TRABAJO ESPECIAL DE GRADO

DISEÑO, CONSTRUCCIÓN Y PRUEBAS DE UNA BOMBA CENTRÍFUGA AZF 80-160

Presentado ante la Ilustre Universidad Central de Venezuela Por los Brs. Espejo Castro Jean Pierre Valladares Creazzola José David Para optar al Título De Ingeniero Mecánico

Caracas, Abril 2002

TRABAJO ESPECIAL DE GRADO

DISEÑO, CONSTRUCCIÓN Y PRUEBAS DE UNA BOMBA CENTRÍFUGA AZF 80-160

TUTOR ACADÉMICO:	Prof. José Luis Perera
TUTOR INDUSTRIAL:	Ing. John Richard Wathkins

Presentado ante la Ilustre Universidad Central de Venezuela Por los Brs. Espejo Castro Jean Pierre Valladares Creazzola José David Para optar al Título De Ingeniero Mecánico

Caracas, Abril 2002

© Espejo Castro, Jean Pierre 2002 © Valladares Creazzola, José David 2002

Hecho el Depósito de Ley Depósito Legal 1ft4872001620187

Espejo C. Jean P., Velladares C. José D.

DISEÑO, CONSTRUCCIÓN Y PRUEBAS DE UNA BOMBA CENTRÍFUGA AZF 80-160

Tutor Académico: Prof. José Luis Perera. Tutor Industrial: Ing. John Richard Wathkins. Tesis. Caracas, U.C.V. Facultad de Ingeniería. Escuela de Ingeniería Mecánica. 2002, nº pag. 140.

Palabras Claves: Bombas, Trazado del Impulsor, Construcción de Bombas.

Resumen: El objetivo fundamental de este trabajo es diseñar, construir y probar una bomba centrífuga.

Este proyecto surge de la necesidad que existe en Bombas Malmedi de colocar en el mercado nuevos productos que cubran campos de aplicación actualmente no cubiertos. La primera fase consiste en la investigación teórica basada en los métodos propuestos por el Profesor Stefan Zarea y de Steppanof, se calculan los parámetros de diseño, se determinan las dimensiones principales, se lleva a cabo el trazado de los álabes del impulsor y de las secciones de la voluta, sigue el diseño mecánico llevando a cabo el montaje, en un programa de dibujo asistido por computadora, del conjunto de la bomba, para así iniciar la elaborar la modelería del impulsor, en un centro de mecanizado por control numérico, y de la carcasa, artesanalmente.

Se realiza la fundición de las piezas para su posterior mecanizado y así finalmente ensamblar la bomba.

Una vez ensamblada se pasa a la fase de pruebas de la bomba y ajustes finales para su producción.

DEDICATORIA

Este trabajo que representa la culminación de un gran logro lo dedicamos a:

Nuestros padres, quienes nos guiaron por el camino del estudio y quienes nos apoyaron en todo momento.

AGRADECIMIENTOS

A Dios quien nos ha guiado todos nuestros pasos.

A la Escuela de Ingeniería Mecánica por permitir nuestro desarrollo como futuros ingenieros.

A Bombas Malmedi, por ser el medio que nos permitió realizar nuestro trabajo especial de grado proporcionándonos los recursos necesarios.

Al Profesor Dr. Ingeniero Stefan Zarea por su gran aporte a el diseño de las turbomáquinas y por la invaluable ayuda para la culminación de este trabajo.

A nuestro tutor académico José Luis Perera, quien nos ayudó en todo momento.

A nuestro tutor industrial *John Richard Watkins*, quien nos brindo la oportunidad de desenvolvernos en Malmedi y aporto su gran experiencia durante el desarrollo de este trabajo.

A todos mil gracias Jean Pierre Espejo David Valladares

ÍNDICE GENERAL

RESUMEN	i
DEDICATORIA	ii
AGRADECIMIENTOS	iii
ÍNDICE DE FIGURAS	vii
NOTACIONES Y ABREVIATURAS	xi
LISTA DE ANEXOS	XV
INTRODUCCIÓN	1

CAPÍTULO I

FORMULACIÓN DEL PROBLEMA Y METODOLOGÍA EMPLEADA

1.1	Objetivos	3
1.2	Metodología empleada	4

CAPÍTULO II

CÁLCULO HIDRÁULICO

2.1	Velocid	lad específica	6
2.2	Pérdida	as y rendimientos en la bomba	
	2.2.1	Pérdidas hidráulicas internas	10
	2.2.2	Pérdidas externas	13
	2.2.3	Rendimiento total de la bomba	16
2.3	Coefici	ente de disminución de trabajo	17
2.4	Altura	teórica de bombeo	19
2.5	Compo	nentes merididionales C_{1m} y C_{2m} y velocidad	20
	periféri	ica U ₂	
2.6	Diámet	ros de succión	22

2.7	Diámetr	o de salida de los álabes	26
2.8	Ángulos del álabe β_1 y β_2		
	2.8.1	Ángulo de entrada β_1	27
	2.8.2	Ángulo de salida β_2	29
2.9	Espesor	de los álabes	30
2.10	Paso cir	cunferencial e influencia del espesor del álabe	32
2.11	Ancho d	lel rodete a la entrada y salida de los álabes	
	2.11.1	Entrada de los álabes	33
	2.11.2	Salida de los álabes	34
2.12	Diámetr	o del eie v del cubo del rodete	
	2.12.1	Diámetro del eje: "d _e "	36
	2.12.2	Diámetro del cubo: "d _c "	37
2.13	Cálculo del rode	de los triángulos de velocidad a la entrada y salida te	38
2.14	Trazado	o de los álabes del impulsor. Vista meridional	41
2.15	Trazado	o de los álabes. Vista principal	45
2.16	Cálculo	de la caja espiral	61
2.17	Trazado	o de los planos de mecanizado	77
2.18	Evaluac	ión del empuje axial y la velocidad crítica	
	2.18.1	Cálculo del empuje axial	80
	2.18.2	Velocidad crítica	85

CAPÍTULO III CONSTRUCCIÓN DE LA BOMBA

3.1	Introdu	ıcción	93
3.2	Fundic	ión del impulsor y la carcasa	
	3.2.1	Descripción general	94
	3.2.2	Moldeo de la carcasa	98
	3.2.3	Moldeo del impulsor	104
3.3	Moldeo	o del impulsor y la carcasa	
	3.3.1	Impulsor	107
	3.3.2	Carcasa	113
3.4	Mecani	zado	
	3.4.1	Mecanizado del impulsor	121
	3.4.2	Mecanizado de la carcasa	128
	3.4.3	Otras piezas de la bomba	131
3.5	Ensam	blaje de la bomba	136
		CAPÍTULO IV	
		PRUEBAS HIDRÁULICAS	
4.1	Curvas	teóricas	138
4.2	Ensayo	de la bomba	143
ANÁI	LISIS DE R	ESULTADOS	155
CONC	CLUSIONE	2S	157
RECO	OMENDAC	TIONES	159
BIBL	IOGRAFÍA	L	160

INDICE DE FIGURAS

1.1.1	Campos de aplicación de las bombas centrífugas	3
2.1	Clasificación de los rodetes centrífugos según las normas Covenin	8
2.2	Clasificación de los rodetes centrífugos según Worthington	9
2.3	Pérdidas hidráulicas internas	12
2.4	Pérdidas externas	13
2.5	Gráfica de η_v y de q/Q en función de n_s	14
2.6	Gráfica de η_m y N_{roz}/N_h en función de n_s .	16
2.7	Constantes del Impulsor (Stepanoff).	20
2.8	Efectos de la cavitación en la características de las bombas	23
2.9	Altura teórica para un número infinito de álabes en función de β_2	30
2.10	Afilado de los álabes a la salida del impulsor.	32
2.11	b_2 / D_2 vs. n''_q	34
2.12	Triángulo de entrada sobre el disco anterior	38
2.13	Triángulo de entrada en la línea media de flujo	39
2.14	Triángulo de entrada sobre el disco posterior	39
2.15	Triángulo de velocidad a la salida del rodete.	40
2.16	Líneas de corriente en un plano meridional obtenidas de la adopción	
	del modelo matemático del flujo absoluto helicoidal.	42
2.17	Plantilla del arista de entrada del impulsor.	43
2.18	Plantilla del álabe a la descarga.	43
2.19	Cálculo de beta para el disco posterior	46
2.20	Desarrollo plano de la línea de corriente del disco posterior	47
2.21 a	Desarrollo de las líneas de corriente del impulsor	49
2.21 b	Elementos de la ecuación 2,2,4	50
2.21 c	Elementos de la ecuación 2,2,4	50
2.22	Vista principal de la línea de corriente del disco posterior	52
2.23	Cálculo de alfa	53
2.24	Las tres líneas de corriente en vista principal	54
2.25	Espesor en el desarrollo plano	55
2.26	Corte de la vista meridional con planos de igual cota	56
2.27	Líneas de construcción	57
2.28	Curvas de elevación	58
2.29	Levantamiento de las curvas de nivel (vista meridional)	59
2.30	Levantamiento de las curvas de nivel (vista principal)	59
2.31	Vista del álabe (cara de trabajo)	60
2.32	Vista del álabe (sólido)	60

2.33	Elementos de la carcasa	62
2.34	Constantes de la voluta	63
2.35	Distribución a la descarga del impulsor	64
2.36	Área del corte de agua	67
2.37	Caja espiral considerando el espesor de pared	73
2.38	Cálculo de diferencia de áreas	74
2.39	Compensación de áreas	76
2.40	Eje del motor	77
2.41	Adaptador y tapa de sello	77
2.42	Dimensionamiento del impulsor.	78
2.43	Montaje de la bomba.	79
2.44	Diagrama del empuje axial	80
2.45	Elementos de la Ecuación 2.17.1	81
2.46	Diagrama de la ecuación 2.17.4	86
2.47	Tabla de velocidades críticas según la configuración de las Bombas	91
2.48	Diagrama de la ecuación (2.17.18)	91
3.2.1	Horno de Fundición	96
3.2.2	Horno de Fundición	96
3.2.3	Cajas de Fundición	97
3.2.4	Horno Encendido	97
3.2.5	Colada	97
3.2.6	Lingoteo de material de retorno	98
3.2.7	Modelo de la carcasa	98
3.2.8 а-р	Moldeo de la carcasa	99
3.2.9 a-l	Moldeo del Impulsor	104
3.3.1	Plano del Impulsor	107
3.3.2	Sobre-dimensionamiento del modelo	108
3.3.3	Anillo de Soporte	108
3.3.4	División del Modelo	108
3.3.5	Conicidad del Modelo del Impulsor	108
3.3.6	Mecanizado del Modelo.	108
3.3.7	Partes de la caja de machos	110
3.3.8	Zona interior del impulsor	110
3.3.9	Apoyos del Macho de Fundición	111
3.3.10	Dimensionamiento del Anillo	111
3.3.11	Plantilla para mecanizado.	112
3.3.12	Caja de Machos.	112
3.3.13	Secciones de la caja espiral obtenida en el diseño	113
3.3.14	Material en exceso para el posterior mecanizado de la carcasa	114

3.3.15	Brida de succión sobredimensionada	115
3.3.16	Alargamientos en el modelo	115
3.3.17	Conicidades en el modelo	116
3.3.18	Disposición final modelo	116
3.3.19	Partes del modelo	117
3.3.20	Parte del modelo y su cavidad en la arena de fundición	117
3.3.21	Plantilla de sección de la voluta y ubicación	118
3.3.22	Caja de Macho para la Carcasa 32-125	119
3.3.23	Vistas del Macho de fundición de la Carcasa	119
3.3.24	Conicidad del Macho de La Carcasa	120
3.4.1a	Montaje de la bomba.	121
3.4.1b	Impulsor antes y después del Mecanizado	122
3.4.2	Coincidencia de los centros hidráulicos de la carcasa e impulsor	122
3.4.2a	Agarre inicial para el Torneado	123
3.4.3a	Mecanizado del impulsor	123
3.4.4	Centrado del Impulsor	124
3.4.5	Diámetro de la manzana del impulsor	124
3.4.6a	Diagrama del Pasa-no pasa	125
3.4.6b	Anillo de la succión	125
3.4.7	Pasa-no pasa del Diámetro de Succión	126
3.4.8	Altura total del impulsor	127
3.4.9	Cilindrado del impulsor	127
3.4.10	Aspecto del cuñero	128
3.4.11	Impulsor Mecanizado Estáticamente	128
3.4.11a	Diámetro de emboque del porta sello	129
3.4.12	Diámetro de emboque del anillo de la succión	130
3.4.13	Altura de la carcasa	130
3.4.14	Medidas de la pieza intermedia	131
3.4.15	Tapa sello	132
3.4.16	Eje del Motor eléctrico según Nema	132
3.4.17	Escalón de la bocina	133
3.4.18	Mecanizado de la bocina	133
3.4.19a	Montaje del sello mecánico sobre la bocina	134
3.4.19b	Montaje del sello sobre la bocina y el estacionario en el porta sello	134
3.4.20	Bomba Ensamblada	135
3.5.1	Motor.	136
3.5.2	Colocación del Adaptador	136
3.5.3	Colocación del o'ring.	136
3.5.4a-b	Colocación del Sello Mecánico	137

3.5.5	Colocación del impulsor.	137
3.5.6	Colocación de la carcasa	137
4.1.1	Gráfica de H _{thx}	138
4.1.2	Gráfica de H _{thx} con resbalamiento	139
4.1.3	Gráfica de H _{thx} con resbalamiento y rozamiento	140
4.1.4	Gráfica de H _{thx} con resbalamiento, rozamiento y choque	142
4.1.5	Montaje de la bomba	142
4.1.6	Banco de pruebas	143
4.1.6b	Banco de pruebas	144
4.1.7	Esquema del Banco de pruebas	144
4.1.8	Primera Prueba	146
4.1.9	Segunda Prueba	147
4.1.10	Tercera Prueba	148
4.1.11	Gráfica de los Resultados	150

NOTACIONES Y ABREVIATURAS

a	Distancia desde el apoyo más cercano al impulsor
A_1	Área de succión incluyendo el anillo de succión
As	Área transversal del eje en el ojo del impulsor
b ₁	Ancho del rodete a la entrada
b ₂	Ancho del rodete a la salida
b ₃	Ancho base de la carcasa
C _{1u}	Componente tangencial de la velocidad C1
C_{2u}	Componente tangencial de la velocidad C2
C ₃	Velocidad después de la descarga
Cc	Coeficiente de contracción
Со	Velocidad absoluta del fluido antes de la entrada del álabe
D_1	Diámetro medio a la entrada del álabe
D _{1i}	Diámetro menor a la entrada del álabe
D_{1m}	Idem. D1
D ₁₀	Diámetro de la boca de la brida de succión
D _{1op}	Diámetro óptimo a la entrada del rodete
D_{1p}	Idem. D1o
D_2	Diámetro medio a la salida del rodete
D_3	Diámetro del círculo base de la voluta
d _c	Diámetro del cubo del rodete
d _e	Diámetro del eje del impulsor
e	Desplazamiento radial del centro de gravedad del impulsor
Е	Modulo de elasticidad
ez	Coeficiente de disminución del trabajo
F	Fuerza que se opone al empuje axial
g	Aceleración de gravadad
Н	Altura efectiva suministrada por la bomba
Н	Altura de la descarga de la Bomba
h _h	Pérdida por rozamiento
h _{hx}	Función de perdidas por rozamiento
Hı	Presión detrás del impulsor
H _{real}	Curva real calculada teóricamente
H _{th}	Altura teórica con número finito de álabes
H _{thoo}	Altura teórica con número infinito de álabes

	Trabajo de álabe (Número de álabes infinito) y Para una entrada
H _{thx}	perpendicular
Ι	Momento de inercia
k	Rugosidad relativa de la superficie
K_{1m}	Coeficiente de la veocidad C1m
K_{2m}	Coeficiente de la veocidad C2m
K ₃	Constante para la velocidad a la descarga del impulsor
K _c	Pérdida por contracción debido al cubo
K _h	Coeficiente de pérdidas hidráulicas
Kq	Coeficiente de pérdidas volumétricas
Ku	Coeficiente de la velocidad periférica
L	Longitud de arco de circunferencia
L	Base de los triángulos de error
L ₁	Longitud del eje
m	Masa
Ne	Potencia en el eje de la bomba
N_h	Potencia hidráulica
NPSH _R	Carga neta positiva de succión requerida
n _q	Velocidad específica (adimensional)
n _q '	Velocidad específica (sistema técnico)
n _q "	Velocidad específica (sistema inglés)
N _{ROZ}	Pérdidas por rozamiento de disco
n _s	Velocidad específica respecto a la potencia
Nu	Potencia útil
р	Coeficiente de deslizamiento
Р	Idem. Ne
Р	Fuerza centrífuga
p_1	Presión justo a la entrada del álabe
p_1	Presión de descarga
Pext	Pérdidas externas
$\mathbf{P}_{\mathbf{h}}$	Pérdidas hidráulicas internas
po	Presión en la succión antes de la entrada del álabe
p_s	Presión de succión
$p_{\rm v}$	Presión de vapor
Q	Caudal a la descarga de la bomba
q	Caudal de pérdidas volumétricas
Qn	Caudal en el punto de máximo rendimiento

Q _x	Caudal cualquiera
r	Radio cualquiera entre la succión y la descarga
R ₁	Relación r1 / r2
\mathbf{r}_1	Relación D1m / 2
r_{1i}	Radio en la succión interno
r_2	Relación D2 / 2
r_2	Radio de la descarga
R _t	Factor de cálculo del diámetro de la raíz del rodete
S	Espesor del álabe
Т	Empuje axial
t1	Paso circunferencial a la entrada del álabe
t_2	Paso circunferencial a la salida del álabe
U_1	Velocidad periférica a la entrada del impulsor
U_2	Velocidad periférica a la salida del impulsor
ur	Velocidad relacionada en el anillo delantero
W	Peso
w1	Velocidad relativa a la entrada del álabe
W2	Velocidad relativa a la salida del álabe
x ₁	Relación b1 / r2
X ₂	Relación b2 / r2
у	Deflexión del eje debido a la rotación
Z	Número de álabes del impulsor

LETRAS GRIEGAS

$\alpha^{\rm o}$	Ángulo calculado entre succión y descarga
αο	Ángulo de la velocidad absoluta justo antes del a entrada del impulsor
α1	Ángulo de la velocidad absoluta a la entrada del impulsor
α2	Ángulo de la velocidad absoluta a la salida del impulsor Ángulo de la velocidad absoluta justo después de la salida del
α3	impulsor
$\alpha_{\rm v}$	Ángulo de la garganta
β1	Ángulo de los álabes a la entrada del impulsor
β_{1i}	Ángulo de los álabes en el diámetro mayor de succión
β_{1o}	Ángulo de los álabes en el diámetro menor de succión
βıp	Idem β10
β_{1m}	Beta en la succión (Línea media de flujo)

- β_n Beta en cualquier lugar del alabe
- γ Peso específico del líquido
- λ Relación dc / D₁
- ρ Densidad del fluido
- ρx Radio de las secciones de voluta
- σ Coeficiente de cavitación del álabe
- σ_1 Espesor del álabe a lo largo del círculo de entrada
- σ_2 Espesor del álabe a lo largo del círculo de salida
- φ Constante experimental de pérdidas por choque
- ω Velocidad angular del impulsor

LISTA DE ANEXOS

- A Tablas de selección de motores.
- **B** Tablas de selección de O'rings.
- C Tablas de selección de sellos mecánicos.
- **D** Programación del centro de mecanizado.
- **E** Líneas de corriente en el plano meridional.
- **F** Series de Renard.
- G Normas NEMA.
- H Planos de Mecanizado.

INTRODUCCIÓN

La fábrica Bombas Malmedi ofrece diversas líneas de productos para muy variadas aplicaciones, esto en base a un largo proceso de expansión y actualización al que se ha sometido desde sus comienzos. Actualmente existen campos de aplicación que no son cubiertos por ninguna bomba, por esto es necesario el diseño de nuevas bombas para seguir aumentando el alcance de la compañía.

En Malmedi se tienen varias líneas de productos entre las cuales se encuentran: sumergibles (UNI, ROBUSTA y AFP), alta presión (MZG y VVKL), autocebantes (CAE) y estándar (AZ(F) y ETANORM).

En nuestro caso nos concentraremos en el diseño de una bomba AZ(F) 80-160. "AZ(F)" son las siglas utilizadas por la compañía para designar a las bombas centrífugas estándar según las normas ANSI. En base a estas normas los siguientes números (80-160) representan el diámetro nominal de descarga y el diámetro nominal de salida del impulsor, estandarizados ambos en base a las series de Renard R10. El punto de trabajo de esta bomba fue determinado en función de las necesidades y a lo establecido en el mercado para una bomba de estas dimensiones.

El trabajo se inicia con las bases teóricas que rigen el funcionamiento de la bombas centrífugas incluyendo los cálculos de los parámetros de diseño de esta. Luego, por medio de los métodos de Steppanof y Zarea, se determinan las dimensiones principales del impulsor.

Seguidamente se traza la vista meridional del álabe utilizando líneas de corriente basadas en el modelo matemático de flujo absoluto helicoidal y se obtiene la vista principal del impulsor mediante el método de los "triángulos de error" de Kaplan, asumiendo una ley de variación lineal del ángulo β.

Una vez trazados los álabes se procede con la voluta de la bomba, se utiliza el método de Steppanof para una voluta de sección circular (por la mayor facilidad de construcción) y se dimensiona en base a lo establecido para esta línea de bombas (normas ANSI).

Se lleva a cabo el montaje en CAD de todo el conjunto de la bomba determinando las dimensiones faltantes del impulsor y la carcasa.

Luego de tener planos completos del impulsor y la carcasa se procede a llevar a cabo toda la modelería para enviarla a fundición y posteriormente a mecanizado.

Por último se ensambla y se prueba la bomba para hacer los ajustes finales.

CAPÍTULO I FORMULACIÓN DEL PROBLEMA Y METODOLOGÍA EMPLEADA

1.1 OBJETIVOS.

El objetivo principal de este proyecto consiste en diseñar, construir y probar una bomba centrífuga que cubra un campo que no esta satisfecho por ninguna de las bombas fabricadas por la empresa Bombas Malmedi. (Zona sombreada en la figura 1.1.1)

Fig. 1.1.1 Campos de aplicación de las bombas centrífugas @ 3500 RPM (Catálogo Bombas Malmedi, 2002)

Para este fin se establecen los siguientes parámetros de diseño:

- Q =
$$0.044 \,\mathrm{m^3/s}$$
; 700 GPM. (1.1)

-
$$H = 55m$$
; 180.4 pies . (1.2)

-
$$n = 3550$$
rpm. (1.3)

Los objetivos específicos son los siguientes:

- Realizar el cálculo hidráulico mediante el método del Profesor Dr. Stefan Zarea.
- Dimensionar y construir los modelos del impulsor y la carcasa en madera y aluminio, por medio de métodos clásicos.
- Construir la carcasa y el impulsor en hierro y bronce, respectivamente.
- Mecanizar las piezas según los planos de diseño.
- Ensamblar la bomba.
- Realizar las pruebas de funcionamiento a la bomba con el nuevo rotor.
- Elaborar curvas H vs. Q en base a los resultados experimentales y comparar con las curvas H vs. Q teóricas.

1.2 METODOLOGÍA UTILIZADA.

- El cálculo hidráulico será realizado por medio del método estadístico del Profesor Dr. Ingeniero Stefan Zarea, que fue utilizado en el trabajo especial de grado de Freddy Fuenmayor (1988).
- El dimensionamiento del impulsor y la carcasa será realizado por el método del Profesor Stefan Zarea aplicando las características generales de las bombas de la empresa Malmedi. En base a esto se realizarán los planos de mecanizado en un programa CAD.

- Partiendo de los planos de mecanizado serán dimensionados los modelos del impulsor y la carcasa y se construirán los modelos en madera y aluminio por métodos clásicos. Para la elaboración de los álabes de la caja de machos será utilizado un centro de mecanizado.
- La construcción del impulsor y la carcasa será hecha por fundición en bronce y hierro, respectivamente. Para la fundición se utilizaran el moldeo en arena verde y el moldeo en cáscara (shell molding).
- Las piezas construidas serán mecanizadas, según los planos de diseño, en torno paralelo, fresadora horizontal y taladro bandera, según sea la operación a llevar a cabo.
- Se ensamblará la bomba con un motor marca US Motors, adaptador, bocina y tapa de sello marca Malmedi
- Se realizarán las pruebas de funcionamiento, en el banco de pruebas de la empresa Malmedi, a la bomba construida. En estas pruebas serán medidos: la presión en la succión y la descarga de la bomba y el amperaje y el voltaje del motor eléctrico.

CAPÍTULO II CÁLCULO HIDRÁULICO.

El cálculo hidráulico se ha realizado con el procedimiento desarrollado por el Profesor Stefan Zarea y expuesto en el trabajo especial de grado de Freddy Fuenmayor en 1988.

2.1 VELOCIDAD ESPECÍFICA.

En cualquier proceso de cálculo en turbomáquinas es necesario primero calcular la velocidad específica.

Se llevará a cabo el cálculo de la velocidad específica adimensional con la siguiente expresión:

$$n_{q} = \frac{\omega \sqrt{Q}}{(gH)^{3/4}}$$

$$donde: \begin{cases} \omega \to s^{-1} \\ Q \to m^{3}/s \\ g \to m'/s^{2} \\ H \to m \end{cases}$$

$$(2.1)$$

Otra expresión muy utilizada, en la cual desaparece la aceleración de gravedad

$$n'_{q} = \frac{\omega \sqrt{Q}}{H^{\frac{3}{4}}}$$
(2.2)
donde:
$$\begin{cases} \omega \to \frac{1}{s} \\ Q \to \frac{m^{3}}{s} \\ H \to m \end{cases}$$

La siguiente expresión representa la velocidad específica en el sistema inglés de unidades:

es:

$$n''_{q} = \frac{n\sqrt{Q}}{H^{\frac{3}{4}}}$$
(2.3)
donde:
$$\begin{cases} n \to rpm \\ Q \to GPM \\ H \to Pies \end{cases}$$

La última expresión de la velocidad específica que se presenta proviene de sustituir en (1.3) la velocidad de rotación "n" por la velocidad angular " ω ":

$$n'''_{q} = \frac{n\sqrt{Q}}{H^{\frac{3}{4}}}$$
(2.4)

donde:
$$\begin{cases} n \to rpm \\ Q \to m^{\frac{3}{5}} \\ H \to m \end{cases}$$

De estas expresiones, sustituyendo los parámetros de diseño establecidos previamente (1.1), (1.2) y (1.3) se obtiene:

$$n_{q} = \frac{371.75 \text{rpm.} \sqrt{0.044 \,\text{m}^{3}/\text{s}}}{(55 \text{m.} 9.81 \,\text{m/s}^{2})}$$

$$\boxed{n_{q} = 0.6965}$$
(2.5)

$$n'_{q} = \frac{371.761/s.\sqrt{0.044m^{3}/s}}{(55m)^{3/4}}$$

$$\boxed{n'_{q} = 3.861}$$
(2.6)

$$n''_{q} = \frac{3550 \text{rpm}\sqrt{700\text{GPM}}}{180.4\text{pies}}$$

$$n''_{q} = 1908$$
(2.7)

$$n'''_{q} = \frac{3550 \text{rpm}\sqrt{0.044 \text{ m}^{3}/\text{s}}}{55 \text{m}}$$

$$\boxed{n'''_{q} = 36.87}$$
(2.8)

Con el valor de la velocidad específica calculado n_q ' es posible determinar la forma aproximada que tendrán las coronas del impulsor utilizando las normas Covenin.

Fig. 2.1 Clasificación de los rodetes centrífugos según las normas Covenin.

CENTRIFUGAL AND AXIAL FLOW PUMPS

Fig. 2.2 Clasificación de los rodetes centrífugos según Worthington. (Carl Pfleiderer, 1969)

En base a las dos gráficas presentadas, con n''_q = 1908, resulta un impulsor ubicado entre los rangos radial y tipo Francis por lo cual presentara características intermedias entre estos.

Es necesario realizar el cálculo de los rendimientos de la bomba y del coeficiente de resbalamiento, antes de que sea diseñado el rodete para poder así determinar la altura teórica para número infinito y finito de álabes.

2.2 PÉRDIDAS Y RENDIMIENTOS EN LA BOMBA.

2.2.1 Pérdidas hidráulicas internas.

Con los álabes del rodete se comunica a la unidad de peso del líquido impulsado un trabajo que corresponde al valor numérico de la altura teórica de elevación H_{th} . Pero de este trabajo, sólo una parte de la energía específica de la corriente de líquido sirve para aumentarla; el resto se transforma en calor, de modo que se pierde. En particular, las pérdidas se deben al rozamiento en los canales del rodete y del difusor, a las variaciones de dirección y sección, a los choques, así como los fenómenos que se producen al transformar la velocidad en presión, en los canales divergentes y curvados.

En concreto las pérdidas hidráulicas internas podrían ser clasificadas como sigue:

1.- Pérdidas por rozamiento en los canales del rodete.

2.- Pérdidas por circulación o formación de remolinos a la salida y entrada del rodete debido a la diferencia de presión a ambas caras del álabe. (Flujo secundario)

3.- Pérdidas por choque debido al cambio brusco de la velocidad media a la entrada o a la salida del rodete.

4.- Pérdidas en la carcasa debido a la fricción, divergencia del flujo secundario.

Una estimación aproximada de las pérdidas por fricción en el rodete en el punto de mejor rendimiento, puede ser realizada después que éste es diseñado, tomando por lo menos tres posiciones en el canal del rodete; a la entrada, parte media y a la salida, midiendo el área de las secciones transversales y las correspondientes longitudes hidráulicas medias, y las velocidades relativas. Tomando valores medios de la profundidad y de la velocidad relativa en los canales del rodete M, Cm y de la longitud L del álabe, las pérdidas por fricción en el rodete pueden ser calculadas mediante la expresión hf = $f(L/M)(C_m^2/2g)$ E1 coeficiente de fricción f depende del número de Reynolds y de la rugosidad relativa de la superficie de los canales, y se dispone de la posibilidad de utilizar los resultados experimentales para tubos circulares, según lo cual el canal del rodete puede ser considerado como un tubo de

diámetro equivalente D - 4M. La rugosidad de la superficie es k y para fundición en arena k0,01-0,02 pulg.; para fundición en moldes metálicos o plásticos k = 0,002-0,005 pulg. y para volutas de concreto k 0,01-0,02 pulg.

Esta estimación es útil en la comparación de el diseño de un rodete con otro que tiene diferentes ángulos a la entrada y a la salida.

Las pérdidas varían con la relación del caudal Q de descarga y el correspondiente al punto de mejor rendimiento, Qn, los cuales son difíciles de separar experimentalmente.

En la caja espiral, adicionalmente a las pérdidas por fricción superficiales, existe un flujo secundario que consiste de un movimiento de doble espiral en el punto de mejor eficiencia. Existen también las pérdidas ya antes mencionadas debidas a la divergencia de los canales, los cuales serían mantenidos pequeños para evitar separación. Estas estimaciones son basadas en análisis de resultados de pruebas en laboratorios de investigación. Sin embargo, esto puede ser hecho solamente después que el diseño preliminar es completado.

Consecuentemente, un método alternativo es requerido para predecir estas pérdidas internas, con el fin de preparar el diseño preliminar con parámetros admitidos por el número de Reynolds, es decir, el tamaño de la bomba y la rugosidad relativa de la superfície.

De análisis estadísticos de un gran número de pruebas en bombas cubriendo un basto rango de tamaños y velocidades específicas, las pérdidas hidráulicas internas son, aproximadamente, inversamente proporcionales a $(Q/\sqrt{H})^{1/4}$, donde el coeficiente K_h está afectada por la rugosidad relativa. De esta manera:

$$P_{h} = K_{h} / (9.68 (Q/\sqrt{H})^{1/4})$$

$$\begin{cases}
P_{h} \rightarrow P \acute{e}r didas hidráulicas \\
Q \rightarrow \frac{m^{3}}{s} \\
H \rightarrow m
\end{cases}$$
(2.9)

(F. Fuenmayor1988)

Esto es mostrado en la Fig. 2.3 en la cual K_h - 40 (curva C) para pequeñas bombas donde la rugosidad relativa es alta, K_h = 35 (curva B) para fundiciones de tamaño medio y K_h = 25 (curva A) para grandes bombas con fino acabado.

Se escogerá $K_h=35$ y se obtiene:

$$P_{\rm h} = \frac{35}{9.68 \left(0.044 \, {\rm m}^3 / {\rm s} / \sqrt{55 {\rm m}} \right)}$$

$$P_{\rm h} = 13\%$$
(2.10)

Las pérdidas hidráulicas P_h pueden ser estimadas como un porcentaje de las pérdidas totales en la bomba. De esta manera se podrá determinar la eficiencia hidráulica mediante la relación: *(F. Fuenmayor, 1988)*

Fig. 2.3 Pérdidas hidráulicas internas. a) grandes bombas con fino acabado; b) fundiciones de tamaño medio; c) pequeñas bombas donde la rugosidad relativa es demasiado alta. (Freddy Fuenmayor, 1988)

2.2.2 Pérdidas externas.

Las pérdidas externas se pueden calcular utilizando la fórmula estadística (F. Fuenmayor 1988):

$$P_{ext} = \frac{22.36}{n'_{g}}$$
(2.13)

Sustituyendo el valor de n_q' resulta:

$$P_{ext} = 5.8\%$$
 (2.14)

Estas pérdidas incluyen: (a) pérdidas en los cojinetes y en los sellos, las cuales se estiman en un 1% - 5% (b) pérdidas por fugas o infiltraciones, 100(q/Q) en porcentaje, la cual decrece con el incremento en el n_q (c) pérdida por fricción en el disco cuyo valor se puede determinar con cierta dificultad.

Fig. 2.4 Pérdidas externas (Freddy Fuenmayor, 1988).

El método utilizado permite calcular el producto de la eficiencia mecánica y la eficiencia volumétrica es:

$$\eta_{\rm m} \,\eta_{\rm v} = 100 - 22.36/n'_{\rm q} \tag{2.15}$$

(Freddy Fuenmayor, 1988)

Tomando en cuenta que n_q '=3.861 y substituyendo en (2.13) resulta:

$$\eta_{\rm m} \eta_{\rm v} = 94.2\%$$
 (2.16)

Rendimiento Volumétrico.

La relación entre el rendimiento volumétrico de la bomba y n_q puede ser expresada por medio de la gráfica 2.5:

Definimos ahora

$$K_{q} = \frac{q}{Q}$$
(2.17)

donde $\begin{cases} q : Caudal de las pérdidas volumétricas \\ Q : Caudal a la descarga de la bomba \end{cases}$

Fig. 2.5 Gráfica de $\eta_v y$ de q/Q en función de n_s . (Carl Pfleiderer, 1969)

De la gráfica 2.5 considerando n_q ["]=36.87 resulta el valor de la eficiencia volumétrica:

$$\eta_v = 96\%$$
 (2.18)

y del caudal relativo de recirculación:

$$q/Q = 4.1\%$$
 (2.19)

En consecuencia se puede cuantificar el caudal:

$$q = \frac{4.1Q}{100} \rightarrow q = \frac{4.1(0.0044 \text{ m}^3/\text{s})}{100}$$

$$q = 0.0018 \text{ m}^3/\text{s}$$
(2.20)

Rendimiento Mecánico.

El rendimiento mecánico se expresa como el producto:

$$\eta_{\rm m} = \eta'_{\rm m} \eta''_{\rm m} \tag{2.21}$$

donde η'_m es el rendimiento que tiene en cuenta las pérdidas de potencia por rozamiento del disco contra el líquido y η''_m es el rendimiento que tiene en cuenta las pérdidas de potencia por rozamiento en los prensaestopas y cojinetes.

El rendimiento η ''_m se puede considerar independiente de n_q ''' e igual a 0.95; El rendimiento η ''_m si se puede expresar en función de n_q ''', para lo cual se utiliza el gráfico 2.6 resultando η_m '=0.84

Capítulo II: Cálculo hidráulico.

Fig. 2.6 Gráfica de $\eta_m y N_{roz}/N_h$ en función de n_q '''. (Carl Pfleiderer, 1969)

Sin embargo el rendimiento mecánico se calculará de las expresiones:

$$\eta_{\rm m}.\eta_{\rm v} = 0.94 \quad \text{y} \quad \eta_{\rm v} = 0.96 \quad \Rightarrow$$

$$\boxed{\eta_{\rm m} = 98\%} \tag{2.22}$$

2.2.3 Rendimiento total de la bomba.

El rendimiento total de la bomba viene dado por el producto de todos los rendimientos, mecánico, volumétrico e hidráulico:

$$\eta = \eta_{m}.\eta_{v}.\eta_{h}$$
(2.23)

$$\eta = (0.98).(0.96).(0.87) \rightarrow$$

$$\boxed{\eta = 81\%}$$
(2.24)

2.3 COEFICIENTE DE DISMINUCIÓN DEL TRABAJO. RESBALAMIENTO

Al proyectar una bomba la altura efectiva es un dato. A partir de ella es preciso obtener la altura de Euler $H_{th\infty}$ que es fundamental para el diseño de la bomba. La altura de Euler es la altura correspondiente al trabajo comunicado por el rodete al fluido en la hipótesis de la teoría unidimensional, o de infinito número de álabes. Si esta teoría fuera cierta $H_{th\infty}$ - H sería igual a las pérdidas hidráulicas, o equivalentemente H / $H_{th\infty}$ sería igual al rendimiento hidráulico.

En las bombas construidas se puede calcular $H_{th \infty}$ y medir H en el banco de pruebas, y se observa que la relación H / H_{th} / η_h está en el orden de 0, 5 - 0, 7.

En las bombas en proyecto, dividiendo la altura efectiva H que se requiere por un rendimiento hidráulico estimado se obtiene la altura teórica. Si ésta se identifica con la altura de Euler y se proyecta la bomba para esa altura deEuler, la bomba proyectada y construida proporciona una altura mucho menor que la requerida. De esto se deduce el trabajo específico teórico $gH_{th} < gHthoo$. La diferencia sólo puede proceder de que en la bomba real con número finito de álabes la corriente relativa no sigue exactamente la variación determinada por el ángulo del álabe.

El cálculo de la disminución de trabajo, es decir, de C_{2u} , puesto que determina la altura que produce la bomba, se puede realizar valiéndose de la fórmula semiempírica de Pfleiderer.

$$C_{2u} = (1 + p) C_{3u}$$
(2.25)

o lo que es lo mismo;

$$C_{2u} = C_{3u} / e_z$$
 (2.26)

donde C_{3u} es el valor real de la componente tangencial de la velocidad absoluta a la salida del rodete.

El coeficiente de corrección ($e_z = 1 / (1 + p)$) se calcula haciendo uso de la fórmula de Carl Pfleiderer.

$$e_{z} = \frac{1}{1 + \left(\frac{1.2}{Z}\right) \cdot \frac{1 + \sin\beta_{2}}{1 - \left(D_{1}/D_{2}\right)^{2}}}$$
(2.27)

Donde: $\begin{cases} Z: número de álabes. (Se adoptará, por ahora, 6 como valor común) \\ \beta_2: ángulo de los álabes a la descarga. \\ D_1 = D_{1p} = [mm] \\ D_2 = [mm] \end{cases}$

Para el cálculo del coeficiente e_z es necesario conocer el número de álabes del impulsor y para esto se seguirá el criterio de A. J. Stepanoff:

$$z = 6 \text{ álabes} \tag{2.28}$$

Como valor medio para un ángulo bajo β_2 y para una velocidad específica $n_q^{"} < 100$.

$$e_{z} = \frac{1}{1 + \left(\frac{1.2}{6}\right) \cdot \frac{1 + \sin 22.5^{\circ}}{1 - (105/181)^{2}}} \rightarrow \frac{1}{1 - (105/181)^{2}}$$

$$e_{z} = 0.706$$
(2.29)

finalmente tenemos

$$H_{th} = e_z H_{th\infty}$$
(2.30)

siendo

$$H_{th\infty} = U_2 C_{2u}/g \qquad (2.31)$$

У

$$H_{th} = H/\eta_h \tag{2.32}$$
Capítulo II: Cálculo hidráulico.

Por lo tanto estas fórmulas nos permiten, midiendo en diversas bombas en el banco de pruebas el valor de H, η_h y calculando la altura teórica de Euler $H_{th\infty}$, hallar el valor e_z lo cual permite investigar experimentalmente la dependencia de e_z de los diversos coeficientes de diseño.

E1 coeficiente e_z no es un rendimiento, ya que tanto H_{th} como $H_{th\infty}$ son alturas teóricas, que suponen fluido ideal e irrotacional, en el que las pérdidas no existen. Este coeficiente influye, sin embargo, en la economía de la bomba, en cuanto que un e_z elevado produce una altura teórica mayor, o equivalentemente para que la misma altura requiera un diámetro menor y una bomba más económica: pero en todo caso el equivalente en altura de la energía específica del rodete gH_{th} es H_{th}; por lo tanto la bomba que da menos altura, absorbe menos energía y el rendimiento es el mismo. El valor de e_z oscila entre 0,65 - 0,75. Los valores grandes se aplican a los rodetes de velocidad específica baja. [(1+ p)=1.54-1.33].

2.4 ALTURA TEÓRICA DE BOMBEO.

De (2.16) se calcula:

$$H_{th} = \frac{55m}{0.87} \rightarrow$$

$$H_{th} = 63.2m$$
(2.33)

De (2.30):

$$H_{th\infty} = \frac{63.2m}{0.706} \rightarrow H_{th\infty} = 89.54m \qquad (2.34)$$

2.5 COMPONENTES MERIDIONALES C_{1m} Y C_{2m} Y VELOCIDAD PERIFÉRICA U₂.

A través de los coeficientes característicos del rodete graficados por Stepanoff (Ver Fig. 2.7), se han establecido las expresiones analíticas correspondientes a los coeficientes de las componentes meridionales de la velocidad absoluta del líquido a la entrada y a la salida del rodete, K_{lm} y K_{2m} respectivamente.

A partir de estos coeficientes es posible estimar el valor de las componentes C_{lm} y C_{2m} , dadas las condiciones iniciales de diseño de una bomba: H, Q y n.

Fig. 2.7 Constantes del Impulsor (A.J. Stepanoff. 1948).

Data extraída de Gráfica de constantes del impulsor según Stepanoff (Sistema Inglés):

Tabla 2.1 Constantes del Impulsor

Partiendo de esta data se llevan a cabo aproximaciones parabólicas obteniéndose:

$$K_{m1}(n''_{q}) = 0.098 + 0.042 n''_{q} + -5.661 x 10^{-4} n''_{q}^{2}$$
$$K_{m2}(n''_{q}) = 0.054 + 0.044 n''_{q} - 4.423 x 10 - 4 n''_{q}^{2}$$
$$K_{u}(n''_{q}) = 0.907 + 0.061 n''_{q} + -5.661 x 10^{-4} n''_{q}^{2}$$

En base a esto, para la bomba diseñada resultan los siguientes valores:

$$K_{m1}(1908) = 0.177$$

$$K_{m2}(1908) = 0.136$$

$$K_{u}(1908) = 1.024$$

Conociendo los valores de estos coeficientes se pueden calcular las velocidades:

$$C_{m1} = K_{m1}\sqrt{2gH}$$
 (2.35)

$$C_{m1} = 5.8 \frac{m}{s}$$
 (2.36)

$$C_{m2} = K_{m2}\sqrt{2gH}$$
 (2.37)

$$C_{m2} = 4.475 \frac{m}{s}$$
 (2.38)

$$U_2 = K_u \sqrt{2gH}$$
(2.39)

$$U_2 = 33.648 \,\text{m/s}$$
 (2.40)

2.6 DIÁMETROS DE SUCCIÓN.

Cuando el rodete de una bomba es diseñado, varios factores deben ser conocidos. El más importante de estos factores es la carga requerida para el caudal de diseño. No obstante, otros factores que pueden ser igualmente importantes son el máximo rendimiento (especialmente en grandes bombas), una característica H-Q estable y un buen funcionamiento a la no-cavitación, pero en muchos casos un factor predominará sobre los otros. El funcionamiento a la no-cavitación, sin embargo, puede ser muy importante para lo cual se demostrará cómo obtener un óptimo funcionamiento para una bomba con determinado régimen de operación, mientras que al mismo tiempo se presentan nuevas técnicas para determinar cuándo aparece la cavitación y cuándo ésta afecta su funcionamiento. Esto demuestra que los factores más importantes para prevenir el funcionamiento que conduzca a la cavitación son el elegir el tamaño, la velocidad y geometría correctos antes que el diseño del álabe en detalle.

La cavitación tiene dos efectos en las bombas; cuando ésta se desarrolla, provoca una caída en el funcionamiento (carga, caudal y rendimiento), mientras que una operación prolongada bajo condiciones de cavitación puede causar erosión en los álabes. Una característica típica de funcionamiento en estas condiciones es mostrada en la Fig. 2.8.

Fig. 2.8 Efectos de la cavitación en las características de las bombas (Carl Pfleiderer, 1969)

Una característica de los puntos críticos donde ocurre la caída brusca de la carga, puede ser encontrada en términos de NPSH_R como una función del diseño de la bomba y que representa el margen mínimo requerido entre la carga de succión y la presión de vapor a un determinado caudal.

En una bomba, la carga y caudal requeridos son dados usualmente. Si la cavitación es un problema, el NPSH requerido (NPSH_R) también es suministrado de tal forma que permitan que la velocidad y el diámetro sean determinados para un óptimo funcionamiento. El uso del diámetro y velocidad correctos es el factor más importante para la obtención de un buen funcionamiento contra la cavitación.

El funcionamiento a la cavitación de la bomba puede ser expresado en parámetros normales:

NPSH_R =
$$\frac{p_0}{\gamma} + \frac{C_0^2}{2g} - \frac{p_v}{\gamma}$$
 (2.41)

y el coeficiente de cavitación del álabe:

$$\sigma = \frac{p_1 - p_v}{\frac{1}{2}\rho w_1^2}$$
(2.42)

Las ecuaciones anteriores pueden ser arregladas de modo que:

NPSH_R =
$$\sigma \frac{w_1^2}{2g} + \frac{C_{1m}}{2g} + K_c$$
 (2.43)

NPSH_R =
$$\frac{C_{1m}}{2g} (1 + \sigma) + \sigma \frac{U_1^2}{2g} + K_c$$
 (2.44)

donde K_c es la pérdida en la contracción originada por el cubo, entre las posiciones 0 y 1 (antes e inmediatamente después de la entrada del álabe).

Si el coeficiente de contracción es asumido C_c; entonces:

$$K_{c} = \frac{C_{1m}^{2}}{2} \left(\frac{1}{C_{c}^{2}} - 1 \right) \left(1 - \left(1 - \lambda^{2} \right)^{2} \right)$$
(2.45)

Normalmente Cc tiene un valor entre 0,95 y 0,98, en cuyo caso la pérdida K_C será 0.045, $(C_{1m}^2/2)$ la cual es despreciable excepto para bajos números de cavitación del álabe.

La condición de mejor funcionamiento en contra la cavitación es obtenida diferenciando la ecuación (1.22) para obtener su mínimo valor. De esta manera:

$$D_{op1} = 200 \left[\left(\frac{25}{3\pi^2} \right) \sqrt{\frac{2(1+\sigma)}{\sigma}} \cdot \frac{1}{1-\lambda^2} \cdot \left(\frac{Q}{n} \right) \right]^{1/3}$$

$$donde: \quad \begin{cases} Q \to m^3 / s \\ n \to rpm \end{cases}$$

$$(2.46)$$

Utilizando:

 $Q = 158.9 \text{ m}^{3}/_{\text{S}}$ n = 3550rpm $\lambda = 0.4 \\ \sigma = 0.25$ Valores recomendados por el Profesor Zarea como promedio y la no cavitación respectivamente.

De la ecuación 1.28 se calcula el valor del diámetro óptimo para la no cavitación:

$$D_{op1} = 200 \left[\left(\frac{25}{3\pi^2} \right) \sqrt{\frac{2(1+0.25)}{0.25} \cdot \frac{1}{1-0.4^2} \cdot \left(\frac{158.9}{3550} \right)} \right]^{1/3}$$

$$\Rightarrow D_{1op} = 104.429 \text{ mm} \Rightarrow$$

$$\boxed{D_{1op} = D_{1p} \approx 105 \text{ mm}} \qquad (2.47)$$

Es interesante notar en esta relación que a menor coeficiente de cavitación del álabe σ , mayor es el diámetro D_{opl} ; de aquí que un diseño que conlleve a la formación de la cavitación tendrá un mayor diámetro que uno no cavitante.

Para el cálculo de los restantes diámetros de la succión D_{1i} y D_{1m} se utilizaran las expresiones siguientes:

$$\mathbf{D}_{1i} = \mathbf{R}_{t} \cdot \mathbf{D}_{1p} \tag{2.48}$$

(F. Fuenmayor, 1980)

$$D_{1m} = \frac{D_{1p} + D_{1i}}{2}$$
(2.49)

(F. Fuenmayor, 1980)

donde
$$R_t \in [0.4 .. 0.6]$$

Se asumirá el valor medio de $R_t = 0.5$

$$D_{1i} = 0.5.(105 \text{mm})$$

$$D_{1i} = 52.5 \text{mm}$$

$$D_{1m} = \frac{105 \text{mm} + 52.5 \text{mm}}{2}$$

$$D_{1m} = 78.75 \text{mm}$$
(2.51)

2.7 DIÁMETRO DE SALIDA DE LOS ÁLABES.

El diámetro de salida, D₂, se puede calcular con dos métodos:

a) Método de A. J. Stepanoff.

b) Utilizando la ecuación fundamental de las turbomáquinas.

El método de Stepanoff conduce al siguiente resultado:

$$D_{2} = \frac{U_{2}}{\pi . \frac{n}{60}}$$

$$D_{2} = \frac{33.648 \text{ m/s}}{\pi . \frac{3550 \text{ rpm}}{60}}$$
(2.52)
$$D_{2} = 181 \text{ mm}$$
(2.53)

El método basado en la ecuación fundamental de las turbomáquinas arroja el siguiente resultado.

$$D_{2} = \frac{60}{\pi . n} \left[\frac{C_{2m}}{2.tg(\beta_{2})} \cdot \sqrt{\left(\frac{C_{2m}}{2.tg(\beta_{2})}\right)^{2} + g.H_{th\infty}} \right]$$
(2.54)

$$D_{2} = \frac{60}{\pi (3550 \text{rpm})} \left[\frac{4.457 \text{ m/s}}{2.\text{tg}(22.5^{\circ})} + \sqrt{\left(\frac{4.457 \text{ m/s}}{2.\text{tg}(22.5^{\circ})}\right)^{2} + 9.81 \text{ m/s}^{2} (89.5 \text{m})} \right]$$
$$D_{2} = 191 \text{mm} \qquad (2.55)$$

El diseño del rodete se realizó en base al método de Stepanoff por considerarlo un método clásico. Luego al calcular la altura de bombeo correspondiente al diámetro $D_2=181$ mm, se obtuvo un valor menor que el valor requerido, pero el impulsor ya estaba construido.

Para el diámetro $D_2=191$ mm se obtiene una altura de bombeo igual al valor que estaba fijado en los datos del proyecto, en consecuencia, en el futuro es preferible utilizar el valor del diámetro que resulta utilizando la ecuación fundamental.

2.8 ÁNGULOS DEL ÁLABE β1 Y β₂.

2.8.1 Ángulo de entrada β₁.

El ángulo α_1 adoptado en el presente trabajo corresponderá al ángulo de entrada recto, es decir, al ángulo que lleva la corriente que entra sin pregiro ($C_{1u} = 0$), para el cual las bombas no poseen directrices a la entrada.

La ecuación de Euler teórica

$$H_{th} = (U_2 C_{2u} - U_1 C_{1u})/g$$
 (2.56)

en este caso se tiene

$$H_{th} = U_2 C_{2u}/g$$
 (2.57)

Los álabes a la entrada se construirán con un ángulo β_1 tal que α_1 sea 90° (entrada sin choque ni pregiro). Los triángulos de velocidades sufren modificaciones por el número finito de álabes y por el espesor de los álabes; sin embargo, en la práctica el ángulo de entrada de los álabes se hace igual a β_1 , suponiendo por lo tanto un ángulo de entrada de la corriente absoluta $\alpha_1 = 90^\circ$. Algunos constructores de

bombas suponen un ángulo α_1 de la corriente absoluta sin directrices ligeramente inferior a 90° (unos 85°) porque el líquido por su viscosidad dentro del rodete, pero antes de entrar a los álabes, adquiere una circulación positiva (C_{1u}>0).

Una ventaja adicional de que sea $\alpha_1 = 90^\circ$ es que entonces para un caudal determinado la velocidad absoluta será mínima, lo que disminuirá la depresión en la entrada del rodete (aumento de la capacidad de aspiración y disminución del riesgo de cavitación). La experiencia enseña que conviene hacer $\beta_1 > 15^\circ$. En las bombas radiales la gama de 15° -20° es la más frecuente pudiéndose llegar hasta un valor máximo de unos 30°.

Con los diámetros en la succión (2.46), (2.49) y (2.50), es posible calcular la velocidad tangencial a lo largo del arista de entrada.

$$U_{1p} = \omega \cdot \frac{D_{1p}}{2}$$
(2.58)
$$U_{1p} = \left(371.76 \frac{1}{\text{seg}}\right) \cdot \frac{0.105\text{m}}{2}$$
$$U_{1p} = 19.52 \frac{\text{m/s}}{\text{s}}$$
(2.59)

De manera similar:

$$U_{1m} = (371.76 \frac{1}{s})(\frac{0.07875m}{2})$$

$$U_{1m} = 14.6378 \frac{m}{s}$$

$$U_{1i} = (371.76 \frac{1}{s})(\frac{0.0525m}{2})$$

$$U_{1i} = 9.759 \frac{m}{s}$$
(2.61)

Con estos resultados se procede a calcular los ángulos en la entrada de los álabes sobre las tres líneas de corriente: disco anterior, línea media y disco posterior.

$$tg(\beta_{1}) = \frac{C_{1m}}{U_{1}}$$

$$tg(\beta_{1i}) = \frac{5.8 \frac{m}{s}}{9.759 \frac{m}{s}}$$

$$\beta_{1i} = 30.73^{\circ}$$
(2.63)

De manera similar:

$$\beta_{1m} = 21.62^{\circ}$$
 (2.64)

$$\beta_{1p} = 16.55^{\circ}$$
(2.65)

2.8.2 Ángulo de salida β₂.

El ángulo β_2 es el parámetro de diseño más importante de una bomba. Las características teóricas principales de una bomba dependen fundamentalmente de este ángulo de salida de los álabes.

Puede decirse también que en la bomba real el ángulo β_2 sigue siendo un factor decisivo en el diseño, de cuyo valor depende en gran parte los restantes parámetros de diseño. Esta selección se basa unas veces en la pendiente deseada de la curva H-Q, en el grado de reacción que desea, en el tipo de aplicación y otras veces

en la optimización de precio y rendimiento de la bomba, que conduce a lo que llamaremos un diseño normal.

Fig. 2.9 a) Álabes curvados hacia delante; b) Álabes de salida radial; c)Álabes curvados hacia atrás. Características teóricas: H_{th} = f(Q) (F. Fuenmayor)

En la figura 2.9 se consideran los tres casos posibles: $\beta_2 > 90^\circ$, álabes curvados hacia adelante; $\beta_2 = 90^\circ$; o álabes de salida radial; $\beta_2 < 90^\circ$, o álabes curvados hacia atrás.

En la misma figura se ven las curvas H_u -Q teóricas para los tres casos considerados.

Aunque se utilizan en la práctica ángulos β_2 en la gama de 14-60°, en general la gama más favorable se encuentra. entre los 20-30. Un valor de 22-23° se recomienda como "valor normal" para cualquier valor de nq . Si es preciso aumentar H se recomienda escoger un valor más alto dentro de la gama favorable indicada.

En este caso adoptaremos un ángulo β_2 igual a 22.5°. Valor normal recomendado por A. J. Stepanoff.

2.9 ESPESOR DE LOS ÁLABES.

El espesor de los álabes depende, como es natural, del tamaño del rodete, del material empleado y de la calidad de la fundición. Si los álabes son delgados el

Capítulo II: Cálculo hidráulico.

rendimiento hidráulico inicial aumenta: pero pueden deteriorarse con el tiempo debido a la erosión. Los álabes de fundición suelen construirse con espesor de 4-8 mm.

Los álabes a veces se construyen redondeados a la entrada y afilados a la salida. En el caso general ambos espesores deberán tomarse en cuenta en- los cálculos. E1 espesor de los álabes produce una disminución de la sección transversal útil para el flujo en la entrada y un aumento de la misma en la salida; no supone, sin embargo, aporte de energía alguno. Es decir, el espesor de los álabes influye sobre la componente meridional de la velocidad absoluta, no sobre la componente periférica.

En base a la experiencia, el espesor de los álabes se escogerá de 4 milímetros, de sección constante en toda su longitud, sin embargo se seguirán las recomendaciones hechas por Pfleiderer de redondear los álabes a la entrada y afilarlos a la salida.

Un afilado agudo de la arista de entrada, según los ensayos citados por Pfleiderer para alas de avión, ocasiona solo un imperceptible empeoramiento del rendimiento. Este ángulo vivo será, por otra parte, más sensible a pequeñas variaciones de la velocidad relativa de entrada con relación a la dirección del álabe, y menos resistente al desgaste.

A la salida, el espesor del álabe ocasiona, por el contrario, una disminución o retardamiento de la componente meridiana. Siendo preferible que las dimensiones de velocidad sean progresivas, resulta más favorable terminar los álabes con una parte afilada, según el trazo lleno de la figura 2.10.

Fig. 2.10 Afilado de los álabes a la salida del impulsor.

2.10 PASO CIRCUNFERENCIAL E INFLUENCIA DEL ESPESOR DEL ÁLABE.

Para el cálculo del paso circunferencial y de la influencia del espesor de los álabes se utilizarán las siguientes expresiones geométricas:

$$t_x = \frac{\pi D_x}{z}$$
(2.66)

$$\sigma_{x} = \frac{s_{x}}{\operatorname{sen}\beta_{x}}$$
(2.67)

Aplicando las expresiones (2.34) y (2.35) en la arista de entrada de los álabes, sobre la línea media de flujo se obtiene:

$$t_1 = \frac{\pi.(78.75\text{mm})}{6}$$

$$t_1 = 41.2\text{mm}$$
(2.68)

De manera similar aplicando (2.65) y (2.66) en el arista de salida de los álabes se obtiene:

$$t_{2} = \frac{\pi (181\text{mm})}{6}$$

$$t_{2} = 94.77\text{mm}$$
(2.70)

$$\sigma_2 = \frac{4\text{mm}}{\text{sen}(22.5^\circ)}$$

$$\sigma_2 = 10.45 \text{ mm} \qquad (2.71)$$

2.11 ANCHO DEL RODETE A LA ENTRADA Y SALIDA DE LOS ÁLABES.

2.11.1 Entrada de los álabes.

Inicialmente tenemos que: $Q' = C_{1m} \cdot A_1$

Donde A₁ es el área de succión constituida por el área del anillo " $D_{1m}.b_1.\pi$ " menos el área correspondiente a los álabes " $\sigma_1.b_1.Z$ ", obteniéndose:

$$Q' = C_{1m} [D_{1m} . b_1 \pi - \sigma_1 . b_1 . Z]$$
(2.72)

Despejando b_1 de (2.71):

$$b_{1} = \frac{Q'}{C_{1m}.(D_{1m}.\pi - \sigma_{1}.Z)}$$
(2.73)

Siendo ahora Q' el caudal que pasa a través del rodete:

$$Q' = q + Q$$
(2.74)
$$Q' = 0.0018 \frac{m^3}{s} + 0.044 \frac{m^3}{s}$$

$$Q' = 0.04597 \frac{m^3}{s}$$
(2.75)

Capítulo II: Cálculo hidráulico.

Tomando $\sigma_1 = 3$ mm basado en la experiencia y gracias al redondeo de los álabes en la succión.

$$b_{1} = \frac{0.04597 \text{ m}^{3}/\text{s}}{5.8 \text{ m}/\text{s} (0.078 \text{ m}/\text{s} \cdot \pi - 0.003 \text{ m. 6})}$$

$$b_{1} = 34.94 \text{mm}$$
redondeando:
$$b_{1} = 35 \text{mm}$$
(2.76)

2.11.2 Salida de los álabes.

Para esto se utilizarán las aproximaciones realizadas por el Prof. Stefan Zarea en base a datos recopilados de diferentes fabricantes de bombas.

$${}^{b_2}/D_2$$
 MAX = 0.2354 - $3.0345/n''_q$ \rightarrow (2.77.1)

$${}^{b_2}/D_2$$
 MED = 0.2326 - 3.3604/n" \rightarrow (2.77.2)

Capítulo II: Cálculo hidráulico.

$$b_2/D_2$$
 MIN = 0.2415 - 4.3827/n"_q \rightarrow (2.77.3)

Para los tres casos resulta:

$$b_2/D_2$$
 MAX = 0.2354 - 3.0345/36.87 = 0.15309
 b_2 MAX = 27.71mm
 b_2/D_2 MED = 0.2326 - 3.3604/1908 = 0.14146
 b_2 MED = 25.6mm
 b_2/D_2 MIN = 0.2415 - 4.3827/1908 = 0.12263
 b_2 MIN = 22.19mm

,

Por otro lado utilizando la ecuación de continuidad:

$$b_{2} = \frac{Q'}{\pi . D_{2} . C_{2m}} \left(\frac{t_{2}}{t_{2} - \sigma_{2}} \right)$$

$$donde: \begin{cases} D_{2} \rightarrow m \\ C_{2m} \rightarrow m/s \\ Q' \rightarrow m/s \\ b_{2} \rightarrow m \end{cases}$$

$$(2.78)$$

.

Sustituyendo los valores numéricos se obtiene:

$$b_{2} = \frac{0.04597 \text{ m}^{3} \text{ s}}{\pi.(181 \text{ mm})(4.475 \text{ m/s})} \left(\frac{0.0947 \text{ m}}{0.0947 \text{ m} - 0.01045 \text{ m}} \right) \Rightarrow$$

$$\boxed{b_{2} = 20.3 \text{ mm}} \qquad (2.79)$$

Se decide adoptar el valor de $b_2 = 25$ mm, que representa un valor más conservador, guiándonos por ejemplos industriales. Lo recomendable es utilizar el valor de b_2 obtenido aplicando la ecuación de continuidad .

2.12 DIÁMETRO DEL EJE Y DEL CUBO DEL RODETE.

El eje que será utilizado para el impulsor 80-160 debe ser un eje estandarizado según normas NEMA, en función de la potencia y la velocidad angular del motor, por lo tanto el cálculo realizado a continuación tiene como única finalidad verificar que el diámetro del eje calculado resulte menor que el establecido por la norma. De ser así el eje no fallará.

2.12.1 Diámetro del eje: de

El diámetro del eje viene dado por:

$$d_{e} = 28.f_{s}\sqrt[3]{\frac{P.K_{P}}{n}}$$
(2.80)

donde:

fs = factor de seguridad; fs \approx 4 para torsión pura en el eje y fs = 5 ó 6 para torsión combinada con flexión, como en las bombas con doble succión.

Kp = factor de compensación de la pérdida en el motor; su valor está entre 1,05 - 1,10.

P = potencia requerida en el eje en Kw.

- [n] = rpm
- $[d_e] = en mm$

La potencia requerida en el eje se calcula partiendo de la expresión:

$$P = \frac{\gamma H.Q}{\eta}$$
(2.81)

$$P \rightarrow Watt$$

$$Q \rightarrow \frac{m^{3}}{s}$$

$$\gamma \rightarrow \frac{N}{m^{3}}$$

$$P = \frac{9800 \text{ N}_{m^{3}} (55\text{m}).(0.044 \text{ m}^{3}/\text{s})}{(0.78)}$$

$$P = 30.5\text{kw} \qquad (2.82)$$

De la ecuación 2.4, con $f_s = 5$ y $K_p = 0.1075$ como valores medios se obtiene:

ſ

$$d_e = 28.(5).\sqrt[3]{\frac{(30.5 \text{kw}).(1.075)}{3550 \text{ rpm}}} \rightarrow d_e = 29.4 \text{ mm}$$
 (2.83)

En este trabajo adoptaremos $d_e = 31.7 \text{ mm}$ ya que este corresponde con el

estándar NEMA para el motor de 40 HP @ 3500 rpm y es mayor que el diámetro calculado.

2.12.2 Diámetro del cubo: d_c

El diámetro del cubo se calcula según la relación

$$\mathbf{d}_{\mathrm{c}} = \mathbf{f} \cdot \mathbf{d}_{\mathrm{e}} \tag{2.84}$$

donde: f = factor de dimensionamiento del cubo; su valor está entre 1.2 y 1.7

 $[d_c] = en mm$

de la ecuación (2.40) con f = 1.5 se obtiene:

$$d_c = 1.5 (31.7 \text{mm})$$

 $\overline{d_c = 38.1 \text{ mm}}$ (2.85)

2.13 Cálculo de los triángulos de velocidad a la entrada y salida del rodete.

a) Para un número infinito de álabes.

En base a los cálculos realizados, se pueden trazar los triángulos de velocidad a la entrada y a la salida del rodete, tal como se muestra a continuación.

Entrada.

Se tienen como datos para el trazado:

- $\alpha_1 = 90^\circ$ a lo largo del arista de entrada.
- $C_{1m} = 5.8 \text{ m/s}$ a lo largo del arista de entrada.
- $U_{1i} = 9.759 \text{ m/s}; U_{1m} = 14.6378 \text{ m/s}; U_{1p} = 19.52 \text{ m/s}$
- $\beta_{1i} = 30.73 \text{ m/s}; \beta_{1m} = 21.62 \text{ m/s}; \beta_{1p} = 16.55 \text{ m/s}$

Con estos valores es posible construir los triángulos de velocidad que se muestran a continuación.

Fig. 2.12 Triángulo de entrada sobre el disco anterior

Fig. 2.13 Triángulo de entrada en la línea media de flujo

Fig. 2.14 Triángulo de entrada sobre el disco posterior

Salida.

A la salida del rodete se tiene un solo triángulo de velocidad que se repite a lo largo del arista, debido a que en este caso se tiene una salida completamente radial. Se tienen como datos:

- $U_2 = 33.648 \text{ m/s}$
- $C_{2m} = 4.475 \text{ m/s}$
- $\beta_2 = 22.5^{\circ}$

Con estos datos es posible trazar el triángulo de velocidad correspondiente:

Fig. 2.15 Triángulo de velocidad a la salida del rodete.

2.14 Trazado de los álabes del impulsor. Vista Meridional.

Se utilizará el método del Profesor Zarea, haciendo uso de las líneas de corriente según el modelo matemático del "flujo absoluto helicoidal".

Inicialmente se calculan los siguientes valores:

$$R_1 = \frac{r_1}{r_2}$$
; $R_2 = \frac{r_2}{r_2}$; $x_1 = \frac{b_1}{r_2}$; $x_2 = \frac{b_2}{r_2}$

 X_1 : ancho adimensional del canal interálabe a la entrada del rotor.

X₂: ancho adimensional del canal interálabe a la salida del rotor.

L: es la longitud total que mide el ejer del gráfico de líneas de corriente.

donde: <

 r_1 : radio medio del rodete en la entrada de los álabes.

 r_2 : radio del rodete a la salida.

b₁ : altura del canal del impulsor en la succión.

 b_2 : altura del canal en la descarga.

$$R_1 = \frac{78.75}{181} \rightarrow R_1 = .435$$
; $R_2 = 1$;
 $x_1 = \frac{30}{90.5} \rightarrow x_1 = .3315$; $x_2 = \frac{20}{90.5} \rightarrow x_2 = .2209$

luego se aplican las siguientes leyes de proporcionalidad:

donde las magnitudes involucradas en las fórmulas se ver en la Fig.2.12

Se seleccionan dos líneas de corriente Ψ_1 y Ψ_2 tal que al medir la magnitud X₁ sobre la recta horizontal que pasa por R₁, se debe obtener el valor de X₂ sobre la recta horizontal que pasa por R₂ (R₂=1); las dimensiones X₁ y X₂ están delimitadas simultáneamente por las mismas líneas Ψ_1 y Ψ_2 que en particular constituyen, respectivamente, el contorno de las coronas interior y exterior del rodete en diseño.

Fig. 2.16 Líneas de corriente en un plano meridional obtenidas de la adopción del modelo matemático del flujo absoluto helicoidal.

En nuestro caso, ya que la arista de entrada no es paralela al eje de la bomba (Fig. 2.13), utilizaremos una plantilla (Fig. 2.14) con la forma del álabe a la entrada y con la longitud de la arista igual a X_1 .

Fig. 2.17 Plantilla del arista de entrada del impulsor.

Haremos también una plantilla representativa del álabe a la descarga.

Fig. 2.18 Plantilla del álabe a la descarga.

Finalmente se hace coincidir el punto medio de la plantilla con la línea vertical correspondiente a R_1 y se desplaza verticalmente hasta que encuadre entre dos líneas de corriente. Se verifica que la plantilla del arista de descarga coincida con estas mismas líneas de corriente al nivel de la línea vertical correspondiente a R_2 . Si no coincide se mueve la arista de entrada sobre la vertical y se repite hasta conseguir las líneas de corriente más apropiadas. Los resultados son mostrados en el Anexo E.

2.15 Trazado de los alabes. Vista principal.

Para trazar el álabe se utilizó el método de "Los Triángulos de error" (error triangles) propuesto por Stepanoff.

Pasos del método

 Se determina el desarrollo plano de las líneas de corrientes, se entiende por desarrollo plano, una proyección de la longitud y los ángulos reales de las líneas de corriente en un plano auxiliar para la construcción , en el caso de la 80-160 se asumió que el ángulo Beta (β) variaba linealmente con el radio, y según la siguiente ley de variación:

$$\beta_{n} = \beta_{2} + \left(\frac{\beta_{1i} - \beta_{2}}{r_{2} - r_{1i}}\right) \times (r_{2} - r)$$
(2.2.1)

Para la linea de corriente sobre disco posterior o trasero, r es el radio medido desde el centro del impulsor y β_n es el ángulo intermedio a calcular (todos los radios en metros y ángulos en grados) este tipo de variación fue recomendada por el Ing. John Watkins (tutor industrial).

Ahora se tiene una sucesión de segmentos de recta, con inclinación β_n , que serán colocados sobre rectas paralelas que representan diferentes circunferencias de radios (r_n) del impulsor, entre el radio de succión y descarga, para este caso del disco posterior, con diferentes inclinaciones β_n que son calculadas con la ecuación (2.2.1.).

Cálculos Tipo:

Para un caso particular se tiene, tomando $r_n = 75.5$ (en la Tabla 2.2.1) medido a partir del centro, en la proyección plana se tiene las circunferencias representadas como rectas (Fig.2.2.1).

Fig.2.19 Cálculo de beta para el disco posterior

Entonces con la ecuación (2.2.1) se tiene que:

$$\beta_{1i} = 22.5^{\circ} + (\frac{30.54^{\circ} - 22.5^{\circ}}{0.0905m - 0.02526m}) \times (0.0905m - 0.0755m) = 24.34855^{\circ}$$

Llevándose a continuación del anterior (24.946°), empezando en β_{1i} =30.54° y terminando en β_2 = 22.5°(Fig.(2.2.1)). Se observa que la sucesión de segmentos de recta logran la apariencia de una curva muy suave (Fig. 2.2.2).

Fig.2.20 Desarrollo plano la línea de corriente del disco posterior

Para las otras líneas se obtuvo las siguientes ecuaciones:

$$\beta = \beta_1 + \left(\frac{\beta_2 - \beta_1}{r_2 - r_1}\right) \times (r_2 - r) \text{ , para la linea media de flujo (2.2.2)}$$

$$\beta = \beta_1 + \left(\frac{\beta_2 - \beta_i}{r_2 - r_{10}}\right) \times (r_2 - r), \text{ para la linea de flujo del encierro superior (2.2.3)}$$

Para el alabe 80-160 se obtuvieron los siguientes resultados:

52.5	
32,3	
DISCO POSTERIOR LINEA MEDIA DE FLUJO	
$\begin{bmatrix} n & \beta n \\ 1 & 0.02526 \end{bmatrix} = 20.54 \end{bmatrix} = \begin{bmatrix} n & \beta n & m(m) \\ 0.020275 \end{bmatrix} = 21.48 \end{bmatrix} 20$	<u>m)</u>
	1,375 10 F
2 0,0305 29,0942507 30,5 0,0405 21,002445	40,5
	40,0 50 5
5 0.0455 28.0456775 45.5 0.0555 21.8017115	55 5
6 0.0505 27.4294911 50.5 0.0605 21.0017110	60.5
7 0.0555 26.8133047 55.5 0.0655 22.0012225	65.5
8 0.0605 26.1971183 60.5 0.0705 22.100978	70.5
9 0.0655 25.5809319 65.5 0.0755 22.2007335	75.5
10 0.0705 24,9647456 70,5 0.0805 22,300489	80,5
11 0,0755 24,3485592 75,5 0,0855 22,4002445	85,5
12 0,0805 23,7323728 80,5 0,0905 22,5	90,5
13 0,0855 23,1161864 85,5	
0,0905 22,5 90,5	
DISCO ANTERIOR	
1 <mark>rn betan rn(mm</mark>	
2 0,0525 16,43 52,5	
3 0,0555 16,9092105 55,5	
4 0,0605 17,7078947 60,5	
5 0,0655 18,5065789 65,5	
6 0,0705 19,3052632 70,5	
7 0,0755 20,1039474 75,5	
8 0,0805 20,9026316 80,5	
9 0,0855 21,7013158 85,5	
10 0,0905 22,5 90,5	

Tabla 2.2.1 Desarrollo del perfil de las líneas de corriente

En la Fig.2.2.2 se observa el desarrollo plano de la linea de corriente del impulsor 80-160. Se tomó como altura de los triángulos de error 5 mm. También se puede observar el valor real de β_{1i} y β_2 , el intervalo medio son los β_n calculados con la ecuación (2.2.1.)

Se debe comenzar por el disco posterior, porque las otras líneas de corriente deben ser siempre más cortas, también deben solaparse cerca del r_2 , para que se obtenga un alabe de descarga de curvatura simple, de esta manera se puede verificar posibles errores.

A continuación las tres líneas de corrientes juntas, a saber, linea del disco posterior, linea media de flujo y del disco anterior.

Figura 2.21 a) Desarrollo de las líneas de corriente del impulsor 80-160

 Luego de obtener el desarrollo plano del la linea de flujo, se divide en partes iguales por líneas horizontales (en este caso, se usaron los mismos radios r_n) separadas a una distancia igual a la altura que tendrá cada triangulo de error.

Se usaron los 5mm del trazado del desarrollo plano para la altura de los triángulos de error.

3. Luego de dividir la linea de corriente se miden las bases de los triángulos de error (L) (Fig.2.2.3a), y el valor del radio R desde el centro del impulsor, correspondiente a cada triángulo. Se obtiene el valor del ángulo (α°) correspondiente a la sección que abarca en la vista principal (Fig.2.2.3b), este arco se calcula mediante la siguiente ecuación:

$$\alpha^{\circ} = \frac{L}{R} \times \frac{180}{\pi} \tag{2.2.4}$$

Fig.2.21 b Elementos de la Ecuación 2.2.4

Fig. 2..21 c Elementos de la ecuación 2.2.4

El factor de conversión $180/\pi$ lleva de radianes a grados.

en nuestro caso se obtuvo:

En la vista principal, al pasar los triángulos,(como se muestra Fig.2.2.3c):

Figura 2.22. Vista principal de la linea de corriente del disco posterior

Cálculo Tipo:

Para un caso particular en el disco posterior se tiene:

Para R= 75.5mm,
$$\alpha^{\circ} = \frac{11.049 \text{ mm}}{75.5 \text{ mm}} \times \frac{180^{\circ}}{\pi} = 8.385^{\circ}$$

Luego se mide este ángulo a partir del anterior, se traza un radio y se corta a la circunferencia de radio 75.5mm y se obtiene un punto por donde pasa la curva de linea de corriente en la proyección principal como se muestra en la Fig.2.2.4a

Fig. 2.23 Calculo de **a**°

En el desarrollo de las tres líneas de corriente principales se obtiene:

Figura 2.24 Las tres líneas de corriente en la vista principal

4. Para obtener la cara anterior (Cara que no trabaja) del alabe se considera el espesor tomado del desarrollo plano (Fig.2.2.6), y se repite el procedimiento.

Fig. 2.25 Espesor en el desarrollo plano

5. Para determinar las curvas de elevación en la vista principal, primero se trazan las rectas auxiliares de construcción que se usaran para determinar las secciones del alabe de igual cota (A, B, C, etc. en la Fig.2.2.7).

Fig. 2.26 Corte de la vista meridional con planos de igual cota

Luego otro grupo de líneas de construcción uniformemente espaciadas I, II, III, etc.(Fig.2.2.8) (representan planos meridionales), que abarcan toda la longitud de la línea de flujo del disco posterior (más larga). Estas secciones meridionales (I, II, III, etc.) se intersecan con las tres líneas de flujo y se llevan a la vista meridional. Es interesante hacer notar que las rectas en la vista principal se ven curvas en la vista meridional y viceversa.

Fig.2.27 Líneas de construcción

Luego se intersecan en la vista meridional las rectas auxiliares A, B, C, etc. con las curvas I, II, III, etc. y se miden las distancias desde el eje del impulsor hasta las intersecciones, estas distancias son los radios de circunferencias que forman los lugares geométricos de estas intersecciones en la vista principal. Donde estas circunferencias se cortan con las rectas I, II, III, etc., en la vista principal, pasan las curvas de elevación (igual cota) (Fig.2.2.8).

Si las curvas de elevación no son suaves o se salen de las líneas de flujo de los discos, se debe revisar todo el procedimiento anterior.

Fig.2.28 Curvas de elevación

Para nuestro caso se realizo:

- I. Se dividió arbitrariamente, en 7 partes luego se trazaron radios uniformemente espaciados I, II, III..., VII, en las zonas no cubiertas se trazaron radios cualquiera, (VIII y IX) los puntos de corte con las líneas de flujo, en la vista principal y se transfirieron a la vista meridional.
- II. Luego se midieron los radios de corte de los planos (cuyo lugar geométrico es una circunferencia) de igual cota A, B, C, etc. con cada sección radial, I, II, III, etc. (Fig. 2.2.9) obteniéndose la intersección de estos planos con el alabe (Fig.2.2.10).

Fig. 2.29 Levantamiento de las curvas de nivel (vista meridional)

Fig. 2.30. Levantamiento de curva de nivel (vista principal)

Fig. 2.31 Vista del alabe 80-160 (cara de trabajo)

El resultado obtenido fue, para el alabe 80-160 (incluyendo el espesor del alabe):

Fig. 2.32 Vista del alabe 80-160 sólido

2.16 Cálculo de la caja espiral

Diseño De La Carcasa (Pump Casing)

Parámetros De Diseño

Para el diseño de la caja espiral se usaron los métodos de Stepanoff y el del Prof. Stefan Zarea.

El propósito de la carcasa es guiar el liquido de el impulsor, convirtiendo en presión la velocidad (energía cinética) desde la descarga del impulsor, hasta llevarla hasta afuera de la brida de descarga, *la carcasa no toma parte en la generación de altura (presión), toda la discusión de la carcasa solo esta basada en las perdidas hidráulicas.*

Como la distancia, entre la brida de succión y la descarga del impulsor, es corta y las velocidades son relativamente bajas, la pérdida de energía es relativamente baja.

La pérdida, debida a la fricción, en la descarga de la bomba es despreciable, como siempre, el diseño de la brida de succión (suction nozzle) tiene importancia por la distribución de velocidades, inmediante antes del impulsor, y por ello puede afectar la eficiencia y la cavitación. Estos efectos son más pronunciados en bajas cabezas de bombeo, y velocidad especificas altas.

VOLUTA

Exceptuando por las bombas verticales tipo turbina, la mayoría de las bombas son del tipo voluta. La principal ventaja de la carcasa de voluta, comparado con las de difusor

de aletas es la simplicidad. A pesar de esto las de difusor de aletas son más eficientes. Esto se ha probado experimentalmente para las bombas y ventiladores de una etapa.

Fig.2.33 Elementos de la carcasa

Hay varios elementos de diseño de carcasas de voluta que determinan las características hidráulicas, a saber: áreas de voluta, ángulos de voluta α_v , ancho de voluta b₃, y el circulo básico de voluta D₃ (Fig.2.15.1). La selección de estos elementos están gobernados por las consideraciones teóricas, pero los valores que actualmente se usan, se han establecido experimentalmente para el mejor desempeño hidráulico.

Fig. 2.34 Gráfica para determinar las dimensiones de la voluta

A. ÁREAS DE VOLUTAS: La Fig. 2.15.1 muestra que la capacidad total de la voluta pasa a través de la garganta AB en la Sección 8 otro poco pasa a través de la sección localizada en la pared divisoria (corte de agua), así, las áreas de la voluta se incrementan gradualmente desde el punto A hasta la lengua o el corte de agua (volute tongue, water-cut), a través del canal de voluta se acomoda hasta la descarga, en la periferia del impulsor. Cierta cantidad de líquido recircula entre el corte de agua y el diámetro mayor del impulsor y a través de los discos y el juego de la carcasa. La velocidad varia con la capacidad de la bomba, de esta manera el análisis se hará en el punto de máxima eficiencia o la capacidad de diseño (*best eficient point, b.e.p*). La capacidad de la voluta es menor que la del impulsor debido a las

pérdidas por goteo y la recirculación, que luego se tomara en consideración con el factor experimental.

La distribución de velocidades no es uniforme. Esto es fácil de visualizar teniendo en cuenta e flujo a través de una tubería en las condiciones más favorables, se sabe que la velocidad del flujo es 0.78 a 0.92 del centro de la tubería (Fig. 2.15.3).

Fig. 2.35 Distribución a la descarga del impulsor

La velocidad absoluta c₃' esta relacionada experimentalmente por:

$$C_3 = K_3 \cdot \sqrt{2gH} \tag{2.15.1}$$

Donde K_3 es un factor experimental de diseño. Este varia con la velocidad especifica. En la Fig. 2.3.2 se muestra los valores de K_3 para las bombas de voluta, considerables desviaciones de estos valores son posibles cuando el diámetro del impulsor es cortado o cuando son usados diferentes impulsores en la misma voluta. Como siempre, si las áreas de voluta son muy pequeñas en comparación con los valores óptimos el pico de eficiencia decrecerá y se moverá hacia una menor capacidad, o si es muy grande, el pico

de máxima eficiencia se moverá hacia una mayor capacidad. La eficiencia a capacidades medias mermara.

Las áreas de la voluta son medidas sobre o afuera del círculo base. El hecho de no haber un área mayor entre el corte de agua y el circulo base no afecta el método de medición de las áreas de voluta.

Para nuestro caso se tiene que con la ecuación (2.15.1):

$$c_3 = 0.36\sqrt{2 \times (115836.4 \, ft/min^2) \times (180.446 \, ft)} = 2327.63 \, ft/min \Rightarrow 0.647 \, ft/s$$

ó en S.I $\Rightarrow 0.197 m/s$

B. EL ANGULO DE VOLUTA (α_v): Para evitar la separación y el choque en el corte de agua, el ángulo α_v esta en correspondencia con la dirección del vector de velocidad absoluta a la descarga del impulsor (ángulo α_3), es dado por la Fig.2.3.2 una considerable desviación del ángulo α_3 , es posible en la practica sin ningún efecto perjudicial en la eficiencia a una baja y media capacidad. Primero, no se puede esperar que un alabe (corte de agua) pueda exceder el efecto guía del flujo total desde el impulsor, segundo, no habrá perdida cuando el flujo entre al alabe con un pequeño ángulo de ataque. Usualmente no existe una amplitud de agujero que se pueda proveer entre el impulsor y el corte de agua para que el flujo se ajuste con una pérdida mínima, a mayor capacidad el ángulo de la voluta α_v y la longitud y la forma se hacen más importantes.

Para n_s ' = 1980 (en unidades inglesas) que es nuestro caso particular se lee de la gráfica α_v =11°

C. LA ALTURA DE LA VOLUTA: El ancho de voluta b₃ Fig.2.15.1 es determinado con las siguientes consideraciones :

1. Ocurren menos pérdidas en la descarga del impulsor si la alta velocidad del flujo es descargada dentro de la rotación de líquido, en vez de paredes estacionarias.

2. El cuerpo de voluta debe poder acomodar impulsores de diferentes diámetros y anchos.

3. para bombas de velocidad específica media, $b_3=1.75b_2$, para bombas pequeñas y multietapa, $b_3=2.0b_2$. Para bombas de alta velocidad específica ($n_s>3000$ Doble succión) b_3 puede ser reducido a $b_3=1.6b_2$.

Para la 80-160 se tiene:

$$b_3 = 1.75 \times 25mm = 43.75mm$$

CIRCULO BASE: El circulo base se usa para dibujar el desarrollo de la voluta, el corte de agua (Diámetro D_v), arreglado por el diámetro del circulo base, determina las limitaciones físicas del máximo diámetro del impulsor. Si una cierta área de paso de agua entre el impulsor y la voluta no es mantenida, la bomba se vuelve ruidosa e ineficiente. La Fig.2.3.1 muestra el mínimo diámetro de área de paso entre el impulsor y la voluta expresado como una fracción del impulsor, o:

$$\rho = \frac{D_3 - D_2}{D_2} \tag{2.15.2}$$

Que esta graficado contra la velocidad específica en la Fig.2.3.2. Estos valores aumentan cuando el diámetro del impulsor es recortado. Se han

encontrado en pruebas especiales que han innecesariamente alargado el diámetro base para un impulsor recortado, que se reduce la eficiencia óptima de la bomba y se consume una potencia extra para recircular líquido a través del área de paso entre el impulsor y la carcasa..

Para la 80-160 se calculo con (2.15.2):

$$\frac{\mathrm{D}_3 - \mathrm{D}_2}{\mathrm{D}_2} \times 100 = 16$$

de la Fig. 2.15.2, entonces:

$$\frac{D_3 - D_2}{D_2} = \frac{16}{100}$$
$$D_3 = 1.16D_2 = 1.16 \times 181 \text{mm} = 209.96 \text{mm} \approx 210 \text{mm}$$

Para satisfacer la ecuación de continuidad del diseño de la caja espiral (voluta) de la bomba los elementos son conectados con la siguiente ecuación:.

$$A_{\nu} = b_3 D_3 \pi \cdot seno(\alpha_{\nu}) \tag{2.15.3}$$

Donde A_v es el área de la garganta de la voluta (Sección 8, Fig.2.15.1)

Calculando de la ecuación (2.15.3):

$$A_v = 47.75 mm \times 210 mm \times \pi \times seno(11.9) = 1515.6 mm^2$$

Como la sección del corte de agua es rectangular, se observa en la Fig.2.15.4:

Fig. 2.36 Área de corte de agua

Se puede calcular h₁ con la ecuación:

h₁ =
$$\frac{A_v}{b_3}$$
 (2.3.4) → para 80-160
h₁ = $\frac{1515.6 \text{mm}^2}{43.75 \text{mm}}$ = 34.64.mm

D. AREAS DE VOLUTA CONTRA LA VELOCIDAD ESPECÍFICA: de la grafica Fig. 2.3.2, se nota que para una altura dada y una capacidad Q, la velocidad de voluta decrece para mayores velocidades especificas. *Esto significa que, para una mayor velocidad especifica seleccionada, las áreas de voluta aumentaran para una misma velocidad rotativa, como:*

$$c_3 = K_3 \sqrt{2gH}$$
 (2.15.4) y $A_8 = \frac{Q}{c_3}$ (2.15.5)

la energía cinética contenida en el flujo en la voluta, expresada como la relación de la altura de velocidad, $c_3^2/2g_3$, para la altura total de la bomba también se disminuye. Esto se intuye con:

$$K_{3} = \frac{c_{3}}{\sqrt{2gH}}$$
 y $\frac{c_{3}^{2}}{2gH} = K_{3}$

y es mostrado en la Fig.2.3.2 la presión promedio en la caja espiral sobre la presión de succión a el punto de máxima eficiencia es igual a $H(1-K_3)$, despreciando la pérdida debida a la fricción en la caja espiral y la altura de velocidad en la brida de succión.

El sobre-dimensionamiento físico de la caja espiral esta determinado por el tamaño de las áreas de la voluta y el diámetro del circulo base. Para una altura y capacidad dadas, las áreas aumentan como la velocidad específica aumenta, pero la circunferencia base decrece.

Hay que notar que el paso entre el impulsor y la voluta es mayor para bombas de mayor velocidad específica Esto es necesario para minimizar las pérdidas en el proceso de llevar el flujo del impulsor (la componente c_{m2} de él), dejando al impulsor a un ángulo α_3 , y también se reduce las pérdidas cuando la velocidad absoluta del impulsor c_3 es reducida a la velocidad promedio de voluta c_3 '. La relación de $R_{c3}=c_3$ '/ c_3 es menor para una bomba de alta velocidad específica.

E. RADIOS DE LAS SECCIONES MEDIAS: Para las secciones medias de la voluta se usó el método del Prof. Stefan Zarea.
Primero con la Ec.

$$\rho = \frac{\varphi^{\circ}}{c} + \sqrt{2r_3 \frac{\varphi^{\circ}}{c}}$$
(2.15.7)

•

Donde ϕ^{o} es el ángulo de cada sección medido desde el corte de agua, ρ es el radio de cada sección y c se calcula así:

$$c = 360K_1$$
 (2.15.8)

$$K_1 = \frac{60 \cdot g \cdot H_{th\infty}}{n_s} \tag{2.15.9}$$

La Ec. (2.15.9) se puede escribir también en función del radio, por lo consiguiente, se obtiene:

$$\varphi^{\circ} = c(r_3 + \rho - \sqrt{r_3(r_3 + 2\rho)})$$
(2.15.10)

g es la gravedad en m/s², H en m, n_s en sistema internacional.

Calculando K1:

$$K_1 = \frac{g \cdot 32.19 \, ft \, / \, s^2 \cdot 180.4 \, ft}{1908} = 182.612$$

y c:

$$c = 360 \cdot 142.612 = 65740.5$$

Para $\phi^{\circ}=45$ se tiene que:

$$45^{\circ} = 65740.5(0.105 + \rho - \sqrt{0.105(0.105 + 2\rho)})$$

Resolviendo se tiene: $\rho=38$ mm

De (6.8) y (6.9) se obtuvo:

.

para c= 8701.84

φ°	ρ			
45°	12.7mm sección 1			
90°	18.4mm sección 2			
135°	22.82mm sección 3			
180°	26.72mm sección 4			
215°	29.5mm sección 5			
270°	33.5mm sección 6			
315°	36.5mm sección 7			
360°	39.4mm sección 8			

En el plano se tiene que:

Para un espesor de pared de 7mm y la brida se obtiene lo siguiente:

Fig. 2.37 caja espiral considerando el espesor igual a 7mm

Pero las secciones transversales de la voluta deben ser compensadas porque la holgura entre el diámetro D_2 y D_3 o base de voluta, le restan una porción de área que se puede calcular como (Fig.8.4)

$$AREA - DIF.: \frac{(\alpha \cdot r_{SECCIÓN})}{2} \cdot r_{SECCIÓN} - (\tan(\frac{\alpha}{2}) \cdot (r_{\sec ción} - 7)) \quad (2.15.11)$$

Donde: ÁREA-DIF. Es la diferencia entre la sección circular que se forma en el corte con r_3 menos el triángulo al centro de la sección de base el segmento de r_3

que interseca a la misma, α es el ángulo en (radianes)que forma la circunferencia (medida al centro) al corte con el r₃, r_{SECCIÓN} es el radio de la sección a calcular, el es la holgura entre r₂ y r₃.

Fig. 2.38 Calculo de diferencia de áreas

Para un caso particular:

$$AREA - DIF.: \frac{(126.66^{\circ}(\frac{\pi}{180^{\circ}}) \cdot 12.7)}{2} \cdot 12.7 - (\tan(\frac{126.66^{\circ}(\frac{\pi}{180^{\circ}})}{2}) \cdot (12.7 - 7) = 113.59$$

Para todas las secciones se obtuvo:

CALCULO DE ÁREAS DE SECCIÓN DE VOLUTA

R2-R3 7

RADIO	ÁREA S.C	ÁREA Δ	ÁNGULO	ÁREA RESTANTE
12,7	178,276581	64,6835257	126,66	113,5930557
18,4	305,583248	164,646505	103,43	140,9367431
22,88	420,745076	261,590691	92,1	159,1543851
26,72	528,779344	355,530642	84,87	173,2487021
29,5	587,499992	405,292673	77,36	182,2073189
33,5	738,722103	543,05421	75,43	195,6678929
36,5	838,937534	634,132026	72,16	204,8055081

S.C= SECTOR CIRCULAR

Luego que se conocen las áreas faltantes se colocan alrededor del circulo para completar quedando:

Fig. 2.39 Compensación de áreas

La sección 8 no se calculo porque se deforma al "enderezar" el flujo a la descarga (central y vertical).

2.17 TRAZADO DE LOS PLANOS DE MECANIZADO.

Para la elaboración de los planos del impulsor primero se trazan los planos del eje del motor, el adaptador y la tapa de sello, cuyas dimensiones están preestablecidas.

Fig. 2.41 Adaptador y tapa de sello

Luego se coloca el impulsor en base a la vista meridional diseñada, cuidando que los álabes estén ubicados de forma tal que quede posicionado correctamente el cubo del impulsor respecto del eje de la bomba.

Fig. 2.42 Dimensionamiento del impulsor.

Por último se ubica la voluta, partiendo del diseño, haciendo coincidir las líneas de centros de la voluta y el impulsor. Dimensionando luego la carcasa de forma que ajuste con la pieza intermedia y la tapa de sello y que se lleve a cabo un cierre adecuado en el anillo de succión para evitar recirculación.

Fig. 2.43 Montaje de la bomba.

2.18 EVALUACIÓN DEL EMPUJE AXIAL (AXIAL THRUST) Y VELOCIDAD CRÍTICA

2.18.1Calculo del empuje axial:

Fig.2.44 Diagrama del empuje axial

Los impulsores de simple succión (single-suction), están sujetos a un empuje axial por el área que se opone al ojo del impulsor que esta bajo la presión de succión en el frente del disco posterior y bajo la presión de descarga la parte de atrás de disco. La magnitud de este empuje (según propone Stepanoff) puede ser calculada por:

$$T = \frac{(A_1 - A_s)}{(p_1 - p_s)}$$
(2.17.1)

Donde T es el empuje axial en Newton, A_1 es el área correspondiente al diámetro D_{1o} del anillo delantero (succión) en mm², A_s área transversal del eje de la

bomba en mm^2 , p_s presión de succión en m, p_1 presión detrás del disco posterior en psi.

Fig. 2.45 Elementos de la Ecuación 2.17.1

El término (p_1 - p_s) es menor que la cabeza total (H) de la bomba porque el líquido que esta detrás del encierro trasero es en rotación, para una mayor precisión se puede usar la expresión empírica: H₁/2.31 donde H₁ se calcula con la expresión:

$$H_{l} = H(1 - K_{3}) - (\frac{1}{4})\frac{u_{2}^{2} - u_{r}^{2}}{2g}$$
(2.17.2)

Donde u_r es la velocidad relacionada con el radio del anillo delantero para la 80-160 se tiene:

$$H_{1} = 180.4 \text{ft}(1 - 0.36) - 0.25(\frac{(110.3 \text{ ft/s})^{2} - (64.015 \text{ ft/s})}{2 \cdot 32.18 \text{ ft/s}^{2}} = 84.11 \text{ft}$$

En el sistema internacional:

$$H_1 = 54.98m(1 - 0.36) - 0.25(\frac{(33.62m/s)^2 - (19.51m/s)^2}{2 \cdot 9.8m/s^2} = 25.63m$$

Entonces:

$$(p_1 - p_s) = \frac{84.11ft}{2.31} = 36.411ft = 15.78psi$$

En el sistema internacional:

$$(p_1 - p_s) = \frac{25.64m}{2.31} = 11m$$

$$T = \left(\frac{(4.,133\,pu\,\mathrm{lg})^2}{4} \cdot \pi - \frac{(1.25\,pu\,\mathrm{lg})^2}{4} \cdot \pi\right)(15.77\,psi) = 192.2lb = 855.021N$$

Se puede asumir que esta fuerza es uniforme en toda el área, el empuje real es un poco menor que el valor calculado con (2.5.1), por el cambio de momentum del flujo a través del paso por el ojo del impulsor, el cual en las bombas de flujo derecho causan un cambio de dirección de 90° en este punto. La fuerza que se opone se calcula con:

$$F = \frac{W}{g}c_1 = A_e c_1^2 \frac{\gamma}{g} = 2A_e \gamma \frac{c_1^2}{2g}$$
(2.17.3)

Donde A_e es el área neta en el ojo del impulsor y c_1 es la velocidad meridional a través del ojo del impulsor y γ es el peso específico del líquido que se bombea.

Para la 80-160 (en sistema internacional):

$$F = 2\left(\frac{(0.0151)^2 m^2}{4} \times \pi\right)9800 \frac{N}{m^3} \frac{(5.8m/s)^2}{2(9.81m/s^2)} = 3N$$

Entonces el empuje total sobre el impulsor es:

$$855.02N - 3N = 852.02N$$

La manera más eficiente de absorber el empuje axial es por rodamientos diseñados para ello (esta fuerza en la 80-160 será absorbida por el rodamiento de de contacto angular (6309) del motor eléctrico EBERLE, porque es pequeña y según el manual de operación es capaz de soportar hasta 1800N). Existen también otras maneras de reducir el empuje en el rodamiento, pero solo se puede hacer a expensas de la eficiencia de la bomba.

El primer método (El más usado por su simplicidad) es el que usualmente se usa para las bombas de una etapa. La cámara del sello mecánico que esta provista (detrás del disco posterior) con un anillo de de sellado, se une la succión para equilibrar las presiones, de dos maneras, el primero, taladrando agujeros alrededor de la succión (en el encierro trasero), el otro es uniéndolo mediante una pequeña tubería o canal a la brida de succión.

El segundo método consiste en colocar aletas radiales atrás del disco posterior para reducir la presión entre el impulsor y la caja espiral. Es obvio que el primer método dobla las pérdidas por goteo, que es función del ajuste del anillo. El segundo

Capitulo II Cálculo Hidráulico

método requiere potencia adicional, que no varía con el tiempo, a diferencia del desgaste de los anillos que aumenta el goteo, las aletas son más económicas, simples y efectivas que el primer método.

Los agujeros de empuje axial producen mayores pérdidas que el canal que conecta la cámara con la brida de succión, porque el goteo cae directamente sobre el flujo en el ojo del impulsor, produciendo turbulencia en la succión.

El balanceo por este método nunca es completo siempre hay un remanente de empuje que esta entre el 10% y 25%, que depende del diámetro de los agujeros. Para un balanceo completo necesariamente el diámetro del anillo de la cámara debe ser mayor que el diámetro del ojo del impulsor.

El empuje axial depende de la distribución de presiones en el espacio que hay entre los discos del impulsor y las paredes estacionarias. La distribución de presiones depende de la variación de la holgura entre los discos y la caja espiral. Esta se hace pequeña para las bombas que manejan sólidos en suspensión, para bombas de drenaje y aguas negras, para mantener estos sólidos fuera de estos espacios. Para aumentar la circulación entre los discos y la carcasa se colocan aletas en ambos discos. Para reducir el empuje axial también se puede aumentar la luz entre el disco anterior y reducirla en el disco posterior.

2.18.2 Velocidad crítica.

Verificación de eje de la bomba.

Relaciones teóricas:

el eje de la bomba esta diseñado para transmitir la potencia requerida sin vibraciones. Aparte del torque y el propio peso del rotor, se debe considerar el empuje axial y el radial para las bombas de una sola voluta.

Teóricamente la deflexión del eje, debería ser menor que el juego entre los anillos (fitted wear rings) en la succión y en la cámara del sello, pero en la práctica siempre por los métodos constructivos existen pequeños decentramientos, que hacen los anillos sirvan de apoyo al eje, como soportes (bocinas) internos. Una selección adecuada de materiales de los anillos y los fluidos bombeados (como el agua o petróleo caliente), siempre sirven de lubricante y refrigeración para los anillos, evitando así el desgaste prematuro de esta especie de "rodamientos internos".

La vibración en el eje usualmente aparece como resultado de deflexiones dinámicas que aumentan en las velocidades críticas que se calcularan. Ni siquiera los rotores balanceados con cuidado, escapan a los desbalanceos residuales, que desarrollan con la fuerza centrífuga, las deflexiones dinámicas que sumados a las deflexiones estáticas debido al propio peso del motor deberán ser consideradas. La fuerza centrífuga aumenta con el aumento de la deflexión que a la larga producirá una falla sobre el rotor, el eje o los rodamientos. Velocidad crítica para un solo impulsor en un eje sin peso (ideal):

Fig. 2.46 Diagrama de la ecuación 2.17.4

Un disco de peso W y masa m = W/g esta colocado sobre un eje sin peso, tal que, su centro de gravedad S esta desplazado del eje una distancia radial e, si el centro del disco deflecta una distancia "y" del eje de rotación, entonces el centro de gravedad se desplaza una distancia y+e del eje de rotación, y la fuerza centrífuga es:

$$\mathbf{P} = \mathbf{m}(\mathbf{y} + \mathbf{e})\boldsymbol{\omega}^2 \tag{2.17.4}$$

Donde ω es la velocidad angular en radianes por segundo (Fig.2.17.2). Con la proporción de entre la deflexión y la fuerza queda que:

$$P = Ky \tag{2.17.5}$$

K es la constante de proporcionalidad dada por el tipo de carga y el soporte del eje, esta definida como fuerza por unidad de deflexión.

Sustituyendo (2.17.5) y (2.17.4), se obtiene:

$$m(y+e)\omega^{2} = Ky$$

(2.17.6) y (2.17.7)
 $y = \frac{me\omega^{2}}{K - m\omega^{2}}$

Si ω aumenta tal que el denominador tienda a cero:

$$K - m\omega^2 = 0 \quad \text{y} \quad \omega_c = \sqrt{\frac{K}{m}} \tag{2.17.8}$$

Entonces y se tiende a infinito, teóricamente el eje falla. En la práctica se observa una vibración violenta y la deflexión *y* esta limitada por los anillos dentro de la bomba. Inclusive en máquinas que no tienen estos anillos, como apoyos internos, la deflexión en la velocidad crítica permanece limitada por:

- I. La velocidad crítica es un punto matemático donde ambos lados del eje pierden la propiedad de resistir vibraciones.
- II. Se requiere de tiempo para que el eje desarrolle su máxima deflexión, lo cual no sucede si este punto se pasa rápidamente.
- III. El medio en el cual esta sumergido el disco produce fricción adicional que retrasa esta deflexión y la amortigua.
- IV. La fricción interna del material del eje, y otros soportes como los rodamientos, causan disipación de la energía.

 ω_c es llamado velocidad angular crítica, a la cual se expresa RPM:

$$n_c = \frac{30\omega_c}{\pi} = \frac{30}{\pi}\sqrt{\frac{K}{m}}$$
 (2.17.9)

El valor de K depende de las dimensiones del eje, el material del que este hecho, la forma que están dispuestos los soportes y por último la distribución de la carga. Si *I* es el momento de inercia del eje, a y b son la distancia del disco de los soportes, E el módulo de elasticidad del material del eje, y la carga esta en voladizo, se puede calcular, para una bomba de una sola etapa "end suction":

$$y = \frac{Pa^2b^2}{3EI(a+b)}$$
 (2.17.10)

$$K = \frac{3EI(a+b)}{a^2b^2}$$
(2.17.11)

Combinando (2.17.7) y (2.17.8):

$$y = \left(\frac{\omega^2}{\omega_c^2 - \omega^2}\right) e = \left(\frac{n^2}{n_c^2 - n^2}\right) e \qquad (2.17.12)$$

Si la velocidad de operación n es mayor que n_c , y se vuelve negativo, entonces el eje tiende a enderezarse. El centro de gravedad del eje y del disco se balancean, cambiando posiciones.

Relación de la deflexión del eje con el peso del disco y la velocidad crítica:

La deflexión del eje por el peso del disco viene dada por:

$$W = K \cdot y_o \tag{2.17.13}$$

Con esta ecuación K puede ser calculada:

$$K = \frac{W}{y_0}$$
(2.17.14)

Sustituyendo el valor de K en (2.5.7):

$$\omega_c = \sqrt{\frac{W}{y_o m}} = \sqrt{\frac{g}{y_o}}$$
(2.17.15)

Hay que notar que el valor y_o de deflexión estática por el peso del disco es una medida de las propiedades elásticas del eje. En condiciones operativas la deflexión estática del eje puede cambiar, pero la velocidad crítica es la misma. Si el eje opera de forma vertical, entonces $y_o =0$. Habrá una deflexión adicional debido al efecto de la rotación, si opera sumergido, como en el caso de las bombas sumergibles con motores sumergidos en aceite dieléctrico, el líquido produce una deflexión adicional por la viscosidad, pero en todos los casos la velocidad crítica es la misma calculada (9.15). También aunque la luz en los anillos sea menor que y_o la velocidad crítica permanece igual, al menos que la luz sea tan pequeña que los anillos sean "rodamientos internos".

Existen una serie de factores que afectan la amplitud de la vibración en la velocidad crítica. Un número de encierros de anillos pueden actuar como absorbedores de vibraciones. Si el anillo que este más cerca del centro de gravedad, se le comienza a ajustar las tolerancias, se puede eliminar completamente las vibraciones. En este caso se presente un eje con tres soportes.

Un eje perfectamente balanceado:

En un eje perfectamente balanceado, el centro de gravedad coincide con el eje de rotación entonces e=0, entonces la ecuación (2.17.15):

$$my\omega^2 = Ky \tag{2.17.16}$$

Esta es la condición representada por (2.17.16) muestra el eje en un equilibrio perfecto, un estado donde las fuerzas centrifugas desarrolladas están balanceadas por las fuerzas elásticas para cualquier valor de y, o la menor fuerza puede, si pasa tiempo suficiente, deflectar el eje infinitamente, rompiéndolo.

El período de vibración natural y la velocidad crítica:

De la ecuación (9.8) se tiene el número de revoluciones por segundo es:

$$n_c = \frac{1}{2\pi} \sqrt{\frac{K}{m}}$$
 (2.17.17)

Este también es la ecuación del período natural de vibración del mismo rotor. En la velocidad crítica las vibraciones del eje están sincronizadas con el período natural de vibración del eje.

Capitulo II Cálculo Hidráulico

Fig. 2.47 Tabla de velocidades críticas según la configuración de las Bombas

Cálculos para la 80-160:

Para un voladizo como el de esta bomba la solución de ω_c viene dada por:

$$\omega_c = \frac{3EI}{ma^2 L1} \tag{2.17.18}$$

Fig. 2.48 Diagrama de la ecuación (2.17.18)
Con E=30.000.000 lb/in² para el acero, I=0.984 lb-in², con la ecuación (2.5.18), se tiene:

$$\frac{3 \cdot 30000000 \text{lb/in}^2 \cdot 0.049 \text{in}^4}{8.811 \text{b} \cdot (5.95 \text{in})^2 \cdot 35.43 \text{in}} = 405.8 \text{rpm} = 42.80 \text{rad/s}$$

Como la velocidad critica es menor que la de funcionamiento, la bomba trabajara sin problema.

CAPÌTULO III: CONSTRUCCIÓN DE LA BOMBA

3.1 INTRODUCCIÓN.

En nuestro caso la bomba que será construida es del tipo motobomba (bomba monoblock), que consiste de un motor con características especiales sobre el cual se monta todo el conjunto de la bomba.

El equipo constará de las siguientes partes principales:

 Motor: el cual será elegido según las normas NEMA como TEFC Frame 324 JM. (Ver Anexo A)

TEFC : motor bridado, completamente cerrado.Frame 324 : tamaño de la carcasa del motor.JM : tipo de eje.

- Adaptador (Pieza Intermedia): se utilizará el adaptador 200 12 ¹/₂ marca Malmedi, el cual se tiene como estándar, por la empresa, para las bombas con diámetro nominal de impulsor 160 y 200. Impulsor: este será construido por fundición de bronce en base al diseño llevado a cabo, considerando los recursos y limitaciones presentes en Bombas Malmedi.
- Carcasa: será construida sobre la base del modelo existente, modificando únicamente la región interior, es decir, la caja espiral.
- Sello Mecánico: será del tipo 21 de 1 ¹/₂". (Ver Anexo C)
- Bocina: se utilizará la bocina estándar para esta línea de bombas.
- Junta de empaque ('0' ring): de buna N, en base a las dimensiones de la carcasa. (Ver Anexo B)

3.2 PROCESO DE FUNDICIÓN.

3.2.1 Descripción General:

El proceso de fundición llevado a cabo por la fundición de "Bombas Malmedi" está dividido en dos tipos de moldeo, el moldeo en arena verde y el moldeo en cáscara (shell molding).

Moldeo en Arena Verde.

Se usa para llenar las cajas de fundición y dar la forma exterior a las piezas con la ayuda del modelo. Se emplea para este la arena del mismo nombre que está constituida por:

- Arena (Si O₂).
- Aglomerante.
 - Aditivos.
 - Agua.

Es llamada arena verde porque no se elimina el agua, es decir, la mezcla se usa húmeda.

- Ventajas del Proceso.

Es económico.

Presenta gran facilidad como proceso de producción.

La arena puede ser reciclada.

- Desventajas del proceso.

No se recomienda para haces espesores finos.

No origina buen acabado superficial ni exactitud dimensional.

Debido a la presencia de agua, origina gran cantidad de gases.

Moldeo en Cáscara (Shell Molding).

Se usa en la confección de los machos de fundición, siendo cocinado en las cajas de macho. La arena empleada se conforma de:

- Arena sílica.
- Hexametileno tetramina.
 - Estercato de calcio.
 - Resina fenólica.
- Ventajas del proceso:

El acabado superficial y la exactitud dimensional son buenas.

Permite fabricar piezas de espesores delgados.

- Desventajas del proceso.

Proceso caro debido al costo del equipo y aditivos especiales (resina,

etc.)

Este proceso no está automatizado, por lo cual todo se hace de forma artesanal. El horno existente permite fundir aleaciones de bronce y aluminio.

El horno consta básicamente de un cilindro de acero, revestido internamente con una pared de ladrillos de material refractario y recubiertos por un material similar. En su interior se halla el crisol, que es el recipiente en el cual se funden los metales. Entre el crisol y las

Fig. 3.2.1 Horno de

Fig. 3..2.2 Horno de Fundición

paredes del horno circula un torbellino de fuego producido por la inyección de una mezcla de gas y aire a presión. Este torbellino se inicia en la parte inferior del horno, ascendiendo en forma de espiral, hasta salir por un conducto ubicado en la tapa del horno.

Inicialmente, en el ciclo de fundición se determina la cantidad de piezas que se desean obtener, en base a esto se estima el peso total de bronce que debe ser fundido. Al peso total se le resta el peso del bronce de retorno (este no puede ser mayor al 15% del peso total), constituido por el residual lingoteado de coladas anteriores, así como piezas defectuosas rechazadas por control de calidad. El peso restante debe ser mezclado en la siguiente proporción:

7.5 % de Zinc

4 % de Silicio

Antes de dar inicio al proceso de fundición se moldean todas las cajas de fundición y se colocan en posición a la espera de la colada.

Fig. 3.2.3 Cajas de Fundición

Con el horno apagado se coloca el material de retorno en el crisol, se tapa el horno y se enciende. Cuando todo el material agregado se encuentra líquido, se introducen al crisol el cobre,

Fig. 3..2.4 Horno Encendido silicio previamente pesados.

el

Cuando toda la aleación ha llegado a la temperatura adecuada se precalientan las cajas de fundición y los

Fig. 3.2.5

cucharones de colada, entonces se extrae el material fundido vertiéndolo en las cajas moldeadas.

Cuando se han llenado todos los moldes, se tiene que extraer todo el material residual del crisol y se deposita en lingotes que serán agregados como material de retorno en futuras coladas.

Fig. 3.2.6 Lingoteo de material de retorno

3.2.2 Moldeo de la Carcasa:

• Se llena la caja de fundición con arena sílice y sobre esta se coloca la parte correspondiente (parte inferior) del modelo, compactándose hasta que adquiera cierta rigidez. Es recomendable

Fig. 3.2.7 Modelo de la carcasa

recubrir el modelo con grafito (o similar) para facilitar el desmoldeo.

Fig. 3.2.8 a. Moldeo de la carcasa

• Se coloca la segunda caja sobre la primera, se ubican en su posición la parte siguiente del modelo y la brida de succión (se debe recubrir toda la superficie libre con grasa) y nuevamente se llena de arena sílice.

Fig. 3.2.8 b

• Se coloca la tercera caja y se repite el llenado.

Fig. 3.2.8 d

• Se abre un orificio en la caja superior para verter el material.

Fig. 3.2.8 e

• Ahora se lleva a cabo el desmoldeo, primero la caja superior, luego la brida, la caja intermedia, la cara superior del modelo y por último la parte inferior del modelo.

Fig. 3.2.8 g

Fig. 3.2.8 h

Fig. 3.2.8 i

Fig. 3.2.8 l

Fig. 3.2.8 m

• Sobre la caja inferior se coloca el macho y luego se reubican las cajas superiores, quedando así completado el moldeo para fundición.

Fig. 3.2.8 n

• Se precalienta el molde, utilizando un soplete a gas, para evitar enfriamientos bruscos de la colada y consecuentemente problemas como: estructura preferencial de grano o anisotropía, cristalización del material, rechupe, poros, etc.

• Se extrae manualmente el material del horno, utilizando un tazo y se vierte directamente por el orificio del molde.

3.2.8 o Colada

3.2.8 p

• Luego de media hora es posible sacar la carcasa, la cual deberá ser limpiada para retirar restos de arena sílice y el material correspondiente al macho de fundición.

3.2.3 Moldeo del Impulsor:

Este proceso es llevado a cabo de manera similar al moldeo de la carcasa. A continuación se detalla la secuencia:

• Se moldea la cara inferior del modelo en la primera caja.

Fig. 3.2.9 b

• Se coloca sobre la primera, la caja siguiente y se procede a moldear la cara restante del modelo.

Capítulo III: Construcción de la Bomba

3.2 Proceso de Fundición

Fig. 3.2.9 e

• Seguidamente se lleva a cabo el desmoldeo, quedando impresa la forma del modelo en la arena.

Fig. 3.2.9 g

Fig. 3.2.9 h

• Se coloca el macho de fundición en su posición y se acoplan las cajas nuevamente.

Fig. 3.2.9 j

• Se precalienta la caja y se vierte el material fundido por el orificio dejado en la caja.

Fig. 3.2.9 k

Fig. 3.2.9 l

• Finalmente se obtiene un impulsor, el cual pasará a limpieza y mecanizado.

3.3 MODELADO DEL IMPULSOR Y LA CARCASA.

3.3.1 Impulsor.

Para llevar a cabo la construcción de un impulsor cerrado, por fundición, se necesita de un modelo y de una caja de machos.

El "modelo" es una pieza, en nuestro caso de aluminio, que tiene la forma externa del impulsor para imprimir dicha forma en la arena de moldeo.

La "caja de macho" es un molde de aluminio que tiene, internamente, idéntica forma a la del impulsor.

Modelo.

• Para diseñar el modelo se parte del plano del impulsor presentado anteriormente. Para la elaboración del modelo solo tiene importancia el contorno del impulsor, las cavidades interiores serán dimensionadas por el macho de fundición.

Fig. 3. 3.1 Plano del Impulsor

• Se agregan 5 mm (en base a la experiencia) en las dimensiones de este, para reponer las contracciones de fundición y el material mecanizado.

Fig. 3.3.2 Sobre-dimensionamiento del modelo

• Se agregará ahora un disco, cuya función es originar una cavidad en la arena de fundición sobre la cual se soportará el macho de fundición.

Fig. 3.3.3 Anillo de Soporte

• Para facilitar el moldeo, el modelo será hecho en dos mitades, las que se unirán por medio de un tornillo.

Fig. 3.3.4 División del Modelo

• Dos aspectos muy importantes en la elaboración del modelo son: el acabado superficial y la conicidad. El primero de estos se logra con un mecanizado adecuado y posterior lijado y rectificado y, contribuye con el buen acabado de la pieza y evita que la arena se quede pegada al modelo. El segundo punto, es decir la conicidad, es otorgada al modelo con el fin de facilitar el desmoldeo.

Fig. 3.3.5 Conicidad del Modelo del Impulsor

Fig. 3.3.6 Mecanizado del Modelo.

• En base al plano del modelo obtenido, se mecanizará en torno un tocho de aluminio que servirá de materia prima para dichas piezas.

Caja de Machos.

- Se parte de los planos del impulsor y el objetivo es realizar un molde que tenga forma interna idéntica a este, que resista altas temperaturas para que el macho pueda ser cocinado en el y que sea fácilmente desmoldable.
- La caja de machos será construida en aluminio por su maleabilidad, bajo punto de fusión (para que sea fundido con facilidad) y ser capaz de resistir las temperaturas máximas necesarias para la cocción del macho.
- La caja de machos consta de cuatro partes principales:

Fig. 3.3.7 Partes de la caja de machos

Fig. 3.3.8 Zona interior del impulsor

 Partiendo del plano del impulsor,
el macho debe tener la forma interior de este. A esta zona interior, se deben agregar los resaltes, sobre los cuales se apoyará el macho dentro de las cajas de fundición, consideradas también en la elaboración del modelo.

Fig. 3.3.9 Apoyos del Macho de Fundición

 Ahora que ya se tiene la forma completa del macho, se dimensiona el anillo, cuya altura es la misma que la altura del canal del álabe a la descarga. Este anillo debe estar mecanizado internamente con un ángulo de 3 a 4º de forma que pueda ser extraído del macho cocido hacia abajo.

Fig. 3.3.10 Dimensionamiento del Anillo

 Se dimensionan los discos inferior y posterior de manera similar, respetando la forma del macho y considerando un espesor de pared entre 7 y 8 mm, obteniéndose los planos de mecanizado (Anexo XX2). Estos planos son impresos a escala real y son cortados y pegados sobre láminas de ladera, las cuales servirán de plantilla para el torneado.

Fig. 3.3.12 Caja de Machos.

 Solo falta colocar los álabes de la caja de machos, los cuales no van fijos a esta, sino que van insertados por medio de pines que encajan en agujeros hechos en el disco posterior. Esto con el fin de facilitar la extracción del macho de la caja luego de su cocción.

Nota: La construcción de los álabes se detalla en la sección "Mecanizado de los álabes en el CNC"

3.3.2 Elaboración de la Modelería de la Carcasa

Como premisa, se debe mencionar que el modelo de la carcasa, como la caja de macho fue realizada por los modeleros de Hidromac (Colombia), respetando los planos de diseño enviados (Voluta y altura de Voluta). Según su experiencia, determinaron la forma final de la carcasa y la forma de ajuste entre la el modelo y el macho de fundición.

Teniendo en cuenta que en el diseño se obtuvo:

Fig. 3.3.13 Secciones de la caja espiral obtenida en el diseño

El modelo se realizo considerando, *en cuanto a la forma:* que la carcasa debe usar una pieza intermedia 200 soporte III, en la succión y descarga, se deben poder acoplar a contra-bridas de 3" y 4" según las normas ANSI 125 lb., también *en cuanto a la cantidad de material* en exceso, debe haber material para mecanizar la embocadura de la pieza intermedia y las roscas, obteniéndose lo siguiente:

Fig. 3.3.14 Material en exceso para el posterior mecanizado de la carcasa

En la brida de succión se observa material para cilindrar, esto es para dar un buen agarre en el momento de voltear la carcasa para dar las medidas necesarias para colocar la pieza intermedia.

Fig.3.3.15 Brida de succión sobredimensionada

En la Fig. 3.3.3 se observa la disposición del material en exceso para el cilindrado.

En ambas bridas se agrego material para su posterior aplanado, y de esta manera asegurar que sean planas al momento de colocar las contra-bridas.

Ahora se agregan alargamientos para acomodar el macho en la cavidad, como se muestra en la figura:

Fig. 3.3.16 Alargamientos en el modelo

El modelo debe tener conicidades para desmoldarse fácilmente, entonces:

Fig.3.3.17 Conicidades en el modelo

Finalmente, para facilitar el moldeado se tienen 3 partes, de esta manera se acomoda en tres cajas de arena, con la siguiente disposición:

Fig.3.3.19 Partes del modelo

Fig.3.3.20 Parte del modelo y su cavidad en la arena de fundición

Caja De Macho De La Carcasa

Internamente la voluta debe tener la forma determinada en el diseño de la carcasa, para ello el modelero usa plantillas con los radios y secciones de voluta:

Fig.3.3.21 Plantilla de sección de la voluta y ubicación

En la figura se observa la plantilla de la sección 1, el modelero coloca las secciones según el ángulo, formando la curva de la caja espiral, obteniéndose el "negativo" de la forma deseada, a la cual hay que agregar los alargamientos iguales a los del modelo:

Fig.3.3.22 Caja de Macho para la Carcasa 32-125

Macho de Fundición de la Carcasa

Con la caja de macho construida, se hace el macho de fundición, con los alargamientos adecuados se tiene el "Positivo" de la caja espiral, se acomoda en la cavidad que hace el modelo. En la Fig.3.3.11 se observa el macho de fundición.

Fig.3.3.23 Vistas del Macho de fundición de la Carcasa

Los alargamientos también tienen la conicidad, que busca la coincidencia con el modelo:

Fig.3.3.24 Conicidad del Macho de La Carcasa

3.4 MECANIZADO

3.4.1 Mecanizado del impulsor

El mecanizado del impulsor y la carcasa se realizó según los planos de diseño (Anexo H).

Fig.3.4.1a Montaje de la bomba

En la figura se observa la disposición final de las partes de la bomba.

El impulsor en bruto tiene un sobredimensionamiento para que se pueda realizar el mecanizado que se ajustará a las medidas calculadas en el montaje.

Fig. 3.4.1b Impulsor antes y después del Mecanizado

Para el impulsor y la carcasa, las medidas de longitud (Fig.3.4.2), se toman a partir del centro hidráulico para garantizar la alineación final entre ambas partes.

Fig. 3.4.2 Coincidencia de los centros hidráulicos de la carcasa e impulsor

Para mecanizar el impulsor, se debe:

I. Empezar por la parte trasera (disco posterior, Fig. 3.4.3a) del impulsor

Fig. 3.4.2a Agarre inicial para el Torneado

Fig. 3.4.3a Mecanizado del impulsor

II. Buscar perpendicularidad entre el eje de giro y las paredes internas de los discos (Fig. 3.4.4), tratando en lo posible evitar la excentricidad del cubo del impulsor.

Fig. 3.4.4 Centrado del Impulsor

En el impulsor las medidas críticas son:

Diámetro interno de Cubo (Fig. 3.4.5):

La medida de tolerancia se verifica un "pasa-no pasa" (Fig. 3.4.6a) de medidas de 31.752 y 31.76. Si el diámetro es mayor entonces existiría juego entre el impulsor y el eje produciendo vibraciones, y si es menor no entra.

Fig.3.4.5 Diámetro de la manzana del impulsor

Fig.3.4.6a Diagrama del Pasa-no pasa

Diámetro interno del anillo de succión (Fig.3.4.6b):

También se usa un pasa-no pasa de 116.95 y 117. (Fig.3.4.7) La importancia de esta medida radica en que, si existe mucho juego, aumentan las pérdidas por recirculación, disminuyendo la eficiencia hidráulica de la bomba y como consecuencia la disminución de la altura de bombeo. Si entra en aprieto el impulsor rotará con dificultad debido al roce, aumentado las pérdidas mecánicas.

Fig. 3.4.3b Anillo de la succión

Fig. 3.4.7 pasa-no pasa del Diámetro de Succión

Altura total del impulsor

Al mecanizar la altura se debe asegurar la posición del centro hidráulico, que *"fisicamente"* no existe, como se muestra en la Fig.3.4.8. Se deben hacer ciertos cálculos para cumplir con esta premisa.

Si el centro hidráulico se desplaza aumentan las pérdidas por choque, disminuyendo la eficiencia de la bomba.

Fig. 3.4.8 Altura total del impulsor

Fig. 3.4.9 Cilindrado del impulsor

Luego del torneado del impulsor se debe mecanizar el cuñero, esta operación se hace mediante *cepillado* en una prensa hidráulica, con un cepillo de Acero rápido.

El Cuñero cuadrado es de ¼", como se muestra en la Fig.3.4.10, según se especifica en las normas NEMA.

Fig. 3.4.10 Aspecto del cuñero

Luego del mecanizado se balancea estáticamente el impulsor (Fig. 3.4.11).

Fig. 3.4.11 Impulsor Mecanizado Estáticamente

3.4.2 Mecanizado de la Carcasa

Para el centrado de la carcasa en bruto se debe buscar que las paredes de la voluta giren perpendicular al eje, tratando de evitar la excentricidad en el giro de la brida de succión.

A igual que en el impulsor, se debe respetar la posición del centro hidráulico y se deben dar medidas, con tolerancias muy exactas, siendo las más críticas:

Diámetro de emboque de la Tapa sello(Fig.3.4.11a):

La tolerancia pedida se da con el calibrador. La tapa sello que emboca lleva un "o-ring" que al deformarse produce el sellado que evita las fugas del fluido de bombeo, si el diámetro en la carcasa es mayor puede haber goteo.

Fig. 3.4.11a Diámetro de emboque del porta sello

Diámetro del anillo de la succión (Fig. 3.4.12):

Se verifica con un pase de 117.00 y117.10, al igual que en el impulsor, deferir de esta medida tiene las mismas consecuencias.

3.4 Mecanizado

Fig. 3.4.12 Diámetro de emboque del anillo de la succión

Altura total de la carcasa (Fig. 3.4.13) :

Al igual que en impulsor se deben respetar todas las cotas, para así asegurar la alineación de los centros hidráulicos.

Fig. 3.4.13 Altura de la carcasa

3.4.3 Otras piezas de la bomba.

La pieza intermedia, tapa sello y la bocina, es estándar en Malmedi y el impulsor y la carcasa se ajustan a ellas.

Para el mecanizado de la pieza intermedia y la tapa sello (Fig3.4.14 y 3.4.15), se considera como las medidas más importantes, la altura total y los diámetros de emboque.

Fig. 3.4.14 Medidas de la pieza intermedia

La tapa sello (Fig. 3.4.15) se inserta en la pieza intermedia y tiene las medidas del diámetro del asiento del estacionario del sello mecánico, y el diámetro que emboca en la carcasa.

Fig. 3.4.15 Tapa sello

Para la bocina se tiene la altura total, que abarca todo el tramo de diámetro $1\frac{3}{8}$ " (Fig.3.4.16) en el eje:

Fig. 3.4.16 Eje del Motor eléctrico según Nema

El escalón de la bocina comprime el sello mecánico (Fig.3.4.17).

Fig. 3.4.17 Escalón de la bocina

Fig. 3.4.18 Mecanizado de la bocina

Los diámetros interno y externo de la bocina se mecanizan con Pasa-no pasa de 34.925-34.9464 y de ± 0.05 de la medida exterior.

Sobre el diámetro exterior se coloca el sello mecánico (Fig.3.4.19A), y el interno se le coloca silicón para evitar el paso de fluido.

Fig. 3.4.19a Montaje del sello mecánico sobre la bocina

Fig. 3.4.19b Montaje del sello sobre la bocina y el estacionario en el porta sello

Cabe destacar que en el mecanizado, se debe garantizar que los ejes de rotación de todas las piezas que conforman la bomba deben coincidir, con un grado mínimo de desvío, con el del motor eléctrico para evitar roces.

Para el taladrado de todas las piezas se usan "dispositivos", con los diámetros de roscado y los agujeros en la posición adecuada.

Las herramientas de corte usadas para el Hierro y el Bronce fueron de WIDIA. Para el acero inoxidable (Material de la bocina) se uso Acero Rapido.

Las velocidades de corte que se usaron fueron seleccionadas por los obreros, según sus criterios.

Fig. 3.4.20 Bomba Ensamblada

3.5 ENSAMBLAJE DE LA BOMBA.

• El ensamblaje de la bomba comienza con el motor, sobre el cual se coloca la pieza intermedia (adaptador).

Fig 3.5.1 Motor.

- Fig. 3.5.2 Colocación del Adaptador
- Previo a esto se ha colocado la cara estacionaria del sello mecánico en posición, dentro de la cavidad correspondiente (porta sello).

Fig. 3.5.3 Colocación del o'ring.

Se coloca la junta de empaque (O'ring) en la ranura predestinada.

Fig. 3.5.4.a Colocación del Sello Mecánico

Fig. 3.5.4 b

- Se inserta la parte rotativa del sello mecánico sobre la bocina y este conjunto es colocado luego sobre el eje, aplicando una película delgada de silicón para evitar fugas entre el eje y la bocina.
- Se coloca el impulsor sobre el eje quedando entre estos la cuña que permitirá la transmisión de potencia del eje al impulsor. El eje es sujetado por un tornillo roscado en la punta del

eje, utilizándose tres arandelas: una plana de amianto, una plana de acero inoxidable y una de presión.

Fig. 3.5.5 Colocación del impulsor.

 Por último, se coloca la carcasa, quedando así completamente armada la bomba.

Fig. 3.5.6 Colocación de la carcasa

CAPÍTULO IV

4.1 DESEMPEÑO HIDRÁULICO (CURVAS TEÓRICAS) PARA LA BOMBA CENTRÍFUGA 80-160

Trabajo de álabe (H_{thx})para corriente variable:

Para una entrada perpendicular ($\alpha_1 = 90^\circ$), y un número infinito de alabes:

$$H_{thox} = \frac{u_2}{g} (u_2 - \frac{ctg\beta_2}{\pi D_2 b_2} Q_x) \quad (4.1)$$

Donde Q_x es cualquier caudal en m³/s, esta es una recta y para la 80-160 se obtiene la gráfica:

Fig.4.1.1 Gráfica de H_{thx}

Tomando en cuenta el resbalamiento se tiene que:

$$H_{thx} = \frac{1}{1+p} \frac{u_2}{g} \left(u_2 - Q_x \frac{ctg(\beta_2)}{\pi D_2 b_2} \right)$$
(4.2)

Para la 80-160:

Fig.4.1.2 Gráfica de H_{thx} con resbalamiento

Para obtener la altura de elevación H_x , hay que deducir de los valores de H_{thx} , la totalidad de las pérdidas hidráulicas, es decir:

- Las pérdidas por rozamiento en el impulsor, incluida la debida a los cambios de dirección, y la pérdida por transformación de velocidad a presión.
- \blacktriangleright Las pérdidas por choque h_s a la entrada del impulsor y caja espiral.
- Pérdidas por rozamiento en los canales. Cuando hay ausencia de choques, estas pérdidas son las que se consideran en el rendimiento

hidráulico η_h , que se conoce cuando se proyecta la bomba. Para el caudal normal Q, se tiene que:

$$h_{h} = (1 - \eta_{h})H_{th}$$
 (4.3)

Estas pérdidas varían según una función parabólica, de exponente entre 1.75 y 2. Para simplificar se usará la ley del cuadrado de las velocidades. Esta parte del origen y pasa por h_h , Entonces se puede deducir que:

$$h_{hx} = (1 - \eta_h) H_{th} \left(\frac{Q_x}{Q}\right)^2$$
 (4.4)

Calculando para 80-160:

Fig.4.1.3 Gráfica de H_{thx} con resbalamiento y rozamiento

Pérdidas por choque:

Cuando hay un cambio brusco de la velocidad media en la entrada se produce este tipo de pérdidas. En la entrada del impulsor cuando la velocidad c_1 difiere de la de diseño, se tiene una ω_1 diferente, variando β_1 , cambiando el triángulo de velocidades en la entrada, entonces se produce el *choque*.

En la descarga del impulsor también se produce choque contra la caja espiral, que es proyectada para las condiciones de diseño, obviamente es de forma fija. Esta pérdida es función de D_2/D_3 , se considera como la *componente de choque* (c_{s2}).

$$c_{s2} = c_2 \frac{D_2}{D_3}$$
 (4.5)

de forma que se deduce:

$$h_{h} = \left(\frac{\varphi}{2g}\right) \left[u_{1}^{2} + \left(\frac{u_{2}}{1+p}\frac{D_{2}}{D_{4}}\right)^{2}\right] (4.6)$$

Esta ecuación representa a una parábola cuyo vértice esta en el caudal de diseño. ϕ oscila entre 0.6 y 1. Para la 80-160 se tomará 0.75, calculando:

4.1 Curvas Teóricas

Q		Hthx	Hthx	h թ	hs	Hreal
	0	115,356738	69,7908265	0	16,1083976	53,6824289
	0,02	115,342179	69,7820183	3,7918386	5,04206068	60,948119
	0,04	115,32762	69,77321	15,1654399	0,22789151	54,3798786
	0,06	115,313061	69,7644018	34,1179321	1,6658901	33,9805795
	0,08	115,298502	69,7555935	60,6464435	9,35605643	-0,24690647
					Altura Tec considera resbalami Altura Teć	órica ndo el ento orica
				_	Pérdidas rozamient	por o
ך 140						
120 -					Pérdidas	por choque
100 -						
80 -					Altura Rea	al
60 -						
40 -						
20 -						
0 -				T		
-20 [_])	0,02	0,04	0,0	06 0,0	08 0,1
			r	n3/s		

Fig.4.1.4 Gráfica de H_{thx} con resbalamiento, rozamiento y choque

4.2 ENSAYO DE LA BOMBA 80-160,

La bomba diseñada es centrifuga, de flujo radial y *end suction*. Fue armada de la forma "monoblock", es decir, la carcasa esta montada directamente sobre el motor, estas clasificaciones son según covenin y el instituto hidráulico (anexo B-II).

Descripción del banco de pruebas:

Fig. 4.1.6a Banco de pruebas

El banco de prueba de Malmedi, cuenta con un tanque de unos 12.000 litros, con unos 5m de profundidad, desde donde se succiona para evitar la formación de vórtices, y así evitar que la bomba succione aire. Se cuenta con un manómetro para la descarga de lectura máxima de 25kg/cm² con una exactitud de 1% y precisión de \pm g20 /cm², en la succión un vacuómetro de rango de -1kg/cm² a 1.5kg/cm² con una exactitud de 1% y una apreciación de 50g/cm², ambos tipo bourdon, cumpliendo con los requerimientos de las normas covenin, para la medición del caudal se usa una turbina y cuya medición es en GPM con una apreciación de \pm 0.01GPM,

Fig. 4.1.6b Banco de pruebas

Fig. 4.1.6c Esquema del Banco de pruebas

Luego de obtener las mediciones de presión y caudal se procede, para la descarga, con la ecuación, según covenin:

$$hd = \frac{10^4 \cdot G_1}{\gamma} + Zd \tag{5.1}$$

Donde:

hd : Altura de descarga, expresada en m

 G_1 : Lectura del indicador de presión, expresada en kgf/cm².

 γ : Peso específico del fluido manejado, expresado en kgf/m³.

Zd: Distancia vertical entre el borde de la conexión en el manómetro y el nivel de referencia, expresada en m.

Para la succión:

$$hs = \frac{10^4 xG_3}{\gamma} + Zs \tag{5.2}$$

Donde:

hs: Altura de succión, expresada en m.

 G_3 : Lectura del indicador de presión, expresada en kgf/cm².

 γ : Peso específico del fluido manejado, expresado en kgf/m³.

Zs: Distancia vertical entre el punto de conexión y el nivel de referencia, expresada en m.

Para calcular la altura estática total:

$$H_e = h_d - h_s \tag{5.3}$$

El caudal se lee directamente en el medidor de turbina, que cuenta de con una pantalla digital.

Para la 80-160, se tiene la siguiente data:

O BOMBA DATOS DE PRUEBAS HIDRAULICAS

FECHA	26/11/01	TIPO DE PRUEBA			impulsor de	la tesis
DATOS DE LA	А ВОМВА					
BOMBA	AZF	MODELO	100-160T	CODIGO		CLIENTE
TAMAÑO	181	IMPULSOR	BRONCE	SERIAL		
OBSERVACIONES PRIMERA PRUEBA IMPULSOR TESIS						

DATOS MOTOR

DATUS MOTO	JK						
MOTOR	EBERLE	MODELO		POT (HP)	40	AMP	47,5
FRAME		RPM	3550	VOLT	440	FS	1,15

DATOS HIDRAULICOS DE LA BOMBA ______DATOS DEL SISTEMA

TABLA DE DATOS

	E	MPERAJ	A	Hsuc	Hdes	CALIDAL (CRM)	NO
	3	2	1			CAUDAL (GPM)	N
	12	19,5	22	0,3	5,5	0	1
	18	27	28,3	0,3	4,8	300	2
	20	29	30	0,3	4,4	400	3
Voltaje	21,8	30	32	0,3	3,8	500	4
	22	31	32,3	0,3	2,8	600	5
	22	30	31	0,3	2	630	6
	28,6	20	30	0,3	1,2	648	7
							8
							9
							10
							11

OBSERVACIONES -

Fig. 4.1.8 Primera Prueba

MALMEDI DATOS DE PRUEBAS HIDRAULICAS

FECHA 06/12/01 TIPO DE PRUEBA

DATOS DE LA	ВОМВА				
вомва	AZF	MODELO	80-160 B	CODIGO	CLIENTE
TAMAÑO	181	IMPULSOR	BRONCE	SERIAL	
OBSERVACIONES	1ER IM	IPULSOR SE	GUNDA PI	RUEBA	

DATOS MOTOR

MOTOR	EBERLE	MODELO		POT (HP)	40	AMP	47,5
FRAME		RPM	3550	VOLT	440	FS	1,15

DATOS HIDRAULICOS DE LA BOMBA ______DATOS DEL SISTEMA

TABLA DE DATOS

NO	CALIDAL (GPM)	Hdes	Hsuc	A	MPERAJ		
N-	CAUDAL (GPM)			1	2	3	
1	0	5,6	0,4				
2	200	5,6	0,4	20,5	30,7	28,5	
3	400	5,2	0,4	26	36,5	34,2	
4	600	4,5	0,3	29	39,3	38,3	Voltaje
5	700	4	0,3	30,2	41,3	39	455
6	800	3,2	0,3	29,3	41	38,7	430
7	890	3	0,3				451
8							
9							
10							
11							

OBSERVACIONES

Fig. 4.1.9 Segunda Prueba

BOMBA*s* DATOS DE PRUEBAS HIDRAULICAS MALMEDI TIPO DE PRUEBA

FECHA

DATOS DE LA BOMBA			
ВОМВА	MODELO	CODIGO	CLIENTE
TAMAÑO	IMPULSOR	SERIAL	
OBSERVACIONES			
<u></u>			

_DATOS MOTOR

MOTOR	MODELO	POT (HP)	AMP
FRAME	RPM	VOLT	FS

DATOS HIDRAULICOS DE LA BOMBA ______DATOS DEL SISTEMA

Punto	Q	Efic	Hdes	Brida Succ	Man Desc
Q=0				Brida Desc	Man Suc
Max Efic				LINEA	

TABLA DE DATOS

	E	MPERAJ	A	Hsuc	Hdes		NO
	3	2	1			CAUDAL (GPM)	N°
				0,3	6	0	1
				0,3	5,6	200	2
				0,3	5,4	300	3
Voltaje				0,3	5,1	400	4
455				0,3	4,75	450	5
430				0,3	4,4	500	6
451				0,3	3,9	600	7
				0,3	3,5	650	8
				0,3	3	700	9
				0,4	2,5	750	10
				0,4	1,8	803	11

OBSERVACIONES -

Fig. 4.1.10 Tercera Prueba

BOMBAS DATOS DE PRUEBAS HIDRAULICAS

FECHA	06/12/01	TIPO DE PR	UEBA		Diseño Producto Nuevo						
DATOS D	E LA BOMBA										
BOMBA	AZF	MODELO	80-160 B	CODIGO		CLIENTE					
TAMAÑO	Diam. 181	IMPULSOR	Bronce	SERIAL							
OBSERVACIONES											

DATOS MOTOR

		1		1			
MOTOR	EBERLE	MODELO		POT (HP)	40	AMP	47,5
FRAME		RPM	3550	VOLT	440	FS	1,15

DATOS HIDRAULICOS DE LA BOMBA _____ DATOS DEL SISTEMA

_

Punto	Q	Efic	Hdes		
Q=0	0		56 m		
Max Efic	700	80,5	44 m		

Brida Succ	4	Man Desc
Brida Desc	3	Man Suc
LINEA	3	3

TABLA DE DATOS

NO		Hdes	Hsuc	A	MPERAJ	E	
N°	CAUDAL (GPM)	kg	kg	1	2	3	
1	0	5,6	0,41				
2	200	5,6	0,38	20,5	30,7	28,5	
3	400	5,2	0,36	26	36,5	34,2	
4	600	4,5	0,33	29	39,9	38,3	Voltaje
5	700	4	0,29	30,2	41,3	39	455
6	800	3,2	0,29	29,3	41	38,7	430
7	890	2,2	0,29				451

OBSERVACIONES -

Fig. 4.1.10 b Cuarta Prueba

Calculo tipo

Entonces:

hd =
$$\frac{10^4 \cdot 4 \frac{kgf}{cm^2}}{1000 \frac{kgf}{cm^2}} + 0.05m = 40.05m$$

hd =
$$\frac{10^4 \cdot 0.29 \frac{kgf}{cm^2}}{1000 \frac{kgf}{cm^2}} + 0.00m = 2.9m$$

Y finalmente con (5.3):

$$H_e = 40.05m + 2.9m = 40.95m$$

Analisis de Resultados

Comparando los resultados de las Pruebas, se tienen las gráficas:

	Prueba #1												
Q(GPM)	HD(KG)	HS(KG)	Q(m^3/s)	HT(m)	Amperaje			EFF(%)	POT(HP)				
0	5,5	0,28	0	57,92	22	19,5	12						
300	4,8	0,28	0,019	50,9	28,3	27	18	57,5	22				
400	4,4	0,28	0,025	46,89	30	29	20	62,1	25				
500	3,8	0,3	0,032	41,08	32	30	21,8	65,4	26				
600	2,8	0,32	0,038	31,26	32,3	31	22	70,6	24				
630	2	0,33	0,04	23,35	31	30	22	65,9	21,6				
648	1,2	0,33	0,041	15,33	30	20	28,6	60	21,5				

	Prueba #2														
Q(GPM)	HD(KG)	HS(KG)	Q(m^3/s)	HT(m)	Amperaje		EFF(%)	POT(HP)							
0	5,6	0,41	0	60,22											
200	5,6	0,38	0,013	59,92	20,5	30,7	28,5	43,2	23						
400	5,2	0,36	0,025	55,71	26	36,5	34,2	62,6	29,5						
600	4,5	0,33	0,038	48,4	29	39,3	38,3	71,7	33,53						
700	4	0,29	0,044	42,99	30,2	41,3	39	73,3	34						
800	3,2	0,29	0,05	34,97	29,3	41	38,7	69,2	33,5						
890	3	0,29	0,056	32,97											

	Prueba #3													
Q(GPM)	HD(KG)	HS(KG)	Q(m^3/s)	HT(m)	Amperaje		EFF(%)	POT(HP)						
0	4,6	0,27	0	48,8										
200	4,5	0,27	0,013	47,8	18	23	23	44	18					
400	3,9	0,29	0,025	41,98	24,2	29,1	30,1	50,8	27,4					
600	2,8	0,33	0,038	31,36	27	32,2	32,4	57,7	27					
700	2,1	0,36	0,044	24,65	26,4	32,4	31,3	67,9	26,2					

	Prueba #4														
Q(GPM)	HD(KG)	HS(KG)	Q(m^3/s)	HT(m)	n) Amperaje		EFF(%)	POT(HP)							
0	5,75	0,28	0	60,42	15,1	19,5	18								
200	5,5	0,27	0,013	57,82	25,2	25,4	20,7	68,4	14						
400	5,1	0,29	0,025	54,01	27	32	31,3	67,5	26,5						
600	4,5	0,34	0,038	48,5	38	38,3	32,2	73	33						
700	4	0,46	0,044	44,69	35,1	40,1	38,3	77,1	33,6						
933	3,25	0,43	0,059	36,87	41,5	40,8	38,5	75,4	37,8						

Fig.. 4.1.12 Datos de las gráficas

Notas:

-La prueba 1 y 3 Se obtuvo, debido a la colocación errónea de los alabes en la caja de machos, un exceso del ancho del alabe a la descarga (σ).

- En las pruebas 2 y 4, Se uso un recurso sugerido por Pfleider, que consiste en afilado del alabe a la descarga, y se observa la notoria mejora en el desempeño de la bomba centrífuga.

-También se observa, que, a máxima eficiencia, aproximadamente 47 *m de agua*, comprobando lo que señala la ecuación fundamental de las turbomáquinas.

Fig. 4.1.13 Afilado del alabe a la descarga

ANÁLISIS DE RESULTADOS

1 – En el primer impulsor se observan los siguientes problemas:

- Posicionamiento erróneo de los álabes sobre la caja de machos, alterando así los valores de β₁ y β₂ calculados y el diámetro D₁.
- El acabado superficial de los álabes de la caja de machos es muy rugoso, trayendo como consecuencia dificultades a la hora de extraerlo del macho, una vez cocido, arrastrando material de este y fisurandolo. Esto trae como consecuencia que el material colado no fluya de la manera esperada, formando protuberancias indeseadas y dejando perforaciones en los álabes del impulsor.

2 – El segundo impulsor resultó tener una altura de álabe aproximadamente 3.5 mm menor a la de diseño (a lo largo de todo el álabe) debido a que se rebajó excesivamente el macho con el fin de corregir defectos. Esto provocó una altura de bombeo menor a la esperada y un caudal máximo menor al especificado.

3 – En el tercer y último impulsor se obtuvo (prueba 2 y 4):

- Buen acabado superficial.
- Mejor posicionamiento de los álabes.
- Ninguna protuberancia en el paletado.
- Altura correcta de los álabes.

Las pruebas hidráulicas arrojaron una altura de bombeo de 24 m a un caudal de 700 GPM, siendo esta mucho menor a la esperada. Al revisar el impulsor se nota que, en la descarga, el área del canal inter.-álabe está disminuida debido a un σ₂ exagerado. Esto se debe a errores constructivos. Se procede entonces a afilar los álabes en sentido de un aumento del ángulo de salida β₂, aumentando así el área a de salida. El resultado obtenido después de estas modificaciones es de una altura de 47m a un caudal de 700 GPM observándose notorias mejoras.

CONCLUSIONES.

Los resultados de los ensayos experimentales confirman los valores obtenidos por cálculo para el régimen de diseño.

Para regímenes de operación diferentes del nominal la curva característica obtenida por cálculo suministra valores mayores que los resultados experimentales, la diferencia llega hasta 14.5%.

Los parámetros geométricos se escogieron de acuerdo al método de A. J. Stepanoff (Método II), lo que no permitió la obtención de la altura especificada en el tema de este proyecto. Este resultado se debe a la determinación de una manera independiente de β_2 y D₂. Este inconviniente se corrige utilizando el método de Stefan Zarea (Método I).

La fabricación del rotor diseñado se logró utilizando los métodos clásicos de construcción del modelo en madera y aluminio, la fundición en bronce y hierro y el mecanizado en torno paralelo.

El mecanizado permitió obtener el acabado asegurando la rugosidad requerida por las normas.

Se ha logrado el ajuste necesario en el anillo de desgaste de aspiración.

El banco de pruebas de la empresa Malmedi está instrumentado adecuadamente y permitió la determinación de los parámetros Q y H con la presición exigida por las normas Covenin.

Cabe señalar que la curva H vs. Q para n constante obtenida, tiene una variación continua de la tangente, poniendo en evidencia una correcta lectura de los instrumentos.

RECOMENDACIONES

Luego de haber realizado el siguiente trabajo, presentamos las siguientes recomendaciones.

Utilizar un centro de mecanizado de 5 ejes, lo que permita elaborar el modelo y la caja de machos del impulsor completo, sin la necesidad de métodos artesanales que puedan introducir errores dimensionales.

Utilizar un programa CAD/CAM permitirá la elaboración de los modelos de la carcasa con gran exactitud y simplicidad.

El Autocad constituye el medio más eficiente y eficaz en el proceso de diseño geométrico del impulsor y la carcasa.

Implementar nuevos métodos de diseño y trazado de los álabes, utilizando los recursos existentes, como métodos matemáticos aplicados a la informática.

ANEXOS.

ANEXO A: SELECCIÓN DE MOTOR

CLOSE-COUPLED PUMP

"JP" AND "JM" SHAFT - OPEN DRIPPROOF **3 PHASE HORIZONTAL TYPES D-1 AND D-4**

SECTION:	201
PAGE:	16
EFFECTIVE:	01-15-93
SUPERSEDES:	02-01-92

FEATURES: 40°C ambient rated class F insulation, oversized ball bearings with locked shaft end construction, F-1 assembly, 3 phase, 60 hertz.

APPLICATIONS: Designed for the specific requirements of centrifugal pumps.

		1			MODEL NUMBER							
		1				TYPE D-1 (JI	P)		TYPE D-4 (JM	D	1	APPROX.
		NEMA	LIST	SERVICE		VOLTAGE			VOLTAGE		NOM.	SHIPPING
HP	RPM	FRAME	PRICE	FACTOR	200	208-230/460	230/460	200	208-230/460	230/460	EFF.	WT. (LB)
1	1800	143	\$156	1.15		C529			C511		74.0	30
1-1/2	3600	143	\$178	1.15		C530			C512		77.0	30
	1800	145	\$170	1.15		C531			C513		77.0	35
2	3600	145	\$200	1.15		C532			C514		81.5	35
	1800	145	\$178	1.15		C533			C515		81.5	35
3	3600	145	\$224	1.15		C534			C516		86.5	40
	1800	182	\$208	1.15		C517			C535		78.5	50
5	3600	182	\$268	1.15	F726	C518		E879	C536		84.0	70
	1800	184	\$268	1.15		C519			C537		81.5	75
7-1/2	3600	184	\$322	1.15	F727	C520		F952	C538		84.0	75
	1800	213	\$388	1.15	F734	C521		E881	C548		84.0	100
10	3600	213	\$414	1.15	F728	C522		F953	C549		88.5	110
	1800	215	\$460	1.15	F735	C523		E882	E682		84.0	115
15	3600	215	\$512	1.15	F729	C524		F954	E683		89.5	140
	1800	254	\$622	1.15	F736	C525		E883	E684		87.5	160
20	3600	254	\$646	1.15	F730	C526		F955	E685		89.5	160
	1800	256	\$750	1.15	F737	C527	-	F959	E686		87.5	195
25	3600	256	\$760	1.15	F731	C528		F956	E687		87.5	195
0.000	1800	284	\$908	1.15	F738	E688		F960	E692		89.5	210
30	3600	284	\$926	1.15	F732	E689		F957	E693		88.5	230
	1800	286	\$1048	1.15	F739	E690		F961	E694		90.2	280
40	3600	286	\$1160	1.15	F733	E691		F958	E695		90.2	320
	• 1800	324	\$1370	1.15			G240			G241	N.A.	420
50	•3600	324	\$1484	1.15			G244			G245	N.A.	420
	•1800	326	\$1582	1.15			G248		and the second	G249	N.A.	460
60	•3600	326	\$1730	1.15			G252			G253	N.A.	460
	1800	364	\$1880	1.15			+			•	N.A.	580
75	1800	365	\$2222	1.15			+				N.A.	600
100	1800	404	\$2840	1.15			-			-	N.A.	750

Motors marked 208-230/460 volts may not meet all NEMA (MG-1) performance standards when operated at 208 volts.

Type R-1 and R-4 cast iron frame.

. Motor have 12 leads out and are suitable for wye delta start on either voltage.

Non stock items

★ ADDED OR CHANGED THIS ISSUE

U. S. ELECTRICAL MOTORS DIVISION OF EMERSON ELECTRIC CO.

DISCOUNT SYMBOL: DS-3PO

FRAMES 284JM THRU 326JM -- TYPE R-4 (DRIPPROOF) CLOSE - COUPLED PUMP MOTORS

BASIC FRAMES 280JM	A MAX. 14	D 7	E 5-1/2	2 1	G 5/16	H 17/3	J 2 2-1/2	K 2-13/1	6 1	0	T 1-13/16	0 1.2	495	AA 1-1/2	AB	AC 8-3/4	AF 2-5/8	AH 5-1/4	AJ	AK 005
320JM	16	8	6-1/4	1-1	/16	21/3	2 2-13/16	3-11/1	6 1	15-15/16	2-1/4	1.2	495	2	14-5/8	10-3/16	3-5/8	5-1/4	11	12-1/2
BASIC FRAME	BA	-	3B 062	BD MAX.	E	E	BF	-	EL 002	EM	ENI		EP MIN.	EC +.02	ER 0 MIN.	ES MIN.	ET +.020	SQ.	BB	BASIC
280JM	5-5/8	5,	16	13	31	/32	5/8-11 x 15/	16 1	3/4	1-3/8	1/2-13 :	x 1	2-1/8	5/8	8 5-1/4	2-1/2	3	1/4		160025
320JM	6-1/8	5,	16	13		-	5/8-11 x 15/	16 1	-3/4	1-3/8	1/2-13	x 1	2-1/8	5/	8 5-1/4	2.1/2	3	1/4		162249

FRAME	В	с	F	L	BG
284JM	11-1/8	24-1/4	4-3/4	9-1/4	9-3/4
286JM	12-5/8	25-3/4	5-1/2	10	10-1/2
324JM	12-7/8	26-3/16	5-1/4	10-3/16	10-3/4
326JM	14-3/8	27-11/16	6	10-15/16	11-1/2

Conduit box can be located on either side and opening may be located in steps of 90 degrees regardless of location. Standard as shown, with conduit opening down.

Dimension "D" will never be exceeded, but may be less than values show. When exact dimensions are required, shims up to 1/16" may be necessary.

All rough casting dimensions may vary by 1/4" due to casting variations.

All tapped holes are unified national coarse, right hand thread,

* Largest motor width.

Tap size and allowable bolt penetration.

TOLERANCES	
Permissible eccentricity of mounting rabbet	.006 F.I.R.
Permissible shaft runout	.003 F.I.R.

U.S. ELECTRICAL MOTORS DIVISION EMERSON ELECTRIC CO.

Printed in U.S.A.

FEBRUARY 1, 1986 EFFECTIVE: SUPERSEDES: OCTOBER 31, 1982

SECTION: 205 PAGE : 54

DO NOT USE FOR CONSTRUCTION PURPOSES UNLESS CERTIFIED
ANEXO B: SELECCIÓN DE O'RINGS

O-RINGS De Presición

Sellos anulares - Arosellos - Juntas tóricas

La facilidad de uso, la producción económica, la fácil disponibilidad, los alojamientos simples, la fácil instalación y disponibilidad en varios materiales han hecho del O-ring el sello más usado. Deben de usarse preferiblemente para aplicaciones estáticas y en caso de aplicaciones dinámicas unicamente en condiciones de operación moderadas. Los limites principales son la velocidad, la presión de operación y el medio a sellar.

Materiales disponibles Calidad NBR-Buna N

Calidad industrial para uso general con buena resistencia contra aceites hidráulicos y lubricantes a base de pétroleo, aceites de transmisión, aceites vegetales y animales, aire, alcalinos hasta 70°C, agua hasta 80°C, Freon, detergentes, etc. Resistente a temperaturas de -30°C hasta 110°C.

Calidad VITON 00

Calidad industrial para uso general con excelente resistencia contra productos calientes a base de petróleo, a ácidos, liquidos a base de esterfosfatado entre otros productos químicos. Resistente a temperaturas de -20°C hasta 205°C.

Calidad Silicona

Calidad especial de caucho silicona con alta resistencia a calor seco, oxigeno, gases inertes a altas temp., ozono, aceites vegetales y animales. Baja compatibilidad a aceites minerales. Aplicación solamente como SELLO ESTATICO. Resistente a temperaturas de -70°C hasta 230°C

Calidad Teflón @ - PTFE

Muy buena compatibilidad quimica con la mayoria de los líquidos y químicos. excepto algunas medios a base de Fluor. No contaminante. Resistente a temperaturas de -150°C hasta 260°C. Se utiliza en la industria química y alimenticia en lablicaciones estaticas unicamente (bridas o tapas)

Calidades especiales a base de pedido:

Neopreno, EPDM, HNBR, etc.

Recomendaciones para presiones máximas admisibles

Aplicación dinámica (presión /luz radial)

Recomendaciones para ranuras

estático

Ŧ

1.3

Espesor

1

dinámico

Tamaño del alojamiento estático b

0.8

dinámico triangular b

8 9.4

10.8

t

13

b

0.9

	1.5	11	1.9	1.5	1.9
	1.78	1.3	2.3	1.5	1.9
	Z	1.5	2.5	1.7	24
	2.4	1.8	3.1	2.1	2.9
	2.5	1.9	3.2	2.2	3
	2.62	2.0	3.4	2.3	3 1
	3	2.3	3.9	2.6	36
	3.53	2.7	4.5	31	4 2
	4	3.15	52	3.5	4.8
	4.5	3.6	5.8	4	5 4
	5	4	65	4.45	6
	5.33	43	6.9	4.7	64
1	5.7	4.65	7.4	5.1	6.9
A El Mamues	6	4 95	7.8	5.4	7.Z
	6.99	5.85	9.1	6.3	8.4
8 - 237.2228	8	6.75	10.4	7.2	9.6
4 - 234.0306	9	7.7	11.7	8.2	10.8
ADV DEPENDENCE SAND		1. 2002	- 53,545 (PC	11 0310	-0-02.St.

Av. Rómulo Gallegos, Los Dos Caminos, Res Las Torres (trente C C El Trebol)

 Telfs y Fax:
 (02)
 237.1268 - 237.2228

 Telfs y Fax:
 (02)
 238.5284 - 234.0306

Av.Rómulo Gallegos Los Dos Caminos Res Las Torres (frente C.C.El Trébol)

O-RINGS MILIMETRICOS Calidad Caucho NITRILO - Buna N (NBR) 70º Shore A

E (espesor) 2.4 mm CODIGO dia int. mm	E (espesor) 2.5 mm CODIGO dia int mm	E (espesor) 3.0 mm CODIGO dia int mm
H-24013 13.3	H-25060 60	H-30028 28
H-24014 14.3	H-25062 62	H-30029 29
H-24015 153	H-25064 64	H-30020 30
H-24016 163	H-25065 65	H-30030 30
H-24017 173	4.25067 67	H-30031 31
H-24018 183	H-25067 67	H-30032 32
H-24019 193	H-25020 00	H-30033 33
H-24070 203	H-25070 70	H-30034 34
H-24032 223	H-25076 76	H-30035 35
H-24026 253	H-25073 /5	H-30036 36
H-24027 273	4.25085 85	H-30037 37
H-24030 203	H-25003 03	H-30038 38
H-24033 333	N-25090 90	H-30039 39
H-£4033 33.3	H-25094 94	H-30040 40
	H-25093 55	H-30041 41
E (aspasor) 2.5 mm	H-25100 100	H-30042 42
CODICO dis int mm	H-25105 105	H-30043 43
cobido dia int min	4.35110 110	H-30044 44
H-25004 4	4.95116 115	H-30045 45
H-25005 5	4.35130 130	H-30046 46
H-25006 6	H-25120 120	H-30047 47
H-25007 7	H-25130 130	H-30048 48
H-25008 8	H-25140 140	H-30049 49
H-25009 9	H-25130 150	H-30050 50
H-25010 10	H-231/3 1/3	H-30052 52
H-25011 11		H-30053 53
H-25012 12	E (annanas) 27 mm	H-30054 54
H-25013 13	c (espesor) 2.7 mm	H-30055 55
H-25014 14	CODIOO DIa INE IMM	H-30056 56
H-25015 15	R - 8 89	H-30057 57
H-25016 16	8 - 9 105	H-30058 58
H-25017 17	R - 10 121	H-30028 23
H-25018 18	R - 12 151	H-30060 60
H-25019 19		H-30062 62
H-25020 20		H-30063 63
H-25021 21	E (espesor) 3.0 mm	H-30064 64
H-25022 22	CODIGO dia int mm	H-30065 65
H-25023 23		H-30066 65
H-25024 24	H-30004 4	H-30067 67
H-25025 25	H-30005 5	H-30068 68
H-25026 26	H-30006 6	H-30069 69
H-25027 27	H-30007 7	H-30071 71
H-25028 28	H-30008 8	H-30077 72
H-25029 29	H-30009 9	H-30072 72
H-25030 30	H-30010 10	H-30074 74
H-25031 31	H-30011 11	H-30075 75
H-25032 32	H-30012 12	H-30076 76
H-25033 33	H-30013 13	H-30078 78
H-25034 34	H-30014 14	H-30080 80
H-25035 35	H-30015 15	H-30082 83
H-25036 36	H-30016 16	H-30084 84
H-25037 37	H-30017 17	H-30085 85
H-25038 38	H-30018 18	H-30086 86
H-25039 39	H-30019 19	H-30088 88
H-25040 40	H-30020 20	H-30090 90
H-25042 42	H-30021 21	H-30092 92
H-25043 43	H-30022 22	H-30094 94
H-25044 44	H-30023 23	H-30095 05
H-25045 45	H-30024 24	H-30098 00
H-25047 47	H-30025 25	H-30100 100
H-25050 50	H-30026 26	H-30102 103
H-25053 53	H-30027 27	H-30104 102
H-25054 54		H-30105 104
H-25055 55	Distat	H-30103 105
H-25056 56	Usa int	H-30108 108
H-25057 57	A	4-30112 110
H-25058 58	Esp	H-30112 112
H-25059 59		H-30114 114

ANEXO D: PROGRAMACIÓN DEL CENTRO DE MECANIZADO.

D.1 Descripción Del Centro De Mecanizado

En Malmedi se cuenta con dos centros de mecanizado de 3 ejes marca YANG modelo EAGLE, y control numérico FANUC, esta marca es considerada una de las mejores del mercado, el modelo es SERIE 00, Entre las particulares del constructor esta en que el CNC no hace sub-rutinas sino sub-programas. Entre los principales inconvenientes esta que la máquina no tiene ningún tipo interface, ni protocolo de comunicación. Todos los programas deben ser introducidos manualmente, lo que aumenta las posibilidades de error.

En X y Y el desplazamiento máximo es de 1500mm, en Z es de 1000mm.

Además Se cuenta con una gran variedad de fresas para ranurado, aplanado, desbaste, roscado y afinado. Para el mecanizado de los alabe se usaran fresas de acero rápido (high speed steel ó H.S,S) de 3/8" y 1/2", para el mecanizado del bronce y el aluminio, que se usara para la caja de macho de fundición.

Fig. D.1 Centro de mecanizado de Malmedi

D.2 Programación Del Centro De Mecanizado

Esquema de programación: Primero se identificara las rutas que seguirán las fresas con los planos de vista principal y vista meridional, luego se harán los cálculos geométricos para determinar las coordenadas con la ayuda de un programa CAD. como el AUTOCAD, y se procederá al programa en código.

Fig.D.2.1 Rutas del programa para la vista meridional

No se usara las compensaciones por radio de la máquina (G41, G42) debido a que la fresa que se va a usar no es de las que se usa normalmente en la producción, porque se mecaniza hierro de fundición, que se trabaja con Widia.

Se uso como tocho un disco de 100mm de radio y 45mm de alto (Fig.3.6) (Solo se obtiene la curva del disco anterior), el alabe es más largo para que al momento de mecanizar se afile el ángulo a la descarga.

Fig. D.2.2 Medidas del tocho

Entonces en código G:

N10 G0 X0. Y0. Z20.;

N20 G1 Z0. F300;

N30 X53.597;

N40 G18 G3 X98.44 Z-14.55 R71.6;

N50 X100.;

N60 G0 Z35.;

N70 X0.;

N80 M99

Este es un sub-programa, que se repetirá para mecanizar el arco de circunferencia que ocupa el alabe, aproximadamente 150°, y durante las pruebas se determinó que la máquina no puede girar el sistema de coordenadas y hacer una interpolación circular en otro plano diferente al del giro de coordenadas, entonces no se giro el eje de coordenadas, sino la pieza a mano, el programa que repite la vista meridional es:

N10

N20

N30 G52 X0. Y0 Z(TOCAR SUPERFICIE DEL TOCHO) . N40 M98 P35(VISTA MERIDIONAL);

N50 G51 X0. Y0. Z0. R10;

N60 Z100.;

N70 M30;

Luego se debe obtener las curvas según la elevación determinada en el diseño del alabe, para ello se uso un disco de 35mm de diámetro, entonces se mecaniza la pieza según los siguientes planos (como en la vista meridional, perpendicular al eje Z)

Fig. D.2.3 Curvas de nivel del alabe (CNC)

Con el autocad se hallaron las coordenadas de las curvas de nivel de la siguiente forma (para la de 10mm):

- Se consideró el diámetro de la fresa.
- ▶ La altura del disco 3/16" igual 4.76 mm.

Fig. D.2.4 Cotas de la curva de 10mm

Tomando las cotas apropiadamente se tiene:

N320 X-10. Y120.; N330 X-8.061 Y116.66; N340 Z-15.;(10mm) N350 G3 X-56.8 Y76.99 R102.614; N360 G3 X-75.23 Y28.83 R94.2; N370 G3 X-19.25 Y-45.1 R69.03; N380 G3 X-4.68 Y-12.25 R20.5; N390 G3 X-30.13 Y4.7 R27.05; N400 G2 X-24.05 Y52.33 R44.14; N410 G2 X45.6 Y77.856 R102.914; N420 G1 Y110.; N430 Z10.;

Repitiendo el procedimiento se llega a:

N10 N20

N30

N40 G0 X0. Y0.;

N50 Z20.;

N60 G1 X-39.105 Y95.737 F250;

N70 Z-5.;(25mm)

N80 G17 G3 X-65.328 Y67.058 R110.213;

N90 G3 X-74.474 Y-10.892 R86.818;

N100 G3 X-55.861 Y-37.598 R60.94;

N120 G3 X-29.709 Y-6.02 R20.5;

N130 G2 X-35.852 Y2.868 R19.94;

N140 G2 X-37.631 Y28.686 R45.818;

N150 G2 X-30.679 Y45.076 R55.835;

N160 G2 X-14.185 Y63.179 R69.213;

N170 G2 X41.84 Y80.248 R83.548;

N180 G1 X60. Y90.;

N190 Z20.;

N200 X-31.774 Y100.886;

N210 Z-10;(20mm)

N220 G3 X-53.501 Y82.794 R110.213;

N230 G3 X-77.729 Y32.364 R97.253;

N240 G3 X-71.373 Y-12.462 R79.58;

N250 G3 X-39.695 Y-44.288 R65.351;

N260 G3 X-22.432 Y-7.09 R20.5;

N270 G2 X-34.238 Y4.085 R24.351;

N280 G2 X-37.219 Y26.239 R38.58;

N290 G2 X-14.198 Y63.17 R57.535;

N300 G2 X-41.84 Y80.248 R83.548;

N310 G1 Y110.;

N320 Z20.;

N330 X-28.438 Y102.965;

N340 Z-15.;(15mm)

N350 G3 X-70.281 Y54.735 R99.654;

N360 G3 X-76.622 Y31.208 R98.786;

N370 G3 X-68.036 Y-14.187 R74.64;

N380 G3 X-23.698 Y-45.952 R64.598;

N390 G3 X-16.118 Y-5.656 R20.5;

N400 G2 X-35.202 Y25.716 R27.619;

N410 G2 X-12.088 Y64.531 R56.795;

N420 G2 X-18.2 Y73.231 R76.71;

N430 G1 Y130;

N440 Z10.;

--parte de 10mm--

N450 X-28.51 Y102.825;

N460 Z-20.;(5mm)

N470 G3 X-56.737 Y76.93 R 102.914; N480 G3 X-75.31 Y29.82 R94.21; N490 G3 X-64.532 Y-15.32 R71.858; N500 G3 X-38.66 Y-38.401 R65.73; N510 G3 X-20.403 Y-1.693 R20.5; N520 G2 X-32.998 Y25.681 R28.221; N530 G2 X-23.946 Y52.37 R53.21; N540 G2 X18.431 Y78.145 R69.853; N550 Y130.; N560 M30;

Y en definitiva se obtiene:

Fig.D.2.5 Vista Superior del alabe mecanizado

Al final se mecanizó en aluminio, luego se le elminaron los escalones con rota-tool y lija, se separo del resto del tocho y la curva del disco posterior de hizo a mano debido a la limitante de los tres ejes.

Luego por fundición se obtuvieron los demás, pero se le colocaron "patas" para colocarse en la caja de machos.

Con ayuda del autocad se determinaron el lugar de los agujeros que posicionan los alabes de la forma adecuada, como se muestra en la fig. A.2.6.

Fig.D.2.6 Arreglo de los agujeros de posicionamiento

Programando, y usando el ciclo de punzonado de la maquina:

Fig.D.2.7 Coordenadas de los agujeros de posicionamiento

El programa, para un agujero de ¼";

....

N30 G83 X18. Y35.52 Z-15. Q5. R0. F80;(DIAMETRO MENOR) N40 X-21.8 Y33.29; N50 X-39.72 Y-2.23; N60 X-18. Y-35.52: N70 X21.8 Y-33.29; N80 X39.72 Y2.23: N90 X34.75 Y60.58;(DIAMETRO MAYOR) N100 X-35.08 Y60.4;

Obtieniendose el disco posterior de la caja de macho:

Fig.D.2.8 Agujeros en la caja de macho

ANEXO C: SELECCIÓN DE SELLOS MECÁNICOS

Fig. C.1 Tipos de sello mecánico.

PAC-SEAL TYPE 2

Equivalent: JOHN CRANE Type 21 & Type 2. SEALOL 43 CU SHORT Alternate Seat Design: CENTERED 0-RING MOUNT

The Type 21 (Type 31 Hard Fac is an all purpose seal which rotates with the shaft adainst a stationary mating face. The Type 21 features mechanically crimpcomponents eliminating the use adhesives, Hexadonal torque dri reduces elastomer stress by distributing torque forces over til dreatest possible area. It will accommodate variations in a sea call tyleright and pump misal gr ment. This seal may also be use as a double seal when two seals are placed back to back with a common sprind between. Alia lable in a variety of stocked materials to meet specific operaind conditions.

APPLICATIONS:

A moderately priced shaft seal for pumps used for well wates, diesel engine coolant, waste water, boiler feed, cooking oil and compressors.

FLUID MEDIA:

PAC-SEAL® TYPE 21

Water, oil, hydraulic fluids and general liquids.

OPERA	TING LIMITS:
Pressure	= 650 psi Balanced = 250 psi Unbalanced
Speed Temperature	= 5,000 ft./min. = -40 to 400°F

PAC-SEAL INC. INTERNATIONAL

211 Frontage Road • Burr Ridge, IL 60521 USA • 708/986-0430 • Fax: 708/986-1033

-1

Fig. C.2 Sello Mecánico tipo 21

STYLE: 21-800004	+
Equivalent: JOHN CRANE Type 21 & Type 2	
SEALOL 43 CU SHORT	
Alternate seat design: CENTERED O-RING M	OUNT.

	d1	d2	d3	d4*	11	12	13*
			All Di	mensions in	n Inches		
	.250	.750	.687	.875	562	.250	.218
	.375	.875	.917	1.125	.812	.284	.250
	.437	1.000	.917	1.125	.812	.312	.281
	.500	1.000	.917	1.125	.812	.312	.281
	.562	1.250	1.110	1.375	.875	.406	.344
	.625	1.250	1.185	1.375	.875	.406	.344
	.750	1.375	1.302	1.500	.875	.406	.344
	.875	1.500	1.429	1.625	.937	.406	.344
	1.000	1.625	1.552	1.750	1.000	.437	.375
	1.125	1.750	1.750	1.875	1.062	.437	.375
_	1.250	1.875	1.875	2.000	1.062	.437	.375
	1.375	2.000	2.000	2.125	1.125	.437	.375
	1.437	2.125	2.125	2.250	1.125	.437	.375
	• 1.500	2.125	2.125	2.250	1.125	.437	.375
	1.625	2.375	2.375	2.625	1.375	.500	.437
	1.750	2.500	2.375	2.625	1.375	.500	.437
	1.875	2.625	2.625	2.750	1.500	.500	.437
	2.000	2.750	2.625	2.875	1.500	.500	.437
_	2.125	3.000	2.938	3.250	1.687	.562	.500
	2.250	3.125	2.938	3.250	1.687	.562	.500
	2.375	3.250	3.230	3.375	1.812	562	.500
	2.437	3.250	3.230	3.375	1.812	.562	.500
	2.500	3.375	3.390	3.500	1.812	.562	.500
	2.625	3.375	3.390	3.500	1.937	.625	.562
_	2.750	3.500	3.500	3.625	1.937	.625	562
_	2.875	3.750	3.800	4.000	2.062	.625	.562
	3.000	3.875	3.800	4.000	2.062	.625	.562

STYLE: 21-800006
Equivalent: JOHN CRANE Type 21 & Type 2
SEALOL 43 CU SHORT
Alternate seat design: CENTERED O-RING MOUNT.

d1	d2	d3	d 4*	l1	12	13*
		All Dimen	ISIONS IN N	fillimeter	S	
8	25.4	23.3	25.4	19.0	7.9	7.1
10	25.4	23.3	25.4	19.0	7.9	7.1
12	25.4	23.3	25.4	19.0	7.9	7.1
14	31.75	30.1	32.0	22.5	10.3	8.7
16	31.75	30.1	32.0	22.5	10.3	8.7
18	34.92	33.1	35.0	22.5	10.3	8.7
20	38.1	36.3	38.5	24.0	10.3	8.7
22	38.1	36.3	38.5	24.0	10.3	8.7
24	41.27	39.4	41.5	25.4	11.1	9.5
25	41.27	39.4	41.5	25.4	11.1	9.5
28	44.45	44.45	46.0	27.0	11.1	9.5
30	47.62	47.62	49.5	27.0	11.1	9.5
32	47.62	47.62	49.5	27.0	11.1	9.5
33	50.8	50.8	52.5	28.5	11.1	9.5
35	50.8	50.8	52.5	28.5	11.1	9.5
38	53.98	53.98	55.5	28.5	11.1	9.5
39	60.32	60.32	62.0	35.0	12.7	11.1
40	60.32	60.32	62.0	35.0	12.7	11.1
43	63.5	60.32	65.0	35.0	12.7	11.1
45	66.68	66.68	68.5	38.0	12.7	11.1
48	69.85	66.68	71.5	38.0	12.7	11.1
50	69.85	66.68	71.5	38.0	12.7	11.1
53	76.2	74.6	78.0	43.0	14.3	12.7
55	79.38	74.6	81.0	43.0	14.3	12.7
58	82.55	82.0	84.5	46.0	14.3	12.7
60	82.55	82.0	84.5	46.0	14.3	12.7
63	85.72	86.1	89.0	46.0	14.3	12.7
65	85.72	86.1	89.0	49.0	15.9	14.3
68	88.9	88.9	92.0	49.0	15.9	14.3
70	88.9	88.9	92.0	49.0	15.9	14.3
73	95.25	96.52	100.0	52.5	15.9	14.3
75	98.42	96.52	102.0	52.5	15.9	14.3

*Minimum

Fig. C.3 Dimensiones Sello Mecánico tipo 21

*Minimum

ANEXO E.

Líneas de Corriente en el plano meridional.

ANEXO F: Series de Renard

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n	R5	R10	R20	R40	R80	n	R5
1 1.6 1.3 1.1 1.1 1.03 42 2 2.5 1.6 1.3 1.12 1.06 3 4.0 2.0 1.4 1.19 1.09 4 6.3 2.5 1.6 1.26 1.12 5 10.0 3.2 1.8 1.33 1.15 6 4.0 2.0 1.41 1.19 45 7 5.0 2.2 1.50 1.22 48 6.3 2.5 1.58 1.30 50 50 10 10.0 3.2 1.78 1.33 51 51 11 3.5 1.88 1.37 52 55 55 12 4.0 2.00 1.41 53 53 55 <	0	1,0	1,0	1,0	1,00	1,00	41	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1,6	1,3	1,1	1,1	1,03	42	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	2,5	1,6	1,3	1,12	1,06	43	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	4,0	2,0	1,4	1,19	1,09	44	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	6,3	2,5	1,6	1,26	1,12	45	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	10,0	3,2	1,8	1,33	1,15	46	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6		4,0	2,0	1,41	1,19	47	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7		5,0	2,2	1,50	1,22	48	
9 7,9 2,8 1,68 1,30 50 10 10,0 3,2 1,78 1,33 51 11 3,5 1,88 1,37 52 12 4,0 2,00 1,41 53 13 4,5 2,11 1,45 54 14 5,0 2,24 1,50 55 15 5,6 2,37 1,54 56 16 6,3 2,51 1,58 57 17 7,1 2,66 1,63 58 18 7,9 2,82 1,68 59 19 8,9 2,99 1,73 60 20 10,0 3,16 1,78 61 21 3,355 1,88 62 62 22 3,55 1,88 63 63 23 4,22 2,05 66 66 24 3,98 2,00 65 65 25 4,22 2,05 66 66 26 4,477 2,	8		6,3	2,5	1,58	1,26	49	
10 10,0 $3,2$ $1,78$ $1,33$ 51 11 $3,5$ $1,88$ $1,37$ 52 12 $4,0$ $2,00$ $1,41$ 53 13 $4,5$ $2,11$ $1,45$ 54 14 $5,0$ $2,24$ $1,50$ 55 15 $5,6$ $2,37$ $1,54$ 56 16 $6,3$ $2,51$ $1,58$ 57 17 $7,1$ $2,66$ $1,63$ 58 18 $7,9$ $2,82$ $1,68$ 59 19 $8,9$ $2,99$ $1,73$ 60 20 $10,0$ $3,16$ $1,78$ 61 21 $3,355$ $1,88$ 63 22 $3,55$ $1,88$ 63 23 $4,22$ $2,05$ 66 24 $3,98$ $2,00$ 65 25 $4,22$ $2,05$ 66 26 $4,477$ $2,11$ 67 27 $6,31$ $2,$	9		7,9	2,8	1,68	1,30	50	
11 3,5 1,88 1,37 52 12 4,0 2,00 1,41 13 4,5 2,11 1,45 14 5,0 2,24 1,50 15 5,6 2,37 1,54 16 6,3 2,51 1,58 17 7,1 2,66 1,63 18 7,9 2,82 1,68 19 8,9 2,99 1,73 20 10,0 3,16 1,78 21 3,355 1,83 22 3,55 1,88 23 3,76 1,94 24 3,98 2,00 25 4,22 2,05 26 4,47 2,11 27 4,73 2,18 28 5,01 2,24 29 5,31 2,30 31 5,96 2,44 29 5,31 2,51 33 6,68 2,59 34 7,708 2,66 37 8,41	10		10,0	3,2	1,78	1,33	51	
12 4,0 2,00 1,41 53 13 4,5 2,11 1,45 54 14 5,0 2,24 1,50 55 15 5,6 2,37 1,54 56 16 6,3 2,51 1,58 57 17 7,1 2,66 1,63 58 18 7,9 2,82 1,68 59 19 8,9 2,99 1,73 60 20 10,0 3,16 1,78 61 21 3,35 1,83 62 62 22 3,55 1,88 63 63 23 3,76 1,94 64 64 24 3,98 2,00 65 66 25 4,22 2,05 66 66 26 4,47 2,11 67 70 27 4,73 2,18 68 9 29 5,31 2,30 70 30 71 73 31 5,96 2,44	11			3,5	1,88	1,37	52	
13 4,5 2,11 1,45 54 14 5,0 2,24 1,50 55 15 5,6 2,37 1,54 56 16 6,3 2,51 1,58 57 17 7,1 2,66 1,63 58 18 7,9 2,82 1,68 59 19 8,9 2,99 1,73 60 20 10,0 3,16 1,78 61 21 3,355 1,88 62 62 22 3,55 1,88 63 63 23 3,76 1,94 64 64 24 3,98 2,00 65 66 25 4,22 2,05 66 66 26 4,47 2,11 67 67 27 4,73 2,18 68 69 28 5,01 2,24 69 9 29 5,31 2,30 70 71 31 5,96 2,44 72 73	12			4,0	2,00	1,41	53	
14 5,0 2,24 1,50 55 15 5,6 2,37 1,54 56 16 6,3 2,51 1,58 57 17 7,1 2,66 1,63 58 18 7,9 2,82 1,68 59 19 8,9 2,99 1,73 60 20 10,0 3,16 1,78 61 21 3,35 1,83 62 63 22 3,55 1,88 63 63 23 3,76 1,94 64 64 24 3,98 2,00 65 66 25 4,22 2,05 66 66 26 4,47 2,11 67 67 27 4,73 2,18 68 68 28 5,01 2,24 69 9 29 5,31 2,30 70 71 31 5,96 2,44 72 73 33 6,68 2,59 74 74	13			4,5	2,11	1,45	54	
15 5,6 2,37 1,54 56 16 6,3 2,51 1,58 57 17 7,1 2,66 1,63 58 18 7,9 2,82 1,68 59 19 8,9 2,99 1,73 60 20 10,0 3,16 1,78 61 21 3,35 1,83 62 63 22 3,55 1,88 63 63 23 3,76 1,94 64 64 24 3,98 2,00 65 66 25 4,22 2,05 66 66 26 4,47 2,11 67 67 27 4,73 2,18 68 69 28 5,01 2,24 69 9 29 5,31 2,30 70 71 31 5,96 2,44 72 73 32 6,61 2,59 74 74 33 6,68 2,59 74 76	14			5,0	2,24	1,50	55	
16 6,3 2,51 1,58 57 17 7,1 2,66 1,63 58 18 7,9 2,82 1,68 59 19 8,9 2,99 1,73 60 61 20 10,0 3,16 1,78 61 62 21 3,35 1,83 62 63 63 22 3,55 1,88 63 63 63 23 3,76 1,94 64 64 64 24 3,98 2,00 65 66 67 68 69 69 69 69 69 69 69 63 63 63 63 63 63 63 63 63 63 63 63	15			5,6	2,37	1,54	56	
17 7,1 2,66 1,63 58 18 7,9 2,82 1,68 59 19 8,9 2,99 1,73 60 20 10,0 3,16 1,78 61 21 3,35 1,83 62 63 22 3,55 1,88 63 63 23 3,76 1,94 64 64 24 3,98 2,00 65 66 25 4,22 2,05 66 66 26 4,47 2,11 67 67 27 4,73 2,18 68 68 28 5,01 2,24 69 69 29 5,31 2,30 70 70 30 5,62 2,37 71 71 31 5,96 2,44 72 73 33 6,68 2,59 74 74 34 7,08 2,66 75 75 37 8,41 2,90 78 79	16			6,3	2,51	1,58	57	
18 7,9 2,82 1,68 59 19 8,9 2,99 1,73 60 20 10,0 3,16 1,78 61 21 3,35 1,83 62 62 22 3,55 1,88 63 63 23 3,76 1,94 64 64 24 3,98 2,00 65 66 25 4,22 2,05 66 66 26 4,47 2,11 67 67 27 4,73 2,18 68 69 69 28 5,01 2,24 69 69 69 69 29 5,31 2,30 70 70 71 71 71 31 5,96 2,44 72 73 73 73 73 73 73 73 74 74 74 74 74 74 74 74 74 74 74 74 74 74 75 77 77 77 77 77	17			7,1	2,66	1,63	58	
19 8,9 2,99 1,73 60 20 10,0 3,16 1,78 61 21 3,35 1,83 62 63 22 3,55 1,88 63 64 23 3,76 1,94 64 64 24 3,98 2,00 65 66 25 4,22 2,05 66 66 26 4,47 2,11 67 67 27 4,73 2,18 68 69 69 26 5,01 2,24 69 69 69 69 29 5,31 2,30 70 70 70 70 70 70 70 70 70 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 73 73 73 73 73 73 73 73 73 73 74 74 74 74 74 74 74	18			7,9	2,82	1,68	59	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19			8,9	2,99	1,73	60	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20			10,0	3,16	1,78	61	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21				3,35	1,83	– 62	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22				3,55	1,88	63	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23				3,76	1,94	64	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24				3,98	2,00	65	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25				4,22	2,05	66	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26				4,47	2,11	67	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27				4,73	2,18	68	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28				5,01	2,24	69	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	29				5,31	2,30	70	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30				5,62	2,37	71	
32 6,31 2,51 73 33 6,68 2,59 74 34 7,08 2,66 75 35 7,50 2,74 76 36 7,94 2,82 77 37 8,41 2,90 78 38 8,91 2,99 79 39 9,44 3,07 80	31				5,96	2,44	72	
33 6,68 2,59 74 34 7,08 2,66 75 35 7,50 2,74 76 36 7,94 2,82 77 37 8,41 2,90 78 38 8,91 2,99 79 39 9,44 3,07 80	32				6,31	2,51	73	
34 7,08 2,66 75 35 7,50 2,74 76 36 7,94 2,82 77 37 8,41 2,90 78 38 8,91 2,99 79 39 9,44 3,07 80	33				6,68	2,59	74	
35 7,50 2,74 76 36 7,94 2,82 77 37 8,41 2,90 78 38 8,91 2,99 79 39 9,44 3,07 80	34				7,08	2,66	75	
36 7,94 2,82 77 37 8,41 2,90 78 38 8,91 2,99 79 39 9,44 3,07 80	35				7,50	2,74	76	
37 8,41 2,90 78 38 8,91 2,99 79 39 9,44 3,07 80 40 3,16	36				7,94	2,82	77	
38 8,91 2,99 79 39 9,44 3,07 80 40 3,16 3 3	37				8,41	2,90	78	
39 9,44 3,07 80 40 3,16 3,16	38				8,91	2,99	79	
40 3,16	39				9,44	3,07	80	
	40					3,16		

ı I	R5	R10	R20	R40	R80
1					3,25
2					3,35
3					3,45
4					3,55
5					3,65
6					3,76
7					3,87
8					3,98
9					4,10
0					4,22
1					4,34
2					4,47
3					4,60
4					4,73
5					4,87
6					5,01
7					5,16
8					5,31
9					5,46
0					5,62
1					5,79
2					5,96
3					6,13
4					6,31
5					6,49
6					6,68
7					6,88
8					7,08
9					7,29
0					7,50
1					7,72
2					7,94
3					8,18
4					8,41
5					8,66
6					8,91
7					9,17
8					9,44
9		ļ	ļ		9,72
0					10,00

Los valores son calculados para cada serie como sigue:

Rx: $10^{n/x}$ para todo n [0 .. x]

Ejemplo: R20: 10^{n/20} n [0..20]

ANEXO G: NORMAS NEMA

can be carried for a short and definitely specified

time. NEMA Standard 10-29-1937, revised 6-24-1949; 3-21-1973.

MG 1-1.41 Efficiency

The efficiency of a motor or generator is the ratio of its useful power output to its total power input and is usually expressed in percentage. NEMA Standard 6-24-1949.

MG 1-1.42 Power Factor

The power factor of an alternating-current motor or generator is the ratio of the kilowatt input (or output) to the kVA input (or output) and is usually expressed as a percentage.

NEMA Standard 6-24-1949.

MG 1-1.43 Service Factor—Alternatingcurrent Motors

The service factor of an alternating-current motor is a multiplier which, when applied to the rated horsepower, indicates a permissible horsepower loading which may be carried under the conditions specified for the service factor (see MG 1-14.35).

NEMA Standard 10-29-1937, revised 11-12-1964; 7-13-1967.

MG 1-1.43a Speed Regulation of Direct-current Motors

The speed regulation of a direct-current motor is the difference between the steady no-load speed and the steady rated-load speed, expressed in percent of rated-load speed.

NEMA Standard 3-21-1973.

MG 1-1.44 Voltage Regulation of Directcurrent Generators

The voltage regulation of a direct-current generator is the final change in voltage with constant field rheostat setting when the specified load is reduced gradually to zero, expressed a percent of rated-load voltage, the speed being kept constant.

NOTE-In practice it is often desirable to specify the overall regulation of the generator and its driving machine, thus taking into account the speed regulation of the driving machine.

NEMA Standard 10-29-1943.

MG 1-1.45 Secondary Voltage of Wound-rotor Motors

The secondary voltage of wound-rotor motors is the open-circuit voltage at standstill, measured across the slip rings, with rated voltage applied on the primary winding.

NEMA Standard 6-7-1922, revised 6-24-1949.

MG 1-1.46 Full-load Torque

The full-load torque of a motor is the torque necessary to produce its rated horsepower at fullload speed. In pounds at a 1-foot radius, it is equal to the horsepower times 5252 divided by the full-load speed.

NEMA Standard 11-1-1940.

MG 1-1.47 Locked-rotor Torque (Static Torque)

The locked-rotor torque of a motor is the mini-

mum torque which it will develop at rest for all angular positions of the rotor, with rated voltage applied at rated frequency. NEMA Standard 10-29-1943.

MG 1-1.48 Pull-up Torque

The pull-up torque of an alternating-current motor is the minimum torque developed by the motor during the period of acceleration from rest to the speed at which breakdown torque occurs. For motors which do not have a definite breakdown torque, the pull-up torque is the minimum torque developed up to rated speed.

NEMA Standard 10-29-1943.

MG 1-1.49 Breakdown Torque

The breakdown torque of a motor is the maximum torque which it will develop with rated voltage applied at rated frequency, without an abrupt

drop in speed. NEMA Standard 10-29-1943.

MG 1-1.50 Pull-out Torque

The pull-out torque of a synchronous motor is the maximum sustained torque which the motor will develop at synchronous speed with rated voltage applied at rated frequency and with normal excitation.

NEMA Standard 10-29-1943, revised 6-22-1950.

MG 1-1.51 Pull-in Torque

The pull-in torque of a synchronous motor is the maximum constant torque under which the motor will pull its connected inertia load into synchronism, at rated voltage and frequency, when its field excitation is applied.

The speed to which a motor will bring its load depends on the power required to drive it and whether the motor can pull the load into step from this speed depends on the inertia of the revolving parts, so that the pull-in torque cannot be determined without having the Wk^2 as well as the torque of the load.

NEMA Standard 10-29-1943.

						BF Ho	ole					
AJ** AK	BA	BB Min	BC	BD N	um-	Tap P.	Bolt enetra- tion	D	AH	*	Keyseat ES Min	~
3.750 3.0 3.750 3.0 5.875 4.5	00 2.062 00 2.50 00 2.75	0.161 0.161 0.161	-0.19	5.00 5.625 6.50	444	4-20 4-20	:::	0.3750 0.500 0.6250	1.312* 1.69* 2.06*	0.328 0.453 0.517		flat flat 0.188
5.875 4.5 7.250 8.5 5.875 4.5	00 2.75 00 3.50 3.50	0.16† 0.25 0.16†	+0.12+0.12+0.12	6.50 9.00 6.50	444	%-16 %-16 %-16	0.56 0.75 0.56	$ \begin{array}{c} 0.8750\\ 1.1250\\ 1.1250 \end{array} $	2.12 2.62 2.62	0.771 0.986 0.986	1.41 1.78 1.78	0.188 0.250 0.250
7.250 8.5 7.250 8.5 9.000 10.5 9.000 10.5	00 4.25 00 4.75 00 4.75 00 4.75	0.25 0.25 0.25	+0.25 +0.25 +0.25 +0.25	9.00 10.00 11.25 11.25	4444	2-13 2-13 2-13	0.75 0.75 0.75 0.75	1.3750 1.625 1.875 1.875 1.625	3.12 3.75 4.38 3.00	1.201 1.416 1.591 1.416	2.41 2.91 3.28 1.91	0.312 0.375 0.500 0.375
11.000 12.5 11.000 12.5 11.000 12.5 11.000 12.5 11.000 12.5	00 5.25 00 5.25 00 5.88 00 5.88	0.25 0.25 0.25 0.25	+0.25 +0.25 +0.25 +0.25	14.00 14.00 14.00 14.00	4 4 00 00	11-%	0.94 0.94 0.94 0.94	2.125 1.875 2.375 1.875	5.00 3.50 5.62 3.50	$\begin{array}{c} 1.845\\ 1.591\\ 2.021\\ 1.591\end{array}$	3.91 2.03 4.28 2.03	0.500 0.500 0.625 0.520
11.000 12.5 11.000 12.5 14.000 16.0 14.000 16.0	00 6.62 00 6.62 00 7.50 7.50	0.25 0.25 0.25	+0.25 +0.25 +0.25 +0.25	15.50 15.50 18.00 18.00	00 00 00 00	11	0.94	2.875 2.125 3.375 2.375	7.00 4.00 8.25 4.50	2.450 1.845 2.880 2.021	5.65 2.78 6.91 3.03	0.750 0.500 0.875 0.625
4.500 16.5	00	0.25	+0.25	18.00	4	56-11	0.94					
e motor is not suitable on the length be in 0. and 213TC through 1 025 inch of true locat location with referent nee of +0.00, -0.06 mercot.	le for the application (25-inch increments, 5007C, the centerila tion. True location or to the centerline , inch.	A NOTE 4.3. B, E, 2F, 2	1-For the mea II-For frames F and H. For th nd BA.	ning of the lett 42C to 445 TSG he 500 frame se	er dimen , see MC ries, see	sions, see N 3 1-11.31 fo MG 1-11.33	MG 1-4.01 a or dimension 3 for dimens	nd Fig. s A. B. sions D.	NOTE III MG 14.05. NOTE IVF eccentricity of	or tolerances on shi or tolerance on AK mounting rabbet, se	aft extension diamet dimensions, face ru e MG 1-4.07.	ers and keyseats, see mout and permissible

AC SQUII	MPS	CAGE	INDU	CHON				PART
)RS	Bolt Penetra tion Allowance	0.56	0.56	0.75	0.75	0.94	0.94	
PUMP MOTO	Tap Size	3%-16	3%-16	<u> 1</u> /2-13	}/_ _13	56-11	56-11	
OSE-COUPLED	Number	4	4	4	4	4	4	
OUNTED CLO	BD Mar	6.62	6.62	9.00	10.00	14.00	14.00	
IG 1-18.614 INT FACE-M	BB	0.156	0.156	0.312	0.312	$\frac{0.312}{0.250}$	$\frac{0.312}{0.250}$	(pən
BLE 1 OF M TING-CURRE	AK	4.500 4.497	4.500	8.500 8.497	8.500 8.497	<u>12.500</u> <u>12.495</u>	$\frac{12.500}{12.495}$	(Contin
TA M ALTERNA	Aut	5.875	5.875	7.250	7.250	11.000	11.000	
OR TYPE J1	•HV	$\frac{4.281}{4.219}$	$\frac{4.281}{4.219}$	$\frac{4.281}{4.219}$	$\frac{5.281}{5.219}$	$\frac{5.281}{5.219}$	$\frac{5.281}{5.219}$	
MENSIONS F	n	$\frac{0.8745}{0.8740}$	0.8745 0.8740	0.8745 0.8740	$\frac{1.2495}{1.2490}$	$\frac{1.2495}{1.2490}$	$\frac{1.2495}{1.2490}$	
Dr	Frame Designations	143JM and 145JM	182JM and 184JM	213JM and 215JM	254JM and 256JM	284JM and 286JM	324JM and 326JM	

ANEXO H

