UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE QUÍMICA

DESARROLLO DE UNA METODOLOGÍA PARA LA DETERMINACIÓN DE BESILATO DE AMLODIPINA EN TABLETAS MEDIANTE ESPECTROSCOPÍA FTIR-ATR

TRABAJO ESPECIAL DE GRADO presentado ante la ilustre Universidad Central de Venezuela por la Br. Yenifer Yulaska Zambrano Guerrero, para optar por el título de Licenciado en Química, opción Tecnología.

Tutores: Msc. Lola De Lima Esp. Marisabel Bor

Caracas, Octubre de 2015

Nosotras, Profesora Lola De Lima, Investigadora de la Escuela de Química de la Universidad Central de Venezuela y la Profesora Marisabel Bor, Investigadora de la Facultad de Farmacia de la Universidad Central de Venezuela. Certificamos que, el presente Trabajo Especial de Grado, titulado:

"DESARROLLO DE UNA METODOLOGÍA PARA LA DETERMINACIÓN DE BESILATO DE AMLODIPINA EN TABLETAS MEDIANTE ESPECTROSCOPIA FTIR-ATR"

Que presenta la Br. Yenifer Zambrano Guerrero, para aspirar al título de Licenciado en Química, ha sido realizado en el Laboratorio de Resonancia Magnetica Nuclear de la Escuela de Química y en el Laboratorio de Análisis de Medicamentos de la Facultad de Farmacia de la Universidad Central de Venezuela, bajo nuestra dirección, durante los años 2014 y 2015, y con esta fecha autorizamos su presentación.

Caracas, Octubre de 2015.

M

Prof. Lola De Lima

(Tutor)

Prof. Marisabel Bor

(Tutor)

Los abajo firmantes asignados por la Universidad Central de Venezuela, como integrantes del jurado examinador del Trabajo Especial de Grado titulado: "DESARROLLO DE UNA METODOLOGÍA PARA LA DETERMINACIÓN DE BESILATO DE AMLODIPINA EN TABLETAS MEDIANTE ESPECTROSCOPIA FTIR-ATR" presentado por la Br. Yenifer Yulaska Zambrano Guerrero, certificamos que este trabajo cumple con los requisitos exigidos por nuestra Magna Casa de Estudios para optar por el título de Licenciado en Química.

Msc. Lola De Lima

(Tutor)

Esp. Marisabel Bor

(Tutor)

Dr. Luis Gómez

(Jurado)

atio

Dra. Katiuska Chávez

(Jurado)

RESUMEN

Con la realización de este trabajo se busca promocionar el uso de la espectroscopía infrarroja (FTIR) con reflectancia total atenuada (ATR) en la determinación de besilato de amlodipina en tabletas, con el propósito de ofrecer una metodología alternativa de análisis más económica y rápida que la oficial USP 37, donde se emplea HPLC.

El método implica la medición de la absorbancia de besilato de amlodipina a un número de onda de 1213 cm⁻¹ del espectro infrarrojo correspondiente a transiciones vibracionales del grupo SO_3^- presente en la molécula. La curva de calibración se desarrolló utilizando el modelo de mínimos cuadrados, con un coeficiente de determinación de 0,9996, obedeciendo la Ley de Beer-Lambert para un rango de concentraciones de 5 a 95 mg / g la ecuación de regresión fue de y = 0,002193 x + 0,0037. El límite de detección y cuantificación fue de 1,5 mg / g y 4,6 mg / g respectivamente.

El método se validó según directrices de la ICH y del compendio de validación <1225> de la USP 37. Para conocer la exactitud del método propuesto se compararon simultáneamente los resultados obtenidos por el método de referencia USP 37 donde no se encontraron diferencias significativas en un 95 % de confianza. La evaluación estadística del método se examinó mediante la determinación de la precisión por repetitividad, donde se encontraron coeficientes de variación entre 2 y 3 %.

En el análisis de muestras sometidas a pruebas de degradación forzada tales como exposición a la humedad, calor y radiación visible, en paralelo con la metodología de referencia USP 37, se encontraron diferencias espectrales con respecto a los espectros de IR obtenidos para los patrones y muestras sin degradar, por lo que el método puede ser aplicado como un indicador de estabilidad del fármaco.

Tabla de contenido

RESUMEN	I
I. INTRODUCCIÓN	1
II. MARCO TEÓRICOII.1 Aspectos Generales de las enfermedades no transmisibles	4 4
II.2 FÁRMACOS ANTIHIPERTENSIVOS	7
II.2.1 Fármacos antagonistas de los canales de calcio	10
II.3 Besilato de amlodipina	10
II.3.1 Generalidades	11
II.3.2 Tratamiento	12
II.3.3 Eliminación	12
II.3.4 Métodos analíticos para la determinación de besilato de amlodipina	13
II.4 Métodos Espectroscópicos	13
II.4.1 Ley de Beer-Lambert	14
II.4.1 Ley de Beer-Lambert II.4.2 Espectroscopía de infrarrojo por transmisión	14 15
II.4.1 Ley de Beer-Lambert II.4.2 Espectroscopía de infrarrojo por transmisión II.4.2 Espectroscopía FTIR con ART	14 15 17
 II.4.1 Ley de Beer-Lambert II.4.2 Espectroscopía de infrarrojo por transmisión II.4.2 Espectroscopía FTIR con ART II.5 Desarrollo y validación de metodologías analíticas en el análisis de medi 	14 15 17 icamentos.
 II.4.1 Ley de Beer-Lambert II.4.2 Espectroscopía de infrarrojo por transmisión II.4.2 Espectroscopía FTIR con ART II.5 Desarrollo y validación de metodologías analíticas en el análisis de medi 	14 15 17 icamentos. 21
 II.4.1 Ley de Beer-Lambert II.4.2 Espectroscopía de infrarrojo por transmisión II.4.2 Espectroscopía FTIR con ART II.5 Desarrollo y validación de metodologías analíticas en el análisis de medi II.5.1 Tipos de validación 	14 15 17 icamentos. 21
 II.4.1 Ley de Beer-Lambert II.4.2 Espectroscopía de infrarrojo por transmisión II.4.2 Espectroscopía FTIR con ART II.5 Desarrollo y validación de metodologías analíticas en el análisis de medi II.5.1 Tipos de validación II.5.1.1 Validación prospectiva 	14 15 17 icamentos. 21 21 21
 II.4.1 Ley de Beer-Lambert II.4.2 Espectroscopía de infrarrojo por transmisión II.4.2 Espectroscopía FTIR con ART. II.5 Desarrollo y validación de metodologías analíticas en el análisis de medi II.5.1 Tipos de validación II.5.1.1 Validación prospectiva II.5.1.2 Validación retrospectiva 	14 15 17 icamentos. 21 21 21 21
 II.4.1 Ley de Beer-Lambert II.4.2 Espectroscopía de infrarrojo por transmisión II.4.2 Espectroscopía FTIR con ART II.5 Desarrollo y validación de metodologías analíticas en el análisis de medi II.5.1 Tipos de validación II.5.1.1 Validación prospectiva II.5.1.2 Validación retrospectiva II.5.1.3 Revalidación o post-validación 	14 15 17 icamentos. 21 21 21 21 21
 II.4.1 Ley de Beer-Lambert II.4.2 Espectroscopía de infrarrojo por transmisión II.4.2 Espectroscopía FTIR con ART. II.5 Desarrollo y validación de metodologías analíticas en el análisis de medi II.5.1 Tipos de validación II.5.1.1 Validación prospectiva II.5.1.2 Validación retrospectiva II.5.1.3 Revalidación o post-validación II.5.2 Objetivo de la validación de métodos analíticos 	14 15 17 icamentos. 21 21 21 21 22 22
 II.4.1 Ley de Beer-Lambert II.4.2 Espectroscopía de infrarrojo por transmisión II.4.2 Espectroscopía FTIR con ART. II.5 Desarrollo y validación de metodologías analíticas en el análisis de medi II.5.1 Tipos de validación II.5.1.1 Validación prospectiva II.5.1.2 Validación retrospectiva II.5.1.3 Revalidación o post-validación II.5.2 Objetivo de la validación de métodos analíticos II.5.3 Parámetros de validación de métodos analíticos 	14 15 17 icamentos. 21 21 21 21 22 22 22
 II.4.1 Ley de Beer-Lambert II.4.2 Espectroscopía de infrarrojo por transmisión II.4.2 Espectroscopía FTIR con ART II.5 Desarrollo y validación de metodologías analíticas en el análisis de medi II.5.1 Tipos de validación II.5.1.1 Validación prospectiva II.5.1.2 Validación retrospectiva II.5.1.3 Revalidación o post-validación II.5.2 Objetivo de la validación de métodos analíticos II.5.3 Parámetros de validación de métodos analíticos II.5.3.1 Precisión 	14 15 17 icamentos. 21 21 21 21 22 22 22 22 22

II.5.3.3 Sensibilidad26
II.5.3.4 Límite de detección26
II.5.3.5 Límite de cuantificación27
II.5.3.6 Linealidad28
II.5.3.7 Rango
II.5.3.8 Especificidad – selectividad29
II.5.3.9 Robustez
II.5.4 Características de desempeño en la validación
II.5.4.1 Compendio de validación de métodos <1225> USP 37
II.5.4.2 Parámetros requeridos para la validación OMS, informe 32, anexo 533
II.5.4.3 Guía de validación de procedimientos analíticos, conferencia internacional de
armonización (ICH)35
III. ANTECEDENTES
III.1 Farmacopea de Estados Unidos. USP 37 (2012)37
III.2 Abdel A, Gazy K (2003)
III.3 Basavaiah K y colaboradores (2005)40
III.4 Bunaciu Andrei y colaboradores (2006)44
III.5 Gölcü A, Yücesoy C (2006)45
III.7 Ravi Prasad P y colaboradores (2014)47
III.8 Cozar O y colaboradores (2009)47
IV. JUSTIFICACIÓN
V. OBJETIVOS
V.1 Objetivo General
V.2 Objetivos Específicos55
VI. PROCEDIMIENTO EXPERIMENTAL
VI.1 EQUIPOS
VI.1.1 Equipo FTIR56
VI.1.2 Equipo de HPLC
VI.1.3 Otros instrumentos

VI.2 REACTIVOS	57
VI.2.1 Patrón de referencia	57
VI.2.2 Muestras	57
VI.2.3 Solventes	58
VI.2.3.1 Solventes para FTIR ATR	58
VI.2.3.2 Solventes para cromatografía HPLC	58
VI.3.1 Preparación del material de referencia interno	58
VI.3.2 Elaboración de la curva de calibración	59
VI.3.3.1 Análisis de muestras por HPLC. Evaluación de la exactitud	71
VI.3.3.2 Pruebas de especificidad	72
VII. RESULTADOS Y DISCUSION	73
VII.1 Límite de detección y límite de cuantificación	73
VII.2 PRECISIÓN	73
VII.2.1 Precisión del sistema FTIR ATR	73
VII.2.2 Repetitividad en los resultados	75
VII.4 ROBUSTEZ	85
VII.5 ESPECIFICIDAD	86
VII.6 APLICACIÓN DE LA METODOLOGIA DESARROLLADA A UNA	SEGUNDA
MUESTRA	104
VIII. CONCLUSIONES	107
IX. RECOMENDACIONES	109
X. REFERENCIAS BIBLIOGRAFICAS	110
XI. APÉNDICE	116

LISTA DE TABLAS

Tabla 1 . Desarrollo del tratamiento farmacológico antihipertensivo
Tabla 2. Parámetros de validación típicos utilizados para la validación de métodos
analíticos23
Tabla 3. Datos requeridos para la validación de métodos analíticos <1225> USP 3732
Tabla 4. Características a considerar para los diferentes tipos de procedimientos
analíticos. OMS informe 32, anexo 5
Tabla 5. Características a considerar para la validación de métodos analíticos, ICH
Q2A
Tabla 6. Extracto de Asignación de los modos vibracionales de besilato de amlodipina a
las bandas de absorción experimentales y calculadas52
Tabla 7. Asignación de modos vibracionales de besilato de amlodipina a las bandas de
absorción seleccionadas60
Tabla 8. Cuadro comparativo entre las curvas de calibración. para un rango de
concentraciones de 0,62 mg / g a 199,70 mg / g63
Tabla 9. Cuadro comparativo entre las curvas de calibración para rango de
concentraciones de 4,984 mg / g a 95,205 mg / g a partir de espectros con smooth y sin
smooth

Tabla 10. Cuadro comparativo entre las curvas de calibración para el rango lineal seleccionada a partir de espectros sin smooth para una segunda serie de patrones....67

Tabla 11. Resumen de Datos de la curva de calibración para la determinación de besilato de amlodipina en muestras comerciales medite el método por FTIR con ATR.69

Tabla 12. Estadística de la regresión para la curva de calibración correspondiente a la
banda v _{as} (SO ₃ ⁻) en el rango seleccionado70
Tabla 13. Análisis de varianza para la curva de calibración correspondiente a la banda
v _{as} (SO ₃ ⁻) en el rango seleccionado70
Tabla 14. Precisión del sistema FTIR con ATR en la medición de absorbancia para una
serie de patrones74
Tabla 15. Precisión del sistema FTIR con ATR en la medición de absorbancia para una
serie de muestras75
Tabla 16. Resultados para el cálculo de la concentración de amlodipina en el material
de referencia interno, por espectroscopia FTIR con ATR utilizando la curva de
calibración correspondiente a la banda v _{as} (SO ₃ ⁻)76

Tabla 17. Determinación de besilato de amlodipina del material de referencia internopor espectroscopia FTIR con ATR77

Tabla 18. Valor promedio para la determinación de amlodipina por tableta del materialde referencia interno, por espectroscopia FTIR con ATR.78

Tabla 20. Resultados en la determinación de besilato de amlodipina en las muestras delmaterial de referencia interno, bajo las condiciones cromatograficas seleccionadas.Valores obtenidos por extrapolación.81

Tabla 22. Valor promedio para la determinación de amlodipina por tableta por lametodología USP 37 para el material de referencia interno.82

Tabla 25. Valores obtenidos para el estadístico de prueba t-student entre los resultados para el análisis de besilato de amlodipina por el método propuesto y el método oficial.84

 Tabla 27.
 Resultados por el método de FTIR con ATR para el cálculo de la concentración de amlodipina en las muestras de material de referencia interno sometidas a degradación forzada.

 Tabla 31.
 Resumen de datos para la muestra comercial 1 sin degradar y sometida a

 termólisis y exposición de la radiación visible para el contraste estadístico de los

 resultados.
 101

 Tabla 32.
 Prueba de contraste de Fisher para las muestras bajo degradación forzada.

 102

degradación forzada103
Tabla 34. Resultados para el cálculo de la concentración de amlodipina para unasegunda muestra comercial por espectroscopia FTIR con ATR.104
Tabla 35. Determinación de besilato de amlodipina para una segunda muestra. Por espectroscopia FTIR con ATR. 105
Tabla 36. Valor promedio para la determinación de amlodipina por tableta para una segunda muestra, por espectroscopia FTIR con ATR
Tabla 37. Preparación de los patrones para la curva de calibración 1116
Tabla 38. Patrones para la repetición de la curva de calibración con respecto al intervalo lineal seleccionado
Tabla 39. Estadística de la regresión para la curva de calibración correspondiente a la banda v C=O 118
Tabla 40. Análisis de varianza para la curva de calibración correspondiente a la banda v C=O
Tabla 41. Distribución de los residuales para la curva de calibración correspondiente a

Tabla 33. Prueba de contraste de las medias t-student para las muestras bajo

Tabla 42. Estadística de la regresión para la curva de calibración correspondiente a la
curva de calibración de la banda v _{as} (SO ₃ ⁻)122
Tabla 43. Análisis de varianza para la curva de calibración correspondiente a la curva
de calibración de la banda v _{as} (SO ₃ ⁻)122
Tabla 44. Distribución de los residuales para a la curva de calibración correspondiente
a la banda v_{as} (SO ₃ ⁻)123
Tabla 45. Estadística de la regresión para la curva de calibración correspondiente a la
curva de calibración de la banda v _s (SO ₃ ⁻)126
Tabla 46. Análisis de varianza para la curva de calibración correspondiente a la banda
v _s (SO ₃ ⁻)126
Tabla 47. Distribución de los residuales para la curva de calibración correspondiente a
la banda v _s (SO ₃ ⁻)127
Tabla 48. Estadística de la regresión para la curva de calibración correspondiente a la
curva de calibración de la banda v (C=O) para el rango lineal seleccionado130
Tabla 49. Análisis de varianza para la curva de calibración correspondiente a la banda v
(C=O) en el rango seleccionado130
Tabla 50. Estadística de la regresión para la curva de calibración correspondiente a la
curva de calibración de la banda v _{as} (SO $_3$ ⁻) para el rango lineal seleccionado131

Tabla 51. Análisis de varianza para la curva de calibración correspondiente a la banda
v _{as} (SO ₃ ⁻) para el rango lineal seleccionado132
Tabla 52. Estadística de la regresión para la curva de calibración correspondiente a la
curva de calibración de la banda v $_{s}$ (SO $_{3}$ $$) para el rango lineal seleccionado133
Tabla 53. Análisis de varianza para la curva de calibración correspondiente a la banda
v_s (SO ₃ ⁻) para el rango lineal seleccionado133
Tabla 54. Preparación de las muestras del material de referencia interno y de una
segunda muestra para su análisis por FTIR con ATR135
Tabla 55. Preparación de las muestras de material de referencia interno sometidas a
degradación para el análisis por la metodología FTIR con ATR136
Tabla 56. Precisión del sistema FTIR con ATR en la medición de absorbancia para una
serie de patrones
Tabla 57. Precisión del sistema FTIR con ATR en la medición de absorbancia para una
serie de patrones (continuación)138
Tabla 58. Precisión del sistema FTIR con ATR en la medición de absorbancia para una
serie de patrones (continuación)139
Tabla 59. Precisión del sistema FTIR con ATR en la medición de absorbancia para una
serie de muestras (material de referencia interno y segunda muestra)140

xi

Tabla 60. Precisión del sistema FTIR con ATR en la medición de absorbancia para una
serie de muestras (material de referencia interno y segunda muestra). (Continuación)
Tabla 61. Preparación de la solución madre de besilato de amlodipina142
Tabla 62. Preparación de los patrones de besilato de amlodipina para la curva de
calibración HPLC142
I abla 63. Preparacion de las muestras de material de referencia interno para el analisis
por la metodología USP 37143
Tabla 64 Preparación de las muestras sometidas a degradación para el análisis por
metodología USP 37143
Tabla 65. Estadística de la regresión para la curva de calibración HPLC para el análisis
de muestras del material de referencia interno
Tabla 66. Análisis de varianza para la curva de calibración de HPLC para el análisis de
muestras del material de referencia interno144
Tabla 67 Distribución de los residuales para la curva de calibración 1 de HPI C 145
Tabla 68. Estadística de la regresión para la segunda curva de calibración HPLC para
el análisis de las muestras sometidas a degradación146

Tabla 70. Distribución de los residuales para la segunda curva de calibración HPLC.147

LISTA DE FIGURAS

Figura 1. Mortalidad proporcional. Porcentaje total de muertes, todas las edades, ambos sexos. Boletín informativo OMS, Venezuela 2014
Figura 2. Estructura química de besilato de amlodipina11
Figura 3. Ángulo crítico para una reflexión total interna18
Figura 4. Características de la reflexión en dependencia al ángulo de incidencia19
Figura 5. Optimización computacional de la estructura molecular con esquema de enumeración de átomos de besilato de amlodipina ^[31] 50
Figura 6. Espectro de absorción infrarroja para el besilato de amlodipina obtenido experimentalmente por FTIR frente a un espectro por simulación
Figura 7. Espectro de absorbancia de IR del estándar secundario de besilato de amlodipina61
Figura 8. Curvas de calibración para los picos de absorbancia seleccionados de los espectros a un numero de onda de 1101 cm ⁻¹ , 1213 cm ⁻¹ y 1688 cm ⁻¹ en un rango de concentraciones de 0,62 mg / g a 199,70 mg / g
Figura 9 . Curva de calibración para el rango de concentraciones de 4,984 mg / g a 95,205 mg / g. (A partir de los espectros sin <i>smooth</i>)64
Figura 10. Curva de calibración para el rango de concentraciones de 4,984 mg / g a 95,205 mg / g. (A partir de los espectros con <i>smooth</i>)65
Figura 11. Segunda Curva de calibración para el rango de concentraciones de 4,984

mg / g a 95,205 mg / g a partir de espectros sin *smooth*......67

 Figura 18. Espectro de transmitancia de la muestra comercial 1, expuesta a la radiación

 visible por 7 días.
 88

Figura 20. Espectros de transmitancia IR para las muestras degradadas y sin degradar

Figura 24. Gráfico de pureza del pico de besilato de amlodipina correspondiente al patrón 393
Figura 25. Cromatograma de la muestra comercial 1 expuesta a humedad por 7 días.94
Figura 26. Gráfico de pureza de pico de besilato de amlodipina en la muestra sometida a la humedad por 7 días95
Figura 27. Cromatograma de la muestra comercial 1 expuesta a una temperatura de 45 °C por 4 horas (termólisis)96
Figura 28. Gráfico de pureza de pico de besilato de amlodipina en la muestra comercial 1 expuesta a una temperatura de 45 °C por 4 horas96
Figura 29. Cromatograma de la muestra comercial 1 expuesta a radiación visible por 7 días
Figura 30. Gráfico de pureza de pico de besilato de amlodipina en la muestra comercial 1 expuesta a radiación visible por 7 días
Figura 31. Curva de calibración para el método por HPLC para la determinación de besilato de amlodipina en las muestras sometidas a degradación
Figura 32. Gráfico de la distribución de los residuales119
Figura 33. Grafica de la distribución de los residuales para la curva de calibración correspondiente a la banda v _{as} (SO ₃ ⁻)
Figura 34. Grafica de la distribución de los residuales para la curva de calibración correspondiente a la banda v_s (SO ₃ ⁻)127
Figura 35. Grafica de la distribución de los residuales para la curva de calibración correspondiente a la banda v (C=O)131

Figura 36. Grafica de la distribución de los residuales para la curva de calibración correspondiente a la banda v_{as} (SO₃⁻) para el rango lineal seleccionado......132

Figura 38.	Gráfico	de la	distribución	de lo	s residuales	para	la cur	va de	calibración '	1
(USP 37)									148	5
Figura 39.	Gráfico	de la	distribución	de lo	s residuales	para	la cur	va de	calibración 2	2
(USP 37)									147	7

I. INTRODUCCIÓN

La industria Farmacéutica se encuentra sujeta a regulaciones, reglamentos y requisitos muy estrictos debido a que tratan la salud de las personas. El aseguramiento de la calidad de medicamentos es un concepto de interés para los organismos de salud, el éxito de un tratamiento médico frente a una enfermedad puede verse afectado por la calidad del fármaco que se administre.

Con la validación de un método analítico se permite conseguir objetivos técnicos y exigencias legales en la industria farmacéutica, también se garantiza que los procedimientos empleados para el control de calidad de sus productos proporcionen resultados con aceptable confiabilidad, exactitud y precisión.

Existen normas de calidad relativas a metodologías de análisis publicadas en varias farmacopeas como, la de los Estados Unidos (USP), la británica (BP) y la europea (EP), las cuales son consideradas como monografías oficiales, ya que han sido estrictamente verificadas y representan una garantía de que los resultados obtenidos son confiables.

Cuando las técnicas analíticas no aparecen reportadas en las monografías oficiales o no se cuenta con las condiciones analíticas establecidas en las mismas se puede plantear el desarrollo nuevas metodologías analíticas, que sean más sencillas y con la menor generación de costos. Siguiendo las especificaciones de referencia contempladas en las farmacopeas y en el conjunto de las directrices de la Conferencia Internacional de Armonización (por sus siglas en ingles ICH) para su validación.

Para el análisis y control de calidad de medicamentos, las técnicas analíticas comúnmente utilizadas son la espectrofotometría UV-Visible y la cromatografía líquida de alta eficiencia (HPLC). Donde los tiempos de análisis van desde varios minutos a

horas, y requiere de cantidades relativamente grandes de solventes, por tanto la generación de desechos contaminantes es grande.

La espectroscopía de infrarrojo por transmisión (FTIR) es una técnica analítica muy utilizada en el análisis cualitativo de fármacos en la identificación y elucidación de estructuras, sin embargo está limitada al análisis cuantitativo principalmente por la baja reproducibilidad del camino óptico para el cumplimiento de la ley de Beer-Lambert.

Con la aparición de la espectroscopía de infrarrojo de transformada de Fourier con Reflectancia Total Atenuada (FTIR con ATR), estas limitaciones han sido superadas ya que permite obtener espectros con caminos ópticos constantes, favoreciendo el cumplimiento de la Ley de Beer-Lambert.

Entre las ventajas significativas que se obtiene con la utilización de esta técnica frente a otros métodos convencionales, en el caso de la industria farmacéutica, se encuentra que la relación de costos de análisis disminuye considerablemente si se compara por ejemplo frente a los métodos HPLC, esta técnica no requiere de diluciones de muestras y patrones, los tiempos de análisis son de algunos minutos, el consumo de solventes es bajo, por tanto la generación de desechos contaminantes es mínima.

El besilato de amlodipina es un medicamento altamente usado en el tratamiento de la hipertensión arterial que es una enfermedad de salud pública, por lo que este hecho representa una alta tasa de producción industrial, en Venezuela se cuenta con más de 25 presentaciones farmacéuticas, según el listado de medicamentos registrados en el Instituto Nacional de Higiene Rafael Rangel (INHRR).

El objetivo principal de este trabajo fue desarrollar una metodología por espectroscopía FTIR con ATR para la determinación de besilato de amlodipina en tabletas. La Farmacopea de Estados Unidos USP 37 establece que el método analítico oficial para este análisis es mediante HPLC, sin embargo debido a la actual crisis económica del país y a la difícil adquisición de productos químicos, es importante el desarrollo de metodologías alternativas, que sean menos costosas, más sencillas, con la menor generación de desechos, por tanto una metodología de análisis por FTIR con ATR representaría una excelente opción para la determinación de besilato de amlodipina en tabletas.

La validación del método se hará según las exigencias establecidas en la USP 37, la cual incluye la determinación de rango e intervalo lineal, exactitud, precisión, especificidad, límite de detección, límite de cuantificación, y selectividad.

II. MARCO TEÓRICO

II.1 Aspectos Generales de las enfermedades no transmisibles

Las enfermedades no transmisibles (ENT), también conocidas como enfermedades crónicas, son enfermedades que no se transmiten de persona a persona y por lo general evolucionan lentamente. Según la Organización Mundial para la Salud OMS las cuatro principales enfermedades no transmisibles son las enfermedades cardiovasculares (como ataques cardiacos y accidentes cerebrovasculares), el cáncer, las enfermedades respiratorias crónicas (como la enfermedad pulmonar obstructiva crónica y el asma) y la diabetes ^[1].

En el año 2000 un 60 % de las muertes ocurridas en el mundo se atribuyeron a estas enfermedades, ya para el año 2012 esta cifra se incrementó a un 68 % ^[2].

En cuanto a las enfermedades cardiovasculares estas se deben a trastornos del corazón y de los vasos sanguíneos, entre ellas tenemos las cardiopatías coronarias (ataques cardíacos), las enfermedades cerebrovasculares, el aumento de la presión arterial (hipertensión), las vasculopatías periféricas, las cardiopatías reumáticas, las cardiopatías congénitas y la insuficiencia cardíaca^[1].

En Venezuela, según el boletín informativo 2014 de la OMS para el año 2008, 433 de cada 100000 habitantes murieron por enfermedades no transmisibles. Donde unos 200 de cada 100000 habitantes con edades comprendidas entre 30 y 70 años murieron a causa de enfermedades cardiovasculares y diabetes ^[3].

Figura 1. Mortalidad proporcional. Porcentaje total de muertes, todas las edades, ambos sexos. Boletín informativo OMS, Venezuela 2014

En términos de muertes atribuibles, el principal factor de riesgo a nivel mundial es el aumento de la presión arterial, a lo que se atribuyen el 16,5 % de las muertes a nivel mundial, seguido por el consumo de tabaco (9 %), el aumento de la glucosa sanguínea (6 %), la inactividad física (6 %) y el sobrepeso u obesidad (5 %) ^[1]. Se ha estimado que la tensión arterial elevada es responsable del 51 % de los accidentes cerebrovasculares mortales y del 45 % de las muertes por cardiopatías ^[4].

II.1.1 Hipertensión arterial

La hipertensión arterial, también conocida como tensión arterial alta, es una enfermedad padecida por uno de cada tres adultos, en la cual la presión en los vasos sanguíneos es relativamente elevada^[1].

Los vasos sanguíneos son los que transportan la sangre desde el corazón a todas las partes del cuerpo. El producto de la fuerza con que la sangre se presiona en contra de las paredes de los vasos sanguíneos (arterias) a medida que es bombeada por el corazón es la presión arterial, y cuanta más alta sea esta presión más esfuerzo tendrá que realizar el corazón para bombear dicha sangre, representando así un mayor riesgo de daño al corazón y a los vasos sanguíneos de órganos principales como el cerebro y los riñones^[1].

La presión arterial se mide en milímetros de mercurio (mm de Hg) y se registra en forma de dos números separados por una barra. El primero corresponde a la presión arterial sistólica, la más alta que se produce cuando el corazón se contrae. El segundo corresponde a la presión arterial diastólica, la más baja que se produce cuando el músculo cardíaco se relaja entre un latido y otro. La presión arterial normal en un adulto se define como una presión sistólica de 120 mm de Hg y una presión diastólica de 80 mm de Hg^[1]. Cuando la presión sistólica y diastólica tiene valores iguales o superiores a 140 mm de Hg y 90 mm de Hg respectivamente se estaría hablando de hipertensión arterial y con ello un incremento en las complicaciones de riesgo cardiovascular^[5].

Algunos factores de riesgo que inciden en las variaciones de la presión arterial son el consumo excesivo de sal y grasas saturadas, exceso del alcohol, sedentarismo y mal control del estrés, con este último tenemos que las determinantes sociales como el ingreso económico, la educación y la vivienda repercuten negativamente en los factores de riesgo conductuales y en este sentido influyen en la aparición de hipertensión.

Por lo general el riesgo de hipertensión arterial aumenta con la edad por el endurecimiento de las arterias, por lo que el rápido crecimiento de la población y la mayor longevidad pueden repercutir en el incremento de las muertes por complicaciones por esta enfermedad ^[2]. Sin embargo en algunos casos la hipertensión puede presentarse en personas menores de 40 años bien sea por factores genéticos o

por causas secundarias como enfermedades renales y endocrinas o malformaciones de los vasos sanguíneos ^[4].

El diagnóstico a tiempo y el tratamiento generalizado de la hipertensión con medicamentos de bajo costo han propiciado una extraordinaria reducción de la presión arterial lo que ha contribuido a reducir la mortalidad por enfermedades cardiovasculares

II.2 Fármacos antihipertensivos

La hipertensión arterial fue reconocida como una enfermedad que requiere tratamiento hasta el año 1957 cuando aparecieron los primeros ensayos clínicos con la Clorotiazida [6].

La introducción y demostración de que la Clorotiazida puede disminuir la hipertensión arterial marca el inicio del tratamiento antihipertensivo en beneficio de la salud y calidad de vida del paciente hipertenso.

En la actualidad son varios los fármacos utilizados para el tratamiento de la hipertensión reduciendo por diversos mecanismos la presión arterial.

Cinco clases de Fármacos antihipertensivos pueden ser considerados de primera línea que son los antagonistas de los canales de calcio, que relajan los vasos sanguíneos al impedir que el calcio entre en las células; los bloqueantes β- adrenérgicos, que hacen que el corazón palpite a una tasa más lenta y con menos fuerza; Los inhibidores de la enzima convertidora de angiotensina IECA, que relajan los vasos sanguíneos reduciendo su tensión arterial; los antagonistas del receptor AT1 de la angiotensina II, que funcionan más o menos de la misma manera que los inhibidores de la enzima

convertidora de angiotensina y los diuréticos que ayudan a los riñones a eliminar el sodio del cuerpo, como resultado los vasos sanguíneos no tienen que contener tanto líquido reduciendo su presión arterial ^[7].

La decisión de iniciar un tratamiento antihipertensivo debe basarse en dos criterios: los valores de tensión arterial sistólica y diastólica y el grado de riesgo cardiovascular del paciente. Además la presión arterial debe disminuir gradualmente para que el organismo restablezca sus mecanismos de control cardiovasculares evitando estados de hipotensión o crisis hipertensiva que comprometan la perfusión tisular adecuada de los órganos más sensibles como el cerebro, el corazón, el hígado y los riñones. Otros factores como la presencia de enfermedades concomitantes y a menudo factores económicos pueden influir en la elección del fármaco ^[6].

 Tabla 1. Desarrollo del tratamiento farmacológico antihipertensivo [6].

Década	Tratamientos hipertensivos disponibles.
40-50	Hipertensión arterial, sólo si la tensión arterial era >200/>100 mm de Hg. Dieta reducida en sodio, reposo y evitando el estrés.
1948	Hipertensión arterial, sólo si la tensión arterial era >180/>110 mm de Hg y evidencia clínica, radiológica y cardiográfica de hipertrofia cardíaca y daño renal.
1960	Reporte del "Framingham Heart Study" que reconoce a la hipertensión arterial como factor de riesgo para las enfermedades cardiovasculares. Propanolol, atenolol (bloqueadores beta adrenérgicos).
1977	Primer reporte del Joint National Committee on Prevention Detection, Evaluation and Treatment of high Blood Pressure. En 2003 se emitió la séptima edición de este reporte en estados unidos. Se le reconoce como la guía internacional para el diagnóstico y el tratamiento antihipertensivo más aceptado.
1970-1980	Bloqueadores beta adrenérgicos y bloqueadores de canales de calcio
1980-1990	Inhibidores de la enzima convertidora de ANG II(IECA) y antagonistas de receptores de ANG II (ARA)
1999-2000	61% de la población mayor de 40 años toma antihipertensivos.
2000	El tratamiento antihipertensivo se acepta mundialmente como medida preventiva de enfermedad cardiovascular y de daño cerebral, ocular y renal.

II.2.1 Fármacos antagonistas de los canales de calcio

Los fármacos que bloquean los canales L (que son los canales que regulan el acoplamiento electromecánico vascular y cardíaco) se denominan antagonistas de calcio o bloqueadores de los canales de calcio, que afectan la cantidad de calcio que entra a las células, en el músculo liso de la pared arterial por lo que produce relajación de los vasos sanguíneos, reduciendo la resistencia periférica y así la presión arterial

Estos fármacos constituyen un grupo heterogéneo que pueden dividirse en dos grupos: los selectivos, que bloquean selectivamente los canales L de calcio presentes en el músculo liso arterial y el músculo estriado cardíaco y los no selectivos, que además de bloquear los canales L producen otros efectos farmacológicos ^{[8] [9]}.

Entre los antagonistas selectivos encontramos las Dihidropiridinas (por ejemplo la amlodipina) de acción predominantemente vascular y menor acción miocárdica, las Fenilalquilaminas de acción predominantemente miocárdica y menor acción vascular y las Benzotiazepinas, de acción miocárdica y periférica intermedias ^[8].

II.3 Besilato de amlodipina

La amlodipina es un fármaco antagonista de calcio que cumple con algunas de las características mencionadas anteriormente. Es administrada oralmente como una sal de besilato, donde 6,9 mg de besilato de amlodipina son equivalentes a 5 mg de amlodipina. Fue lanzada al mercado en el año 1990 por el laboratorio Pfizer.

II.3.1 Generalidades

El besilato de amlodipina o bencensulfonato de 3-etil-5-metil(4RS)-2-[(2-aminoetoxi)metil]-4-(2-clorofenil)-1,4-dihidro-6-metil-3,5-dicarboxilatopiridina. Es una sal ligeramente soluble en agua y en alcohol isopropílico, soluble en alcohol metílico. Tiene una masa molar de 567,05 g / mol.

La estructura química del besilato de amlodipina (fórmula química condensada $C_{20}H_{25}CIN_2O_5C_6H_6O_3S$) se muestra en la figura 2.

Figura 2. Estructura química de besilato de amlodipina ^[10]

Es una dihidropiridina protonada que no es fotolábil y cuyo perfil farmacocinético difiere claramente de los demás antagonistas de calcio. Esta molécula presenta una cadena lateral en posición 2 del anillo dihidropiridínico, una cadena lateral aminoetoximetilo que le confiere un carácter básico (pKa = 8,6), como consecuencia a pH fisiológico (pH = 7,4) casi el 95 % del fármaco se encuentra en estado ionizado, por lo que la amlodipina sólo atraviesa las membranas biológicas a través de las vías lipofílicas. La cadena lateral de la amlodipina está cargada positivamente y exhibe una alta afinidad por las cabezas fosfato de los fosfolípidos de las membranas con las que interacciona formando un enlace iónico, el fármaco se acumula a este nivel y desde ahí difunde muy lentamente hacia su receptor en el canal de calcio. Esta lenta velocidad de asociación explica por qué a diferencia de otros antagonistas de calcio, sus efectos

vasodilatadores aparecen de forma gradual y alcanzan su efecto máximo al cabo de 6-10 horas. A diferencia de la amlodipina, la mayoría de las dihidropiridinas son liposolubles y presentan valores de pKa < 4, por lo que a pH fisiológico hasta el 95% de la molécula se encuentra en forma neutra, no ionizada y fácilmente dispuesta para atravesar las membranas celulares tanto a través de vías lipofílicas como hidrofílicas, como consecuencia sus acciones aparecen y desaparecen de forma rápida ^[11].

II.3.2 Tratamiento

La amlodipina como principio activo actúa como un bloqueador de los canales de calcio de acción prolongada. Es usado en el tratamiento de la hipertensión arterial y de la angina de pecho.

II.3.3 Eliminación

Más de un 95 % de la amlodipina se biotransforma lentamente en el hígado. El fármaco y sus metabolitos inactivos se eliminan por vía renal, un 20-25 % se elimina por las heces, lo que sugiere que en parte se elimina por vía biliar. La alta fijación de amlodipina a proteínas plasmáticas y a los fosfolípidos de la membrana explica por qué su vida media de eliminación alcanza valores muy superiores a los otros antagonistas de calcio (35-45 horas en voluntarios sanos), las concentraciones plasmáticas alcanzan valores estables al cabo de 7-9 días de la administración repetida de 10 mg diarios de amlodipina sin que exista evidencia de posterior acumulación, ello concuerda con una vida media de eliminación de unas 40 horas ^[11].

II.3.4 Métodos analíticos para la determinación de besilato de amlodipina

Se han descrito diversas metodologías analíticas para la determinación de besilato de amlodipina en tabletas, entre las técnicas reportadas se encuentra HPLC y espectrofotometría molecular UV-Visible.

De acuerdo a la literatura consultada, se han venido desarrollando metodologías para el análisis de medicamentos por espectrofotometría de infrarrojo con transformada de Fourier. Sin embargo a pesar de ser una excelente técnica para el análisis cualitativo de muestras no es muy adecuada para el análisis cuantitativo debido a ciertas dificultades como la baja reproducibilidad en el camino óptico para el cumplimiento de la ley de Beer-Lambert.

II.4 Métodos Espectroscópicos

Los métodos analíticos espectroscópicos emplean la interacción de la radiación electromagnética con la materia para obtener información acerca de la identidad y concentración de las muestras.

Al aplicar radiación electromagnética a una especie en su estado fundamental, esta puede absorber algunas frecuencias características produciendo transiciones energéticas de un estado fundamental a otro de mayor energía, donde este proceso hace que la intensidad de la radiación incidente disminuye, entonces al medir la radiación electromagnética emitida por la especie excitada al regresar a su estado fundamental o al medir la atenuación de la radiación electromagnética se puede obtener información acerca de la especie absorbente ^[12].

Los métodos espectroscópicos se pueden clasificar según la región del espectro electromagnético utilizado para la medida, algunas regiones del espectro que se han venido utilizando abarcan los rayos gamma que producen un cambio de configuración nuclear, los rayos x que producen transiciones electrónicas de las capas internas, la radiación Uv-Vis que generan transiciones de electrones de valencia y la radiación infrarroja que genera transiciones vibracionales en las moléculas.

II.4.1 Ley de Beer-Lambert

Cuando la radiación atraviesa un medio que contiene un analito absorbente, disminuye su intensidad como consecuencia de la excitación del analito. Cuanto más largo sea el trayecto por el que pasa la radiación en el caso de una solución de analito de concentración dada, más especies absorbentes habrá en el trayecto, por tanto será mayor la atenuación. La Ley de Beer-Lambert indica cuantitativamente la forma en que la atenuación de la radiación depende de la concentración de las moléculas absorbentes y de la longitud del trayecto en el que ocurre la absorción $^{[12]}$. Según esta ley, la absorbancia es directamente proporcional a la concentración de la especie absorbente *c* y a la longitud del trayecto *b* del medio de absorción como se expresa en la ecuación 1.

$$A = abc$$
 (1)

Donde *a* es la constante de proporcionalidad llamada absortividad y cuando se expresa la concentración en unidades de mol/L y *b* en centímetros, *a* se sustituye por la absortividad molar ε (ver ecuación 2).

 $A = \varepsilon b c$ (2)

La absorbancia también se relaciona con la transmitancia de manera logarítmica como lo indica la ecuación 4, la transmitancia T de la solución es la fracción de la radiación incidente que se transmite en la solución debido a las interacciones de la radiación con las especies absorbentes, donde la potencia o intensidad de la radiación se reduce de P_o a P (ecuación 3).

$$T = P / P_o \quad (3)$$

$$A = - \log (P / P_o) \quad (4)$$

La Ley de Beer-Lambert puede emplearse de varias maneras, sin embargo como la absortividad está en función de variables como la temperatura, disolvente y composición de la solución, y dadas las condiciones de medida, no es aconsejable depender de los valores reportados en la literatura para trabajos cuantitativos. Por lo que es frecuente preparar una serie de soluciones patrón del analito para preparar una curva de calibración de A frente a *c* y obtener una ecuación de regresión lineal ^[12].

II.4.2 Espectroscopía de infrarrojo por transmisión

La espectroscopía en el infrarrojo es una herramienta versátil que se aplica a la determinación cualitativa y cuantitativa de especies moleculares de todo tipo con la excepción de las moléculas homonucleares. Por lo general todas las especies absorben en el infrarrojo por lo que esta espectroscopía ofrece la posibilidad de determinar un gran número de sustancias, además de la singularidad del espectro conduce a un buen grado de especificidad la cual tiene una particular aplicación en el análisis de compuestos orgánicos ^[13].

La radiación infrarroja tiene longitudes de onda que van desde 10⁻³ hasta 7 x 10⁻⁷ m, y se divide en tres regiones, infrarrojo cercano, infrarrojo medio e infrarrojo lejano. Con frecuencia el número de onda expresado en cm⁻¹ se emplea para describir la parte del espectro que corresponde a la radiación infrarroja, donde la parte del espectro con mayor utilidad es el intervalo de 4000 cm⁻¹ a 667 cm⁻¹. Prácticamente todas las moléculas producen bandas de absorción en esta región, que son debidas a transiciones vibracionales.

La mayoría de los instrumentos para las medidas en el infrarrojo medio son del tipo de transformada de Fourier (FTIR). Este tipo de instrumento ha generado un incremento en el número y tipo de aplicaciones de la radiación infrarroja, son relativamente más económicos, con mejor relación señal/ruido y límites de detección que los equipos dispersivos ^[13].

Los espectrómetros FTIR ofrecen ventajas de sensibilidad, resolución, reproducibilidad y rapidez en la adquisición de datos. Las longitudes de onda son detectadas y medidas de forma simultánea con un interferómetro de Michelson, esta información espectral se registra como una serie de patrones de interferencia en un interferograma, que luego es decodificado utilizando una transformada de Fourier, un cálculo matemático que el computador lleva a cabo de manera conveniente para producir finalmente un espectro IR^[13].

Las dos formas más comunes de preparar muestras sólidas implica tanto la molienda del material hasta obtener un polvo muy fino, hasta la dispersión en una matriz, una forma es dispersar el polvo obtenido en un líquido que por lo general es un aceite mineral llamado Nujol, para formar una pasta que luego es extendida entre dos ventanas de un material transparentes al IR medio como cloruro de sodio o bromuro de potasio. Otra forma es formar una mezcla homogénea de la muestra con KBr, que se pulveriza y luego es comprimida en una prensa a unos 12000 psi por unos 2 minutos.
Sin embargo la manipulación de las muestras para el análisis cuantitativo es un poco complicado, no existen buenos disolventes que sean transparentes en toda la región espectral de interés, el agua y los alcoholes rara vez se utilizan ya que absorben intensamente además de que atacan a los haluros de metales alcalinos que son con frecuencia los materiales utilizados en las ventanas de las cubetas.

Como vemos estas técnicas generan caminos ópticos difíciles de reproducir, lo que afecta el cumplimiento de la Ley de Beer-Lambert, los materiales utilizados para el soporte de muestras son frágiles e higroscópicos, las ventanas de las cubetas son fácilmente atacadas por los contaminantes de la atmósfera y los disolventes, de modo que sus características de transmisión cambian con el uso. A menudo para el trabajo en infrarrojo se prescinde del absorbente de referencia y la intensidad del haz de radiación que atraviesa la muestra se compara con la de un haz sin obstáculos^[13]

II.4.2 Espectroscopía FTIR con ART

Con la técnica de muestreo de reflectancia total atenuada se consigue mejorar la reproducibilidad espectral en la espectroscopía FTIR, para esta técnica se emplea cristales para soportes de muestras mucho más resistentes lo que permite analizar tanto muestras sólidas como disoluciones y con un camino óptico constante para el cumplimiento de la Ley de Beer-Lambert lo que favorece el análisis cuantitativo.

Esta técnica se basa en el fenómeno de reflexión total interna, el cual es un efecto que se puede presentar cuando se dirige un haz de luz desde un medio que tenga un índice de refracción dado hacia otro que tenga un índice de refracción menor. En la figura 4 se explica este efecto, considerando un haz de radiación que se desplaza desde un medio 1 hacia un medio 2, donde el índice de refracción (n) del medio 1 es mayor que el del medio 2, este al llegar a la frontera de estos dos medios puede tomar varias direcciones

como se señalan en los rayos del 1 al 5. En algún ángulo en particular de incidencia θ_c denominado ángulo crítico, el haz de radiación refractado se moverá en paralelo a la frontera, de modo que θ_c será de 90°. Entonces para ángulos de incidencia mayores al ángulo crítico θ_c , el haz se refleja totalmente en la frontera como lo muestra el haz 5, donde nuevamente se refleja en la frontera cuando caiga sobre la superficie del segundo medio, obedeciendo la ley de reflexión, en la que dice que el ángulo de incidencia será igual al ángulo de reflexión ^[14].

Figura 3. Ángulo crítico para una reflexión total interna ^[14]

Debido a la naturaleza ondulatoria de la radiación electromagnética, la reflexión no ocurre directamente en la interfase de los dos medios sino que durante el proceso de reflexión el haz sale del primer medio y penetra una cierta distancia en el segundo medio antes de reflejarse. Está radiación que penetra se conoce como onda evanescente, tiene una frecuencia igual que la radiación reflejada y su amplitud decrece de forma logarítmica dentro del segundo medio más allá de la interfase. La profundidad de penetración de la onda evanescente depende de la longitud de onda de la radiación incidente, del índice de refracción de los dos materiales y del ángulo que forma el haz incidente con la interfase [¹⁵].

La profundidad de penetración de la onda evanescente tiende al infinito en el ángulo crítico, pero disminuye considerablemente para ángulos menores a este, pudiéndose calcular con la ecuación de Harrick como sigue:

$$\mathbf{d} = \frac{\lambda_1}{2\pi \left[\operatorname{sen}_{\theta_1} - \left(\frac{\mathbf{n}_2^2}{\mathbf{n}_1} \right) \right]^{\frac{1}{2}}} \quad (5)$$

Donde

 λ_1 = longitud de onda de la radiación incidente

 θ_1 = ángulo de incidencia

- n₁ = índice de refracción de la muestra
- n₂ = índice de refracción del cristal ATR

Para que se produzca la reflexión total interna dentro del cristal usado para ATR, es necesario que θ_1 sea mayor que n_2/n_1 , ya que si θ_1 es menor que n_2/n_1 ocurre reflexión y refracción y si θ_1 es igual a n_2/n_1 ocurre refracción crítica (Figura 5)^[16].

Figura 4. Características de la reflexión en dependencia al ángulo de incidencia. **a)** $\theta_1 > n_2/n_1$ **b)** $\theta_1 < n_2/n_1$ y **c)** $\theta_1 = n_2/n_1$ ^[16]

La reflectancia total atenuada ocurre cuando el haz de radiación monocromática atraviesa el cristal (medio más denso con mayor índice de refracción) y la muestra (medio menos denso, con menor índice de refracción) absorbe la radiación evanescente produciéndose un fenómeno de atenuación del haz en las longitudes de onda de las bandas de absorción ^[16]. Para producir ATR, la muestra se coloca sobre la cara del cristal de geometría adecuada, el ángulo incidente es ajustado para que la radiación sufra múltiples reflexiones en sus caras internas antes de salir del cristal al detector, produciéndose en cada reflexión la absorción y atenuación de la onda evanescente en las regiones del infrarrojo donde la muestra absorba energía. ^{[17][18]}. El generar múltiples reflexiones dentro del cristal aumenta la intensidad de las bandas de absorción generadas hasta 25 veces, por lo que la intensidad de las bandas generadas depende del área de contacto muestra-cristal y de la eficiencia del contacto entre ellas ^[16].

Para que ocurra el fenómeno de ATR los dos medios en contactos deben tener una amplia diferencia en sus índices de refracción, generalmente las sustancias orgánicas tienen índices de refracción entre 1 y 2, y los cristales utilizados tienen valores de índice de refracción entre 2,38 y 4,01 en 2000 cm⁻¹. Dentro de los cristales más utilizados están KRS-5 (mezcla de bromuro y yoduro de talio), cloruro y bromuro de plata, germanio y selenuro de zinc ^[17].

El registro de la radiación infrarroja cuando sale del cristal, proporciona un espectro comparable con los espectros convencionales de absorción, aunque con algunas diferencias principalmente causadas por la profundidad de penetración de la radiación en la muestra que generalmente sobresale unos pocos μ m (0,5-5 μ m)^[18].

II.5 Desarrollo y validación de metodologías analíticas en el análisis de medicamentos.

En el desarrollo de nuevas metodologías analíticas se pueden establecer varias etapas como la búsqueda bibliográfica, el establecimiento de las condiciones de medida tales como equipos, reactivos, tipos de muestreo y la validación del método, ésta última nos permite conocer si el método es apropiado para el análisis del analito que se quiere identificar o cuantificar, además de que se obtiene información acerca de la precisión y exactitud inherente al método.

La validación de los métodos analíticos empleados en el control de calidad, es un factor decisivo para garantizar la calidad de los productos, debido a que confiere fiabilidad a los resultados analíticos obtenidos a fin de asegurar que un medicamento cumpla con los parámetros de calidad establecidos.

Los organismos de carácter oficial tales como la OMS, la Conferencia Internacional de Armonización (ICH) además de la USP orientan hacia la validación de métodos analíticos, por tanto la validación forma parte importante en un programa de aseguramiento de calidad y es fundamental para una eficiente producción.

II.5.1 Tipos de validación

A continuación se mencionan tres tipos de validación ^[19].

II.5.1.1 Validación prospectiva

Se realiza cuando se trata del diseño o de la adecuación de un método de análisis para un producto o proceso determinado.

II.5.1.2 Validación retrospectiva

Se realiza cuando un método analítico que se ha venido utilizando durante mucho tiempo, no dispone de la evidencia experimental y documentada sobre su validez.

II.5.1.3 Revalidación o post-validación

Se realiza cuando un método validado ha sido modificado en alguno de los pasos del procedimiento establecido, o se ha variado alguno de los instrumentos, reactivos, o materiales empleados originalmente.

II.5.2 Objetivo de la validación de métodos analíticos

La validación es parte integral en el desarrollo de una metodología analítica, con la validación se garantiza que los procedimientos empleados en los análisis tengan resultados confiables, con una exactitud y precisión aceptable.

II.5.3 Parámetros de validación de métodos analíticos

Las características de rendimiento de un método analítico se expresan en función de los parámetros analíticos, que son considerados en la validación, estos se presentan en la tabla 2^[20].

Tabla 2. Parámetros de validación típicos utilizados para la validación de métodos analíticos.

A continuación se definen los diferentes parámetros analíticos de validación

II.5.3.1 Precisión^[21]

La precisión de un procedimiento analítico expresa el grado de cercanía (grado de dispersión) entre una serie de mediciones obtenidas a partir de un muestreo múltiple de una misma muestra homogénea bajo las mismas condiciones analíticas.

La precisión de un procedimiento analítico se expresa generalmente como la desviación estándar o el coeficiente de variación de una serie de mediciones.

Según la ICH La precisión puede considerarse en tres niveles: repetitividad, precisión intermedia y reproducibilidad

- Repetitividad que expresa la precisión en las mismas condiciones de funcionamiento durante un corto intervalo de tiempo.
- Precisión intermedia que se expresa dentro de un mismo laboratorio, pero con variaciones como diferentes días, diferentes analistas, diferentes equipos, etc.
- Reproducibilidad que expresa la precisión entre laboratorios (estudios en colaboración, por lo general se aplica a la estandarización de la metodología).

La precisión del método analítico se evaluó mediante la repetitividad, aplicando el método a un número de muestras tomado de un lote homogéneo, por un mismo analista bajo condiciones iguales como equipo, reactivo e intervalos de tiempo.

II.5.3.2 Exactitud^[21]

La exactitud expresa el grado de cercanía entre el resultado obtenido por un método analítico con el valor que se acepta como verdadero o un valor de referencia aceptado.

Según la ICH en su guía de validación de métodos analíticos la exactitud se puede establecer mediante la aplicación del procedimiento analítico a un material de referencia o un analito de pureza conocida, o por comparación de los resultados obtenidos a partir de un segundo procedimiento bien caracterizado de exactitud declarada o definida.

Para las pruebas de comparación de los resultados tanto por el método propuesto como con el método de referencia se procede con el estadístico de prueba t-student tomando como hipótesis nula que los dos métodos proporcionen el mismo resultado. El criterio de aceptación será si la t experimental es menor a la t tabulada, para (n-1) grados de libertad y un nivel de confianza del 95 % ^[22].

Donde primero se aplica la prueba de contraste F (ecuación 7) para determinar diferencias en las desviaciones estándares de los métodos debidos a errores aleatorios.

Se propone entonces la hipótesis nula H₀: $\sigma_1^2 = \sigma_2^2$

$$F = rac{\sigma_1^2}{\sigma_2^2}$$
 (7)

Con $\sigma_1^2 > \sigma_2^2$ Grados de libertad: $v_1 = n_1 - 1$ $v_2 = n_2 - 1$

Si el valor de F experimental es menor al valor crítico, entonces se puede decir que no hay diferencia significativa entre las dos varianzas a un nivel del 5%.

Ahora para decidir si la diferencia entre los dos promedios es significativa, es decir para contrastar la hipótesis nula H₀: $\bar{x}_1 = \bar{x}_2$, se calcula el estadístico t mediante la siguiente ecuación:

$$\mathbf{t} = \frac{(\overline{x_1} - \overline{x_2})}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \quad (8)$$

Donde s se calcula a partir de la siguiente ecuación

$$s^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{(n_1 + n_2 - 2)}$$
 (9)

 $t_{crítica}$ tendría (n₁ + n₂ – 2) grados de libertad.

Si hay diferencia significativa entre las dos varianzas a un 95 %, entonces se procede con la siguiente ecuación para el estadístico de prueba

$$\mathbf{t} = \frac{(\overline{x_1} - \overline{x_2})}{s \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \quad (10)$$

Con grados de libertad =
$$\frac{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}{\left(\frac{s_1^4}{n_1^2(n_1 - 1)} + \frac{s_2^4}{n_2^2(n_2 - 1)}\right)}$$
(11)

II.5.3.3 Sensibilidad^[19]

La sensibilidad es una medida del factor de respuesta del instrumento como una función de la concentración. Normalmente se mide como la pendiente de la curva de calibración.

II.5.3.4 Límite de detección [21]

El límite de detección de un procedimiento analítico es la concentración más baja de analito que pueda detectarse pero no necesariamente cuantificarse bajo las condiciones experimentales establecidas

Son varias las formas de determinar el límite de detección, una de ellas es en base a la desviación estándar de la respuesta y la pendiente de la curva de calibración utilizando la siguiente expresión.

$$LOD = \frac{3.3s}{b}$$
 (12)

Donde

s= Desviación estándar de la regresión lineal.

b = Valor de la pendiente de la curva de calibración

II.5.3.5 Límite de cuantificación [21]

El límite de cuantificación de un procedimiento analítico es la cantidad más baja de analito en una muestra que se puede determinar cuantitativamente con una precisión y exactitud adecuada bajo las condiciones establecidas.

El límite de cuantificación es un parámetro de ensayos cuantitativos para compuestos a bajos niveles en matrices de muestras, particularmente utilizado para la determinación de impurezas y / o productos de degradación. Puede determinarse mediante la siguiente ecuación:

$$LOQ = \frac{10s}{b} \quad (13)$$

Donde

s= Desviación estándar de la regresión lineal.

b = Valor de la pendiente de la curva de calibración

II.5.3.6 Linealidad ^[21]

La linealidad de un procedimiento analítico es su capacidad (dentro de un rango dado) para obtener resultados que sean directamente proporcionales a la concentración de analito en la muestra.

Una relación lineal se debe evaluar en toda la gama del procedimiento analítico. Puede demostrarse directamente en la sustancia de fármaco (por dilución de una solución madre de patrón) y / o pesadas separadas de mezclas sintéticas de los componentes del producto farmacéutico usando el procedimiento propuesto.

La linealidad debe ser evaluada en principio por una inspección visual de una serie de señales como una función de la concentración de analito. Si hay una relación lineal, los resultados de las pruebas deben ser evaluados por métodos estadísticos apropiados, por ejemplo, mediante el cálculo de una regresión lineal por el método de los mínimos cuadrados. Los datos de la regresión lineal pueden proporcionar estimaciones matemáticas del grado de linealidad. El coeficiente de determinación y la suma de los cuadrados de los residuales se deben presentar además de la gráfica.

La ICH en su guía de validación de métodos analíticos recomienda un mínimo de 5 concentraciones para el establecimiento de la linealidad.

II.5.3.7 Rango^[21]

La ICH en su guía de validación de métodos analíticos define como rango el intervalo de concentraciones entre la concentración superior e inferior de analito en la muestra, incluyendo estas concentraciones, en la que se ha demostrado que el procedimiento analítico tiene un nivel adecuado de linealidad.

Para el análisis de un producto terminado (fármaco) la ICH recomienda un rango mínimos de 80 a 120 por ciento de la concentración de ensayo.

II.5.3.8 Especificidad – selectividad^[23]

Algunas autoridades hacen la distinción entre especificidad y selectividad, estos términos se refieren a la capacidad de evaluar, medir e identificar simultáneamente o separadamente los analitos de interés de forma inequívoca sin interferencias de impurezas, productos de degradación, compuestos relacionados, excipientes u otras sustancias presentes en la matriz de la muestra. La diferencia está en que la selectividad del método puede dar exactitud de resultados para todos los analitos de interés, mientras que la especificidad está referida a la exactitud de resultados para un analito y otros de interés que pueden interferir uno con otros.

Los procedimientos utilizados para demostrar la especificidad dependerán del objetivo pretendido por el procedimiento analítico. Resulta de gran utilidad contar con las materias primas, subproductos de síntesis y productos de degradación, ya que la especificidad puede establecerse por adición, en la que se agregan cantidades conocidas (del fármaco o producto farmacéutico) con niveles adecuados de impurezas y/o excipientes y la comparación con muestras sin agregado.

Si no se dispone de impurezas o de los productos de degradación puede demostrarse la especificidad comparando los resultados de las pruebas de muestras que contengan impurezas o productos de degradación con los de un segundo procedimiento bien caracterizado. Cuando no se cuenta con patrones de sustancias relacionadas son particularmente útiles los estudios de degradación forzada que consisten en la exposición de la muestra a una variedad de condiciones de estrés con el propósito de evaluar la presencia de productos de degradación. Las condiciones de estrés más evaluadas son el sometimiento de la muestra al calor, a la luz, a un medio ácido, a un medio básico y a ambientes oxidantes. Otras condiciones podrían evaluarse, dependiendo de la naturaleza de la muestra.

II.5.3.9 Robustez ^[21]

La robustez de un procedimiento analítico es una medida de su capacidad para no ser afectado por pequeñas variaciones o modificaciones del método.

La evaluación de la robustez va a depender del tipo de procedimiento en estudio, en general algunas variaciones típicas pueden ser la estabilidad de las soluciones analíticas y el tiempo de extracción.

Si las mediciones son susceptibles a variaciones en las condiciones analíticas, las condiciones analíticas deben ser adecuadamente controlados o una declaración de precaución deben ser incluidos en el procedimiento.

II.5.4 Características de desempeño en la validación

Las características de desempeño que deben cumplir los procedimientos analíticos en el proceso de validación van desde determinaciones analíticas muy rigurosas hasta evaluaciones subjetivas de atributos. Considerando esta amplia variedad es lógico que diferentes procedimientos de prueba requieran diferentes esquemas de validación. A continuación se presentan algunos compendios de validación en donde se muestran la clasificación de estos esquemas.

II.5.4.1 Compendio de validación de métodos <1225> USP 37 ^[20]

Según el compendio de validación de métodos <1225> USP 35-NF30, la validación de un método analítico es un proceso que establece mediante estudios de laboratorio que las características de desempeño de un procedimiento cumplan con los requisitos para las aplicaciones analíticas previstas.

Las categorías más comunes de pruebas que una validación podría requerir son las siguientes:

Categoría I: procedimientos analíticos para la cuantificación de los componentes principales de fármacos a granel o ingredientes activos en productos farmacéuticos terminados.

Categoría II: Procedimientos analíticos para la determinación de impurezas en fármacos a granel o productos de degradación en productos farmacéuticos terminados. También se utilizan para pruebas de verificación de procesos de limpieza. Estos métodos pueden subdividirse en dos: pruebas cuantitativas y pruebas de límite.

Categoría III: procedimientos analíticos para la determinación de las características de desempeño.

Categoría IV: pruebas de identificación.

En la siguiente tabla se presentan los datos requeridos para cada una de las categorías mencionadas:

Características de desempeño analítico	Categoría I	Catego Análisis cuantitativo	oría II Prueba límite	Categoría III	Categoría IV
Exactitud	Si	Si	*	*	No
Precisión	Si	Si	No	Si	No
Especificidad	Si	Si	Si	*	Si
Límite de detección	No	No	Si	*	No
Límite de cuantificación	No	Si	No	*	No
Linealidad	Si	Si	No	*	No
Rango	Si	Si	*	*	No

*pueden requerirse, dependiendo de la naturaleza de la prueba específica

II.5.4.2 Parámetros requeridos para la validación OMS, informe 32, anexo 5^[24]

En general los métodos empleados para el examen de los materiales farmacéuticos pueden ser clasificados en forma amplia de la siguiente manera.

Clase A: pruebas destinadas a establecer identidad, ya sea de sustancias farmacéuticas a granel o de un ingrediente en particular en una forma farmacéutica acabada.

Clase B: métodos destinados a detectar y cuantificar impurezas en una sustancia farmacéutica a granel o en una forma farmacéutica acabada.

Clase C: métodos empleados para determinar cuantitativamente la concentración de una sustancia farmacéutica a granel o de un ingrediente principal en una forma farmacéutica acabada.

Clase D: métodos empleados para evaluar las características de las formas farmacéuticas acabadas, tales como perfiles de disolución y uniformidad del contenido.

En la siguiente tabla, se representan las pautas referentes a las características que son pertinentes en cada caso. A pesar de estas generalizaciones, sin duda habrá ocasiones en las que ciertas características descritas como no necesarias si lo son y viceversa.

Tabla 4. Características a considerar para los diferentes tipos de procedimientosanalíticos. OMS informe 32, anexo 5.

Parámetro	A Identificación	B Límite cuantitativa	B Límite cualitativa	C Cuantitativas producto terminado	D Características
Exactitud	No	Si	No	Si	Si
Precisión	No	Si	No	Si	Si
Robustez	Si	Si	Si	Si	Si
Linealidad e intervalo	No	Si	No	Si	Si
Especificidad ó selectividad	Si	Si	Si	Si	Si
Límite de detección	Si	No	Si	No	No
Límite de cuantificación	No	Si	No	No	No

II.5.4.3 Guía de validación de procedimientos analíticos, conferencia internacional de armonización (ICH)^[21]

La validación de los procedimientos analíticos se dirige a los cuatro procedimientos analíticos más comunes.

Pruebas de identificación: están destinadas a garantizar la identidad de un analito en una muestra. Esto se consigue normalmente mediante la comparación de una propiedad de la muestra.

Pruebas cuantitativas y de límite para el contenido de impurezas: estas pruebas pueden ser pruebas cuantitativas o una prueba de límite para la impureza en una muestra con las cuales se pretende reflejar con precisión las características de pureza de la muestra.

Se requieren diferentes características de validación de una prueba cuantitativa que para un ensayo límite.

Pruebas cuantitativas de la fracción activa en las muestras de sustancia de fármaco o producto farmacéutico u otro componente seleccionado en el producto de fármacos: estos procedimientos están destinados a medir el analito presente en una muestra dada. El ensayo representa una medición cuantitativa del componente principal (s) en la sustancia de fármaco.

Tabla 5. Características a considerar para la validación de métodos analíticos, ICHQ2A.

Tipo de		Test de in	Ensayo Medida	
analítico Características	Identificación	Cuantitativo	Test Límite	disolución Contenido/ potencia
Exactitud	No	Si	No	Si
Precisión Repetitividad Precisión intermedia	No No	Si Si (1)	No No	Si Si (1)
Especificidad (2)	Si	Si	Si	Si
Límite de detección	No	No (3)	Si	No
Límite de cuantificación	No	Si	No	No
Linealidad	No	Si	No	Si
Rango	No	Si	No	Si

(1) Si se hace reproducibilidad, no es necesario precisión intermedia

(2) La especificidad de un procedimiento analítico puede ser compensada con soporte de otros procedimientos operativos estándar (POES) analíticos.

(3) Puede ser necesario en algunos casos.

III. ANTECEDENTES

III.1 Farmacopea de Estados Unidos. USP 37 (2012)^[20]

La USP 37 describe el análisis para determinar la cantidad de besilato de amlodipina en tableas. Esta determinación consiste en un análisis por cromatografía líquida de alta eficiencia HPLC.

A continuación se presentan las condiciones analíticas recomendadas en esta monografía.

HPLC:

Buffer: 7 mL de trietilamina en 1L de agua, ajustado con ácido fosfórico a pH de 3,0.

Fase móvil: metanol: acetonitrilo: buffer en una proporción de 35:15:50

Solución estándar: 0,02 mg/mL de amlodipina preparada del besilato de amlodipina estándar disuelto en fase móvil.

Solución madre de la muestra: colocar 5 tabletas en un balón aforado de 500 mL, colocar unos 300 mL y llevar a agitación mecánica por 30 minutos, diluir con fase móvil al volumen y mezclar bien.

Detector: UV 237 nm.

Columna: 3,9 mm x 15 cm; relleno L1 de 5 μ (columna C18 Octametilsilano).

Flujo: 1 mL/min.

Volumen de inyección: 50 µL.

Resolución: más del 8,5 entre amlodipina y el compuesto relacionado a amlodipina

Desviación estándar relativa:

Menos del 1 % de amlodipina para el compuesto estándar y menos del 5 % de amlodipina para el compuesto relacionado.

Criterio de aceptación: entre 90 % y 110 % de la cantidad declarada de amlodipina.

III.2 Abdel A, Gazy K (2003) [25]

Desarrollaron un método para determinar besilato de amlodipina en comprimidos y fluidos biológicos por adsorción sobre electrodos de carbón vítreo mediante voltaperometría de redisolución anódica. Los estudios de voltametría cíclica indican la oxidación de besilato de amlodipina (que puede atribuirse a la oxidación de 1,4-dihidropiridina, para dar el correspondiente derivado de piridina) sobre la superficie del electrodo a través de un solo paso irreversible de dos electrones fundamentalmente controlada por adsorción. Se utilizó un sistema de tres electrodos que consistían en electrodo de disco rotatorio como electrodo de trabajo (diámetro: 2 mm \pm 0,1) de carbono vítreo, electrodo de referencia Ag / AgCl / KCl saturado y un alambre de platino como electrodo auxiliar. Todas las mediciones se llevaron a cabo a temperatura ambiente.

El estándar de besilato de amlodipina se obtuvo de Pfizer Co. Las muestras de tabletas de besilato de amlodipina (Norvasc® de 10 mg) se obtuvieron del mercado local. La

solución madre de besilato de amlodipina de 1 \times 10⁻³ M, se preparó en metanol al 10 %. Las soluciones diluidas eran preparadas a diario por dilución exacta con agua desionizada justo antes de su uso, protegidas de la luz. Todos los productos químicos utilizados fueron de grado Analítico y todas las soluciones se prepararon con agua destilada. La acumulación de besilato de amlodipina en el electrodo de trabajo se llevó a cabo bajo agitación a 1600 rmp, por un tiempo seleccionado de 180 s, realizando la limpieza del electrodo antes de cada medida. Para el análisis de las muestras de Norvasc[®], se pesaron veinte tabletas y se pulverizaron hasta obtener un polvo fino, se pesó una porción equivalente a 10 mg de besilato de amlodipina, y se transfirió a un balón aforado de 100 mL disolviéndose en 80 mL de metanol/ agua (1:10) se llevó a ultrasonido por 30 minutos y luego se completó el aforo con el solvente, la solución se filtró y se tomaron una medida exacta del filtrado para preparar una solución diluida con agua desionizada de aproximadamente 1 x10⁻⁴ M de besilato de amlodipina. Una alícuota fue transferida a una célula con 10 ml de solución búfer a un pH igual a 11 para producir una concentración final de 1×10^{-6} M de besilato de amlodipina. Se obtuvo el voltamograma y el contenido nominal de las tabletas se pudo determinar por la curva de calibración o de la correspondiente ecuación de regresión. El Besilato de amlodipina dio un pico de oxidación de adsorción sensible a 0,510 V (frente a Ag / AgCI), que se utilizó para determinar besilato de amlodipina en el rango de 4.0×10^{-8} a 2.0×10^{-6} M con un límite de detección de 1.4×10^{-8} M.

La precisión de la determinación de besilato de amlodipina se determinó mediante la medición sucesiva de siete soluciones de 1 × 10^{-7} M de besilato de amlodipina. La desviación estándar relativa (RSD) fue de 1,70 %. Para estimar la reproducibilidad de la respuesta del electrodo seis concentraciones repetidas se ensayaron a unas concentraciones de 7,0 × 10^{-7} ; 9,0 × 10^{-7} ; 1,0 × 10^{-6} y 2,0 × 10^{-6} M de besilato de amlodipina. Los valores medios de corriente obtenidos fueron de 3,23 ± 0,0007; 3,85 ± 0,006; 4,59 ± 0,0008 y 7,99 ± 0,013 µA, respectivamente. La precisión de estas mediciones se expresa por la relación desviaciones estándar de 0,22; 0,16; 0,17 y 0,16

respectivamente. El efecto de la velocidad de barrido (v) en el pico de corriente (ip) se examinó de 50 a 400 mVs⁻¹, con un gráfico de log ip frente v, dando una línea recta que podría expresarse por la ecuación: log ip = 0,924 v registro - 1,382 (R = 0.997, n = 7). La pendiente que se obtuvo es cercana al valor esperado teóricamente de 1,0 para una reacción ideal de la superficie de las especies. El procedimiento fue aplicado con éxito para el ensayo de besilato de amlodipina en comprimidos (Norvasc)[®]. Las recuperaciones medias porcentuales fueron 96,31 ± 1,18 %.

III.3 Basavaiah K y colaboradores (2005) ^[26]

Desarrollaron dos procedimientos de análisis basados en la espectrofotometría UV-Vis y por HPLC para la determinación de besilato de amlodipina en formulaciones farmacéuticas. El método espectrofotométrico se basó en la bromación de besilato de amlodipina con un exceso conocido en una mezcla de bromato de bromuro en medio ácido seguido por la determinación de los excedentes de bromo por la reacción con amarillo de metanilo, midiendo la absorbancia a 530 nm.

La determinación por HPLC se llevó a cabo en una columna C18 de fase inversa usando ácido ortofosfórico 0,1 % (pH 3): acetonitrilo en una proporción de 20:80 a un caudal de 1,0 mL/ min con detección por espectrofotometría UV a 238 nm.

Para las muestras se utilizaron dos formulaciones comerciales *Amlopres* (2,5 mg, 5,0 mg y 10,0 mg, comercializados por Cipla India Ltd) y *Amlocor* (2,5 mg, 5,0 mg y 10,0 mg comercializados por Torrent Droga y Chemicals Ltd., India), Para las soluciones patrones se obtuvo un estándar certificado de besilato de amlodipina de Cipla Ltd. India, Mumbai, India.

A continuación se describe el método espectrofotométrico:

Las medidas espectrofotométricas se obtuvieron con un espectrómetro de doble haz, con celdas de cuarzo de 1 cm. Las soluciones a utilizar se prepararon de la siguiente manera: Una mezcla de bromato de bromuro equivalente a 1,500 μ g / mL KBrO₃ y 20000 μ g / mL de KBr, fue preparado disolviendo 0,150 g de KBrO₃ y 2,0 g de KBr en agua hasta 100 mL en un balón aforado, luego se diluyó para obtener una concentración de trabajo de 30 μ g / mL con respecto a KBrO₃. El amarillo de metanilo se preparó disolviendo 56,3 mg del colorante en agua y se diluyó a 100 mL en un balón aforado, se diluyó 10 veces para obtener una concentración de trabajo de 30 μ g / mL. El ácido clorhídrico (HCl 5 M) se preparó diluyendo 111,0 mL de ácido concentrado a 250 mL con agua. La solución patrón de besilato de amlodipina se preparó disolviendo 25 mg en 10 ml de ácido acético glacial y se llevó hasta 100 ml con agua en un balón aforado, luego se diluyó para obtener una concentración de 25 μ g / mL.

Para la curva de calibración se tomaron una serie de balones aforados de 10 mL en los que se colocaron alícuotas de 0,5 a 3,0 mL de besilato de amlodipina de 25 µg / mL , se añadieron 2 mL de agua, 2 mL de HCl 5 M seguido de 1mL de solución de bromato, se agitaron y se dejaron en reposo durante 10 minutos con agitación ocasional, a continuación 1 mL de solución de amarillo de metanilo se añadió a cada frasco completando el volumen con agua, se agitó y la absorbancia de cada solución se midió a 530 nm contra un blanco de reactivo con un tiempo de reposo de 5 minutos. La curva de calibración se trazó en función de la absorbancia frente a la concentración de fármaco. El procedimiento para las Tabletas fue el siguiente, se tomaron veinte comprimidos los cuales se pesaron y pulverizaron. Se pesó una cantidad equivalente a 25 mg de besilato de amlodipina, se colocaron en un matraz aforado de 100 mL con 10 mL ácido acético glacial y 40 mL de agua, se agitó y se filtró utilizando un papel de filtro No. 42. El filtrado se diluyó 10 veces y una alícuota adecuada se analizó por espectrofotometría.

La Ley de Beer-Lambert se cumplió sobre el rango de concentración de 1,25 a 7,50 μ g/mL. La ecuación de regresión fue la siguiente A = 2.3x10-3 + 0,063 C (r = 0,9975, n = 6) donde A es la absorbancia y C es la concentración en μ g / mL. Los límites de detección y cuantificación fueron calculados a partir de la desviación estándar de las mediciones de absorbancia de una serie de siete soluciones en blanco, encontrando los valores de 0,17 μ g / mL y 0,56 μ g / mL, respectivamente.

El método de HPLC presentó las siguientes condiciones de análisis:

El sistema de cromatografía consistió en un cromatógrafo equipado con un desgasificador, bomba cuaternaria, detector de matriz de fotodiodos con inyección variable y muestreador automático y una columna de fase invertida de 5 µm C18 (250 x 4,6 mm).

Las soluciones a utilizar se prepararon a partir de reactivos grado HPLC, y con agua destilada filtrada con filtro de 0,45 μ m. Las soluciones fueron: Solución de ácido ortofosfórico 0,1 %, la cual se preparó añadiendo 1 mL del ácido a 1 litro de agua, ajustando el pH a 3,0 con trietilamina, se filtró a través de un filtro de 0,45 μ m. La solución diluyente se preparó mezclando acetonitrilo y agua en una proporción de 60:40. La fase móvil utilizada constaba de ácido ortofosfórico 0,1% (pH = 3) y acetonitrilo en proporción de 20:80.

La solución estándar equivalente a 302 µg / mL de besilato de amlodipina se preparó disolviendo 30,2 mg del estándar con la solución diluyente y luego con la misma se completó hasta el aforo. Para la curva de calibración se prepararon soluciones estándar de 7,55 a 241,6 µg / mL. La separación se realizó a temperatura ambiente en una columna C18 de 5 µm de fase inversa (250 x 4.6 mm) usando una fase móvil compuesta por 0,1 % ácido ortofosfórico (pH 3) - acetonitrilo (20:80) a un flujo de 1,0 mL / min. La longitud de onda del detector fue 238 nm. Alícuotas de 20 µL de cada

solución se inyectaron automáticamente a la columna por duplicado y se registraron los cromatogramas. La curva de calibración fue realizada por el trazado de la media del área de pico frente a la concentración de besilato de amlodipina. Para el tratamiento de las muestras se pesaron una cantidad de tabletas equivalentes a 30 mg de besilato de amlodipina, se colocaron en un matraz de 100 mL junto con 60 mL de la solución diluyente agitando durante 20 minutos, se llevó al aforo y se mezcló bien. Se tomaron aproximadamente 10 mL de esta solución, se filtró a través de un filtro de 0,2 µm para garantizar la ausencia de partículas. La solución filtrada se diluyó apropiadamente con la solución diluyente para el análisis. Bajo las condiciones experimentales descritas el área de pico de la concentración dio una relación lineal (r = 0,9999) sobre un rango de concentración de 7,55 a 241,6 µg / mL. Usando análisis de regresión, se obtuvo la ecuación lineal Y = 2,79 + 34X donde Y es el área del pico media y X es la concentración en µg / mL. Los límites de detección y cuantificación calculados fueron de 1,51 µg / mL y 3,02 µg / mL, respectivamente.

Para determinar la exactitud y la precisión de los métodos, tres soluciones de diferentes concentraciones de besilato de amlodipina fueron analizadas en siete repeticiones, el error relativo fue menor al 3 % y es indicativo de una buena precisión. El coeficiente de variación fue de $\leq 1,5$ % y el intervalo de error de $\leq 1,5$ % a un nivel de confianza del 95 %. La precisión fue establecida por realizar análisis en un período de cinco días preparando las soluciones cada día. Los valores para el coeficiente de variación fueron menores a 2,3 % para el método espectrofotométrico. Los valores basados en el área del pico y en el tiempo de retención para HPLC fueron de 3,2 y 1,8 % respectivamente.

III.4 Bunaciu Andrei y colaboradores (2006)^[27]

Desarrollaron un método por espectrometría FT-IR para la medición de ácido acetilsalicílico en diferentes fármacos, el método se realizó con el estándar de ácido acetilsalicílico (proporcionado por Leiner Health Prod.Inc. Carson, CA, EE.UU) y tres formulaciones comerciales que son: Bufferin (con 325 mg de ácido acetilsalicílico por comprimido), AGGREX (con 75 mg de ácido acetilsalicílico por comprimido) y Europirint (con 500 mg de ácido acetilsalicílico por tableta), para el análisis quimiométrico se usó la Ley de Beer, PCR+ (regresión de componentes principales) y por PLS (mínimos cuadrados parciales). La adquisición de datos se realizó con un sistema espectroscópico FTIR equipado para Windows V.5.01 (Spectrum 100). Los espectros se registraron entre 4000 y 350 cm⁻¹, con un promedio de 64 barridos para cada espectro con una resolución de 4 cm⁻¹, con un detector DTGS a partir de muestras preparadas mediante la compresión de 2,0 mg de muestra del fármaco con Bromuro de potasio KBr grado espectral, frente a un fondo de KBr. Para la calibración se realizaron patrones de pastillas de KBr con 0,5 mg; 1,0 mg; 1,5 mg y 2,0 mg del fármaco.

También se registraron espectros por FTIR ATR entre 4000 y 650 cm⁻¹, con un promedio de 32 barridos para cada espectro con un spectrum 100 Universal Diamond con cristal de ZnSe, en donde se comprime la muestra contra el cristal.

Como resultado no se encontraron diferencias significativas en la región de la huella dactilar de los espectros obtenidos por las pastillas de KBr en espectroscopía FTIR y por el método de FTIR ATR. Por la Ley de Beer se realizó la medición cuantitativa de ácido acetilsalicílico a 1605,49 cm⁻¹, con una curva de calibración de A = 15,51m - 1,2132 (mg de ácido acetilsalicílico). Con coeficiente de correlación de 0,9886 y coeficiente de variación menor a 5 %.

III.5 Gölcü A, Yücesoy C (2006) [28]

Desarrollaron un método por espectrofotometría UV-VIS para la estimación cuantitativa de besilato de amlodipina, mediante la formación de un complejo coloreado entre la amlodipina y el azul de bromofenol a un pH de 3,2. La formulación comercial (Norvasc® tabletas de 10 mg) y el patrón de besilato de amlodipina utilizados fueron proporcionados por Pfizer Pharm. Co., Estambul, Turquía. Las soluciones utilizadas se prepararon de la siguiente manera: la Solución de reactivo se preparó disolviendo 167,5 mg de azul de bromofenol (BPB) en 10 mL de etanol, se diluyeron a 100 mL con agua destilada para una concentración de 0,0025 M. la solución búfer se preparó con ácido acético 0,1 M y acetato de sodio 0,1 M en una proporción de 3:9. Para la solución patrón de besilato de amlodipina se pesaron 50 mg y se disolvieron en un balón aforado de 100 mL con 5 mL de etanol y 10 mL de agua, la mezcla se agitó hasta disolver el besilato de amlodipina por completo. A continuación, la solución se diluyó hasta 100 mL con agua para obtener una concentración de 500 µg/mL. Para la curva de calibración se prepararon soluciones transfiriendo de 0,2 a 1,0 mL de solución patrón a tubos de ensayo de 25 mL con tapa en los que se añadieron 1,0 mL de solución buffer y 1,0 mL de solución de BPB, luego de agitar por 5 minutos, se añadieron en cada tubo 15 mL de cloroformo para la extracción del complejo coloreado, luego de agitar y dejar reposar para la separación de las capas, La absorbancia de la fase de cloroformo se midió a 414 nm con un espectrofotómetro de UV- Visible de doble haz frente al blanco, la linealidad fue observada en un rango de concentración de 6 a 30 µg / mL con un coeficiente de correlación de 0,9997. Para el análisis de la muestra se tomaron veinte comprimidos, se pesaron y se pulverizaron hasta obtener un polvo fino. Se pesaron una cantidad equivalente a 50 mg de besilato de amlodipina, se transfirieron a un balón de 100 mL con 5 mL de etanol y 50 mL de agua, se agitó por 10 minutos, y se filtró a un segundo matraz aforado de 100 mL, diluyendo con agua destilada. Se tomaron 0,4 mL y se realizó el procedimiento descrito para las soluciones patrones. El porcentaje de recuperación fue de 100,7 % con un coeficiente de variación de 1,24 %.

III.6 Nilesh Jain y colaboradores (2010) [29]

Desarrollaron un método por espectrofotometría UV-Visible para la estimación cuantitativa de besilato de amlodipina a granel y en sus fórmulas comerciales mediante el uso de una solución 2 M de acetato de sodio como agente hidrotrópico. La solución patrón fue preparada pesando 100 mg de besilato de amlodipina (estándar de referencia proporcionado por Laboratorios Matrix- Mumbai, India), se transfirió a un matraz aforado de 100 mL con 10 mL de acetato de sodio, se llevó a agitación por 10 min y se completó el aforo con agua destilada, obteniendo una concentración final de 1000 µg / mL. La absorbancia de estas soluciones se midió a 365 nm con un espectrómetro de UV- Vis de doble haz frente al blanco, la linealidad fue observada en un rango de concentración de 50 a 250 µg / L con un coeficiente de correlación de 0,9998. Tres formulaciones comerciales fueron seleccionadas para el análisis, tomando 20 tabletas de cada una, se pesaron y se pulverizaron hasta un polvo fino. Se pesó una cantidad equivalente a 10 mg de besilato de amlodipina, se transfirió a un matraz aforado de 100 mL con 10 mL de acetato de sodio 2 M, se agitó por diez minutos, se completó el aforo con agua destilada. La solución resultante se filtró con papel de filtro número 41, haciendo las diluciones pertinentes para el análisis. Se midió la absorbancia de la solución de la muestra y se determinó la cantidad de besilato de amlodipina, utilizando la curva de calibración. Los estudios de recuperación se realizaron mediante la adición de una cantidad definida del fármaco utilizando una solución pre-analizada de las tabletas, esto se realizó en dos formas: mediante la adición de una cantidad fija de solución del estándar para una dilución final, variando la concentración final de la solución de la tableta. La otra forma fue mediante la variación de la cantidad de la solución del estándar añadida a la dilución final de manera de mantener la concentración de la muestra constante. El porcentaje de recuperación medio obtenido fue de 97,84 a 100,16 %.

III.7 Ravi Prasad P y colaboradores (2014) [30]

Desarrollaron un método para la cuantificación de besilato de amlodipina en tabletas utilizando la técnica de FTIR. El estándar de referencia fue suministrado por M/S Dr Reddy's Laboratories, Hyderabad. Las formulaciones comerciales fueron Amlong 2,5 mg y 5,0 mg. Para la construcción de la curva de calibración se realizaron pastillas comprimidas de besilato de amlodipina estándar con bromuro de potasio (KBr grado espectral). Se midió la absorbancia a 1676 cm⁻¹ correspondiente al pico del grupo carbonilo en un rango de concentración de 0,2 mg a 0,49 mg obteniendo un coeficiente de correlación de 0,9986. Los límites de detección y cuantificación fueron de 0,001 mg y 0,032 mg respectivamente. Se tomaron 10 tabletas de cada formulación, se pesaron y se molieron hasta obtener un polvo fino. Cantidades conocidas equivalentes a la concentración del fármaco en el rango de calibración se comprimieron en 4 pastillas con KBr, registrando su espectro en condiciones normales al igual que con el estándar. Para validar el método por su precisión, reproducibilidad e interferencia con los excipientes de la formulación se realizó un estudio de recuperación donde una cantidad conocida del estándar se añadió a un comprimido pre-analizado en dos niveles de concentración 50 % y 100 %, analizando por el método propuesto. Obteniendo un nivel de recuperación mayor al 98 % y un coeficiente de variación menor a 2 %.

III.8 Cozar O y colaboradores (2009)^[31]

En este trabajo se presenta una investigación experimental (FT-IR, FT-Raman y RMN) y teórica del besilato de amlodipina con el objetivo de obtener información acerca de la estructura molecular y electrónica de este compuesto. El estudio teórico se realizó por métodos de la teoría del funcional de la densidad o DFT por sus siglas en inglés, que es uno de los estudios más utilizados en los cálculos cuánticos de la estructura electrónica de la materia.

El espectro FT-IR registró a temperatura ambiente en un espectrómetro convencional Equinox 55 (Bruker) equipado con un detector InGaAs, las muestras se prepararon en pastillas con KBr (Merc Uvasol).

Los espectros de FT-Raman se registraron en una geometría de retrodispersión con un espectrofotómetro Bruker equipado con un accesorio Raman modelo FRA 106/S, en la región de 500-4000 cm-1 y 100-4000 cm-1 con una resolución de 4 cm⁻¹. Para la excitación de las muestras se utilizó una fuente de excitación láser Nd:YAG con emisión de radiación de longitud de onda de 1064 nm, con potencia medida en la posición de la muestra de 300 mW.

El espectro de RMN de ¹H y ¹³C se registraron a temperatura ambiente en un espectrómetro Bruker Avance espectrómetro de RMN que opera a 500 MHz para ¹H y ¹³C 125,76 MHz para (TMS patrón interno). Las muestras se prepararon mediante la disolución en DMSO-d₆ (señal para ¹H a 2,512 ppm y a 39,476 ppm para ¹³C). los espectros fueron registrados usando un solo pulso de excitación de 10.1 µs para ¹H y 8 µs para ¹³C. La señal FID fue adquirida a 128 veces para ¹H y 2048 veces para ¹³C.

La optimización de la geometría molecular y cálculos de los espectros vibracionales fueron realizados con el paquete de software de Gauss 03W mediante el uso de métodos DFT con funcionales B3LYP y BLYP. El funcional B3LYP ha demostrado funcionar muy bien para predecir una gran variedad de propiedades moleculares. Mientras que BLYP ha demostrado ser útil para el cálculo de números de ondas de vibración. Para estos cálculos se utilizó la base de datos 6-31G y una escala uniforme de números de onda calculados. Las geometrías fueron completamente optimizados sin ninguna restricción con la ayuda de un procedimiento de gradiente analítico implementado dentro del programa Gaussian 03W. la asignación de los modos vibracionales se realizaron por inspección visual de los modos utilizando el programa GaussView (Gaussian Inc.) y el programa Molekel.

La desviación media de los cálculos en la reproducción de todos los espectros Raman y FT-IR por B3LYP / 6-31G fue de 7.7 y 6.0 cm⁻¹ respectivamente. El espectro de ¹H RMN experimental de besilato de amlodipina se reprodujo con éxito por cálculos teóricos DFT de los tensores de blindaje magnético nuclear, utilizando el método GIAO. El potencial molecular electrostático de la molécula se calculó y se utilizó para predecir los posibles sitios para el ataque electrofílico.

En este trabajo se concluye lo siguiente:

La energía de interacción calculada entre el ion NH3⁺ y el anión bencenosulfonato es de -466,7 kJ / mol, energía comparable a las interacciones aniones-cationes en líquidos iónicos.

Los espectros FTIR y FT Raman han sido asignados basados en los cálculos con B3LYP/6-31G y BLYP/6-31G, las bandas características del besilato de amlodipina en los espectros vibracionales han sido muy bien reproducidas por los cálculos confirmando la forma de sal para este compuesto. Las bandas características más importantes que son v (NH₃⁺), v_s (NH₃⁺), δ (NH₃⁺), v (C=O) y v_{as} (SO₃⁻) son las bandas más intensas en el espectro FTIR.

Los espectros RMN de ¹H y ¹³C sugieren que la estructura molecular de besilato de amlodipina en fase líquida es muy similar a la del estado sólido. Por otra parte, especialmente en los datos registrados de RMN para ¹H se confirma la presencia del grupo cargado NH_3^+ .

El potencial electrostático calculado indica que el sitio más susceptible en la molécula para el ataque electrofílico de metales de coordinación son los átomos de oxigeno 14 y 24 (ver figura 5). Mientras que el sitio más probable que podría estar involucrado en un proceso nucleofílico sería en los grupos amino y metileno.

Figura 5. Optimización computacional de la estructura molecular con esquema de enumeración de átomos de besilato de amlodipina ^[31]

Figura 6. Espectro de absorción infrarroja para el besilato de amlodipina obtenido experimentalmente por FTIR frente a un espectro por simulación.

Tabla 6. Extracto de Asignación de los modos vibracionales de besilato de amlodipina alas bandas de absorción experimentales y calculadas

Experimental		Calculada		
FT-IR (cm ⁻¹)	FT-Raman (cm ⁻¹)	Número de onda reportado (cm ⁻¹)	Asignaciones	
		3481	v (NH3)	
3300		3376	vas (NH3)	
3069	3067	3084	vas (CH anillo3)	
	3020	3011	vas (C22H3)	
	3001	2991	$v_{as}(C21H_2) + v_{as}(C22H_3)$	
2948	2949	2946	vs (C22H3)	
1699	1695	1709	v (C13O14)	
	1675	1681	v (C18O19)	
1653	1650	1624	v (CC ring2) + δ (N10H)	
1616	1615	1623	δas (NH3)	
	1588	1595	v_{as} (CC anillo 2) + δ (N10H)	
1570	1569	1581	v (CC anillo 3)	
1496	1494	1475	δ (NH) + ip. anillo 2 def. + δ (CH2)	
1470	1466	1469	$\delta_{as} (C16H_3) + \delta_{as} (C17H_3)$	
1445	1446	1442	δas (C17H3)	
	1432	1434	δas (CH3)	
1384	1382	1391	u (CH3)	
1365	1364	1365	w (C21H2) + u (C22H3)	
	1328	1315	δ (C7H) + w (CH ₂) + w (CH ₃)	
1304	1302	1303	ip. anillo 2 def. + w (C21H2)	
1265	1270	1265	$w(NH_3) + \tau (C25H_2) + w (C26H_2)$	
1206	1206	1206	$v_{as}(SO_3) + \delta(C7H) + \rho(NH_3)$	
	1159	1158	v (C1C7) + δ (CH anillo 1)	
1125	1125	1128	vas (C25O24C23) + w (CH2)+p (NH3)	
1114		1111	w (C22H3) + vas (C18O20C21)	
1092	1091	1086	$v_{s}(SO_{3}) + ip. anillo 3 def.$	
1048	1052	1041	$v_{as}(C25C26N27) + w(NH_3) + v_{as}(SO_3)$	
1034	1034	1036	Anillo 1 breathing + δ (CH anillo 1)	
1017		1014	δ (CCC ring3) + δ (CH ring3)	
997	997	998	γ (CH ring3)	
869	875	866	γ (CH ring1) + δ (OCO)	
838	837	844	Anillo 1 breathing +v(C1C7)	
813	818	819	ρ(C21H2)+t(C22H3)	
792	788	791	ip. ring1 def.+ip. ring2 def.	
754	755	766	γ(CH ring3)	
729	728	727	δ(CCC ring3)+v(S60C54)	
707	705	714	v(CCl)+δ(CCC ring1)	
689		701	γ(CH ring3)	
667	669	673	γ(N10H)+ring2 def.+γ(CH ring1)+w(C17H3)	
Dónde:

v- vibración de tensión vs- vibración de tensión simétrica vas- vibración de tension asimétrica δ - flexión en el plano- tijereteo ρ - flexión en el plano- balanceo ω - flexión fuera del plano t- torsión τ - balanceo γ - fexión fuera del plano def.- deformación ip.- en el plano oop.- fuera del plano anillo 1: anillo de benceno (C1-C6); anillo 2: anillo de piridina anillo 3: anillo de benceno (C54-C59)

IV. JUSTIFICACIÓN

El besilato de amlodipina es un fármaco de primera elección para el tratamiento de la hipertensión arterial, por lo que está disponible en el mercado venezolano bajo diversas marcas comerciales, produce un efecto vasodilatador arterial periférico y con ello un efecto antihipertensivo que se inicia de forma gradual, con menos efectos secundarios, permitiendo un control de la presión arterial durante 24 horas con una sola dosis.

Se ha reportado oficialmente el método por HPLC (USP) para la estimación de besilato de amlodipina, sin embargo, con la revisión de la literatura, se ha encontrado indicios sobre el desarrollo de un método de análisis alternativo para la estimación de este fármaco por espectroscopía de FTIR, como en el trabajo de Ravi Prasad P, y sobre el desarrollo de métodos de análisis de medicamentos por FTIR con ATR como se presenta en el trabajo de Bunaciu Andrei en el desarrollo de un método para la determinación de ácido acetilsalicílico por dicha técnica.

En este trabajo se propone un método alternativo por espectroscopía FTIR con ATR reproducible, más simple y rápido, de bajo costo y menos contaminante que pudiera emplearse con éxito en análisis de rutina para el control de calidad de besilato de amlodipina en tabletas o comprimidos.

V. OBJETIVOS

V.1 Objetivo General

Desarrollar y validar una metodología analítica para la determinación de besilato de amlodipina en tabletas utilizando la técnica espectroscópica de FTIR-ATR

V.2 Objetivos Específicos

- Desarrollar una metodología para el análisis de besilato de amlodipina por FTIR ATR, que sea más sencilla y económica que las reportadas en la literatura.
- Evaluar las figuras de mérito y validar la metodología desarrollada con exigencias de linealidad, exactitud, precisión, selectividad, límite de detección y cuantificación.
- Comparar la metodología oficial (USP 37) con la metodología propuesta mediante pruebas de contraste de significación.

VI. PROCEDIMIENTO EXPERIMENTAL

VI.1 EQUIPOS

VI.1.1 Equipo FTIR

Para la determinación de besilato de amlodipina por espectrofotometría FTIR con ATR, se utilizó un Espectrómetro de Thermo Electron Corporation, Modelo Nicolet 380 FT-IR, con software Omnic[®]

VI.1.2 Equipo de HPLC

Para la determinación de besilato de amlodipina por la metodología oficial se utilizó un cromatógrafo líquido de alta eficiencia de la casa comercial Waters ® conformado por:

- Bomba, modelo waters 600E de System Controller.
- Inyector automuestrador, modelo waters 717 de Plus Autosampler.
- Detector de arreglo de diodos, modelo waters 996 Photodiodo de Array Detector.
- Software Millenium 32[®].
- Columna Terra® RP 18 5 μm, 3,9 x 150 mm.

VI.1.3 Otros instrumentos

- Balanza analítica digital, Mettler Toledo, modelo AG 245.
- Balanza analítica digital, Adventurer OHAUS cap. Max. 310 g.
- Balanza analítica digital, Adventurer OHAUS cap. Max. 210 g.
- pH meter, Orion 420 A+ de Thermo electron Corporation.
- Membranas de filtración de nylon de 0,45 µm, millipore.

- Membranas de filtración de nylon de 0,2 µm, Sartdon polyamid.
- Baño de ultrasonido, Sonicor, modelo SC 200.
- Vortex Genie 2 DAIGGER.
- Vortex Mixer model VM-1000. Digisystem Laboratory Instruments INC.
- Centrifuga.

VI.2 REACTIVOS

VI.2.1 Patrón de referencia

Se utilizó una sal de besilato de amlodipina de referencia proporcionado por un laboratorio farmacéutico con las siguientes características:

Expiración: 08-2015

Valoración (entre 97,0 y 102,0 %) = 100,9 % (Valorado con respecto a un patrón de Amlodipina Besilato USP, lote: H01102)

VI.2.2 Muestras

Las muestras consistieron en 2 formulaciones comerciales de Besilato de Amlodipina, de 10 mg de principio activo, de origen nacional.

- Muestra comercial 1 (genérico de marca) que se utilizó como material de referencia interno para la validación del método.
- Muestra comercial 2 (genérico) en la que se aplicó la metodología validada en el análisis de besilato de amlodipina en tabletas.

VI.2.3 Solventes

VI.2.3.1 Solventes para FTIR ATR

Metanol de Riedel-de Haên, grado analítico

VI.2.3.2 Solventes para cromatografía HPLC

- Metanol grado HPLC. Mallinckrodt
- Acetonitrilo grado HPLC. Mallinckrodt
- Ácido o-Fosfórico al 85%. Fisher Scientific
- Trietilamina grado HPLC. Scharlau
- Agua Destilada. Destilador Cascada Ro Waters (Pall corporation).
- Agua 18 m Ω . Ultrapurificador de agua Barnstead (Nanopure).

VI.3 DESARROLLO Y VALIDACION DE LA METODOLOGIA ANALÍTICA

VI.3.1 Preparación del material de referencia interno

A la hora de desarrollar una nueva metodología analítica es recomendable contar con un material de referencia certificado, el cual consiste en una sustancia que al ser adquirida viene acompañada de un certificado en el cual se señalan sus características y composición, sin embargo al no poder contar con dicho material de referencia certificado fue necesario la preparación de un material de referencia interno.

Este material de referencia interno fue preparado a partir de una mezcla de tabletas de un mismo lote de manufactura correspondiente a la muestra comercial 1. Para ello se pesaron 40 tabletas de la muestra comercial, obteniendo un peso promedio de 252,32 mg, Seguidamente se pulverizaron hasta obtener un polvo fino el cual fue guardado en un pesafiltros protegido de la luz y posteriormente almacenado en un desecador hasta el momento de su uso.

VI.3.2 Elaboración de la curva de calibración

Los patrones se prepararon en viales de tapa de rosca de 10 mL de capacidad aproximadamente, con una resolución de 0,1 mg tanto para el estándar de besilato de amlodipina como para el solvente, el volumen final por patrón que se obtuvo fue de aproximadamente 3 mL, siendo la cantidad mínima necesaria para realizar las medidas.

El rango de concentraciones utilizado se encuentra entre 0,62 mg / g y 199,70 mg / g (ver apéndice a). Los espectros de absorbancia para cada patrón se obtuvieron con el equipo FTIR con ATR, contrastando el fondo con el solvente, con un promedio de 32 barridos.

Se estudió el espectro de absorbancia del estándar de besilato de amlodipina (figura 7), observando en un principio 3 señales de interés analítico por tener la mayor absortividad molar, estas se ubican en los números de onda de 1688 cm⁻¹, 1213 cm⁻¹ y 1101 cm⁻¹ del espectro.

En el estudio realizado por O. Cozar y colaboradores en el que describen la estructura molecular del besilato de amlodipina, muestran el espectro de absorbancia para el besilato de amlodipina por FTIR, donde asignan los modos vibracionales de la molécula a las señales obtenidas. En la siguiente tabla se muestra un extracto de esta asignación de señales relacionadas a las bandas de interés analítico seleccionadas para la elaboración de la curva de calibración.

Tabla 7. Asignación de modos vibracionales de besilato de amlodipina a las bandas de absorción seleccionadas.

Número de onda experimental FTIR ATR cm ⁻¹	Número de onda experimental FTIR ^[31] cm ⁻¹	Asignación ^[31]
1699	1699	v C=O vibración de
1688	1675	tensión grupo carbonilo
1213	1206	v _{as} (SO₃ ⁻) vibración de tensión asimétrica grupo sulfonato
1101	1092	v _s (SO ₃ ⁻) vibración de tensión simétrica grupo sulfonato

Figura 7. Espectro de absorbancia de IR del estándar secundario de besilato de amlodipina

Además se realizó una comparación con el espectro de absorbancia de una de las muestras y se encontró similitud con los picos seleccionados.

Para obtener los datos de absorbancia a utilizar en la construcción de la curva de calibración, los espectros con el software Omnic[®] fueron convertidos a archivos de texto .CVS. Para facilitar la adquisición de datos por Microsoft Excel, se construyeron 3 curvas de calibración para cada pico de absorción seleccionado en función de la concentración de los patrones como se aprecia en la figura 8, con el fin de elegir la curva de calibración con mayor sensibilidad y mejor coeficiente de determinación.

Figura 8. Curvas de calibración para los picos de absorbancia seleccionados de los espectros a un numero de onda de 1101 cm⁻¹, 1213 cm⁻¹ y 1688 cm⁻¹ en un rango de concentraciones de 0,62 mg / g a 199,70 mg / g

Para cada una de estas curvas se hace un análisis de varianza (apéndice b), donde se hace una comparación entre el coeficiente de determinación, la desviación estándar de la regresión y la pendiente, en la cual se aprecia que la curva de calibración obtenida de los valores de absorbancia para el pico 1213 cm⁻¹, posee la mejor sensibilidad por tener la mayor pendiente, sin embargo su coeficiente de determinación no es el mejor de entre las tres como se puede ver en la tabla 8.

Tabla 8. Cuadro comparativo entre las curvas de calibración. para un rango de concentraciones de 0,62 mg / g a 199,70 mg / g.

Curva de calibración Nº	Numero de onda (cm ⁻¹)	R ²	S _{y/x}	Pendiente (a)	Sa	Punto de corte (b)	S _b
1	1688	0,9980	0,003	0,000901	0,000003	0,0010	0,0004
2	1213	0,9977	0,007	0,002043	0,000008	0,0082	0,0009
3	1101	0,9992	0,004	0,001777	0,000004	0,0029	0,0005

Para la determinación del intervalo con la mejor linealidad se estudiaron varios rangos de concentraciones por análisis de varianza, comparando el coeficiente de determinación, la desviación estándar de la regresión, la pendiente y el grafico de residuales para varios rangos de concentraciones, obteniendo el mejor intervalo lineal para el rango de concentraciones de 4,984 mg / g a 95,205 mg / g como se observa en la figura 9.

También se estudiaron otras maneras de obtener los valores de absorbancia como la aplicación de "*smooth*" o suavizado el cual es una opción del programa Omnic[®], que elimina un poco el ruido de las señales espectroscópicas de los espectros. Para obtener los valores de absorbancia para cada número de onda, fue necesario convertir los espectros obtenidos por el programa Omnic[®] en texto, guardando para esto los espectros en texto sin formato (text CVS), para luego copiarlos en Microsoft Excel, seguidamente se graficaron las absorbancias en función de la concentración como se muestra en la figura 10.

Figura 9. Curva de calibración para el rango de concentraciones de 4,984 mg / g a 95,205 mg / g. (A partir de los espectros sin *smooth*)

Figura 10. Curva de calibración para el rango de concentraciones de 4,984 mg / g a 95,205 mg / g. (A partir de los espectros con *smooth*)

Nuevamente se realizó un análisis de varianza para cada curva y se muestra en la tabla 9 una comparación entre las curvas de calibración obtenidas de los espectros con *smooth* y sin *smooth* para el rango lineal seleccionado en la que no se aprecian diferencias significativas entre los dos grupos de curvas por lo que se prefiere trabajar a partir de los espectros sin *smooth* o sin suavizar, para hacer más sencillo el método. **Tabla 9.** Cuadro comparativo entre las curvas de calibración para rango de concentraciones de 4,984 mg / g a 95,205 mg / g a partir de espectros con *smooth* y sin *smooth*.

Curva de calibración	Numero de onda (cm⁻¹)	R²	S _{y/x}	Pendiente (a)	Sa	Punto de corte (b)	Sb
	1688	0,9914	0,003	0,00094	0,00001	0,0014	0,0006
Sin Smooth	1213	0,9996	0,001	0,002193	0,000006	0,0037	0,0003
	1101	0,9997	0,001	0,001851	0,000004	0,0002	0,0002
	1688	0,9832	0,004	0,00095	0,00002	-0,0024	0,0009
Con Smooth	1213	0,9994	0,002	0,0021	0,00001	0,0035	0,0004
	1101	0,9994	0,001	0,00171	0,00001	0,0003	0,0003

A partir del intervalo lineal seleccionado se prepara una nueva serie de patrones, y se grafican de nuevo las tres curvas de calibración como se muestran en la figura 11, de igual manera se muestra en la tabla 10 una comparación entre las tres curvas en función del coeficiente de determinación, de la desviación estándar de la regresión lineal y de la pendiente.

Figura 11. Segunda Curva de calibración para el rango de concentraciones de 4,984 mg / g a 95,205 mg / g a partir de espectros sin *smooth*

Tabla 10. Cuadro comparativo entre las curvas de calibración para el rango lineal seleccionada a partir de espectros sin smooth para una segunda serie de patrones.

Curva de calibración	Número de onda (cm⁻¹)	R²	S _{y/x}	Pendiente (a)	Sa	Punto de corte (b)	S₅
	1688	0,9914	0,003	0,00094	0,00001	0,0014	0,0006
Primera serie de patrones	1213	0,9996	0,001	0,002193	0,000006	0,0037	0,0003
	1101	0,9997	0,001	0,001851	0,000004	0,0002	0,0002
Segunda	1688	0,9881	0,003	0,00105	0,00001	-0,0051	0,0008
serie de	1213	0,9992	0,002	0,00217	0,00001	0,0048	0,0004
patrones	1101	0,999	0,002	0,00181	0,00001	0,0022	0,0004

Luego de estudiar el análisis de varianza para cada una de las curvas de calibración se decidió trabajar con la curva de calibración correspondiente a la banda de absorbancia a 1213 cm⁻¹ correspondiente a la banda de tensión asimétrica del grupo sulfonato (SO₃⁻) por tener la mayor pendiente y por tanto la mejor sensibilidad, con lo cual se obtiene menor error de interpolación, además con el análisis de varianza en el rango seleccionado se demuestra que el método es lineal y que existe proporcionalidad entre la concentración del besilato de amlodipina y su absorbancia para dicho número de onda.

Figura 12. Curva de calibración correspondiente a la banda 1213 cm⁻¹ v_{as} (SO₃ ⁻) (vibración de tensión asimétrica grupo sulfonato) para el rango de concentraciones de 4,984 mg / g a 95,205 mg / g.

Tabla 11. Resumen de Datos de la curva de calibración para la determinación de besilato de amlodipina en muestras comerciales medite el método por FTIR con ATR.

Numero de onda (cm ⁻¹)	R ²	S _{y/x}	Pendiente (a)	Sa	Punto de corte (b)	S _b
1213	0,9996	0,001	0,002193	0,000006	0,0037	0,0003

Figura 13. Gráfico de residuales para la curva de calibración a partir de los datos de absorbancia a 1213 cm⁻¹ en función de la concentración

Tabla 12. Estadística de la regresión para la curva de calibración correspondiente a la banda v_{as} (SO₃⁻) en el rango seleccionado.

Coeficiente de correlación múltiple	0,9998
Coeficiente de determinación R ²	0,9996
R ² ajustado	0,9996
Desviación estándar	0,001

Tabla 13. Análisis de varianza para la curva de calibración correspondiente a la banda v_{as} (SO₃⁻) en el rango seleccionado.

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crí	tico de F
Regresión	1	0,2462927	0,2462927	148711,486	4,991	E-105
Residuos	61	0,00010103	1,6562E-06			
Total	62	0,24639372				
	Coeficientes	Desv. estándar	Estadístico t	Probabilidad	Inferior 95%	Superior 95%
Intercepción	0,0036530	0,0003	11,413394	8,92E-17	0,0030130	0,0042931
Pendiente	0,0021929	0,000006	385,63128	4,991E-105	0,0021815	0,0022042

VI.3.3 Análisis de muestras

A partir del material de referencia interno se prepararon las muestras por pesada tanto de las muestras como del disolvente, en viales, los cuales se taparon y se agitaron mecánicamente durante 30 minutos (protegido de la luz) para la extracción del principio activo, seguidamente se centrifugaron y se procedió con el análisis por FTIR con ATR.

VI.3.3.1 Análisis de muestras por HPLC. Evaluación de la exactitud

Para la exactitud se compararon los resultados obtenidos en la determinación de besilato de amlodipina en las muestras del material de referencia interno usando el método oficial USP 37 por HPLC que se explica en el punto III.1, se utilizó un flujo de 0,9 mL / min, con un tiempo de corrida de 7 minutos.

• Preparación de los patrones

Preparación de la solución madre:

Se pesaron 11,44 mg del estándar secundario en una balanza analítica y se añadieron en un balón de 50 mL, se disolvió con aproximadamente 20 mL de fase móvil y se llevó al enrase con dicha fase, obteniendo una concentración final de 0,2288 mg / mL. A partir de ella se prepararon 5 patrones con concentraciones entre 0,0092 mg / mL y 0,0343 mg / mL (ver apéndice g)

Tanto los patrones como las muestras de filtraron a través de filtro de 0,2 µm para ser colocados en los viales en el carrusel del auto-muestreador

Preparación del material de referencia interno

A partir del material de referencia interno, se prepararon 3 muestras colocando una masa aproximada de 128 mg en un balón aforado de 50 mL junto con unos 30 mL de fase móvil, se llevó a agitación mecánica por 30 min (protegido de la luz), se completó el enrase con fase móvil, se filtró por gravedad. Se realizó una dilución de 2:10 para el análisis (Ver apéndice h).

VI.3.3.2 Pruebas de especificidad

La especificidad fue evaluada mediante estudios de degradación forzada, en la que 3 muestras del material de referencia interno se sometieron a las siguientes situaciones:

• Termólisis

La primera muestra del material de referencia interno se llevó a calentamiento en baño de agua a una temperatura promedio de 45 °C por 4 horas.

• Fotólisis

La segunda muestra del material de referencia interno se dejó expuesta a radiación visible durante 7 días continuos.

Humedad

La tercera muestra del material de referencia interno se dejó en un contenedor junto con una solución saturada de cloruro de sodio por 7 días.

Posteriormente las tres muestras se analizaron tanto por la metodología propuesta como por la metodología USP 37.

VII. RESULTADOS Y DISCUSION

VII.1 Límite de detección y límite de cuantificación

El valor para los límites de detección (LOD) y cuantificación (LOQ) se determinaron a partir de los datos de la curva de calibración, utilizando las ecuaciones 12 y 13.

$$LOD = \frac{3.3 \text{ s}}{\text{b}}$$
$$LOQ = \frac{10 \text{ s}}{\text{b}}$$

Donde

s = desviación estándar de la regresión lineal.

b = pendiente de la curva de calibración.

De acuerdo a los cálculos, los valores correspondientes al límite de detección y límite de cuantificación fueron 1,5 y 4,6 mg / g respectivamente.

VII.2 PRECISIÓN

La precisión del método analítico se estudió mediante la repetitividad.

VII.2.1 Precisión del sistema FTIR ATR

La precisión del sistema FTIR con ATR en la determinación de absorbancia a un numero de onda dado, se realizó evaluando la dispersión de los valores de absorbancia obtenidos a partir de los espectros para los patrones y muestras respecto a la banda de absorción a 1213 cm⁻¹.

Patrón	Concentración (mg / g)	Promedio Absorbancia (a 1213 cm ⁻¹)	Desviación estándar	CV
1	5,0	0,0133	0,0002	1,6
2	14,9	0,0363	0,0003	0,9
3	24,9	0,0586	0,0003	0,6
4	34,8	0,0796	0,0003	0,4
5	44,8	0,1018	0,0004	0,4
6	54,7	0,126	0,001	0,9
7	65,3	0,1468	0,0003	0,2
8	74,7	0,1667	0,0005	0,3
9	84,6	0,189	0,002	0,9
10	95,2	0,2112	0,0009	0,4

Tabla 14. Precisión del sistema FTIR con ATR en la medición de absorbancia para una serie de patrones.

En general los coeficientes de variación en las medidas de absorbancia para cada grupo de patrones se encuentran por debajo de 1 %, sin embargo para el primer patrón el coeficiente de variación se encuentra por encima de 1 %, cuya concentración se encuentra en el límite de cuantificación.

Tabla 15. Precisión del sistema FTIR con ATR en la medición de absorbancia para una serie de muestras

Masa material de referencia interna (±0,3mg)	Promedio Absorbancia (a 1213 cm ⁻¹)	Desviación estándar	CV
505,1	0,0355	0,0005	1,5
504,2	0,0681	0,0005	0,7
756,3	0,0498	0,0003	0,6
1009,8	0,0658	0,0006	0,8
1261,1	0,0769	0,0008	1
2524,3	0,1629	0,0008	0,5

En general los coeficientes de variación para las medidas de absorbancia en el equipo FTIR con ATR para cada grupo de muestras se encuentran por debajo de 1 %.

VII.2.2 Repetitividad en los resultados.

La repetitividad se determinó con el análisis de muestras de un mismo lote homogéneo, realizado por un mismo analista, bajo condiciones iguales de equipo y reactivos, tomando las medidas en días diferentes.

Los resultados que se obtuvieron en la variación de la concentración de besilato de amlodipina determinada de las muestras se encuentran reflejados en las tablas siguientes. Los valores de concentración de besilato de amlodipina se estimaron por interpolación del promedio de las medidas de absorbancia de cada muestra en la recta de regresión de la figura 12.

El error asociado a esta a la interpolación se determinó utilizando la siguiente fórmula.

$$\mathbf{S_{x0}} = \frac{\mathbf{S_{y/x}}}{\mathbf{b}} \sqrt{\frac{1}{\mathbf{m}} + \frac{1}{\mathbf{n}} + \frac{(\mathbf{y_0} - \bar{\mathbf{y}})^2}{\mathbf{b}^2 \sum (\mathbf{x_i} - \bar{\mathbf{x}})^2}}$$
 (14)

Dónde:

m = número de lecturas.

n = número de patrones.

 \bar{y} = promedio de las medidas de absorbancia de los patrones.

 \bar{x} = promedio de las concentraciones de los patrones.

Tabla 16. Resultados para el cálculo de la concentración de amlodipina en el material de referencia interno, por espectroscopia FTIR con ATR utilizando la curva de calibración correspondiente a la banda v_{as} (SO₃⁻)

Muestra- replica	X₀ (mg / g)	Sx ₀	LC (95 %)
1.1	14,5	0,5	1,0
1.2	29,4	0,5	1,0
1.3	21,0	0,4	0,9
1.4	28,3	0,3	0,8
1.5	33,4	0,4	0,8
1.6	72,6	0,5	1,0

X₀ (mg / g): Concentración para las muestras

S_{x0}: Error en la interpolación

LC (95 %): Límites de confianza

En la siguiente tabla se muestra la cantidad de amlodipina determinada por tableta en el material de referencia interno. El error estimado para esta determinación se realizó por propagación de error.

Tabla 17. Determinación de besilato de amlodipina del material de referencia interno

 por espectroscopia FTIR con ATR

Muestra	(mg/tableta) amlodipina	S _{mg/tab}	CV	LC (95 %)
1.1	10,7	0,3	3,1	0,2
1.2	10,7	0,2	1,5	0,1
1.3	10,2	0,2	1,8	0,08
1.4	10,2	0,1	1,2	0,04
1.5	9,7	0,1	1,1	0,04
1.6	10,6	0,1	0,6	0,05

Tabla 18. Valor promedio para la determinación de amlodipina por tableta del material de referencia interno, por espectroscopia FTIR con ATR.

Muestra Réplica	Cantidad promedio de amlodipina (mg/tableta)	Límite de lo declarado (90-110) %	
1.1	10,7	107	
1.2	10,7	107	
1.3	10,2	102	
1.4	10,2	102	
1.5	9,7	97	
1.6	10,6	106	
Promedio (mg/tableta)	10,4		
Desviación estándar	0,4		
Coeficiente de variación	3,8		
Límite de Confianza	0,2	2	

El porcentaje de lo declarado se calcula mediante la siguiente ecuación

$$Limite \ de \ aceptación = \frac{cantidad \ encontrada}{cantidad \ declarada} x100$$
(15)

Como se presenta en las tabla 18 el valor promedio obtenido en la determinación de amlodipina para el material de referencia interno utilizando la técnica de FTIR con ATR fue de 10,4 mg / tab con un coeficiente de variación de 3,8 %

VII.3 Exactitud

Según la ICH en su guía de validación de métodos de análisis, se puede estimar la exactitud de un método propuesto mediante la comparación de los resultados obtenidos utilizando dicho método con los resultados obtenido utilizando un procedimiento bien caracterizado.

Por tanto se contrastaron estadísticamente los resultados obtenidos en la determinación de besilato de amlodipina del material de referencia interno con el método propuesto FTIR con ATR, con los resultados obtenidos aplicando la metodología oficial USP 37.

Para el método oficial se partió del estándar secundario de besilato de amlodipina en la preparación de la curva de calibración para determinar la cantidad de amlodipina en el material de referencia interno, Figura 14.

Figura 14. Curva de calibración obtenida para el estándar de besilato de amlodipina en un rango de concentración de 0,009 a 0,03 mg/mL, bajo las condiciones cromatográficas USP 37, para la determinación de amlodipina en el material de referencia interno

Tabla 19. Datos obtenidos para las curvas de calibración en la determinación de besilato de amlodipina por metodología USP 37.

Coeficiente de determinación R ²	Desviación Estándar	Pendiente (a)	Sa	Punto de corte (b)	S⊳
0,9999	1E+04	1125E+05	3E+05	35E+03	7E+03

Se prepararon tres muestras de cada marca comercial, (ver apéndice h) siguiendo la metodología oficial, los resultados obtenidos se muestran en las siguientes tablas.

Figura 15. Cromatogramas correspondientes al análisis por HPLC de las muestras del material de referencia interno

Tabla 20. Resultados en la determinación de besilato de amlodipina en las muestras del material de referencia interno, bajo las condiciones cromatograficas seleccionadas. Valores obtenidos por extrapolación.

Réplica de muestra	X ₀ (mg / mL)	S _{x0}	LC (95 %)
1.1	0,0293	0,0001	0,0003
1.2	0,0291	0,0001	0,0003
1.3	0,0291	0,0001	0,0003

Tabla 21. Resultados obtenidos para la determinación de amlodipina por tableta en el material de referencia interno, por el método USP 37.

Réplica de muestra	Contenido de amlodipina (mg / tableta)	S _{mg/tab}	CV	LC
1.1	10,47	0,05	0,5	0,07
1.2	10,50	0,05	0,5	0,07
1.3	10,42	0,05	0,5	0,07

Tabla 22. Valor promedio para la determinación de amlodipina por tableta por la metodología USP 37 para el material de referencia interno.

Muestra Réplica	Contenido promedio de amlodipina (mg/tableta)	Límite de lo declarado (90-110) %	
1.1	10,47	104,7	
1.2	10,50	105,0	
1.3	10,42	104,2	
Promedio (mg/tableta)	10,46		
Desviación estándar	0,04		
Coeficiente de variación	0,4		
Límite de Confianza	0,06		

Debido a que no se cuenta con un estándar certificado para determinar la exactitud del método propuesto se determina mediante el contraste estadístico de los resultados

obtenidos usando el método propuesto con los obtenidos por el método oficial (USP 37) en la determinación de la cantidad de besilato de amlodipina por tabletas.

Se procedió según la prueba t-student tomando como hipótesis nula que los dos métodos proporcionan el mismo resultado. El criterio de aceptación será si la t experimental es menor a la t tabulada, para (n-1) grados de libertad y un nivel de confianza del 95 %.

Tabla 23. Valores obtenidos en la determinación de amlodipina en tabletas para el contraste estadístico t-student.

Parámetros	Método propuesto	Método oficial	
Promedio (mg/tab)	10,4	10,46	
Desv. estándar	0,4	0,04	
n	6	3	

Se aplicó la prueba de contraste F de Fisher (ecuación 7) para determinar diferencias en las desviaciones estándares de los métodos debidos a errores aleatorios.

Se propone la hipótesis nula $H_0: \sigma_1^2 = \sigma_2^2$

$$F = rac{\sigma_1^2}{\sigma_2^2}$$

Con $\sigma_1^{2} > \sigma_2^{2}$ Grados de libertad: $v_1 = n_1 - 1$ $v_2 = n_2 - 1$ **Tabla 24.** Valores obtenidos para la prueba de contraste F entre los resultados para el análisis de besilato de amlodipina por el método propuesto y el método oficial

	Material de referencia interno	
F _(exp)	84	
F _(critica)	19	

Como el valor de F experimental es mayor al valor crítico, por tanto se puede decir que hay diferencia significativa entre las dos varianzas a un nivel del 95 % de confianza.

Ahora para decidir si la diferencia entre los dos promedios es significativa, es decir para contrastar la hipótesis nula de que $H_{0:} \bar{x}_1 = \bar{x}_2$ o que una diferencia hipotética de las medias sea igual a cero, se calcula el estadístico t para varianzas diferentes (ecuación 10).

Tabla 25. Valores obtenidos para el estadístico de prueba t-student entre los resultados para el análisis de besilato de amlodipina por el método propuesto y el método oficial.

	Material de referencia interno		
/ t _{exp} /	1,631		
t crítica (para dos colas)	2,571		

Puesto que el valor experimental de / t / es menor al valor critico (tabulado), la diferencia entre los dos resultados no es significativa a un nivel de confianza del 95 % y se acepta la hipótesis nula.

Con estos resultados se podría decir que la exactitud del método propuesto es aceptable ya que el valor obtenido para el contenido de amlodipina en las muestras del material de referencia tanto por la metodología propuesta como por la metodología oficial, no difieren significativamente a un 95 % de confianza según los estadísticos de prueba, los cuales sugieren que las diferencias se deben a errores aleatorios y no a errores sistemáticos.

VII.4 ROBUSTEZ

Para la robustez del método se evaluaron los tiempos de extracción del principio activo en las muestras. Tomando como punto de referencia el tiempo sugerido por la USP 37, y preparación y análisis de las muestras según el punto VI.3.2.

A continuación se muestran los tiempos de extracción para las muestras donde no se aprecia diferencia significativa entre el tiempo de extracción y el valor en la determinación de amlodipina por tableta.

Tabla 26. Valores obtenidos en la determinación de besilato de amlodipina en tabletas por FTIR con ATR con variación en el tiempo de extracción.

Muestra	Tiempo de extracción (min)	Contenido de amlodipina (mg / tableta)	S mg/tab	CV	LC (95 %)
1	20	10,9	0,2	2	0,1
2	10	10,9	0,2	2	0,07
3	30	10,4	0,2	2	0,1

VII.5 ESPECIFICIDAD

La especificidad fue evaluada mediante estudios de degradación forzada, para comprobar si el método desarrollado es indicativo de la estabilidad, para esto las muestras fueron sometidas a 3 situaciones de estrés las cuales fueron: humedad, termólisis y fotólisis.

Estas muestras fueron analizadas tanto por la metodología propuesta por FTIR con ATR como por la metodología oficial USP 37.

Resultados por FTIR con ATR

En las siguientes figuras (16, 17 y 18) se pueden apreciar los espectros de infrarrojo obtenidos para las muestras sometidas a degradación forzada con la metodología por FTIR con ATR propuesta.

Figura 16. Espectro de transmitancia de la muestra comercial 1, expuesta a la humedad por 7 días.

Figura 17. Espectro de transmitancia de la muestra comercial 1, expuesta a una temperatura de 45 °C por 4 horas.

Figura 18. Espectro de transmitancia de la muestra comercial 1, expuesta a la radiación visible por 7 días.

Estos espectros se comparan con el espectro de transmitancia de una muestra sin someter a degradación (figura 19) en los que se aprecian algunas diferencias en la apariencia de los espectros.

Figura 19. Espectro de transmitancia de la muestra comercial 1 sin someter a degradación.

Figura 20. Espectros de transmitancia IR para las muestras degradadas y sin degradar

A continuación también se muestran en la figura 21 los espectros de absorbancia tanto para las muestras sometidas a degradación como el espectro de una de las muestras sin someter a degradación.

Figura 21. Espectros de absorbancia IR para las muestras degradadas y sin degradar (2000 y 1100 cm⁻¹)

Utilizando la curva de calibración de la figura 12 obtenemos los siguientes resultados para la determinación de amlodipina en tabletas para las muestras sometidas a degradación forzada con la metodología de FTIR con ATR (tablas 27 y 28).

Tabla 27. Resultados por el método de FTIR con ATR para el cálculo de la concentración de amlodipina en las muestras de material de referencia interno sometidas a degradación forzada.

Muestra	X₀ (mg / mL)	Sx ₀	LC (95 %)
Humedad	17,3	0,3	0,8
Termólisis	16,0	0,4	0,9
Radiación visible	14,9	0,3	0,8

Tabla 28. Determinación de amlodipina por tableta en las muestras de material de referencia interno sometidas a degradación forzada, mediante el método de FTIR con ATR.

Muestra	(mg / tableta) amlodipina	S _(mg/tab)	CV	LC (95 %)	Límite de lo declarado (90-110%)	
Control	10,4	0,4	3,8	0,2	104	
Humedad	10,4	0,2	2	0,06	104	
Termólisis	9,9	0,2	2,4	0,1	99	
Radiación visible	9,5	0,2	2,3	0,07	95	

Resultados por metodología USP 37

Con el detector de arreglo de diodos (PDA) del equipo de HPLC, se pudo evaluar la pureza del pico cromatográfico, como se observa en la figura 25.

Figura 21. Cromatograma del patrón 3 de besilato de amlodipina.

Figura 22. Gráfico de pureza del pico de besilato de amlodipina correspondiente al patrón 3.

En la figura 24 se muestran los ángulos de pureza (PA) obtenidos para el pico de besilato de amlodipina. El ángulo del umbral (TH) tiene un valor alrededor de 0,274 y es mayor con respecto al ángulo de pureza (PA) cuyo valor es de 0,127. Estos valores indican que el pico corresponde al besilato de amlodipina.

A continuación se presentan en las siguientes figuras los resultados obtenidos utilizando la metodología de análisis por HPLC para cada una de las muestras sometidas a degradación.

Figura 23. Cromatograma de la muestra comercial 1 expuesta a humedad por 7 días.

Con el detector de arreglo de diodos del sistema de HPLC, se puede hacer la evaluación de la pureza del pico cromatográfico para estudiar la presencia de productos de degradación (Figura 26).

Figura 24. Gráfico de pureza de pico de besilato de amlodipina en la muestra sometida a la humedad por 7 días.

En la figura 25, se puede observar la presencia de un solo pico correspondiente al besilato de amlodipina. En cuanto al análisis de pureza, encontramos que el valor de PA = 0,127 es menor que el de TH = 0,247 confirmando el hecho de que no hay diferencia espectral y por lo tanto, que la muestra es muy estable y no sufre degradación si se somete a un ambiente húmedo.

Figura 25. Cromatograma de la muestra comercial 1 expuesta a una temperatura de 45 °C por 4 horas (termólisis).

Figura 26. Gráfico de pureza de pico de besilato de amlodipina en la muestra comercial 1 expuesta a una temperatura de 45 °C por 4 horas.

Aparentemente en la figura 27 se puede observar la presencia de un solo pico correspondiente al besilato de amlodipina. Sin embargo, en la figura 28 en el análisis de pureza, encontramos que el valor de PA = 0,656 es mayor que el de TH = 0,239 este resultado puede evidenciar la presencia de productos de degradación.

Figura 27. Cromatograma de la muestra comercial 1 expuesta a radiación visible por 7 días.

Figura 28. Gráfico de pureza de pico de besilato de amlodipina en la muestra comercial 1 expuesta a radiación visible por 7 días.

En el cromatograma de la figura 29 se puede observar la presencia dos pequeñas señales que aparecen a un tiempo de retención de 2,57 y 3,46 minutos, antes del pico de besilato de amlodipina, al evaluar los datos el grafico de pureza de pico en la figura 30 se observa que el valor de PA = 0,435 es mayor que el TH = 0,260, este resultado evidencia la presencia de productos de degradación.

Para el método USP 37 se utilizó la curva de calibración de la figura 31 a partir de ella se obtuvieron los resultados mostrados en la tabla 29.

Figura 29. Curva de calibración para el método por HPLC para la determinación de besilato de amlodipina en las muestras sometidas a degradación.

Tabla 29. Resultados para el cálculo de la concentración de amlodipina en la muestra comercial 1, por el método de HPLC.

Muestra	X _{0 (mg/tab)}	Sx ₀	LC (95%)		
Humedad	0,0281	0,0004	0,001		
Termólisis	0,0285	0,0004	0,001		
Luz	0,0263	0,0004	0,001		

Muestra	Amlodipina (mg / tableta)	S _(mg/tab)	CV	LC (95 %)	Límite de lo declarado (90-110%)
Control	10,46	0,04	0,4	0,06	104,6
Humedad	10,1	0,2	1,6	1,04	101
Termólisis	10,2	0,2	1,6	1,03	102
Radiación visible	9,4	0,2	1,7	1,03	94

Tabla 30. Determinación de Amlodipina por tableta en la muestra comercial 1 sometidaa degradación forzada, mediante la metodología oficial por HPLC.

Los estudios de pureza del pico cromatografico sugieren la presencia de productos de degradación en las muestras sometidas a termólisis y a exposición de la luz visible, en la preparación de las muestras para su análisis tanto por la metodología oficial como por la propuesta se aprecian cambios en la apariencia de la muestra, y en la coloración de las soluciones preparadas a partir de esta muestra. Además como vemos en las siguientes figuras, al comparar los espectros de absorbancia y transmitancia de las muestras sometidas a degradación forzada y sin degradar, no encontramos evidencias significativas en cuanto a la aparición o desaparición de algún grupo funcional en las muestras degradadas. Sin embargo en dichos espectros se observa humedad, y algunas diferencias con respecto al espectro de la muestra sin degradar, vemos entonces alteraciones espectrales para estas muestras en degradación

Por tanto se podría decir que el método es capaz de detectar cambios ocurridos en el producto, como presencia de humedad por lo que el método propuesto por FTIR con ATR sería oportuno para detectar presencia de humedad en el producto farmacéutico.

A continuación en las siguientes tablas se muestran los resultados obtenidos para las pruebas de contraste estadístico entre los resultados obtenidos en la determinación de besilato de amlodipina para la muestra sin degradar y sometida a termólisis y radiación visible, esto con el objetivo de conocer si descenso en el valor encontrado para la determinación de besilato de amlodipina para estas muestras realmente disminuye por la presencia de productos de degradación y si la técnica de FTIR con ATR es capaz de detectar el descenso del principio activo en las muestras o si la diferencia entre estos valores se deben a errores aleatorios.

Tabla 31. Resumen de datos para la muestra comercial 1 sin degradar y sometida a termólisis y exposición de la radiación visible para el contraste estadístico de los resultados.

Metodología	Parámetro	Muestra control	Muestra bajo termólisis	Muestra bajo exposición de radiación visible	Muestra expuesta a la humedad
	\overline{x} (mg / tab)	10,46	10,2	9,4	10,1
HPLC	S _x	0,04	0,2	0,2	0,2
	n	3	2	2	2
	\overline{x} (mg / tab)	10,4	9,9	9,5	10,4
FTIR ATR	S _x	0,4	0,2	0,2	0,2
	n	6	6	8	6

Se aplicó la prueba de contraste F (ecuación 7) para determinar si las diferencias en las desviaciones estándares de los métodos son debidas a errores aleatorios, se propone la hipótesis nula H_0 : $s_1^2 = s_2^2$, los resultados se presentan en la tabla 32, donde el valor calculado o experimental es menor al valor crítico, se acepta entonces la hipótesis nula.

Forma de degradación	Metodología	F _(exp)	F _(critica)
Termélicie	HPLC	25	38,5
Termolisis	FTIR ATR	2,25	7,76
Radiogián vigible	HPLC	25	38,5
Radiación visible	FTIR ATR	4	5,28
Humodod	HPLC	25	38,5
Humedad	FTIR ATR	4	7,14

Tabla 32. Prueba de contraste de Fisher para las muestras bajo degradación forzada.

Ahora para decidir si la diferencia entre los dos promedios es significativa, es decir para contrastar la hipótesis nula de que H₀: $\bar{x}_1 = \bar{x}_2$ o que una diferencia hipotética de las medias sea igual a cero, se calcula el estadístico t-student para muestras con igual desviación estándar (ecuación 8).

Forma de degradación	Metodología	/t _{exp} /	t crítica (para dos colas)
T	HPLC	2,373	3,182
I ermolisis	FTIR ATR	2,739	2,228
Dodioción visible	HPLC	9,676	3,182
	FTIR ATR	5.555	2,179
Humodad	HPLC	3,286	3,182
numedad	FTIR ATR	0	2,228

Tabla 33. Prueba de contraste de las medias t-student para las muestras bajo degradación forzada.

En la tabla 37 se muestra que los resultados obtenidos de la prueba t-student para los resultados obtenidos en la determinación tanto por el método USP 37 como por FTIR con ATR de besilato de amlodipina en las muestras degradadas como para la muestra control o sin degradar.

Para el caso de las muestras expuestas a una temperatura de 45°C, no se cumple la hipótesis nula para los resultados por FTIR con ATR, por lo que las medias obtenidas provienen de poblaciones diferentes, es decir, el valor hallado como promedio para cada muestra es diferente entre las dos muestras.

En el caso de las muestras sometidas a degradación por exposición a la luz visible, no se cumple la hipótesis nula tanto para los resultados por HPLC como por FTIR ATR, se podría confirmar entonces, una disminución del principio activo en el fármaco por degradación.

Para los resultados obtenidos en el análisis de la muestra expuesta a la humedad, se cumple la hipótesis nula ya que el valor de t_{experimental} es menor al valor de t_{crítica} para un

95 %, lo que sugiere que no hay diferencia significativa entre las medias, sin embargo observando los espectros obtenidos para estas muestras se pueden apreciar ciertas diferencias espectrales producto de la humedad, por tanto el método de análisis por FTIR ATR sería oportuno para detectar presencia de humedad en el producto farmacéutico.

VII.6 APLICACIÓN DE LA METODOLOGIA DESARROLLADA A UNA SEGUNDA MUESTRA COMERCIAL.

La metodología desarrollada por FTIR con ATR se aplicó para el análisis de besilato de amlodipina en una segunda muestra, Los resultados que se obtuvieron para la concentración de besilato de amlodipina determinada de las muestras se encuentran reflejados en las tablas siguientes.

Tabla 34. Resultados para el cálculo de la concentración de amlodipina para una segunda muestra comercial por espectroscopia FTIR con ATR.

Muestra	X ₀ (mg / g)	Sx ₀	LC (95 %)
2.1	18,9	0,4	0,9
2.2	18,5	0,4	0,8
2.3	17,9	0,4	0,9

X₀ (mg / g): Concentración para las muestras

S_{x0}: Error en la interpolación

LC (95 %): Límites de confianza

En la siguiente tabla se muestra la cantidad de amlodipina determinada por tableta para la muestra en estudio.

Tabla 35. Determinación de besilato de amlodipina para una segunda muestra. Por espectroscopia FTIR con ATR.

Muestra réplica	(mg/tableta) amlodipina	S _{mg/tab}	CV	LC (95 %)
2.1	10,9	0,2	2,0	0,1
2.2	10,9	0,2	2,0	0,07
2.3	10,4	0,2	2,2	0,1

Tabla 36. Valor promedio para la determinación de amlodipina por tableta para una segunda muestra, por espectroscopia FTIR con ATR.

Muestra Réplica	Cantidad promedio de amlodipina (mg/tableta)	Límite de lo declarado (90-110) %		
2.1	10,9	109		
2.2	10,9	109		
2.3	10,4	104		
Promedio (mg/tableta)	10,	7		
Desviación estándar	0,3	3		
Coeficiente de variación	2,8			
Límite de Confianza	0,4	ļ.		

El porcentaje de lo declarado se calcula mediante la siguiente ecuación

 $Limite \ de \ aceptación = \frac{cantidad \ encontrada}{cantidad \ declarada} x100 \quad (15)$

Como se presenta en la tabla 36 el valor promedio obtenido en la determinación de amlodipina para una segunda muestra utilizando la técnica de FTIR con ATR fue de 10,7 mg / tab con un coeficiente de variación de 2,8 %. Además de que el límite de lo declarado fue de 107%, valor que se encuentra dentro del rango de aceptación por la USP el comprende entre el 90 y 110 % de la cantidad declarada por el fabricante.

VIII. CONCLUSIONES

- Se desarrolló y validó una metodología analítica por espectroscopia FTIR con ATR para la cuantificación de besilato de amlodipina. La validación del método se realizó según el protocolo <1225> establecido en la USP 37.
- Para el método propuesto se obtuvo la mejor sensibilidad con la banda de absorción a 1213 cm⁻¹ correspondiente a la banda v_{as} (SO₃⁻).
- El rango de concentración con el que se obtuvo la mejor linealidad para el desarrollo de la metodología propuesta fue de 4,984 mg / g a 95,205 mg / g, con un coeficiente de determinación mayor a 0,999.
- De acuerdo a los cálculos, los valores obtenidos para el límite de detección y límite de cuantificación fueron 1,5 y 4,6 mg / g respectivamente.
- Se encontró un coeficiente de variación para la repetitividad de los resultados de 3,8% por lo que el método FTIR con ATR es preciso.
- Para la exactitud se compararon estadísticamente la media obtenida en la determinación de besilato de amlodipina tanto por la metodología propuesta con la metodología oficial USP 37, en la que no se encontró diferencias significativas a un nivel de confianza del 95 % por lo que el método es exacto.
- El valor obtenido para la determinación de amlodipina como porcentaje de lo declarado en las muestras comerciales, se encontraron dentro del límite de aceptación de la USP que es entre el 90 y 110%.

- Se encontró que el tiempo de extracción del principio activo de las muestras puede ser menor al establecido en la metodología USP 37.
- Para el estudio de especificidad se realizaron ensayos de degradación forzada, donde las muestras fueron sometidas a humedad, a exposición de calor y luz visible, además del análisis por el método propuesto FTIR con ATR se completó el análisis con el estudio de pureza u homogeneidad del pico correspondiente al analito por HPLC. Encontrándose diferencias espectrales en ambos métodos.
- El método desarrollado genera una menor cantidad de desechos contaminantes y aporta resultados analíticos con mayor rapidez con respecto a la metodología oficial USP 37.

IX. RECOMENDACIONES

Se recomienda probar el análisis multivariante que considere las señales de mayor interés analíticos para mejorar el modelo de calibración de la metodología propuesta por FTIR con ATR de manera que sea más representativa y aporte predicciones con mayor exactitud y precisión.

X. REFERENCIAS BIBLIOGRAFICAS

[1] Enfermedades no transmisibles. Centro de prensa. Marzo de 2013. Organización Mundial de la salud. Disponible en <u>http://www.who.int/mediacentre/factsheets/fs355/es/</u> [Consultado en Diciembre de 2014].

[2] Estadísticas sanitarias mundiales 2012, Organización Mundial de la Salud.

[3] Enfermedades no transmisibles ENT Perfiles de países, 2014. Venezuela BoletíninformativoOMS.Disponibleenhttp://www.who.int/nmh/countries/ven_es.pdf?ua=1[Consultado en Diciembre de 2014].

[4] Información general sobre la hipertensión en el mundo, Una enfermedad que mata en silencio, una crisis de salud pública mundial. Día Mundial de la Salud 2013. Organización Mundial de la salud.

[5] Chobanian A. Bakris G. Black H. Cushman W. Green L. Izzo J. Jones D. Materson B.Oparil S. Wright J. Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure.Hypertension. 2003; 42:1206–1252.

[6] Mendoza Patiño N. Farmacología Médica. Editorial medico panamericana

[7] Velázquez. P. Farmacología Básica y Clínica. Médica panamericana. 18^a edición, Madrid. 2008.

[8] Bataller Sifre R. Toxicología Cínica, Universidad de Valencia, España. 2004.

[9] Oliveri R. Insuficiencia Cardiaca, Médica panamericana. Buenos Aires. 1999.
[10] Amlodipine Besylate Summary Validation Report, Julio 2012. Disponible en https://mc.usp.org/sites/default/files/monographs/Validation_Reports/Amlodipine%20Besylate%20Summary%20Validation%20Report%202012-07-23.pdf
[Consultado en octubre de 2014].

[11] Sesin J., Tamargo.J. Farmacocinética Clínica de los Antagonistas de Calcio. Universidad Católica de Córdoba. Buenos Aires, 1997.

[12] Skoog D., West D., Holler J. Fundamentos de química analítica. Editorial Thomson. octava edición. México. 2007.

[13] Skoog D., Holler J., Nieman T. Principios de Análisis Instrumental. Editorial McGraw Hill.Quinta edición. Madrid. 2001.

[14] Serway R. Jewet J. Física para ciencias e ingenierías. Editorial Thomson. Sexta edición. Volumen II. México. 2005.

[15] Skoog D., Holler F., Crouch S. Principios de Análisis Instrumental. Cengage Learning, Sexta edición. 2010.

[16] Macho S. Metodologías analíticas basadas en espectroscopia de infrarrojo y calibración multivariante. Aplicación a la industria petroquímica. Tesis Doctoral. Universitat Rovira I Virgili, 2002.

[17] Pike Technologies Inc., 2008. Miracle TM ATR for FTIR Spectrometers. Installation and user guide. Madison: Autor. (Part Number. 350-025004). [Consultado en octubre de 2014].

[18] Perkin Elmer Life and Analytical Sciences, 2005. Technical Note FT_IR spectroscopy attenuated total reflectance (ATR). Disponible en http://www.utsc.utoronto.ca/~traceslab/ATR_FTIR.pdf [Consultado en octubre de 2014].

[19] Medina Julca J. y Berrocal Quinto J. Validación de método analítico de valoración de naproxeno sódico 550 mg en tabletas por cromatografía líquida de alta performance, universidad nacional mayor de san marcos, Lima-Perú. 2008

[20] Farmacopea de Estados Unidos (USP). USP 37. Amlodipine Besylate Tablets. 2012.

[21] ICH Harmonised Tripartite Guideline, Validation of analytical procedures: text and methodology Q2(R1) . International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. 2005.

[22] Miller N.J., Miller J.C., Estadística y Quimiometría para Química Analítica. Pearson Educación, S.A., Madrid. 2002.

[23] Reglamento técnico centroamericano RCTA 11.03.39:06. Productos Farmacéuticos. Reglamento de Validación de Métodos Analíticos para la evaluación de la calidad de los medicamentos. 2006.

[24] Comité de expertos de la OMS en especificaciones para las preparaciones farmacéuticas. Informe 32, anexo 5. Organización Mundial de la Salud, Ginebra. 1992.

[25] Abdel A., Gazy K., Determination of amlodipine besylate by adsorptive square-wave anodic stripping voltammetry on glassy carbon electrode in tablets and biological fluids.Egipto. 2003.

[26] Basavaiah K, Chandrashekar U and Nagegowda P. Spectrophotometric and High Performance Liquid Chromatographic Determination of Amlodipine Besylate in Pharmaceuticals. India. 2005

[27] Andrei A. Bunaciu, Hassan Y. Aboul-Enein, ŞerbanFleschin. FT-IR Spectrophotometric analysis of acetylsalicylic acid and its pharmaceutical formulations. Canadian Journal of Analytical Sciences and Spectroscopy, 2006.

[28] Gölcü A, Yücesoy C. Colorimetric Determination of Amlodipine Besylate in Tablets. Turquia. 2006.

[29] Nilesh Jain, Ruchi Jain, Arti Jain, Sharad P. Pandey, Deepak Kumar Jain. Spectrophotometric Method Development and Validation for Quantitative Estimation of Amlodipine Besylate in Bulk Drug and Their Dosage Forms By Using Hydrotropic Agent. India. 2010

[30] Ravi Prasad P, Bhuvaneswari K, Murarilal and Rajani K. FT-IR Spectroscopic Assay Method for Amlodipine Besylate in Bulk and Tablet Formulations. India. 2014.

[31] Szabó, L.; Chiş, V.; Leopold, N.; Cozar, O.; David L. y Orosz Sz. (2009). Spectroscopic and theoretical study of amlodipine besylate. Journal of molecular structure, 924-926 (2009) 385-392.

[32] Cozar O., Szabó L., Chiş V, Leopold N, David L. (2010). Vibrational, NMR, and DFT investigation of some compounds of pharmaceutical interest. Annals of the Academy of Romanian Scientists Physics, Volume 2 Number 1/2010, 17-34

[33] Guidelines for the Management of Arterial Hypertension The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension and of the European Society of Cardiology (Journal of Hypertension 2007, 25:1105–1187)

[34] Tresguerres J. Fisiología Humana. McGraw-Hill Interamericana, tercera edición. México. 2005.

[35] Mathison Y., Oletta J. Preguntas y respuestas más frecuentes sobre medicamentos genéricos y bioequivalencia. Red de Sociedades Científicas Venezolanas 2013.

[36] Guía práctica: 5. Garantía de la seguridad y la calidad de los medicamentos. Portal de Información - Medicamentos Esenciales y Productos de Salud, Comités de farmacoterapia, Organización Mundial de la Salud (2003). Disponible en http://apps.who.int/medicinedocs/es/d/Js8121s/7.3.html#Js8121s.7.3

[37] Especialidades farmacéuticas registradas con y sin prescripción facultativa, Instituto Nacional de Higiene Rafael Rangel. Ministerio del poder popular para la salud 2011

[38] Gennaro A. R. Remington Farmacia. Editorial Médica Panamericana. 2003.

[39] Hoyos Martínez M. Guía para los procesos de validación de los ensayos de laboratorio. Universidad Nacional de Colombia. 2010

[40] Chapter 3 Materials & Methods. Method- 3A.Spectrophotometric Method Development and Validation for Quantitative Estimation of Amlodipine Besylate in Bulk Drug and Their Dosage Forms by Using Hydrotropic Agent. SureshGyanViharUniversity. Páginas 57-62, 66-68. Disponible en: <u>http://shodhganga.inflibnet.ac.in/bitstream/10603/25036/13/14_material____method.pdf</u> [Consultado en Diciembre de 2014].

[41] Chung P.; Kwon J. y colaboradores. Results of a Multicenter, 8-Week, Parallel-Group, Randomized, Double-Blind, Double-Dummy, Phase III Clinical Trial to Evaluate the Efficacy and Tolerability of Amlodipine Maleate versus Amlodipine Besylate in Korean Patients with Mild to Moderate Hypertension.2005

[42] Martínez Y. Desarrollo de una metodología por HPLC para la determinación de clorhidrato de propafenona en tabletas recubiertas.T.E.G. Escuela de Química, Facultad de Ciencias, Universidad Central de Venezuela. 2014

[43] Bor, M. y Baffi, P. (2014) Desarrollo y validación de un método por RP-HPLC para la determinación de clorhidrato de verapamilo en tabletas recubiertas. Revista Facultad de Farmacia, Vol 77, (Nros 1 y 2), *74-83.* [Artículo en línea] consultada el 11 de mayo de 2015 en: http://saber.ucv.ve/ojs/index.php/rev_ff/article/viewFile/8182/8097

XI. APÉNDICE

Espectroscopia FTIR con ATR

Apéndice a. Concentraciones de los patrones utilizados para la elaboración de la curva de calibración

Patrón	Besilato de Amlodipina (± 0,3 mg)	Metanol (± 0,0003 g)	Concentración (mg / g)	S _(mg/g)
1	5,0	8,0093	0,62	0,04
2	4,9	6,0102	0,82	0,05
3	10,0	6,0190	1,66	0,05
4	10,9	8,6042	1,27	0,03
5	10,5	4,0002	2,62	0,07
6	10,0	2,0064	5,0	0,1
7	30,0	2,0119	14,9	0,1
8	50,0	2,0065	24,9	0,1
9	70,0	2,0128	34,8	0,1 0,1 0,1
10	89,9	2,0072	44,8	
11	110,0	2,0097	54,7	
12	130,7	2,0009	65,3	0,2
13	149,9	2,0057	74,7	0,1
14	170,1	2,0104	84,6	0,1
15	190,6	2,0020	95,2	0,2
16	210,0	2,0075	104,6	0,2
17	230,8	2,0071	115,0	0,2
18	250,9	2,0087	124,9	0,2
19	270,1	2,0103	134,4	0,2
20	292,0	2,0072	145,5	0,2
21	320,2 2,0067		159,6	0,2
22	363,5	2,0354	178,6	0,1
23	401,1	2,0087	199,7	0,2

Tabla 37. Preparación de los patrones para la curva de calibración 1

Tabla	38.	Patrones	para	la	repetición	de	la	curva	de	calibración	con	respecto	al
intervalo lineal seleccionado													

Patrón	Besilato de Amlodipina (±0,3 mg)	MEOH (±0,0003 g)	Concentración (mg/g)	S _[mg/g]
1	9,8	2,0115	4,9	0,1
2	19,7	2,0057	9,8	0,1
3	30,6	2,0084	15,2	0,1
4	49,9	2,0005	24,9	0,2
5	71,4	2,0040	35,6	0,1
6	89,9	2,0108	44,7	0,1
7	110,6	2,0073	55,1	0,1
8	130,6	2,0113	64,9	0,1
9	150,7	2,0074	75,1	0,1
10	170,2	2,0136	84,5	0,1
11	190,2	2,0043	94,9	0,2

Apéndice b. Análisis de varianza para las curvas de calibración en función de las bandas de absorción seleccionados, para el rango completo de patrones preparados.

 Curva de calibración 1 correspondiente a la banda v C=O con número de onda de 1688 cm⁻¹.

Tabla 39. Estadística de la regresión para la curva de calibración correspondiente a la banda v C=O

Coeficiente de correlación múltiple	0,99891077
Coeficiente de determinación R^2	0,99782272
R^2 ajustado	0,99780811
Error típico	0,00305374
Observaciones	151

Tabla 40. Análisis de varianza para la curva de calibración correspondiente a la banda v C=O

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crític	co de F
Regresión	1	0,63678091	0,63678091	68285,06	3,088E-	-200
Residuos	149	0,00138947	9,3253E-06			
Total	150	0,63817039				
	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%
Intercepción	0,00116117	0,00038189	3,04058963	0,00279023	0,0004066	0,0019158
Variable X 1	0,00090018	3,4448E-06	261,314102	3,088E-200	0,0008934	0,0009070

Figura 30. Gráfico de la distribución de los residuales

Tabla 41. Distribución de los	s residuales par	a la curva	de calibración	correspondiente	а
la banda v C=O					

Observación	Pronóstico para Y	Residuos	Observación	Pronóstico para Y	Residuos
1	0,001723	-0,000121	76	0,068438	-0,001006
2	0,001723	0,000793	77	0,068438	-0,000644
3	0,001723	0,000788	78	0,068438	0,000584
4	0,001723	-0,000038	79	0,068438	0,001600
5	0,001723	0,000453	80	0,068438	0,001939
6	0,001723	0,000710	81	0,077325	-0,000832
7	0,001895	-0,001223	82	0,077325	0,000133
8	0,001895	-0,000961	83	0,077325	0,000496
9	0,001895	-0,000534	84	0,077325	-0,000197
10	0,001895	0,000032	85	0,077325	0,001481
11	0,001895	0,000139	86	0,077325	0,000490
12	0,001895	0,000697	87	0,077325	0,002045
13	0,002109	-0,000003	88	0,077325	0,003265
14	0,002109	0,000468	89	0,077325	0,004180
15	0,002109	0,000581	90	0,086862	0,002702
16	0,002109	-0,000867	91	0,086862	0,003845
17	0,002109	-0,000022	92	0,086862	0,004619
18	0,002109	-0,000022	93	0,086862	0,003018
19	0,002302	-0,000571	94	0,086862	0,004038

20	0,002302	-0,000334	95	0,095326	0,000656
21	0,002302	-0,000228	96	0,095326	0,001231
22	0,002302	-0,000107	97	0,095326	-0,000483
23	0,002657	-0,000551	98	0,095326	-0,001450
24	0,002657	-0,000838	99	0,095326	0,000707
25	0,002657	-0,000627	100	0,104674	0,004419
26	0,002657	-0,000365	101	0,104674	0,006578
27	0,002657	-0,000273	102	0,104674	0,006290
28	0,005648	-0,000811	103	0,104674	0,001719
29	0,005648	-0,000776	104	0,104674	0,005177
30	0,005648	-0,000440	105	0,104674	0,005692
31	0,005648	-0,002506	106	0,113599	0,003693
32	0,005648	-0,001631	107	0,113599	0,005248
33	0,005648	-0,001736	108	0,113599	0,005464
34	0,014584	-0,000821	109	0,113599	0,006398
35	0,014584	-0,000601	110	0,122107	0,000489
36	0,014584	-0,000055	111	0,122107	0,001949
37	0,014584	-0,001425	112	0,122107	0,002968
38	0,014584	-0,001682	113	0,122107	-0,000076
39	0,014584	-0,001765	114	0,122107	-0,000552
40	0,014584	0,000744	115	0,122107	-0,000934
41	0,014584	0,001546	116	0,132115	0,005404
42	0,023593	-0,000016	117	0,132115	0,006072
43	0,023593	0,000117	118	0,132115	0,006561
44	0,023593	0,000324	119	0,132115	0,007491
45	0,023593	-0,001344	120	0,132115	-0,001146
46	0,023593	-0,001572	121	0,132115	-0,002084
47	0,023593	-0,000913	122	0,144798	-0,002132
48	0,023593	0,001357	123	0,144798	-0,000388
49	0,032467	-0,005802	124	0,144798	0,000839
50	0,032467	-0,005861	125	0,144798	-0,001601
51	0,032467	-0,005584	126	0,144798	-0,000309
52	0,032467	-0,006065	127	0,144798	0,005398
53	0,032467	-0,005169	128	0,161923	-0,003759
54	0,041479	-0,005395	129	0,161923	-0,002168
55	0,041479	-0,005043	130	0,161923	-0,001964
56	0,041479	-0,004704	131	0,161923	-0,000674
57	0,041479	-0,004860	132	0,161923	0,001249

58	0,041479	-0,004222	133	0,161923	0,002115
59	0,050432	0,000223	134	0,180909	-0,001494
60	0,050432	0,000849	135	0,180909	0,000515
61	0,050432	0,001237	136	0,180909	0,000871
62	0,050432	0,001385	137	0,180909	-0,000786
63	0,050432	-0,000617	138	0,180909	0,000538
64	0,050432	-0,000490	139	0,180909	0,000948
65	0,050432	0,001880	140	0,198511	-0,001614
66	0,050432	0,002833	141	0,198511	-0,000295
67	0,050432	0,004527	142	0,198511	0,000564
68	0,050432	0,005956	143	0,198511	-0,007613
69	0,050432	0,007026	144	0,198511	-0,005949
70	0,059961	-0,003500	145	0,198511	-0,005772
71	0,059961	-0,003450	146	0,213011	-0,004228
72	0,059961	-0,002733	147	0,213011	-0,002487
73	0,059961	-0,002853	148	0,213011	-0,001218
74	0,059961	-0,002496	149	0,213011	-0,005075
75	0,068438	-0,001650	150	0,213011	-0,004185
			151	0,213011	-0,006956

 Curva de calibración 2 correspondiente a la banda vas (SO₃⁻) con número de onda de 1213 cm⁻¹

Tabla 42. Estadística de la regresión para la curva de calibración correspondiente a la curva de calibración de la banda v_{as} (SO₃⁻)

Coeficiente de correlación múltiple	0,998869953
Coeficiente de determinación R^2	0,997741183
R^2 ajustado	0,997725605
Error típico	0,007148035
Observaciones	147

Tabla 43. Análisis de varianza para la curva de calibración correspondiente a la curva de calibración de la banda v_{as} (SO₃⁻)

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor críti	co de F
Regresión	1	3,27248861	3,27248861	64047,8878	9,492E	-194
Residuos	145	0,00740869	5,1094E-05			
Total	146	3,2798973				
	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%
Intercepción	0,008158551	0,00090202	9,04473448	8,9311E-16	0,0063757	0,0099414
Variable X 1	0,002042947	8,0724E-06	253,076842	9,492E-194	0,0020270	0,002059

Figura 31. Grafica de la distribución de los residuales para la curva de calibración correspondiente a la banda v_{as} (SO₃⁻)

Tabla 44. Distribución de los residuales para a la curva de calibración correspondiente a la banda v_{as} (SO₃⁻)

Observación	Pronóstico para Y	Residuos	Observación	Pronóstico para Y	Residuos
1	0,00943391	-0,00731932	75	0,16084227	0,00654303
2	0,00943391	-0,00694369	76	0,16084227	0,00517233
3	0,00943391	-0,00695295	77	0,16084227	0,00577663
4	0,00943391	-0,0072434	78	0,16084227	0,00631443
5	0,00943391	-0,00694119	79	0,18101234	0,00687306
6	0,00943391	-0,0068968	80	0,18101234	0,00793406
7	0,009824126	-0,00791786	81	0,18101234	0,00629006
8	0,009824126	-0,00799815	82	0,18101234	0,00873166
9	0,009824126	-0,00819322	83	0,18101234	0,00758736
10	0,009824126	-0,00745029	84	0,18101234	0,00768456
11	0,009824126	-0,00720618	85	0,18101234	0,01127496
12	0,009824126	-0,00717785	86	0,20265689	0,00819941
13	0,010310089	-0,00473424	87	0,20265689	0,00944971
14	0,010310089	-0,0043396	88	0,20265689	0,00936481
15	0,010310089	-0,00432697	89	0,20265689	0,00731701
16	0,010310089	-0,00694051	90	0,20265689	0,00843931

17	0,010310089	-0,00694481	91	0,22186656	0,00691284
18	0,010310089	-0,00694481	92	0,22186656	0,00784354
19	0,010746603	-0,00683717	93	0,22186656	0,00478014
20	0,010746603	-0,00709901	94	0,22186656	0,00332654
21	0,010746603	-0,00739976	95	0,22186656	0,00641364
22	0,010746603	-0,00706356	96	0,24308064	0,00987196
23	0,011552714	-0,00597686	97	0,24308064	0,01210936
24	0,011552714	-0,00910674	98	0,24308064	0,01029976
25	0,011552714	-0,00898174	99	0,24308064	0,00750936
26	0,011552714	-0,00886143	100	0,24308064	0,00972586
27	0,011552714	-0,00883946	101	0,24308064	0,00977756
28	0,018340702	-0,00502221	102	0,26333621	0,00447799
29	0,018340702	-0,00514406	103	0,26333621	0,00674389
30	0,018340702	-0,004951	104	0,26333621	0,00605349
31	0,018340702	-0,00518198	105	0,26333621	0,00746459
32	0,018340702	-0,00505398	106	0,28264492	0,00606108
33	0,018340702	-0,00459766	107	0,28264492	0,00919008
34	0,038621499	-0,00235473	108	0,28264492	0,01112638
35	0,038621499	-0,00213963	109	0,28264492	0,00566768
36	0,038621499	-0,00190237	110	0,28264492	0,00506418
37	0,038621499	-0,00229669	111	0,28264492	0,00491918
38	0,038621499	-0,00235278	112	0,30535887	0,00389233
39	0,038621499	-0,0023772	113	0,30535887	0,00495573
40	0,038621499	-0,00297145	114	0,30535887	0,00508183
41	0,038621499	-0,00253687	115	0,30535887	0,00580593
42	0,05906677	-0,00093356	116	0,30535887	0,00328693
43	0,05906677	-0,00072198	117	0,30535887	0,00209453
44	0,05906677	0,00012583	118	0,33414229	0,00075461
45	0,05906677	-0,00028942	119	0,33414229	0,00400911
46	0,05906677	-0,00043318	120	0,33414229	0,00668621
47	0,05906677	-0,00052547	121	0,33414229	0,00068891
48	0,05906677	-0,00065164	122	0,33414229	0,00308231
49	0,07920698	0,00026994	123	0,33414229	0,01498501
50	0,07920698	0,00015083	124	0,37300633	-0,00299183
51	0,07920698	0,00059911	125	0,37300633	-8,3032E-05
52	0,07920698	0,00019478	126	0,37300633	-0,00054543
53	0,07920698	0,00085274	127	0,37300633	-0,00041383
54	0,099659607	0,00186549	128	0,37300633	0,00257937
----	-------------	------------	-----	------------	-------------
55	0,099659607	0,00200559	129	0,37300633	0,00383537
56	0,099659607	0,00239699	130	0,41609701	-0,00700551
57	0,099659607	0,00170119	131	0,41609701	-0,00333761
58	0,099659607	0,00258369	132	0,41609701	-0,00342771
59	0,119978301	0,0047069	133	0,41609701	-0,00793371
60	0,119978301	0,0059049	134	0,41609701	-0,00458841
61	0,119978301	0,0065216	135	0,41609701	-0,00441821
62	0,119978301	0,0076051	136	0,45604474	-0,01742594
63	0,119978301	0,0047423	137	0,45604474	-0,01242284
64	0,119978301	0,0054159	138	0,45604474	-0,01077574
65	0,119978301	0,004992	139	0,45604474	-0,01521904
66	0,119978301	0,0063125	140	0,45604474	-0,01270224
67	0,119978301	0,0074965	141	0,45604474	-0,01282744
68	0,141605075	0,00473272	142	0,48895199	-0,01306909
69	0,141605075	0,00540482	143	0,48895199	-0,00894299
70	0,141605075	0,00543572	144	0,48895199	-0,00870659
71	0,141605075	0,00518032	145	0,48895199	-0,01680439
72	0,141605075	0,00539482	146	0,48895199	-0,01489639
73	0,160842267	0,00538303	147	0,48895199	-0,02037169
74	0,160842267	0,00598003			

 Curva de calibración 2 correspondiente a la banda v_s (SO₃⁻) con número de onda de 1101 cm⁻¹.

Tabla 45. Estadística de la regresión para la curva de calibración correspondiente a la curva de calibración de la banda v_s (SO₃⁻)

Coeficiente de correlación múltiple	0,999622492
Coeficiente de determinación R^2	0,999245127
R^2 ajustado	0,999239921
Error típico	0,003591687
Observaciones	147

Tabla 46. Análisis de varianza para la curva de calibración correspondiente a la banda v_s (SO₃⁻)

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crí	tico de F
Regresión	1	2,47607222	2,47607222	191940,353	2,928	E-228
Residuos	145	0,00187053	1,29E-05			
Total	146	2,47794275				
	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%
Intercepción	0,002898479	0,00045324	6,39500798	2,0724E-09	0,00200267	0,00379429
Variable X 1	0,00177705	4,0562E-06	438,109978	2,928E-228	0,00176903	0,00178507

Figura 32. Grafica de la distribución de los residuales para la curva de calibración correspondiente a la banda v_s (SO₃⁻)

Tabla 47. Distribución	de los	residuales	para l	la curva	de c	alibración	correspondi	iente a
la banda v _s (SO ₃ ⁻)								

Observación	Pronóstico para Y	Residuos	Observación	Pronóstico para Y	Residuos
1	0,004007845	-0,00247701	75	0,135709864	0,00268374
2	0,004007845	-0,00159756	76	0,135709864	0,00202544
3	0,004007845	-0,00180958	77	0,135709864	0,00326124
4	0,004007845	-0,0019934	78	0,135709864	0,00318864
5	0,004007845	-0,00191217	79	0,153254729	0,00129287
6	0,004007845	-0,00180885	80	0,153254729	0,00271357
7	0,004347273	-0,00321301	81	0,153254729	0,00070607
8	0,004347273	-0,00271251	82	0,153254729	0,00281507
9	0,004347273	-0,00282073	83	0,153254729	0,00285427
10	0,004347273	-0,00306143	84	0,153254729	0,00281907
11	0,004347273	-0,00305412	85	0,153254729	0,00661337
12	0,004347273	-0,00223738	86	0,17208216	0,00444794
13	0,004769987	-0,00084367	87	0,17208216	0,00552114
14	0,004769987	0,00033025	88	0,17208216	0,00677914
15	0,004769987	-0,00050477	89	0,17208216	0,00392074

16	0,004769987	-0,00253555	90	0,17208216	0,00423474
17	0,004769987	-0,00203643	91	0,188791629	0,00075617
18	0,004769987	-0,00203643	92	0,188791629	0,00074117
19	0,005149687	-0,00276615	93	0,188791629	-0,00129093
20	0,005149687	-0,002358	94	0,188791629	-0,00187423
21	0,005149687	-0,00277215	95	0,188791629	0,00045867
22	0,005149687	-0,0021483	96	0,20724462	0,00663058
23	0,005850879	-0,00192456	97	0,20724462	0,00939048
24	0,005850879	-0,00412285	98	0,20724462	0,00831368
25	0,005850879	-0,00450082	99	0,20724462	0,00029398
26	0,005850879	-0,00432397	100	0,20724462	0,00653478
27	0,005850879	-0,00425393	101	0,20724462	0,00667358
28	0,011755387	-0,0022369	102	0,224863852	0,00255605
29	0,011755387	-0,00207786	103	0,224863852	0,00385825
30	0,011755387	-0,00138642	104	0,224863852	0,00285695
31	0,011755387	-0,0036014	105	0,224863852	0,00451115
32	0,011755387	-0,00264032	106	0,241659462	0,00168714
33	0,011755387	-0,00276976	107	0,241659462	0,00331034
34	0,029396565	-0,00161468	108	0,241659462	0,00598374
35	0,029396565	-0,00161666	109	0,241659462	0,00083364
36	0,029396565	-0,00105375	110	0,241659462	0,00153374
37	0,029396565	-0,0015364	111	0,241659462	0,00086414
38	0,029396565	-0,00224506	112	0,261417111	0,00229269
39	0,029396565	-0,00216322	113	0,261417111	0,00467119
40	0,029396565	-0,0008251	114	0,261417111	0,00248519
41	0,029396565	-0,00041459	115	0,261417111	0,00314869
42	0,047180811	-0,00129684	116	0,261417111	-0,00102731
43	0,047180811	-0,00087936	117	0,261417111	-0,00263801
44	0,047180811	-0,00018193	118	0,286454272	-0,00262277
45	0,047180811	-0,00143698	119	0,286454272	-4,0972E-05
46	0,047180811	-0,00088718	120	0,286454272	0,00343093
47	0,047180811	-0,00123721	121	0,286454272	-0,00331357
48	0,047180811	-0,00136102	122	0,286454272	0,00191623
49	0,064699701	-0,0009318	123	0,286454272	0,01182993
50	0,064699701	-0,00037401	124	0,320260017	-0,00254382

51	0,064699701	-0,00014368	125	0,320260017	0,00053648
52	0,064699701	-0,00062765	126	0,320260017	0,00196628
53	0,064699701	-3,1671E-05	127	0,320260017	-2,4917E-05
54	0,082490345	-0,00017157	128	0,320260017	0,00331028
55	0,082490345	0,00041851	129	0,320260017	0,00361258
56	0,082490345	0,0017034	130	0,357742285	-0,00352779
57	0,082490345	0,00097523	131	0,357742285	-0,00086209
58	0,082490345	0,00127472	132	0,357742285	-0,00051429
59	0,100164489	0,00123761	133	0,357742285	-0,00540669
60	0,100164489	0,00192561	134	0,357742285	-0,00181429
61	0,100164489	0,00199741	135	0,357742285	0,00020071
62	0,100164489	0,00362661	136	0,392490683	-0,01059188
63	0,100164489	0,00067621	137	0,392490683	-0,00588858
64	0,100164489	0,00074711	138	0,392490683	-0,00501648
65	0,100164489	0,00175811	139	0,392490683	-0,00930618
66	0,100164489	0,00248081	140	0,392490683	-0,00476538
67	0,100164489	0,00384911	141	0,392490683	-0,00563078
68	0,118976461	0,00170434	142	0,421114928	-0,00490203
69	0,118976461	0,00305744	143	0,421114928	-0,00080343
70	0,118976461	0,00220794	144	0,421114928	0,00115877
71	0,118976461	0,00198534	145	0,421114928	-0,00833213
72	0,118976461	0,00218274	146	0,421114928	-0,00675883
73	0,135709864	0,00170674	147	0,421114928	-0,01128273
74	0,135709864	0,00227794			

Apéndice c: análisis de varianza de las curvas de calibración para el rango lineal seleccionado

• Banda de absorción 1688 cm-1 (banda v C=O)

Tabla 48. Estadística de la regresión para la curva de calibración correspondiente a la curva de calibración de la banda v (C=O) para el rango lineal seleccionado

Coeficiente de correlación múltiple	0,99568693
Coeficiente de determinación R^2	0,99139246
R^2 ajustado	0,99125135
Error típico	0,00253674
Observaciones	63

Tabla 49. Análisis de varianza para la curva de calibración correspondiente a la banda v (C=O) en el rango seleccionado

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crít	tico de F
Regresión	1	0,04521152	0,04521152	7025,8094	1,0547	7E-64
Residuos	61	0,00039254	6,4351E-06			
Total	62	0,04560405				
	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%
Intercepción	-0,0014189	0,0006309	-2,24905974	0,0281303	-0,00268	-0,000157
Variable X 1	0,0009395	1,1209E-05	83,8201012	1,055E-64	0,00091711	0,00096194

Figura 33. Grafica de la distribución de los residuales para la curva de calibración correspondiente a la banda v (C=O)

• Banda de absorción 1213 cm-1 correspondiente a la banda v_{as} (SO₃⁻).

Tabla 50. Estadística de la regresión para la curva de calibración correspondiente a la curva de calibración de la banda v_{as} (SO₃⁻) para el rango lineal seleccionado

Coeficiente de correlación múltiple	0,99979497
Coeficiente de determinación R^2	0,99958998
R^2 ajustado	0,99958326
Error típico	0,00128693
Observaciones	63

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor cri	tico de F
Regresión	1	0,2462927	0,2462927	148711,486	4,991	E-105
Residuos	61	0,00010103	1,6562E-06			
Total	62	0,24639372				
	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%
Intercepción	0,00365305	0,00032007	11,4133941	8,92E-17	0,00301304	0,00429306
Variable X 1	0,00219285	5,6864E-06	385,631282	4,991E-105	0,00218148	0,00220422

Tabla 51. Análisis de varianza para la curva de calibración correspondiente a la banda v_{as} (SO₃⁻) para el rango lineal seleccionado

Figura 34. Grafica de la distribución de los residuales para la curva de calibración correspondiente a la banda v_{as} (SO₃⁻) para el rango lineal seleccionado

• Banda de absorción 1101 cm⁻¹ correspondiente a la banda vs (SO3-)

Tabla 52. Estadística de la regresión para la curva de calibración correspondiente a la curva de calibración de la banda v_s (SO₃⁻) para el rango lineal seleccionado

Coeficiente de correlación múltiple	0,99982586
Coeficiente de determinación R^2	0,99965175
R^2 ajustado	0,99964604
Error típico	0,00100109
Observaciones	63

Tabla 53. Análisis de varianza para la curva de calibración correspondiente a la banda v_s (SO₃⁻) para el rango lineal seleccionado

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crít	tico de F
Regresión	1	0,17548179	0,17548179	175098,802	3,431	E-107
Residuos	61	6,1133E-05	1,0022E-06			
Total	62	0,17554292				
	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%
Intercepción	0,0002306	0,00024898	0,9261923	0,35799601	-0,0002672	0,00072846
Variable X 1	0,00185097	4,4234E-06	418,448088	3,431E-107	0,00184213	0,00185982

Figura 35. Grafica de la distribución de los residuales para la curva de calibración correspondiente a la banda v_s (SO₃⁻) para el rango lineal seleccionado

Apéndice d. Preparación de las muestras para el análisis por FTIR con ATR.

Tabla 54. Preparación de las muestras del material de referencia interno y de una segunda muestra para su análisis por FTIR con ATR

Muestra-replica	Masa muestra (± 0,3 mg)	Masa Metanol (± 0,0003 g)
Material de referencia interno-1	505,1	2,0421
Material de referencia interno-2	504,2	1,0086
Material de referencia interno-3	756,3	2,0197
Material de referencia interno-4	1009,8	2,0062
Material de referencia interno-5	1261,1	2,0076
Material de referencia interno-6	2524,3	2,0228
Muestra 2-1	646,1	2,0136
Muestra 2-2	632	2,0041
Muestra 2-3	638,1	2,0072

Apéndice e. Estudios de especificidad

Tabla 55. Preparación de las muestras de material de referencia interno sometidas a degradación para el análisis por la metodología FTIR con ATR

Muestra-tipo de degradación	Masa de muestra (± 0,3 mg)	Masa Metanol (± 0,0003 g)
Humedad	463,1	1,5250
Termólisis	468,4	1,5929
Radiación visible	472,6	1,6567

Apéndice f.	Precisión	para el	sistema	FTIR	con ATR
-------------	-----------	---------	---------	------	---------

Tabla 56. Precisión del sistema FTIR con ATR en la medición de absorbancia para una serie de patrones

Patrón- Replica	Concentración (mg / g)	Absorbancia a 1213 cm-1 Promedio A		Desviación estándar	CV
1.1	5	0,0133			
1.2	5	0,0132	0.0133	0 0002	1.6
1.3	5	0,0134	0,0133	0,0002	1,0
1.4	5	0,0132			
1.5	5	0,0133			
1.6	5	0,0137			
2.1	14,9	0,0363			
2.2	14,9	0,0365			
2.3	14,9	0,0367			0,9
2.4	14,9	0,0363	0.0363	0,0003	
2.5	14,9	0,0363	0,0303		
2.6	14,9	0,0362			
2.7	14,9	0,0357			
2.8	14,9	0,0361			
3.1	24,9	0,0581			
3.2	24,9	0,0583			
3.3	24,9	0,0592			
3.4	24,9	0,0588	0,0586	0,0003	0,6
3.5	24,9	0,0586			
3.6	24,9	0,0585			
3.7	24,9	0,0584			
4.1	34,8	0,0795			
4.2	34,8	0,0794			
4.3	34,8	0,0798	0,0796	0,0003	0,4
4.4	34,8	0,0794			
4.5	34,8	0,0801			

5.1	44,8	0,1015			
5.2	44,8	0,1017			
5.3	44,8	0,1021	0,1018	0,0004	0,4
5.4	44,8	0,1014			
5.5	44,8	0,1022			
6.1	54,7	0,125			
6.2	54,7	0,126			
6.3	54,7	0,126			
6.4	54,7	0,128	0,126		0,9 0,2
6.5	54,7	0,125		0,001	
6.6	54,7	0,125			
6.7	54,7	0,125			
6.8	54,7	0,126			
6.9	54,7	0,127			
7.1	65,3	0,1463			
7.2	65,3	0,1470			
7.3	65,3	0,1470	0,1468		
7.4	65,3	0,1468			
7.5	65,3	0,1470			
8.1	74,7	0,1662			
8.2	74,7	0,1668			
8.3	74,7	0,1674	0 1667	0.0005	0.2
8.4	74,7	0,1660	0,1007	0,0005	0,3
8.5	74,7	0,1666			
8.6	74,7	0,1672			

Tabla 57. Precisión del sistema FTIR con ATR en la medición de absorbancia para unaserie de patrones (continuación)

0.4	04.0	0.400			
9.1	84,6	0,188			
9.2	84,6	0,189			
9.3	84,6	0,187			
9.4	84,6	0,190	0,189	0,002	0,9
9.5	84,6	0,189			
9.6	84,6	0,189			
9.7	84,6	0,192			
10.1	95,2	0,2109			
10.2	95,2	0,2121			
10.3	95,2	0,2120	0,2112	0,0009	0,4
10.4	95,2	0,2100			
10.5	95,2	0,2111			

Tabla 58. Precisión del sistema FTIR con ATR en la medición de absorbancia para unaserie de patrones (continuación)

Muestra	Masa muestra (±0,3mg)	Absorbancia a 1213 cm ⁻¹	Promedio Abs.	Desviación estándar	CV
		0,035			
	505 1	0,0357	0.0255	0.0005	15
	505,1	0,0351	0,0300	0,0000	1,0
		0,0362			
		0,0675			
	504.2	0,0681	0.0681	0 0005	0.7
	304,2	0,0684	0,0001	0,0005	0,7
		0,0686			
		0,0497			
		0,0502		0,0003	
	756,3	0,0499	0,0498		0.6
		0,0493			0,0
		0,0498			
Material de		0,0501			
referencia	1009,8	0,0653			
interno		0,0654		0,0006	
		0,0656			
		0,0659	0.0658		0.8
		0,0651	0,0030		0,0
		0,0659			
		0,0664			
		0,0667			
		0,0756			
		0,0768			
		0,0774			
	1261,1	0,0762	0,0769	0,0008	1
		0,0768			
		0,0774			
		0,0779			

Tabla 59. Precisión del sistema FTIR con ATR en la medición de absorbancia para unaserie de muestras (material de referencia interno y segunda muestra)

2524.2	0,1619		0.0000	0,5
	0,1627	0.1620		
2524,3	0,1631	0,1629	0,0008	
	0,1638			
	0,0445			
	0,045			
646.4	0,0451	0.0452	0.0004	0.0
040, 1	0,0453	0,0452	0,0004	0,9
	0,0455			
	0,0457			
632	0,0441		0,0003	
	0,0447	0,0443		0,8
	0,0448			
	0,0438			
	0,0444			
	0,0444			
	0,0441			
	0,0428			
	0,0426			
629.1	0,0431	0.0428	0.0002	0.6
030,1	0,0425	0,0420	0,0002	0,0
	0,0427			
	0,0431	1		
	2524,3 646,1 632 638,1	0,1619 0,1627 0,1631 0,1638 0,0445 0,045 0,0451 0,0453 0,0455 0,0457 0,0441 0,0448 632 0,0443 0,0444 0,0443 632 0,0443 0,0441 0,0444 0,0443 0,0428 0,0428 0,0431 0,0425 0,0427 0,0431 0,0431	0,16190,16270,16310,16380,16380,04530,0450,04510,04530,04550,04570,04470,04480,04480,04440,04440,04440,04410,04410,04430,04430,04440,04410,04430,04430,04440,04440,04430,04430,04440,04440,04430,04280,04260,04310,04310,04310,0431	0,16190,16270,16310,16310,16380,04450,0450,04510,04530,04550,04550,04470,04480,04440,04440,04440,04440,04410,04410,04280,04260,04310,0431

Tabla 60. Precisión del sistema FTIR con ATR en la medición de absorbancia para unaserie de muestras (material de referencia interno y segunda muestra). (Continuación)

Cromatografía líquida de alta eficiencia HPLC (USP 37)

Apéndice g. Preparación de los patrones para la curva de calibración de la metodología por HPLC.

Tabla 61. Preparación de la solución madre de besilato de amlodipina

Solución madre	Masa besilato de amlodipina estándar (± 0,03 mg)	Volumen final (± 0,05 mL)	Concentración (mg / mL)	S _(mg/mL)
	11,44	50	0,2288	0,0006

Tabla 62. Preparación de los patrones de besilato de amlodipina para la curva de calibración HPLC

Solución patrón de besilato de amlodipina	Volumen solución madre (mL)	Volumen final (mL)	Concentración (mg / mL)	S _(mg/mL)
1	1	25	0,0092	0,0001
2	1	20	0,0114	0,0001
3	1	10	0,0229	0,0003
4	3	25	0,0275	0,0003
5	3	20	0,0343	0,0003

Apéndice h. Preparación de las muestras para el análisis por la metodología USP 37

Tabla 63. Preparación de las muestras de material de referencia interno para el análisispor la metodología USP 37

Muestra-réplica	Masa de muestra (± 0,03 mg)	Volumen final (± 0,005 mL)	Alícuota pipeta (± 0,006 mL)	Volumen dilución (± 0,02 mL)
Material de referencia interno-1	127,21	50	2	10
Material de referencia interno-2	126,24	50	2	10
Material de referencia interno-3	127,04	50	2	10

Apéndice j. Preparación de las muestras sometidas a degradación para el análisis por la metodología USP 37

 Tabla 64. Preparación de las muestras sometidas a degradación para el análisis por metodología USP 37

Muestra-tipo de degradación	Masa de muestra (± 0,03 mg)	Volumen final (± 0,005 mL)	Alícuota pipeta (± 0,006 mL)	Volumen dilución (± 0,02 mL)
Humedad	126,4	50	2	10
Termólisis	126,73	50	2	10
Radiación visible	126,80	50	2	10

Apéndice k. Análisis de varianza para las curvas de calibración de HPLC.

• Curva de calibración 1 para el análisis de las muestra del material de referencia interno.

Tabla 65. Estadística de la regresión para la curva de calibración HPLC para el análisis de muestras del material de referencia interno

Coeficiente de correlación múltiple	0,99995152
Coeficiente de determinación R^2	0,99990304
R^2 ajustado	0,99989657
Error típico	10585,3778
Observaciones	17

Tabla 66. Análisis de varianza para la curva de calibración de HPLC para el análisis de muestras del material de referencia interno

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crí	tico de F
Regresión	1	1,7332E+13	1,7332E+13	154680,609	1,608	3E-31
Residuos	15	1680753359	112050224			
Total	16	1,7334E+13				
	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%
Intercepción	34929,9036	6603,05154	5,2899638	9,0764E-05	20855,8324	49003,9748
Variable X 1	112514375	286081,699	393,294557	1,608E-31	111904606	113124144

Figura 36. Gráfico de la distribución de los residuales para la curva de calibración 1 (USP 37)

Tabla 67. Distribución de los residuales para la curva de calibración 1 de HPLC

Observación	Pronóstico para Y	Residuos
1	1064661,46	-2594,82594
2	1064661,46	-786,644939
3	1064661,46	-1535,91694
4	1322094,35	-4048,67078
5	1322094,35	-50,3547841
6	1322094,35	1760,92022
7	2609258,8	1006,23999
8	2609258,8	1552,74299
9	2609258,8	6548,56099
10	2609258,8	9014,06099
11	2609258,8	8163,65199
12	3124124,58	-20000,6297
13	3124124,58	-13616,4007
14	3124124,58	15632,3753
15	3896423,25	17246,1168
16	3896423,25	-122,701232
17	3896423,25	-18168,5242

• Segunda curva de calibración para el análisis de las muestras del material de referencia interno sometidas a degradación por metodología USP 37.

Tabla 68. Estadística de la regresión para la segunda curva de calibración HPLC para
 el análisis de las muestras sometidas a degradación

Coeficiente de correlación múltiple	0,99902288
Coeficiente de determinación R^2	0,99804672
R^2 ajustado	0,99786915
Error típico	44808,9526
Observaciones	13

Tabla 69. Análisis de varianza para la segunda curva de calibración HPLC para el análisis de muestras sometidas a degradación

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crít	ico de F
Regresión	1	1,1285E+13	1,1285E+13	5620,55308	2,9577	'E-16
Residuos	11	2,2086E+10	2007842236			
Total	12	1,1307E+13				
	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%
Intercepción	68766,1973	34121,7341	2,01531953	0,06896818	-6335,2331	143867,63
Variable X 1	110952683	1479954,21	74,970348	2,9577E-16	107695325	114210040

Figura 37. Gráfico de la distribución de los residuales para la curva de calibración 2 (USP 37)

Tabla 70. Distribución de los residuales para la segunda curva de calibración HPLC

Observación	Pronóstico para Y	Residuos	
1	1083983,24	-41991,3784	
2	1083983,24	-44271,1514	
3	1338064,89	6266,61455	
4	1338064,89	9391,43355	
5	2607363,57	41836,5624	
6	2607363,57	43907,2474	
7	2607363,57	42138,8834	
8	2607363,57	52036,2484	
9	2607363,57	48104,6994	
10	3115526,86	-60225,9517	
11	3115526,86	-55753,4527	
12	3876662,26	-11618,1748	
13	3876662,26	-29821,5798	