TRABAJO ESPECIAL DE GRADO

DESARROLLO DE UN SISTEMA DE PROCESAMIENTO DE
IMAGENES PARA MICROSATELITES

Profesor Guia: Tremante Panayotis
Tutor Industrial: Claudio Passerone

Presentado ante la llustre
Universidad Central de Venezuela
por el Br. Alejandro G. Gonzalez E.
para optar al Titulo de
Ingeniero Electricista

Caracas, 2009

CONSTANCIA DE APROBACION

Caracas, 2009

Los abajo firmantes, miembros del Jurado desigmmutoel Consejo de Escuela de
Ingenieria Eléctrica, para evaluar el Trabajo Espede Grado presentado por el

Bachiller Alejandro Gabriel Gonzalez Esculpi, t#db:

“DISENO DE UN SISTEMA DE PROCESAMIENTO DE IMAGENES PARA
MICROSATELITES”

Consideran que el mismo cumple con los requisixagidos por el plan de estudios
conducente al Titulo de Ingeniero Electricista@mkencion de Electronica, y sin que
ello signifigue que se hacen solidarios con lasasdexpuestas por el autor, lo
declaran APROBADO.

Pr edro Pinto

Jurado Jurado

M{%
Prot. Pandyotis

Profesor Guia

\ante

Gonzalez E., Alejandro G.

DESARROLLO DE UN SISTEMA DE PROCESAMIENTO DE
IMAGENES PARA MICROSATELITES

Prof. Guia: Tremante Panayotis. Tutor Industrial: Claudio Passerone. Tesis.
Caracas. U.C.V. Facultad de Ingenieria. Escuela degenieria Eléctrica.
Ingeniero Electricista. Opcion: Electronica. Institucion: Politécnico de Turin.
Turin, Italia. 2009. 95 h. + anexos.

Palabras Claves Satélite; Procesamiento de imagenes; ProcesdHi@| ; FPGA;
Sistema Operativo; Programas.

Resumen Se plantea el estudio y desarrollo de una psipugara un sistema de
procesamiento de imagenes como eventual Payloadndseatélite universitario
basado en el estandar CUBESAT. Se toma como penpadida el modelo VHDL
sintetizable de un procesador el cual puede séesibase a un sistema operativo
compilable, capaz de sostener programas paracglegamiento de imagenes. Para el
desarrollo del proyecto fue provista una tarjetabdg@ consto basada en un chip
FPGA capaz de sostener el procesador mencionadorasi varios periféricos utiles
para la realizacion de diversas pruebas sobresehmi

Sumario

La simplicidad del estdndar CubeSat para el disifipicosatelites, definido
en el aflo 2001 por el Profesor Robert Twiggs d&daversidad de Stanford en
EE.UU., ha motivado varias universidades a nivehdma a desarrollar sistemas de
esta categoria como actividad didactica, capturadtimas el interés de diversos
sectores a invertir en el desarrollo de investma®s en el campo de las

telecomunicaciones.

El satélite PICPOT fue desarrollado en el Poligeuli Torino desde el 2003,
sirviendo como primera experiencia para la insitioy motivando futuros proyectos
en el mismo campo. Asi en el afio 2006 nace el ptoy®RAMIS, segundo satélite

del Politécnico di Torino, actualmente en plencadeslo.

La peculiaridad del proyecto ARAMIS es la “modudad”’, es decir, el
desarrollo independiente y simultaneo de diversadslulos estandar compatibles
entre si, en lugar de ser orientado al cumplimielgouna mision particular. Los
principales moédulos o etapas que constituyen gfguto ARAMIS son: Etapa de
Potencia, Etapa de transmision y recepcion, Comdputde Bordo, Estacion de

Tierra y Payload.

Este trabajo esta orientado al estudio y desard®laina propuesta para un
eventual Payload dedicado a la adquisicion de imégeSe toma como punto de
partida el modelo VHDL sintetizable de un procesadaual puede servir de base a
un sistema operativo compilable, capaz de sosfaogramas para el procesamiento
de imagenes. Para el desarrollo del proyecto foeigia una tarjeta de bajo consto
basada en un chip FPGA capaz de sostener el pdacesancionado asi como varios

periféricos Utiles para la realizacion de diversagbas sobre el mismo.

La tarjeta utilizada es la GR-XC3S-1500 construidar Pender en
colaboracién con Gaisler Reseach, basada en unA Bp&tan 3, conteniendo como
principales periféricos memorias PROM vy puertosiages, Ethernet, USB, JTAG, y
VGA.

El modelo VHDL utilizado corresponde al procesad&ON3, desarrollado
por Gaisler Research basado en la arquitectura SPYR especialmente disefiado
para aplicaciones satelitales. La libreria GRLIB:#a también incluida en el modelo,
conteniendo dispositivos Utiles y en algunos casdispensables para el procesador.
También son provistas por la Gaisler varias heeatas que simplifican la
configuracion del modelo VHDL antes de la sintegipara la compilacion de

aplicaciones a ser ejecutadas en el procesador.

Para la sintesis del modelo VHDL y su instalacidiaeFPGA (utilizando un
cable JTAG) son utilizadas aplicaciones contenatagl paquete ISE Foundation de
Xillinx. Para probar el procesador instalado sdizdgtiuna version de prueba de
GRMON, un programa que sirve de interfaz para maderes LEON a través de los
puertos JTAG, serial o USB; permitiendo controtar dispositivos instalados junto al
procesador, la instalacion y ejecucion de aplicasp asi como otros aspectos

importantes del sistema.

Varios fallos fueron observados en el procesadtenidbo del modelo VHDL
sintetizado con las herramientas disponibles (gietu utilizando la configuracidn
default para el modelo) el cual hizo imposible s$ilizacion. Por ende se decidio
utilizar una version ya sintetizada del procesadorbién provisto por la Gaisler, la
cual funcioné en la tarjeta de manera 6ptima, pentdo descartar posibles dafios
fisicos como causa de los fallos previamente othbani Se decidié continuar el
proyecto utilizando la version operativa del pracks en lugar de intentar corregir la
version configurable, permitiendo probar la capadidel procesador mas alla de no

poder demostrar la flexibilidad del modelo VHDL.

Vi

Se utilizé SnapGear Linux como sistema operativeer instalado en el
procesador, el paquete escogido incluye el kemmeespondiente, herramientas para
simplificar su configuracion y diversos templateseelos cuales uno corresponde al
procesador LEON3 en la tarjeta GR-XC3S-1500, laslifitaciones realizadas al
kernel fueron limitadas a la asignacion de la didt IP y la instalacion de

programas a ser ejecutados de forma automaticatarjeta.

Para probar la adquisiciéon y envio de datos sézdutiél puerto Ethernet,
aprovechando el protocolo TCP/IP y desarrollanadmm@mmas basados en el modelo
Cliente-Servidor para el intercambio de datos elatr@rjeta y bloques externos del
sistema emulados por diversos procesos en un eerexterno. Para probar la
capacidad del procesador para el procesamientandgenes se utilizé la libreria
JPEG elaborada por IJG (Independent JPEG Groupjuda incluye archivos en
lenguaje C en formato open-source, open-licenseten@ndo codigos fuente de
programas que hacen la compresion basada en eitmlgocorrespondiente. Se
decidio trabajar con archivos en formato PPM paracemprimidos y obtener los
archivos correspondientes en formato JPEG.

La ultima parte del proyecto consisti6 en el dedlarrde programas que
incluyen en el modelo Cliente-Servidor, los tipesadchivo utilizados y las funciones
para la compresion. Los programas desarrolladasrides siguientes:

» sendPPM: envia un archivo en formato PPM del senada tarjeta.
* INGRB: corre en la tarjeta de forma constante, s por un archivo PPM

a ser comprimido, ejecuta el programa para la cesipm al recibirlo, envia

el archivo JPEG obtenido y espera por el siguiartkivo PPM.

* recJPG: corre en el servidor de manera constagtéher el archivo JPEG

enviado desde la tarjeta y lo almacena en memoria.

vii

La compresion es realizada por el programa cjpelg@jal es el mismo cjpeg
provisto por la libreria de IJG, con ligeras matdifiiones en su cédigo fuente. Los
resultados obtenidos fueron satisfactorios, seatdn varios archivos PPM y fueron
medidos los tiempos obtenidos para el envio, laptesidn y la recepcion de

archivos correspondientes para cada caso.

El trabajo presentado se organiza de la manerésigu

e Capitulo 1: introduccion sobre los satélites ursitarios, descripcion de
aspectos del proyecto ARAMIS.

* Capitulo 2: describe el desarrollo del hardware sigonamiento del
procesador sobre la tarjeta).

e Capitulo 3: describe el desarrollo del sistema ajpey (compilacion del
kernel y cambios realizados)

» Capitulo 4: describe el desarrollo de programas phenvio y recepcion de
datos, y el procesamiento de imagenes.

» Capitulo 5: conclusiones.

viii

Contents

Constancia de aprobacion

Resumen

Sumario (en castellano)

Contents

List of Figures and Tables

1.

Introduction
1.1. The PICPOT project
1.2. The ARAMIS project
Hardware Implementation
2.1. The LEON3 Processor Core
2.1.1. LEONS Architecture and Features
2.1.2. The GRLIB IP Library
2.1.3. LEONS3 Applications development tools
2.2. The GR-XC3S-1500 Development Board
2.2.1. Board technical description
2.2.2. Board parts to be used
2.3. LEON3 Design Configuration
2.4. Procedure to place the processor on the FPGA
2.5. The GRMON LEON Monitor
2.6. Tests and Results
Firmware Implementation
3.1. The SnapGear Linux
3.2. SnapGear Linux Compiling
3.2.1. Installing the Toolchain
3.2.2. Installing the SnapGear Distribution
3.2.3. Configuring Linux
3.2.4. Building SnapGear
3.3. Modifications over the SnapGear Linux Kernel

10
11
13
16
20
22
24
25
29
29
30
31
32
32
37
37

5.

3.3.1. Board IP address
3.3.2. Adding programs to be executed on the board
3.3.3. Automatic Program Startup
3.4. SnapGear Linux Installing Procedure
3.5. Tests and Results
Software Implementation
4.1. Used File Formats
4.1.1. PPM file format
4.1.2. JPEG file format
4.2. An Overview of the JPEG Compression Algorithm
4.3. The IJG JPEG Library
4.4. Communication Channel Development
4.4.1. The Client-Servr model
4.4.2. Socket Types
4.4.3. Socket implementation on the Internet domain
4.5. Developed Program Description
4.5.1. To run outside the Board
4.5.2. Torun Inside the Board
4.6. Developed Programs Usage
4.7. Tests and Results

Conclusions

Bibliography

Appendixes

A.Developed Programs Source Codes

37
38
39
40
42
48
48
49
51
53
57
58
58
58
59
67
67
69
77
79
81
84
86
86

List of Figures and Tables

Figure 1.1. The PICPOT Satellite

Figure 2.1. LEON3 processor core block diagram

Figure 2.2. The GR-XC3S-1500 Development Board
Figure 2.3. GR-XC3S-1500 development board bloekgyidim
Figure 2.4. Board Memory Interface

Figure 2.5. Configuration of Oscilators

Figure 2.6. LEON3 GUI configuration tool

Figure 2.7. Processor configuration window

Figure 2.8. Peripherals configuration window

Figure 2.9. Built LEONS3 processor on GRMON monitor
Figure 2.10. Failures on the built processor

Figure 2.11. Precompiled LEON3 processor on GRMQovitor
Figure 3.1. SnapGear main configuration GUI

Figure 3.2. Template Configuration selection

Figure 3.3. Vendor/Product section

Figure 3.4. kernel/library/defaults selection menu

Figure 3.5. Linux 2.6.x kernel GUI configurationliat

Figure 3.6. Board IP address setting

Figure 3.7. Example of the inittab file

Figure 3.8.Flash erasing and SnapGear image dodolo&RMON
Figure 3.9. Programs and files added to the ré®sfistem
Figure 3.10. Board IP address verification fronemote host
Figure 3.11. Board IP address verification on SregyGhell
Table 4.1. PPM formats comparison

Table 4.2. JPEG markers

Figure 4.1 Server side socket building and usage

Figure 4.2. Client side socket building and usage

Xi

11
13
16
18
20
21
21
25
6 2
27
32
33
34
34
35
38
39
43
44
44
45
50
52
60
64

Figure 4.3. sendPPM program flow chart
Figure 4.4. recJPG program flow chart
Figure 4.5. INGRB program flow chart
Figure 4.6. receiveP6 function flow chart
Figure 4.7. sendJPG function flow chart
Figure 4.8. Programs test environment

Table 4.3. Programs performance

Xii

72
73
74
75
76
79
80

Chapter 1

Introduction

Issued on the year 2001, the CUBESAT (cube sa&gl[it] standard has
inspired many universities worldwide to invest geveresearch efforts into the
development of aerospace applications based omtbdel. The standard has been
developed under the guidance of Professor Robedgsa(from Stanford University,
USA) in association with the Space Systems Devedpgrhaboratory (SSDL) from
Stanford University and California Polytechnic $tainiversity.

The CUBESAT standard is basically defined by tHe¥ang characteristics:
* Volume: 10x10x10cm
* Weight: < 1kg

Compared to traditional multi-million-dollar sai&#l missions, CubeSat
projects have the potential to educate the paamntgp and implement successful and

useful missions in science and industry at muclelososts.

Inspired on the CUBESAT model, Politecnico di Torirhas recently
developed the PICPOT satellite [2], and now the ARS project is under

development.

1 - Introduction

1.1 The PICPOT Project

PICPOT [2] was the first satellite developed atitPenico di Torino. It
development began on 2003 and its launch faileB0@6[]. The project was based on
the following requierements:

e Cube shape, 13x13x13cm

* Weight: < 5kg

* Medium Power < 1.5W

e Minimum lifetime: 90 days

e« COTS components usage in space

e LEO Orbit (altitude between 600 and 800km)
e Compatibility with the POD launcher

The functions of the satellite regarded the follogvparameters:
* Temperature and luminescence measures acquisition
* Photographies acquisition

» Data transfer to the ground station

A PICPOT picture is presented in figure 1.1

1 - Introduction

Figure 1.1. The PICPOT satellite

Five of the six satellite faces were used to pldee solar panels. On the
remaining face two antennas (437MHz and 2.4GHzprBeras, 2 kill switches and a
test connector to verify the on-board electroniosrext functioning were placed.
Internal power supply was provided by 6 rechargedfaltteries placed between the
solar cells and the electronic boards. Three msms were placed on the satellite:

* ProcA: on-board management, associated to the 4%7knmunication
channel, 11MHz clock frequency and power suppl$.8¥.

* ProcB: on-board management associated to the 2.4Gdlamunication
channel, 4MHz clock frequency and power supply.8¥/3

» Payload: for the image acquisition from the thrdetpcameras, send to

ground station by ProcA and ProcB.

1 - Introduction

ProcA and ProcB were operationally independent. @drmmunication with
the ground station was designed to be performemlgir two channels, both of them

in amateur band with APRS protocol.

1.2 The ARAMIS Project

The ARAMIS project has assumed the PICPOT projecilution. The
ARAMIS target is to define a low cost standard madarchitecture for small size
satellites. The applied “modular architecture” [@ethod aims to develop some
standard modules connectable between them and swdtific modules built
according to the mission, rather than develop titegeesystem based on the mission.
The standard modules to be developed are listéallaws:

* Power Supply (Power Management tile)

* Tx-Rx (Telecommunication tile)

The modules which complete the satellite systemaaadieveloped according to
the required mission are:
* Ground Station
* On Board Computer

» Payload

This procedure allows also fix the number of staddaodules according of
each kind to the satellite mission. The main featfrthe modular architecture model
is the re-usability of the designs involved in tstandard modules; this factor is

translated as saving of a high amount of resowandgime in future projects.

The main target of the presented project in thésis is to develop a proposal
for an eventual Payload processor oriented to inaa@geisition. The starting point is

a processor defined by a provided VHDL model ablsupport an operating system,

4

1 - Introduction

which should be able to support applications thanage the activities related to
procedures in image processing. It is provided seld@ment board specially

designed for the mentioned processor support.

Chapter 2

Hardware Implementation

This chapter explains the procedure to compile @cgssor open-source
VHDL model and place it over a based-on FPGA dewelent board. After the
compiling is completed and the processor is plamedhe board, are discussed the
results of some tests performed over it to progeoperation, the flexibility of the
used model and the reliability of the developmeydrh itself. The built processor is
also compared with a precompiled version providgthle manufacturer.

2.1 The LEON3 Processor Core

The LEONS [4,6] processor core is a synthesizaliOV model of a 32-bit
processor with the SPARC V8 architecture. The asrdéighly configurable and
suitable for system-on-a-chip (SOC) designs. Thdigorability allows designers to
optimize the processor for performance, power conion, /0O throughput, silicon
area and cost. The core is interfaced using AMBAAXB bus, and supports the IP
plug and play method provided in the Gaisler RededlP Library (GRLIB). The
Processor can be efficiently on both FPGA and Akhnologies and uses standard
synchronous RAM cells for both caches and regiker To promote the SPARC
architecture and simplify early evaluation and ptgbing, the processor and
associated IP library is provided in full sourceleainder open-source license. The
LEONS3 processor core block diagram is shown inregi1.

2 - Hardware Implementation

1IEEE 754

L Floating-Point
7-Stage Unit

Co-Processor

Integer Pipeline

Figure 2.1. LEONS processor core block diagram

The LEONS3 core is also available in a fault-toléeraersion (LEON3FT)
immune to single event upsets (SEUS), for spaceo#émet high-rel applications. The
fault tolerant version is not provided under openrse license, but it supports most
of the functionality in the standard LEON3 perocess

2.1.1 LEONS3 Architecture and features

LEONS3 [4,6] is implemented using an advanced 7estapgeline with separate
instruction and data cache buses (Harvard archict The processor supports the
full SPARC V8 instruction set, including the MUC,AZ and DIV instructions. An
optional IEEE-754 floating-point unit (FPU) provi&lesupport for both single- and
double-precision floating point operations. The hmacsystem supports multi-set
caches with up to 4 sets per cache, 256 kbyte giestral a choice of LRU, LRR or

random replacement policy.

2 - Hardware Implementation

LEONS3 can be utilized in synchronous multiprocessarfigurations (SMP),
and provides hardware support for cache cohergmoggessor enumeration and SMP
interrupt steering. A unique debug interface allows-intrusive hardware debugging
of both single- and multi-processor systems, amaviges access to all on-chip
registers and memory. Trace buffers for both irtstons and AMBA bus traffic are

also available.

The basic processor core (pipeline, cache contsollexd AHB interface)
consumes around 20,000 gates and can be implementédth ASIC and FPGA
technologies. On a typical 0.13 um standard-cehrnelogy, over 400 MHz can be

reached.

The LEONS processor features are resumed in tleviog list:

* SPARC V8 integer unit with 7-stage pipeline

* Hardware multiply, divide and MAC units

* Interface to the Meiko FPU and custom co-processors

* Interface to high performance IEEE-754 FPU

e Separate instruction and data cache

* Set-associative caches: 1 — 4 sets, 1 — 256 kbgte$tandom, LRR or LRU
replacement

» Data cache snooping

* On-chip O-waitstate scratch pad data RAM

* SPARC V8 Reference Memory management unit (MMU)

* Power-down mode

* Advanced on-chip debug support unit and instructiaoe buffer

e AMBA-2.0 AHB and APB on-chip buses

2 - Hardware Implementation

2.1.2 The GRLIB IP Library

To achieve optimum performance and minimum costaf@OC design, it is
important to reuse existing IP cores and be ableotfigure these cores for the
specific application. The GRLIB IP Library [6] pnoles a standardized and vendor-
independent infrastructure to deliver reusabledfes.

Integrating third party IP cores form different pliprs can require significant
adaptation and harmonization of both functional kgistical interfaces. The GRLIB
IP library enhances the development of SOC dewgegroviding reusable IP cores

with common functional and logistical interfaces.

The library is designed to be easy portable teediht CAD tools and target
technologies. It does not depend on any vendoiifgpetterface or technology which
needs to be licensed or procured. The library sEghed to allow contributions or
extensions from other parties. The GRLIB is dedigteebe “bus-centric”, i.e., under
the assumption that most of the IP cores will beneated through an on-chip bus
(such as AMBA-2.0, AHB/APB).

The GRLIB library contains the following IP cores:
* AHB arbiter/multiplexer with plug&play support
* AHB/APB bridge
» 8/16/32-bits PROM and SRAM controller
* 32-bits PC133 SDRAM controller
* UART, timer unit, interrupt controller and GPIO por
* AHB trace buffer
e 32-bit Initiator/Target PCI interface (FIFO/DMA)
» PCl trace buffer
* 10/100 Mbit Ethernet MAC

2 - Hardware Implementation

Fully pipelined single- and double- precision IEEE4 FPU

Technology-independent memory and pad wrappers

2.1.3 LEONS Applications development tools

Many open source software tools are available LIBON3 applications

development [3,6]. A package based on a GNU crosgdation system is provided

by Gaisler Research, including the following tools:

GNU C/C++ compiler

Linker, assembler, archiver etc.

Standalone C-library

RTEMS real-time kernel with network support
Boot-prom utility (mkprom)

Remote debugger monitor for gdb

GNU debugger with Tk front-end

DDD graphical user interface for gdb

10

2 - Hardware Implementation

2.2 The GR-XC3S-1500 Development Board

The GR-XC3S board [5] is a compact, low-cost degalent board which has
been developed by Pender Electronic Design in qatipe with Gaisler Research to
enable the evaluation of the LEON2 and LEON3/GRIgi®cessor systems. The
board incorporates a 1.5 million gate XC3S1500 FP&#ice from the Xilinx
Spartan3 family, which is supported by the freanxilweb-pack synthesis and place

and route tools.

On-board Flash memory and SDRAM are provided tagetinth Ethernet,
JTAG, Serial, Video, USB and PS2 interfaces forbwfard communication. The
incorporation of the onboard volatile and non-vildatnemory, together with the
communication interfaces makes the board ideafdsir prototyping, evaluation and
development of software for Leon microprocessoriegtoons. An actual picture of
the board is provided in figure 2.2.

Figure 2.2. The GR-XC3S-1500 Development Board

11

2 - Hardware Implementation

Expansion to user's peripherals and circuits cannfpgemented using the
expansion connectors, either to implement a usBnetk mezzanine board, or via
ribbon cable connections. A specific connectorra/led to allow connection to the

standard memory bus signals.
Although targeted for the development of small Ldmsed systems and
computer peripherals, this board can easily be @sed general purpose FPGA

development environment for any Xilinx Spartan-3ige.

The board technical description and selection ofspa be used are described

as follows.

12

2 - Hardware Implementation

2.2.1 Board technical tescription

As previously said, the GR-XC3S-1500 developmerdrtbancorporates a
large capacity Xillinx Spartan-3 FPGA, with on-bdanemory and interfaces. The
board provides a platform which enables the implgaten of complex FPGA
designs, specially to LEON processors based systdine development board block

diagram is presented in figure 2.3.

VIDED USB-A USE-B RJ45 P52 P52 SERIAL-1 SERIAL-2
MOUSE KEYBOARD

[-T-

=
SPARTAN-3
XC351500

| USER IO

MEMORY
EXPANSION

VOLTAGE : N N
REGULATION
RESET USER
PUSH PUSH
BUTTON BUTTON

POWER JTAG

Figure 2.3. GR-XC3S-1500 development board bloekgdim

T T

The features of the GR-XC3S-1500 Development Basaecas follows [ref2]:
» Compact Eurocard (100x160mm) size
stand-alone operation with +5V power input
* Xilinx XC3S1500-4FG456 FGPA
o 1.5million gate Xilinx Spartan 3 device in 456 B@Ackage

13

2 - Hardware Implementation

0 1 x 4Mbit (XCF04S) and 1 x 1Mbit (XCF01S) platforfatash Proms
for non-volatile storage of FPGA configuration

* On-Board Power Regulators
Texas Instruments TPS75003 Triple-Supply Power ameent IC providing
o +3.3Vi/o voltage
o0 +2.5V auxiliary voltage
o +1.2V core voltage

* On-Board Memory
o PROM 64 Mbit (8 Mbyte) FLASH (organised x8 or x1i§) b
0 SDRAM 512 Mbit (64 Mbyte) PC-133 SDRAM on board (Bfs
wide interface)
o SRAM memory can be added via Mezzanine board, ubagnemory

expansion connector.

* On-Board Oscillators
o Main oscillator 50MHz
0 User fitted oscillator (DIL-8 socketed)
o Ethernet oscillator 25MHz

* Interfaces

o Serial interfaces: Texas Instruments SN75C3232, 34/ 5.5-V
Multichannel RS-232 Compatible Line Driver/Reces/gproviding
high speed serial interfaces (1 Mbaud RS232) with $tandard SUB-
D9 female connector interfaces. Can easily be gandid to support
LEON serial DSU for processor debug and programniioad

o Ethernet PHY: Intel LXT971A 3.3V Dual-Speed Fashé&tnet PHY
Transceiver device providing 10/100Mbit/s Ethermeerface, with
RJ45 10/100Mbit Ethernet connector

14

2 - Hardware Implementation

o Video DAC: Analog Devices ADV7125-50 Triple 8 bitigth-Speed
Video DAC device, providing 50MHz, 24 bit Video DAGterface for
driving a standard 15 pin VGA type connector irded

o USB: Cypress CY7C68000 USB 2.0 UTMI Transceiverramting to
either USB-A (Host) or USB-B (Peripheral) style oentors for USB
2.0 interfaces

o PS2 Mouse and Keyboard: Two PS2 style connectoowiging
standard PS2 style interfaces (e.g. Mouse and Kagbo

o JTAG: Connectors supporting both Parallel Cable(Hlying leads)
and Parallel cable IV (2x7pin 2mm header) for JTAGgramming
and configuration download to FPGA

o0 Memory expansion connector: 120 pin expansion coctone AMP
177-984-5, allowing connection to mezzanine boardtoo a logic
analyser with appropriate adapter

* Userl/O's
o0 LVDSIO: One 2 x 20 pin 0.1” header providing 12 L8B3ignal pairs
for User defined signals. Can also be configured aesed as 24
standard LVTTL/LVCMOS single ended I/O signals taer defined
signals
0 GENIO: Three 2 x 20 pin 0.1” headers, each progdRD user
definable 1/0 signals (total 60 user defined sigpal
o PIO: 16 bit PIO port accessible via expansion cotoreg(20 pin 0.1”
header), compatible with existing GR-PCI accessprgducts to
provide easy expansion of optional 2 x RS232 RS422 / 2 x LVDS
or 2 x CANBUS interfaces. Can also be configuregrimvide 16 user
defined I/O signals
* Switches
o 8 pole DIP switch for User Definable functions
o Two user definable push-button switches

15

2 - Hardware Implementation

0 One push-button switch for system reset and oné-putton switch

for FGPA (re)configuration

* Indicators
Four User definable LED indicators.
o One indicating power on board
0 One indicating FPGA programming status
0 One indicating Prom-busy
o One indicating USB current fault

2.2.2 Board parts to be used

The parts of the development board used in theeprdjeside the FPGA are

explained with some detail as follows.

* Memory Organization
The GR-XC3S-150(provides FLASH (PROM) memory and SDRAM on
board, providing the necessary memory control addréss/Data signals.
The memory organisation on tHeR-XC3S-150(oard is represented in

Figure 2.4.
SDRAM CTRL
MEM CTAL
ADDR
GR-XC35
MEMORY Y
INTERFACE MEZZANINE

FLASH SDRAM MEMORY
EXPANSION

Bor18 32 a2
DATA

Figure 2.4. Board Memory Interface

16

2 - Hardware Implementation

o PROM 64 Mbit (8 Mbyte) FLASH (organised x8 or x1i§) b
0 SDRAM 512 Mbit (64 Mbyte) PC-133 SDRAM on board (Bfs
wide interface)

The provided mezzanine memory expansion is not usdldis project. The
address, data and standard memory control sigh#dM(CTRL) are made

available for external use on the J9 expansion ecton.

The FLASH memory is normally not write protectechwever, if a zero-ohm
resistor is installed for JP1, the FLASH memory dam configured to
protected it from Write/Erase operations. When imgitor block-erasing the
FLASH memory, LED D12 will illuminate. The FLASH mmery normally
operates in 8bit wide memory mode. However, if aoz#hm resistor is
installed for JP2, the FLASH memory can be confgluto instead operate in
16 bit data mode.

17

2 - Hardware Implementation

+ Oscillators

A number of oscillators are provided on B&-XC3S-150®0ard as represented

in Figure 2.5.
DEFAULT: 50.000MHz
CLK
X1 -
USER DEFIMED: DILS FPGA
CLKZ
X2 -
51 5| 5
25.000MHz = g o
= ¢ 3
w - ETHERMET
X — 1 PHY
DEFAULT: NOT FITTED
Yy
!llllll= UlDED
X4 R ; S—- DAC
NF

24 000MHz

Y1 l—b USB

PHY

MNF

Figure 2.5. Configuration of Oscilators

The main oscillator LK) for the GR-XC3S-1500 device is 50MHz precision
oscillator, X1. A DIL8 socket is provided in order allow the user to install their
own user defined oscillator to provi@ K2 if required.

The Ethernet PHY requires a 25.000MHz clock whilpiovided by X3. This
clock is also an input to the FPGEBTH_CLK).

18

2 - Hardware Implementation

In the default configuration X4 is not fitted, atite clock for the Video DAC is
intended to be generated by the logic inside th@ AP

The clock for the USB PHY controller is provided Wy, it is not used in this

project.

» Serial interfaces
The GR-XC3S-150(@rovides two serial interfaces with standard SUB-Pin
female connectors, and RS232 line driver/receivgpsc The IC's implemented

on board are capable of supporting data rates igMdaud.

* Ethernet Interface

The GR-XC3S-150®oard incorporates a Intel LXT971A 3.3V Dual-Spéast
Ethernet PHY Transceiver device providing 10/100#kEthernet interface, with
RJ45 10/100Mbit Ethernet connector. To use thidufeait is necessary to
implement the Ethernet MAC function in the logictbé FPGA. Communication
and data transfer between the MAC and PHY occumr @v standard MII
interface. To utilize the Ethernet interface in @h system, appropriate driver
software will be required depending on the featued operating system which

the user wishes to implement.

« JTAG

Connector J9 allows a Xilinx Parallel Cable IV typebon cable (2x7pin 2mm
connector) to be connected to the board. Altereaticonnector J10 allows either
flying leads or a low-cost JTAG programming cahlelsas the Digilent JTAG3
or USB type cables to be connected to the boarth Bpes of cable can be used
with the Xilinx IMPACT software for programming ofthe Platform
Configuration proms and for configuration of theGA®

19

2 - Hardware Implementation

2.3 LEONS3 Design Configuration

The provided files by Gaisler Research which dostthe VHDL model to be
used could be “manually” modified in order to chedise features to be placed on the
FPGA. However, a GUI xconfig tool which allows tondigure the model is provided.

The main window of the GUI configuration tool caa $een in figure 2.6 [3,6].

54 LEON3MP Design Configuration M=E3
Synthesis Debug Link Save and Ezit
Clock generation Peripherals Quit Without Saving
Processor YHDL Debugging Load Configuration from File
AMBA configuration Store Configuration to File

Figure 2.6. LEON3 GUI configuration tool

The GUI configuration tool can be accessed by atkeg the following
command line on a cygwin (or Unix) bash shell, loe directory corresponding to the
VHDL model template for the board (Leon_VHDL_mo@atib-Leon3\grlib-gpl-
1.0.17 -b2710\designs\leon3-gr-xc3s-1500):

$ make xconfig

The GUI configuration tool allows to add or deldégatures of the VHDL
model and set parameters for the synthesis and VHIBbugging. The set
configuration is saved at a “config.vhd” file byiaking the “save and exit” button.
The figures 2.7 and 2.8 shows the configurationdevs for the processor and its

peripherals, respectively.

20

2 - Hardware Implementation

% Processor

Processor

'+ y/[n| Enable LEONS SPARC VS Processor | Help ||~

Humber of processors | Help |

—

Integer unit |

Hoating-point unit

Cache system

Debug Support Unit

Fault-tolerance

I

|
|
MMU |
|
|
|

VHDL debug settings

el

Main Menu | Hext | Prev |

Figure 2.7. Processor configuration window

2% Peripherals

Peripherals

Memory controller

On-chip RAM/ROM

Ethemet

IDE Disk controller

UART, timer, IfO port and interrupt controller

Spacewire

Keyhord and YGA interface

|
|
|
|
CcAN |
|
|
|

T

=l

Main Menu | Mext | Prev |

Figure 2.8. Peripherals configuration window

21

2 - Hardware Implementation

2.4 Procedure to place the processor on the FPGA

A design model containing the VHDL files of LEONS the GR-XC3S-1500
development board is provided by Gaisler. The abl software tool to synthesize
the provided files was the ISE® Foundafi8rPackage from Xillinx (version 9.2i)
[7]. The ISE Foundation package is in the list eeammended software by the

provider to perform the synthesis operation ofgh®vided files.

The empirically “successful” procedure to place torrespondent .bit file on

the FPGA is described by the following steps:

1) Synthesize XST with the ISE 9.2i Project Navigailde project is opened at
the directory at the package provided by Gaisleyeldech:
Leon_VHDL_model\Grlib-Leon3\grlib-gpl-1.0.17-b27 t@signs\leon3-gr-

xc3s-1500

2) On a cygwin bash shell and at the previously icetéd directory, the
following command line is executed in order to peri the Place&Route in

bash mode:
$ make ise-map

3) After the Place&Route is successfully completid,.*bit file is generated by
executing the following command line (on the sarygnen bash shell):

$ make ise
After the .bit file is generated, it can be dowmlda the FPGA with IMPACT

(another program in the ISE Package) via JTAG calile *.bit file download over
the FPGA can be done from the iIMPACT GUI. By thisqedure the downloaded

22

2 - Hardware Implementation

FPGA configuration is lost every time the boardumed off. The same procedure

can be done from the cygwin bash shell by execubhiegollowing command line:

$ make ise-prog-fpga

The FPGA configuration PROMs can be programmedguisia obtained *.bit
file by executing the following command on the cygwhell window (the file is also
downloaded via JTAG by this way):

$ make ise-prog-prom

Downloading the .bit file into the PROMSs configsréhe board to download
automatically the file into the FPGA the *.bit fimnfiguration every time that it is
turned on, making stand alone operation of thedpassible.

A precompiled *.bit file is also provided by GaslResearch, it can be
downloaded into the PROMSs by ISE executing theofeithg command in the cygwin
bash shell (also via JTAG):

$ make ise-prog-prom-ref

The results obtained with both *.bit files are quared at the “test and results”

section of this chapter.

23

2 - Hardware Implementation

2.5 The GRMON LEON Monitor

GRMON [4,5,6] is a debug monitor developed by &aifkesearch for the
LEON Debug Support Unit (DSU), providing a non-udive debug environment on
real target hardware. The LEON DSU can be conttalleough any AHB master,
and GRMON supports communications through the @¢eicDSU UART or a PCI
interface if available. GRMON can operate in twoda®: stand alone or attached to
gdb. Numerous commands are available to examina, dasert breakpoints and

advance execution.

GRMON is used in stand alone mode during thisgato]LEON applications

can be loaded and debugged using a command lieréaioe in stand alone mode.

Some of the operations that are simplified usingM&m are listed as
follows:
* Read/write access to all registers and memory
» Dissasembler and trace buffer management
* Downloading and execution of LEON applications
* Breakpoint and watchpoint management

* Auto-probing and initialization of LEON peripheraad memory settings
GRMON allows to access the LEON processor by séwags, in this project
JTAG cable and parallel port (as set by default)entbe only used. The following
command line (in the GRMON installed directory)artygwin or Unix (DOS is also

supported) bash shell is executed to initialize GBR¥Moperation with JTAG cable:

$ grmon -jtag

24

2 - Hardware Implementation

Several options can be used for GRMON initializatias will be seen in
further sections and chapters. An evaluation varebGRMON is included in the

LEON software tools provided by Gaisler Research.

2.6 Tests and Results

The bit file obtained following the procedure désed at the section 2.3 was
by the methods also specified downloaded into tA&A. The processor placed on
the board was accessed with GRMON, despite someancmication errors and a
stack pointer warning, the GRLIB library componerstsemed to be correctly
installed, as can be seen in figure 2.9.

\Documents and Settings\agonzalez\Desktop\grmon-eval-1.1.32\grmon-eval\cygwin\gr|

DCOM communication error, retrying ...
warning: stack pointer not set

DCOM communication error. retrying ...
DCOM communication error, retrying ...

Component

LEON3 SPARC U8 Processor i » Research
AHB Debug UART izler Research
AHB Debug JTAG TAP i » Research
SUGA frame huffer i » Research
GR Ethernet MAC isler Research
ATA Controller Rezearch
LEON2 Memory Controller European Space Agency
AHB-APE Bridge Gaiszler Research
LEON3 Debug Support Unit Gaisler Research
Generic APB UART Gai d
Multi-—processor Interrupt Ctrl

Modular Timer Unit

Keyboard P5~/2 interface i » Research
Heyboard P5-2 interface Gaisler Research
General purpose 1-0 port Gaizler Reszearch

Use command ’info sys’ to print a detailed report of attached cores

rlib>

Figure 2.9. Built LEON3 processor on GRMON monitor

Also some applications were successfully downldaokeer RAM. However,
it was not possible to execute the downloaded egptins, not even a “hello world”
test program. The obtained error message was “psocenot in debug mode”,
making the board reset necessary to continue. Tdsh Ffnemory related instructions
were not possible to execute under these conditidrfailed attempt to access the
registers is reported in figure 2.10.

25

2 - Hardware Implementation

\Documents and Settings\agonzalez\Desktop\grmon-eval-1.1.32\grmon-eval\c - O] =
LA TS =~
DGO 0 0 E 0
A4 .01 :0 Rese : : LG
R AARBRhER B AAREC AP
; 8 .8
A5 . @1 @ i ATA Co 0 A
5
5[5]5]G 180
De 0 0
e 0
Eln (44 A3 o) . [4
dld d dld 0 0 D 0 ¥}
IJ iy .
a
il g
9 W
e iy
R g
g
g 0 0x0080¢
A1l . A1 z @86 Rese AHB/APE B A
RARRBBEAR B A1 ABAAR
A2 . A1 - AP4 ; 0 De 0 A
9 AAPBAAR AAARDAG
A1 . @1 - 99 : APB UAR A
RARRR10P R ARRE2 AP
DO 0 0 B 0
ARPRRE
A2 . A1 -9 i DCESSD §
3AARB209 EAARA3BH
A3 .01 :0 er Re 0 AP
:
R
RAARR3AR B ARRBE4A0
1 0 b
A4 . A1 : 869 :) p A
3 ARPR409 EAARAS AP
A5 . @1 : 869 : 0 : A
RARRB5S AR B AAREG B
A% . A1 : 6 i 0 0 po A
RARRBEAR EAARE7 AP
DGO 0 0 E 0
1 D 1 1 D
D0 0 0 B 0
0 D 0 0 D
AAARPBAA AARROARR AAARRBAR ARRROAAR
DGO 0 0 E 0
ARARPBEAA DGO 0 T
AAARPBAA DGO 0 on e
-

Fiugre 2.10. Failures on the built processor

The bitgen report and Place&Route report filespneed several warnings but

almost all of them were related to the USB porticies.

26

2 - Hardware Implementation

After the reported results, the precompiled latfiprovided by Gaisler
Research was downloaded on the FPGA. No commiuonsaérrors or stack pointer

warnings appeared in that case, as can be seguia £2.11.

Command Prompt - grmon-eval -nb -jtag

initialising
detected frequency:

Component

LEON3 SPARC U8 Processor i » Research
AHB Debug UART i » Research
AHB Debug JIAG TAP i » Research
SUGA frame huffer i » Research
GR Ethernet MAC i ~ Research
USB Debug Comm. Link i » Research
ATA Controller i » Research
LEONZ Memory Controller European Space Agency
AHB~AFPE Bridge Gaizler Research
LEON3 Debug Support Unit Gaisler HResearch
Generic APB UART i ~ Research
MHulti—processor Interrupt Ctrl i » Research
Modular Timer Unit .

Keybhoard P5-2 interface i » Research
Keyboard P5-2 interface i » Research
General purpose [0 port i » Research

Use command *'info sys’ to print a detailed report of attached cores

gr1ib>

Figure 2.11. Precompiled LEON3 processor on GRMQovitor

Operations over the registers, and applicationsnttead (into RAM and

Flash) and execution were successfully completelguthese conditions.

After the obtained results and a relatively highet investment to solve the
problems of the “manually” generated processor, after analyzing the possible
problem causes such as the ISE version used, itde@ised to continue the board
testing using the precompiled processor. The pihggibf physical damages on the

board was dismissed since it was possible to rubtbe precompiled processor.

27

2 - Hardware Implementation

The LEON3 VHDL model flexibility cannot be discadidy the obtained
results, but it neither cannot be proved due tcctisece of continue the project using
the precompiled version. However, the LEON3 progessliability for the support of
an embedded operating system was possible to yetstebprocedures performed in
the following chapter. The fully-operative procassersion allowed to continue with

the project’s next step.

28

Chapter 3

Firmware Implementation

This chapter explains the procedure to place anrdlipg System on the

Board, after the processor has been installed.
3.1 The SnapGear Linux

SnapGear Linux is a full source package providgdQGaisler. It contains
kernel, libraries and application code for rapidvelepment of embedded Linux
systems. MMU and non-MMU Leon configurations arearted. A single cross
compilation toolchain is provided, which is capabliecompiling the kernel and

applications for any configuration.

The Linux kernel can be configured using a gragmhicterface. Drivers and
features can be removed in order to save spacelEDN3 systems the AMBA
plug&play information is used to detect devices &wall their respective software

drivers.

A small boot loader is incorporated into the Sne@GLinux software
distribution, it is specially designed for LEON pessors. Its main propose is
initialize basic hardware, such as memory contrelland console output for
debugging, before launching LEON Linux.. The boo&der is stored in a non-
volatile memory at the address where the LEON msmereads first its instructions

to be executed, usually stored in flash at addyess

29

3 — Firmware Implementation

Supported hardware on the latest version isgoted in the following list.
New hardware is being added costantly:
* LEONZ2, with or without MMU, FPU, MUL/DIV.
* LEONS, with or without MMU, FPU, MUL/DIV.
* LEON3 multi processor systems, SMP
* APBUART
* GPTIMER
* GRETH 10/100 and Gbit
» OpenCores 10/100 Ethernet MAC
* SMC91x 10/100 Ethernet MAC
* APBPS2
* APBVGA
* GRUSBHC
* GRVGA
* ATACTRL
* GRPCI
* GRETH over PCI
* GR/OpenCores

3.2 SnapGear Linux Compiling

The SnapGear Linux compiling processes was contplstecessfully in a
Unix host. Several problems appeared using cygvaagt was discarded.

The procedure to compile SnapGear Linux is compbgyetie following steps:
1) Installing the toolchain

2) Installing the SnapGear distribution

3) Configuring Linux

4) Building SnapGear

30

3 — Firmware Implementation

The indicated steps are described as follows:
3.2.1 Installing the Toolchain

Before compile SnapGear Linux, a toolchain abledmpile LEON SPARC
Linux binaries must be chosen, it was selectedspac-linux-3.4.4 toolchain. The
chosen toolchain was installed in the host’s /opatiory. After being installed, the
toolchain was added to the PATH variable usingdfiewing command line:
$ export PATH=$PATH:/opt/sparc-linux-3.4.4/bin

After installing the toolchain it is possible tooss compile applications for
SPARCC LEON Linux, as indicated by the followingrmmand line (the brackets are
representative):

$ sparc-linux-gcc -o [executable name] [sourcerfdene .c]

The following command line demonstrates that thigat binary is a SPARC

binary:

$ file [executable name]

Obtaining the following output message (for ancexable file named “args”):

args: ELF 32-kbit MSEB executable, SPARC, wersicn 1 (8YSV), dynamically
linked (uses shared libs), not stripped

31

3 — Firmware Implementation

3.2.2 Installing the SnapGear Distribution

The provided SnapGear distribution is compressdl t@ir and bunzip2, its
installation on the Linux host in use can be done elxecuting the following
command line (xx and yy values depends on the w@)si
$ tar -xjf snapgear-xx-yy.tar.bz2
3.2.3 Configuring Linux

The SnapGear distribution includes an easy to teghgcal interface (GUI).
From the GUI is possible to select processor, Limepsion, C library and what
applications will be include into the root file $g81 (ROMFS image) accessed by
Linux during run time. Is also possible to configtine boot loader parameters and

configure the Linux kernel.

The configuration GUI can be invoked by executimg following command
line in the SnapGear distribution installed diregto

$ make xconfig

The GUI main window can be seen in figure 3.1.

Vendor/Product Selection Save and Exit

kKemelfLibrary/Defaults Selection Quit Without Saving

Template Configurations Load Configuration from File
Store Configuration to File

Figure 3.1. SnapGear main configuration GUI

32

3 — Firmware Implementation

A template configuration for the board is alsoluded, this can be set by
clicking the “Template Configuration” button on tl&UIl, then choosing it (GR-
XC3s-1500) in the window that appears and actigatime update configurations

option, as shown in figure 3.2.

::-.-.._-;, Template Configurations

Template Configurations

gr_xc3s_1500 | Templates for leon3mmu Help 5
& vy || B || Update configurations with ahove selection Help f
Main Menu Prev
—_

Figure 3.2. Template Configuration selection

By activating the “Update configurations with alkoselection” option, the
launch of the GUIs for the configuration of the er and other settings are
suspended, and all the settings are configuredhdisaited in the chosen template.
However, as it can be seen in figure 3.1, thereals® an option for load a
configuration from a file, so the board templatefaguration and customized settings

can be mixed.
In this project, the activation of the template tile GR-xc3s-1500 Board was
considered enough. This selection was compatibth thie modifications over the

Linux kernel indicated at the section 3.3 (Modifioas over the SnapGear Kernel).

However, desired changes can be performed byngetie provided options

by clicking other two buttons on the GUI, Vendoo&uct Selection and

33

3 — Firmware Implementation

Kernel/Library/Defaults Selection. The applicatieelection menus obtained for each

buttons are shown on figures 3.3 and 3.4.

= Vendor/Product Selection = |/ |

vendor/Product Selection |

| || Select the Vendor you wish to target | I

gaisler| Vendor ‘ Help |

| select the Product you wish to target |

LITE ‘ SnapGear Products ‘ Help |
leon3mimu | gaisler Products ‘ Help |
________ || Select the options for a selected Product |
“* leon2 ——
4 leonZmimu | Gaisler/LeonZ 3fmmu options | 7
 leon3
leonImmu | L=t | 5= |
Figure 3.3. Vendor/Product section
| Kernel/Library/Defaults Selection = ||E =
Kemel/Library/Defaults Selection |
linux-2.6.18.1 || Kemel Yersion | Help | I
glibc-from-compiler ” Libc Version | Help |
I ———— " Mault all settings (lose changes) | Help |
“# glihc-from-compiler
 microLibc stomize Kemel Settings | Help |
“* uChihc stomize Vendor/User Settings | Help |
| ¥ || - || % n H Update Default Vendor Settings | Help | _',.r
Kain Menu | Hext | Prev |

Figure 3.4: kernel/library/defaults selection menu

Changes in this options are not saved if a teraptats been selected as
previously indicated, but a template can be usetthaf button “load configuration
from file” is used. Some of the allowed featuresnodify are presented as follows:

34

3 — Firmware Implementation

* Processor Type and MMU
e Cllibrary
» Kernel version

e Configuring the boot loader

» Configuring the Linux 2.6.x kernel (MMU, i.e. onlEON3)

» Configuring the Linux 2.0.x kernel (ho MMU)

Special GUI configurations utilities are providedr fthe both kernels,

however, them do not perform automatically changesded as a consequence of

eventual modifications made by the user, leadingassible errors on the compiling

process. The GUI configuration utility for the Lx@.6.x case is shown on figure 3.5.

Eile Option Help

qconr

oz | 1| E]

Option

Option

Code maturity level options
--General setup
‘@ Configure standard kernel features (for small systems)

Loadable module support
| --Block layer
. 10 Schedulers

- Grlib: Amba device driver configuration

i Vendor Gaisler
“\endor Opencores

-~ Networking —
--Device Drivers
- Generic Driver Options
~Connector - unified userspace <-> kernelspace linker
- Memory Technology Devices (MTD)
-~ Parallel port support

Plug and Play support
-~ Block devices
-~ ATA/ATAPI/MFM/RLL support

SCS| device support
-~ Multi-device support (RAID and LVM)

Fusion MPT device support
- |EEE 1394 (FireWire) support
~ 120 device support
-- Network device support
- PHY device support
-~ Ethernet (10 or 100Mbit)
- Ethernet (1000 Mbit)
- Fthernet (10000 Mbit)
Token Ring devices

[E1 L3I

OSymmetric multi-processing support (does not work on sund,
~OSupport for SUN4 machines (disables SUN4[CDM] support)
--# Running on SoC 'Leon’, the open source sparc VHDL model
~0OSupport for PCI and PS/2 keyboard/mouse
~OOpenprom tree appears in /proc/openprom
~OSundm LED driver
~E Kernel support for ELF binaries

OKernel support for a.out and ECOFF binaries
~OKernel support for MISC binaries
~0OSunOS binary emulation
--Memory model

-® Flat Memory
~[064 bit Memory and IO resources (EXPERIMENTAL)

[«I+]

] 1]

Running on grlib's Leon3 (LEON 3)

Say Y here if you are running on a Leon3 from grlib
(download from www.gaisler.com).

Figure 3.5. Linux 2.6.x kernel GUI configurationliay

35

3 — Firmware Implementation

It was considered to use a JFFS2 file system ashfimemory but many
compilation problems appeared and many files seetmdae necessarily (without
help of the GUI) modified. Similar problems appehteying to configure the USB
port in order to manage an external memory devite kernel GUI configuration
was not very useful in those cases. However tha starage on the board was not
considered a critical issue, since it is also fmedio transmit data immediately after

it is processed.

Actual changes on the kernel were performed onesfiles without the help

of the previously described GUI, as it can be seerection 3.3.

36

3 — Firmware Implementation

3.2.4 Building SnapGear

The Linux SnapGear compilation is executed by theKe” command, as

indicated in the following line in the SnapGeartdimition installed directory:
$ make

The generated images can be found at the /imagdehrectory. Information

about the compiling times can be found at the se@i5 (Tests and Results).

3.3 Modifications over the SnapGear Linux Kernel

Some changes were performed over the Kernel ierdal set the following

parameters:
3.3.1 Board IP address

As previously said, the Board’s Ethernet port wadsosen to test the
communication with external stages. The followiilgsfwere modified indicating the
Board new IP address:

» vendors/gaisler/leon3mmu/romfs/etc/init.d/rcS

* romfs/etc/init.d/rcS

Both files contain the same information, as showrigure 3.6. The assigned
IP address for the Board was 192.168.165.30 (asradscated on figure 3.6).

37

3 — Firmware Implementation

aEBE o¢ | & BER 554 Tao 74

|t /bin/sh A
mount -t proc none /Fproc

mount -t sysfs none /fsys

mount -t devpts devpts fdev/pts

mount -t tmpfs -o size=1H tmpfs Fuvar/tmp

|lhostname sparky

/sbin/ifconfig 1o up 127.8.06.1 netmask 255.8.6.8
/sbin/ifconfig eth® up [192.168.165.38|netmask 255.255.255.8

route add 127.8.8.1 dev lo
route add default gw 1922.168.165.254 ethl

/bin/fportmap &
quunt -0 nolock -o ro -t nfs 192.168.8.15:/home /home/nfs

¥ 1cS (¥:\snapgear-2. 6-p37hiromfs\etcinit.d) - GVIM
File Edit Tools Syntax Buffers ‘Window Help

AERE BE LB ARR A3 TA9 2?22

[t /bin/sh »
mount -t proc none /fproc

mount -t sysfs none fsys

mount -t deupts devpts fdeuv/pts

mount -t tmpfs -o size=1H tmpfs Fuar/tmp

lhostname sparky

/sbin/ifconfig lo up 127.68.6.1 netmask 255.68.68.6
/sbin/ifconfig eth® up [192.168.165.38|netmask 255.255.255.8

route add 127.8.68.7 dev lo
route add default gw 192.168.165.254 eth@

/bin/portmap &
|#mount -0 nolock -o ro -t nfs 192_.168.8.15:/home /home/nfl

£

16,58 All

Figure 3.6. Board IP address setting
Is important to notice that the directory /romfgieated during the kernel first
compilation. However, if /romfs and some subdirgeto are manually created them
will not be overwritten. Only missing directorieacadefault settings will be added
during the compilation process.
3.3.2 Adding programs to be executed on the board
The executable files of the programs to be execotethe Board must be add

to the /romfs directory. By doing this, the progsamill be found at the SnapGear

38

3 — Firmware Implementation

root file system during its execution. The samecpdure can be performed to place

any file or subdirectory wanted in the root filesssgm during SnapGear execution.
3.3.3 Automatic Program Startup

A program can be set to automatically run at thep&ear startup. One way
to do this is by modifying (or creating) the “irati” file before compile the Kernel.

inittab shall be placed at the romfs/etc directory

The inittab[] file describes which processes aagtstl at boot and during

normal operation. An example of inittab is showrfigure 3.7

% inittab (X:\snapgear-2. 6-p37hiromfsietc) - GVIM
File Edit Tools Swntax Buffers window Help

OERE 9@ B e 334 TR ?2 4

i Basic Init Table
i

System initialization (runs when system boots).
tisysinit:fetc/init.d/res

::respawn:/etc/init.d/ingH

1,1 All

Figure 3.7. Example of the inittab file

The “sysinit” action, set as default, indicateddad the configuration at the
rcS file. The “respawn” action was added to run ‘tingr” program at startup and
whenever it terminates. The call to run the SnapGmmsole shell has been

eliminated in the shown example.

39

3 — Firmware Implementation

Other actions can be called besides sysinit arghvers, but are not needed in
this project. As can be presumed, a wrong configuraof the inittab file can make

totally inoperative the operating system.

3.4 SnapGear Linux Installing Procedure

After the Kernel compilation has been completed, dbtained images can be
found at the /images directory. The image.flashlezi$ the appropriate one to use,
since it can be stored in Flash memory and contat@mmplete boot loader.

The chosen procedure to place image.flashbz iprbeessor’'s Flash memory
was using the GRMON monitor via JTAG cable. GRMGNnhvoked on the server as
indicated in the following command line:
$ grmon-eval -nb -jtag

The —nb option allows Linux to take care of trapstead of having GRMON
to stop the execution. After verify the processperation the flash memory shall be
erased, as indicated by the following executioa bn grmon:

GRMON?> flash erase all
Then, the image can be loaded into Flash memory:

GRMON?> flash load image.flashbz

After the download is completed, SnapGear canxeewded by pressing the

board’s reset button or executing the followingelin

40

3 — Firmware Implementation

GRMON> run O

As previously said, for the chosen Kernel confagian SnapGear will run on
the serial port 1 of the board, at 38400 baud. iy described procedure SnapGear
will run in stand alone operation each time the laa turned on or reset. The next

section explains the details the about SnapGegeusa

41

3 — Firmware Implementation

3.5 Tests and Results

The compiling times for SnapGear were measurethsmpreviously indicated
configuration (immediately after execute the makenmand). If the SnapGear
distribution in use is compiled by first time, ks around 5 minutes. If it is
recompiled it takes around 40 seconds, since & alsnost all the files built for the
first compilation, despite eventual minor changestee kernel (such as the indicated

in the section 3.3).

The downloading time for the image on the Boardsklanemory was also
measured, registering around 15 minutes, the dadnépeed was 24.8 Kbit/s as can
be seen in figure 3.8. The erasing of the flash ores (a step previous to the image

download) takes around 2 minutes.

42

3 — Firmware Implementation

grmon-eval -jtag -nb

load image25862.f1
-text at BxB. e 2736244 bytes
: 2736244 bytes <24.8 kbhitrs>
mbo 1s
entry point: BxB00000608
lgrlib> flazsh erase all
[Eracse in progress
Block B @x00000000 code
Block Bx8002 0008 code
Block Bx80040008 code
Block Bx0006 0008 code
Block Bx0008 006068 code
Block Bx00020008 code
Block BxB00c 0008 code
Block BxB00e 0006 code
Block Bx00180008 code
Block Bx001 20008 code
Block Bx001 40008 code
Block Bx801 60008 code
Block Bx001 80008 code
Block Bx001 20008 code
Block Bx001cAB08 code
Block BxA81 e ABAA code
Block BxB82euna code
BxA82 28888 code
BxBA82 18888 code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
BxA8538HAA code
BxB85aluna code
code
code
code
code
code
code
B:806 800608 code
Bx006 20008 code
Bx006cABB8 code
Bx006e 0008 code
Bx00780008 code
Bx080720008 code
Bx080740008 code
Bx80760008 code
Bx00780008 code
Bx00720008 code
Bx007c 0008 code
Bx007: 0008 code = Bx80
complete
igr1ib> flash load image25863.f lashbh=
lsection -text at BxB. size 2736512 hytes
1 2736512 bytes <24.8 kbhitrss>

mho 15
1 BxBABABRAA

Block

]
]
@
@
@
@
@
@
]
]
]
]
]
]
]
]
]
]
]
]
e
]
]
]
]
[C
[C
[C
[C
[C
[C
[C
[C
[C
[C
[C
[C
[C
[C
[
[C
[C
[C
[C
[C
[C
[C
[C
[C
[C
[C
[C
[C
[C
[C
[C
[C
[C
[C
[C
[C
[C
[C

Figure 3.8.Flash erasing and SnapGear image dodolo&RMON

As set in the selected template, SnapGear Linexésuted at the serial port 1
of the board at 38400 baud. The board serial gocdonnected to a Windows host,
where is used the HyperTerminal program to view 8mapGear execution. The

SnapGear boot sequence read at HyperTerminal cagdmeat the end of the section.

The presence on the root file system of the progrand files placed on the

/romfs directory before the SnapGear compiling, wesified using the “Is”

43

3 — Firmware Implementation

command on the SnapGear bash shell, as can bénserfigure 3.9. This proof also

demonstrates the SnapGear correct operation.

“& togrb - HyperTerminal

Flle Edit WYiew Call Transfer Help
O = E Oy

clin3gr jessica. jpg usery ”~
/ # rm jessica.]jpyg
f #1s
bbclingr clin3gr init myserv txclinlx
bbservgr commZ 33 tuservlx
linuxrc uservy

bsrv3qgr
?liente msjprueba. txt| tmp

#

Connected 0:07:51 ARSI 35400 5-M-1 TN

Figure 3.9. Programs and files added to the ré®sfistem
The configured IP address of the Board was verifigtivo different methods.
At figure 3.10 is shown the result of the executdrthe ping command in a remote

Unix host indicating the IP address set for therthoAt figure 3.11, the IP address is

read on the SnapGear bash shell by executing pieerifig” command.

~ agonzalez@grampasso: ~

time=0

ket time S010ms

0.190 m=

Figure 3.10. Board IP address verification fronemote host

44

3 — Firmware Implementation

“& toprb - HyperTerminal

File Edit Wiew Call Transfer Help

D@ & & Do

starting pid 14, tty "' : "fetelinit.d/reS’
mount: mounting tmpfs on Avar/imp failed: Invalid argument
starting pid 26, tty "°': "/bin/sh’
/ # ifconfig
ethd Link encap:Ethernet HWaddr 00:00:/A:CC:00:12
[inet addr:192.168.165.30| Becast:192.168.165.255 Mask:255.255.255.0
inetd addr: TeBB::200:7atf:fecc:12/64 Scope:Link
UP BROADCAST RUNHING MTU:15080 Metric:1
RH packets:11 errors:8 dropped:8 overruns:0 frame:0
TH packets:b errors:0 dropped:0 overruns:0 carrier:8
collisions: @ txqueuelen:1800
R bytes:0 (0.0 B) TX bytes:8 (0.0 B)
Base address:B8xb80

lo Link encap:lLocal Loopback
inet addr:127.80.0.1 Hask:255.8.8.8
inett addr: ::1/128 Scope:Host
UP LOOPBACK RUNWING MTU:16436 Metric:1
RH packets:0 errors:8 dropped:0 overruns:8 frame:8
TH packets:B errors:0 dropped:0 overruns:B8 carrier:8
collisions: B txqueuelen:B@
RK bytes:0 (0.0 B) TH byutes:8 (6.0 B)

A

Connected 0:01:07 Auto detect 38400 8-M-1 s LM

Figure 3.11. Board IP address verification on SregyGhell

Also the configured automatic program run at gfartonfiguration was
successfully verified, as can be seen in the SnapBeot sequence presented as

follows (The line “waiting for PPM file” corresposdo the program chosen to be run
at startup):

decompress_kernel(to: 40000000,freemem:4039758&&m_end:43ffdf38)

output_data:40000000,free_mem_ptr:40397538,free_memend:43ffdf38
- Inputbuf

fer [ptr: 3168, sz: 299017]

done [sz:0x38fLafboting the kernel.
Booting Linux
Booting Linux...
PROMLIB: Sun Boot Prom Version 0 Revision 0
Linux version 2.6.21.1 (agonzalez@grampasso) (gesian 3.4.4) #20 Thu Jun 25
12:23:10 CEST 2009
ARCH: LEON

Vendors Slaves

Ahb masters:
0(1: 3]0): VENDOR_GAISLER GAISLER_LEONS3
1(1: 7/ 0): VENDOR_GAISLER GAISLER_AHBUART
2(1:1c| 0): VENDOR_GAISLER GAISLER_AHBJTAG
3(1:63]0): VENDOR_GAISLER GAISLER_SVGA
4(1:1d| 0): VENDOR_GAISLER GAISLER_ETHMAC
5(1: 22| 0): VENDOR_GAISLER Unknown device 22
6(1: 24| 0): VENDOR_GAISLER GAISLER_ATACTRL
Ahb slaves:
0(4: f|0): VENDOR_ESA ESA_MCTRL
+0: 0x0 (raw:0x3e002)
+1: 0x20000000 (raw:0x2000e002)
+2: 0x40000000 (raw:0x4003c002)

45

3 — Firmware Implementation

1(1: 6/0): VENDOR_GAISLER GAISLER_APBMST

+0: 0x80000000 (raw:0x8000fff2)

2(1: 4|/ 0): VENDOR_GAISLER GAISLER_LEON3DSU

+0: 0x90000000 (raw:0x9000f002)

3(1: 24|10): VENDOR_GAISLER GAISLER_ATACTRL

+0: 0xfffa0000 (raw:0xa000fff3)

Apb slaves:

0(4: f|0): VENDOR_ESA ESA_MCTRL

+ 0: 0x80000000 (raw:0xfff1)

1(1: c|2): VENDOR_GAISLER GAISLER_APB

+ 0: 0x80000100 (raw:0x10fff1)

2(1: d| 0): VENDOR_GAISLER GAISLER_IRQMP

+ 0: 0x80000200 (raw:0x20fff1)

3(1:11] 8): VENDOR_GAISLER GAISLER_GPTIMER

+ 0: 0x80000300 (raw:0x30fff1)

4(1: 60| 4): VENDOR_GAISLER GAISLER_KBD

+ 0: 0x80000400 (raw:0x40fff1)

5(1: 60| 5): VENDOR_GAISLER GAISLER_KBD

+ 0: 0x80000500 (raw:0x50fff1)

6(1:63]0): VENDOR_GAISLER GAISLER_SVGA

+ 0: 0x80000600 (raw:0x60fff1)

7(1: 7/ 0): VENDOR_GAISLER GAISLER_AHBUART

+ 0: 0x80000700 (raw:0x70fff1)

8(1:1a| 0): VENDOR_GAISLER GAISLER_PIOPORT

+ 0: 0x80000800 (raw:0x80fff1)

9(1:1d|12): VENDOR_GAISLER GAISLER_ETHMAC

+ 0: 0x80000b00 (raw:0xbOfff1)

TYPE: Leon2/3 System-on-a-Chip

Ethernet address: 0:0:0:0:0:0

CACHE: direct mapped cache, set size 4k

CACHE: not flushing on every context switch

Boot time fixup v1.6. 4/Mar/98 Jakub Jelinek (jj@allinux.cz). Patching kerne
| for srmmu[Leon2)/iommu

node 2: /cpu00 (type:cpu) (props:.node device_tggemmu-nctx clock-frequency
uartl_baud uart2_baud)

PROM: Built device tree from rootnode 1 with 918ds/0f memory.
DEBUG: psr.impl = Oxf fsr.vers = Ox7

Built 1 zonelists. Total pages: 15315

Kernel command line: console=ttyS0,38400 rdinitiihit

PID hash table entries: 256 (order: 8, 1024 bytes)

Todo: init master_I10_counter

Attaching grlib apbuart serial drivers (clk:40hz):

Console: colour dummy device 80x25

Dentry cache hash table entries: 8192 (order: 368dytes)
Inode-cache hash table entries: 4096 (order: 234.68tes)
Memory: 60616k/65532k available (1536k kernel cet88k reserved, 180k data, 1
904Kk init, Ok highmem)

Mount-cache hash table entries: 512

NET: Registered protocol family 16

NET: Registered protocol family 2

IP route cache hash table entries: 1024 (ordet096 bytes)

TCP established hash table entries: 2048 (ordd6284 bytes)
TCP bind hash table entries: 2048 (order: 1, 8388

TCP: Hash tables configured (established 2048 po#8)

TCP reno registered

io scheduler noop registered

io scheduler cfq registered (default)

orlib apbuart: 1 serial driver(s) at [0x80000106 @)]

grlib apbuart: system frequency: 40000 khz, batekr888400 38400
ttyS0 at MMIO 0x80000100 (irq = 2) is a Leon

RAMDISK driver initialized: 16 RAM disks of 4096K z¢ 1024 blocksize
loop: loaded (max 8 devices)

Probing GRETH Ethernet Core at 0xX80000b00

PHY: Vendor 4de Device e Revision 2

10/100 GRETH Ethermac at [0x80000b00] irq 12. Ragrii00 Mbps full duplex
TCP cubic registered

NET: Registered protocol family 1

46

3 — Firmware Implementation

NET: Registered protocol family 10

IPv6 over IPv4 tunneling driver

Freeing unused kernel memory: 1904k freed

init started: BusyBox v1.8.2 (2009-03-25 12:04:(8T¢
starting pid 14, tty ": ‘/etc/init.d/rcS'

mount: mounting tmpfs on /var/tmp failed: Invalidyament
starting pid 25, tty ": ‘/etc/init.d/ingr'

waiting for PPM file...

The obtained results allow to use the SnapGearatpe system to support
complex programs able to manage the board comntionisaand data processing, as

it is reported in the following chapter.

a7

Chapter 4

Software Implementation

This chapter explains how the software to be run tbe Board was
implemented. First, the following topics are ovewed:
« Type of files to be used for images before and &lifte compression
» Chosen compression algorithm
» Used tools for the compression

* Implementation of a communication channel betweecgsses

Then, is exposed a description of the developedrpms for the image
compression, and building of communication link$ween the board and external

stages (in order to exchange data, the compressktb de compressed files).

The final section of the chapter provides an amslg$ the tests over the
developed programs and their respective results.

4.1 Used File Formats

PPM files [10] have been chosen to test the baaphcities for image
processing, using the JPEG algorithm over them atadining JPEG files; both

formats are explained as follows:

48

4 — Software Implementation

4.1.1 PPM file format

The PPM format [10] was developed in the latteBAOby Jef Poskanzer as a
part of the Portable Bitmap Utilities (PBM); themne of the format is an acronym for

“Portable Pixel Map”.

The format is a lowest common denominator colagmfile format, in which
each pixel is defined by three ASCIl decimal valletween 0 and a specified
maximum value. Each three values for each pixelessgnt an intensity scale of red,
green and blue, respectively.

The PPM format is highly inefficient and redundasihce it contains a lot of
information that can’'t be discerned by the humae; éypwever, the structure of the

format makes very easy the development of progfamiss reading and analysis.

There are two types of PPM files, P3 and P6; B3 fare entirely written in
ASCII format making them easy to read such as arlyfile. P6 files have only their
header written in ASCII format. P6 image valuesdach pixel are assigned entirely
in binary, making them much less heavy than P3 fijeven if corresponding to the
same image). The following table compares two exesior the same image written

in both formats:

49

4 — Software Implementation

P3 P6
P3 P6
#any comment string #any comment string
32 32
255 255
25500 1@#$%"&*()_+[{}:"<
02550
00 255
2552550
255 255 255
000

Table 4.1. PPM formats comparison

As it can be seen, the header structure is the gahe both cases:
* First line: Type of file, P3 or P6
* Second line: comment string
e Third line: columns and rows of the image

¢ Fourth line: maximum color value
In the case of P6 files, the value for each colbrthe pixel is usually

represented by a byte, so in that case the maxiomlon value possible is 255. It was
decided to use P6 files rather than P3 in thisgotoj

50

4 — Software Implementation

4.1.2 JPEG file format

JPEG [12,13] is a standardized image compressiochamésm. Its name
stands for “Joint Photographic Experts Group”, twmmittee that created the
standard and issued it in 1992, being approved®Bdlas 1ISO 10918-1. The name
JPEG is also used to refer to the format of thesfidbtained using the compression

standard.

The standard is designed to compress either fildlraar gray-scale images,
working at its best on photographs, naturalistievark, and similar material; unlike

text, cartoons or line drawings.

Some information from the original image is lostridg the compression
process, which can’t be recovered applying the uhgpression algorithm. JPEG takes
advantage of known limitations of the human eyeauaigesolution; the degree of
lossiness can be varied by adjusting compressicanters. Usually JPEG achieves

10:1 compression with little perceptible loss irage quality.

A JPEG image is composed by a sequence of segménth are identifiable
by markers at their beginning; each of them begiitk a OxFF byte, followed by
another byte indicating what kind of marker it Beside the data containing the
image itself, some segments contain informationutlapplied coding methods and
parameters values used for the compression. Thkensansed by the JPEG standard

are indicated in the Table 4.2.

51

4 — Software Implementation

Marker Code Assignment Symbo Description
Start Of Frame OxFFCO SOFO0 Baseline DCT
markers, OxFFC1 SOF1 Extended sequential DCT
non-differential, OxFFC2 SOF2 Progressive DCT
Huffman coding OxFFC3 SOF3 Lossless (sequential)
Start Of Frame)]]
OxFFC5 SOF5 Differential sequential DCT
markers, .))
]) OxFFC6 SOF6 Differential progressive DCT
differential,]]]
) OxFFC7 SOF7 Differential lossless (sequential)
Huffman coding
Start Of Frame OxFFC8 JPG Reserved for JPEG extensions
markers, OxFFC9 SOF9 Extended sequential DCT
non-differential, OxFFCA SOF10 Progressive DCT
arithmetic coding OxFFCB SOF11 Lossless (sequential)
Start Of Frame]]]
OxFFCD SOF13 Differential sequential DCT
markers, .))
]) OXFFCE SOF14 Differential progressive DCT
differential,]]]
]]] OXFFCF SOF15 Differential lossless (sequential)
arithmetic coding
Huffman table]
- OxFFC4 DHT Define Huffman table(s)
specification
Arithmetic coding _)))
o Define arithmetic coding
conditioning OxFFCC DAC o
- conditioning(s)
specification
Restart interval 0xFFDO through)
o RSTm* Restart with modulo 8 count “m”
termination OXFFD7
OxFFD8 SOlI* Start of image
O0xFFD9 EOI* End of image
OXFFDA SOS Start of scan
OxFFDB DQT Define quantization table(s)
OxFFDC DNL Define number of lines
Other markers
OxFFDD DRI Define restart interval
OxFFDE DHP Define hierarchical progression
OxFFDF EXP Expand reference component(s)
OxFFEO through APPN Reserved for application segmen
OXFFEF JPGn Reserved for JPEG extensions

52

4 — Software Implementation

OxFFFO through COM Comment

OXFFFD

OXFFFE

OxFFO1)]

TEM* For temporary private use in
Reserved markers arithmetic coding
O0xFF02 through
RES Reserved
OxFFBF

Table 4.2. JPEG markers[13]
4.2 An Overview of the JPEG Compression Algorithm

The JPEG algorithm [12,13] is a very complex precé@svorks on either full-
color or gray-scale images; it does not handle sfl hilevel (black and white)
images; and it doesn't handle colormapped imagesreithose have to be to pre-
expanded into an unmapped full-color representatidhe algorithm works best on

"continuous tone" images, unlike images with mamyden jumps in color values.

There are a lot of parameters to the JPEG comprepsocess; by adjusting
the parameters, is possible to trade off compressage size against reconstructed
image quality over a “very” wide range. Also isspible to get image quality ranging
from op-art (at 100x smaller than the original 28image) to quite indistinguishable
from the source (at about 3x smaller). Usually timeshold of visible difference
from the source image is somewhere around 10xxcs@&tller than the original (i.e.,

1 to 2 bits per pixel for color images). Graysdatages do not compress as much. In
fact, for comparable visual quality, a grayscalege needs perhaps 25% less space

than a color image.

JPEG defines a "baseline" lossy algorithm, plusioopl extensions for
progressive and hierarchical coding. There is alseparate lossless compression
mode; this typically gives about 2:1 compressiono(d 12 bits per color pixel).

Most currently available JPEG hardware and softwarelles only the baseline mode.

53

4 — Software Implementation

The outline of the baseline compression algorithihescribed as follows:

1) Transform the image into a suitable color space.

This isn’t needed for grayscale, but for color imaghe usual procedure is
about transform RGB into a luminance/chrominancéorcgpace such as
YCbCr, YUV. The luminance component is grayscaild the other two axes
are color information. This is done in order tdoed to lose a lot more
information in the chrominance components rathemtin the luminance
component, since the human eye is not as sensitivéigh-frequency

chromatic info as it is to high-frequency luminance

This step isn’'t indispensable since the remaindahe algorithm works on
each color component independently, and doesret jost what the data is;
however, compression will be less since all the poments at luminance
quality will be coded. As can be noticed, colopaansformation is slightly
lossy due to roundoff error, but the amount of ersanuch smaller than the
one typically introduced in further steps.

2) Downsample each component by averaging togetioeips of pixels.

The luminance component is left at full resolutiomhile the chroma
components are often reduced 2:1 horizontally aitidere2:1 or 1:1 (no
change) vertically. In the JPEG environment thaisernatives are usually
called 2h2v and 2hlv sampling. This step immediatelduces the data
volume by one-half or one-third. In numerical tenns highly lossy, but for
most images it has almost no impact on perceivedlityu because, as

previously said, of the eye's poorer resolution doroma info. As can be

54

4 — Software Implementation

noticed, downsampling is not applicable to graysata; this is one reason

color images are more compressible than grayscale.

3) Group the pixel values for each component in® l@ocks.

Transform each 8x8 block through a discrete cosiaesform (DCT). The
DCT is a relative of the Fourier transform and Wikse gives a frequency map,
with 8x8 components. Now numbers representing tlezage value in each
block and successively higher-frequency changesinvithe block are
obtained; allowing to throw away high-frequency oimhation without
affecting low-frequency information (The DCT traosh itself is reversible

except for roundoff error).

4) In each block, divide each of the 64 frequenasnponents by a separate

"quantization coefficient”, and round the resudtsritegers.

This is the fundamental information-losing stepesmore data gets discarded
for larger quantization coefficients. Even the mmam possible quantization
coefficient, 1, some information is lost, because éxact DCT outputs are
typically not integers. Higher frequencies are al® quantized less
accurately (given larger coefficients) than lowsnce they are less visible to
the eye. Also, the luminance data is typicallyrgizzzd more accurately than
the chroma data, by using separate 64-elementigatioh tables. Tuning the
quantization tables for best results is a veryiaift procedure and is an active
research area. Most existing encoders use simipéarl scaling of the
example tables given in the JPEG standard, usisingle user-specified
"quality" setting to determine the scaling multgoli This works fairly well
for midrange qualities but is quite non-optimalvatry high or low quality

settings.

55

4 — Software Implementation

5) Encode the reduced coefficients using eitherfridaih or arithmetic coding.

This step is lossless, so it doesn't affect imagdity. The arithmetic coding
option uses Q-coding, which is patented. Most teygsimplementations
support only the Huffman mode, so as to avoid beefees. The arithmetic
mode offers maybe 5 or 10% better compression,wiitt enough to justify

paying fees.

6) Tack on appropriate headers and output thetresul

In a normal "interchange" JPEG file, all of the goession parameters are
included in the headers so that the decompressore&erse the process.
These parameters include the quantization tabléstlam Huffman coding

tables. For specialized applications, the spec pethose tables to be omitted
from the file; this saves several hundred byteswarhead, but it means that
the decompressor must know a-priori what tables d¢bmpressor used.

Omitting the tables is safe only in closed systems.

The decompression algorithm reverses this proce3sie decompressor
multiplies the reduced coefficients by the quartira table entries to produce
approximate DCT coefficients. Since these are aplgroximate, the reconstructed
pixel values are also approximate, but if the desigs done what it is supposed to do,
the errors won't be highly visible. A high-qualitlecompressor will typically add

some smoothing steps to reduce pixel-to-pixel disnaities.

The JPEG standard does not specify the exact lwehafvcompressors and

decompressors.

56

4 — Software Implementation

4.3 The 1JG JPEG Library

The 1JG JPEG library [12] is a free software paekatgveloped by the
Independent JPEG Group (IJG, not related to th&sJ&knmittee that developed the
standard); it provides C code to read and writeGHeBmpressed image files. The
surrounding application program receives or sugpheage data a scanline at a time,
using a straightforward uncompressed image formdit.details of color conversion

and other preprocessing/postprocessing can bedthhbglthe library.

The library includes a substantial amount of cdu# ts not covered by the
JPEG standard but is necessary for typical appistof JPEG. These functions
preprocess the image before JPEG compression tprposss it after decompression.
They include colorspace conversion, downsamplirgdopling, and color
quantization. The application indirectly selecte wf this code by specifying the
format in which it wishes to supply or receive imeagata. For example, if
colormapped output is requested, then the decomsipredibrary automatically

invokes color quantization.

A wide range of quality vs. speed tradeoffs aresfibs in JPEG processing,
and even more so in decompression post-processirtte decompression library
provides multiple implementations that cover maosthe useful tradeoffs, ranging
from very-high-quality down to fast-preview opecati On the compression side
low-quality choices are not provided, since comgisis normally less time-critical.

It should be understood that the low-quality moohesy not meet the JPEG standard's
accuracy requirements; nonetheless, they are usefulewers.

It is handled a subset of the ISO JPEG standardt baseline, extended-

sequential, and progressive JPEG processes arerseghp

57

4 — Software Implementation

4.4 Communication Channel Development

This section explains the procedure to build a rmomcation channel
between two processes, that will be used to comeatmithe board with external

stages, all based on the Client-Server model.
4.4.1 The Client-Server model

It is a model for communication between two proesssvhere one of them,
the “server”, waits for a connection from other gess, the “client”, and after a
communication channel has been established, datafér can be done in any of the

both senses, server to client or client to se®@r [

Considering that the server is the process thatswaibe contacted, it does
not have to know the address of the client befoeecbnnection is established.

The connection building procedure is not the saondodth processes, despite
each of them build a “socket” for its respectivdesof the communication channel,
where the data to receive and transmit is readnaittbn respectively.

4.4.2 Socket Types

The communication between two processes can bevachonly if their
sockets are of the same type and use the samesadtin@ain.

The most used address domains are the Unix dommawhich the processes

which share a common file system communicate; hedriternet domain, in which

the involved processes run on any two hosts omteenet.

58

4 — Software Implementation

In the Unix domain, the address of a socket ikaracter string related to the
file system

In the Internet domain the socket address consigtee internet address of the
host machine (a 32 bit address, often referredstatsalP address) an also a port
number on that host, which are 16 bit unsignedjers

The most used socket types are “stream socked”“datagram sockets”.
Stream sockets use continuous streams of charaet@te datagram sockets read the

entire message at once.

Stream sockets use TCP (Transmission Control shtowhile datagram

sockets use UDP (Unix Datagram Protocol)

4.4.3 Socket implementation on the internet domain

The steps involved on the socket building and useqalure on the server side
are indicated in the following flow chart:

59

4 — Software Implementation

l

CREATE A SOCKET

BIND THE SOCKET TO AN
ADDRESS

A

LISTEN FOR ALL CONNECTIONS

4

ACCEPT/WAIT A CONNECTION FOR
A CLIENT

4

SEND AND RECEIVE DATA

i

Figure 4.1. Server side socket building and usage

The steps indicated on the chart are explainedlésis, with references to

their respective implementation on C language:

1) Create a socket

This is done using the socket() system call, ac#@ted in the following code

line:

sockfd = socket(AF_INET, SOCK_STREAM, 0);

The first argument is the address domain (the symbostant AF_INET

makes reference to the internet domain), the seaogdment is the type of

60

4 — Software Implementation

socket (SOCK_STREAM makes reference to an strearkespand the third
argument is the protocol, if zero (0) is used, dperating system will choose

the most appropriate protocol (TCP for stream sts;hkes said previously).

The socket() system call also returns an integirevevhich is an entry into
the file descriptor table, this value is used fmtlier references to the socket.
If the socket() call falls, it returns -1; in theagnple, this value is assigned to

the variable sockfd.
2) Bind the socket to an address

The socket is bound to an address using the bgyd(em call, as indicated in

the following code lines:

if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)
error("ERROR on binding");

In the shown example, the address is referred ¢octhrent host and port
number on which runs the server. It uses threenaegts, the socket file
descriptor, the address which it is bound, andsthe of the address which it
is bound. The second argument is a pointer touatsite of type sockaddr, but
what was passed in is a structure of type sockaudwhich will be explained

as follows.

A structure of the type struct sockaddr_in, hag falds, as can be seen in its

definition:

struct sockaddr_in
{
short sin_family;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

g

61

4 — Software Implementation

The first field (short sin_family) contains a cofde the address family, so it
must be set to the symbolic constant AF_INET; theosad field (u_short
sin_port) contains the port number (converted frmst byte order” to

“nework byte order” with the function htons()); threrd field (sin_addr) is a
structure of type struct in_addr which containsirggle field unsigned long
s_addr, that contains the IP address of the hoshime, which is get using the
symbolic constant INADDR_ANY; the fourth field mube zero and isn’t
used.

3) Listen for all connections

This is done using the listen() system call, asshim the following cod line:

listen(sockfd,5);

This system call allows the process to listen om ghcket for connections.
The first argument is the socket file descriptbe second is the number of
connections that can be waiting while the procas$ianding a particular
connection, which should be 5, the maximum sizengérd by most systems.

4) Accept a connection from a client

This is done using the accept() system call a<atdd in the following code

lines:

clilen = sizeof(cli_addr); //size of client addses
newsockfd = accept(sockfd, (struct sockaddr *) &atidr, &clilen);
if (newsockfd < 0)
error("ERROR on accept");

62

4 — Software Implementation

This system call causes the process to block antlient connects to the
server; the process is awaken when a connectiom &client is successfully
established; its first argument is the socket filescriptor, the second
argument is a reference to the pointer to the addoé the client (also a
structure of the typetruct sockaddr_inwhich has been explained beside the
binding process) on the other end of the connectind the third argument is
the size of this structure; accept() also returnsew file descriptor, which

shall be use for communication on the built conioact

5) Send and receive data

These operations can be done easily with the Wréted read() system calls
using as arguments the socket file descriptor,btlféer which contains the
data to write or will contain the read data, anel$lze of that buffer, as shown

in the following code lines:

Read socket (receive data):
n = read(newsockfd,buffer,255);

Write on socket (send data):

n = write(newsockfd,"l got your message",18);

The procedure for the socket building on the cligide is described by the

following flow chart:

63

4 — Software Implementation

|

CREATE A SOCKET

A

CONNECT THE SOCKET TO
SERVER ADDRES

A

SEND AND RECEIVE DATA

v

Figure 4.2. Client side socket building and usage

The steps of the procedure shown on the chart, edéimples in C language,
are explained as follows:

1) Create a socket

This operation is done with the socket() systent, dactly as previously

explained for the server side.

2) Connect the socket to the address of the server

Before do the connection is important to read sanfiermation about the
server, this is done using the function gethosthe(@ which has as only
argument the name of the host on the Internet dontfais function is defined

as follows:

struct hostent *gethostbyname(char *name)

64

4 — Software Implementation

As can be seen, it returns a structure of typeshastent, which is defined as
follows:

struct hostent
{
char *h_name; [* official name of hakt
char **h_aliases; /* alias list */
int h_addrtype; /* host address type */
int h_length; /* length of address */
char **h_addr_list; /* list of addresses frarame server */
#define h_addr h_addr_list[0] /* address, fackward compatiblity */
h
The indicated members of this structure are:

h_name Official name of the host.

h_aliases A zero terminated array of alterna
names for the host.

h_addrtype The type of address being retyrne
currently always AF_INET.

h_length The length, in bytes, of the address.

h_addr_list A pointer to a list of network addess
for the named host. Host addresses ar
returned in network byte order.

Using gethostbyname() and storing its returnedevalustruct hostent *server

the fields of serv_addr are set as follows:

bzero((char *) &serv_addr, sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
bcopy((char *)server->h_addr,
(char *)&serv_addr.sin_addr.s_addr,
server->h_length);
serv_addr.sin_port = htons(portno);

Considering thet serv_addr is a structure of typgcssockaddr_in, which has

been explained for the server side binding procadur

Then, the connection is done using the connecsfesay call as follows:

if (connect(sockfd,&serv_addr,sizeof(serv_addrf))<

error("ERROR connecting");

65

4 — Software Implementation

If no server is decribed by serv_addr, the retuwedde is -1 and the process

is interrupted.

3) Send and receive data

After the connection has been established, datdearceived and sent using

the read() and write() system calls, as shownkHerserver connection side.

66

4 — Software Implementation

4.5 Developed Programs Description

A system has been built based on the server-ctieadel for interprocess
communications over the Internet domain using thd Tg£otocol; involving two

programs on the board and another two outsidedhedb

The first program on the board is in charge ofstand alone operation,
receive from the previous stage the file to be casged, execute the second one to
perform the compression, and send the resultirey tbl the following stage; the
related stages outside the board are emulated bgxteinal PC in an Unix-OS

environment in which the other two programs runtemporaneously.
The mentioned programs are described as follows:

4.5.1 To run outside the Board

sendPPM

It works as a client that sends to the board thegento be compressed; its
input parameters (manually placed by the user}teeserver (board) IP address, the
number of the port used by the server for the intageption and the name of the file
which contains the image.

As can be seen in the flow chart at figure 4.3, pinegram operates by
opening the file to send for its reading, thenttia@smission cycle begins building a
socket and sequentially sending through it a pathe file on each loop (using a
2500 characters length buffer); a counter (nameaghtjois used to quantify the
already sent characters and is compared with #ee cfi the file at the end of each
loop and repeating the cycle again for the follayvpart of the file; after “count”
reaches the file size, the transmission ends,ubeess is notified to the user and the

67

4 — Software Implementation

used file is closed (the file size is computed with data present on the file header,
included in the buffer during the first loop aftead the socket).

The program ends its execution after close the fikedr is terminated if an
error occurs during the socket building or usingiraicated in the correspondent
blocks of the flow chart.

The command line on Unix corresponding to the moygexecution has the

following structure:

$./sendPPM [server address] [port number] [PP&rfame]

The source code of the program can be found in AgipeA.

recJPG

It works as a server that receives from the boaedIPEG file obtained from

the compression; its only input parameter is thalmer of the port to be used.

As shown in the flow chart in figure 4.4, the pragrloads an index value to
assign for the name of the destination file for tiegt received JPEG image (assigns
0 if can’t load value), builds the socket at theafied port number (only once) and
then starts a cycle receiving, or waiting for, epelnt of the JPEG image through the
socket sent by a client, storing the received pattthe destination file (a 256
characters buffer is used in this operation) theraijon is repeated until the “end of
image” sequence of characters is recognized inbelpart of the file being processed

or if a communication error occurs as indicatethmrespective blocks of the chart.

68

4 — Software Implementation

After a JPEG image is completely received the dastn file is closed, the
index value stored and incremented, a new destimdile with the new index value

is opened and the program connect to the sockéngdor the next image.

The program ends its execution only if it is ex&yninterrupted or, as said

previously, a communication error occurs duringraage reception.

The command line on Unix corresponding to the moygexecution has the

following structure:

$./recIPG [port number]

The source code of the program can be found in AgipeA.

45.2 Torun inside the Board

Ingrb

It is the program in charge of the management®ftttmmunications with the

external stages and orders the execution of thgramo for the image compression
(cjpeg3).

As indicated in the flow chart at figure 4.5, th@mamunications management
in the main process is done by calling two fundioone to receive the PPM files
through the port 50900 (receiveP6), and anothéectafter the compression is done
to send the resulting JPEG file (out_img.jpg) tlgiouhe port 50800 (sendJPG). At
the main process a flag is also used in orderdizate to the function receiveP6 if a

new socket must be built for the PPM files receptio

69

4 — Software Implementation

After the compressed file is sent to the next stduge cycle begins again and
the program calls receiveP6, which waits for thet ®PM file to be compressed. The

source code of the program and its functions cafioled in Appendix A.

The functions used by the program are explaindd|ksvs:

receiveP6

It is the function that plays the server role fbe treception of a file to be
compressed; its input parameters are: port nunmaene of the file where the PPM

image will be stored, and a flag that indicates ifew socket is needed.

As can be noticed at the flow chart on figure 4l function opens a
destination file with the specified name (if a fileth the same name already exists, it
is overwritten) builds a socket (if indicated by ttespective flag) and then waits for a
connection of an external client to the sockefterahat happens it begins to (using a
2500 character buffer) receive sequentially thespaf the file sent by the connected
client until the entire file is received (the sipé the file is computed with the
information on its header); then the destinatitmi$ closed and the program returns

to the process that has called the function.

As shown in the respective blocks of the chae, ghogram is terminated by
the function itself if a communication error occdrging the file reception process.

sendJPG
It is the function that acts as a client to sendP&EG image to a server

according to its input parameters: server addmss\ber of the port to be used and

name of the file to be sent.

70

4 — Software Implementation

As shown in the flow chart in figure 4.7, its opigon begins opening the file
to be sent, then the sending process starts bgikid connecting to the socket, and
writing on it the respective part of the file to bent (using a 256 character buffer);
the process is repeated until the “End of Imageguseace of characters is recognized

inside the part of the file that is being sent.

After all the file is sent, the used file is clds&nd the programs returns to the

process that has called the function.

As receiveP6, the function sendJPG is able toitext® the program if a

communication error occurs during the sending msce

cjpeg3

It is the program that does the JPEG compresgspurce file is part of the

package of the libjpeg library[10], only minor mbdations were made on it.

71

4 — Software Implementation

_———
I

READ PORT NUMBER, SERVER
ADDRESS AND NAME OF THE FILE
TO SEND

:

‘ INITIALIZE count ‘

<
<

A
BUILD SOCKET AT PORT NUMBER
(TERMINATE IF ERROR)

CONNECT TO SOCKET
(TERMINATE IF ERROR)

WRITE NEXT PART OF FILE TO SEND
ON BUFFER
(TERMINATE IF ERROR)

!

‘ INCREMENT count BY NUMBER OF ‘

CHARACTERS ON BUFFER

WRITE BUFFER ON SOCKET YES
(TERMINATE IF ERROR)

BUFFER CONTAINS FIRST PAR
OF THE FILE?

READ FILE HEADER AND
COMPUTE SIZE OF FILE

biNO

READ CONFIRMATION MESSSAGE
FROM SERVER
(TERMINATE IF ERROR)

WAIT FOR END OF PROCESS AND
CLOSE SOCKET

count < SIZE OF FILE?

‘ NOTIFY SUCCESS TO USER

)

‘ CLOSE USED FILE

I
ST

Figure 4.3. sendPPM program flow chart

72

4 — Software Implementation

< e)

:

‘ READ PORT NUMBER ‘

:

‘ LOAD INDEX VALUE ‘

BUILD SOCKET AT PORT
NUMBER
(TERMINATE IF ERROR)

<
<

A
INITIALIZE END OF IMAGE FLAG
(EOl)

SET NAME OF DESTINATION
FILE (DEPENDS ON INDEX)

NOTIFY USER: “WAITING FOR
NEXT IMAGE” STATUS

l

OPEN DESTINATION FILE

L
<

WAIT/ACCEPT CONNECTION
TO SOCKET
(TERMINATE IF ERROR)

WRITE SOCKET CONTENT ON
BUFFER
(TERMINATE IF ERROR)

SEEK FOR EOI SEQUENCE ON
BUFFER, ACTIVATE FLAG IF NO
FOUND

WRITE BUFFER CONTENT ON
DESTINATION FILE

NOTIFY BUFFER RECEPTION
TO CLIENT
(TERMINATE IF ERROR)

WAIT FOR END OF PROCESS
AND CLOSE SOCKET

Ol SEQUENCE INSID
BUFFER?

‘ CLOSE DESTINATION FILE ‘

v

‘ NOTIFY SUCCESS AND JPG

FILE LOCATION TO USER

STORE INDEX VALUE AND
INCREMENT IT BY ONE

Figure 4.4. recJPG program flow chart

73

4 — Software Implementation

< NGRs >

A

ENABLE newcom, FLAG FOR
NEW SOCKET
CONSTRUCTION
(RECEIVE MODE)

A

CALL FUNCTION
receiveP6()
USE PORT:50900
SAVE RESULT AT:
in_img.ppm
READ newcom

A,
CALL PROGRAM cjpeg3

INPUT FILE: in_img.ppm
OUTPUT FILE: out_img.jpg

A

CALL FUNCTION
sendJPG()

USE PORT:50800
READ EXTERNAL SERVER
ADDRESS
FILE TO SEND: out_img.jpg

DISABLE newcom

Figure 4.5. INGRB program flow chart

74

4 — Software Implementation

receiveP6

READ PORT NUMBER,
DESTINATION FILE NAME, newcom

v

‘ INITIALIZE count ‘
v
‘ OPEN DESTINATION FILE ‘

EW SOCKET NEEDED?
(newcom=true?)

BUILD SOCKET AT PORT NUMBER
(TERMINATE IF ERROR)

NO
|

A
CONNECT TO SOCKET
WAIT/ACCEPT SENDING FROM
CLIENT
(TERMINATE IF ERROR)

READ SOCKET AND STORE
CONTENTS ON BUFFER
(TERMINATE IF ERROR)

WRITE BUFFER CONTENTS ON
DESTINATION FILE

y

INCREMENT count BY BUFFER

NOTIFY BUFFER RECEPTION TO YES
CLIENT
(TERMINATE IF ERROR)

BUFFER CONTENTS FIRS'
PART OF THE FILE?

YES

READ FILE HEADER
COMPUTE FILE SIZE

WAIT FOR END OF THE
PROCCESS AND CLOSE SOCKET

NO

‘ CLOSE DESTINATION FILE ‘

RETURN

Figure 4.6. receiveP6 function flow chart

75

4 — Software Implementation

< sendJPG >

v

READ PORT NUMBER, “FILE TO
SEND” NAME AND SERVER
ADDRESS

:

OPEN FILE TO SEND

READ SERVER NAME AND
CONFIRM
(TERMINATE IF ERROR)

[

BUILD SOCKET AT PORT
NUMBER

(TERMINATE IF ERROR)

CONNECT TO SOCKET
(TERMINATE IF ERROR)

:

PLACE ON BUFFER NEXT PART
OF THE FILE TO SEND

v NO
WRITE BUFFER CONTENT ON
SOCKET
(TERMINATE IF ERROR)

READ CONFIRMATION MESSAGE
FROM THE SERVER
(TERMINATE IF ERROR)

WAIT FOR END OF PROCESS
AND CLOSE SOCKET

ND OF IMAG
SEQUENCE INSIDE
BUFFER?

CLOSE FILE

A
RETURN

Figure 4.7. sendJPG function flow chart

76

4 — Software Implementation

4.6 Developed Programs Usage

The way in which the previously explained prograrsused to test the board
is explained in this section; as said before, thges outside the board are emulated
by running two programs on an external PC. The qarog that run outside the board

are compiled with gcc, and those on the board emgpded with sparc-linux-gcc.

The programs operation sequence is enumeratedllasvd, the execution
order of the first two is irrelevant since the ssrprocesses wait for a client

connection:

1) The user executes recJPG at the external PCatintlicthe port 50800 for the
JPEG image reception, as indicated in the follovaogimand line:
$./recJPG 50800

2) INGRB runs on the board since it is turned omeset, waiting for a file to be

compressed (as indicated on the receiveP6 funatiotiie port 50900.

3) At the external PC the user executes sendPPMatidg the port 50900 and
the name of the PPM file to be compressed, as ateticin the following
command line:
$./sendPPM [board IP address] 50900 [.ppm fileagjam

4) After the PPM file is received by INGRB and savatl the board as
“in_img.ppm”, cjpeg3 is executed and the resultifigeg is saved as

“out_img.jpg”.

5) The compressed image is sent through the por@®@8 the external PC,
where it is stored by recJPG as aramisXXXX.jpg, heXXX symbolizes a

77

4 — Software Implementation

4 digit number related to the index value (as drpld on the previous

section).

6) INGRB and recJPG wait for the next PPM and JP#&S fespectively, then
the process is repeated until an error occurs @ aihthe programs is

interrupted.

78

4 — Software Implementation

4.7 Tests and Results

The developed programs were used as describedebyrévious section; the
environment for the performed tests can be sedneiigure 4.8 (the command lines

and the messages from the programs were magnifiedier to make then readable).

agonzalezflgrampasso

file =ent

waiting Tfor PPM file...

PPH file receiveved
compressing. . .

file compressed
sending. ..

file sent

Figure 4.8. Programs test environment

In order to test the reliability of the programagdahe capacities of the board
itself, four different PPM files were used; the ¢isnfor sending the image (to the

board), the compression and the receiving of tiseltiag file were measured, the

79

4 — Software Implementation

obtained results are shown on the table 4.3 (tiomeder 0.50s were considered

negligible).
File name Original Sending Time| Compression Receiving Result Size
Size (KB) (s) Time (s) Time (s) (KB)
aqui4.ppm 533 1.7 3.4 <0.50 28.0
(color image)
testimg.ppm 99.1 <0.50 <0.50 <0.50 5.85
(color image)
pippo.ppm
(grayscale 1216 3.6 7.1 <0.50 14.9
image)
plutol.ppm 1216 3.6 7.1 <0.50 28.5
(color image)

Table 4.3. Programs performance

It is important to notice that the sending anderdog speeds are related to
many factors, some of them produced by the methpgéed on the syntax of each
program (such as the size of the used buffers ad end write on the respective
sockets); others related to the hardware, likeptioeessing times of the board (Leon3)
and the external PC (Pentium D) and the chosen anfmli the communication
(Ethernet).

The compression speed depends on the settingdeofpitogram for the
compression (set as default), which are relatethéo parameters of the methods
involved in the compression algorithm, also togkietax of the program itself and, of
course, the processing time of the board.

From the results can also be noticed, as expetttednfluence of the type of
the image to be compressed and the size of theneltdile, as can be seen with
“pippo.ppm” and “plutol.ppm” which have the sameesithe smaller size obtained
for the grayscale image after the compressionléte® to the redundant data of the
original PPM size (which contain the informationsoales of red, green and blue),

which is eliminated during the compression itself.

80

Chapter 5

Conclusions

During this project an option for an image processoan eventual part of the
Payload of the ARAMIS satellite has been analyZztierent results were obtained

for each stage of the development process.

The LEONS processor and GRLIB IP library VHDL modeliability was
partially proved. The used LEON3 precompiled versalowed to evaluate the
capacities of the processor and features of the IBRE library with successful
results. The needed parts for the design procdlesving stages were present on the

precompiled version.

The flexibility of the used VHDL model can be sied in future works using
different synthesis tools (including a faster hastyl/or studying the model itself, in
order to find needed modifications for its usagke Teported results in this project
should be considered before the eventual acquisitia fault tolerant version of the
LEONS3 processor, which is able to be used on dlisatdt is also important to note
that the manufacturer (Gaisler Research) does aonshprovements and changes to
the existent VHDL model.

In addition, the GR-XC3S-1500 development board swascessfully used as
an evaluation and prototyping tool for LEON3 pramsand GRLIB IP library
applications. Most of the performed procedures aber board are applicable to
similar FPGA based-on devices specially designedwtmrk under aerospace

conditions.

81

5 - Conclusions

The SnapGear package features were useful for éwvelapment of the
operation system placed on the board. The perforameshges over the provided
kernel did not require difficult procedures. Howevéhe usage of some of the
included tools to modify the SnapGear Linux kercalld be quite complex in order
to perform certain modifications to manage somea#svon the board.

The development of programs to build communicaliioks taking advantage
of the Ethernet port was relatively easy. The otgdiresults of the performed data
transmission tests based on the Client-Server megske successful. Similar
procedures could be applied over similar commurtnagtrotocols that are often used

for data transmission on satellites, such as spaeew

The JPEG library developed by IJG was a reallyuigebl on the design. The
library was easily installed over an Unix host. oenrors appeared on the first times
that the library was used, however, them were yasived using basic knowledge of
the C language. The provided documentation and pbenwere very helpful. The
integration of the image compression and commuigicatmanagement programs

was easily completed taking advantage of the lbusage simplicity.

Future projects should complete the satellite impgecessing system by
selecting an appropriate image capture device amdldping the correspondent data
transmission to the image compression stage. A ambcould be used taking
advantage of the USB management tools providedhbyGRLIB IP library and
SnapGear, which could be used on a similar devetopniboard designed for
aerospace conditions, as previously indicated. IQibading issues are the develop a
data storage and/or sending stages for the congateésmges and the selection of an
appropriate data transmission protocol. A discusdimpic could be if store the
compressed images in the satellite in case of amorication failure with the ground

segment. Another options such as an DSP devicbealso considered for the image

82

5 - Conclusions

compression stage itself, analyzing the reportedamiddges and disadvantages of
using a based on FPGA device in this project.

83

Bibliography

1. Twiggs B., Puig-Suari J. CUBESAT Design SpectfmaDocument,
Stanford University and Polytechnical Institute. wxubesat.org

2. Reyneri L., “PICPOT Satellite Universitario dedliecnico di Torino,

documento di specifiche di sottosistemi elettrdnigih edition

3. S. Spereta, L. Reynery, C. Sansoe, M. Trancl@&rBasserone and Dante Del
Corso, “Modular Architecture for satellites” 58thtérnational Austronautical
Congress, September 2007

4. LEONS3 Product sheet

5. GR-XC3S-1500 Development Board User’'s Manual

6. GRLIB IP User’'s Manual

7. Xilinx ISE9 Foundation Tutorial

8. SnapGear Linux Manual

9. Linux Howto Socket Construction

http://www.linuxhowtos.org/C_C++/socket.htm

10. NETBPM Hompage

http://netpbm.sourceforge.net/

11. Kernighan & Ritchie - The C Programming Language

84

12. 13G Homepage
http://www.ijg.org/

13. JPEG standard
7http://www.w3.org/Graphics/JPEG/itu-t81.pdf

85

Appendixes

Appendix A
Developed Programs Sour ce Codes

Apendix Al. FileINGRB.c

I* File: INGRB.C

Program: INGRB

Developed by:

Alejandro Gabbriel Gonzalez Esculpi

Tesi di Laurea Magistrale - Politecnico di Torino
Program to be executed to process images

A PPM File is recived by port 50900 (acts as a serv
A program to compress the file is called

The obtained JPEG file is sent through (acts as a ¢
the port 50800 (if server found)

*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

/IGlobal Variables

struct sockaddr_in serv_addr;
int sockfd,clilen;

int newcom;

void error(char *msg)

{

perror(msg);
exit(1);
}

void receiveP6(int portno, char *fn, int newcon);
void sendJPG(int portno, char *servername, char *fn

//main process
int main(void)

{

/lenamle flag for new socket construction
newcom=1,;

86

er)

lient)

/Nloop start

while (1)

{
/lcall the function to receive the .PPM file
[lthrough the port 50900
/land store it at "in_img.ppm"
/lif indicated by "newcom", create a new socket
receiveP6(50900, "in_img.ppm",newcom);

/lcall the program to do the jpeg compression
/land save the result at out_img.jpg
(void)system("./cjpeg3 -outfile out_img.jpg in_img

/l[send the compressed image to the server
/[(identified by its IP address)

[lthrough the port 50800
sendJPG(50800,"130.192.165.79","out_img.jpg");

//disable newcom (a new socket isn't needed
[[for the reception of the next .PPM file)
newcom=0;

/[Function for the reception of a .ppm file
void receiveP6(int portno, char *fn, int newcon)

int newsockfd;

char buffer[2500], filetype[2];

struct sockaddr_in cli_addr;

FILE *f;

int n, i, r, ini=1, cols, rows, maxcolor, count=0,

/lopen file to write on
f = fopen(fn,"wb");

/fif indicated by newcon, build a socket
if (newcon)

sockfd = socket(AF_INET, SOCK_STREAM, 0);

if (sockfd < 0)

error("ERROR opening socket");
bzero((char *) &serv_addr, sizeof(serv_addr));
serv_addr.sin_family = AF_INET,;
serv_addr.sin_addr.s_addr = INADDR_ANY;
serv_addr.sin_port = htons(portno);

if (bind(sockfd, (struct sockaddr *) &serv_addr,
sizeof(serv_addr)) < 0)

87

.ppm”);

maxcount=50000;

}

error("ERROR on binding");

/[Reception sequennce

do

{

listen(sockfd,5);
clilen = sizeof(cli_addr);

/lconnect to socket
newsockfd = accept(sockfd,
(struct sockaddr *) &cli_addr,
&clilen);
if (newsockfd < 0)

error("ERROR on accept");
bzero(buffer,2500);

/lread socket and store its content on buffer
n = read(newsockfd,buffer,2499);
if (n < 0)

error("ERROR reading from socket");

/lwrite buffer content on the destination file
fwrite(buffer,1,2499,f);

/lincrement character count by buffer's size
count+=sizeof(buffer);

/Inotify buffer reception to the client
n = write(newsockfd,"l got your message",18);
if (n <0)

error("ERROR writing to socket");

/lread file header and define the size of the file

generated

if (ini)
{
ini=0;
sscanf(buffer,"%s %d
%d" filetype,&cols,&rows,&maxcolor);
maxcount=cols*rows*3;

}

/lwait for the end of the process and close socket
wait(0);
close(newsockfd);

Illrepeat loop until all the file is received
/lor an error occurs

while ((n>0)&&(count<maxcount));

/Iclose file

88

to be

%d

fclose(f);

void sendJPG(int portno, char *servername, char *fn

int n, sockfdl;

struct sockaddr_in serv_addr1;
struct hostent *server;

char buffer[256], buf[256];
FILE *f;

int i, band=1, EOI=1,r;

/lopen file to be sent
f = fopen(fn,"rb");
r=0;

/lread server name and confirm

server = gethostbyname(servername);

if (server == NULL)

{
fprintf(stderr,"ERROR, no such host\n");
exit(0);

/Istart loop
do

//build socket
sockfdl = socket(AF_INET, SOCK_STREAM, 0);
if (sockfdl < 0)
error("ERROR opening socket");

bzero((char *) &serv_addrl, sizeof(serv_addrl));
serv_addrl.sin_family = AF_INET;

bcopy((char *)server->h_addr,

(char *)&serv_addrl.sin_addr.s_addr,
server->h_length);

serv_addrl.sin_port = htons(portno);

/lconect to socket
if (connect(sockfdl,&serv_addrl,sizeof(serv_addrl)
error("ERROR connecting");

IIplace part to be sent of the file on buffer
bzero(buf,256);
n= fread(buf,255,1,f);
if (n < 0)
error("ERROR reading file");

//seek for "end of image" sequence

[lof characters in the buffer (Oxffff 0xffd9)
/[EOI is changed to false if the sequence
/lis found

for(i=0;((i<256)&&(EOI));i++)

89

)<0)

r=(unsigned short)buf]i];
if ((r==0xffd9)&&(band))

EOI=0;
if (r==0xffff)

band=1;
else

band=0;

}

[lwrite buffer content on socket
n = write(sockfd1,buf,255);
if (n<0)
error("ERROR writing to socket");

/lread confirmation message from the server
bzero(buffer,256);
n = read(sockfdl,buffer,255);
if (n<0)
error("ERROR reading from socket");

/lwait for end of process and close socket
wait(0);
close(sockfdl);

/lrepeat loop until an error occurs or End Of Image
//sequence is detected

}
while((n>0)&&(EOI));

/Iclose file
fclose(f);

}

90

(EOI false)

Apendix A2. File sendPPM.c

* File: sendPPM.c

Program: sendPPM

Developed by:

Alejandro Gabbriel Gonzalez Esculpi

Tesi di Laurea Magistrale - Politecnico di Torino
Program for a client in the internet domain
using TCP that sends

a .ppm file to a server (indicated by its

IP address) through a selected port*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
void error(char *msg)

{
perror(msg);
exit(0);
}
int main(int argc, char *argv[])
{

int sockfd, portno, n;

struct sockaddr_in serv_addr;

struct hostent *server;

char buffer[2500], filename[20],*fn,*testo;
FILE *f;

char buf[2500], r, filetype[2];

inti, ini=1, cols, rows, maxcolor, count=0,
maxcount=50000, headsize, eolcount=0;

/lthe file's size in characters is set by default in 50000

if (argc < 4) {
fprintf(stderr,"usage %s hostname port file\n", a rgv[0]);
exit(0);

/Iread the name of the file to be sent

fn=argv[3];

/lread port number

portno = atoi(argv[2]);

/Iread server's name and confirm

server = gethostbyname(argv[1]);

if (server == NULL)

{
fprintf(stderr,"ERROR, no such host\n");
exit(0);

/lopen (to read) file to be sent

f = fopen(fn,"rb");

/[start loop

do

{
//build socket
bzero((char *) &serv_addr, sizeof(serv_addr));
serv_addr.sin_family = AF_INET;

91

bcopy((char *)server->h_addr,

(char *)&serv_addr.sin_addr.s_addr,

server->h_length);

serv_addr.sin_port = htons(portno);

sockfd = socket(AF_INET, SOCK_STREAM, 0);

if (sockfd < 0)
error("ERROR opening socket");

/lconnect to socket

if (connect(sockfd,&serv_addr,sizeof(serv_addr)) <0)
error("ERROR connecting");

/lclean buffer

bzero(buf,2500);

/lwrite on buffer the part of the

[ffile to be sent, until fill the buffer or

/lat arrive at the number of characters of the fi le

for(i=0;((i<2499)&&(count<maxcount));i++)

{

/lread characeter and place it on buffer
buffi]=fgetc(f);

r=buf][i];

/lincrement character counter

count++;

/lrecognize end of line character (10)
//(the file's header should be placed in the
[ffirst 3 lines)

if ((r==10)&&(eolcount<3)&&(ini))

{

eolcount++;
headsize=count;

}

[lwrite buffer on socket

n = write(sockfd,buf,i);

/lif the buffer contains the first part of the fi le,
/Iread the files specs from the header

if (ini)

/loperation to be done only for the first part of the file
ini=0;
/lread image parameters (columns, rows and maximu m color number)
r = sscanf(buf,"%s %d %d
%d" filetype,&cols,&rows,&maxcolor);
/lcompute file's size (each 3 bytes define a pix el and
/lthe header's size must be included)
maxcount=cols*rows*3+headsize;

}
if (n < 0)
error("ERROR writing to socket");
bzero(buffer,2500);
/lread confirmation message from the server
n = read(sockfd,buffer,2499);
if (n<0)

error("ERROR reading from socket");
/lwait for end of the process and close socket
wait(0);
close(sockfd);
/lrepeat again until all the file is sent

while((count<maxcount)&&(n>0));

/Iclose file
fclose(f);

92

/Inotify success
if(n>0)

printf("\nfile sent \n");
return O;

93

Apendix A3. FilerecJPG.c

/* File: recJPG.c

Program: recJPG

Developed by:

Alejandro Gabbriel Gonzalez Esculpi

Tesi di Laurea Magistrale - Politecnico di Torino
Server in the internet domain using TCP
the port number is passed as an argument
the program notifies the client after each
part of the file is received and asks it for
the next part, until the recognition of the
end of image secquece corresponding to a
JPEG file*/

#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

void error(char *msg)
{
perror(msg);
exit(1);
}

int main(int argc, char *argv([])

int sockfd, newsockfd, portno, clilen;

char buffer[256], filename[50], *fn, idch[5];
struct sockaddr_in serv_addr, cli_addr;

int n,i,r,idx=0,count;

FILE *f,*f1;

int buf, band=0, EOI=1, newcon=1;

/lopen file where index value is stored
/land assign value to index.
/lif it does not exist, create it
/land assign 0 as index value.
if (f1=fopen("index.txt","r"))
{

fscanf(f1,"%i",&idx);
fclose(f1);
idx++;

}
idx=0;

else

//Build socket (only once)
if (argc < 2)
{

fprintf(stderr,"ERROR, no port provided\n");
exit(1);

}
sockfd = socket(AF_INET, SOCK_STREAM, 0);
if (sockfd < 0)

error("ERROR opening socket");
bzero((char *) &serv_addr, sizeof(serv_addr));
portno = atoi(argv([1]);
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = INADDR_ANY;
serv_addr.sin_port = htons(portno);
if (bind(sockfd, (struct sockaddr *) &serv_addr,

94

sizeof(serv_addr)) < 0)

error("ERROR on binding");

newcon=0;

/Istart loop
while (1)

{

/linitiate EOI (end of image) flag

//Its value is non zero until the

/lend on image secquence is found on the file
EOI=1,;

/Iset name of the file to store the received image
/laccording to the index value, if it is equal to
/110000, restart from 0
if (idx<10)
sprintf(filename,"aramis000%i.jpg",idx);
else if (idx<100)
sprintf(filename,"aramis00%i.jpg",idx);
else if (idx<1000)
sprintf(filename,"aramis0%i.jpg",idx);
else if (idx<10000)
sprintf(filename,"%i",idx);
else

{

idx=0;

printf("\nWARNING: MAXIMUM INDEX REACHED, OVERWRIT
}

fn=filename;

IInotify "waiting for next image" status
printf("\nwaiting for next image...\n");

/lopen file to write image on
f=fopen(fn,"wb");

/linitialize character counter
count=0;

/IReceivng sequennce
//start loop
do
{
listen(sockfd,5);
clilen = sizeof(cli_addr);

/laccept connection to socket
newsockfd = accept(sockfd,
(struct sockaddr *) &cli_addr,
&clilen);
if (newsockfd < 0)

error("ERROR on accept");

bzero(buffer,256);

/Iread socket content and assign it to buffer
n = read(newsockfd,buffer,255);
if (n<0)
error("ERROR reading from socket");

/Iseek for end of image secquence (ffff ffd9)
/linside the buffer
for(i=0;((i<256)&&(EOI));i++)

{

r=(unsigned short)buffer[i];
if ((r==0xffd9)&&(band))

95

ING™;

EOI=0;

if (r==0xffff)
band=1;
else
band=0;

}

/iwrite buffer content on destination file
n=fwrite(buffer,i-1,1,);
if (n<0)

error("ERROR writing to file");

/Inotify success to client
n = write(newsockfd,"l got your message"”,18);
if (n<0)

error("ERROR writing to socket");

/Iwait for end of proccess and close socket
wait(0);
close(newsockfd);

/lincrement character counter by buffer size
count+=256;

IInotify error if jpeg file is "too big"
if (count>9e6)
error("ERROR incorrect file format or it is too big");

/lrepeat loop until an error occurs or end of imag e
/Isecquence is detected

}
while ((n>0)&&(EQ));

Ilclose file with the received image
fclose(f);

/Inotify success and image location
[Ito user
printf("\nimage stored @ %s\n" filename);

/Istore index value and increment
fl=fopen("index.txt","w");
fprintf(f1,"%i\n",idx);

fclose(f1);

idx++;

/Iwait for next image (.jpg file), repeat loop

}

return O;

}

96

	tesis
	Appendix A - Developed Programs

