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Plasma membranes from bovine tracheal smooth muscle show guanylyl cyclase activity, which can be stimulated by mus- 
carinic agonists such carbamylcholine and oxotremorine and blocked by atropine. This stimulation was observed in the 
presence of 150 mM NaCI. In the absence of this salt, guanylyl cyclase activity was considerably higher but was not 
affected by muscarinic agonists. Carbamylcholine decreased the apparent K,~ but did not change the Vm~ of this enzyme. 
When plasma membrane fractions were extracted with 1% octylglucoside, guanylyl cyclase activity was preserved, how- 
ever the muscarinic activation was abolished, despite a muscarinic receptor capable of [aH]quinuclidinylbenzilate binding 
being present in the extract. The detergent extraction changed the affinity of guanylyl cyclase for GTP but the Mn z+ 
kinetics was unaltered. Based on these findings and on current information in the literature, we propose that another 
component is required to restore the link between the muscarinic receptor and guanylyl cyclase, however the nature of 

this component remains to be established. 

NaCI inhibition; Muscarinic receptor; Guanylyl cyclase; Enzyme-receptor complex; Plasma membrane; (Tracheal smooth muscle) 

1. INTRODUCTION 

Acetylcholine and other cholinergic agents are 
known to increase the concentration of cGMP in 
mammalian tissues, including several types of 
smooth muscle [1-5]. These agents induce smooth 
muscle contraction by a process which appears to 
be associated with elevation in cGMP concentra- 
tions, however a direct causal relationship has not 
been established [6-10] and the biochemical link 
between the muscarinic receptor and guanylyl 
cyclase remains unknown [11-17]. We have 
previously shown that in isolated plasma mem- 
brane fractions from rat liver, muscarinic agents 
stimulate cGMP production, an effect that is in- 
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hibited by atropine [18]. Here, we describe isola- 
tion of a plasma membrane fraction from tracheal 
smooth muscle that is greatly enriched in 
muscarinic receptor and guanylyl cyclase. This 
guanylyl cyclase was stimulated by muscarinic 
agonists and by modifications in the apparent Km 
for GTP. Of particular significance is the observa- 
tion that the presence of NaC1 was required for 
stimulation of the cyclase by muscarinic agents. 

2. MATERIALS AND METHODS 

2.1. Chemicals 
The following compounds were purchased from Sigma (St. 

Louis, MO). AMP, GTP, creatine phosphate, creatine 
phosphokinase (rabbit muscle, type I), Trizma base, DTT, 
Sephadex G-50, carbamylcholine, atropine sulphate, ox- 
otremorine and hexamethonium bromide. Sucrose (Analar 
grade) was obtained from BDH (England). DL- 
Quinuclidinylbenzilate (QNB) was agift  from Dr W.E. Scott of 
Hoffman-La Roche, Inc. (Nutley, N J). Octylglucoside was pur- 
chased from Calbiochem-Behring (La Jolla, CA); L-[3HIQNB 
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(35.5 Ci/mmol), cGMP radioimmunoassay and ACS from the 
Radiochemical Centre, Amersham (England); and Aquasol 
from New England Nuclear (Boston, MA). 

2.2. Preparation of plasma membrane fractions from tracheal 
smooth muscle 

Fractionation of bovine tracheal smooth muscle was per- 
formed as described [19,20]. The procedure is briefly summariz- 
ed as follows: Bovine trachea and bronchii from 10 cows were 
transported on ice from the slaughterhouse to the laboratory. 
The thin layer of smooth muscle holding the cartilage was 
dissected on ice after removal of serosal, mucosal and sub- 
mucosal layers. All subsequent manipulations were performed 
at 4°C. The smooth muscle (about 250 g) was rinsed with 
20 mM Tris-HCl buffer (pH 7.2) containing 0.3 M sucrose, 
0.5 mM DTT and 0.1 mM phenylmethyisulphonyl fluoride 
(PMSF) (ISP buffer), minced and homogenized twice with 
3 vols ISP buffer/g wet wt tissue, in a Waring blender operating 
at full speed for 30 s with a 1 min interval on ice. The dispersed 
material was centrifuged at 850 x g for 10 rain and the superna- 
tant fraction retained. The sediment was re-extracted with 
2 vois ISP buffer/g wet wt and processed as described above. 
The supernatant was saved and the sediment again extracted 
with 2 vols ISP buffer/g wet wt and filtered sequentially 
through 2, 4, 8 layers of cheesecloth. The filtrate was centrifug- 
ed at 1000 x g for 10 min to remove nuclei and cell debris, 
which was discarded, and the supernatant was pooled with two 
previous supernatant fractions. The combined extract is refer- 
red to as fraction E. It was centrifuged at 31000 x g for 15 min 
to sediment mitochondria and the resulting supernatant was 
centrifuged at 150000 x g for 1 h yielding a microsomal frac- 
tion (fraction P) and a soluble fraction. Fraction P was dispers- 
ed in 50 ml ISP buffer. 15-ml samples were fractionated on a 
discontinuous sucrose gradient (0.3/0.82/12.8 M) in a 
Beckman SW 25.2 rotor at 80000 x g for 1 h. Three fractions, 
P-I (in the interphase between 0.3 and 0.82 M), P-2 (in the in- 
terphase between 0.82 and 1.28 M) and P-3 (at the bottom), 
were thus obtained. P-I and P-2 (combined from 3 tubes) were 
each diluted with 80 ml of 20 mM Tris-HCl (pH 7.2), 0.5 mM 
DTT (I buffer) and centrifuged at 150000 x g for 30 min. P-1 
and P-2 were separately suspended in about 10 ml of 20 mM 
Tris-HCl (pH 7.2) buffer containing 0.3 M sucrose and 0.5 mM 
DTT (IS buffer) divided into small aliquots, frozen in liquid N2 
and stored at -80°C.  

Both P-I and P-2 were enriched in muscarinic receptor and 
guanylyl cyclase activities. However, P1 was the most active 
fraction and therefore was used in most experiments. 

2.3. Enzyme assays 
5 ' -Nucleotidase (EC 3.1.3.5) was estimated via the procedure 

of Touster et al. [21], the Pi released being determined accor- 
ding to Fiske and Subbarow [22]. Guanylyl cyclase activity (EC 
4.6.1.2) was assayed as described by Lippo de Becemberg et ai. 
[18]. Unless indicated otherwise, the reaction mixture contained 
50 mM Tris-HC1 (pH 7.6), 3 mM MnCI2, 50-1000/~M GTP, 
154 mM NaC1, a GTP-regenerating system (5 mM creatine 
phosphate and 10 IU phosphocreatine kinase in 0.1°70 defatted 
bovine serum albumin), 20/~g membrane protein and other 
components as indicated, in a total volume of 125/A. Incuba- 
tions were initiated by addition of the enzyme preparation and 
continued for 5-10 min at 37°C. Reactions were terminated by 

addition of 10/~1 of 167 mM EDTA-Tris (pH 7.5), followed by 
heating for 3 min in a boiling water bath, and cooling on ice. 
Samples incubated without enzyme served as controls, cGMP 
was determined by radioimmunoassay in 50-100/A supernatant 
of the reaction mixture obtained after centrifugation at 
12000 × g for 3 min at 4°C. Radioactivity was determined by 
liquid scintillation spectrometry using ACS as scintillation 
fluid. 

2.4. l~H]QNB-binding assay 
The [3H]QNB-binding assay [20] was started by adding the 

protein fraction (2-10/~g protein in I buffer) to 1.5-ml Eppen- 
dorf tubes containing 66 mM Tris-HC1 (pH 7.8), 154 mM 
NaCI, L-[3H]QNB (188-625 pM) to a final volume of 60 ~1. 
After 30 min incubation at 37°C, the reaction was terminated 
by transferring 50/~1 incubation mixture to a pre-centrifuged 
Sephadex G-50 tuberculin syringe equilibrated with 0.25 M 
sucrose-5 mM Tris-HC1 (pH 8.0) to remove unbound 
[3H]QNB. The syringe and contents were immediately cen- 
trifuged at 700 x g for 1.5 min [23]. The void volume contain- 
ing bound [3H]QNB was mixed with deionized water and 
transferred to vials containing 10 ml Aquasol. Radioactivity 
was determined by liquid scintillation counting with an efficien- 
cy of 400/o. Specific binding was determined by subtracting 
nonspecific binding (measured in the presence of 1/~M atropine 
sulfate) from total binding (evaluated in the absence of 
atropine) [20,24]. 

2.5. Solubilization of plasma membranes with octylglucoside 
Fraction P-1 containing (3 mg/ml) was diluted with 80 vols 

I buffer at 4°C. Plasma membranes were collected by cen- 
trifugation at 150000 x g for 30 min and dispersed into 1/2 vol. 
IS buffer (washed P-l). Washed P-1 (1-3 mg/ml) was extracted 
with 107o octylglucoside at 4°C with constant stirring for 30 min 
as in [20]. Insoluble material was removed by centrifugation at 
200000 x g for 30 min. Immediately thereafter, the clear super- 
natant was separated and applied to a pre-packed Sephadex 
G-50 column previously equilibrated with IS buffer as described 
above to remove octylglucoside. After centrifugation, the void 
volume contained very little OG and almost all of the mem- 
brane protein and was designated the 1070 OG fraction. 

Protein concentrations were determined by the method of 
Bensadoun and Weinstein [25] with bovine serum albumin as 
standard. 

3. R E S U L T S  

3.1.  Characterization o f  P-1 plasma membranes 
T h e  e n z y m a t i c  ac t iv i t ies  o f  g u a n y l y l  cyc lase  a n d  

5 ' - n u c l e o t i d a s e  (a m a r k e r  f o r  p l a s m a  m e m b r a n e s )  

o f  f r a c t i o n  E a n d  P-1 a re  l i s ted  in  t a b l e  1. T h e  

s p ec i f i c  ac t iv i t ies  o f  5 ' - n u c l e o t i d a s e  a n d  g u an y l y l  

cy c l a s e  o f  P-1  w e r e  7 .3-  a n d  4 . 5 5 - f o l d  g r e a t e r  t h a n  

in  f r a c t i o n  E .  M o r e o v e r ,  [ 3 H ] Q N B - b i n d i n g  ac t iv i ty  

(a m e a s u r e  o f  m u s c a r i n i c  r e c e p t o r )  w a s  7 - f o l d  

g r e a t e r  in  P-1 t h a n  in  f r a c t i o n  E .  C o m p e t i t i o n  ex- 

p e r i m e n t s  o n  [ 3 H ] Q N B  b i n d i n g  in  t h e  p r e s e n c e  o f  

m u s c a r i n i c  a n t a g o n i s t s  a n d  a g o n i s t s  in  P-1 h a v e  
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Table 1 

Specific activities of guanylyl cyclase, 5'-nucleotidase and L- 
[3H]QNB binding in extract (E) and plasma membrane 

subfraction (P-I) from bovine tracheal smooth muscle 

Extract (E) P-1 Purifi- 
cation 

Guanylyl cyclase 17.05 ± 1 .09 77.63 ± 2 .17 4.55 
5'-Nucleotidase 7.32 + 1.15 53.60 ± 7 .25 7.30 
L-[3H]QNB 

binding 200.86 ± 7.86 1568.57 ± 138.46 7.31 

Guanylyl cyclase activity was assayed for 10 min at 37°C in the 
presence of 1 mM GTP. L-[3H]QNB binding activity was 
assayed in the presence of 625 pM L-[3H]QNB. Other details as 
described in the text. The specific activity of guanylyl cyclase is 
expressed as pmol cGMP/min per mg protein; 5'-nucleotidase 
as/~mol Pi released/h per mg protein; and L-[3H]QNB binding 
as fmol L-[3H]QNB bound/30 min per mg protein. Data are 
means ___ SE of duplicate determinations from 5 separate 

experiments 

been  prev ious ly  r epo r t ed  [20] and  the results  were 
s imi lar  to  those  o f  o the r  muscar in ic  recep tor  
p r e p a r a t i o n s  [24,26,27]. 

3.2. Cholinergic activation of plasma membrane 
guanylyl cyclase 

G u a n y l y l  cyclase act ivi ty  o f  P-1 was measu red  in 
t h e  presence o f  increas ing concen t ra t ions  o f  G T P  
( f ig . l ) .  The  act iv i ty  curve was s igmoida l ,  reaching 
Vmax values at  a b o u t  1000/zM G T P .  In the  
presence  o f  c a rbamylcho l ine  (CC),  ac t iva t ion  o f  
the  guanyly l  cyclase was observed ,  which was ap-  
pa r en t  wi th in  the  range  100 -400 /zM G T P .  These  
d a t a  were l inear ized using the curve-f i t t ing  p ro-  
cedure  for  a L ineweaver -Burk  p lo t  for  a l loster ic  
enzymes  [28] as shown in inset A .  Hil l  p lots  o f  
these  d a t a  are  shown in inset  B. The  a p p a r e n t  Kin, 
Vmax and  nn  values were es t imated  by  these curve-  
f i t t ing  procedures .  Basal  ac t iv i ty  showed an  ap-  
pa r en t  Km o f  574 ___ 43/~M; when ca rbamylcho l ine  
was increased  f rom 1 × 10 -9 to  1 x 10 -s  M,  there  
was a decl ine in the  a p p a r e n t  gm values for  G T P  
to  465 ___ 32 and  365 +_ 25/zM,  respect ively,  in- 
d ica t ing  increased a f f in i ty  o f  the  enzyme for  its 
subs t ra te .  These  mod i f i ca t ions  in the  a p p a r e n t  Km 
were no t  a c c o m p a n i e d  by  any  s ignif icant  changes  
in Vmax, which had  the fo l lowing values  [(in p m o l  
c G M P / m i n  per  mg  pro te in)  basal ,  171 ___ 27; 1 x 
10 .9  M CC,  145 + 15:1 x 10 - s  M CC,  156 _ 18]. 
Moreove r ,  no change  in coopera t iv i ty  was found  
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Fig.1. Effects of 1 × 10-9M (o-------o) and 1 x 10-SM 
carbamylcholine (± -'), on basal (; ;)  guanylyl cyclase 
from plasma membrane fraction P-1. Guanylyl cyclase activity 
was assayed at 37°C for 5 rain in the presence of different GTP 
concentrations (50-1000/zM). Other details as in section 2. 
(Inset A) Data linearized using a Lineweaver-Burk curve-fitting 
procedure for allosteric enzymes [28] to calculate the apparent 
Km and Vm~. (Inset B) Hill plots of data in this figure and nn 
calculated as described in section 2. Data are means ± SE of 

duplicate determinations from six separate experiments. 

because  the  nH values under  all  exper imenta l  con-  
d i t ions  descr ibed  here r ema in  a r o u n d  2.0 _+ 0.1. In  
this  sense, this pa r t i cu la te  guanyly l  cyclase behav-  
ed as a K- type  a l los ter ic  enzyme [28]. I t  is impor -  
t an t  to  emphas ize  the  fact  tha t  p lo t t ing  o f  1/v vs 
1 / [ G T P ]  2 was the  bes t - f i t t ing  p rocedure  for  
l inear iza t ion  o f  our  exper imenta l  da t a  and  calcula-  
t ion  o f  a p p a r e n t  Vmax values,  requi red  for  fur ther  
de t e rmina t i on  o f  the values  o f  nH and  a p p a r e n t  
Kin. The  effect  o f  ca rbamylcho l ine  at  concen t ra -  
t ions  vary ing  over  a wide range  (1 x 10 - ] ° -1  x 
10 -5 M) was s tudied  at  f ixed G T P  c o n c e n t r a t i o n  
(200/zM).  A t  low agonis t  concen t ra t ion ,  dose-  
dependen t  ac t iva t ion  was obse rved  with max ima l  
s t imula t ion  at  1 × 10-8-1  × 1 0 - T M  (fig.2). 
A n o t h e r  chol inergic  agonis t ,  oxo t r emor ine ,  
r eac ted  s imi lar ly  bu t  was less effect ive (not  
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Fig.2. Effects o f  carbamylcholine (z. z.) on guanylyl cyclase 
from plasma membrane (P-l) .  Effect of  I x 10 -6 M atropine 
(~ - - -o )  in the presence of  carbamylcholine. Enzymatic activity 
was assayed in the presence of  200/zM GTP. Further details 
given in the text. Data are means + SE of  duplicate 

determinations from four separate experiments. 

shown). Activation by either drug was blocked by 
1/zM atropine. 

3.3. Effect of  NaCl on stimulation of guanylyl 
cyclase by carbamylcholine 

Guanylyl cyclase in P-1 was inhibited at concen- 
trations of NaC1 or KC1 above 100 mM as shown 
in fig.3. It should be borne in mind that this inhibi- 
tion was observed only at low GTP levels 
(50-250/zM), and  not at higher concentration 
(> 500/zM). The maximal positive cooperativity of 
guanylyl cyclase activity to GTP was also only 
observed in the presence of 150 mM NaC1 (not 
shown). Most significant was the stimulation of 
guanylyl cyclase by muscarinic agonists in a range 
from - 9  to - 8  (log M) which was only observed 
in the presence of NaC1 (fig.4). Significantly, NaCl 
inhibition and muscarinic activation of guanylyl 
cyclase occur at intracellular levels of GTP 
(50-250/~M). 

3.4. Solubilization of  guanylyl cyclase with octyl- 
glucoside 

In order to remove trapped soluble guanyl 
cyclase activity, P-1 was subjected to osmotic 
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Fig.3. Effect of  NaC1 or KCI on membrane-bound and 1070 
octylglucoside-solubilized (OG-GC) guanylyl cyclase activities. 
Membrane-bound (o) and 1°70 OG-GC (o) enzyme assayed in 
the presence of  200/~M GTP and 3 mM Mn 2+ as described in 
the text. Data are means of  duplicate determinations from three 

separate experiments. 

shock and extracted with 1070 octylglucoside as 
described in section 2. The 1070 OG solubilized 
guanylyl cyclase (OG-GC) activity was assayed at 
increasing concentrations of GTP and did not 
show the cooperativity described for native 
membrane-bound guanylyl cyclase (native GC) ac- 
tivity. In addition, the 1 070 OG-solubilized enzyme 
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Fig.4. Effect o f  carbamylcholine (from - 9  to - 6  log M) on 
membrane-bound guanylyl cyclase activity in the presence o~ 
154 mM NaCI ( ;  ; )  and without NaC1 (o----~). Guanylyl 
cyclase was assayed at 200/~M GTP and 3 mM Mn 2+ as 
described in section 2. Data are m e a n s  + SE of  duplicate 

determinations from four separate experiments. 
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was insensitive to muscarinic agonists (1 × 10 -s M 
CC). The Hill coefficient was evaluated as nri = 
2.05 +_ 0.05 for native GC activity, whereas the 
corresponding value for 1 o70 OG-GC was nH= 1.21 
0.07 (not shown). 

An interesting finding was that the activity of 
the extract was insensitive to NaC1 or KCI, in con- 
trast to the native GC shown in fig.3. The kinetic 
parameters (apparent Km, Vmax and nn = 2.0) for 
Mn 2÷ in the cases of 1 °70 OG-GC and native GC re- 
mained unchanged under conditions of saturating 
amounts of 1 mM GTP (not shown). It must be 
pointed out that the positive cooperativity to Mn 2÷ 
displayed by the native enzyme is the same in the 
OG-GC. 

4. DISCUSSION 

4.1. Cooperativity studies with particulate 
guanylyl cyclase 

Kinetic analyses of particulate guanylyl cyclase 
suggest complex mechanisms for catalytic regula- 
tion. Curvilinear plots of the kinetics show positive 
cooperativity to GTP [29,30], which has been 
described for several mammalian particulate 
guanylyl cyclase preparations [31-35]. This 
behaviour can be altered by different treatments. 
Thus, detergent extraction of the particulate en- 
zyme from rat lung [35] and mouse mammary 
gland ([36] and this paper) usually yields a 
solubilized enzyme exhibiting classical Michaelis- 
Menten kinetics with Hill coefficients of about 1.0. 
Also, proteolytic treatment of the particulate 
guanylyl cyclase yields a 'solubilized' enzyme that 
displays typical linear kinetic behaviour with 
respect to GTP [37]. Thus, positive cooperativity 
appears to be a characteristic of guanylyl cyclase in 
its native membrane environment. It was shown 
recently that highly purified particulate guanylyl 
cyclase from sea urchin spermatozoa retained 
positive cooperativity kinetics [38] .  Such 
behaviour could be subsequently converted to that 
for Michaelis-Menten kinetics by dephosphoryla- 
tion. These data suggest that the cooperative in- 
teractions of GTP-binding sites are regulated by 
the phosphorylation state of the enzyme in this 
biological system. The role of phospho/dephos- 
phorylation mechanisms in the regulation of mam- 
malian particulate guanylyl cyclase remains to be 
studied. 

4.2. Effect of  NaC! and KCI on particulate 
guanylyl cyclase 

Membrane-bound guanylyl cyclase is inhibited 
by chloride salts at low GTP concentrations 
(50-250/zM), however, at higher levels of the 
nucleotide (>500/~M), inhibition by such salts 
does not occur (not shown). The salt effect on 
basal enzyme activity may be explained by the ex- 
istence of an 'anion-binding site' on the structure 
of the guanylyl cyclase, where anions are capable 
of interacting and, thereby, regulating the catalytic 
site. This possibility seems to be unlikely, since the 
1 o7o OG solubilized enzyme is not modified by the 
salts; however, one cannot dismiss the possibility 
that the solubilization procedure may alter the en- 
zyme structure masking the anion-binding site. 
Alternatively, the salt effects may be mediated, in 
part, by activation of G-proteins. Such 
heterotrimers may be associated with the par- 
ticulate guanylyl cyclase and act as modulators in 
analogy with the hormone-stimulated adenylyl 
cyclase [39]. Purified G-proteins (Go, Gs) are ac- 
tivated by physiological concentrations of chloride 
without subsequent hydrolysis of GTP in the 
absence of Mg 2÷ [40]. The latter experimental con- 
ditions are very similar to ours. In this sense, Gs 
has been postulated to be responsible for chloride 
activation of adenylyl cyclase via this mechanism 
[41-43]. Nevertheless, more research should be 
performed using highly purified G-proteins in 
order to elucidate more fully this (anion?) chloride 
inhibition of particulate guanylyl cyclase. 

4.3. Muscarinic activation of membrane-bound 
guanylyl cyclase 

Muscarinic cholinergic agents have been shown 
to increase cGMP levels in different types of 
smooth muscle [3-5,44,45], inducing contraction 
that is dependent on extracellular calcium [5]. In 
several tissues, guanylyl cyclase is present in both 
soluble and particulate forms [29]. Particulate 
guanylyl cyclase [13,18], but not the soluble form 
[12], is stimulated by muscarinic agonists. Here, 
we have presented additional evidence indicating 
that such muscarinic activation appears to operate 
via modifications in the Km increasing the affinity 
of the enzyme for GTP at intracellular nucleotide 
concentrations. However, muscarinic agonists ex- 
ert biphasic effects on the particulate guanylyl 
cyclase. Activation of this membrane-bound en- 
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zyme takes place at low agonist concentration (1 x 
10-9-1 × 10 -7 M), which may be explained on the 
basis of activation of high- (H) or super-high- (SH) 
affinity muscarinic receptors [46]. However, a 
decrease in activation of the particulate form at 
high agonist concentrations (1 x 10 -7 x 10 -5 M) is 
observed, which might result from activation of a 
low-affinity- (L) muscarinic receptor population 
[46] or a desensitization process [47]. Our results 
indicate that muscarinic agents are able to release 
the membrane-bound enzyme from inhibition im- 
posed by CI- via an unknown mechanism. This ac- 
tivation mediated by muscarinic agents must arise 
from muscarinic receptors on the structure of the 
plasma membrane, which can interact with the 
guanylyl cyclase system via the following coupling 
mechanisms: Direct interactions between 
muscarinic receptor and guanylyl cyclase in the 
same fashion as described for ANF (atrial 
natriuretic factor)-stimulated guanylyl cyclase 
[48,49]. Interactions of muscarinic receptors with 
the particulate enzyme through a coupling process 
mediated by G-proteins as described for Gi, which 
has been reported to be directly involved in the 
transducing mechanism of muscarinic inhibition of 
adenylyl cyclase [50,51]. However, another type of 
indirect interaction may be possible through pro- 
ducts associated with muscarinic receptor activa- 
tion such as those from PIP2 metabolism [52,53], 
arachidonic acid-related compounds [45,54] and 
lysophosphatides [55,56]. Arachidonic acid 
metabolites [54,57] and lysophosphatides [55,56] 
have been postulated to be involved in activation 
of particulate guanyl cyclase, however, the activa- 
tion process in these cases appears to be a conse- 
quence of the use of high concentrations of 
lysophosphatides and arachidonate-related com- 
pounds, which when present at such levels may 
disrupt the membrane structure and induce non- 
specific detergent-like activation of the particulate 
form. 

Thus far, precise details at the molecular level of 
the mechanism of muscarinic activation of 
membrane-bound guanylyl cyclase remain to be 
determined, further work being required in order 
to elucidate this problem. 

Acknowledgements: We thank Mrs V. Herrera for technical 
assistance, and Dr W. Ghiorse and Professor E. Racker for 
critical reading of the manuscript. This work was supported by 

grants CONICIT S1-1933 and CDCH M10.21-87 (to I.L.B.), 
M10.4,81 (to M.A.) and M10.6.81 from Consejo de Desarrollo 
Cientifico y Humanistico de la Universidad Central de 
Venezuela (UCV). A.E.P.A. was a Graduate Student at Curso 
de Postgrado en Ciencias Fisiologicas-UCV supported by 
Universidad de Oriente (UDO). 

REFERENCES 

[1] Ferrendelli, J.A., Steiner, A.L., McDougal, D.B. and 
Kipnis, D.M. (1970) Biochem. Biophys. Res. Commun. 
41, 1061-1067. 

[2] George, W.J., Poison, J.B., O'Toole, A.G. and Golberg, 
N.D. (1970) Proc. Natl. Acad. Sci. USA 66, 398-403. 

[3] Lee, T.P., Kuo, J.F. and Greengard, P. (1972) Proc. 
Natl. Acad. Sci. USA 69, 3287-3291. 

[4] Murad, F. and Kimura, H. (1974) Biochim. Biophys. 
Acta 343, 275-286. 

[5] Schultz, G., Hardman, J.G., Schultz, K., Barid, C.E. and 
Sutherland, E.N. (1973) Proc. Natl. Acad. Sci. USA 70, 
3889-3893. 

[6] Diamond, J. and Hartle, D.K. (1976) J. Cyclic Nucl. Res. 
2, 179-188. 

[7] Ohkubo, H., Takayanagi, I. and Takagi, K. (1976) Jap. 
J. Pharmacol. 26, 65-71. 

[8] Leiber, D., Vesin, M.F. and Harbon, S. (1978) FEBS 
Lett. 86, 183-187. 

[9] Axelsson, K.L., Anderson, R.G.G. and Wikberg, J.E.S. 
(1980) Acta Pharmacol. Toxicol. 47, 328-334. 

[10] Fiscus, R.R., Torphy, T.J. and Mayer, S.E. (1984) Bio- 
chim. Biophys. Acta 805, 382-392. 

[11] Howell, S.L. and Montague, W. (1974) Biochem. J. 142, 
379-384. 

[12] Limbird, L.E. and Lefkowitz, R.J. (1975) Biochim. Bio- 
phys. Acta 377, 186-196. 

[13] St. Louis, P.J. and Sulakhe, P.V. (1976) Biochem. J. 158, 
535-541. 

[14] Strange, P.G., Birdsall, N.J.M. and Burgen, A.S.V. 
(1977) Biochem. Soc. Trans. 5, 189-191. 

[15] Coult, D.B. and Howells, D.J. (1979) Biochem. 
Pharmacol. 28, 2673-2675. 

[16] Hisayama, T. and Takayanagy, I. (1981) J. Pharm. Dyn. 
4, 738-741. 

[17] Takayanagy, I., Hisayama, T. and Kotsugai, T. (1981) 
Jap. J. Pharmacol. 31, 831-834. 

[18] Lippo de Becemberg, I., Herrera, V., Perez-Ayuso, E. 
and Alfonzo, M. (1982) FEBS Lett. 137, 303-306. 

[19] Alfonzo, M., Adjounian, H. and Lippo de Becemberg, I. 
(1980) Acta Cient. Venez. 31, 18 (Abstr.). 

[20] Becemberg, I.L., Ponte-Sucre, A. and Alfonzo, M. (1987) 
Arch. Venez. Farm. Terap. 5, 244-256. 

[21] Touster, O., Aronson, N.N., Dulaney, J.T. and 
Hendrickson, H. (1970) J. Cell Biol. 47, 604-617. 

[22] Fiske, C.H. and Subbarow, Y. (1925) J. Biol. Chem. 66, 
375-400. 

[23] Penefsky, H.S. (1979) Methods Enzymol. 54, 527-530. 
[24] Fields, J.Z., Roeske, W.R., Morkin, E. and Yamamura, 

H.I. (1978) J. Biol. Chem. 253, 3251-3258. 
[25] Bensadoun, A. and Weinstein, D. (1976) Anal. Biochem. 

70, 241-250. 

21 



Volume 253, number  1,2 FEBS LETTERS August  1989 

[26] Marquardt, D.L., Motulsky, H.J. and Wasserman, S.I. 
(1982) J. Appl. Physiol. Respir. Environ. Exercise 
Physiol. 53, 731-736. 

[27] Murlas, C., Nadel, J.A. and Roberts, J.M. (1982) J. 
Appl. Physiol. Respir. Environ. Exercise Physiol. 52, 
1084-1091. 

[28] Segel, I.H. (1975) in: Enzyme Kinetics, pp.365, 429, 
Wiley, New York. 

[29] Waldman, S.A. and Murad, F. (1987) Pharmacol. Rev. 
39, 163-196. 

[30] Chrisman, T.D., Garbers, D.L., Parks, M.A. and 
Hardman, J.C. (1975) J. Biol. Chem. 250, 374-381. 

[31] Siegel, M.I., Puca, G.A. and Cuatrecasas, P. (1976) Bio- 
chim. Biophys. Acta 438, 310-323. 

[32] Kimura, H. and Murad, F. (1974) J. Biol. Chem. 249, 
6910-6916. 

[33] Sulakhe, S.J., Leung, N.L. and Sulakhe, P.V. (1976) 
Biochem. J. 157, 713-719. 

[34] Waldman, S.A., Lewicki, J.A., Chang, L.Y. and Murad, 
F. (1983) Mol. Cell Biochem. 57, 155-166. 

[35] Rillema, J. and Linebaugh, Z.E. (1978) Horm. Metab. 
Res. 10, 331-336. 

[36] Waldman, S.A., Lewicki, J.A., Chang, L.Y. and Murad, 
F. (1982) J. Cyclic Nucleotide Res. 8, 359-370. 

[37] Ben Salah, A., Ebrentz-L'Homme, C., Lacombe, M. and 
Hanoune, J. (1983) J. Biol. Chem. 258, 887-893. 

[38] Ramarao, C.S. and Garbers, D.L. (1988) J. Biol. Chem. 
263, 1524-1529. 

[39] Northup, J.K. (1985) in: Molecular Mechanisms of 
Transmembrane Signalling (Cohen, P. and Houslay, 
M.D. eds) pp.91-116, Elsevier, Amsterdam. 

[40] Higashijima, T., Fergusson, K.M. and Sternweis, P.C. 
(1987) J. Biol. Chem. 262, 3597-3602. 

[41] Johnson, R.A., Pilkis, S.J. and Hamet, P. (1975) J. Biol. 
Chem. 250, 6599-6607. 

[42] Svoboda, M. and Christophe, J. (1978) FEBS Lett. 86, 
230-234. 

[43] Roy, C., Lebars, N.C. and Jard, S. (1977) Eur. J. Bio- 
chem. 78, 325-332. 

[44] Nilsson, K.B. and Andersson, R.G.G. (1977) Acta 
Physiol. Scand. 99, 246-253. 

[45] Lieber, D. and Harbon, S. (1982) Mol. Pharmacol. 21, 
654-663. 

[46] Birdsall, N.J.M. and Hulme, E.C. (1983) Trends 
Biochem. Sci. 4, 459-463. 

[47] Sokolovsky, M. and Bartfai, T. (1981) Trends Biochem. 
Sci. 6, 303-305. 

[48] Nambi, P., Aiyar, N.V. and Sharma, R.K. (1982) FEBS 
Lett. 140, 98-102. 

[49] Kuno, T., Andresen, J.W., Kamasaki, Y., Waldman, 
S.A., Chang, L.Y., Saheki, S., Leitman, D.C., Nakane, 
M. and Murad, F. (1986) J. Biol. Chem. 261, 5817-5823. 

[50] Gilman, G.A. (1987) Annu. Rev. Biochem. 56, 615-649. 
[51] Mattera, R., Pitts, B.J.R., Entman, M.L. and 

Birnbaumer, L. (1985) J. Biol. Chem. 260, 7410-7421. 
[52] Hepler, J.R., Hughes, A.R. and Harden, T.K. (1987) 

Biochem. J. 247, 793-796. 
[53] Meurs, H., Roffel, A.F., Posteman, J.B., Timmermans, 

A., Elzinga, C.R.S., Kauffman, H.F. and Zaagsma, J. 
(1988) Eur. J. Pharmacol. 156, 271-274. 

[54] Wallach, D. and Pastan, I. (1976) J. Biol. Chem. 251, 
5802-5809. 

[55] White, A.A. and Lad, P.J. (1975) Fed. Proc. 34, 
232-237. 

[56] Shier, W.T., Baldwin, J.H., Nielsen-Hamilton, M., 
Hamilton, R.T. and Thanassi, N.M. (1976) Proc. Natl. 
Acad. Sci. USA 73, 1586-1590. 

[57] Gruetter, D.Y. and Ignarro, L.J. (1979) Prostaglandins 
18, 541-556. 

22 


