37,70	
C6	C6′	30,34	D6	C6	26,70	26,35	37,51	F1	F7	7,40	45,10	
C7	C7′	30,18	D7	C7	26,70	26,30	37,48					

TABLA A11.5: ELEMENTO #4 : Armado de 3 Ramas con Separación de 15 cm													
	DISTANCIAS PARA MÉTODO DIRECTO			DISTANCIAS PARA MÉTODO SEMI- DIRECTO						DISTANCIAS PARA MÉTODO INDIRECTO			
Transd	uctores	Distancia	Transductores			Distancias		Transductores		Distancias			
Emisor	Recep.		Emisor	Recep.	Dist. 1	Dist. 2	Hipotenusa	Emisor	Recep.	Parcial	Acumulado		
Cara 2	Cara 4	[cm]	Cara 1	Cara 2	[cm]	[cm]	[cm]	Cara 1	Cara 2	[cm]	[cm]		
A1	A1´	30,03	F1	A1	4,20	4,70	6,30	D1	D2	7,60	7,60		
A2	A2´	30,16	F2	A2	4,20	4,80	6,38	D1	D3	7,40	15,00		
A3	A3´	30,26	F3	A3	4,20	4,90	6,45	D1	D4	8,00	23,00		
A4	A4´	30,19	F4	A4	4,25	5,00	6,56	D1	D5	8,00	31,00		
A5	A5´	30,23	F5	A5	4,30	5,10	6,67	D1	D6	7,20	38,20		
A6	A6′	30,32	F6	A6	4,15	5,10	6,58	D1	D7	6,10	44,30		
A7	A7′	30,30	F7	A7	4,00	5,10	6,48						
В1	B1′	30,02	E1	B1	14,40	15,00	20,79	E1	E2	7,40	7,40		
B2	B2´	30,13	E2	B2	14,65	15,10	21,04	E1	E3	7,40	14,80		
В3	B3′	30,18	E3	В3	14,90	15,20	21,28	E1	E4	7,90	22,70		
В4	B4´	30,10	E4	B4	15,15	15,40	21,60	E1	E5	7,90	30,60		
В5	B5′	30,18	E5	В5	15,40	15,60	21,92	E1	E6	6,90	37,50		
В6	B6′	30,30	E6	В6	15,40	15,50	21,85	E1	E7	6,50	44,00		
В7	B7′	30,22	E7	В7	15,40	15,40	21,78						
C1	C1´	30,00	D1	C1	25,50	25,70	36,20	F1	F2	7,30	7,30		
C2	C2´	30,10	D2	C2	25,65	25,85	36,42	F1	F3	7,20	14,50		
C3	C3′	30,09	D3	C3	25,80	26,00	36,63	F1	F4	8,00	22,50		
C4	C4´	30,00	D4	C4	26,05	26,05	36,84	F1	F5	7,80	30,30		
C5	C5′	30,13	D5	C5	26,30	26,10	37,05	F1	F6	6,30	36,60		
C6	C6′	30,27	D6	C6	26,30	26,15	37,09	F1	F7	6,80	43,40		
C7	C7′	30,14	D7	C7	26,30	26,20	37,12						

TABLA A11.6: ELEMENTO #5A : Armado de 3 Ramas con Separación de 10 cm													
	DISTANCIAS PARA MÉTODO DIRECTO			DISTANCIAS PARA MÉTODO SEMI- DIRECTO						DISTANCIAS PARA MÉTODO INDIRECTO			
Transd	luctores Distancia		Transductores Distancias					Transductores Distancias					
Emisor	Recep.	Distancia	Emisor	Recep.	Dist. 1	Dist. 2	Hipotenusa	Emisor	Recep.	Parcial	Acumulado		
Cara 2	Cara 4	[cm]	Cara 1	Cara 2	[cm]	[cm]	[cm]	Cara 1	Cara 2	[cm]	[cm]		
A1	A1´	29,98	F1	A1	3,60	3,60	5,09	D1	D2	5,00	5,00		
A2	A2´	29,83	F2	A2	3,60	3,60	5,09	D1	D3	5,00	10,00		
A3	A3´	29,95	F3	A3	3,60	3,60	5,09	D1	D4	4,80	14,80		
A4	A4´	29,93	F4	A4	3,60	3,70	5,16	D1	D5	4,80	19,60		
A5	A5′	29,95	F5	A5	3,60	3,80	5,23	D1	D6	5,70	25,30		
A6	A6′	30,02	F6	A6	3,60	3,60	5,09	D1	D7	4,9	30,2		
B1	B1′	29,90	E1	B1	15,00	15,00	21,21	E1	E2	4,80	4,80		
B2	B2´	29,79	E2	B2	15,00	15,10	21,28	E1	E3	10,00	10,00		
В3	B3´	29,89	E3	В3	15,00	15,20	21,36	E1	E4	5,40	15,40		
В4	B4′	29,37	E4	B4	15,00	15,25	21,39	E1	E5	4,60	20,00		
В5	B5′	29,86	E5	В5	15,00	15,30	21,43	E1	E6	5,50	25,50		
В6	B6′	29,91	E6	В6	15,00	15,20	21,36	E1	E7	4,8	30,3		
C1	C1′	29,81	D1	C1	26,70	26,40	37,55	F1	F2	5,30	5,30		
C2	C2´	29,75	D2	C2	26,65	26,40	37,51	F1	F3	4,90	10,20		
C3	C3′	29,83	D3	C3	26,60	26,40	37,48	F1	F4	5,50	15,70		
C4	C4´	28,81	D4	C4	26,75	26,55	37,69	F1	F5	4,80	20,50		
C5	C5′	29,76	D5	C5	26,90	26,70	37,90	F1	F6	5,50	26,00		
С6	C6′	29,79	D6	C6	26,90	26,50	37,76	F1	F7	4,4	30,4		

TABLA A11.7: ELEMENTO #5B: Armado de 3 Ramas con Separación de 7 cm										7 cm			
	DISTANCIAS PARA MÉTODO DIRECTO			DISTANCIAS PARA MÉTODO SEMI- DIRECTO						DISTANCIAS PARA MÉTODO INDIRECTO			
Transd	Transductores		Transductores		Distancias			Transd	uctores	Distancias			
Emisor	Recep.	Distancia	Emisor	Recep.	Dist. 1	Dist. 2	Hipotenusa	Emisor	Recep.	Parcial	Acumulado		
Cara 2	Cara 4	[cm]	Cara 1	Cara 2	[cm]	[cm]	[cm]	Cara 1	Cara 2	[cm]	[cm]		
A8	A8′	30,02	F8	A8	3,60	3,60	5,09	F7	F8	4,60	4,60		
A9	A9´	30,05	F9	A9	3,70	3,60	5,16	F7	F9	2,50	7,10		
A10	A10′	30,15	F10	A10	3,80	3,60	5,23	F7	F10	4,20	11,30		
A11	A11′	30,05	F11	A11	3,80	3,65	5,27	F7	F11	2,70	14,00		
A12	A12′	30,06	F12	A12	3,80	3,70	5,30	F7	F12	3,50	17,50		
A13	A13′	30,14	F13	A13	3,80	3,70	5,30	F7	F13	3,00	20,50		
В8	B8′	29,89	E8	В8	15,00	15,20	21,36	E7	E8	3,50	3,50		
В9	B9′	29,95	E9	В9	15,05	15,10	21,32	E7	E9	3,72	7,22		
B10	B10′	30,02	E10	B10	15,10	15,00	21,28	E7	E10	3,78	11,00		
B11	B11′	29,93	E11	B11	15,10	15,05	21,32	E7	E11	3,30	14,30		
B12	B12′	29,94	E12	B12	15,10	15,10	21,35	E7	E12	3,10	17,40		
B13	B13′	30,02	E13	B13	15,20	15,20	21,50	E7	E13	3,60	21,00		
C8	C8′	29,76	D8	C8	27,80	26,60	38,48	D7	D8	3,60	3,60		
C9	C9′	29,84	D9	C9	27,50	26,50	38,19	D7	D9	4,10	7,70		
C10	C10′	29,88	D10	C10	27,20	26,40	37,91	D7	D10	3,50	11,20		
C11	C11′	29,81	D11	C11	27,25	26,50	38,01	D7	D11	3,30	14,50		
C12	C12′	29,81	D12	C12	27,30	26,60	38,12	D7	D12	3,70	18,20		
C13	C13′	29,89	D13	C13	27,50	26,70	38,33	D7	D13	2,80	21,00		

Anexo # 12. Gráficos de Ajuste de VPU por el Método Indirecto

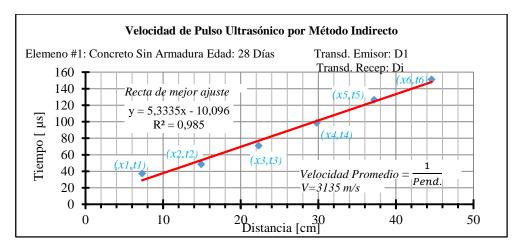


Gráfico A8.1 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 1, Recorrido D1-D7, Edad: 28 Días)

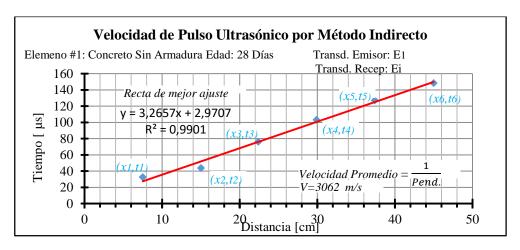


Gráfico A8.2 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 1, Recorrido E1-E7, Edad: 28 Días)

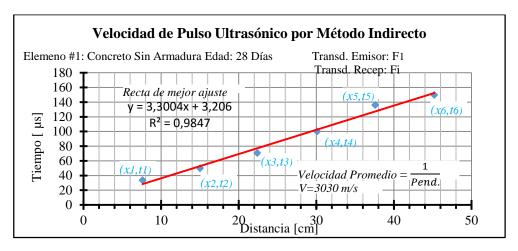


Gráfico A8.3 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 1, Recorrido F1-F7, Edad: 28 Días)

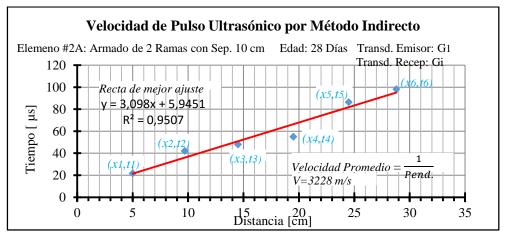


Gráfico A8.4 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 2A, Recorrido G1-G4)

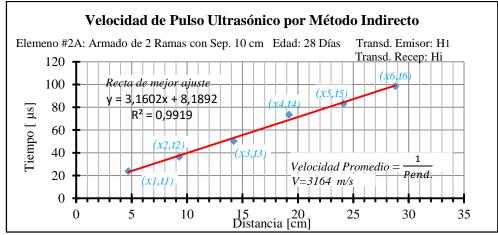


Gráfico A8.5 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 2A, Recorrido H1-H4, Edad: 28 Días)

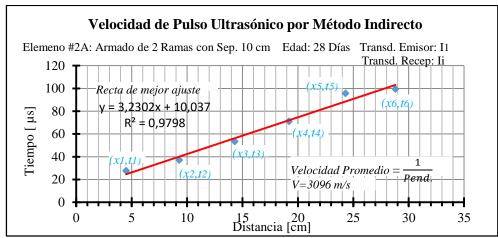


Gráfico A8.6 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 2A, Recorrido I1-I4, Edad: 28 Días)

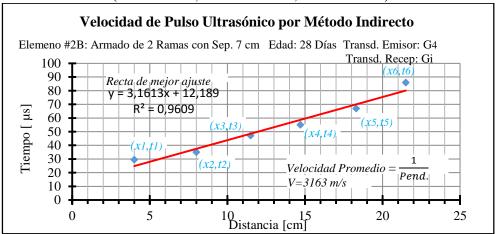


Gráfico A8.7 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 2B, Recorrido G4-G7)

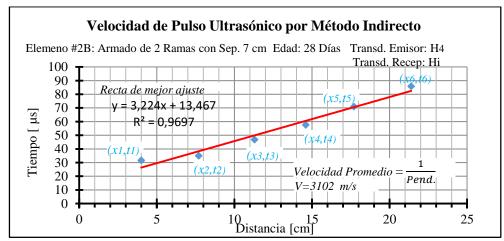


Gráfico A8.8 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 2B, Recorrido H4-H7)

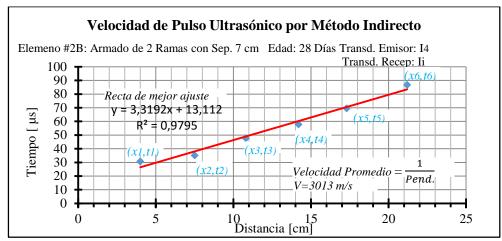


Gráfico A8.9 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 2B, Recorrido I4-I7, Edad: 28 Días)

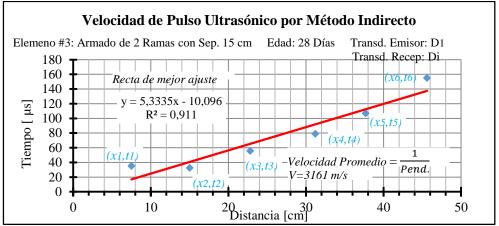


Gráfico A8.10 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 3, Recorrido D1-D7)

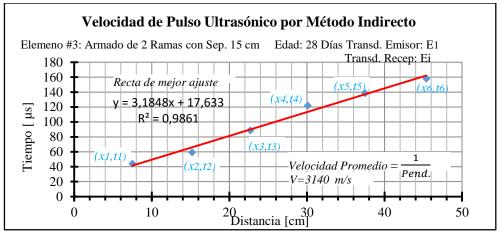


Gráfico A8.11 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 3, Recorrido E1-E7, Edad: 28 Días)

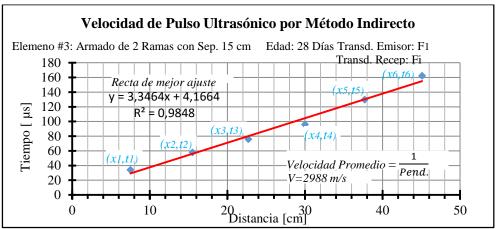


Gráfico A8.12 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 3, Recorrido F1-F7, Edad: 28 Días)

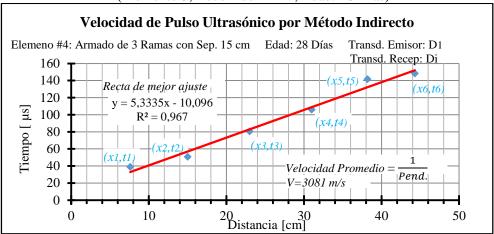


Gráfico A8.13 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 4, Recorrido D1-D7, Edad: 28 Días)

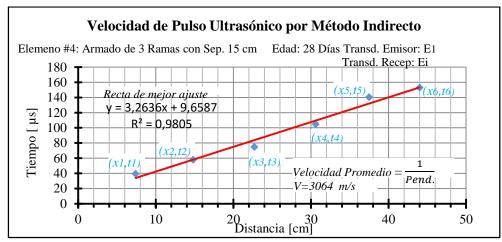


Gráfico A8.14 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 4, Recorrido E1-E7, Edad: 28 Días)

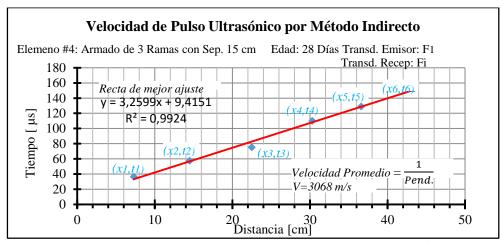


Gráfico A8.15 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 4, Recorrido F1-F7, Edad: 28 Días)

Gráfico A8.16 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 5A, Recorrido D1-D7, Edad: 28 Días)

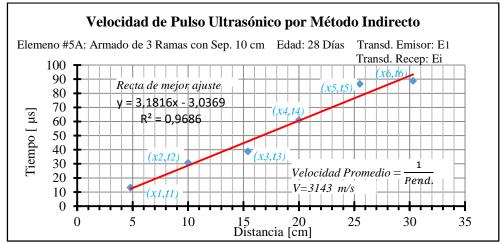


Gráfico A8.17 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 5A, Recorrido E1-E7, Edad: 28 Días)

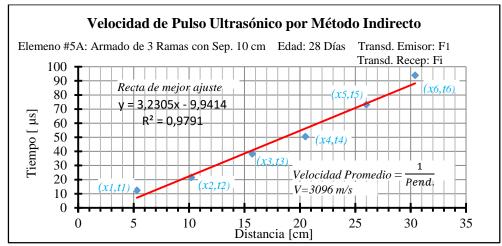


Gráfico A8.18 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 5A, Recorrido F1-F7, Edad: 28 Días)

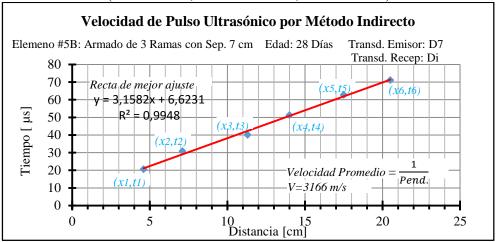


Gráfico A8.19 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 5B, Recorrido D7-D13, Edad: 28 Días)

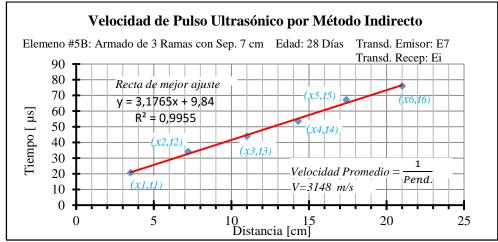


Gráfico A8.20 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 5B, Recorrido E7-E13, Edad: 28 Días)

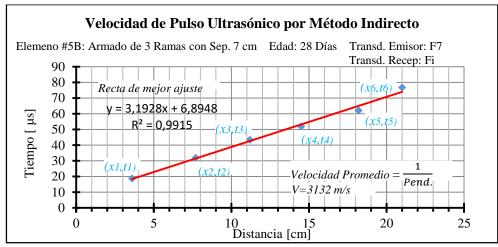


Gráfico A8.21 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 5B, Recorrido F7-F13, Edad: 28 Días)

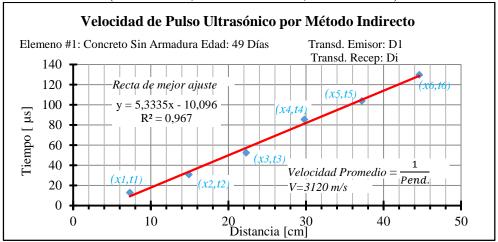


Gráfico A8.22 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 1, Recorrido D1-D7, Edad: 49 Días)

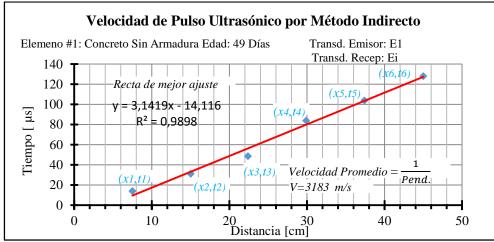


Gráfico A8.23 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 1, Recorrido E1-E7, Edad: 49 Días)

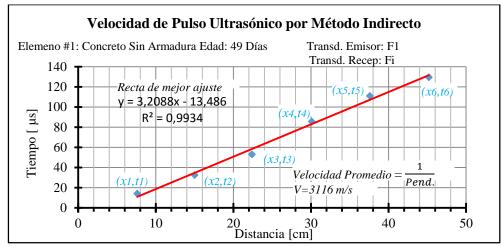


Gráfico A8.24 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 1, Recorrido F1-F7, Edad: 49 Días)

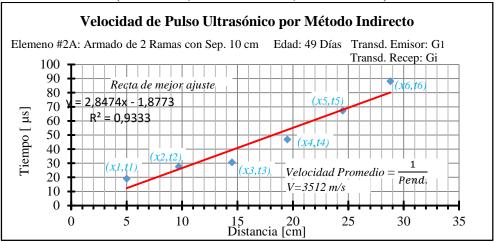


Gráfico A8.25 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 2A, Recorrido G1-G4, Edad: 49 Días)

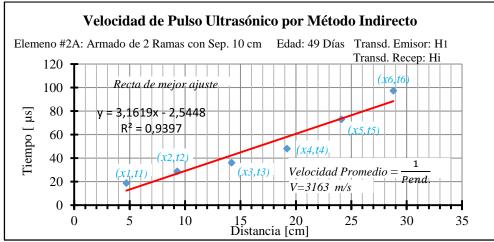


Gráfico A8.26 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 2A, Recorrido H1-H4, Edad: 49 Días)

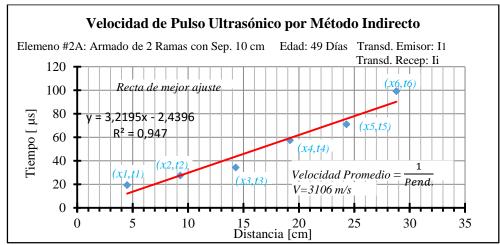


Gráfico A8.27 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 2A, Recorrido I1-I4, Edad: 49 Días)

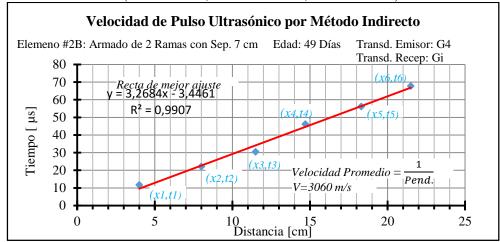


Gráfico A8.28 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 2B, Recorrido G4-G7, Edad: 49 Días)

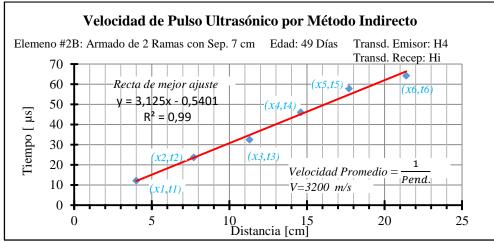


Gráfico A8.29 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 2A, Recorrido H4-H7, Edad: 49 Días)

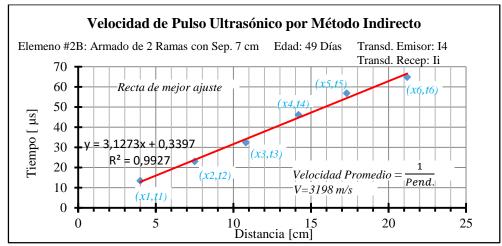


Gráfico A8.30 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 2A, Recorrido I4-I7, Edad: 49 Días)

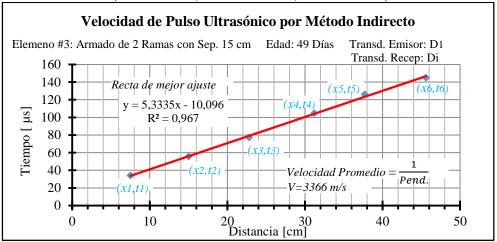


Gráfico A8.31 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 3, Recorrido D1-D7, Edad: 49 Días)

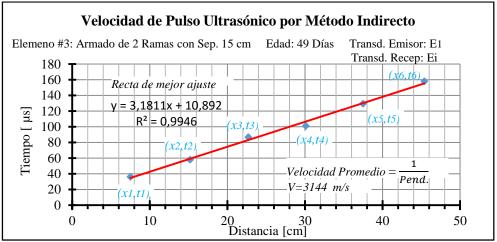


Gráfico A8.32 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 3, Recorrido E1-E7, Edad: 49 Días)

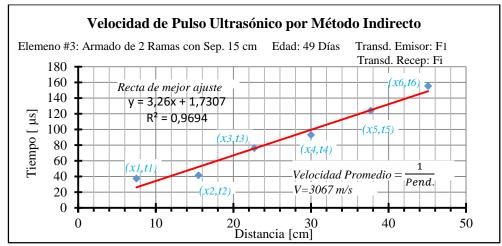


Gráfico A8.33 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 3, Recorrido F1-F7, Edad: 49 Días)

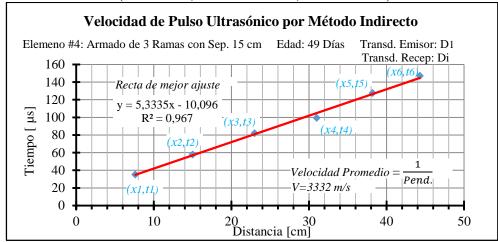


Gráfico A8.34 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 4, Recorrido D1-D7, Edad: 49 Días)

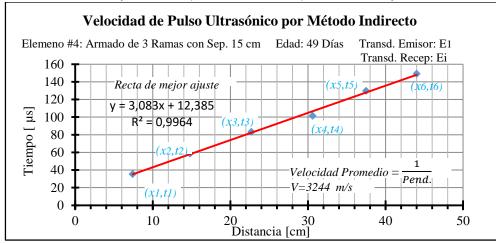


Gráfico A8.35 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 4, Recorrido E1-E7, Edad: 49 Días)

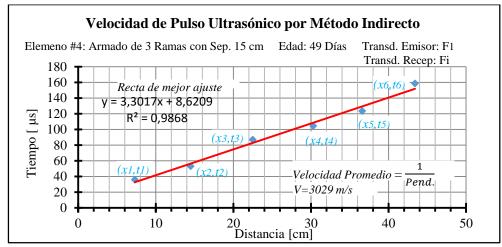


Gráfico A8.36 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 4, Recorrido F1-F7, Edad: 49 Días)

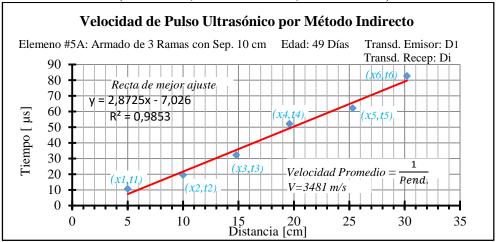


Gráfico A8.37 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 5A, Recorrido D1-D7, Edad: 49 Días)

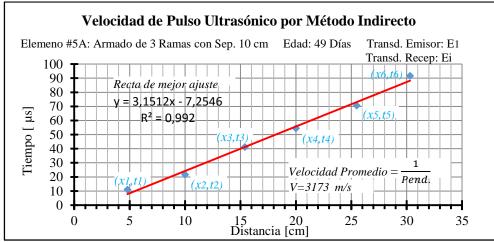


Gráfico A8.38 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 5A, Recorrido E1-E7, Edad: 49 Días)

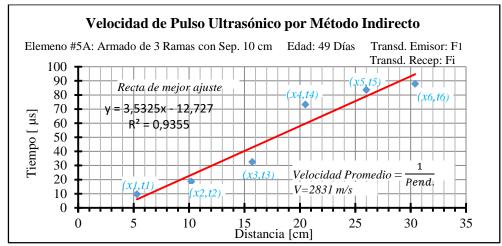


Gráfico A8.39 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 5A, Recorrido F1-F7, Edad: 49 Días)

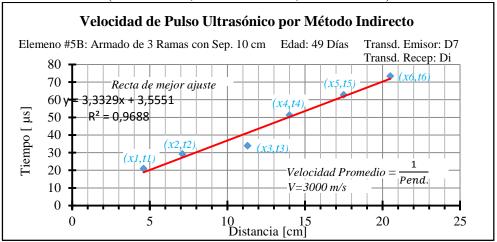


Gráfico A8.40 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 5B, Recorrido D7-D13, Edad: 49 Días)



Gráfico A8.41 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 5A, Recorrido E7-E13, Edad: 49 Días)

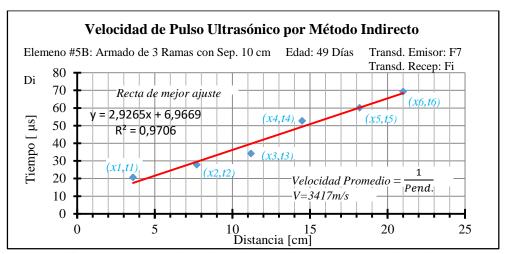


Gráfico A8.42 Recta de Mejor Ajuste en la VPU por Método Indirecto (Elemento 5A, Recorrido F7-F13, Edad: 49 Días)