
TRABAJO ESPECIAL DE GRADO

DESARROLLO DE UN SISTEMA DE PROCESAMIENTO DE
IMÁGENES PARA MICROSATÉLITES

Profesor Guía: Tremante Panayotis
Tutor Industrial: Claudio Passerone

Presentado ante la Ilustre
Universidad Central de Venezuela

por el Br. Alejandro G. González E.
para optar al Título de
Ingeniero Electricista

Caracas, 2009

 iii

CONSTANCIA DE APROBACIÓN

Caracas, 2009

Los abajo firmantes, miembros del Jurado designado por el Consejo de Escuela de

Ingeniería Eléctrica, para evaluar el Trabajo Especial de Grado presentado por el

Bachiller Alejandro Gabriel González Esculpi, titulado:

“DISEÑO DE UN SISTEMA DE PROCESAMIENTO DE IMÁGENES PARA

MICROSATÉLITES”

Consideran que el mismo cumple con los requisitos exigidos por el plan de estudios

conducente al Título de Ingeniero Electricista en la mención de Electrónica, y sin que

ello signifique que se hacen solidarios con las ideas expuestas por el autor, lo

declaran APROBADO.

iv

González E., Alejandro G.

DESARROLLO DE UN SISTEMA DE PROCESAMIENTO DE
IMÁGENES PARA MICROSATELITES

Prof. Guía: Tremante Panayotis. Tutor Industrial: Claudio Passerone. Tesis.
Caracas. U.C.V. Facultad de Ingeniería. Escuela de Ingeniería Eléctrica.
Ingeniero Electricista. Opción: Electrónica. Institución: Politécnico de Turín.
Turín, Italia. 2009. 95 h. + anexos.

Palabras Claves: Satélite; Procesamiento de imágenes; Procesador; VHDL; FPGA;
Sistema Operativo; Programas.

Resumen. Se plantea el estudio y desarrollo de una propuesta para un sistema de
procesamiento de imágenes como eventual Payload de un satélite universitario
basado en el estándar CUBESAT. Se toma como punto de partida el modelo VHDL
sintetizable de un procesador el cual puede servir de base a un sistema operativo
compilable, capaz de sostener programas para el procesamiento de imágenes. Para el
desarrollo del proyecto fue provista una tarjeta de bajo consto basada en un chip
FPGA capaz de sostener el procesador mencionado así como varios periféricos útiles
para la realización de diversas pruebas sobre el mismo.

v

Sumario

 La simplicidad del estándar CubeSat para el diseño de picosátelites, definido

en el año 2001 por el Profesor Robert Twiggs de la Universidad de Stanford en

EE.UU., ha motivado varias universidades a nivel mundial a desarrollar sistemas de

esta categoría como actividad didáctica, capturando además el interés de diversos

sectores a invertir en el desarrollo de investigaciones en el campo de las

telecomunicaciones.

 El satélite PICPOT fue desarrollado en el Politécnico di Torino desde el 2003,

sirviendo como primera experiencia para la institución y motivando futuros proyectos

en el mismo campo. Así en el año 2006 nace el proyecto ARAMIS, segundo satélite

del Politécnico di Torino, actualmente en pleno desarrollo.

 La peculiaridad del proyecto ARAMIS es la “modularidad”, es decir, el

desarrollo independiente y simultaneo de diversos módulos estándar compatibles

entre sí, en lugar de ser orientado al cumplimiento de una misión particular. Los

principales módulos o etapas que constituyen el proyecto ARAMIS son: Etapa de

Potencia, Etapa de transmisión y recepción, Computador de Bordo, Estación de

Tierra y Payload.

Este trabajo está orientado al estudio y desarrollo de una propuesta para un

eventual Payload dedicado a la adquisición de imágenes. Se toma como punto de

partida el modelo VHDL sintetizable de un procesador el cual puede servir de base a

un sistema operativo compilable, capaz de sostener programas para el procesamiento

de imágenes. Para el desarrollo del proyecto fue provista una tarjeta de bajo consto

basada en un chip FPGA capaz de sostener el procesador mencionado así como varios

periféricos útiles para la realización de diversas pruebas sobre el mismo.

vi

La tarjeta utilizada es la GR-XC3S-1500 construida por Pender en

colaboración con Gaisler Reseach, basada en una FPGA Spartan 3, conteniendo como

principales periféricos memorias PROM y puertos: seriales, Ethernet, USB, JTAG, y

VGA.

El modelo VHDL utilizado corresponde al procesador LEON3, desarrollado

por Gaisler Research basado en la arquitectura SPARC V8, especialmente diseñado

para aplicaciones satelitales. La librería GRLIB IP esta también incluida en el modelo,

conteniendo dispositivos útiles y en algunos casos indispensables para el procesador.

También son provistas por la Gaisler varias herramientas que simplifican la

configuración del modelo VHDL antes de la síntesis y para la compilación de

aplicaciones a ser ejecutadas en el procesador.

Para la síntesis del modelo VHDL y su instalación en la FPGA (utilizando un

cable JTAG) son utilizadas aplicaciones contenidas en el paquete ISE Foundation de

Xillinx. Para probar el procesador instalado se utilizó una versión de prueba de

GRMON, un programa que sirve de interfaz para procesadores LEON a través de los

puertos JTAG, serial o USB; permitiendo controlar los dispositivos instalados junto al

procesador, la instalación y ejecución de aplicaciones, así como otros aspectos

importantes del sistema.

Varios fallos fueron observados en el procesador obtenido del modelo VHDL

sintetizado con las herramientas disponibles (inclusive utilizando la configuración

default para el modelo) el cual hizo imposible su utilización. Por ende se decidió

utilizar una versión ya sintetizada del procesador también provisto por la Gaisler, la

cual funcionó en la tarjeta de manera óptima, permitiendo descartar posibles daños

físicos como causa de los fallos previamente obtenidos. Se decidió continuar el

proyecto utilizando la versión operativa del procesador en lugar de intentar corregir la

versión configurable, permitiendo probar la capacidad del procesador más allá de no

poder demostrar la flexibilidad del modelo VHDL.

vii

Se utilizó SnapGear Linux como sistema operativo a ser instalado en el

procesador, el paquete escogido incluye el kernel correspondiente, herramientas para

simplificar su configuración y diversos templates ente los cuales uno corresponde al

procesador LEON3 en la tarjeta GR-XC3S-1500, las modificaciones realizadas al

kernel fueron limitadas a la asignación de la dirección IP y la instalación de

programas a ser ejecutados de forma automática en la tarjeta.

Para probar la adquisición y envío de datos se utilizó el puerto Ethernet,

aprovechando el protocolo TCP/IP y desarrollando programas basados en el modelo

Cliente-Servidor para el intercambio de datos entre la tarjeta y bloques externos del

sistema emulados por diversos procesos en un servidor externo. Para probar la

capacidad del procesador para el procesamiento de imágenes se utilizó la librería

JPEG elaborada por IJG (Independent JPEG Group), la cual incluye archivos en

lenguaje C en formato open-source, open-license, conteniendo códigos fuente de

programas que hacen la compresión basada en el algoritmo correspondiente. Se

decidió trabajar con archivos en formato PPM para ser comprimidos y obtener los

archivos correspondientes en formato JPEG.

La última parte del proyecto consistió en el desarrollo de programas que

incluyen en el modelo Cliente-Servidor, los tipos de archivo utilizados y las funciones

para la compresión. Los programas desarrollados fueron los siguientes:

• sendPPM: envía un archivo en formato PPM del servidor a la tarjeta.

• INGRB: corre en la tarjeta de forma constante, esperando por un archivo PPM

a ser comprimido, ejecuta el programa para la compresión al recibirlo, envía

el archivo JPEG obtenido y espera por el siguiente archivo PPM.

• recJPG: corre en el servidor de manera constante, recibe el archivo JPEG

enviado desde la tarjeta y lo almacena en memoria.

viii

La compresión es realizada por el programa cjpeg3, el cual es el mismo cjpeg

provisto por la librería de IJG, con ligeras modificaciones en su código fuente. Los

resultados obtenidos fueron satisfactorios, se utilizaron varios archivos PPM y fueron

medidos los tiempos obtenidos para el envío, la compresión y la recepción de

archivos correspondientes para cada caso.

El trabajo presentado se organiza de la manera siguiente:

• Capitulo 1: introducción sobre los satélites universitarios, descripción de

aspectos del proyecto ARAMIS.

• Capitulo 2: describe el desarrollo del hardware (posicionamiento del

procesador sobre la tarjeta).

• Capitulo 3: describe el desarrollo del sistema operativo (compilación del

kernel y cambios realizados)

• Capitulo 4: describe el desarrollo de programas para el envío y recepción de

datos, y el procesamiento de imágenes.

• Capitulo 5: conclusiones.

ix

Contents
Constancia de aprobación iii

Resumen iv

Sumario (en castellano) v

Contents ix

List of Figures and Tables xi

1. Introduction 1

1.1. The PICPOT project 2

1.2. The ARAMIS project 4

2. Hardware Implementation 6

2.1. The LEON3 Processor Core 6

2.1.1. LEON3 Architecture and Features 7

2.1.2. The GRLIB IP Library 9

2.1.3. LEON3 Applications development tools 10

2.2. The GR-XC3S-1500 Development Board 11

2.2.1. Board technical description 13

2.2.2. Board parts to be used 16

2.3. LEON3 Design Configuration 20

2.4. Procedure to place the processor on the FPGA 22

2.5. The GRMON LEON Monitor 24

2.6. Tests and Results 25

3. Firmware Implementation 29

3.1. The SnapGear Linux 29

3.2. SnapGear Linux Compiling 30

3.2.1. Installing the Toolchain 31

3.2.2. Installing the SnapGear Distribution 32

3.2.3. Configuring Linux 32

3.2.4. Building SnapGear 37

3.3. Modifications over the SnapGear Linux Kernel 37

x

3.3.1. Board IP address 37

3.3.2. Adding programs to be executed on the board 38

3.3.3. Automatic Program Startup 39

3.4. SnapGear Linux Installing Procedure 40

3.5. Tests and Results 42

4. Software Implementation 48

4.1. Used File Formats 48

4.1.1. PPM file format 49

4.1.2. JPEG file format 51

4.2. An Overview of the JPEG Compression Algorithm 53

4.3. The IJG JPEG Library 57

4.4. Communication Channel Development 58

4.4.1. The Client-Servr model 58

4.4.2. Socket Types 58

4.4.3. Socket implementation on the Internet domain 59

4.5. Developed Program Description 67

4.5.1. To run outside the Board 67

4.5.2. To run Inside the Board 69

4.6. Developed Programs Usage 77

4.7. Tests and Results 79

5. Conclusions 81

Bibliography 84

Appendixes 86

A.Developed Programs Source Codes 86

xi

List of Figures and Tables

Figure 1.1. The PICPOT Satellite 3

Figure 2.1. LEON3 processor core block diagram 7

Figure 2.2. The GR-XC3S-1500 Development Board 11

Figure 2.3. GR-XC3S-1500 development board block diagram 13

Figure 2.4. Board Memory Interface 16

Figure 2.5. Configuration of Oscilators 18

Figure 2.6. LEON3 GUI configuration tool 20

Figure 2.7. Processor configuration window 21

Figure 2.8. Peripherals configuration window 21

Figure 2.9. Built LEON3 processor on GRMON monitor 25

Figure 2.10. Failures on the built processor 26

Figure 2.11. Precompiled LEON3 processor on GRMON monitor 27

Figure 3.1. SnapGear main configuration GUI 32

Figure 3.2. Template Configuration selection 33

Figure 3.3. Vendor/Product section 34

Figure 3.4. kernel/library/defaults selection menu 34

Figure 3.5. Linux 2.6.x kernel GUI configuration utilit 35

Figure 3.6. Board IP address setting 38

Figure 3.7. Example of the inittab file 39

Figure 3.8.Flash erasing and SnapGear image download on GRMON 43

Figure 3.9. Programs and files added to the root file system 44

Figure 3.10. Board IP address verification from a remote host 44

Figure 3.11. Board IP address verification on SnapGear shell 45

Table 4.1. PPM formats comparison 50

Table 4.2. JPEG markers 52

Figure 4.1 Server side socket building and usage 60

Figure 4.2. Client side socket building and usage 64

xii

Figure 4.3. sendPPM program flow chart 72

Figure 4.4. recJPG program flow chart 73

Figure 4.5. INGRB program flow chart 74

Figure 4.6. receiveP6 function flow chart 75

Figure 4.7. sendJPG function flow chart 76

Figure 4.8. Programs test environment 79

Table 4.3. Programs performance 80

1

Chapter 1

Introduction

Issued on the year 2001, the CUBESAT (cube satellite) [1] standard has

inspired many universities worldwide to invest several research efforts into the

development of aerospace applications based on that model. The standard has been

developed under the guidance of Professor Robert Twiggs (from Stanford University,

USA) in association with the Space Systems Development Laboratory (SSDL) from

Stanford University and California Polytechnic State University.

The CUBESAT standard is basically defined by the following characteristics:

• Volume: 10x10x10cm

• Weight: < 1kg

Compared to traditional multi-million-dollar satellite missions, CubeSat

projects have the potential to educate the participants and implement successful and

useful missions in science and industry at much lower costs.

Inspired on the CUBESAT model, Politecnico di Torino has recently

developed the PICPOT satellite [2], and now the ARAMIS project is under

development.

1 - Introduction

2

1.1 The PICPOT Project

 PICPOT [2] was the first satellite developed at Politecnico di Torino. It

development began on 2003 and its launch failed on 2006[]. The project was based on

the following requierements:

• Cube shape, 13x13x13cm

• Weight: < 5kg

• Medium Power < 1.5 W

• Minimum lifetime: 90 days

• COTS components usage in space

• LEO Orbit (altitude between 600 and 800km)

• Compatibility with the POD launcher

The functions of the satellite regarded the following parameters:

• Temperature and luminescence measures acquisition

• Photographies acquisition

• Data transfer to the ground station

A PICPOT picture is presented in figure 1.1

1 - Introduction

3

Figure 1.1. The PICPOT satellite

 Five of the six satellite faces were used to place the solar panels. On the

remaining face two antennas (437MHz and 2.4GHz), 3 cameras, 2 kill switches and a

test connector to verify the on-board electronics correct functioning were placed.

Internal power supply was provided by 6 rechargeable batteries placed between the

solar cells and the electronic boards. Three processors were placed on the satellite:

• ProcA: on-board management, associated to the 437MHz communication

channel, 11MHz clock frequency and power supply of 3.3V.

• ProcB: on-board management associated to the 2.4GHz communication

channel, 4MHz clock frequency and power supply of 3.3V

• Payload: for the image acquisition from the three photocameras, send to

ground station by ProcA and ProcB.

1 - Introduction

4

ProcA and ProcB were operationally independent. The communication with

the ground station was designed to be performed through two channels, both of them

in amateur band with APRS protocol.

1.2 The ARAMIS Project

The ARAMIS project has assumed the PICPOT project evolution. The

ARAMIS target is to define a low cost standard modular architecture for small size

satellites. The applied “modular architecture” [3] method aims to develop some

standard modules connectable between them and with specific modules built

according to the mission, rather than develop the entire system based on the mission.

The standard modules to be developed are listed as follows:

• Power Supply (Power Management tile)

• Tx-Rx (Telecommunication tile)

The modules which complete the satellite system and are developed according to

the required mission are:

• Ground Station

• On Board Computer

• Payload

This procedure allows also fix the number of standard modules according of

each kind to the satellite mission. The main feature of the modular architecture model

is the re-usability of the designs involved in the standard modules; this factor is

translated as saving of a high amount of resources and time in future projects.

 The main target of the presented project in this thesis is to develop a proposal

for an eventual Payload processor oriented to image acquisition. The starting point is

a processor defined by a provided VHDL model able to support an operating system,

1 - Introduction

5

which should be able to support applications that manage the activities related to

procedures in image processing. It is provided a development board specially

designed for the mentioned processor support.

6

Chapter 2

Hardware Implementation

This chapter explains the procedure to compile a processor open-source

VHDL model and place it over a based-on FPGA development board. After the

compiling is completed and the processor is placed on the board, are discussed the

results of some tests performed over it to prove its operation, the flexibility of the

used model and the reliability of the development board itself. The built processor is

also compared with a precompiled version provided by the manufacturer.

2.1 The LEON3 Processor Core

The LEON3 [4,6] processor core is a synthesizable VHDL model of a 32-bit

processor with the SPARC V8 architecture. The core is highly configurable and

suitable for system-on-a-chip (SOC) designs. The configurability allows designers to

optimize the processor for performance, power consumption, I/O throughput, silicon

area and cost. The core is interfaced using AMBA-2.0 AHB bus, and supports the IP

plug and play method provided in the Gaisler Research IP Library (GRLIB). The

Processor can be efficiently on both FPGA and ASIC technologies and uses standard

synchronous RAM cells for both caches and register file. To promote the SPARC

architecture and simplify early evaluation and prototyping, the processor and

associated IP library is provided in full source code under open-source license. The

LEON3 processor core block diagram is shown in figure 2.1.

2 - Hardware Implementation

7

Figure 2.1. LEON3 processor core block diagram

The LEON3 core is also available in a fault-tolerant version (LEON3FT)

immune to single event upsets (SEUs), for space and other high-rel applications. The

fault tolerant version is not provided under open-source license, but it supports most

of the functionality in the standard LEON3 perocessor.

2.1.1 LEON3 Architecture and features

LEON3 [4,6] is implemented using an advanced 7-stage pipeline with separate

instruction and data cache buses (Harvard architecture). The processor supports the

full SPARC V8 instruction set, including the MUC, MAC and DIV instructions. An

optional IEEE-754 floating-point unit (FPU) provides support for both single- and

double-precision floating point operations. The cache system supports multi-set

caches with up to 4 sets per cache, 256 kbyte per set and a choice of LRU, LRR or

random replacement policy.

2 - Hardware Implementation

8

LEON3 can be utilized in synchronous multiprocessor configurations (SMP),

and provides hardware support for cache coherency, processor enumeration and SMP

interrupt steering. A unique debug interface allows non-intrusive hardware debugging

of both single- and multi-processor systems, and provides access to all on-chip

registers and memory. Trace buffers for both instructions and AMBA bus traffic are

also available.

The basic processor core (pipeline, cache controllers and AHB interface)

consumes around 20,000 gates and can be implemented on both ASIC and FPGA

technologies. On a typical 0.13 µm standard-cell technology, over 400 MHz can be

reached.

 The LEON3 processor features are resumed in the following list:

• SPARC V8 integer unit with 7-stage pipeline

• Hardware multiply, divide and MAC units

• Interface to the Meiko FPU and custom co-processors

• Interface to high performance IEEE-754 FPU

• Separate instruction and data cache

• Set-associative caches: 1 – 4 sets, 1 – 256 kbytes/set. Random, LRR or LRU

replacement

• Data cache snooping

• On-chip 0-waitstate scratch pad data RAM

• SPARC V8 Reference Memory management unit (MMU)

• Power-down mode

• Advanced on-chip debug support unit and instruction trace buffer

• AMBA-2.0 AHB and APB on-chip buses

2 - Hardware Implementation

9

2.1.2 The GRLIB IP Library

To achieve optimum performance and minimum cost for a SOC design, it is

important to reuse existing IP cores and be able to configure these cores for the

specific application. The GRLIB IP Library [6] provides a standardized and vendor-

independent infrastructure to deliver reusable IP cores.

Integrating third party IP cores form different suppliers can require significant

adaptation and harmonization of both functional and logistical interfaces. The GRLIB

IP library enhances the development of SOC devices by providing reusable IP cores

with common functional and logistical interfaces.

 The library is designed to be easy portable to different CAD tools and target

technologies. It does not depend on any vendor specific interface or technology which

needs to be licensed or procured. The library is designed to allow contributions or

extensions from other parties. The GRLIB is designed to be “bus-centric”, i.e., under

the assumption that most of the IP cores will be connected through an on-chip bus

(such as AMBA-2.0, AHB/APB).

 The GRLIB library contains the following IP cores:

• AHB arbiter/multiplexer with plug&play support

• AHB/APB bridge

• 8/16/32-bits PROM and SRAM controller

• 32-bits PC133 SDRAM controller

• UART, timer unit, interrupt controller and GPIO port

• AHB trace buffer

• 32-bit Initiator/Target PCI interface (FIFO/DMA)

• PCI trace buffer

• 10/100 Mbit Ethernet MAC

2 - Hardware Implementation

10

• Fully pipelined single- and double- precision IEEE-754 FPU

• Technology-independent memory and pad wrappers

2.1.3 LEON3 Applications development tools

Many open source software tools are available for LEON3 applications

development [3,6]. A package based on a GNU cross-compilation system is provided

by Gaisler Research, including the following tools:

• GNU C/C++ compiler

• Linker, assembler, archiver etc.

• Standalone C-library

• RTEMS real-time kernel with network support

• Boot-prom utility (mkprom)

• Remote debugger monitor for gdb

• GNU debugger with Tk front-end

• DDD graphical user interface for gdb

2 - Hardware Implementation

11

2.2 The GR-XC3S-1500 Development Board

The GR-XC3S board [5] is a compact, low-cost development board which has

been developed by Pender Electronic Design in cooperation with Gaisler Research to

enable the evaluation of the LEON2 and LEON3/GRLIB processor systems. The

board incorporates a 1.5 million gate XC3S1500 FPGA device from the Xilinx

Spartan3 family, which is supported by the free Xilinx web-pack synthesis and place

and route tools.

On-board Flash memory and SDRAM are provided together with Ethernet,

JTAG, Serial, Video, USB and PS2 interfaces for off-board communication. The

incorporation of the onboard volatile and non-volatile memory, together with the

communication interfaces makes the board ideal for fast prototyping, evaluation and

development of software for Leon microprocessor applications. An actual picture of

the board is provided in figure 2.2.

Figure 2.2. The GR-XC3S-1500 Development Board

2 - Hardware Implementation

12

Expansion to user's peripherals and circuits can be implemented using the

expansion connectors, either to implement a user defined mezzanine board, or via

ribbon cable connections. A specific connector is provided to allow connection to the

standard memory bus signals.

Although targeted for the development of small Leon based systems and

computer peripherals, this board can easily be used as a general purpose FPGA

development environment for any Xilinx Spartan-3 design.

The board technical description and selection of parts to be used are described

as follows.

2 - Hardware Implementation

13

2.2.1 Board technical tescription

As previously said, the GR-XC3S-1500 development board incorporates a

large capacity Xillinx Spartan-3 FPGA, with on-board memory and interfaces. The

board provides a platform which enables the implementation of complex FPGA

designs, specially to LEON processors based systems. The development board block

diagram is presented in figure 2.3.

Figure 2.3. GR-XC3S-1500 development board block diagram

The features of the GR-XC3S-1500 Development Board are as follows [ref2]:

• Compact Eurocard (100x160mm) size

stand-alone operation with +5V power input

• Xilinx XC3S1500-4FG456 FGPA

o 1.5million gate Xilinx Spartan 3 device in 456 BGA package

2 - Hardware Implementation

14

o 1 x 4Mbit (XCF04S) and 1 x 1Mbit (XCF01S) platform Flash Proms

for non-volatile storage of FPGA configuration

• On-Board Power Regulators

Texas Instruments TPS75003 Triple-Supply Power Management IC providing

o +3.3V i/o voltage

o +2.5V auxiliary voltage

o +1.2V core voltage

• On-Board Memory

o PROM 64 Mbit (8 Mbyte) FLASH (organised x8 or x16 bit)

o SDRAM 512 Mbit (64 Mbyte) PC-133 SDRAM on board (32 bits

wide interface)

o SRAM memory can be added via Mezzanine board, using the memory

expansion connector.

• On-Board Oscillators

o Main oscillator 50MHz

o User fitted oscillator (DIL-8 socketed)

o Ethernet oscillator 25MHz

• Interfaces

o Serial interfaces: Texas Instruments SN75C3232, 3-V To 5.5-V

Multichannel RS-232 Compatible Line Driver/Receivers providing

high speed serial interfaces (1 Mbaud RS232) with two standard SUB-

D9 female connector interfaces. Can easily be configured to support

LEON serial DSU for processor debug and program download

o Ethernet PHY: Intel LXT971A 3.3V Dual-Speed Fast Ethernet PHY

Transceiver device providing 10/100Mbit/s Ethernet interface, with

RJ45 10/100Mbit Ethernet connector

2 - Hardware Implementation

15

o Video DAC: Analog Devices ADV7125-50 Triple 8 bit High-Speed

Video DAC device, providing 50MHz, 24 bit Video DAC interface for

driving a standard 15 pin VGA type connector interface

o USB: Cypress CY7C68000 USB 2.0 UTMI Transceiver connecting to

either USB-A (Host) or USB-B (Peripheral) style connectors for USB

2.0 interfaces

o PS2 Mouse and Keyboard: Two PS2 style connectors providing

standard PS2 style interfaces (e.g. Mouse and Keyboard)

o JTAG: Connectors supporting both Parallel Cable III (Flying leads)

and Parallel cable IV (2x7pin 2mm header) for JTAG programming

and configuration download to FPGA

o Memory expansion connector: 120 pin expansion connector: AMP

177-984-5, allowing connection to mezzanine board or to a logic

analyser with appropriate adapter

• User I/O's

o LVDSIO: One 2 x 20 pin 0.1” header providing 12 LVDS signal pairs

for User defined signals. Can also be configured and used as 24

standard LVTTL/LVCMOS single ended I/O signals for user defined

signals

o GENIO: Three 2 x 20 pin 0.1” headers, each providing 20 user

definable I/O signals (total 60 user defined signals)

o PIO: 16 bit PIO port accessible via expansion connector (20 pin 0.1”

header), compatible with existing GR-PCI accessory products to

provide easy expansion of optional 2 x RS232 / 2 x RS422 / 2 x LVDS

or 2 x CANBUS interfaces. Can also be configured to provide 16 user

defined I/O signals

• Switches

o 8 pole DIP switch for User Definable functions

o Two user definable push-button switches

2 - Hardware Implementation

16

o One push-button switch for system reset and one push-button switch

for FGPA (re)configuration

• Indicators

Four User definable LED indicators.

o One indicating power on board

o One indicating FPGA programming status

o One indicating Prom-busy

o One indicating USB current fault

2.2.2 Board parts to be used

The parts of the development board used in the project beside the FPGA are

explained with some detail as follows.

• Memory Organization

The GR-XC3S-1500 provides FLASH (PROM) memory and SDRAM on

board, providing the necessary memory control and Address/Data signals.

The memory organisation on the GR-XC3S-1500 board is represented in

Figure 2.4.

Figure 2.4. Board Memory Interface

2 - Hardware Implementation

17

o PROM 64 Mbit (8 Mbyte) FLASH (organised x8 or x16 bit)

o SDRAM 512 Mbit (64 Mbyte) PC-133 SDRAM on board (32 bits

wide interface)

The provided mezzanine memory expansion is not used in this project. The

address, data and standard memory control signals (MEM CTRL) are made

available for external use on the J9 expansion connector.

The FLASH memory is normally not write protected. However, if a zero-ohm

resistor is installed for JP1, the FLASH memory can be configured to

protected it from Write/Erase operations. When writing or block-erasing the

FLASH memory, LED D12 will illuminate. The FLASH memory normally

operates in 8bit wide memory mode. However, if a zero-ohm resistor is

installed for JP2, the FLASH memory can be configured to instead operate in

16 bit data mode.

2 - Hardware Implementation

18

• Oscillators

A number of oscillators are provided on the GR-XC3S-1500 board as represented

in Figure 2.5.

Figure 2.5. Configuration of Oscilators

The main oscillator (CLK) for the GR-XC3S-1500 device is 50MHz precision

oscillator, X1. A DIL8 socket is provided in order to allow the user to install their

own user defined oscillator to provide CLK2 if required.

The Ethernet PHY requires a 25.000MHz clock which is provided by X3. This

clock is also an input to the FPGA (ETH_CLK).

2 - Hardware Implementation

19

In the default configuration X4 is not fitted, and the clock for the Video DAC is

intended to be generated by the logic inside the FPGA.

The clock for the USB PHY controller is provided by Y1, it is not used in this

project.

• Serial interfaces

The GR-XC3S-1500 provides two serial interfaces with standard SUB-D 9 pin

female connectors, and RS232 line driver/receiver chips. The IC's implemented

on board are capable of supporting data rates up to 1 M baud.

• Ethernet Interface

The GR-XC3S-1500 board incorporates a Intel LXT971A 3.3V Dual-Speed Fast

Ethernet PHY Transceiver device providing 10/100Mbit/s Ethernet interface, with

RJ45 10/100Mbit Ethernet connector. To use this feature it is necessary to

implement the Ethernet MAC function in the logic of the FPGA. Communication

and data transfer between the MAC and PHY occurs over a standard MII

interface. To utilize the Ethernet interface in a Leon system, appropriate driver

software will be required depending on the features and operating system which

the user wishes to implement.

• JTAG

Connector J9 allows a Xilinx Parallel Cable IV type ribbon cable (2x7pin 2mm

connector) to be connected to the board. Alternatively connector J10 allows either

flying leads or a low-cost JTAG programming cable such as the Digilent JTAG3

or USB type cables to be connected to the board. Both types of cable can be used

with the Xilinx iMPACT software for programming of the Platform

Configuration proms and for configuration of the FPGA.

2 - Hardware Implementation

20

2.3 LEON3 Design Configuration

 The provided files by Gaisler Research which contains the VHDL model to be

used could be “manually” modified in order to choose the features to be placed on the

FPGA. However, a GUI xconfig tool which allows to configure the model is provided.

The main window of the GUI configuration tool can be seen in figure 2.6 [3,6].

Figure 2.6. LEON3 GUI configuration tool

 The GUI configuration tool can be accessed by executing the following

command line on a cygwin (or Unix) bash shell, on the directory corresponding to the

VHDL model template for the board (Leon_VHDL_model\Grlib-Leon3\grlib-gpl-

1.0.17 -b2710\designs\leon3-gr-xc3s-1500):

$ make xconfig

The GUI configuration tool allows to add or delete features of the VHDL

model and set parameters for the synthesis and VHDL debugging. The set

configuration is saved at a “config.vhd” file by clicking the “save and exit” button.

The figures 2.7 and 2.8 shows the configuration windows for the processor and its

peripherals, respectively.

2 - Hardware Implementation

21

Figure 2.7. Processor configuration window

Figure 2.8. Peripherals configuration window

2 - Hardware Implementation

22

2.4 Procedure to place the processor on the FPGA

 A design model containing the VHDL files of LEON3 for the GR-XC3S-1500

development board is provided by Gaisler. The available software tool to synthesize

the provided files was the ISE® FoundationTM Package from Xillinx (version 9.2i)

[7]. The ISE Foundation package is in the list of recommended software by the

provider to perform the synthesis operation of the provided files.

 The empirically “successful” procedure to place the correspondent .bit file on

the FPGA is described by the following steps:

1) Synthesize XST with the ISE 9.2i Project Navigator. The project is opened at

the directory at the package provided by Gaisler Research:

Leon_VHDL_model\Grlib-Leon3\grlib-gpl-1.0.17-b2710\designs\leon3-gr-

xc3s-1500

2) On a cygwin bash shell and at the previously iundicated directory, the

following command line is executed in order to perform the Place&Route in

bash mode:

$ make ise-map

3) After the Place&Route is successfully completed, the .*bit file is generated by

executing the following command line (on the same cygwin bash shell):

$ make ise

After the .bit file is generated, it can be download to the FPGA with iMPACT

(another program in the ISE Package) via JTAG cable. The *.bit file download over

the FPGA can be done from the iMPACT GUI. By this procedure the downloaded

2 - Hardware Implementation

23

FPGA configuration is lost every time the board is turned off. The same procedure

can be done from the cygwin bash shell by executing the following command line:

$ make ise-prog-fpga

The FPGA configuration PROMs can be programmed using the obtained *.bit

file by executing the following command on the cygwin shell window (the file is also

downloaded via JTAG by this way):

$ make ise-prog-prom

 Downloading the .bit file into the PROMs configures the board to download

automatically the file into the FPGA the *.bit file configuration every time that it is

turned on, making stand alone operation of the board possible.

 A precompiled *.bit file is also provided by Gaisler Research, it can be

downloaded into the PROMs by ISE executing the following command in the cygwin

bash shell (also via JTAG):

$ make ise-prog-prom-ref

 The results obtained with both *.bit files are compared at the “test and results”

section of this chapter.

2 - Hardware Implementation

24

2.5 The GRMON LEON Monitor

 GRMON [4,5,6] is a debug monitor developed by Gaisler Research for the

LEON Debug Support Unit (DSU), providing a non-intrusive debug environment on

real target hardware. The LEON DSU can be controlled through any AHB master,

and GRMON supports communications through the dedicated DSU UART or a PCI

interface if available. GRMON can operate in two modes: stand alone or attached to

gdb. Numerous commands are available to examine data, insert breakpoints and

advance execution.

GRMON is used in stand alone mode during this project. LEON applications

can be loaded and debugged using a command line interface in stand alone mode.

Some of the operations that are simplified using GRMON are listed as

follows:

• Read/write access to all registers and memory

• Dissasembler and trace buffer management

• Downloading and execution of LEON applications

• Breakpoint and watchpoint management

• Auto-probing and initialization of LEON peripherals and memory settings

GRMON allows to access the LEON processor by several ways, in this project

JTAG cable and parallel port (as set by default) were the only used. The following

command line (in the GRMON installed directory) in a cygwin or Unix (DOS is also

supported) bash shell is executed to initialize GRMON operation with JTAG cable:

$ grmon -jtag

2 - Hardware Implementation

25

Several options can be used for GRMON initialization, as will be seen in

further sections and chapters. An evaluation version of GRMON is included in the

LEON software tools provided by Gaisler Research.

2.6 Tests and Results

 The bit file obtained following the procedure described at the section 2.3 was

by the methods also specified downloaded into the FPGA. The processor placed on

the board was accessed with GRMON, despite some communication errors and a

stack pointer warning, the GRLIB library components seemed to be correctly

installed, as can be seen in figure 2.9.

Figure 2.9. Built LEON3 processor on GRMON monitor

 Also some applications were successfully downloaded over RAM. However,

it was not possible to execute the downloaded applications, not even a “hello world”

test program. The obtained error message was “processor not in debug mode”,

making the board reset necessary to continue. The Flash memory related instructions

were not possible to execute under these conditions. A failed attempt to access the

registers is reported in figure 2.10.

2 - Hardware Implementation

26

Fiugre 2.10. Failures on the built processor

 The bitgen report and Place&Route report files presented several warnings but

almost all of them were related to the USB port devices.

2 - Hardware Implementation

27

 After the reported results, the precompiled bitfile provided by Gaisler

Research was downloaded on the FPGA. No communications errors or stack pointer

warnings appeared in that case, as can be seen in figure 2.11.

Figure 2.11. Precompiled LEON3 processor on GRMON monitor

 Operations over the registers, and applications download (into RAM and

Flash) and execution were successfully completed under these conditions.

 After the obtained results and a relatively high time investment to solve the

problems of the “manually” generated processor, and after analyzing the possible

problem causes such as the ISE version used, it was decided to continue the board

testing using the precompiled processor. The possibility of physical damages on the

board was dismissed since it was possible to run on it the precompiled processor.

2 - Hardware Implementation

28

The LEON3 VHDL model flexibility cannot be discarded by the obtained

results, but it neither cannot be proved due to the choice of continue the project using

the precompiled version. However, the LEON3 processor reliability for the support of

an embedded operating system was possible to test by the procedures performed in

the following chapter. The fully-operative processor version allowed to continue with

the project’s next step.

29

Chapter 3

Firmware Implementation

This chapter explains the procedure to place an Operating System on the

Board, after the processor has been installed.

3.1 The SnapGear Linux

 SnapGear Linux is a full source package provided by Gaisler. It contains

kernel, libraries and application code for rapid development of embedded Linux

systems. MMU and non-MMU Leon configurations are supported. A single cross

compilation toolchain is provided, which is capable of compiling the kernel and

applications for any configuration.

 The Linux kernel can be configured using a graphical interface. Drivers and

features can be removed in order to save space. On LEON3 systems the AMBA

plug&play information is used to detect devices and load their respective software

drivers.

 A small boot loader is incorporated into the SnapGear Linux software

distribution, it is specially designed for LEON processors. Its main propose is

initialize basic hardware, such as memory controllers and console output for

debugging, before launching LEON Linux.. The boot loader is stored in a non-

volatile memory at the address where the LEON processor reads first its instructions

to be executed, usually stored in flash at address 0.

3 – Firmware Implementation

30

 Supported hardware on the latest version is presented in the following list.

New hardware is being added costantly:

• LEON2, with or without MMU, FPU, MUL/DIV.

• LEON3, with or without MMU, FPU, MUL/DIV.

• LEON3 multi processor systems, SMP

• APBUART

• GPTIMER

• GRETH 10/100 and Gbit

• OpenCores 10/100 Ethernet MAC

• SMC91x 10/100 Ethernet MAC

• APBPS2

• APBVGA

• GRUSBHC

• GRVGA

• ATACTRL

• GRPCI

• GRETH over PCI

• GR/OpenCores

3.2 SnapGear Linux Compiling

The SnapGear Linux compiling processes was completed successfully in a

Unix host. Several problems appeared using cygwing, so it was discarded.

The procedure to compile SnapGear Linux is composed by the following steps:

1) Installing the toolchain

2) Installing the SnapGear distribution

3) Configuring Linux

4) Building SnapGear

3 – Firmware Implementation

31

The indicated steps are described as follows:

3.2.1 Installing the Toolchain

Before compile SnapGear Linux, a toolchain able to compile LEON SPARC

Linux binaries must be chosen, it was selected the sparc-linux-3.4.4 toolchain. The

chosen toolchain was installed in the host’s /opt directory. After being installed, the

toolchain was added to the PATH variable using the following command line:

$ export PATH=$PATH:/opt/sparc-linux-3.4.4/bin

 After installing the toolchain it is possible to cross compile applications for

SPARCC LEON Linux, as indicated by the following command line (the brackets are

representative):

$ sparc-linux-gcc -o [executable name] [source file name .c]

 The following command line demonstrates that the output binary is a SPARC

binary:

$ file [executable name]

 Obtaining the following output message (for an executable file named “args”):

3 – Firmware Implementation

32

3.2.2 Installing the SnapGear Distribution

The provided SnapGear distribution is compressed with tar and bunzip2, its

installation on the Linux host in use can be done by executing the following

command line (xx and yy values depends on the version).

$ tar -xjf snapgear-xx-yy.tar.bz2

3.2.3 Configuring Linux

The SnapGear distribution includes an easy to use graphical interface (GUI).

From the GUI is possible to select processor, Linux version, C library and what

applications will be include into the root file system (ROMFS image) accessed by

Linux during run time. Is also possible to configure the boot loader parameters and

configure the Linux kernel.

The configuration GUI can be invoked by executing the following command

line in the SnapGear distribution installed directory:

$ make xconfig

The GUI main window can be seen in figure 3.1.

Figure 3.1. SnapGear main configuration GUI

3 – Firmware Implementation

33

 A template configuration for the board is also included, this can be set by

clicking the “Template Configuration” button on the GUI, then choosing it (GR-

XC3s-1500) in the window that appears and activating the update configurations

option, as shown in figure 3.2.

Figure 3.2. Template Configuration selection

 By activating the “Update configurations with above selection” option, the

launch of the GUIs for the configuration of the kernel and other settings are

suspended, and all the settings are configured as indicated in the chosen template.

However, as it can be seen in figure 3.1, there is also an option for load a

configuration from a file, so the board template configuration and customized settings

can be mixed.

 In this project, the activation of the template for the GR-xc3s-1500 Board was

considered enough. This selection was compatible with the modifications over the

Linux kernel indicated at the section 3.3 (Modifications over the SnapGear Kernel).

 However, desired changes can be performed by setting the provided options

by clicking other two buttons on the GUI, Vendor/Product Selection and

3 – Firmware Implementation

34

Kernel/Library/Defaults Selection. The application selection menus obtained for each

buttons are shown on figures 3.3 and 3.4.

Figure 3.3. Vendor/Product section

Figure 3.4: kernel/library/defaults selection menu

 Changes in this options are not saved if a template has been selected as

previously indicated, but a template can be used if the button “load configuration

from file” is used. Some of the allowed features to modify are presented as follows:

3 – Firmware Implementation

35

• Processor Type and MMU

• C library

• Kernel version

• Configuring the boot loader

• Configuring the Linux 2.6.x kernel (MMU, i.e. only LEON3)

• Configuring the Linux 2.0.x kernel (no MMU)

Special GUI configurations utilities are provided for the both kernels,

however, them do not perform automatically changes needed as a consequence of

eventual modifications made by the user, leading to possible errors on the compiling

process. The GUI configuration utility for the Linux 2.6.x case is shown on figure 3.5.

Figure 3.5. Linux 2.6.x kernel GUI configuration utility

3 – Firmware Implementation

36

It was considered to use a JFFS2 file system on flash memory but many

compilation problems appeared and many files seemed to be necessarily (without

help of the GUI) modified. Similar problems appeared trying to configure the USB

port in order to manage an external memory device. The kernel GUI configuration

was not very useful in those cases. However the data storage on the board was not

considered a critical issue, since it is also possible to transmit data immediately after

it is processed.

 Actual changes on the kernel were performed on some files without the help

of the previously described GUI, as it can be seen on section 3.3.

.

3 – Firmware Implementation

37

3.2.4 Building SnapGear

The Linux SnapGear compilation is executed by the “make” command, as

indicated in the following line in the SnapGear distribution installed directory:

$ make

 The generated images can be found at the /images subdirectory. Information

about the compiling times can be found at the section 3.5 (Tests and Results).

3.3 Modifications over the SnapGear Linux Kernel

 Some changes were performed over the Kernel in order to set the following

parameters:

3.3.1 Board IP address

 As previously said, the Board’s Ethernet port was chosen to test the

communication with external stages. The following files were modified indicating the

Board new IP address:

• vendors/gaisler/leon3mmu/romfs/etc/init.d/rcS

• romfs/etc/init.d/rcS

Both files contain the same information, as shown on figure 3.6. The assigned

IP address for the Board was 192.168.165.30 (as also indicated on figure 3.6).

3 – Firmware Implementation

38

Figure 3.6. Board IP address setting

Is important to notice that the directory /romfs is created during the kernel first

compilation. However, if /romfs and some subdirectories are manually created them

will not be overwritten. Only missing directories and default settings will be added

during the compilation process.

3.3.2 Adding programs to be executed on the board

The executable files of the programs to be executed on the Board must be add

to the /romfs directory. By doing this, the programs will be found at the SnapGear

3 – Firmware Implementation

39

root file system during its execution. The same procedure can be performed to place

any file or subdirectory wanted in the root file system during SnapGear execution.

3.3.3 Automatic Program Startup

A program can be set to automatically run at the SnapGear startup. One way

to do this is by modifying (or creating) the “inittab” file before compile the Kernel.

inittab shall be placed at the romfs/etc directory.

The inittab[] file describes which processes are started at boot and during

normal operation. An example of inittab is shown in figure 3.7

Figure 3.7. Example of the inittab file

The “sysinit” action, set as default, indicates to load the configuration at the

rcS file. The “respawn” action was added to run the “ingr” program at startup and

whenever it terminates. The call to run the SnapGear console shell has been

eliminated in the shown example.

3 – Firmware Implementation

40

Other actions can be called besides sysinit and respawn, but are not needed in

this project. As can be presumed, a wrong configuration of the inittab file can make

totally inoperative the operating system.

3.4 SnapGear Linux Installing Procedure

After the Kernel compilation has been completed, the obtained images can be

found at the /images directory. The image.flashbz file is the appropriate one to use,

since it can be stored in Flash memory and contains a complete boot loader.

The chosen procedure to place image.flashbz in the processor’s Flash memory

was using the GRMON monitor via JTAG cable. GRMON is invoked on the server as

indicated in the following command line:

$ grmon-eval -nb -jtag

 The –nb option allows Linux to take care of traps instead of having GRMON

to stop the execution. After verify the processor operation the flash memory shall be

erased, as indicated by the following execution line on grmon:

GRMON> flash erase all

 Then, the image can be loaded into Flash memory:

GRMON> flash load image.flashbz

 After the download is completed, SnapGear can be executed by pressing the

board’s reset button or executing the following line:

3 – Firmware Implementation

41

GRMON> run 0

 As previously said, for the chosen Kernel configuration SnapGear will run on

the serial port 1 of the board, at 38400 baud. By the described procedure SnapGear

will run in stand alone operation each time the Board is turned on or reset. The next

section explains the details the about SnapGear usage.

3 – Firmware Implementation

42

3.5 Tests and Results

The compiling times for SnapGear were measured for the previously indicated

configuration (immediately after execute the make command). If the SnapGear

distribution in use is compiled by first time, it takes around 5 minutes. If it is

recompiled it takes around 40 seconds, since are used almost all the files built for the

first compilation, despite eventual minor changes on the kernel (such as the indicated

in the section 3.3).

The downloading time for the image on the Board Flash memory was also

measured, registering around 15 minutes, the download speed was 24.8 Kbit/s as can

be seen in figure 3.8. The erasing of the flash memories (a step previous to the image

download) takes around 2 minutes.

3 – Firmware Implementation

43

Figure 3.8.Flash erasing and SnapGear image download on GRMON

As set in the selected template, SnapGear Linux is executed at the serial port 1

of the board at 38400 baud. The board serial port is connected to a Windows host,

where is used the HyperTerminal program to view the SnapGear execution. The

SnapGear boot sequence read at HyperTerminal can be seen at the end of the section.

The presence on the root file system of the programs and files placed on the

/romfs directory before the SnapGear compiling, was verified using the “ls”

3 – Firmware Implementation

44

command on the SnapGear bash shell, as can be seen in the figure 3.9. This proof also

demonstrates the SnapGear correct operation.

Figure 3.9. Programs and files added to the root file system

The configured IP address of the Board was verified by two different methods.

At figure 3.10 is shown the result of the execution of the ping command in a remote

Unix host indicating the IP address set for the board. At figure 3.11, the IP address is

read on the SnapGear bash shell by executing the “ipconfig” command.

Figure 3.10. Board IP address verification from a remote host

3 – Firmware Implementation

45

Figure 3.11. Board IP address verification on SnapGear shell

 Also the configured automatic program run at startup configuration was

successfully verified, as can be seen in the SnapGear boot sequence presented as

follows (The line “waiting for PPM file” corresponds to the program chosen to be run

at startup):

decompress_kernel(to: 40000000,freemem:40397538,freemem_end:43ffdf38)
output_data:40000000,free_mem_ptr:40397538,free_mem_ptr_end:43ffdf38
 - Inputbuf
fer [ptr: 3168, sz: 299017]
..
..................................
 done [sz:0x38f100], booting the kernel.
Booting Linux
Booting Linux...
PROMLIB: Sun Boot Prom Version 0 Revision 0
Linux version 2.6.21.1 (agonzalez@grampasso) (gcc version 3.4.4) #20 Thu Jun 25
12:23:10 CEST 2009
ARCH: LEON
 Vendors Slaves
Ahb masters:
 0(1: 3| 0): VENDOR_GAISLER GAISLER_LEON3
 1(1: 7| 0): VENDOR_GAISLER GAISLER_AHBUART
 2(1: 1c| 0): VENDOR_GAISLER GAISLER_AHBJTAG
 3(1: 63| 0): VENDOR_GAISLER GAISLER_SVGA
 4(1: 1d| 0): VENDOR_GAISLER GAISLER_ETHMAC
 5(1: 22| 0): VENDOR_GAISLER Unknown device 22
 6(1: 24| 0): VENDOR_GAISLER GAISLER_ATACTRL
Ahb slaves:
 0(4: f| 0): VENDOR_ESA ESA_MCTRL
 +0: 0x0 (raw:0x3e002)
 +1: 0x20000000 (raw:0x2000e002)
 +2: 0x40000000 (raw:0x4003c002)

3 – Firmware Implementation

46

 1(1: 6| 0): VENDOR_GAISLER GAISLER_APBMST
 +0: 0x80000000 (raw:0x8000fff2)
 2(1: 4| 0): VENDOR_GAISLER GAISLER_LEON3DSU
 +0: 0x90000000 (raw:0x9000f002)
 3(1: 24|10): VENDOR_GAISLER GAISLER_ATACTRL
 +0: 0xfffa0000 (raw:0xa000fff3)
Apb slaves:
 0(4: f| 0): VENDOR_ESA ESA_MCTRL
 + 0: 0x80000000 (raw:0xfff1)
 1(1: c| 2): VENDOR_GAISLER GAISLER_APB
 + 0: 0x80000100 (raw:0x10fff1)
 2(1: d| 0): VENDOR_GAISLER GAISLER_IRQMP
 + 0: 0x80000200 (raw:0x20fff1)
 3(1: 11| 8): VENDOR_GAISLER GAISLER_GPTIMER
 + 0: 0x80000300 (raw:0x30fff1)
 4(1: 60| 4): VENDOR_GAISLER GAISLER_KBD
 + 0: 0x80000400 (raw:0x40fff1)
 5(1: 60| 5): VENDOR_GAISLER GAISLER_KBD
 + 0: 0x80000500 (raw:0x50fff1)
 6(1: 63| 0): VENDOR_GAISLER GAISLER_SVGA
 + 0: 0x80000600 (raw:0x60fff1)
 7(1: 7| 0): VENDOR_GAISLER GAISLER_AHBUART
 + 0: 0x80000700 (raw:0x70fff1)
 8(1: 1a| 0): VENDOR_GAISLER GAISLER_PIOPORT
 + 0: 0x80000800 (raw:0x80fff1)
 9(1: 1d|12): VENDOR_GAISLER GAISLER_ETHMAC
 + 0: 0x80000b00 (raw:0xb0fff1)
TYPE: Leon2/3 System-on-a-Chip
Ethernet address: 0:0:0:0:0:0
CACHE: direct mapped cache, set size 4k
CACHE: not flushing on every context switch
Boot time fixup v1.6. 4/Mar/98 Jakub Jelinek (jj@ultra.linux.cz). Patching kerne
l for srmmu[Leon2]/iommu
node 2: /cpu00 (type:cpu) (props:.node device_type mid mmu-nctx clock-frequency
uart1_baud uart2_baud)
PROM: Built device tree from rootnode 1 with 918 bytes of memory.
DEBUG: psr.impl = 0xf fsr.vers = 0x7
Built 1 zonelists. Total pages: 15315
Kernel command line: console=ttyS0,38400 rdinit=/sbin/init
PID hash table entries: 256 (order: 8, 1024 bytes)
Todo: init master_l10_counter
Attaching grlib apbuart serial drivers (clk:40hz):
Console: colour dummy device 80x25
Dentry cache hash table entries: 8192 (order: 3, 32768 bytes)
Inode-cache hash table entries: 4096 (order: 2, 16384 bytes)
Memory: 60616k/65532k available (1536k kernel code, 4848k reserved, 180k data, 1
904k init, 0k highmem)
Mount-cache hash table entries: 512
NET: Registered protocol family 16
NET: Registered protocol family 2
IP route cache hash table entries: 1024 (order: 0, 4096 bytes)
TCP established hash table entries: 2048 (order: 2, 16384 bytes)
TCP bind hash table entries: 2048 (order: 1, 8192 bytes)
TCP: Hash tables configured (established 2048 bind 2048)
TCP reno registered
io scheduler noop registered
io scheduler cfq registered (default)
grlib apbuart: 1 serial driver(s) at [0x80000100(irq 2)]
grlib apbuart: system frequency: 40000 khz, baud rates: 38400 38400
ttyS0 at MMIO 0x80000100 (irq = 2) is a Leon
RAMDISK driver initialized: 16 RAM disks of 4096K size 1024 blocksize
loop: loaded (max 8 devices)
Probing GRETH Ethernet Core at 0x80000b00
PHY: Vendor 4de Device e Revision 2
10/100 GRETH Ethermac at [0x80000b00] irq 12. Running 100 Mbps full duplex
TCP cubic registered
NET: Registered protocol family 1

3 – Firmware Implementation

47

NET: Registered protocol family 10
IPv6 over IPv4 tunneling driver
Freeing unused kernel memory: 1904k freed
init started: BusyBox v1.8.2 (2009-03-25 12:04:03 CET)
starting pid 14, tty '': '/etc/init.d/rcS'
mount: mounting tmpfs on /var/tmp failed: Invalid argument
starting pid 25, tty '': '/etc/init.d/ingr'

 waiting for PPM file...

 The obtained results allow to use the SnapGear operation system to support

complex programs able to manage the board communications and data processing, as

it is reported in the following chapter.

48

Chapter 4

Software Implementation

This chapter explains how the software to be run on the Board was

implemented. First, the following topics are overviewed:

• Type of files to be used for images before and after the compression

• Chosen compression algorithm

• Used tools for the compression

• Implementation of a communication channel between processes

Then, is exposed a description of the developed programs for the image

compression, and building of communication links between the board and external

stages (in order to exchange data, the compressed and to be compressed files).

The final section of the chapter provides an analysis of the tests over the

developed programs and their respective results.

4.1 Used File Formats

 PPM files [10] have been chosen to test the board capacities for image

processing, using the JPEG algorithm over them and obtaining JPEG files; both

formats are explained as follows:

4 – Software Implementation
__

49

4.1.1 PPM file format

 The PPM format [10] was developed in the latter 1980s by Jef Poskanzer as a

part of the Portable Bitmap Utilities (PBM); the name of the format is an acronym for

“Portable Pixel Map”.

 The format is a lowest common denominator color image file format, in which

each pixel is defined by three ASCII decimal values between 0 and a specified

maximum value. Each three values for each pixel represent an intensity scale of red,

green and blue, respectively.

The PPM format is highly inefficient and redundant, since it contains a lot of

information that can’t be discerned by the human eye; however, the structure of the

format makes very easy the development of programs for its reading and analysis.

 There are two types of PPM files, P3 and P6; P3 files are entirely written in

ASCII format making them easy to read such as any text file. P6 files have only their

header written in ASCII format. P6 image values for each pixel are assigned entirely

in binary, making them much less heavy than P3 files (even if corresponding to the

same image). The following table compares two examples for the same image written

in both formats:

4 – Software Implementation
__

50

P3 P6

P3
#any comment string
3 2
255
255 0 0
0 255 0
0 0 255
255 255 0
255 255 255
0 0 0

P6
#any comment string
3 2
255
!@#$%^&*()_+|{}:"<

Table 4.1. PPM formats comparison

 As it can be seen, the header structure is the same in the both cases:

• First line: Type of file, P3 or P6

• Second line: comment string

• Third line: columns and rows of the image

• Fourth line: maximum color value

In the case of P6 files, the value for each color of the pixel is usually

represented by a byte, so in that case the maximum color value possible is 255. It was

decided to use P6 files rather than P3 in this project.

4 – Software Implementation
__

51

4.1.2 JPEG file format

JPEG [12,13] is a standardized image compression mechanism. Its name

stands for “Joint Photographic Experts Group”, the committee that created the

standard and issued it in 1992, being approved in 1994 as ISO 10918-1. The name

JPEG is also used to refer to the format of the files obtained using the compression

standard.

The standard is designed to compress either full-color or gray-scale images,

working at its best on photographs, naturalistic artwork, and similar material; unlike

text, cartoons or line drawings.

Some information from the original image is lost during the compression

process, which can’t be recovered applying the decompression algorithm. JPEG takes

advantage of known limitations of the human eye visual resolution; the degree of

lossiness can be varied by adjusting compression parameters. Usually JPEG achieves

10:1 compression with little perceptible loss in image quality.

 A JPEG image is composed by a sequence of segments, which are identifiable

by markers at their beginning; each of them begins with a 0xFF byte, followed by

another byte indicating what kind of marker it is. Beside the data containing the

image itself, some segments contain information about applied coding methods and

parameters values used for the compression. The markers used by the JPEG standard

are indicated in the Table 4.2.

4 – Software Implementation
__

52

Marker Code Assignment Symbol Description

Start Of Frame

markers,

non-differential,

Huffman coding

0xFFC0

0xFFC1

0xFFC2

0xFFC3

SOF0

SOF1

SOF2

SOF3

Baseline DCT

Extended sequential DCT

Progressive DCT

Lossless (sequential)

Start Of Frame

markers,

differential,

Huffman coding

0xFFC5

0xFFC6

0xFFC7

SOF5

SOF6

SOF7

Differential sequential DCT

Differential progressive DCT

Differential lossless (sequential)

Start Of Frame

markers,

non-differential,

arithmetic coding

0xFFC8

0xFFC9

0xFFCA

0xFFCB

JPG

SOF9

SOF10

SOF11

Reserved for JPEG extensions

Extended sequential DCT

Progressive DCT

Lossless (sequential)

Start Of Frame

markers,

differential,

arithmetic coding

0xFFCD

0xFFCE

0xFFCF

SOF13

SOF14

SOF15

Differential sequential DCT

Differential progressive DCT

Differential lossless (sequential)

Huffman table

specification
0xFFC4 DHT Define Huffman table(s)

Arithmetic coding

conditioning

specification

0xFFCC DAC
Define arithmetic coding

conditioning(s)

Restart interval

termination

0xFFD0 through

0xFFD7
RSTm* Restart with modulo 8 count “m”

Other markers

0xFFD8

0xFFD9

0xFFDA

0xFFDB

0xFFDC

0xFFDD

0xFFDE

0xFFDF

0xFFE0 through

0xFFEF

SOI*

EOI*

SOS

DQT

DNL

DRI

DHP

EXP

APPn

JPGn

Start of image

End of image

Start of scan

Define quantization table(s)

Define number of lines

Define restart interval

Define hierarchical progression

Expand reference component(s)

Reserved for application segments

Reserved for JPEG extensions

4 – Software Implementation
__

53

0xFFF0 through

0xFFFD

0xFFFE

COM Comment

Reserved markers

0xFF01

0xFF02 through

0xFFBF

TEM*

RES

For temporary private use in

arithmetic coding

Reserved

Table 4.2. JPEG markers[13]

4.2 An Overview of the JPEG Compression Algorithm

The JPEG algorithm [12,13] is a very complex process, it works on either full-

color or gray-scale images; it does not handle so well bilevel (black and white)

images; and it doesn't handle colormapped images either, those have to be to pre-

expanded into an unmapped full-color representation. The algorithm works best on

"continuous tone" images, unlike images with many sudden jumps in color values.

 There are a lot of parameters to the JPEG compression process; by adjusting

the parameters, is possible to trade off compressed image size against reconstructed

image quality over a “very” wide range. Also is possible to get image quality ranging

from op-art (at 100x smaller than the original 24-bit image) to quite indistinguishable

from the source (at about 3x smaller). Usually the threshold of visible difference

from the source image is somewhere around 10x to 20x smaller than the original (i.e.,

1 to 2 bits per pixel for color images). Grayscale images do not compress as much. In

fact, for comparable visual quality, a grayscale image needs perhaps 25% less space

than a color image.

 JPEG defines a "baseline" lossy algorithm, plus optional extensions for

progressive and hierarchical coding. There is also a separate lossless compression

mode; this typically gives about 2:1 compression (about 12 bits per color pixel).

Most currently available JPEG hardware and software handles only the baseline mode.

4 – Software Implementation
__

54

 The outline of the baseline compression algorithm is described as follows:

1) Transform the image into a suitable color space.

This isn’t needed for grayscale, but for color images the usual procedure is

about transform RGB into a luminance/chrominance color space such as

YCbCr, YUV. The luminance component is grayscale and the other two axes

are color information. This is done in order to afford to lose a lot more

information in the chrominance components rather than in the luminance

component, since the human eye is not as sensitive to high-frequency

chromatic info as it is to high-frequency luminance.

This step isn’t indispensable since the remainder of the algorithm works on

each color component independently, and doesn't care just what the data is;

however, compression will be less since all the components at luminance

quality will be coded. As can be noticed, colorspace transformation is slightly

lossy due to roundoff error, but the amount of error is much smaller than the

one typically introduced in further steps.

2) Downsample each component by averaging together groups of pixels.

The luminance component is left at full resolution, while the chroma

components are often reduced 2:1 horizontally and either 2:1 or 1:1 (no

change) vertically. In the JPEG environment these alternatives are usually

called 2h2v and 2h1v sampling. This step immediately reduces the data

volume by one-half or one-third. In numerical terms it is highly lossy, but for

most images it has almost no impact on perceived quality, because, as

previously said, of the eye's poorer resolution for chroma info. As can be

4 – Software Implementation
__

55

noticed, downsampling is not applicable to grayscale data; this is one reason

color images are more compressible than grayscale.

3) Group the pixel values for each component into 8x8 blocks.

Transform each 8x8 block through a discrete cosine transform (DCT). The

DCT is a relative of the Fourier transform and likewise gives a frequency map,

with 8x8 components. Now numbers representing the average value in each

block and successively higher-frequency changes within the block are

obtained; allowing to throw away high-frequency information without

affecting low-frequency information (The DCT transform itself is reversible

except for roundoff error).

4) In each block, divide each of the 64 frequency components by a separate

"quantization coefficient", and round the results to integers.

This is the fundamental information-losing step, sine more data gets discarded

for larger quantization coefficients. Even the minimum possible quantization

coefficient, 1, some information is lost, because the exact DCT outputs are

typically not integers. Higher frequencies are always quantized less

accurately (given larger coefficients) than lower, since they are less visible to

the eye. Also, the luminance data is typically quantized more accurately than

the chroma data, by using separate 64-element quantization tables. Tuning the

quantization tables for best results is a very difficult procedure and is an active

research area. Most existing encoders use simple linear scaling of the

example tables given in the JPEG standard, using a single user-specified

"quality" setting to determine the scaling multiplier. This works fairly well

for midrange qualities but is quite non-optimal at very high or low quality

settings.

4 – Software Implementation
__

56

5) Encode the reduced coefficients using either Huffman or arithmetic coding.

This step is lossless, so it doesn't affect image quality. The arithmetic coding

option uses Q-coding, which is patented. Most existing implementations

support only the Huffman mode, so as to avoid license fees. The arithmetic

mode offers maybe 5 or 10% better compression, which isn't enough to justify

paying fees.

6) Tack on appropriate headers and output the result.

In a normal "interchange" JPEG file, all of the compression parameters are

included in the headers so that the decompressor can reverse the process.

These parameters include the quantization tables and the Huffman coding

tables. For specialized applications, the spec permits those tables to be omitted

from the file; this saves several hundred bytes of overhead, but it means that

the decompressor must know a-priori what tables the compressor used.

Omitting the tables is safe only in closed systems.

 The decompression algorithm reverses this process. The decompressor

multiplies the reduced coefficients by the quantization table entries to produce

approximate DCT coefficients. Since these are only approximate, the reconstructed

pixel values are also approximate, but if the design has done what it is supposed to do,

the errors won't be highly visible. A high-quality decompressor will typically add

some smoothing steps to reduce pixel-to-pixel discontinuities.

 The JPEG standard does not specify the exact behavior of compressors and

decompressors.

4 – Software Implementation
__

57

4.3 The IJG JPEG Library

The IJG JPEG library [12] is a free software package developed by the

Independent JPEG Group (IJG, not related to the JPEG committee that developed the

standard); it provides C code to read and write JPEG-compressed image files. The

surrounding application program receives or supplies image data a scanline at a time,

using a straightforward uncompressed image format. All details of color conversion

and other preprocessing/postprocessing can be handled by the library.

The library includes a substantial amount of code that is not covered by the

JPEG standard but is necessary for typical applications of JPEG. These functions

preprocess the image before JPEG compression or postprocess it after decompression.

They include colorspace conversion, downsampling/upsampling, and color

quantization. The application indirectly selects use of this code by specifying the

format in which it wishes to supply or receive image data. For example, if

colormapped output is requested, then the decompression library automatically

invokes color quantization.

A wide range of quality vs. speed tradeoffs are possible in JPEG processing,

and even more so in decompression post-processing. The decompression library

provides multiple implementations that cover most of the useful tradeoffs, ranging

from very-high-quality down to fast-preview operation. On the compression side

low-quality choices are not provided, since compression is normally less time-critical.

It should be understood that the low-quality modes may not meet the JPEG standard's

accuracy requirements; nonetheless, they are useful for viewers.

It is handled a subset of the ISO JPEG standard; most baseline, extended-

sequential, and progressive JPEG processes are supported.

4 – Software Implementation
__

58

4.4 Communication Channel Development

 This section explains the procedure to build a communication channel

between two processes, that will be used to communicate the board with external

stages, all based on the Client-Server model.

4.4.1 The Client-Server model

It is a model for communication between two processes, where one of them,

the “server”, waits for a connection from other process, the “client”, and after a

communication channel has been established, data transfer can be done in any of the

both senses, server to client or client to server [9].

Considering that the server is the process that waits to be contacted, it does

not have to know the address of the client before the connection is established.

The connection building procedure is not the same for both processes, despite

each of them build a “socket” for its respective side of the communication channel,

where the data to receive and transmit is read and written respectively.

4.4.2 Socket Types

 The communication between two processes can be achieved only if their

sockets are of the same type and use the same address domain.

 The most used address domains are the Unix domain, in which the processes

which share a common file system communicate; and the Internet domain, in which

the involved processes run on any two hosts on the internet.

4 – Software Implementation
__

59

 In the Unix domain, the address of a socket is a character string related to the

file system

 In the Internet domain the socket address consists of the internet address of the

host machine (a 32 bit address, often referred to as its IP address) an also a port

number on that host, which are 16 bit unsigned integers.

 The most used socket types are “stream sockets” and “datagram sockets”.

Stream sockets use continuous streams of characters, while datagram sockets read the

entire message at once.

 Stream sockets use TCP (Transmission Control Protocol), while datagram

sockets use UDP (Unix Datagram Protocol)

4.4.3 Socket implementation on the internet domain

The steps involved on the socket building and use procedure on the server side

are indicated in the following flow chart:

4 – Software Implementation
__

60

Figure 4.1. Server side socket building and usage

The steps indicated on the chart are explained as follows, with references to

their respective implementation on C language:

1) Create a socket

This is done using the socket() system call, as indicated in the following code

line:

 sockfd = socket(AF_INET, SOCK_STREAM, 0);

The first argument is the address domain (the symbol constant AF_INET

makes reference to the internet domain), the second argument is the type of

4 – Software Implementation
__

61

socket (SOCK_STREAM makes reference to an stream socket) and the third

argument is the protocol, if zero (0) is used, the operating system will choose

the most appropriate protocol (TCP for stream sockets, as said previously).

The socket() system call also returns an integer value which is an entry into

the file descriptor table, this value is used for further references to the socket.

If the socket() call falls, it returns -1; in the example, this value is assigned to

the variable sockfd.

2) Bind the socket to an address

The socket is bound to an address using the bind() system call, as indicated in

the following code lines:

 if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)
 error("ERROR on binding");

In the shown example, the address is referred to the current host and port

number on which runs the server. It uses three arguments, the socket file

descriptor, the address which it is bound, and the size of the address which it

is bound. The second argument is a pointer to a structure of type sockaddr, but

what was passed in is a structure of type sockaddr_in, which will be explained

as follows.

A structure of the type struct sockaddr_in, has four fields, as can be seen in its

definition:

 struct sockaddr_in
{
 short sin_family;
 u_short sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];
};

4 – Software Implementation
__

62

The first field (short sin_family) contains a code for the address family, so it

must be set to the symbolic constant AF_INET; the second field (u_short

sin_port) contains the port number (converted from “host byte order” to

“nework byte order” with the function htons()); the trird field (sin_addr) is a

structure of type struct in_addr which contains a single field unsigned long

s_addr, that contains the IP address of the host machine, which is get using the

symbolic constant INADDR_ANY; the fourth field must be zero and isn’t

used.

3) Listen for all connections

This is done using the listen() system call, as shown in the following cod line:

listen(sockfd,5);

This system call allows the process to listen on the socket for connections.

The first argument is the socket file descriptor, the second is the number of

connections that can be waiting while the process is handing a particular

connection, which should be 5, the maximum size permitted by most systems.

4) Accept a connection from a client

This is done using the accept() system call as indicated in the following code

lines:

 clilen = sizeof(cli_addr); //size of client address
newsockfd = accept(sockfd, (struct sockaddr *) &cli_addr, &clilen);
if (newsockfd < 0)
 error("ERROR on accept");

4 – Software Implementation
__

63

This system call causes the process to block until a client connects to the

server; the process is awaken when a connection from a client is successfully

established; its first argument is the socket file descriptor, the second

argument is a reference to the pointer to the address of the client (also a

structure of the type struct sockaddr_in, which has been explained beside the

binding process) on the other end of the connection, and the third argument is

the size of this structure; accept() also returns a new file descriptor, which

shall be use for communication on the built connection.

5) Send and receive data

These operations can be done easily with the write() and read() system calls

using as arguments the socket file descriptor, the buffer which contains the

data to write or will contain the read data, and the size of that buffer, as shown

in the following code lines:

Read socket (receive data):

 n = read(newsockfd,buffer,255);

 Write on socket (send data):

 n = write(newsockfd,"I got your message",18);

The procedure for the socket building on the client side is described by the

following flow chart:

4 – Software Implementation
__

64

CREATE A SOCKET

CONNECT THE SOCKET TO

SERVER ADDRES

SEND AND RECEIVE DATA

Figure 4.2. Client side socket building and usage

The steps of the procedure shown on the chart, with examples in C language,

are explained as follows:

1) Create a socket

This operation is done with the socket() system call, exactly as previously

explained for the server side.

2) Connect the socket to the address of the server

Before do the connection is important to read some information about the

server, this is done using the function gethostbyname() which has as only

argument the name of the host on the Internet domain, this function is defined

as follows:

 struct hostent *gethostbyname(char *name)

4 – Software Implementation
__

65

As can be seen, it returns a structure of type struct hostent, which is defined as

follows:

struct hostent
{
 char *h_name; /* official name of host */
 char **h_aliases; /* alias list */
 int h_addrtype; /* host address type */
 int h_length; /* length of address */
 char **h_addr_list; /* list of addresses from name server */
 #define h_addr h_addr_list[0] /* address, for backward compatiblity */
};
The indicated members of this structure are:

h_name Official name of the host.
h_aliases A zero terminated array of alternate
 names for the host.
h_addrtype The type of address being returned;
 currently always AF_INET.
h_length The length, in bytes, of the address.
h_addr_list A pointer to a list of network addresses
 for the named host. Host addresses are
 returned in network byte order.

Using gethostbyname() and storing its returned value in struct hostent *server,

the fields of serv_addr are set as follows:

bzero((char *) &serv_addr, sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
bcopy((char *)server->h_addr,
 (char *)&serv_addr.sin_addr.s_addr,
 server->h_length);
serv_addr.sin_port = htons(portno);

Considering thet serv_addr is a structure of type struct sockaddr_in, which has

been explained for the server side binding procedure.

Then, the connection is done using the connect() system call as follows:

 if (connect(sockfd,&serv_addr,sizeof(serv_addr)) < 0)

 error("ERROR connecting");

4 – Software Implementation
__

66

If no server is decribed by serv_addr, the returned value is -1 and the process

is interrupted.

3) Send and receive data

After the connection has been established, data can be received and sent using

the read() and write() system calls, as shown for the server connection side.

4 – Software Implementation
__

67

4.5 Developed Programs Description

A system has been built based on the server-client model for interprocess

communications over the Internet domain using the TCP protocol; involving two

programs on the board and another two outside the board.

The first program on the board is in charge of, in stand alone operation,

receive from the previous stage the file to be compressed, execute the second one to

perform the compression, and send the resulting file to the following stage; the

related stages outside the board are emulated by an external PC in an Unix-OS

environment in which the other two programs run contemporaneously.

The mentioned programs are described as follows:

4.5.1 To run outside the Board

sendPPM

It works as a client that sends to the board the image to be compressed; its

input parameters (manually placed by the user) are the server (board) IP address, the

number of the port used by the server for the image reception and the name of the file

which contains the image.

As can be seen in the flow chart at figure 4.3, the program operates by

opening the file to send for its reading, then the transmission cycle begins building a

socket and sequentially sending through it a part of the file on each loop (using a

2500 characters length buffer); a counter (named count) is used to quantify the

already sent characters and is compared with the size of the file at the end of each

loop and repeating the cycle again for the following part of the file; after “count”

reaches the file size, the transmission ends, the success is notified to the user and the

4 – Software Implementation
__

68

used file is closed (the file size is computed with the data present on the file header,

included in the buffer during the first loop after read the socket).

The program ends its execution after close the used file, or is terminated if an

error occurs during the socket building or using as indicated in the correspondent

blocks of the flow chart.

 The command line on Unix corresponding to the program execution has the

following structure:

$./sendPPM [server address] [port number] [PPM file name]

The source code of the program can be found in Appendix A.

recJPG

It works as a server that receives from the board the JPEG file obtained from

the compression; its only input parameter is the number of the port to be used.

As shown in the flow chart in figure 4.4, the program loads an index value to

assign for the name of the destination file for the next received JPEG image (assigns

0 if can’t load value), builds the socket at the specified port number (only once) and

then starts a cycle receiving, or waiting for, each part of the JPEG image through the

socket sent by a client, storing the received parts at the destination file (a 256

characters buffer is used in this operation) the operation is repeated until the “end of

image” sequence of characters is recognized inside the part of the file being processed

or if a communication error occurs as indicated in the respective blocks of the chart.

4 – Software Implementation
__

69

After a JPEG image is completely received the destination file is closed, the

index value stored and incremented, a new destination file with the new index value

is opened and the program connect to the socket waiting for the next image.

The program ends its execution only if it is externally interrupted or, as said

previously, a communication error occurs during an image reception.

 The command line on Unix corresponding to the program execution has the

following structure:

$./recJPG [port number]

The source code of the program can be found in Appendix A.

4.5.2 To run inside the Board

Ingrb

It is the program in charge of the management of the communications with the

external stages and orders the execution of the program for the image compression

(cjpeg3).

As indicated in the flow chart at figure 4.5, the communications management

in the main process is done by calling two functions, one to receive the PPM files

through the port 50900 (receiveP6), and another called after the compression is done

to send the resulting JPEG file (out_img.jpg) through the port 50800 (sendJPG). At

the main process a flag is also used in order to indicate to the function receiveP6 if a

new socket must be built for the PPM files reception.

4 – Software Implementation
__

70

After the compressed file is sent to the next stage, the cycle begins again and

the program calls receiveP6, which waits for the next PPM file to be compressed. The

source code of the program and its functions can be found in Appendix A.

The functions used by the program are explained as follows:

receiveP6

It is the function that plays the server role for the reception of a file to be

compressed; its input parameters are: port number, name of the file where the PPM

image will be stored, and a flag that indicates if a new socket is needed.

 As can be noticed at the flow chart on figure 4.6, the function opens a

destination file with the specified name (if a file with the same name already exists, it

is overwritten) builds a socket (if indicated by the respective flag) and then waits for a

connection of an external client to the socket, after that happens it begins to (using a

2500 character buffer) receive sequentially the parts of the file sent by the connected

client until the entire file is received (the size of the file is computed with the

information on its header); then the destination file is closed and the program returns

to the process that has called the function.

 As shown in the respective blocks of the chart, the program is terminated by

the function itself if a communication error occurs during the file reception process.

sendJPG

 It is the function that acts as a client to send a JPEG image to a server

according to its input parameters: server address, number of the port to be used and

name of the file to be sent.

4 – Software Implementation
__

71

 As shown in the flow chart in figure 4.7, its operation begins opening the file

to be sent, then the sending process starts building and connecting to the socket, and

writing on it the respective part of the file to be sent (using a 256 character buffer);

the process is repeated until the “End of Image” sequence of characters is recognized

inside the part of the file that is being sent.

 After all the file is sent, the used file is closed and the programs returns to the

process that has called the function.

 As receiveP6, the function sendJPG is able to terminate the program if a

communication error occurs during the sending process.

cjpeg3

 It is the program that does the JPEG compression, its source file is part of the

package of the libjpeg library[10], only minor modifications were made on it.

4 – Software Implementation
__

72

Figure 4.3. sendPPM program flow chart

4 – Software Implementation
__

73

Figure 4.4. recJPG program flow chart

4 – Software Implementation
__

74

Figure 4.5. INGRB program flow chart

4 – Software Implementation
__

75

Figure 4.6. receiveP6 function flow chart

4 – Software Implementation
__

76

Figure 4.7. sendJPG function flow chart

4 – Software Implementation
__

77

4.6 Developed Programs Usage

 The way in which the previously explained programs are used to test the board

is explained in this section; as said before, the stages outside the board are emulated

by running two programs on an external PC. The programs that run outside the board

are compiled with gcc, and those on the board are compiled with sparc-linux-gcc.

 The programs operation sequence is enumerated as follows, the execution

order of the first two is irrelevant since the server processes wait for a client

connection:

1) The user executes recJPG at the external PC indicating the port 50800 for the

JPEG image reception, as indicated in the following command line:

$./recJPG 50800

2) INGRB runs on the board since it is turned on or reset, waiting for a file to be

compressed (as indicated on the receiveP6 function) on the port 50900.

3) At the external PC the user executes sendPPM indicating the port 50900 and

the name of the PPM file to be compressed, as indicated in the following

command line:

$./sendPPM [board IP address] 50900 [.ppm file name]

4) After the PPM file is received by INGRB and saved at the board as

“in_img.ppm”, cjpeg3 is executed and the resulting file is saved as

“out_img.jpg”.

5) The compressed image is sent through the port 50800 to the external PC,

where it is stored by recJPG as aramisXXXX.jpg, where XXXX symbolizes a

4 – Software Implementation
__

78

4 digit number related to the index value (as explained on the previous

section).

6) INGRB and recJPG wait for the next PPM and JPEG files respectively, then

the process is repeated until an error occurs or one of the programs is

interrupted.

4 – Software Implementation
__

79

4.7 Tests and Results

The developed programs were used as described by the previous section; the

environment for the performed tests can be seen in the figure 4.8 (the command lines

and the messages from the programs were magnified in order to make then readable).

Figure 4.8. Programs test environment

In order to test the reliability of the programs, and the capacities of the board

itself, four different PPM files were used; the times for sending the image (to the

board), the compression and the receiving of the resulting file were measured, the

4 – Software Implementation
__

80

obtained results are shown on the table 4.3 (times under 0.50s were considered

negligible).

File name
Original

Size (KB)
Sending Time

(s)
Compression

Time (s)
Receiving
Time (s)

Result Size
(KB)

aqui4.ppm
(color image)

533 1.7 3.4 <0.50 28.0

testimg.ppm
(color image)

99.1 <0.50 <0.50 <0.50 5.85

pippo.ppm
(grayscale

image)
1216 3.6 7.1 <0.50 14.9

pluto1.ppm
(color image)

1216 3.6 7.1 <0.50 28.5

Table 4.3. Programs performance

 It is important to notice that the sending and receiving speeds are related to

many factors, some of them produced by the methods applied on the syntax of each

program (such as the size of the used buffers to read and write on the respective

sockets); others related to the hardware, like the processing times of the board (Leon3)

and the external PC (Pentium D) and the chosen media for the communication

(Ethernet).

 The compression speed depends on the settings of the program for the

compression (set as default), which are related to the parameters of the methods

involved in the compression algorithm, also to the syntax of the program itself and, of

course, the processing time of the board.

 From the results can also be noticed, as expected, the influence of the type of

the image to be compressed and the size of the obtained file, as can be seen with

“pippo.ppm” and “pluto1.ppm” which have the same size; the smaller size obtained

for the grayscale image after the compression is related to the redundant data of the

original PPM size (which contain the information in scales of red, green and blue),

which is eliminated during the compression itself.

81

Chapter 5

Conclusions

During this project an option for an image processor as an eventual part of the

Payload of the ARAMIS satellite has been analyzed. Different results were obtained

for each stage of the development process.

The LEON3 processor and GRLIB IP library VHDL model reliability was

partially proved. The used LEON3 precompiled version allowed to evaluate the

capacities of the processor and features of the GRLIB IP library with successful

results. The needed parts for the design process following stages were present on the

precompiled version.

The flexibility of the used VHDL model can be studied in future works using

different synthesis tools (including a faster host) and/or studying the model itself, in

order to find needed modifications for its usage. The reported results in this project

should be considered before the eventual acquisition of a fault tolerant version of the

LEON3 processor, which is able to be used on a satellite. It is also important to note

that the manufacturer (Gaisler Research) does constant improvements and changes to

the existent VHDL model.

In addition, the GR-XC3S-1500 development board was successfully used as

an evaluation and prototyping tool for LEON3 processor and GRLIB IP library

applications. Most of the performed procedures over the board are applicable to

similar FPGA based-on devices specially designed to work under aerospace

conditions.

5 - Conclusions

82

The SnapGear package features were useful for the development of the

operation system placed on the board. The performed changes over the provided

kernel did not require difficult procedures. However, the usage of some of the

included tools to modify the SnapGear Linux kernel could be quite complex in order

to perform certain modifications to manage some devices on the board.

The development of programs to build communication links taking advantage

of the Ethernet port was relatively easy. The obtained results of the performed data

transmission tests based on the Client-Server model were successful. Similar

procedures could be applied over similar communication protocols that are often used

for data transmission on satellites, such as spacewire.

The JPEG library developed by IJG was a really useful tool on the design. The

library was easily installed over an Unix host. Some errors appeared on the first times

that the library was used, however, them were easily solved using basic knowledge of

the C language. The provided documentation and examples were very helpful. The

integration of the image compression and communications management programs

was easily completed taking advantage of the library usage simplicity.

Future projects should complete the satellite image processing system by

selecting an appropriate image capture device and developing the correspondent data

transmission to the image compression stage. A webcam could be used taking

advantage of the USB management tools provided by the GRLIB IP library and

SnapGear, which could be used on a similar development board designed for

aerospace conditions, as previously indicated. Other pending issues are the develop a

data storage and/or sending stages for the compressed images and the selection of an

appropriate data transmission protocol. A discussion topic could be if store the

compressed images in the satellite in case of a communication failure with the ground

segment. Another options such as an DSP device can be also considered for the image

5 - Conclusions

83

compression stage itself, analyzing the reported advantages and disadvantages of

using a based on FPGA device in this project.

84

Bibliography

1. Twiggs B., Puig-Suari J. CUBESAT Design Specification Document,

Stanford University and Polytechnical Institute. www.cubesat.org

2. Reyneri L., “PICPOT Satellite Universitario del Politecnico di Torino,

documento di specifiche di sottosistemi elettronici”, 6th edition

3. S. Spereta, L. Reynery, C. Sansoè, M. Tranchero, C. Passerone and Dante Del

Corso, “Modular Architecture for satellites” 58th International Austronautical

Congress, September 2007

4. LEON3 Product sheet

5. GR-XC3S-1500 Development Board User’s Manual

6. GRLIB IP User’s Manual

7. Xilinx ISE9 Foundation Tutorial

8. SnapGear Linux Manual

9. Linux Howto Socket Construction

http://www.linuxhowtos.org/C_C++/socket.htm

10. NETBPM Hompage

http://netpbm.sourceforge.net/

11. Kernighan & Ritchie - The C Programming Language

85

12. IJG Homepage

http://www.ijg.org/

13. JPEG standard

7http://www.w3.org/Graphics/JPEG/itu-t81.pdf

 86

Appendixes

Appendix A

Developed Programs Source Codes

Apendix A1. File INGRB.c

/* File: INGRB.C
Program: INGRB
Developed by:
Alejandro Gabbriel Gonzalez Esculpi
Tesi di Laurea Magistrale - Politecnico di Torino
Program to be executed to process images
A PPM File is recived by port 50900 (acts as a serv er)
A program to compress the file is called
The obtained JPEG file is sent through (acts as a c lient)
the port 50800 (if server found)
*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

//Global Variables
struct sockaddr_in serv_addr;
int sockfd,clilen;
int newcom;

void error(char *msg)
{
 perror(msg);
 exit(1);
}

void receiveP6(int portno, char *fn, int newcon);
void sendJPG(int portno, char *servername, char *fn);

//main process
int main(void)
{

//enamle flag for new socket construction
newcom=1;

 87

//loop start
while (1)
{
 //call the function to receive the .PPM file
 //through the port 50900
 //and store it at "in_img.ppm"
 //if indicated by "newcom", create a new socket
 receiveP6(50900, "in_img.ppm",newcom);

 //call the program to do the jpeg compression
 //and save the result at out_img.jpg
 (void)system("./cjpeg3 -outfile out_img.jpg in_img .ppm");

 //send the compressed image to the server
 //(identified by its IP address)
 //through the port 50800
 sendJPG(50800,"130.192.165.79","out_img.jpg");

 //disable newcom (a new socket isn't needed
 //for the reception of the next .PPM file)
 newcom=0;
}

}

//Function for the reception of a .ppm file
void receiveP6(int portno, char *fn, int newcon)
{
int newsockfd;
char buffer[2500], filetype[2];
struct sockaddr_in cli_addr;
FILE *f;
int n, i, r, ini=1, cols, rows, maxcolor, count=0, maxcount=50000;

//open file to write on
f = fopen(fn,"wb");

//if indicated by newcon, build a socket
if (newcon)
{
 sockfd = socket(AF_INET, SOCK_STREAM, 0);

 if (sockfd < 0)
 error("ERROR opening socket");
 bzero((char *) &serv_addr, sizeof(serv_addr));
 serv_addr.sin_family = AF_INET;
 serv_addr.sin_addr.s_addr = INADDR_ANY;
 serv_addr.sin_port = htons(portno);

 if (bind(sockfd, (struct sockaddr *) &serv_addr,
 sizeof(serv_addr)) < 0)

 88

 error("ERROR on binding");

}

//Reception sequennce
do
{
 listen(sockfd,5);
 clilen = sizeof(cli_addr);

 //connect to socket
 newsockfd = accept(sockfd,
 (struct sockaddr *) &cli_addr,
 &clilen);
 if (newsockfd < 0)
 error("ERROR on accept");
 bzero(buffer,2500);

 //read socket and store its content on buffer
 n = read(newsockfd,buffer,2499);
 if (n < 0)
 error("ERROR reading from socket");

 //write buffer content on the destination file
 fwrite(buffer,1,2499,f);

 //increment character count by buffer's size
 count+=sizeof(buffer);

 //notify buffer reception to the client
 n = write(newsockfd,"I got your message",18);
 if (n < 0)
 error("ERROR writing to socket");

 //read file header and define the size of the file to be
generated
 if (ini)
 {
 ini=0;

sscanf(buffer,"%s %d %d
%d",filetype,&cols,&rows,&maxcolor);

 maxcount=cols*rows*3;
 }

 //wait for the end of the process and close socket
 wait(0);
 close(newsockfd);

//repeat loop until all the file is received
//or an error occurs
}
while ((n>0)&&(count<maxcount));

//close file

 89

fclose(f);
}

void sendJPG(int portno, char *servername, char *fn)
{
int n, sockfd1;
struct sockaddr_in serv_addr1;
struct hostent *server;
char buffer[256], buf[256];
FILE *f;
int i, band=1, EOI=1,r;

//open file to be sent
f = fopen(fn,"rb");
r=0;

//read server name and confirm
server = gethostbyname(servername);
if (server == NULL)
{
 fprintf(stderr,"ERROR, no such host\n");
 exit(0);
}

//start loop
do
{
 //build socket
 sockfd1 = socket(AF_INET, SOCK_STREAM, 0);
 if (sockfd1 < 0)
 error("ERROR opening socket");
 bzero((char *) &serv_addr1, sizeof(serv_addr1));
 serv_addr1.sin_family = AF_INET;
 bcopy((char *)server->h_addr,
 (char *)&serv_addr1.sin_addr.s_addr,
 server->h_length);
 serv_addr1.sin_port = htons(portno);

 //conect to socket
 if (connect(sockfd1,&serv_addr1,sizeof(serv_addr1)) < 0)
 error("ERROR connecting");

 //place part to be sent of the file on buffer
 bzero(buf,256);
 n= fread(buf,255,1,f);
 if (n < 0)
 error("ERROR reading file");

 //seek for "end of image" sequence
 //of characters in the buffer (0xffff 0xffd9)
 //EOI is changed to false if the sequence
 //is found
 for(i=0;((i<256)&&(EOI));i++)

 90

 {
 r=(unsigned short)buf[i];
 if ((r==0xffd9)&&(band))
 EOI=0;
 if (r==0xffff)
 band=1;
 else
 band=0;
 }

 //write buffer content on socket
 n = write(sockfd1,buf,255);
 if (n < 0)
 error("ERROR writing to socket");

 //read confirmation message from the server
 bzero(buffer,256);
 n = read(sockfd1,buffer,255);
 if (n < 0)
 error("ERROR reading from socket");

 //wait for end of process and close socket
 wait(0);
 close(sockfd1);

//repeat loop until an error occurs or End Of Image (EOI false)
//sequence is detected
}
while((n>0)&&(EOI));

//close file
fclose(f);
}

 91

Apendix A2. File sendPPM.c

/* File: sendPPM.c
Program: sendPPM
Developed by:
Alejandro Gabbriel Gonzalez Esculpi
Tesi di Laurea Magistrale - Politecnico di Torino
Program for a client in the internet domain
using TCP that sends
a .ppm file to a server (indicated by its
IP address) through a selected port*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
void error(char *msg)
{
 perror(msg);
 exit(0);
}

int main(int argc, char *argv[])
{
 int sockfd, portno, n;
 struct sockaddr_in serv_addr;
 struct hostent *server;
 char buffer[2500], filename[20],*fn,*testo;
 FILE *f;
 char buf[2500], r, filetype[2];
 int i, ini=1, cols, rows, maxcolor, count=0,
 maxcount=50000, headsize, eolcount=0;
 //the file's size in characters is set by default in 50000
 if (argc < 4) {
 fprintf(stderr,"usage %s hostname port file\n", a rgv[0]);
 exit(0);
 }

 //read the name of the file to be sent
 fn=argv[3];
 //read port number
 portno = atoi(argv[2]);
 //read server's name and confirm
 server = gethostbyname(argv[1]);
 if (server == NULL)
 {
 fprintf(stderr,"ERROR, no such host\n");
 exit(0);
 }
 //open (to read) file to be sent
 f = fopen(fn,"rb");
 //start loop
 do
 {
 //build socket
 bzero((char *) &serv_addr, sizeof(serv_addr));
 serv_addr.sin_family = AF_INET;

 92

 bcopy((char *)server->h_addr,
 (char *)&serv_addr.sin_addr.s_addr,
 server->h_length);
 serv_addr.sin_port = htons(portno);
 sockfd = socket(AF_INET, SOCK_STREAM, 0);
 if (sockfd < 0)
 error("ERROR opening socket");
 //connect to socket
 if (connect(sockfd,&serv_addr,sizeof(serv_addr)) < 0)
 error("ERROR connecting");
 //clean buffer
 bzero(buf,2500);
 //write on buffer the part of the
 //file to be sent, until fill the buffer or
 //at arrive at the number of characters of the fi le
 for(i=0;((i<2499)&&(count<maxcount));i++)
 {
 //read characeter and place it on buffer
 buf[i]=fgetc(f);
 r=buf[i];
 //increment character counter
 count++;
 //recognize end of line character (10)
 //(the file's header should be placed in the
 //first 3 lines)
 if ((r==10)&&(eolcount<3)&&(ini))
 {
 eolcount++;
 headsize=count;
 }
 }
 //write buffer on socket
 n = write(sockfd,buf,i);
 //if the buffer contains the first part of the fi le,
 //read the files specs from the header
 if (ini)
 {
 //operation to be done only for the first part of the file
 ini=0;
 //read image parameters (columns, rows and maximu m color number)
 r = sscanf(buf,"%s %d %d
%d",filetype,&cols,&rows,&maxcolor);
 //compute file's size (each 3 bytes define a pix el and
 //the header's size must be included)
 maxcount=cols*rows*3+headsize;
 }
 if (n < 0)
 error("ERROR writing to socket");
 bzero(buffer,2500);
 //read confirmation message from the server
 n = read(sockfd,buffer,2499);
 if (n < 0)
 error("ERROR reading from socket");
 //wait for end of the process and close socket
 wait(0);
 close(sockfd);
 //repeat again until all the file is sent
 }
 while((count<maxcount)&&(n>0));
 //close file
 fclose(f);

 93

 //notify success
 if(n>0)
 printf("\nfile sent \n");
 return 0;
}

 94

Apendix A3. File recJPG.c

/* File: recJPG.c
Program: recJPG
Developed by:
Alejandro Gabbriel Gonzalez Esculpi
Tesi di Laurea Magistrale - Politecnico di Torino
Server in the internet domain using TCP
the port number is passed as an argument
the program notifies the client after each
part of the file is received and asks it for
the next part, until the recognition of the
end of image secquece corresponding to a
JPEG file*/

#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

void error(char *msg)
{
 perror(msg);
 exit(1);
}

int main(int argc, char *argv[])
{
int sockfd, newsockfd, portno, clilen;
char buffer[256], filename[50], *fn, idch[5];
struct sockaddr_in serv_addr, cli_addr;
int n,i,r,idx=0,count;
FILE *f,*f1;
int buf, band=0, EOI=1, newcon=1;

//open file where index value is stored
//and assign value to index.
//if it does not exist, create it
//and assign 0 as index value.
if (f1=fopen("index.txt","r"))
 {
 fscanf(f1,"%i",&idx);
 fclose(f1);
 idx++;
 }
else
 idx=0;

//Build socket (only once)
if (argc < 2)
 {
 fprintf(stderr,"ERROR, no port provided\n");
 exit(1);
 }
sockfd = socket(AF_INET, SOCK_STREAM, 0);
if (sockfd < 0)
 error("ERROR opening socket");
bzero((char *) &serv_addr, sizeof(serv_addr));
portno = atoi(argv[1]);
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = INADDR_ANY;
serv_addr.sin_port = htons(portno);
if (bind(sockfd, (struct sockaddr *) &serv_addr,

 95

sizeof(serv_addr)) < 0)
 error("ERROR on binding");
newcon=0;

//start loop
while (1)
{
 //initiate EOI (end of image) flag
 //Its value is non zero until the
 //end on image secquence is found on the file
 EOI=1;

 //set name of the file to store the received image
 //according to the index value, if it is equal to
 //10000, restart from 0
 if (idx<10)
 sprintf(filename,"aramis000%i.jpg",idx);
 else if (idx<100)
 sprintf(filename,"aramis00%i.jpg",idx);
 else if (idx<1000)
 sprintf(filename,"aramis0%i.jpg",idx);
 else if (idx<10000)
 sprintf(filename,"%i",idx);
 else
 {
 idx=0;
 printf("\nWARNING: MAXIMUM INDEX REACHED, OVERWRIT ING");
 }

 fn=filename;

 //notify "waiting for next image" status
 printf("\nwaiting for next image...\n");

 //open file to write image on
 f=fopen(fn,"wb");

 //initialize character counter
 count=0;

 //Receivng sequennce
 //start loop
 do
 {
 listen(sockfd,5);
 clilen = sizeof(cli_addr);

 //accept connection to socket
 newsockfd = accept(sockfd,
 (struct sockaddr *) &cli_addr,
 &clilen);
 if (newsockfd < 0)
 error("ERROR on accept");

 bzero(buffer,256);

 //read socket content and assign it to buffer
 n = read(newsockfd,buffer,255);
 if (n < 0)
 error("ERROR reading from socket");

 //seek for end of image secquence (ffff ffd9)
 //inside the buffer
 for(i=0;((i<256)&&(EOI));i++)
 {
 r=(unsigned short)buffer[i];
 if ((r==0xffd9)&&(band))

 96

 EOI=0;
 if (r==0xffff)
 band=1;
 else
 band=0;
 }

 //write buffer content on destination file
 n=fwrite(buffer,i-1,1,f);
 if (n < 0)
 error("ERROR writing to file");

 //notify success to client
 n = write(newsockfd,"I got your message",18);
 if (n < 0)
 error("ERROR writing to socket");

 //wait for end of proccess and close socket
 wait(0);
 close(newsockfd);

 //increment character counter by buffer size
 count+=256;

 //notify error if jpeg file is "too big"
 if (count>9e6)
 error("ERROR incorrect file format or it is too big");

 //repeat loop until an error occurs or end of imag e
 //secquence is detected
 }
 while ((n>0)&&(EOI));

 //close file with the received image
 fclose(f);

 //notify success and image location
 //to user
 printf("\nimage stored @ %s\n",filename);

 //store index value and increment
 f1=fopen("index.txt","w");
 fprintf(f1,"%i\n",idx);
 fclose(f1);
 idx++;

//wait for next image (.jpg file), repeat loop
}
return 0;
}

	tesis
	Appendix A - Developed Programs

