UNIVERSIDAD CENTRAL DE VENEZUELA
FACULTAD DE MEDICINA
COMISION DE ESTUDIOS DE POSTGRADO
POSTGRADO DE CIENCIAS FISIOLOGICAS
INSTITUTO DE MEDICINA EXPERIMENTAL

ESTUDIO DE PROPIEDADES FARMACOLOGICAS Y ELECTRICAS DE NEURONAS BAROSENSIBLES DEL NUCLEO DEL TRACTO SOLITARIO (NTS) DE RATAS SPRAGUE-DAWLEY Y ESPONTANEAMENTE HIPERTENSAS (SHR)

Humberto Julio Acevedo Llovera.

TUTORA: **Dra. Estela Gottberg.**Universidad Central de Venezuela. Facultad de Medicina.
Caracas. Venezuela.

Dra. Zury Domínguez.

Directora del Postgrado en Ciencias Fisiológicas

Dra. Keybell Díaz.

Coordinadora Académica del Postgrado en Ciencias Fisiológicas.

_____•

Profesor Leovigildo García.

Profesor de Estadística. Escuela de Bioanálisis.

Asesor de Estadística.

INDICE

AGRADECIMIENTO
DEDICATORIA
INDICE DE FIGURAS
INDICE DE TABLAS
RESUMEN
INTRODUCCION
EL Reflejo barorreceptor, Glutamato y GABA
A Glutamato
A1 Receptores de Glutamato
A1aReceptores No-NMDA, tipos AMPA/KA
A1a1 Receptores Inotrópicos AMPA
A1a2 Receptores inotrópicos KA
A1bReceptores NMDA
A1c Receptores Metabotrópicos
A2 El ión Mg 2+
A3 El Glutamato y la presión arterial en ratas
B GABA
B1 Receptores de GABA
B1aReceptores GABAA
B1b Receptores GABAB
B2 El GABA y la presión arterial en ratas
C El Núcleo del Tracto Solitario (NTS)
C1 El NTS y los neurotransmisores Glutamato y
GABA
C1a El Glutamato, NTS y la regulación de la Presión
arterial
C1b El GABA, NTS y la regulación de la Presión
arterial
OBJETIVO GENERAL
OBJETIVOS ESPECÍFICOS
MATERIALES
A Animales
METODOS
A Procedimiento quirúrgico y esterotáxico
B Registro de la Presión arterial (PA) y la Frecuencia
cardiaca (FC)

C Identificación de unidades barosensibles del NTS	43
D Registro de la actividad de unidades del NTS	43
E Resistencias de las micropipetas usadas para aplicar los	
agonistas y los antagonistas	43
F Resistencia de la micropipeta de corriente de	
compensación	44
G Aplicación de sustancias: Mediante la técnica de	
microiontoforesis	44
H Análisis de la Data	45
I Histología	46
RESULTADOS.	51
1Efectos del Glutamato y GABA sobre la Presión arterial y	
la Frecuencia cardíaca en ratas espontáneamente hipertensas	
(SHR) y Sprague-Dawley	98
2Distribución de las Respuestas (Espigas/sg) cuando se	
incrementan las dosis (10-125 nA) de Glutamato	
administrado por microiontoforesis en el NTS de las ratas de	
las cepas Sprague-Dawley (SDR) y las espontáneamente	
hipertensas (SHR)	100
3Efecto del Glutamato inyectado por microiontoforesis	
sobre la frecuencia de descarga de neuronas barosensibles	
del NTS de las SDR y SHR	101
4 Efecto del GABA inyectado por microiontoforesis sobre	
la frecuencia de descarga de neuronas barosensibles del NTS	
de las SDR y SHR	103
5 Efecto del Glutamato, NBQX, MK-801 y el MgCl2 sobre	
la Duración y la Amplitud de Potenciales de acción (Pots.A)	106
de neuronas del NTS en ratas SHR y Sprague-Dawley	
6 Efecto del GABA, Saclofen y Picrotoxin sobre la	
Duración y la Amplitud de Potenciales de Acción de	
Neuronas del NTS en ratas SHR y Sprague-Dawley	111
7 Efectos del Glutamato y sus antagonistas sobre la	
variación (expresados en %) de la Duración de los	
potenciales de acción de neuronas del NTS en ratas SHR y	44-
SDR	116

8 Efectos del Glutamato y sus antagonistas sobre la variación (expresados en %) de la Amplitud de los potenciales de acción de neuronas del NTS en ratas SHR y SDR	122
9 Efectos del GABA, Saclofen y Picrotoxin sobre la variación (expresados en %) de la Duración de los	
potenciales de acción de neuronas del NTS en ratas SHR y SDR	128
10 Efectos (expresados en %) del GABA, Saclofen y Picrotoxin sobre la variación de la Amplitud de los	
potenciales de acción (Pots.A) de neuronas del NTS en ratas SHR y Sprague-Dawley (SD)	129
11 Corte cerebral e indicación de Posición de la punta del	12)
electrodo	131
DISCUSION	132
1 Efectos del Glutamato y GABA sobre la presión arterial y	
la frecuencia cardiaca en ratas espontáneamente hipertensas	
(SHR) y Sprague-Dawley (SDR)	132
2 Distribución de las respuestas (Espigas/sg) cuando se incrementan las dosis (10-125 nA) de Glutamato administrado por microiontoforesis en el NTS de las SDR y	
SHR	135
3 Efectos del Glutamato y sus antagonistas microinyectados por microiontoforesis, sobre la frecuencia	100
de descarga de neuronas barosensibles del NTS de las SDR y	
SHR	137
4 Efecto del GABA inyectado por microiontoforesis sobre	
la frecuencia de descarga de neuronas barosensibles del NTS	4.40
de las SDR y SHR.	148
5 Efecto del Glutamato, NBQX, MK-801 y MgCl2 sobre la	
Duración y la Amplitud de Potenciales de acción (Ps.a) de	151
neuronas del NTS en ratas SHR y Sprague-Dawley (SD) 6 Efecto del GABA, Saclofen y Picrotoxin sobre la	154
Duración y la Amplitud de Potenciales de acción (Ps. a) de neuronas del NTS en ratas SHR y Sprague-Dawley (SD)	160

7 Comparación de los efectos (expresados en %) del	
Glutamato, NBQX, MK-801, MgC12, GABA, Saclofen y	
Picrotoxin sobre la Duración y la Amplitud de Potenciales	
(Pa) de neuronas del NTS en ratas SHR y Sprague-Dawley	
(SD)	170
7a Efecto (%) del Glutamato y sus antagonistas sobre la	
Duración de los Potenciales de Acción (Ps.a) de neuronas	
del NTS en ratas SHR y SD	170
7b Efectos del GLUTAMATO y sus antagonistas sobre la	
amplitud de los Potenciales de Acción de neuronas del NTS	
en ratas SHR y SD	173
8 Comparación de los efectos (expresados en %) del	
GABA, Saclofen y Picrotoxin sobre la Duración y la	
Amplitud de Potenciales (Pa) de neuronas del NTS en ratas	
SHR y Sprague-Dawley (SD)	176
8a Efectos (expresados en %) del GABA, Saclofen y	
Picrotoxin sobre la Duración de Potenciales (Pa) de	
neuronas del NTS en ratas SHR y Sprague-Dawley	
(SD)	176
8b Efectos (expresados en %) del GABA, Saclofen y	
Picrotoxin sobre la Amplitud de Potenciales (Pa) de	
neuronas del NTS en ratas SHR y Sprague-Dawley	
(SD)	178
CONCLUSIONES	183
RECOMENDACIONES	188
REFERENCIAS	190

AGRADECIMIENTOS

- 1.- A la Profesora Estela Gottberg, por haber aceptado ser la tutora de este Trabajo.
- 2.- Al Postgrado de Ciencias Fisiológicas de la Facultad de Medicina, por haberme permitido realizar los cursos pertenecientes al Programa de Doctorado y el trabajo especial de grado conducente al título de Doctor.
- 3.- A la Cátedra de Fisiología de la Escuela de Bioanálisis que facilitó el desarrollo de las actividades conducente a la culminación de los cursos del postgrado y el trabajo de investigación.
- 4.- A la Profesora Nathaly Gago, de la Cátedra de Fisiología de la Escuela de Medicina José María Vargas, por permitirme utilizar el vibratomo para realizar los cortes cerebrales de las ratas.
- 5.- Al Dr. Enrique Arciniega, quien me brindó el estímulo, conocimiento y apoyo desinteresado cuando fue necesario durante el desarrollo de los cursos y el trabajo especial de grado.
- 6.- Al Bioterio de la Escuela de Medicina José María Vargas, que suministró, alimentó y mantuvo en condiciones apropiadas los animales empleados en este trabajo.
- 7.- Al Bioterio del Instituto de Higiene Rafael Rangel, quienes me suministraron animales para ser usados en este trabajo.
- 8.- Al personal de la Biblioteca Marcel Roche del Instituto de Investigaciones Científicas de Venezuela (IVIC) por la colaboración brindada al permitirme obtener las separatas, consultar material escrito (libros, monografías) y reproducción de imágenes, requerido en el desarrollo de esta investigación.
- 9.- Al Consejo de Desarrollo Humanístico y Científico de la Universidad Central de Venezuela, quienes financiaron el curso de postgrado y el desarrollo de este trabajo.
- 10.- Todos aquellas personas e Instituciones diversas que bridaron el apoyo desinteresado que contribuyo a feliz término este proyecto.

A Aminta, mi esposa,
Humberto Jesús, mi hijo,
Isabel Melina, mi hija,
mis hermanos,
mis sobrinos.

INDICE DE FIGURAS

Fig. 1 Montaje experimental	47
Fig. 2 Montaje experimental para registro y aplicación de	
sustancia por microiontoforesis	48
Fig.3 Registro de actividad de una unidad barosensibles del	
NTS de una rata SHR	49
Fig. 4 Registro de la Presión arterial bajo efecto de	
Fenilefrina administrada por vía intravenosa e histogramas de la descarga de unidades barosensibles del NTS en una	
rata SHR	50
Fig. 5 Registro de la Presión arterial y la Frecuencia cardiaca de una rata Sprague-Dawley a la cual se le	
microinyectó 0,25 µg de Glutamato en el NTS	52
Fig. 6 Registro de la Presión arterial y la Frecuencia	~ _
cardiaca de una rata SHR a la cual se le microinyectó 0,25	
μg de Glutamato en el NTS	54
Fig. 7 Registro de la Presión arterial y la Frecuencia	
cardiaca de una rata Sprague-Dawley a la cual se le	
microinyectó 0,17 μg de GABA en el NTS	56
Fig. 8 Registro de la Presión arterial y la Frecuencia cardiaca de una rata SHR a la cual se le microinyectó 0,17	
μg de GABA en el NTS	58
Fig. 9 Efecto del Glutamato aplicado por microiontoforesis, sobre la frecuencia de descarga de algunas unidades del NTS	
en ratas SHR	60
Fig. 10 Relación dosis vs respuestas. Variación del No de	00
espigas/sg. producida por Glutamato microinyectado en el	~1
NTS de ratas Sprague-Dawley y SHR	61
Fig. 11 Relación dosis vs respuestas. Variación del No de	
espigas/sg. producida por GABA microinyectado en el NTS	60
de ratas SHR	62
Fig. 12 Relación dosis vs respuestas. Variación del No de	
espigas/sg. producida por GABA microinyectado en el NTS	63
de ratas Sprague-Dawley	03
Fig. 13 Efectos del NBQX, MK-801 y MgCl2 antagonizando la acción del Glutamato endógeno sobre la	
frecuencia de descarga de neuronas del NTS de ratas SHR	64
inconcia de descarga de neuronas del 1915 de ratas SIIN	04

Fig. 14 Valores Control y bajo la acción de Glutamato, de la frecuencia de descarga de neuronas del NTS que recibieron pre tratamiento con los antagonistas NBQX, MK-801 y MgCl2 como bloqueador del canal iónico del receptor	66
NMDA en ratas SHR	
Fig. 15 Efectos del NBQX, MK-801 y MgCl2	
antagonizando la acción del Glutamato endógeno sobre la	
frecuencia de descarga de neuronas del NTS de ratas	
Sprague-Dawley	68
Fig. 16 Valores Control y bajo la acción de Glutamato, de la frecuencia de descarga de neuronas del NTS que recibieron pre tratamiento con los antagonistas NBQX, MK-801 y MgCl2 como bloqueador del canal iónico del receptor	
NMDA en ratas Sprague-Dawley	70
Fig. 17 Efecto del GABA aplicado por microiontoforesis,	, 0
sobre la frecuencia de descarga de algunas unidades del NTS	
en ratas Sprague-Dawley	72
Fig. 18 Efectos de Picrotoxin y Saclofen, antagonizando, la acción del GABA endógeno sobre la frecuencia de	, _
descarga de neuronas del NTS de ratas SHR	73
SACLOFEN en ratas SHR	75
Fig. 20 Efectos de Picrotoxin y Saclofen, antagonizando,	
la acción del GABA endógeno sobre la frecuencia de	
descarga de neuronas del NTS de ratas Sprague-	
Dawley	77
Fig. 21 Valores Control y bajo la acción de GABA, de la	
frecuencia de descarga de neuronas del NTS que recibieron	
pre tratamiento con los antagonistas PICROTOXIN y	
SACLOFEN en ratas Sprague-Dawley	79
Fig. 22 Efectos de GLUTAMATO, NBQX, MK-801 y	
MgCl2 sobre la Duración y la Amplitud de un Potencial de	
acción de una neurona del NTS en una rata SHR	81

Fig. 23 Duración y Amplitud de un Potencial de acción de	84
una neurona del NTS en una rata Sprague-Dawley,	
registrados bajo condiciones CONTROL, GLUTAMATO,	
NBQX, MK-801, MgC12, NBQX+GLUTAMATO, MK-	
801+GLUTAMATO y MgCl2+GLUTAMATO	
Fig. 24 Representaciones de registros de Potenciales de	
acción de una neurona del NTS en una rata SHR, además de	
valores de Duración y Amplitud, registrados bajo	
condiciones CONTROL, GABA, SACLOFEN,	
PICROTOXIN, SACLOFEN+GABA, PICROTOXIN	
+GABA	87
Fig. 25 Representaciones de registros de Potenciales de	
acción de una neurona del NTS en una rata Sprague-Dawley	
y los valores de Duración y Amplitud, registrados bajo	
condiciones CONTROL, GABA, SACLOFEN,	
PICROTOXIN, SACLOFEN+GABA, PICROTOXIN	
+GABA	90
Fig. 26 Fotografía de un corte coronal del cerebro de una	
rata, indicando mediante una flecha la posición donde se	
localizó la punta del microelectrodo múltiple	97

INDICE DE TABLAS

TABLA I. Valores basales promedio de Presiones arteriales	
y de Frecuencia cardiaca de ratas SHR y SDR	51
TABLA II. Variaciones de las Presiones arteriales y de	
Frecuencia cardiaca de ratas SDR control y de aquellas que	
se les microinyectó 0,25 µg de Glutamato en el NTS	53
TABLA III. Variaciones de las Presiones arteriales y de	
Frecuencia cardiaca de ratas SHR control y de aquellas que	
se les microinyectó 0,25 µg de Glutamato en el NTS	55
TABLA IV. Variaciones de las Presiones arteriales y de	
Frecuencia cardiaca de ratas SDR control y de aquellas que	
se les microinyectó 0,17 µg de GABA en el NTS	57
TABLA IVa. Variaciones de las Presiones arteriales y de	
Frecuencia cardiaca de ratas SHR control y de aquellas que	
se les microinyectó 0,17 µg de GABA en el NTS	59
TABLA V Valores control y bajo la acción de Glutamato,	
de la frecuencia de descarga de neuronas del NTS en ratas	
SHR	65
TABLA VI Valores control y bajo la acción de Glutamato,	
de la frecuencia de descarga de neuronas del NTS que	
recibieron pre tratamiento previo con los antagonistas	
NBQX, MK-801 y del MgCl2 como bloqueador del canal	
iónico del receptor NMDA en ratas SHR	67
TABLA VII Valores control y bajo la acción de Glutamato,	
de la frecuencia de descarga de neuronas del NTS en ratas	
Sprague-Dawley	69
TABLA VIII Valores control y bajo la acción de	
Glutamato, de la frecuencia de descarga de neuronas del	
NTS que recibieron pre tratamiento previo con los	
antagonistas NBQX, MK-801 y del MgCl2 como bloqueador	
del canal iónico del receptor NMDA en ratas Sprague-	-1
Dawley	71
TABLA IX Valores control y bajo la acción de Picrotoxin	
y Saclofen sobre de la frecuencia de descarga de neuronas	7.
del NTS en ratas SHR	74

TABLA X Valores control y bajo la acción de GABA, de	
la frecuencia de descarga de neuronas del NTS que	
recibieron pre tratamiento previo con los antagonistas	
PICROTOXIN y SACLOFEN en ratas SHR	76
TABLA XI Valores control y bajo la acción de Picrotoxin	
y Saclofen sobre de la frecuencia de descarga de neuronas	
del NTS en ratas Sprague-Dawley	78
TABLA XII Valores control y bajo la acción de GABA, de	
la frecuencia de descarga de neuronas del NTS que	
recibieron pre tratamiento previo con los antagonistas	
PICROTOXIN y SACLOFEN en ratas Sprague-Dawley	80
TABLA XIII Efectos de la microinyección de	
GLUTAMATO, NBQX, MK-801, MgC12,	
NBQX+GLUTAMATO,MK-801+GLUTAMATO,	
MgCl2+GLUTAMATO sobre la Duración promedio de 10	
Potenciales de acción registrados desde neuronas del NTS	
en 10 ratas SHR	82
TABLA XIV Efectos de la microinyección de	
GLUTAMATO, NBQX, MK-801, MgC12,	
NBQX+GLUTAMATO,MK-801+GLUTAMATO,	
MgCl2+GLUTAMATO sobre la Ampliación promedio de	
10 Potenciales de acción registrados desde neuronas del	
NTS en 10 ratas SHR	83
TABLA XV Efectos de la microinyección de	
GLUTAMATO, NBQX, MK-801, MgC12,	
NBQX+GLUTAMATO,MK-801+GLUTAMATO,	
MgCl2+GLUTAMATO sobre la Duración promedio de 10	
Potenciales de acción registrados desde neuronas del NTS	
en 10 ratas Sprague-Dawley	85
TABLA XVI Efectos de la microinyección de	
GLUTAMATO, NBQX, MK-801, MgC12,	
NBQX+GLUTAMATO,MK-801+GLUTAMATO,	
MgCl2+GLUTAMATO sobre la Amplitud promedio de 10	
Potenciales de acción registrados desde neuronas del NTS	
en 10 ratas Sprague-Dawley	86

TABLA XVII Efectos de la microinyección de GABA,	
PICROTOXIN, SACLOFEN, PICROTOXIN+GABA Y	
SACLOFEN+GABA sobre la Duración promedio de	
Potenciales de acción registrados desde neuronas del NTS	
en ratas SHR	88
TABLA XVIII Efectos de la microinyección de GABA,	
PICROTOXIN, SACLOFEN, PICROTOXIN+GABA Y	
SACLOFEN+GABA sobre la Amplitud promedio de 8 y 9	
Potenciales de acción registrados desde neuronas del NTS	
en ratas SHR	89
TABLA XIX Efectos de la microinyección de GABA,	
PICROTOXIN, SACLOFEN, PICROTOXIN+GABA Y	
SACLOFEN+GABA sobre la Duración promedio de	
Potenciales de acción registrados desde neuronas del NTS	
en ratas Sprague-Dawley	91
TABLA XX Efectos de la microinyección de GABA,	
PICROTOXIN, SACLOFEN, PICROTOXIN+GABA Y	
SACLOFEN+GABA sobre la Amplitud promedio de	
Potenciales de acción registrados desde neuronas del NTS	
en ratas Sprague-Dawley	92
TABLA XXI Variación de la Duración (expresada en %)	
de los Potenciales de acción (PA) registrados en el NTS de	
ratas SHR y Sprague-Dawley, producida por	
microiontoforesis de GLUTAMATO, NBQX, MK-801 y	
MgCl2 en dicho núcleo	93
TABLA XXII Variación de la Amplitud(expresada en %)	
de los Potenciales de acción (PA) registrados en el NTS de	
ratas SHR y Sprague-Dawley, producida por	
microiontoforesis de GLUTAMATO, NBQX, MK-801 y	
MgCl2 en dicho núcleo	94
TABLA XXIII Variación de la Duración (expresada en %)	
de los Potenciales de acción (PA) registrados en el NTS de	
ratas SHR y Sprague-Dawley, producida por	
microiontoforesis de GABA, SACLOFEN y PICROTOXIN	
en dicho núcleo	95

TABLA XXIV Variación de la Amplitud(expresada en %)	
de los Potenciales de acción (PA) registrados en el NTS de	
ratas SHR y Sprague-Dawley, producida por	
microiontoforesis de GABA, SACLOFEN Y PICROTOXIN	
en dicho núcleo	96

RESUMEN

En este estudio se emplearon 60 animales machos con pesos entre 280-380 gramos, de las cepas Sprague-Dawley (SD) y las espontáneamente hipertensas (SHR); anestesiados con Uretano (20%), se le midió la PA, de esta señal se deriva el valor de la FC ; adicionalmente mediante el empleo del atlas cerebral, se localizó el NTS en el tallo cerebral con las coordenadas, 1-1,5 mm rostral al obex., 0,5 mm de la línea media y una profundidad de 0,7- 1 mm y mediante un electrodo múltiple, compuesto de 6 micropipetas, una micropipeta con resistencia 5 M Ω ± 2M Ω , permitió registrar la actividad neuronal; 4 se emplearon para microinyectar por microiontoforesis Glutamato (0,5M), GABA(0,5M), NBQX(4 µg/cc), MK-801(10 µg/cc) MgCl2(9 µg/cc) SACLOFEN(10 µg/cc) y PICROTOXIN(10 µg/cc), la llenada con Cloruro de sodio (3 M) sirvió para generar corrientes de compensación.

La inyección de 0,25 µg de GLUTAMATO intranuclear a nivel del NTS produjo un aumento de la presión arterial y la frecuencia cardiaca (FC) en ratas SHR, de manera novedosa reportamos el mismo efecto en ratas Sprague-Dawley. Por otro lado, la inyección de 0,17 µg de GABA en el NTS produjo una disminución de la Presión arterial en las ratas SHR y de manera novedosa reportamos el mismo efecto en ratas Sprague-Dawley.

Un patrón gausiano se apreció en la curva dosis - respuesta (frecuencia de descarga de unidades barosensibles) a GLUTAMATO, con valor medio de 70 nA (medida de la dosis de GLUTAMATO inyectado por microiontoforesis) en las ratas Sprague-Dawley (SDR) y el otro con valores medio superiores a 70 nA en las ratas espontáneamente hipertensas SHR.

Al evaluar el efecto de los neurotransmisores sobre la descarga de la neuronas barosensibles, encontramos que El GLUTAMATO (endógeno y el exógeno) incrementa la frecuencia de descarga de las neuronas del NTS en ratas SHR predominantemente por la activación de receptores (AMPA) del tipo no NMDA; contrariamente en las ratas Sprague-Dawley, el GLUTAMATO endógeno media su acción a través de receptores del tipo NMDA y el exógeno mediante receptores (AMPA) no NMDA, estos resultados puede servir como características para diferenciar estas cepas. Contrariamente el GABA (endógeno y el exógeno) ejerció su acción inhibitoria sobre la frecuencia de descarga de las mismas neuronas en las ratas espontáneamente hipertensas (SHR) y las Sprague-Dawley mayormente a través de receptores GABAB.

Al considerar los efectos de los neurotransmisores sobre la amplitud y la duración de los Potenciales de acción estudiados, observamos que el

GLUTAMATO aumenta la amplitud en las ratas SHR y reduce la amplitud y la duración de los Potenciales en las SD, estos efectos permiten diferenciar ambas cepas, El GABA incrementa la amplitud en las SHR y la reduce en las ratas SD, estos resultados permiten diferenciar las dos cepas. Por otro lado, este último neurotransmisor, reduce la duración de los Potenciales estudiados en las dos cepas; estos efectos son mediados por receptores GABAA y GABAB en las ratas SHR, mientras que en las SD, participan los GABAB; la diferente participación de receptores en las cepas, permite utilizarla como factor de diferenciación.

La expresión en porcentajes de los efectos del GLUTAMATO y el GABA sobre la duración y la amplitud de los Potenciales de acción estudiados permitieron apreciar nuevas diferencias entre las cepas, así tenemos: el GLUTAMATO tiende a incrementar porcentualmente la duración en las ratas SHR y disminuirla porcentualmente en las SD, estos efectos pueden ser considerados para diferenciar las cepas; igualmente, los efectos del GLUTAMATO endógeno por la mediación de los receptores No-NMDA, tipo AMPA, y del exógeno, mediante la participación de los receptores NMDA en las ratas SHR, fueron significativamente mayores que en las Sprague-Dawley; tales resultados permiten diferenciar igualmente las dos cepas. El GABA endógeno y el exógeno no produjeron efectos significativos sobre la duración porcentual de los Potenciales de acción estudiados en las dos cepas; sin embargo, se observó un incremento la amplitud en los Potenciales de acción estudiados, porcentual en producidos por el GABA endógeno mediante la participación de los receptores GABAA y receptores GABAB en las ratas SHR, significativamente (**p<0,01; *p<0,05; respectivamente) mayores que las reducciones observadas en las mismas condiciones en ratas Sprague-Dawley; estos resultados permiten la diferenciación de las dos cepas.