TRABAJO ESPECIAL DE GRADO

EVALUACIÓN SISMORRESISTENTE DEL COMPORTAMIENTO DE PÓRTICOS DE CONCRETO REFORZADO CON EL MÉTODO DE LOS ESTIMADORES PUNTUALES

Presentado ante la Ilustre Universidad Central de Venezuela Por los Brs.: Fuentes León, Tamara Alejandra Zambrano Peña, Gustavo Manuel Para optar al Título de Ingeniero Civil

Caracas, 2008

TRABAJO ESPECIAL DE GRADO

EVALUACIÓN SISMORRESISTENTE DEL COMPORTAMIENTO DE PÓRTICOS DE CONCRETO REFORZADO CON EL MÉTODO DE LOS ESTIMADORES PUNTUALES

TUTOR ACADÉMICO: Prof. Angelo Marinilli

Presentado ante la Ilustre Universidad Central de Venezuela Por los Brs.: Fuentes León, Tamara Alejandra Zambrano Peña, Gustavo Manuel Para optar al Título de Ingeniero Civil

Caracas, 2008

<u>ACTA</u>

El día jueves 29 de Mayo de 2008 se reunió el jurado formado por los profesores

Agustín Mazzeo	
Angelo Marinilli	
Ricardo Bonilla	

Con el fin de examinar el Trabajo Especial de Grado titulado: "EVALUACIÓN SISMORRESISTENTE DEL COMPORTAMIENTO DE PÓRTICOS DE CONCRETO REFORZADO CON EL MÉTODO DE LOS ESTIMADORES PUNTUALES". Presentado ante la Ilustre Universidad Central de Venezuela para optar al título de INGENIERO CIVIL.

Una vez oída la defensa oral que los bachilleres hicieron de su Trabajo Especial de Grado, este jurado decidió las siguientes calificaciones:

	CALIFICACIÓN				
NOMBRE	Números	Letras			
Fuentes, Tamara	20	VEINTE			
Zambrano, Gustavo	20	VEINTE			

Recomendaciones:

Caracas, 29 de Mayo de 2008

DEDICATORIA

A mi Dios, por darme la vida y la capacidad de adquirir conocimiento. A mis "viejitos", Gustavo y Lola, por haberme criado y darme el amor y aprendizaje necesarios para ser hoy quien soy. A mi negrita linda, por amarme y estar siempre a mi lado en este camino. A toda mi familia, pilar fundamental en mi formación como persona y futuro ingeniero. Finalmente, a la Universidad Central de Venezuela, por haberme albergado entre sus brazos estos 5 años y dotarme de los conocimientos que el día de mañana plasmaré en mi país.

Gustavo.

Este trabajo de grado lo dedico a ti mi Dios, que me diste la oportunidad de vivir. A mis padres que me formaron con todo el amor, esforzándose cada día para darme una excelente educación. A mi amor por tenerme paciencia, comprenderme y ayudarme, te amo esposito. A mi hermano y a mi amiga Yohanna que me acompañaron en este camino, brindándome su apoyo y sabiduría. Gracias a todos!

Tamara.

AGRADECIMIENTOS

A nuestro tutor, el profesor Angelo Marinilli, por su paciente y gran dedicación, persona sin la cual no hubiésemos podido realizar este Trabajo Especial de Grado. ¡Machete!.

A la profesora María Itriago, por todo el apoyo a los largo de Metodología de la Investigación, lo cual nos permitió sentar las bases y fundamentos para nuestro Trabajo Especial de Grado.

A nuestros padres y madres, por el compromiso adquirido con nosotros, siendo co-autores de este trabajo, estando siempre presentes y brindándonos el apoyo necesario.

A la profesora Gabriela Tedesco, por toda la ayuda brindada en cuanto a la redacción y demás detalles básicos para la presentación de este trabajo.

Al Departamento de Ingeniería Vial y a la profesora Celia Herrera, por haberme adoptado en el mismo, lugar donde se materializó gran parte de esta tesis. (Gustavo).

A las aulas de clases, lugar que no llenó de conocimientos y lo largo de esta carrera.

<u>RESUMEN</u>

"EVALUACIÓN SISMORRESISTENTE DEL COMPORTAMIENTO DE PÓRTICOS DE CONCRETO REFORZADO CON EL MÉTODO DE LOS ESTIMADORES PUNTUALES". Br. Tamara Fuentes, Br. Gustavo Zambrano. Tutor Académico: Prof. Angelo Marinilli. Tesis. Caracas, UCV. Facultad de Ingeniería. Escuela de Ingeniería Civil. 2008.

Uno de los mayores riesgos potenciales en cuanto a pérdidas humanas y económicas en Venezuela son los eventos sísmicos. Cuando una estructura de concreto armado se ve frente a estas solicitaciones, las respuestas que se produzcan dependerán de las propiedades mecánicas de la misma.

Existe incertidumbre en el comportamiento sismorresistente de las estructuras de concreto reforzado originada por la variabilidad de algunas propiedades mecánicas, específicamente la resistencia a compresión del concreto (f'c) y la tensión cedente del acero (fy). En este trabajo se realiza un estudio probabilístico mediante el método de la simulación de Monte Carlo y el método de los Estimadores Puntuales con el objetivo de evaluar que tan efectivo es éste último.

Para tal objetivo se seleccionaron 2 (dos) pórticos de concreto reforzado una de ellas provenientes de una edificación ubicada en la Universidad Central de Venezuela y el otro pórtico fue diseñado, considerando dimensiones usuales de instituciones educacionales. Cada uno de los pórticos fue analizado bajo el método estático no lineal (pushover).

Los resultados indican que la variabilidad existente en el esfuerzo cedente del acero y de la resistencia del concreto a compresión afecta el comportamiento resistente tanto de las secciones de vigas y de las columnas presentes en los pórticos analizados. Con estos valores se observó que el método de los Estimadores Puntuales arroja buenos resultados para la estimación de valores medios, ya que los coeficientes de variación son muy bajos, nunca observándose un porcentaje de variación mayor del 12%, con respecto al método de Montecarlo. Al igual que para el cálculo de desviación estándar y coeficientes de variación arroja buenos resultados para realizar una estimación aproximada e inmediata, pues los porcentajes de variación nunca fueron mayores del 30% en estos dos casos.

De esta forma se recomienda el uso del método de los Estimadores Puntuales como un estudio previo de algún análisis de valores, con el fin de ofrecer una visión preliminar del análisis probabilístico.

ÍNDICE GENERAL

CAPÍTULO II7
MARCO TEÓRICO7
2.1 Problema sísmico y comportamiento estructural7
2.1.1 Problema sísmico en Venezuela7
2.1.2 Efecto de los sismos sobre las edificaciones9
2.2 Sistemas estructurales y materiales10
2.2.1 El concreto y sus propiedades10
2.2.2 El acero y sus propiedades12
2.2.3 El concreto reforzado como material constructivo y sus propiedades
2.2.4 Edificaciones aporticadas de concreto reforzado15
2.2.5 Variabilidad de las propiedades mecánicas del concreto reforzado16
2.3 Métodos de análisis probabilístico17
2.3.1 Métodos probabilísticos17
2.3.2 Simulación de Monte Carlo17
2.3.3 Método de los Estimadores Puntuales o de Segundos Momentos de Rosenblueth
2.4 Método de análisis22
2.4.1 Método Estático no Lineal22
2.5 Glosario24

CAPÍTULO III
MÉTODO
3.1 Características generales de los pórticos a estudiar29
3.1.1 Pórtico 1
3.1.2 Pórtico 2
3.2 Consideraciones en el análisis33
3.3 Cargas actuantes
3.4 Procedimientos y etapas de la investigación39
3.4.1 Recolección
3.4.2 Procesamiento de la Información43
3.4.3 Análisis de Datos47
3.4.4 Discusión y Conclusiones47
CAPÍTULO IV 48
RESULTADOS Y ANÁLISIS 48
4.1 Pórtico 1
4.1.1. Valores resistentes para las secciones de vigas. Simulación de Monte Carlo
4.1.2 Valores resistentes para las secciones de columnas. Simulación de Monte Carlo
4.1.3 Valores resultados posterior al análisis inelástico (pushover). Simulación de Monte Carlo55
4.1.4 Valores de resistencia para las secciones de vigas. Estimadores Puntuales

4.1.5 Valores de resistencia para las secciones de columnas.
Estimadores Puntuales59
4.1.6 Valores resultados posterior al análisis inelástico (pushover).
Estimadores Puntuales60
4.2 Pórtico 262
4.2.1 Valores de resistencia para las secciones de viga. Simulación de
Monte Carlo62
4.2.2 Valores de resistencia para las secciones de columnas. Simulación
de Monte Carlo64
4.2.3 Valores resultados posterior al análisis inelástico (pushover).
Simulación de Monte Carlo66
4.2.4 Valores de resistencia para las secciones de vigas. Estimadores
Puntuales70
4.2.5 Valores de resistencia para las secciones de columnas.
Estimadores Puntuales71
4.2.6 Valores resultados posterior al análisis inelástico (pushover).
Estimadores Puntuales72
4.3 Secuencia de Formación de Rótulas Plásticas
4.4 Cálculo de porcentajes de variación75
4.4.1 Pórtico 1
4.4.2 Pórtico 283
CAPÍTULO V
CONCLUSIONES Y RECOMENDACIONES

REFERENCIAS BIBLIOGRÁFICAS	, 93
ANEXOS	, 97

LISTA DE TABLAS

Tabla 3.1.Cargas de Entrepiso Pórtico 1
Tabla 3.2. Cargas de Techo Pórtico 1
Tabla 3.3. Cargas de Entrepiso Pórtico 2
Tabla 3.4. Cargas de Techo Pórtico 2 38
Tabla 3.5.Estadísticos aplicados para el Pórtico 141
Tabla 3.6. Valores de resistencia para el Pórtico 1. Método de Estimadores Puntuales
Tabla 3.7.Estadísticos aplicados para el Pórtico 2 42
Tabla 3.8. Valores de resistencia para el Pórtico 2. Método de Estimadores Puntuales
Tabla 3.9. Estadígrafo crítico para la prueba de bondad de ajuste de Kolmogorov-Smirnov
Tabla 4.1. Valores de resistencia a compresión del concreto y tensión cedente del acero. Simulación de Monte Carlo
Tabla 4.2. Valores de resistencia para las secciones de viga. Simulación de Monte Carlo
Tabla 4.3. Prueba de bondad de ajuste K-S. Valores de resistencia a compresión del concreto y tensión cedente del acero. Simulación de Monte Carlo
Tabla 4.4. Prueba de bondad de ajuste K-S. Valores de resistencia para las secciones de viga. Simulación de Monte Carlo

Tabla 4.5. Valores de resistencia para las secciones de columnas. Simulación de Monte Carlo5	53
Tabla 4.6. Prueba de bondad de ajuste K-S. Valores de resistencia para las secciones de columnas. Simulación de Monte Carlo5	55
Tabla 4.7. Análisis estadístico de valores de salida. Simulación de Monte Carlo	56
Tabla 4.8. Prueba de bondad de ajuste K-S. Valores de salida. Simulación de Monte Carlo5	57
Tabla 4.9. Valores de resistencia a compresión del concreto y tensión cedente del acero. Estimadores Puntuales	58
Tabla 4.10. Valores de resistencia para las secciones de vigas. Estimadores Puntuales5	59
Tabla 4.11. Valores de resistencia para las secciones de columnas. Estimadores Puntuales	60
Tabla 4.12. Análisis estadístico de valores de salida. Estimadores Puntuales	51
Tabla 4.13. Valores de resistencia a compresión del concreto y tensión cedente del acero. Simulación de Monte Carlo	62
Tabla 4.14. Valores de resistencia para las secciones de viga. Simulación de Monte Carlo6	63
Tabla 4.15. Prueba de bondad de ajuste K-S. Valores de entrada	54
Tabla 4.16. Prueba de bondad de ajuste K-S. Valores de resistencia	
para las secciones de viga	54

Tabla 4.17. Valores de resistencia para las secciones de columnas.
Simulación de Monte Carlo65
Tabla 4.18. Prueba de bondad de ajuste K-S. Valores de resistencia
para las secciones de columnas
Tabla 4.19. Análisis estadístico de valores de salida. Simulación de
Monte Carlo
Tabla 4.20. Prueba de bondad de ajuste K-S. Valores resultados posterior al análisis inelástico (pushover)
Tabla 4.21. Valores de resistencia a compresión del concreto y tensión
cedente del acero. Estimadores Puntuales
Tabla 4.22. Valores de resistencia para las secciones de vigas.
Estimadores Puntuales71
Tabla 4.23. Valores de resistencia para las secciones de columnas.
Estimadores Puntuales
Tabla 4.24. Análisis estadístico de valores resultados posterior al análisis
inelástico (pushover). Estimadores Puntuales
Tabla 4.25. Porcentaje de variación de la Media. Secciones
Tabla 4.26. Porcentaje de variación de la Media. Materiales
Tabla 4.27. Porcentaje de variación de la Media. Valores Pushover
Tabla 4.28. Porcentaje de variación de la Desviación Estándar.
Secciones
Tabla 4.29. Porcentaje de variación de la Desviación Estándar. Materiales

Tabla 4.30. Porcentaje de variación de la Desviación Estándar. Valores
Pushover
Tabla 4.31. Porcentaje de variación del Coeficiente de Variación. Secciones
Tabla 4.32. Porcentaje de variación del Coeficiente de Variación. Materiales
Tabla 4.33. Porcentaje de variación del Coeficiente de Variación. Valores Pushover
Tabla 4.34. Porcentaje de variación de la Media. Secciones
Tabla 4.35. Porcentaje de variación de la Media. Materiales
Tabla 4.36. Porcentaje de variación de la Media. Valores Pushover
Tabla 4.37. Porcentaje de variación de la Desviación Estándar. Secciones
Tabla 4.38. Porcentaje de variación de la Desviación Estándar. Materiales
Tabla 4.39. Porcentaje de variación de la Desviación Estándar. Valores Pushover
Tabla 4.39. (Continuación). Porcentaje de variación de la Desviación Estándar. Valores Pushover
Tabla 4.40. Porcentaje de variación del Coeficiente de Variación. Secciones
Tabla 4.41. Porcentaje de variación del Coeficiente de Variación. Materiales

Tabla	4.42.	Porcentaje	de	variación	del	Coeficiente	de	Variación.	
Valore	es Push	nover	•••••						. 88

LISTA DE GRÁFICOS/FIGURAS

Figura 2.1. Curva esfuerzo – deformación de Hognestad sin
confinamiento
Figura 2.2. Diagrama esfuerzo-deformación bilineal para acero de
refuerzo13
Figura 3.1. Vista general Pórtico 1
Figura 3.2. Secciones de columnas y vigas Pórtico 1
Figura 3.3. Vista general Pórtico 2
Figura 3.4. Secciones de columnas y vigas Pórtico 2 32
Figura Ilustrativa 3.5. Curva de Pushover
Figura Ilustrativa 3.6. Curva bilineal de Pushover
Gráfico 4.1. Momento último positivo para la viga techo
Gráfico 4.2. Momento último en la columna piso uno, carga axial
45536kgf
Gráfico 4.3. Ductilidad en la viga techo en función del desplazamiento 57
Gráfico 4.4. Momento para la viga 63
Gráfico 4.5. Desplazamiento máximo en la viga de entrepiso 65
Gráfico 4.6. Ductilidad en la viga techo en función del desplazamiento 68
Figura 4.1. Secuencia de rotulación del Pórtico 1
Figura 4.2. Secuencia de rotulación del Pórtico 2

LISTA DE ANEXOS

Anexo A.1. Valores f´c y fy para SIMULACIÓN DE MONTE CARLO
Anexo A.2. CARGA AXIAL P = 45536 kgf. SIMULACIÓN DE MONTE
CARLO. Piso 1
Anexo A.3. CARGA AXIAL P = 68114 kgf. SIMULACIÓN DE MONTE
CARLO. Planta Baja
Anexo A.4. CARGA AXIAL P = 45536 kgf. ESTIMADORES PUNTUALES. Piso
1
Anexo A.5. CARGA AXIAL P = 68114 kgf. ESTIMADORES PUNTUALES.
Planta Baja
Anexo A.6. FLEXIÓN PURA. SIMULACIÓN DE MONTE CARLO. Piso 1 107
Anexo A.7. FLEXIÓN PURA. SIMULACIÓN DE MONTE CARLO. Planta Baja 110
Anexo A.8. FLEXIÓN PURA. ESTIMADORES PUNTUALES. Piso 1
Anexo A.9. FLEXIÓN PURA. ESTIMADORES PUNTUALES. Planta Baja113
Anexo A.10. Viga de Techo. SIMULACIÓN DE MONTE CARLO. Momento
Negativo114
Anexo A.11. Viga de Techo. SIMULACIÓN DE MONTE CARLO. Momento
Positivo 117
Anexo A.12. Viga de Techo. ESTIMADORES PUNTUALES. Momento
Negativo120
Anexo A.13. Viga de Techo. ESTIMADORES PUNTUALES. Momento
Positivo

Anexo A.14.Viga de Entrepiso. SIMULACIÓN DE MONTE CARLO.
Momento Negativo
Anexo A.15.Viga de Entrepiso. SIMULACIÓN DE MONTE CARLO.
Momento Positivo
Anexo A.16.Viga de Entrepiso. ESTIMADORES PUNTUALES. Momento
Negativo127
Anexo A.17.Viga de Entrepiso. ESTIMADORES PUNTUALES. Momento
FOSITIVO
Anexo A.18. Valores de Salida. SIMULACIÓN DE MONTE CARLO. Techo 128
Anexo A.19.Valores de Salida. SIMULACIÓN DE MONTE CARLO.
Entrepiso
Anexo A.20.Valores de Salida. ESTIMADORES PUNTUALES. Techo
Anexo A.21.Valores de Salida. ESTIMADORES PUNTUALES. Entrepiso
Anexo A.22. Estudio de Rótulas. SIMULACIÓN DE MONTE CARLO. Rótula
Superior-Izquierda
Anexo A.23. Estudio de Rótulas. SIMULACIÓN DE MONTE CARLO. Rótula
Inferior-Izquierda
Anexo A.24. Estudio de Rótulas. SIMULACIÓN DE MONTE CARLO. Rótula
Superior-Derecha141
Anexo A.25. Estudio de Rótulas. SIMULACIÓN DE MONTE CARLO. Rótula
Inferior-Derecha
Anexo A.26. Estudio de Rótulas. ESTIMADORES PUNTUALES. Rótula
Superior-Izquierda

Anexo A.27. Estudio de Rótulas. ESTIMADORES PUNTUALES. Rótula
Inferior-Izquierda
Anexo A.28. Estudio de Rótulas. ESTIMADORES PUNTUALES. Rótula
Superior-Derecha148
Anexo A.29. Estudio de Rótulas. ESTIMADORES PUNTUALES. Rótula
Inferior-Derecha148
Gráfico A.1. Momento cedente en la columna planta baja, carga axial
68114kgf149
Gráfico A.2. Curvatura cedente en la columna planta baja, carga
axial 68114kgf149
Gráfico A.3. Momento último en la columna planta baja, carga axial
68114kgf149
Gráfico A.4. Curvatura última en la columna planta baja, carga axial
68114kgf149
Gráfico A.5. Momento cedente en la columna piso uno, carga axial
45536kgf
Gráfico A.6. Curvatura cedente en la columna piso uno, carga axial
45536kgf 150
Gráfico A.7. Momento último en la columna piso uno, carga axial
45536kgf 150
Gráfico A.8. Curvatura última en la columna piso uno, carga axial
45536kgf
Gráfico A.9. Momento cedente en la columna planta baja, flexión
pura151

Gráfico A.10. Curvatura cedente en la columna planta baja, flexión
pura151
Gráfico A.11. Momento último en la columna planta baja, flexión pura 151
Gráfico A.12. Curvatura última en la columna planta baja, flexión pura 151
Gráfico A.13. Momento cedente en la columna piso uno, flexión pura 152
Gráfico A.14. Curvatura cedente en la columna piso uno, flexión pura 152
Gráfico A.15. Momento último en la columna piso uno, flexión pura 152
Gráfico A.16. Curvatura última en la columna piso uno, flexión pura 152
Gráfico A.17. Momento cedente positivo para la viga techo
Gráfico A.18. Curvatura cedente positiva para la viga techo
Gráfico A.19. Momento último positivo para la viga techo
Gráfico A.20. Curvatura última positiva para la viga techo
Gráfico A.21. Momento cedente positivo para la viga entrepiso 154
Gráfico A.22. Curvatura cedente positiva para la viga entrepiso 154
Gráfico A.23. Momento último positivo para la viga entrepiso
Gráfico A.24. Curvatura última positiva para la viga entrepiso
Gráfico A.25. Momento cedente negativo para la viga techo 155
Gráfico A.26. Curvatura cedente negativa para la viga techo
Gráfico A.27. Momento último negativo para la viga techo
Gráfico A.28. Curvatura última negativa para la viga techo
Gráfico A.29. Momento cedente negativo para la viga entrepiso156
Gráfico A.30. Curvatura cedente negativa para la viga entrepiso

Gráfico A.31. Momento último negativo para la viga entrepiso
Gráfico A.32. Curvatura última negativa para la viga entrepiso 156
Gráfico A.33. Resistencia del concreto (f'c)157
Gráfico A.34. Tensión cedente del acero (fy) 157
Gráfico A.35. Resistencia en la viga techo
Gráfico A.36. Desplazamiento máximo en la viga techo
Gráfico A.37. Desplazamiento cedente en la viga techo
Gráfico A.38. Ductilidad en la viga techo en función al desplazamiento 158
Gráfico A.39. Resistencia en la viga entrepiso
Gráfico A.40. Desplazamiento máximo en la viga entrepiso
Gráfico A.41. Desplazamiento cedente en la viga entrepiso
Gráfico A.42. Ductilidad en la viga entrepiso en función al
desplazamiento
Gráfico A.43. Rotación cedente - superior derecha en piso uno 159
Gráfico A.44. Rotación última - superior derecha en piso uno
Gráfico A.45. Ductilidad en función a la rotación - superior derecha en
piso uno
Gráfico A.46. Rotación cedente - inferior derecha en piso uno
Gráfico A.47. Rotación última - inferior derecha en piso uno
Gráfico A.48. Ductilidad en función a la rotación - inferior derecha en
piso uno
Gráfico A.49. Rotación cedente - superior izquierda en piso uno

Gráfico A.50. Rotación última - superior izquierda en piso uno
Gráfico A.51. Ductilidad en función a la rotación - superior izquierda en
piso uno
Gráfico A.52. Rotación cedente - inferior izquierda en piso uno
Gráfico A.53. Rotación última - inferior izquierda en piso uno
Gráfico A.54. Ductilidad en función a la rotación - inferior izquierda en piso uno
Anexo B.1. Valores f´c y fy para SIMULACIÓN DE MONTE CARLO
Anexo B.2. Condición Balanceada y Flexión Pura. SIMULACIÓN DE MONTE CARLO. Columna Piso 1
Anexo B.3. Condición Balanceada y Flexión Pura. SIMULACIÓN DE MONTE CARLO. Columna Planta Baja
Anexo B.4. Condición Balanceada y Flexión Pura. ESTIMADORES PUNTUALES. Columna Piso 1
Anexo B.5. Condición Balanceada y Flexión Pura. ESTIMADORES PUNTUALES. Columna Planta Baja
Anexo B.6. Viga de Techo y Entrepiso. SIMULACIÓN DE MONTE CARLO. Viga Simétrica
Anexo B.7. Viga de Techo y Entrepiso. ESTIMADORES PUNTUALES. Viga Simétrica
Anexo B.8.Valores de Salida. SIMULACIÓN DE MONTE CARLO. Entrepiso 177
Anexo B.9.Valores de Salida. SIMULACIÓN DE MONTE CARLO. Techo 180
Anexo B.10.Valores de Salida. ESTIMADORES PUNTUALES. Entrepiso

Anexo B.11.Valores de Salida. ESTIMADORES PUNTUALES. Techo
Anexo B.12. Estudio de Rótulas. SIMULACIÓN DE MONTE CARLO. Rótula PB Izquierda
Anexo B.13. Estudio de Rótulas. SIMULACIÓN DE MONTE CARLO. Rótula PB Derecha
Anexo B.14. Estudio de Rótulas. SIMULACIÓN DE MONTE CARLO. Rótula P1 Izquierda
Anexo B.15. Estudio de Rótulas. SIMULACIÓN DE MONTE CARLO. Rótula P1 Derecha
Anexo B.16. Estudio de Rótulas. SIMULACIÓN DE MONTE CARLO. Rótula Viga Entrepiso-Derecha
Anexo B.17. Estudio de Rótulas. SIMULACIÓN DE MONTE CARLO. Rótula Viga Entrepiso-Izquierda
Anexo B.18. Estudio de Rótulas. SIMULACIÓN DE MONTE CARLO. Rótula Viga Techo-Izquierda
Anexo B.19. Estudio de Rótulas. ESTIMADORES PUNTUALES. Rótula PB Izquierda
Anexo B.20. Estudio de Rótulas. SIMULACIÓN DE MONTE CARLO. Rótula PB Derecha
Anexo B.21. Estudio de Rótulas. SIMULACIÓN DE MONTE CARLO. Rótula P1 Izquierda
Anexo B.22. Estudio de Rótulas. SIMULACIÓN DE MONTE CARLO. Rótula P1 Derecha

Anexo B.23. Estudio de Rótulas. SIMULACIÓN DE MONTE CARLO. Rótula
Viga Entrepiso-Derecha
Anexo B.24. Estudio de Rótulas. SIMULACIÓN DE MONTE CARLO. Rótula
Viga Entrepiso-Izquierda
Anexo B.25. Estudio de Rótulas. SIMULACIÓN DE MONTE CARLO. Rótula
Viga Techo-Izquierda
Gráfico B.1. Carga axial en el punto balanceado de la columna planta
baja
Gráfico B.2. Momento en el punto balanceado de la columna planta
baja
Gráfico B.3. Curvatura en el punto balanceado de la columna planta
baja
Gráfico B.4. Compresión pura de la columna planta baja
Gráfico B.5. Tracción pura de la columna planta baja
Gráfico B.6. Momento cedente en la columna piso uno, flexión pura 210
Gráfico B.7. Curvatura cedente en la columna piso uno, flexión pura 210
Gráfico B.8. Momento último en la columna piso uno, flexión pura 210
Gráfico B.9. Curvatura última en la columna piso uno, flexión pura
Gráfico B.10. Carga axial en el punto balanceado de la columna piso
1
Gráfico B.11. Momento en el punto balanceado de la columna piso
uno
Gráfico B.12. Curvatura en el punto balanceado de la columna piso
uno

Gráfico B.13. Compresión pura de la columna piso uno
Gráfico B.14. Tracción pura de la columna piso uno
Gráfico B.15. Momento cedente en la columna planta baja, flexión pura
Gráfico B.16. Curvatura cedente en la columna planta baja, flexión pura
Gráfico B.17. Momento último en la columna planta baja, flexión pura 213
Gráfico B.18. Curvatura última en la columna planta baja, flexión pura 213
Gráfico B.19. Momento cedente en la viga
Gráfico B.20. Curvatura cedente en la viga
Gráfico B.21. Momento último en la viga
Gráfico B.22. Curvatura última en la viga
Gráfico B.23. Resistencia del concreto (f'c)
Gráfico B.24. Tensión cedente del acero (fy)
Gráfico B.25. Resistencia en la viga de techo
Gráfico B.26. Desplazamiento máximo en la viga de techo
Gráfico B.27. Desplazamiento cedente en la viga de techo
Gráfico B.28. Ductilidad en la viga de techo en función al
desplazamiento
Gráfico B.29. Resistencia en la viga de entrepiso
Gráfico B.30. Desplazamiento máximo en la viga de entrepiso
Gráfico B.31. Desplazamiento cedente en la viga de entrepiso

Gráfico B.32. Ductilidad en la viga de entrepiso en función al
desplazamiento
Gráfico B.33. Rotación cedente - superior derecha en piso uno
Gráfico B.34. Rotación última - superior derecha en piso uno
Gráfico B.35. Ductilidad en función a la rotación- superior derecha en
piso uno
Gráfico B.36. Rotación cedente - superior izquierda en piso uno
Gráfico B.37. Rotación última - superior izquierda en piso uno
Gráfico B.38. Ductilidad en función a la rotación - superior izquierda en
piso uno
Gráfico B.39. Rotación cedente - inferior izquierda en planta baja
Gráfico B.40. Rotación última - inferior izquierda en planta baja
Gráfico B.41. Ductilidad en función a la rotación - inferior izquierda en
planta baja
Gráfico B.42. Rotación cedente - inferior derecha en planta baja
Gráfico B.43. Rotación última - inferior derecha en planta baja
Gráfico B.44. Ductilidad en función a la rotación - inferior derecha en
planta baja
Gráfico B.45. Rotación cedente a la derecha de la viga de entrepiso 220
Gráfico B.46. Rotación última a la derecha de la viga de entrepiso
Gráfico B.47. Ductilidad a la derecha de la viga de entrepiso en
función al desplazamiento
Gráfico B.48. Rotación cedente a la izquierda de la viga de entrepiso 220

Gráfico B.49. Rotación última a la izquierda de la viga de entrepiso 221
Gráfico B.50. Ductilidad a la izquierda de la viga de entrepiso en
función al desplazamiento 221
Gráfico B.51. Rotación cedente a la izquierda de la viga de techo
Gráfico B.52. Rotación última a la izquierda de la viga de techo 221
Gráfico B.53. Ductilidad a la izquierda de la viga de techo en función
al desplazamiento

LISTA DE SÍMBOLOS Y ABREVIATURAS

COL-P1	Columna del primer piso
COL-PB	Columna de planta baja
C.V.	Coeficiente de variación
E	Módulo de Elasticidad
f'c ; <i>f′_c</i>	Resistencia a compresión del concreto
fy ; <i>f</i> _y	Tensión cedente del acero
K-S	Kolmogorov-Smirnov, prueba de bondad de ajuste
Mu	Momento último o de agotamiento
Му	Momento cedente
φυ	Rotación última
фу	Rotación cedente
S	Desviación estándar de la muestra
VE	Viga de entrepiso
VT	Viga de techo
\bar{x}	Media aritmética

INTRODUCCIÓN

ETAPA I: RECOLECCIÓN.

La primera etapa de este trabajo consistió en obtener la información necesaria a través de fuentes bibliografía, investigaciones recientes, publicaciones técnicas, normas, entre otros. Esta recopilación tuvo como objetivo la identificación y cuantificación de la variabilidad que se presenta en las propiedades mecánicas del concreto reforzado.

También se identificaron las características del comportamiento sismorresistente de estructuras aporticadas de concreto reforzado.

Las actividades de esta etapa son:

- a. Estudio del comportamiento probabilístico de la resistencia a compresión del concreto f`c y el esfuerzo cedente del acero fy, como propiedades mecánicas que conforman el concreto armado.
- b. Revisión del comportamiento de las secciones de vigas y columnas ante las solicitaciones.
- c. Se seleccionaron las variables con las cuales se trabajarían.

ETAPA II: SELECCIÓN DE ESTRUCTURAS Y EJECUCIÓN DEL MODELADO.

Luego de esa primera etapa de revisión y estudio del tema a desarrollar, se procedió con la selección específica de los pórticos a trabajar, junto con todas sus características de análisis para el modelado. Esta etapa estuvo conformada por:

- a. Se escogieron los pórticos a estudiar.
- b. Se generaron los valores aleatorios para cada una de las secciones que conforman el pórtico (momentos y curvaturas cedentes y últimas).

ETAPA III: ANÁLISIS DE LAS ESTRUCTURAS.

Una vez cargada la información de cada una de las variables en el pórtico correspondiente, se procedió a realizar el análisis de la estructura. En esta etapa se tiene:

- a. Se analizó la estructura, aplicando el método estático no lineal (pushover) empleando el programa SAP2000. Versión 11.
- b. Con este programa se pudo obtener las resistencias alcanzadas por la estructura, los desplazamientos máximos, cedentes, rotaciones entre otras variables llamadas variables de salida.
- c. Se observó el comportamiento inelástico del pórtico.

ETAPA IV: ANÁLISIS DE RESULTADOS.

En esta etapa se procede a identificar, clasificar, procesar y analizar cada una de las variables y valores obtenidos. Esta etapa la conforman los siguientes pasos, los cuales aplican tanto para el método de Monte Carlo como para el Método de Estimadores Puntuales:

- a. Utilizando el programa SPSSS for Windows versión 13, se obtuvo los valores medios, desviación estándar y coeficiente de variación, para cada variable generada aleatoriamente.
- b. Utilizando el programa SPSSS for Windows versión 13, se obtuvo los histogramas de frecuencias junto a su distribución normal teórica para los valores generados aleatoriamente.
- c. Utilizando el programa SPSSS for Windows versión 13, se obtuvo los valores medios, desviación estándar y coeficiente de variación, para cada variable obtenida luego del análisis inelástico.
- d. Utilizando el programa SPSSS for Windows versión 13, se obtuvo los histogramas de frecuencias junto a su distribución normal teórica para los valores obtenidos luego del análisis inelástico.
- e. Utilizando el programa SPSS for Windows versión 13, se realizaron pruebas de ajustes de Kolmogorov- Smirnov para los valores generados aleatoriamente y los resultados obtenidos de éstos, con el fin de verificar la distribución normal que se propuso inicialmente.

CAPÍTULO I TEMA DE LA INVESTIGACIÓN

1.1 PLANTEAMIENTO DEL PROBLEMA

Uno de los mayores riesgos potenciales en cuanto a pérdidas humanas y económicas en Venezuela son los eventos sísmicos. Aproximadamente un 80% de la población vive en zonas de alta amenaza sísmica.

La respuesta de una estructura de concreto armado frente a un sismo determinado dependerá de las propiedades mecánicas de la misma. Éstas son básicamente la resistencia del concreto, resistencia del acero, ductilidad, entre otras.

Debido a la relación que tienen estas propiedades sobre el comportamiento de la estructura es importante señalar que la resistencia del concreto y del acero presenta variaciones por su control de calidad, tanto en obra como en planta de producción. Frecuentemente, la resistencia del concreto fabricado en obra no resulta igual a la de diseño, obteniéndose valores tanto superiores como inferiores. A su vez, desde las plantas siderúrgicas donde se producen barras de acero, que se estiman con una tensión cedente dada, también se observan variaciones.

En vista de lo anterior, surge la necesidad de realizar estudios vinculados al tema, para responder interrogantes como: ¿Cuánto pueden afectar estas variaciones de resistencia el comportamiento sismorresistente

de pórticos de concreto armado? ¿Qué método probabilístico permitirá facilitar el proceso de cálculo para observar las consecuencias estructurales que se podrían generar?

Lo que se busca es evaluar de manera probabilística el comportamiento estructural frente a un evento sísmico, para ello se analizarán pórticos planos de concreto armado, los cuales serán tratados mediante el uso de programas avanzados de computadoras, que permiten simular su comportamiento ante la aplicación de una carga horizontal equivalente a la fuerza producida por un sismo. El conjunto de datos obtenido se interpretará con métodos probabilísticos: Simulación de Monte Carlo y Método de los Estimadores Puntuales; con los cuales se podrán confrontar resultados y definir la eficiencia de uno de ellos que requiere menos análisis en comparación al otro.

1.2 OBJETIVOS

1.2.1 Objetivo General

Evaluar la eficacia del método de los Estimadores Puntuales, frente al método de Simulación de Monte Carlo, para realizar la evaluación probabilística del comportamiento sismorresistente de pórticos de concreto armado.

1.2.2 Objetivos Específicos

- 1. Seleccionar dos estructuras (pórticos) para estudiar su comportamiento.
- 2. Presentar la estimación probabilística del comportamiento de los pórticos en estudio a través del Método de Monte Carlo.
- 3. Presentar la estimación probabilística del comportamiento de los pórticos en estudio a través del Método de los Estimadores Puntuales.
- 4. Estimar el comportamiento de los pórticos con la ayuda del método estático no lineal, establecido en la norma COVENIN 1756.
- Contrastar los resultados obtenidos por cada método probabilístico, para definir si el Método de Estimadores Puntuales es tan eficiente como el Método de Monte Carlo.
- 6. Realizar recomendaciones prácticas según los resultados obtenidos.
CAPÍTULO II MARCO TEÓRICO

Con la finalidad de hacer un compendio breve y preciso de cierta información que permita posicionar al lector de este Trabajo Especial de Grado, se elaboró este marco teórico. La aplicación de métodos probabilísticos en el estudio del comportamiento sismorresistente de las estructuras, requiere el conocimiento de ciertos aspectos fundamentales del análisis estructural, resistencia de materiales y conocimiento de la problemática sísmica del país, motivos por los cuales este marco teórico busca satisfacer estas necesidades.

Para mayor comprensión, el marco teórico se divide en las siguientes partes: Problema sísmico y comportamiento estructural, sistemas estructurales y materiales, métodos de cálculo (tanto estructurales como probabilísticos) y el glosario.

2.1 PROBLEMA SÍSMICO Y COMPORTAMIENTO ESTRUCTURAL

2.1.1 Problema sísmico en Venezuela.

Venezuela se encuentra ubicada en el norte de América del Sur y gran parte de su zona costera está en estrecha cercanía con la región interplacas entre la Placa del Caribe y la de América del Sur. Situación que ocasiona que cualquier tipo de liberación de energía por el movimiento o ruptura de alguna de estas fallas pueda producir un evento sísmico. Así mismo, dentro de todo el territorio nacional se encuentran una cantidad considerable de fallas, siendo las más importantes: Boconó, San Sebastián y El Pilar, las cuales también son responsables de dichos eventos.

Esta problemática se ve mayormente afectada al estudiar los asentamientos poblacionales del país, aproximadamente un 80% de los habitantes se encuentran ubicados en la región Andino-Costera, zona relativamente cerca de las fallas mencionadas, lo cual implica la presencia de cierto nivel de amenaza para los pobladores que allí residen. Haciendo uso del mapa de zonificación sísmica, se puede observar que las aceleraciones del terreno donde habita gran parte de los venezolanos rondan los 0,30g, valor que se debe tomar en cuenta para el diseño sismorresistente según se establece en la norma COVENIN 1756.

Después del terremoto de 1967, el problema sísmico en Venezuela pasó a ser un asunto de prioridad nacional, lo que llevó a la actualización de las normas constructivas (hoy en día normas COVENIN), haciéndolas más restrictivas y detalladas, con la finalidad de producir estructuras capaces de absorber y disipar energía por incursión en el rango de comportamiento inelástico. Hasta la actualidad, estas normas han sido modificadas continuamente basándose en nuevas experiencias adquiridas por el tiempo o por otros eventos sísmicos, lo cual busca estar preparado a la hora de que un nuevo evento sísmico sobrevenga en el territorio nacional.

2.1.2 Efecto de los sismos sobre las edificaciones.

A la hora de un sismo, las edificaciones se encuentran sometidas ante unas solicitaciones atípicas, en cuanto a lo que sería su día a día, sin embargo, las mismas debieron haber sido diseñadas para estos eventos. Es aquí cuando el comportamiento (elástico o inelástico) de la estructura se ve realmente comprometido. Dependiendo de la magnitud del sismo y del tipo de diseño empleado en la estructura, la misma podría tener un comportamiento elástico, donde la energía del sismo se traduce en deformaciones sobre los elementos, hasta que la energía se ha disipado en su totalidad y la estructura vuelve a su estado original.

Es importante resaltar lo que se espera de una estructura frente a un sismo: inicialmente, lo más idóneo sería un comportamiento que se traduzca en un evento sin pérdidas de vida ni materiales. Sin embargo, cuando la magnitud de la amenaza es tal que la estructura no es capaz de soportar, se busca que la misma falle de tal manera que su colapso no sea de inmediato, sino diferido, el cual permita la evacuación del edificio, salvando vidas, que al fin y al cabo es el mayor valor que allí reside. Esto se traduce en basar el diseño sismorresistente en la producción de una falla dúctil y no frágil.

2.2 SISTEMAS ESTRUCTURALES Y MATERIALES

2.2.1 El concreto y sus propiedades.

La resistencia a la compresión se puede definir como la máxima resistencia medida de una muestra de concreto o de mortero a carga axial. Generalmente se expresa en kgf/cm², a una edad de 28 días se le designa con el símbolo f'c. Para determinar la resistencia a la compresión se realizan pruebas de mortero o de concreto; por lo general, a menos que se especifique de otra manera, los ensayos a compresión del concreto se efectúan sobre cilindros que miden 15 cm de diámetro y 30 cm de altura. En Venezuela, el ensayo está detallado y normalizado según COVENIN 338 "Método para la elaboración, curado y ensayo a compresión, de cilindros de concreto".

Figura 2.1. Curva esfuerzo – deformación de Hognestad sin confinamiento Fuente: Elaboración Propia.

La resistencia del concreto a la compresión es una propiedad física fundamental y es frecuentemente empleada en los cálculos para diseño de edificios y otras estructuras. El concreto de uso generalizado tiene una resistencia a la compresión entre 210 y 350 kgf/cm². Un concreto de alta resistencia tiene una resistencia a la compresión de cuando menos 420 kgf/cm².

El módulo de elasticidad (E) se puede definir como la relación del esfuerzo normal y la deformación axial correspondiente para esfuerzos de tensión o de compresión por debajo del límite de proporcionalidad de un material. Para concretos de peso normal, E varía entre 140600 y 422000 kgf/cm², y se puede aproximar como 15100 veces el valor de la raíz cuadrada de la resistencia a compresión en kgf/cm². (Consultado Norma COVENIN 1753).

Los principales factores que afectan a la resistencia son: la relación Agua – Cemento, la edad, el grado al que haya progresado la hidratación y el control de calidad. Estos factores también afectan a la resistencia a flexión y a tensión, así como a la adherencia del concreto con el acero.

Entre el concreto que se produce en las empresas de concreto premezclado y el concreto que finalmente queda colocado en el elemento de la obra, frecuentemente existe una importante variación de la calidad debido a las deficiencias en las prácticas constructivas que alteran negativamente el comportamiento del material en el lugar en donde mejor desempeño debería tener en la estructura.

No sólo eso influye categóricamente en la ejecución de la obra, también los daños causados por el mal uso de vibradores daña el buen desarrollo de las propiedades del concreto endurecido y su compactado en la estructura.

Este cambio en la calidad del concreto colocado afecta de diversas formas a las construcciones: modifica el comportamiento estructural del elemento fabricado con concreto, provocando un cambio en su desempeño, al variar las propiedades mecánicas en diferentes secciones estructurales tales como columnas, vigas y losas; afecta la durabilidad de la estructura al presentar segregación del concreto por mala colocación.

2.2.2 El acero y sus propiedades.

El acero es toda aleación de hierro – carbono, capaz de ser deformado plásticamente; con un porcentaje mínimo y máximo de carbono del orden de 0,008% y 2,0%, respectivamente, pudiendo contener otros elementos de aleación, así como también impurezas inherentes al proceso de fabricación.

Aunque es difícil establecer las propiedades físicas y mecánicas del acero, debido a que éstas varían con los ajustes en su composición y los diversos tratamientos térmicos, químicos o mecánicos, con los que pueden conseguirse aceros con combinaciones de características adecuadas para infinidad de aplicaciones, se pueden citar algunas propiedades genéricas: Es un material muy tenaz, relativamente dúctil, es maleable, muy bueno para resistir tracción y compresión, se puede soldar con facilidad. Las propiedades físicas de los aceros y su comportamiento a distintas temperaturas dependen sobre todo de la cantidad de carbono y de su distribución en el hierro. Por ser un material de producción industrializada y controlada, las propiedades estructurales del acero tienen generalmente una variabilidad del orden del 10% para las resistencias y las otras variedades, a pesar de ser un porcentaje bajo resulta importante su estudio.

Figura 2.2. Diagrama esfuerzo-deformación bilineal para acero de refuerzo Fuente: Elaboración Propia.

Otra ventaja del acero es que su comportamiento es perfectamente lineal y elástico hasta la cedencia, lo que hace más fácilmente predecible la respuesta de las estructuras de este material. La alta ductilidad del material permite redistribuir concentraciones de esfuerzos. La posibilidad de ser atacado por la corrosión hace que el acero requiera protección y cierto mantenimiento en condiciones ambientales severas. El costo y los problemas que se originan por este aspecto son suficientemente importantes para que incline la balanza hacia el uso de concreto reforzado en algunas estructuras que deben quedar expuestas a la intemperie.

2.2.3 El concreto reforzado como material constructivo y sus propiedades.

Una vez vistas las propiedades mecánicas del concreto y del acero como materiales individuales, es importante señalar cuáles son las propiedades de un elemento estructural diseñado con concreto y acero, mejor conocido como concreto reforzado o concreto armado.

El concreto reforzado es uno de los materiales más populares para el desarrollo de estructuras (edificaciones), ya que se aprovechan en forma muy eficiente las características de buena resistencia en compresión, durabilidad, resistencia al fuego y moldeabilidad del concreto, junto con las de alta resistencia en tensión y ductilidad del acero, para formar un material compuesto que reúne muchas de las ventajas de ambos materiales.

Para lograr un comportamiento notablemente dúctil en elementos sujetos a flexión, se debe manejar adecuadamente la posición y cantidad del refuerzo. Cuando la falla está gobernada por condiciones de carga tales como cortante, torsión, adherencia y carga axial de compresión, se produce un comportamiento poco dúctil en la estructura, por lo cual se emplea refuerzo transversal en los elementos. Por otro lado, se tiene que el concreto está sujeto a deformaciones importantes por contracción que producen variaciones en las propiedades de rigidez con el tiempo. Todos estos fenómenos se deben considerar en el diseño, tomando las precauciones necesarias en la estructuración y dimensionamiento para evitar fallas en la estructura, por lo cual hay que tener cuidado con la manera como se emplean estos elementos (concreto y acero) en conjunto y lograr que el comportamiento de la estructura sea el ideal.

2.2.4 Edificaciones aporticadas de concreto reforzado.

Para el desarrollo de este Trabajo Especial de Grado se trabajará en función de un sistema estructural: pórticos y de un material para su construcción: concreto reforzado. El concreto reforzado constituye el material de construcción mayormente utilizado en Venezuela, el cual reúne lo mejor de dos elementos para conformar uno sólo de un alto desempeño.

El concreto reforzado (conocido comúnmente como concreto armado) está conformado por concreto y acero. El acero se presenta como una armadura de barras de acero (generalmente) y el concreto como un material que recubre dicha armadura y da la forma deseada al elemento estructural. En cuanto a las atribuciones del acero en el concreto reforzado tenemos: principal elemento en absorber el corte y las tracciones del elemento, así como también proporcionar la ductilidad requerida en el elemento, que conlleven a una falla dúctil de producirse la falla del elemento. El concreto será el encargado de proporcionar resistencia en compresión en la dupla concreto-acero.

Desde el punto de vista constructivo y estructural, se puede definir pórtico como un sistema estructural conformado por columnas y vigas. Bajo esta premisa se puede decir que el pórtico más sencillo es aquel producto de la unión de una viga y dos columnas que trabajan de forma monolítica, donde el punto de unión columna-viga se conoce como nodo. Es de interés este tipo de sistema pues la mayoría de las estructuras que se erigen en el país son aporticadas. Desde el punto de vista sismorresistente, es de gran importancia el conocer este sistema de forma total, pues únicamente de esta manera se podrá simular y lograr materializar los comportamientos deseados a la hora de un sismo.

2.2.5 Variabilidad de las propiedades mecánicas del concreto reforzado.

La variabilidad de las propiedades mecánicas es reducida si se tienen precauciones rigurosas en la fabricación, en cuyo caso son típicos coeficientes de variación de la resistencia en compresión, poco superiores a 10 por ciento. Se tienen dispersiones radicalmente mayores cuando los ingredientes se dosifican por volumen y sin tomar en cuenta la influencia de la humedad y la absorción de los agregados en las cantidades de agua necesarias en la mezcla. Coeficientes de variación entre 20 y 30 por ciento son frecuentes en estos casos para la resistencia en compresión. Una modalidad más refinada del concreto reforzado permite eliminar o al menos reducir, el inconveniente del agrietamiento del concreto que es consecuencia natural de los esfuerzos elevados de tensión a los que se hace trabajar al acero de refuerzo.

Sin embargo la variedad es una realidad y es importante observar y cuantificar el efecto que tiene sobre el comportamiento sismo-resistente de las estructuras.

2.3 MÉTODOS DE ANÁLISIS PROBABILÍSTICO

2.3.1 Métodos probabilísticos.

Cuando se habla de eventos sísmicos, el uso de métodos probabilísticos cumple con un papel sumamente importante. Es aquí donde especialistas del área proceden a realizar estimaciones y suposiciones que permiten a los profesionales del cálculo estructural y sismorresistente diseñar estructuras capaces de soportar cualquier tipo de suceso a lo largo de la vida del elemento.

2.3.2 Simulación de Monte Carlo.

El algoritmo al que responde la Simulación de Monte Carlo es bastante sencillo:

- 1- Determinar las variables aleatorias a utilizar.
- 2- Determinar la frecuencia acumulada de dichas variables.
- 3- Generar un valor aleatorio entre 0 y 1 el cual permita obtener un valor de la variable aleatoria, determinado gracias a la frecuencia acumulada.
- 4- Repetir el proceso del paso 3 hasta obtener un gran número de resultados.
- 5- Analizar estadísticamente los resultados, obteniendo media, desviación estándar, error, etc.
- 6- Establecer conclusiones en función de los resultados obtenidos.

El mayor problema de la Simulación de Monte Carlo radica en que se debe realizar una cantidad realmente grande de ensayos (dependiendo de lo que se estudia pueden ser más de 100, 1000, etc.) lo cual se traduce en horas hombre-máquina, implicando ciertos gastos económicos.

2.3.3 Método de los Estimadores Puntuales o de Segundos Momentos de Rosenblueth.

Considerando que la Estadística es obtener conclusiones acerca de una característica (o variable aleatoria) de toda una población a partir de los datos de una muestra, es decir, hacer inferencias sobre todos los individuos conociendo sólo lo que ocurre con unos pocos. Para que las conclusiones sean válidas, la muestra que se tome debe ser representativa de la población. Se debe escoger la muestra de manera representativa, es decir, de forma que todos los individuos tengan las mismas oportunidades de ser escogidos. Esto se puede conseguir eligiendo dichos individuos al azar en la población, lo que se denomina habitualmente muestreo aleatorio simple.

Existen tres valores relacionados con las variables aleatorias que interesan especialmente, éstos son: la media poblacional, la desviación típica poblacional y la distribución en la que ocurre el evento en una población. El objetivo de la estimación puntual es usar una muestra para obtener números que, en algún sentido, sean los que mejor representen a los verdaderos valores de los parámetros de interés.

De lo que expone Roseblueth en su texto se encuentra lo siguiente de manera resumida. Comienza señalando que usualmente es deseable calcular las expectativas de algunos momentos iniciales de una función de variables aleatorias, en términos de algunos momentos iniciales de estas variables. Las fórmulas usuales de aproximación (1) son obtenidas de la expansión de Taylor de la función acerca de las expectativas de las variables aleatorias. Este acercamiento impone restricciones excesivas en la función (existencia y continuidad de la primera o las primeras derivadas) y requiere el cálculo de derivadas. Estas dificultades pueden ser superadas o evitadas a través del uso de puntos de estimación de la función, lo que lleva a expresiones afines de diferencias finitas.

Estimación de dos puntos:

Se toma la variable X y la variable Y como variables reales aleatorias y Y=Y(X) una función con comportamiento sencillo. Dadas las expectativas de \bar{x} , la desviación estándar σx , y un coeficiente de variación (C.V.) de X buscamos expresiones aproximadas para los momentos de distribución de Y. La expresión debe ser válida para todas las distribuciones de X teniendo los parámetros dados y debe ser exacta para los primeros 3 momentos de Y cuando Y=X. Se escogen las funciones de densidad de probabilidad P₁ $\delta(\bar{x},-x_1)$ y P₂ $\delta(\bar{x}-x_2)$, donde P₁ y P₂ son coeficientes, δ el delta Dirac y X₁ y X₂ son valores específicos de X. La función de densidad consiste entonces en

concentraciones P_{1} y P_{2} en X_{1} y X_{2} , respectivamente. Se comporta de esa manera cuando Y admite una expansión de Taylor alrededor de \bar{x} ,

$$E(Y^n) \doteq P_*Y^n_* + PY^n \tag{1}$$

Donde:

E(.)= expectativa = significa "igual a, excepto para los términos de orden superior".

Y±=Y(X±), y n es un numero real. Cuando Y no admite tal expansión, el signo \doteq deberá ser reemplazado por \cong . De la ecuación (1) se puede computar parámetros de la distribución de Y.

P₁ y X₁ deben satisfacer las siguientes ecuaciones simultáneas para cumplir con las siguientes condiciones,

$$\boldsymbol{P} + \boldsymbol{P} = \boldsymbol{1} \tag{2}$$

$$PX + PX = \bar{X} \tag{3}$$

$$P(X - \bar{X})^{2} + P(X - \bar{X})^{2} = \sigma x^{2}$$
(4)

$$P(X - \overline{X})^{2} + P(X - \overline{X})^{2} = Vx^{2}\sigma x^{2}$$
(5)

Cuya solución es:

$$P_{*} = \frac{1}{2} \left[\mathbf{1} \neq \sqrt{\mathbf{1} - \frac{1}{\mathbf{1} - (\frac{\nabla \mathbf{x}}{\mathbf{z}})^{2}}} \right]$$
(6)
$$P_{*} = \mathbf{1} - P_{*}$$
(7)

$$X = \bar{X} \mp \sigma x \sqrt{(P \mp / P \pm)}$$
(8)

En la ecuación [6] el signo precediendo al radical es el de -Vx. Para Vx << 1, $P = \frac{1}{2} - \frac{Vx}{4}$.

Cuando ∇x es desconocido, puede ser asumido como nulo. Entonces $P \pm = \frac{1}{2}$ y $x \pm = \bar{x} \pm \sigma x$. Parte de la ecuación (1) que, en este caso (2)

$$\overline{Y} \doteq \frac{\underline{Y} + \underline{Y}}{2}$$
(9)

$$\sigma y \doteq \left| \frac{\underline{Y} - \underline{Y}}{2} \right|$$
(10)

$$V y \doteq \left| \frac{\underline{Y} - \underline{Y}}{\underline{Y} + \underline{Y}} \right|$$
(11)

Donde V= al coeficiente de variación. Cuando las 2 primeras derivadas de Y(x) existen y son continuas en la proximidad de \overline{x} , la ecuación 9 constituye una aproximación de segundo orden mientras que las ecuaciones 10 y 11 son de primer orden. A través de la expansión de Taylor de Y, las expresiones usuales para \overline{y} y \overline{y} son obtenidas en término de las dos primeras derivadas de Y en \overline{x} (1). Ambos grupos de aproximación mantienen resultados idénticos excepto por los términos de orden superior; pero las ecuaciones 1,9-11 no requieren del cálculo de derivadas, ni siquiera su continuidad o su existencia. Sin embargo, los resultados son pobres para las funciones discontinuas Y(x) y para las funciones con discontinuidades en sus primeras derivadas.

2.4 MÉTODO DE ANÁLISIS

2.4.1 Método Estático no Lineal.

Para realizar el estudio del comportamiento de los pórticos a trabajar se usará un análisis no lineal; ya que el análisis lineal asume que la relación entre cargas y desplazamientos resultantes son proporcionales; es decir, cumple con el principio de superposición. Sin embargo la realidad es otra; todas las estructuras de concreto armado se comportan de forma no lineal a partir de cierto nivel de la carga.

Una situación donde se pueden presentar problemas de no linealidad es la siguiente:

"Análisis No Lineal por el Material: esta situación ocurre cuando el material no sigue la Ley de Hook, es decir, las tensiones no son directamente proporcionales a las deformaciones. Ciertos materiales se comportan linealmente sólo si las deformaciones son muy pequeñas, otros materiales en cambio siguen comportamientos completamente diferentes. Existen diferentes factores causantes del comportamiento no lineal del material, por ejemplo la dependencia de la curva de tensión-deformación del material de la historia de cargas (como en los problemas con plasticidad), la duración de la carga o la temperatura (problemas termoplásticos). Un ejemplo de comportamiento no lineal por el material es la formación de rótulas plásticas en vigas y columnas. Por todo esto se busca el procedimiento más idóneo que satisfaga el análisis no lineal de la estructura y que aún así no se salga de los parámetros que establecen las normas. Para ello se requiere del "Procedimiento o Método de análisis estático inelástico" que establece la norma COVENIN 1756:2001 (comentarios C-9.9). La cual señala lo siguiente: "Este procedimiento permite la obtención de índices del valor de ductilidad global y/o factor de reducción de respuesta en función de las características mecánicas de los miembros diseñados con diagramas de restitución adecuado (según modelo estructural). Se considera que pueden obtenerse buenos resultados mediante la aplicación de fuerzas de piso, monotónicamente crecientes, proporcionales a las que se obtienen con la aplicación del Método Estático Equivalente hasta valores que definan sucesivamente la resistencia global y cedente, la sobrerresistencia sin excesiva degradación y quizás el nivel de inestabilidad.

Este procedimiento, conocido también por la denominación en inglés de "pushover analysis", se considera de carácter auxiliar y puede resultar de interés para examinar hipótesis de comportamiento de estructuras no tipificadas. Por los momentos, no se considera un procedimiento aceptable para diseñar una estructura mediante su única aplicación, pues varias características de sus resultados necesitan validación y establecimiento de controles. En la propuesta de cambios para las 2000-NEHRP-Provisions (BBSC, 2000) se proponen especificaciones normativas a título tentativo en un apéndice, ante la carencia de consenso actual respecto al control de desplazamientos y a la relación entre las fuerzas de diseño y las obtenidas en el análisis. Sin embargo, es previsible que, añadiendo una serie de controles adecuados, este método

resulte idóneo y práctico para el análisis de las estructuras con sistemas de reducción de la respuesta sísmica, tales como sistemas de aislamiento o sistemas con amortiguadores."^[2]

2.5 GLOSARIO

ACCIÓN SÍSMICA.: Acción accidental debida a la ocurrencia de sismos, la cual incorpora los efectos traslacionales y los rotacionales respecto al eje vertical. (COVENIN 1756).

ACERO: es toda aleación de hierro – carbono, capaz de ser deformado plásticamente; con porcentajes mínimo y máximo de carbono del orden de 0,008% y 2,0%, respectivamente, pudiendo contener otros elementos de aleación, así como también impurezas inherentes al proceso de fabricación. (COVENIN 803)

CEDENCIA: Condición del sistema resistente a sismos, caracterizada por aumentos considerables de los desplazamientos, para pequeños incrementos del cortante basal. (COVENIN 1756)

CONCRETO: mezcla de cemento Pórtland o de cualquier otro cemento hidráulico, agregado fino, agregado grueso y agua, con o sin aditivos, que mediante la hidratación del cemento adquiere consistencia pétrea. (Porrero, 2004)

CONCRETO ARMADO: concreto que contiene el refuerzo metálico adecuado, diseñado bajo la hipótesis que los dos componentes actuarán

conjuntamente para resistir las solicitaciones a las cuales está sometido. (COVENIN 2004).

DISTRIBUCIÓN NORMAL: También llamada distribución de Gauss o distribución gaussiana, es la distribución de probabilidad que con más frecuencia aparece en estadística y teoría de probabilidades. Esto se debe a dos razones fundamentalmente:

- Su función de densidad es simétrica y con forma de campana, lo que favorece su aplicación como modelo a gran número de variables estadísticas.
- Es, además, límite de otras distribuciones y aparece relacionada con multitud de resultados ligados a la teoría de las probabilidades gracias a sus propiedades matemáticas.

La función de densidad está dada por:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Donde μ (M) es la media y σ (sigma) es la desviación estándar (σ^2 es la varianza).^[7]

FUERZAS SÍSMICAS: Fuerzas externas, capaces de reproducir los valores extremos de los desplazamientos y las solicitaciones internas causadas por la excitación sísmica actuando en el nivel de base. (COVENIN 1756).

LEY DE HOOKE: La ley de elasticidad de Hooke o ley de Hooke, originalmente formulada para casos de estiramiento longitudinal,

establece que la deformación ε de un material elástico es directamente proporcional a la fuerza aplicada F:

$$\epsilon = \frac{\Delta L}{L} = \frac{F}{AE}$$

Donde ΔL: alargamiento longitudinal, L: Longitud original, E: módulo de Young o módulo de elasticidad, A sección transversal de la pieza estirada. La ley se aplica a materiales elásticos hasta un límite denominado límite de elasticidad. (Wikipedia)

MÉTODO ESTÁTICO NO LINEAL (PUSHOVER): constituye un método que propone la norma COVENIN 1756, que permite obtener información sobre los mecanismos de falla, las demandas locales y globales de ductilidad, y la identificación de zonas críticas. Se vale de una distribución de cargas estáticas laterales que actúan de forma monotónica y creciente, hasta alcanzar el agotamiento o falla de la estructura. La estructura se modela considerando un comportamiento inelástico representativo de sus características mecánicas.

PROPIEDADES MECÁNICAS DE LOS MATERIALES: En ingeniería, las propiedades mecánicas de los materiales son las características inherentes que permiten diferenciar un material de otros, desde el punto de vista del comportamiento mecánico de los materiales en ingeniería, también hay que tener en cuenta el comportamiento que puede tener un material en los diferentes procesos de mecanizados que pueda tener. Entre estas características mecánicas y tecnológicas destacan:

Resistencia a esfuerzos de tracción, compresión, flexión y torsión, así como desgaste y fatiga, dureza, elasticidad, tenacidad, fragilidad, cohesión,

plasticidad, ductilidad, maleabilidad, porosidad, magnetismo, las facilidades que tenga el material para soldadura, mecanizado, tratamiento térmico así como la resistencia que tenga a los procesos de oxidación, corrosión.

PRUEBA DE KOLMOGOROV-SMIRNOV: En estadística, la prueba de Kolmogorov-Smirnov (también prueba K-S) es una prueba no paramétrica que se utiliza para determinar la bondad de ajuste de dos distribuciones de probabilidad entre sí. (Wikipedia)

SISMO: sacudidas o movimientos bruscos del terreno generalmente producidos por disturbios tectónicos o volcánicos.

VARIABLE ALEATORIA: variable que cuantifica los resultados de un experimento aleatorio. Variable que toma diferentes valores como resultado de un experimento aleatorio. Categoría cuantificable que puede tomar diferentes valores cada vez que sucede un experimento o suceso, el valor sólo se conocerá deterministamente una vez acaecido el suceso. (Wikipedia)

CAPÍTULO III MÉTODO

El objeto de estudio para este Trabajo Especial de Grado es el sistema estructural conocido como pórtico, cuyo material de elaboración será el concreto armado. Asumiendo que la Simulación de Monte Carlo representa un método probabilístico que permite la toma de muestras aleatorias de diversas variables, las cuales conducirán a determinar el comportamiento real de una estructura, se procederá a realizar una evaluación similar pero aplicando un método probabilístico diferente, Métodos de los Estimadores Puntuales. De esta manera se busca determinar si los Estimadores Puntuales podrían simular un comportamiento análogo al que se produce sobre el pórtico frente a solicitaciones.

En este caso, se estudiará el comportamiento frente a una acción sísmica, aplicando el Método Estático no Lineal. De esta manera se someterá el pórtico a una carga lateral hasta la falla del mismo, para posteriormente recolectar una serie de datos que se analizarán estadísticamente. La motivación de la investigación radica en el hecho de que la realización de la Simulación de Monte Carlo resulta lenta y complicada por la gran cantidad de ensayos (simulaciones); por su parte, el Métodos de los Estimadores Puntuales reduce de una manera significativa el número de ensayos. Se desea conocer si este método podría aportar información equivalente a la obtenida con el Método de Monte Carlo.

3.1 CARACTERÍSTICAS GENERALES DE LOS PÓRTICOS A ESTUDIAR

A continuación se presentan las características geométricas y de los materiales de los pórticos en estudio.

3.1.1 Pórtico 1

(Ver Figura 3.1)

- Materiales: (valores nominales)
 - Concreto: resistencia de 200 kgf/cm².
 - Acero: resistencia de 2400 kgf/cm².
- Sistema constituido por dos niveles (PB y P1).

- Altura total de la estructura: 6,23m (2,58m desde la base hasta el entrepiso y 3,65m entre el entrepiso y el techo).

- Vano de 6m de longitud.

- Dimensiones de los elementos:

- Columnas PB: 30x30 cm
- Columnas P1: 25x25 cm.
- Viga Entrepiso: 30x60 cm.
- Viga Techo: 25x50 cm.

- Acero de refuerzo:

- Columnas PB: 4 barras de 5/8''.
- Columnas P1: 4 barras de 1/2''.
- Viga Entrepiso: 3 barras de 1'' abajo; 2 barras de 1'' y 2 barras de 1/2'' arriba.
- Viga Techo: 4 barras de 1'' abajo; 2 barras de 1'' y 2 barras de 1/2'' arriba.

3.1.2 Pórtico 2

(Ver Figura 3.3)

- Materiales: (valores nominales)

- Concreto: resistencia de 250 kgf/cm².
- Acero: resistencia de 4200 kgf/cm².

- Sistema constituido por dos niveles (PB y P1).

- Altura total de la estructura: 7,00m (3,50m desde la base hasta el entrepiso y 3,50m entre el entrepiso y el techo).

- Vano de 7,20m de longitud.

- Dimensiones de los elementos:

- Columnas PB: 30x50 cm.
- Columnas P1: 30x50 cm.
- Viga Entrepiso: 30x60 cm.
- Viga Techo: 30x60 cm.

- Acero de refuerzo:

- Columnas PB: 8 barras de 1''.
- Columnas P1: 6 barras de 1''.
- Viga Entrepiso: 3 barras de 1'' abajo; 3 barras de 1'' arriba.
- Viga Techo: 3 barras de 1'' abajo; 3 barras de 1'' arriba.

Figura 3.1. Vista general Pórtico 1.

Fuente: Elaboración Propia.

Figura 3.3. Vista general Pórtico 2.

Fuente: Elaboración Propia.

3.2 CONSIDERACIONES EN EL ANÁLISIS

- Se consideran todos los elementos indeformables axialmente.

- Presencia de diafragma rígido.

- Se asume la longitud de la rótula plástica según la propuesta de A.H. Mattock: (Park & Paulay, 1979)

Lp = 0.5d + 0.05z

Ecuación 3.1. Longitud de rótula plástica.

Donde:

Lp= Longitud de rótula plástica.

d= Altura útil de la sección.

z= distancia de la sección crítica al punto de inflexión.

- Sólo se consideran las rótulas plásticas a flexión.

- Para ambos casos se hizo el análisis utilizando losas nervadas en la dirección perpendicular al pórtico.

- En el estudio del Pórtico 1 se consideran las vigas con inercia infinita para simplificar el análisis.

3.3 CARGAS ACTUANTES

Las cargas gravitacionales aplicadas al pórtico, son las que se mencionan a continuación:

- Cargas Permanentes (CP): corresponde al peso de la estructura (vigas, columnas y losas).

- Sobrecargas Permanentes (SCP): corresponden al peso de la losa, tabiquería, acabados, impermeabilizaciones, etc.

- Cargas Variables (CV): corresponde a las cargas operacionales o de tránsito.

A continuación se presentarán cuadros donde se pueden observar las cargas utilizadas en el estudio y simulación de los pórticos. Los dos primeros, corresponden al Pórtico 1 y los dos últimos al Pórtico 2. Vale la pena resaltar que las cargas del Pórtico 1 son las que se encuentran en sitio (pórtico existente), mientras que las cargas del Pórtico 2 corresponden a lo fundamentado bajo la Norma Covenin 2002-1988 "Acciones mínimas para el Proyecto de Edificaciones". En ambos casos, las cargas variables se estimaron en función del uso de las estructuras.

Nival	Tipo de	Deserincián	Carga	Cálculo	Carga
Niver	carga	Descripcion	(kgf/m²)	(kgf/m²x m)	(kgf/m)
		Losa Nervada en la dirección			
		perpendicular al pórtico	315	21545 12	1415 OF
		analizado:	515	515,55,15	1013,75
		Espesor 25cm			
		Pavimento:		80x5,13	
	SCP	Baldosa de cerámica con	80		410,40
Entrepiso		mortero de espesor 3cm			
		Tabiquería:			
		(estimado del peso total de la	195	195x5,13	1000,35
		tabiquería)			
				Total SCP	3026,70
		Uso de la edificación: Lugares			
	CV	de concentración pública.	500	500x5,13	2565,00
	CV	Ambiente: Público			
				Total CV	2565,00
				TOTAL	5591,70

Tabla 3.1.Cargas de Entrepiso Pórtico 1.

Nivol	Tipo de	Descripción	Carga	Cálculo	Carga
NIVEI	carga	Descripcion	(kgf/m²)	(kgf/m²x m)	(kgf/m)
		Losa Nervada en la dirección perpendicular al pórtico analizado: Espesor 20cm	270	270x5,13	1385,10
Techo	SCP	Impermeabilización: - Con mortero de nivelación de espesor de 5cm - Manto asfáltico de espesor de 5mm	116	116x5,13	595,08
				Total SCP 1980,	1980,18
	CV	Techo inaccesible con pendiente menor al 15%	n 100 100x5,13	100x5,13	513,00
				Total CV	513,00
	1			TOTAL	2493,18

Tabla 3.2. Cargas de Techo Pórtico 1.

Nivol	Tipo de	Deserinción	Carga	Cálculo	Carga
Nivei	carga	Descripcion	(kgf/m²)	(kgf/m²x m)	(kgf/m)
		Losa Nervada en la			
		dirección			
		perpendicular al	315	315x7,20	2268,00
		pórtico analizado:			
		Espesor 20cm		315x7,20 2268,00 80x7,20 576,00 120x7,20 864,00 Total SCP 3708,00	
		Pavimento:			
	SCP	Baldosa de cerámica	00		576,00
		con mortero de	00		
Entropico		espesor 3cm			
Entrepiso		Tabiquería:			
		(estimado del peso	120	120x7,20	864,00
		total de la tabiquería)			
				Total SCP	3708,00
		Uso de la edificación:			
		Lugares de	300	300×7.20	2140.00
	CV	concentración privada.	500	500x7,20	2100,00
		Ambiente: Privada.			
				Total CV	2160,00
TOTAL		5868,00			

Tabla 3.3. Cargas de Entrepiso Pórtico 2.

Nivol	Tipo de	Descripción	Carga	Cálculo	Carga
Nivei	carga	Description	(kgf/m²)	Calculo	(kgf/m)
		Losa Nervada en la dirección			
		perpendicular al	2/0	2/0x/,20	Carga (kgf/m) 270x7,20 1944,00 116x7,20 835,20 Total SCP 27779,20 100x7,20 720,00 Total CV 720,00 Total CV 3499,2
		pórtico analizado:			
		Espesor 20cm			
		Impermeabilización:			
	SCP	- Con mortero de			
		nivelación de			
Techo		espesor de 5cm	116	116x7,20	835,20
		- Manto asfáltico			
		de espesor de			
		5mm			
				Total SCP	2779,20
		Techo inaccesible con			
		pendiente menor al	100	100x7,20	(kgf/m) 1944,00 835,20 2779,20 720,00 720,00 3499,2
	CV	15%			
				Total CV	720,00
L	1			TOTAL	3499,2

Tabla	3.4.	Cargas	de	Techo	Pórtico	2.
-------	------	--------	----	-------	---------	----

3.4 PROCEDIMIENTOS Y ETAPAS DE LA INVESTIGACIÓN

3.4.1 Recolección

- Se definen las variables aleatorias con las cuales se va a trabajar, considerando una distribución del tipo "normal" (Porrero, 2004). Dichas variables son: para el concreto f'_c (resistencia a la compresión) y para el acero f_y (tensión cedente).
- Para definir una distribución normal se necesitan dos valores: media y desviación estándar. Para las distribuciones se utilizan los siguientes valores nominales: 200 kgf/cm² y 2400 kgf/cm², para el Pórtico 1 y 250 kgf/cm² y 4200 kgf/cm², para el Pórtico 2, para el concreto y el acero respectivamente. En base a estudios anteriores (Porrero, 2004) (valores tomados del "Manual del Concreto Estructural"), se escoge una desviación estándar $\tilde{f'c}$, la cual depende del grado de control de calidad presente durante la elaboración del concreto, la cual será del 15% de $\tilde{f'c}$.Para el caso del acero se escoge un valor de desviación estándar considerado en bibliografía consultada ("STRUCTURAL REALIABILITY ANALYSIS AND PREDICTION") la cual está por el orden del 5% de $\bar{f_y}$.
- Para estimar los valores medios, se procedió a incrementar los valores nominales en un 15%. Esto debido a que generalmente en las plantas de producción (concreteras o siderúrgicas) tienden a salir los materiales con valores de resistencias ligeramente mayores a los

solicitados, ya sea por medidas de seguridad o errores de procesos; siempre en búsqueda de valores superiores a los solicitados.

- Para aplicar la Simulación de Monte Carlo, se determina la gráfica de frecuencia acumulada en base a la distribución normal, para el concreto y el acero. Tomando valores aleatorios distribuidos uniformemente entre cero y uno (0 y 1) se ingresa a la gráfica de frecuencia acumulada para seleccionar un valor de resistencia de concreto y cedencia del acero, obteniendo así un par o dupla de valores. Este proceso se repite 100 veces, para así tener cien pares de valores, para proceder con el ensayo estático no lineal. Dada la gran cantidad de valores que se utilizan en esta simulación, los mismos podrán observarse en los Anexos A y B.
- Para aplicar el Método de los Estimadores Puntuales se debe considerar que una función de una variable aleatoria se puede concentrar básicamente en dos puntos: la media menos su desviación estándar y la media más su desviación estándar (asumiendo una distribución normal). Para este caso:

$$f_{ci} = \overline{f_c} \pm \widetilde{f_c} \pm \widetilde{f_y} \pm \widetilde{f_y}$$

Donde: $\overline{f_c}$; $\overline{f_y} \rightarrow$ refiere a la media $\widetilde{f_c}$; $\widetilde{f_y} \rightarrow$ refiere a la desviación estándar

De las ecuaciones anteriores resultan cuatro (4) combinaciones posibles; con las cuales se van a trabajar:

- Primer par de valores:
- $(f_{ci}^{*} = \overline{f_{c}}^{*} + \widetilde{f_{c}}^{*}; f_{vi}^{*} = \overline{f_{v}} + \widetilde{f_{v}})$ Segundo par de valores: $(f_{ci} = \overline{f_c} - \overline{f_c}; f_{yi} = \overline{f_y} + \overline{f_y})$ Tercer par de valores: $(f_{ci} = \overline{f_c} + \widetilde{f_c}; f_{yi} = \overline{f_y} - \widetilde{f_y})$ Cuarto par de valores: $(f_{ci} = \overline{f_c} - \widetilde{f_c}; f_{vi} = \overline{f_v} - \widetilde{f_v})$

Lo que representa sin duda alguna una disminución significativa de la cantidad de ensayos que se deben hacer por el Método Estático no Lineal (Monte Carlo=100 y Estimadores Puntuales=4).

A continuación se presentan una serie de tablas donde se puede observar las medias y desviaciones estándar que se utilizarán, así como las combinaciones de resistencia de concreto y acero, para los pórticos 1 y 2.

Material	Valor Nominal (kgf/cm²)	Media (kgf/cm²)	Desviación Estándar (kgf/cm²)	C.V.
Concreto	200	230	34,50	0,15
Acero	2400	2760	138.00	0.05

Tabla 3.5.Estadísticos aplicados para el Pórtico 1.

Tabla 3.6. Valores de resistencia para el Pórtico 1. Método de Estimadores Puntuales.

Análisis	Concreto (kgf/cm²)	Acero (kgf/cm ²⁾
1	264,50	2898
2	195,50	2898
3	264,50	2622
4	195,50	2662

Fuente: Elaboración Propia

Tabla 3.7. Estadísticos aplicados para el Pórtico 2.

Material	Valor Nominal (kgf/cm²)	Media (kgf/cm²)	Desviación Estándar (kgf/cm²)	C.V.
Concreto	250	287,5	43,13	0,15
Acero	4200	4830	241,50	0,05

Fuente: Elaboración Propia

Tabla 3.8. Valores de resistencia para el Pórtico 2. Método de Estimadores

Puntuales.

Análisis	Concreto (kgf/cm²)	Acero (kgf/cm²)
1	330,63	5071,50
2	244,38	5071,50
3	330,63	4588,50
4	244,38	4588,50
3.4.2 Procesamiento de la Información

- Mediante el uso de un programa de computación para cálculo estructural, se modelan pórticos con las características de resistencia a compresión del concreto y tensión cedente del acero según cada par.
- Se somete la estructura diseñada a una carga lateral que se incrementa progresivamente hasta que falla la misma. De la aplicación del Método Estático no Lineal se obtienen la fuerza (*P_i*) y desplazamientos laterales (Δ_i); con estos datos se construyen gráficos P-Δ. (cumpliendo con lo establecido en la Norma COVENIN 1756-2001). Obteniéndose de la misma:

Parámetros → Resistencia_{máxima} Desplazamiento_{máximo} Desplazamiento_{cedente} Ductilidad

La resistencia es la capacidad de una estructura en soportar las cargas actuantes sobre ella, dicha resistencia depende de los elementos como componentes individuales y de la capacidad de deformación de la estructura. Se mide a través de la relación entre el corte basal y el desplazamiento del nivel superior (Figura 3.5), obtenido de la aplicación de un análisis inelástico.

Figura Ilustrativa 3.5. Curva de Pushover. Fuente: Elaboración Propia.

El desplazamiento máximo es la mayor deformación lateral que puede desarrollarse en la estructura luego de aplicada el análisis no lineal (ver Figura 3.5). De igual manera se puede obtener de este análisis el desplazamiento cedente de la estructura, para su cálculo se estableció el criterio de igual área (energía absorbida), donde se busca establecer dos áreas iguales, una sobre la curva de capacidad resistente y la otra por debajo de la misma (Figura 3.6.)

Figura Ilustrativa 3.6. Curva bilineal de Pushover. Fuente: Elaboración Propia.

Y por último se tiene la ductilidad, que es la capacidad de disipación de energía dentro del rango plástico que posee un material, una sección o una estructura. Dicha disipación de energía (se puede pensar por ejemplo en la energía de un terremoto) se busca que se produzca en el rango plástico. La ductilidad de la estructura dependerá tanto de la de los materiales y del diseño a nivel de sección, como del diseño global.

 Los valores obtenidos a partir de los datos de la Simulación de Monte Carlo se analizan estadísticamente, para obtener: media, desviación estándar y forma de la función de densidad. Análogamente, se realiza este procedimiento con los resultados obtenidos a partir de los datos provenientes del Método de los Estimadores Puntuales, con el cual se puede obtener únicamente la media y la desviación estándar. Los valores obtenidos bajo la Simulación de Monte Carlo son sometidos a una prueba de bondad de ajuste para comprobar si los mismos presentan una distribución normal; dicha prueba es conocida como bondad de ajuste de Kolmogorov-Smirnov. Dicho estadígrafo se muestra a continuación:

Tamaño de la	$\alpha = 0.10$	$\alpha = 0.05$	$\alpha = 0.01$
muestra			u 0,01
5	0,51	0,56	0,67
10	0,37	0,41	0,49
15	0,30	0,34	0,40
20	0,26	0,29	0,35
25	0,24	0,26	0,32
30	0,22	0,24	0,29
40	0,19	0,21	0,25
n grande	$1,22/\sqrt{n}$	$1,36/\sqrt{n}$	$1,63/\sqrt{n}$

Tabla 3.9. Estadígrafo crítico para la prueba de bondad de ajuste de Kolmogorov-Smirnov.

Fuente: Benjamín y Cornel, 1981

Por ejemplo, de quererse averiguar si un conjunto de 40 valores se ajustan a una distribución normal y utilizando un factor de significación (α) de 0,05, si la prueba Kolmogorov-Smirnov arroja un valor menor o igual 0,21 (ver tabla 3.9) se dice que esos datos presentan un comportamiento normal.

3.4.3 Análisis de Datos

Se procede a comparar lo que se obtiene por la Simulación de Monte Carlo contra el Método de los Estimadores Puntuales, para así poder determinar si existe una similitud entre los resultados.

3.4.4 Discusión y Conclusiones

- Se concluye sobre la comparación de los métodos, indicando si resulta eficiente, conveniente su uso y las ventajas que trae para futuros estudios de comportamiento sismorresistente.
- Se establecen las recomendaciones pertinentes a los resultados obtenidos.

CAPÍTULO IV <u>RESULTADOS Y ANÁLISIS</u>

Tras el análisis y estudio de los pórticos utilizando la herramienta computacional SAP2000 V11 NO LINEAL, de donde se pudieron obtener los resultados que a continuación se presentarán. Además, dichos resultados fueron procesados mediante el programa SPSS 13.0 para Windows, el cual permitió realizar el análisis estadístico de los valores, determinando media, desviación estándar, coeficiente de variación, entre otros.

En este capítulo se presentan los resultados obtenidos con el desarrollo del capítulo anterior de este trabajo de investigación y sus respectivos análisis. Se utilizarán tablas para presentar los resultados, las cuales estarán ubicadas tanto en este capítulo como en los anexos de este trabajo; lo mismo sucede con los histogramas y los resultados de las pruebas de bondad de ajuste de Kolmogorov-Smirnov.

Las tablas y gráficos que a continuación se presentan fueron clasificados por pórtico (1 ó 2) y por el método probabilístico utilizado (Simulación de Monte Carlo o Estimadores Puntuales).

4.1 PÓRTICO 1

4.1.1. Valores resistentes para las secciones de vigas. Simulación de Monte Carlo.

Se obtuvieron valores de momentos y curvaturas cedentes y últimas tanto negativos para la viga de techo (Anexo A.10), como los valores positivos (Anexo A.11) y de igual manera para la viga de entrepiso (Anexo A.14 y Anexo A.15, respectivamente) presente en el pórtico. Se procesaron los valores antes mencionados, obteniendo así las medias y desviaciones estándares respectivas de cada variable (Tabla 4.1).

Tabla 4.1. Valores de resistencia a compresión del concreto y tensióncedente del acero. Simulación de Monte Carlo.

VARIABLE	Ν	MEDIA	DESVIACIÓN ESTÁNDAR	COEFICIENTE DE VARIACIÓN
fc`	100	229,25	34,63	0,151
fy	100	2758,49	130,40	0,047

Tabla 4.2. Valores de resistencia para las secciones de viga. Simulación de Monte Carlo.

VAR	VARIABLE		MEDIA	DESVIACIÓN ESTÁNDAR	COEFICIENTE DE VARIACIÓN
My		100	2186403	10199,24	0,005
ΦУ	Positivo V/T	100	4,89E-05	2,91E-06	0,060
Mυ	FOSITIVO VI	100	2706043	95826,09	0,035
φυ		100	3,68E-04	2,42E-05	0,066
My		100	2068992	97650,33	0,047
ΦУ	Positivo VE	100	3,46E-05	1,89E-06	0,055
Mυ		100	2819996	93595,41	0,033
φυ		100	4,50E-04	2,37E-05	0,053
My		100	1397004	66518,21	0,048
ΦУ	Negativo	100	4,16E-05	2,16E-06	0,052
Mυ	VT	100	1860290	62451,15	0,034
φυ		100	5,10E-04	1,53E-05	0,030
My		100	1739712	82302,06	0,047
φγ	Negativo	100	3,30E-05	1,73E-06	0,052
Μu	VE	100	2441349	80172,23	0,033
φυ		100	5,00E-04	2,04E-05	0,041

De cada una de las variables se obtuvo un histograma de frecuencia, así como su respectiva distribución normal teórica, un ejemplo se aprecia en el gráfico 4.1.

Gráfico 4.1. Momento último positivo para la viga techo. Fuente: Elaboración Propia.

Así como este gráfico, las demás variables tienen su gráfico respectivo (ver anexos) donde cada una muestra un buen ajuste a la distribución normal propuesta, el cual fue corroborado con la prueba de Kolmogorov- Smirnov al 5% de significación (Tabla 3.9).

Tabla 4.3. Prueba de bondad de ajuste K-S. Valores de resistencia a compresión del concreto y tensión cedente del acero. Simulación de Monte Carlo.

VARIABLE	a	ESTADÍGRAFO K-S	K-S (MUESTRA)	¿CUMPLE?
fc`	0.05	0.127	0,057	OK
fy	0,05	0,136	0,036	OK

VARIABLE	SECCIÓN	a	ESTADÍGRAFO K-S	K-S (MUESTRA)	¿CUMPLE?
My	Positivo VT			0,047	OK
фу		0.05	0.127	0,062	OK
Μu		0,05	0,136	0,041	OK
φυ				0,073	OK
My	Positivo VE			0,045	OK
фу		0.05	0,136	0,054	OK
Μu		0,05		0,041	OK
φυ				0,075	OK
My	No gotivo V/T	0.05	5 0,136	0,037	OK
фу				0,04	OK
Μu	Negalivo vi	0,05		0,047	OK
φυ				0,088	OK
My				0,041	OK
фу		0.05	0.127	0,046	OK
Mu	Negalivo ve	0,05	0,136	0,041	OK
φυ				0,064	OK

Tabla 4.4. Prueba de bondad de ajuste K-S. Valores de resistencia para las secciones de viga. Simulación de Monte Carlo.

4.1.2 Valores resistentes para las secciones de columnas. Simulación de Monte Carlo.

Se obtuvieron los valores de momentos y curvaturas cedentes y últimas para la carga seleccionada (Anexo A.2 y A.3) y para el punto de flexión pura (Anexo A.6 y A.7). Se procesaron los valores antes mencionados, obteniendo así las medias y desviaciones estándares respectivas de cada variable (Tabla 4.5).

VARIABLE		Ν	MEDIA	DESVIACIÓN ESTÁNDAR	COEFICIENTE DE VARIACIÓN
My		100	845631,6	45111,65853	0,053
ΦУ	P= 68114kgf	100	1,35E-04	1,78E-05	0,132
Mυ	columna PB	100	864476,9	60273,89065	0,070
φυ		100	2,31E-04	3,45E-05	0,149
My		100	462827,7	23960,34289	0,052
φγ	P= 45536kgf	100	1,70E-04	2,18E-05	0,128
Mυ	columna P1	100	472153,8	31800,51804	0,067
φυ		100	2,88E-04	4,22E-05	0,147
My		100	238212,6	11540,99815	0,048
ФУ	Flexión Pura	100	7,09E-05	3,82E-06	0,054
Μu	columna PB	100	333324,5	14862,63706	0,045
φυ		100	7,76E-04	5,08E-05	0,065
My		100	121502,2	6019,61942	0,050
φγ	Flexión Pura	100	8,88E-05	4,85E-06	0,055
Μu	columna P1	100	176335,9	8486,03325	0,048
φυ		100	9,04E-04	1,01E-04	0,112

Tabla 4.5. Valores de resistencia para las secciones de columnas. Simulación de Monte Carlo.

De cada una de las variables se obtuvo un histograma de frecuencia, así como su respectiva distribución normal teórica, un ejemplo se aprecia en el gráfico 4.2.

Gráfico 4.2. Momento último en la columna piso uno, carga axial 45536kgf. Fuente: Elaboración Propia.

Así como este gráfico, las demás variables tienen su gráfico respectivo (ver anexos) donde cada una muestra un buen ajuste a la distribución normal propuesta, el cual fue corroborado con la prueba de Kolmogorov- Smirnov al 5% de significación (Tabla 4.6).

VARIABLE	SECCIÓN	a	ESTADÍGRAFO K-S	K-S (MUESTRA)	¿CUMPLE?
My				0,109	OK
фу	P= 68114kgf	0.05	0 1 2 4	0,128	OK
Mυ	columna PB	0,05	0,136	0,060	OK
φυ				0,056	OK
My				0,111	OK
ФУ	P= 45536kgf	0.05	0 134	0,132	OK
Mu	columna P1	0,03	0,130	0,063	OK
φυ				0,06	OK
My				0,039	OK
ФУ	Flexión Pura	0.05	0 134	0,055	OK
Mu	columna PB	0,05	0,138	0,076	OK
φυ				0,102	OK
My				0,042	OK
фу	Flexión Pura	0.05	0 1 2 4	0,05	OK
Mυ	columna P1	0,05	0,136	0,052	OK
φυ				0,122	OK
fc`		0.05	0 124	0,057	OK
fy		0,05	0,136	0,036	OK

Tabla 4.6. Prueba de bondad de ajuste K-S. Valores de resistencia para las secciones de columnas. Simulación de Monte Carlo.

4.1.3 Valores resultados posterior al análisis inelástico (pushover). Simulación de Monte Carlo.

Luego de procesado los valores de entrada se procedió a realizar el análisis inelástico, obteniendo la resistencia alcanzada por la estructura, así como los desplazamientos máximos y las diversas rotaciones que se producen (Tabla 4.7). Los valores completos se observan en los anexos A.18, A.19, A.22, A.23, A.24 y A.25.

VARIABLE		Ν	MEDIA	DESVIACIÓN ESTÁNDAR	COEFICIENTE DE VARIACIÓN
Resistencia		100	4554,1132	343,31131	0,075
Desplazamiento Máximo	VT	100	15,4327	1,65835	0,107
Desplazamiento Cedente	VI	100	4,4572	0,70026	0,157
Ductilidad		100	3,4907	0,19235	0,055
Resistencia		100	3220,7302	242,79423	0,075
Desplazamiento Máximo		100	15,1792	1,65176	0,109
Desplazamiento Cedente	VE	100	4,223	0,70417	0,167
Ductilidad		100	3,631	0,23314	0,064
Rotación Cedente	COL-P1-	100	2,65E-03	1,57E-04	0,059
Rotación Última	Superior	100	3,90E-02	4,51E-03	0,116
Ductilidad	Derecha	100	14,8412	2,45951	0,166
Rotación Cedente	COL-P1-	100	2,65E-03	1,57E-04	0,059
Rotación Última	Inferior	100	3,91E-02	4,51E-03	0,115
Ductilidad	Derecha	100	14,8428	2,4606	0,166
Rotación Cedente	COL-P1-	100	2,58E-03	1,59E-04	0,062
Rotación Última	Superior	100	3,91E-02	4,74E-03	0,121
Ductilidad	Izquierda	100	15,2559	2,63917	0,173
Rotación Cedente	COL-P1-	100	2,58E-03	1,59E-04	0,062
Rotación Última	Inferior	100	3,91E-02	4,75E-03	0,121
Ductilidad	Izquierda	100	15,2459	2,63916	0,173

Tabla 4.7. Análisis estadístico de valores de salida. Simulación de Monte Carlo.

Al igual que para los valores de entrada, se procedió al desarrollo de histogramas de frecuencia (Gráfico 4.3 y anexos) con su respectiva distribución normal teórica; comprobada con el ajuste de bondad (K-S) (Tabla 4.8).

Gráfico 4.3. Ductilidad en la viga techo en función del desplazamiento. Fuente: Elaboración Propia.

Tabla 4.8. Prueba de bondad de ajuste K-S. Valores de salida. Simulación

VARIABLE	SECCIÓN	a	ESTADÍGRAFO K-S	K-S (MUESTRA)	¿CUMPLE?
Resistencia				0,059	OK
Desplazamiento Máximo	VT	0.05	0.127	0,069	OK
Desplazamiento Cedente	VI	0,05	0,136	0,053	OK
Ductilidad				0,063	OK
Resistencia				0,059	OK
Desplazamiento Máximo		0.05	0 1 2 4	0,060	OK
Desplazamiento Cedente	VE	0,05	0,136	0,048	OK
Ductilidad				0,084	OK
Rotación Cedente	COL-P1-			0,077	OK
Rotación Última	Superior	0,05	0,136	0,060	OK
Ductilidad	Derecha			0,055	OK
Rotación Cedente	COL-P1-			0,077	OK
Rotación Última	Inferior	0,05	0,136	0,059	OK
Ductilidad	Derecha			0,055	OK
Rotación Cedente	COL-P1-			0,092	OK
Rotación Última	Superior	0,05	0,136	0,076	OK
Ductilidad	Izquierda			0,067	OK
Rotación Cedente	COL-P1-			0,092	OK
Rotación Última	Inferior	0,05	0,136	0,077	OK
Ductilidad	Izquierda			0,068	OK
Fuente: Elaboración Pr	opia.				

de Monte Carlo.

Se obtuvo que cada uno de los parámetros analizados se ajusta a una distribución normal. Además se obtuvo que los valores de la ductilidad en las secciones de vigas son consistentes con la variación de la resistencia a compresión del concreto, es decir; menores valores f'c implican menor ductilidad y viceversa. Caso contrario ocurre con la variación del esfuerzo cedente del acero, donde para el menor valor de fy se observan mayores ductilidades.

4.1.4 Valores de resistencia para las secciones de vigas. Estimadores Puntuales.

De igual manera como se procesaron los datos según Monte Carlo, se obtuvo los resultados para los cuatro pares de valores según el método de los Estimadores Puntuales.

Se obtuvieron valores de momentos y curvaturas cedentes y últimas tanto negativos para la viga de techo (Anexo A.12), como los valores positivos (Anexo A.13) y de igual manera para la viga de entrepiso (Anexo A.16 y Anexo A.17, respectivamente) presente en el pórtico. Se procesaron los valores antes mencionados, obteniendo así las medias y desviaciones estándares respectivas de cada variable (Tabla 4.10).

Tabla 4.9. Valores de resistencia a compresión del concreto y tensión
cedente del acero. Estimadores Puntuales.

VARIABLE	N	MEDIA	DESVIACIÓN ESTÁNDAR	COEFICIENTE DE VARIACIÓN			
fc`	4	230	39,83717	0,173			
fy	4	2760	159,34867	0,058			
-uente: Elaboración Propia.							

VAR	VARIABLE		MEDIA	DESVIACIÓN ESTÁNDAR	COEFICIENTE DE VARIACIÓN
My		4	2188125	126047,144	0,058
φγ	Desitive V/T	4	4,89E-05	3,41E-06	0,070
Μu	FOSITIVO VI	4	2709750	120690,61	0,045
φυ		4	3,69E-04	2,67E-05	0,072
My	Positivo VE	4	2069175	119820,3203	0,058
φγ		4	3,46E-05	2,22E-06	0,064
Μu		4	2823950	121362,1715	0,043
φυ		4	4,50E-04	2,65E-05	0,059
My		4	1405700	81854,62724	0,058
фу	Negativo	4	4,18E-05	2,56E-06	0,061
Μu	VT	4	1856175	80604,06834	0,043
φυ		4	5,11E-04	1,69E-05	0,033
My		4	1742875	100749,5699	0,058
ФУ	Negativo	4	3,31E-05	2,06E-06	0,062
Mu	VE	4	2442150	96001,96179	0,039
φυ		4	5,01E-04	2,29E-05	0,046

Tabla 4.10. Valores de resistencia para las secciones de vigas. Estimadores Puntuales.

4.1.5 Valores de resistencia para las secciones de columnas. Estimadores Puntuales.

Se obtuvieron los valores de momentos y curvaturas cedentes y últimas para la carga seleccionada (Anexo A.4 y A.5) y para el punto de flexión pura (Anexo A.8 y A.9). Se procesaron los valores antes mencionados, obteniendo así las medias y desviaciones estándares respectivas de cada variable (Tabla 4.11).

VAR	VARIABLE		MEDIA	DESVIACIÓN ESTÁNDAR	COEFICIENTE DE VARIACIÓN
My	P=	4	849647,5	44412,24034	0,052
φγ	68114kgf	4	1,35E-04	1,63E-05	0,121
Mυ	columna	4	866625	67872,09662	0,078
φυ	PB	4	2,31E-04	3,97E-05	0,172
My	P=	4	464890	23564,74485	0,051
ΦУ	45536kgf	4	1,69E-04	1,97E-05	0,117
Mυ	columna	4	473302,5	35786,15223	0,076
φυ	P1	4	2,89E-04	4,94E-05	0,171
My	Flexión	4	243615	14226,08051	0,058
ФУ	Pura	4	7,13E-05	4,54E-06	0,064
Mυ	columna	4	334577,5	18578,04147	0,056
φυ	PB	4	7,74E-04	4,96E-05	0,064
My	Flexión	4	125267,5	7796,67183	0,062
φγ	Pura	4	8,95E-05	5,81E-06	0,065
Mυ	columna	4	176742,5	9464,6443	0,054
φυ	P1	4	9,00E-04	9,77E-05	0,109

Tabla 4.11. Valores de resistencia para las secciones de columnas. Estimadores Puntuales.

4.1.6 Valores resultados posterior al análisis inelástico (pushover). Estimadores Puntuales.

Luego de procesado los valores de entrada se procedió a realizar el análisis inelástico, obteniendo la resistencia alcanzada por la estructura, así como los desplazamientos máximos y las diversas rotaciones que se producen (Tabla 4.15). Los valores completos se observan en los anexos A.20 y A.21.

VARIABI	VARIABLE		MEDIA	DESVIACIÓN ESTÁNDAR	COEFICIENTE DE VARIACIÓN
Resistencia		4	4485,1125	358,40986	0,080
Desplazamiento Máximo	VT	4	14,1538	1,81555	0,128
Desplazamiento Cedente	VI	4	3,946	0,72833	0,185
Ductilidad		4	3,6145	0,20164	0,056
Resistencia		4	3171,9325	253,47181	0,080
Desplazamiento Máximo	VE	4	13,9355	1,81682	0,130
Desplazamiento Cedente	VE	4	3,7283	0,73003	0,196
Ductilidad		4	3,774	0,24555	0,065
Rotación Cedente	COL-P1-	4	2,66E-03	1,77E-04	0,067
Rotación Última	Superior	4	3,57E-02	5,00E-03	0,140
Ductilidad	Delectio	4	13,578	2,78043	0,205
Rotación Cedente	COL-P1-	4	2,66E-03	1,77E-04	0,067
Rotación Última	Dorocha	4	3,57E-02	5,00E-03	0,140
Ductilidad	Delectio	4	13,578	2,78043	0,205
Rotación Cedente	COL-P1-	4	2,58E-03	1,69E-04	0,066
Rotación Última	Superior	4	3,58E-02	5,00E-03	0,140
Ductilidad	izquierda	4	14,0128	2,85051	0,203
Rotación Cedente	COL-P1-	4	2,58E-03	1,69E-04	0,066
Rotación Última	Interior	4	3,58E-02	5,00E-03	0,140
Ductilidad	124016100	4	14,0128	2,85051	0,203

Tabla 4.12. Análisis estadístico de valores de salida. Estimadores Puntuales.

4.2 PÓRTICO 2

De la misma manera como se procedió con el pórtico 1, se realiza el pórtico 2, obteniendo resultados de tendencia muy similares.

Tabla 4.13. Val	ores de re	esistencio	a a compres	sión del concreto y	[,] tensión	
cedente del acero. Simulación de Monte Carlo.						
I		-	-	COFFICIENTE		

VA	RIABLE	MEDIA	DESVIACIÓN ESTÁNDAR	COEFICIENTE DE VARIACIÓN				
	fc`	285,02	44,54	0,156				
	fy	4876,39	236,70	0,049				
Franka, Flakana sién Drania								

Fuente: Elaboración Propia.

4.2.1 Valores de resistencia para las secciones de viga. Simulación de Monte Carlo.

Se obtuvieron valores de momentos y curvaturas cedentes y últimas tanto negativos como positivas (que para este caso resultan iguales por ser una sección simétrica en el armado. Anexo B.2). Se procesaron los valores antes mencionados, obteniendo así las medias y desviaciones estándares respectivas de cada variable (Tabla 4.14).

Tabla 4.14. Valores de resistencia para las secciones de viga. Simulación

VARIABLE		N	MEDIA	DESVIACIÓN ESTÁNDAR	COEFICIENTE DE VARIACIÓN
My		100	3662807	175982,803	0,048
фу	Vice	100	5,93E-05	3,43E-06	0,058
Μu	viga	100	4294004	160124,521	0,037
φυ		100	3,88E-04	2,83E-05	0,073

de Monte Carlo.

Fuente: Elaboración Propia.

De cada una de las variables se obtuvo un histograma de frecuencia, así como su respectiva distribución normal teórica, un ejemplo se aprecia en el gráfico 4.4.

Gráfico 4.4. Momento para la viga. Fuente: Elaboración Propia.

Así como este gráfico, las demás variables tienen su gráfico respectivo (ver anexos) donde cada uno arrojó un buen ajuste a la distribución normal propuesta, el cual fue corroborado con la prueba de Kolmogorov- Smirnov al 5% de significación (Tabla 4.16).

VARIABLE	a	ESTADÍGRAFO K-S	VALOR K-S (MUESTRA)	¿CUMPLE?
fc`	0,05	0,136	0,058	OK
fy	0,05	0,136	0,082	OK

Tabla 4.15. Prueba de bondad de ajuste K-S. Valores de entrada.

Fuente: Elaboración Propia.

Tabla 4.16. Prueba de bondad de ajuste K-S. Valores de resistencia para las

VARIABLE	SECCIÓN	a	ESTADÍGRAFO K-S	VALOR K-S (MUESTRA)	¿CUMPLE?
My	Viga	0,05	0,136	0,086	OK
ΦУ		0,05	0,136	0,048	OK
Μu		0,05	0,136	0,07	OK
ΦU		0,05	0,136	0,057	OK

secciones de viga.

Fuente: Elaboración Propia.

4.2.2 Valores de resistencia para las secciones de columnas. Simulación de Monte Carlo.

Se obtuvieron los valores de momentos y curvaturas cedentes y últimas para la carga seleccionada (Anexo A.2 y A.3) y para el punto de flexión pura (Anexo A.6 y A.7). Se procesaron los valores antes mencionados, obteniendo así las medias y desviaciones estándares respectivas de cada variable (Tabla 4.17).

VARIABLE		Ν	MEDIA	DESVIACIÓN ESTÁNDAR	COEFICIENTE DE VARIACIÓN
Pb		100	165561	27015,06	0,163
Mb		100	4598358	372724,361	0,081
φb	COlornina i B	100	1,18E-04	2,59E-06	0,022
My		100	2379255	132366,589	0,056
φу	Flexión Pura	100	7,86E-05	4,74E-06	0,060
Μu	columna PB	100	3671958	155254,975	0,042
φυ		100	2,27E-04	1,67E-05	0,073
Pb	Delencede	100	164590,9	26595,1369	0,162
Mb		100	4350867	372213,629	0,086
φb	COlumna Fi	100	1,18E-04	2,59E-06	0,022
My		100	2317128	110730,994	0,048
φу	Flexión Pura	100	7,51E-05	4,44E-06	0,059
Μu	columna P1	100	3130023	128722,048	0,041
φυ		100	2,28E-04	3,18E-05	0,140

Tabla 4.17. Valores de resistencia para las secciones de columnas. Simulación de Monte Carlo.

De cada una de las variables se obtuvo un histograma de frecuencia, así como su respectiva distribución normal teórica, un ejemplo se aprecia en el gráfico 4.5.

Gráfico 4.5. Desplazamiento máximo en la viga de entrepiso.

Así como este gráfico, las demás variables tienen su gráfico respectivo (ver anexos) donde cada uno arrojó un buen ajuste a la distribución normal propuesta, el cual fue corroborado con la prueba de Kolmogorov- Smirnov al 5% de significación (Tabla 4.18).

VARIABLE	SECCIÓN	a	ESTADÍGRAFO K-S	VALOR K-S (MUESTRA)	¿CUMPLE?
Pb	Deleve e e e elev	0,05	0,136	0,042	OK
Mb		0,05	0,136	0,072	OK
φb	COIUMING FB	0,05	0,136	0,112	OK
My		0,05	0,136	0,065	OK
ФУ	Flexión Pura	0,05	0,136	0,04	OK
Mu	columna PB	0,05	0,136	0,069	OK
φυ		0,05	0,136	0,065	OK
Pb	Deleve e e e elev	0,05	0,136	0,085	OK
Mb		0,05	0,136	0,077	OK
φb	Columna Fi	0,05	0,136	0,112	OK
My		0,05	0,136	0,064	OK
ФУ	Flexión Pura	0,05	0,136	0,047	OK
Mu	columna P1	0,05	0,136	0,067	OK
Φυ		0,05	0,136	0,043	OK

Tabla 4.18. Prueba de bondad de ajuste K-S. Valores de resistencia para las secciones de columnas.

Fuente: Elaboración Propia.

4.2.3 Valores resultados posterior al análisis inelástico (pushover). Simulación de Monte Carlo.

Luego de procesado los valores de entrada se procedió a realizar el análisis inelástico, obteniendo la resistencia alcanzada por la estructura, así como los desplazamientos máximos y las diversas rotaciones que se producen (Tabla 4.19). Los valores completos se observan en los anexos B.8, B.9, B.12, B.13, B.14, B.15, B.16, B.17 y B.18.

Tabla 4.19. Análisis estadístico de valores de salida. Simulación de Monte	è
Carlo.	

VARIABLE		N	MEDIA	DESVIACIÓN ESTÁNDAR	COEFICIENTE DE VARIACIÓN
Resistencia		100	41475,83	1802,33368	0,043
Desplazamiento Máximo	VТ	100	18,9029	0,73557	0,039
Desplazamiento Cedente	VI	100	6,6637	0,28116	0,042
Ductilidad		100	2,8398	0,127	0,045
Resistencia		100	27839,26	1179,99708	0,042
Desplazamiento Máximo	VE	100	9,6825	0,04864	0,005
Desplazamiento Cedente	VE	100	3,4609	0,1475	0,043
Ductilidad		100	2,8028	0,12123	0,043
Rotación Cedente	COL-P1-	100	0,003272	0,0001995	0,061
Rotación Última	Superior	100	0,019608	0,0020183	0,103
Ductilidad	Derecha	100	5,9893	0,366	0,061
Rotación Cedente	COL-P1-	100	0,3664296	0,0001852	0,001
Rotación Última	Superior	100	0,015821	0,0006525	0,041
Ductilidad	Izquierda	100	5,11988	0,5265921	0,103
Rotación Cedente	COL-PB-	100	0,003694	0,0002382	0,064
Rotación Última	Inferior	100	0,025582	0,0004444	0,017
Ductilidad	Derecha	100	6,9527	0,44431	0,064
Rotación Cedente	COL-PB-	100	0,003337	0,0002043	0,061
Rotación Última	Inferior	100	0,025328	0,0004406	0,017
Ductilidad	Izquierda	100	7,6181	0,45726	0,060
Rotación Cedente	VIGA -	100	0,004694	0,0002382	0,051
Rotación Última	Entrepiso	100	0,035821	0,0006525	0,018
Ductilidad	Derecha	100	7,65478	0,4764461	0,062
Rotación Cedente	VIGA -	100	0,004694	0,0002382	0,051
Rotación Última	Entrepiso	100	0,035582	0,00044444	0,012
Ductilidad	Izquierda	100	7,59902	0,3803871	0,050
Rotación Cedente	VIGA -	100	0,002694	0,0002382	0,088
Rotación Última	Techo	100	0,004395	0,0025668	0,584
Ductilidad	Izquierda	100	1,71254	1,0821053	0,632

Al igual que para los valores de entrada, se procedió al desarrollo de histogramas de frecuencia (Gráfico 4.6 y anexos) con su respectiva distribución normal teórica; comprobada con el ajuste de bondad (K-S) (Tabla 4.20).

Gráfico 4.6. Ductilidad en la viga techo en función del desplazamiento.

VARIABLE	SECCIÓN	a	ESTADÍGRAFO K-S	VALOR K-S (MUESTRA)	¿CUMPLE?
Resistencia				0,071	OK
Desplazamiento	VT			0.004	Or
Máximo		0.05	0.134	0,076	UK .
Desplazamiento	۷I	0,05	0,150	0.097	OK
Cedente			-	0,077	ŬK.
Ductilidad				0,059	OK
Resistencia			-	0,057	OK
Desplazamiento				0 039	OK
Máximo	VF	0.05	0 136	0,007	ÖK
Desplazamiento	۷L	0,00	0,100	0.112	ОК
Cedente			-	0,112	ÖR
Ductilidad				0,094	OK
Rotación Cedente	COL-P1-		-	0,126	OK
Rotación Ultima	Superior	0,05	0,136	0,069	OK
Ductilidad	Derecha			0,068	OK
Rotación Cedente	COL-P1-		-	0,126	OK
Rotación Ultima	Superior	0,05	0,136	0,128	OK
Ductilidad	Izquierda			0,077	OK
Rotación Cedente	COL-PB-			0,100	OK
Rotación Ultima	Inferior	0,05	0,136	0,135	OK
Ductilidad	Derecha			0,085	OK
Rotación Cedente	COL-PB-		-	0,109	OK
Rotación Última	Inferior	0,05	0,136	0,116	OK
Ductilidad	Izquierda			0,081	OK
Rotación Cedente	VIGA -			0,100	OK
Rotación Última	Entrepiso	0,05	0,136	0,128	OK
Ductilidad	Derecha			0,049	OK
Rotación Cedente	VIGA -			0,100	OK
Rotación Última	Entrepiso	0,05	0,136	0,135	OK
Ductilidad	Izquierda			0,077	OK
Rotación Cedente	VIGA - Techo			0,100	OK
Rotación Última	Izquierda	0,05	0,136	0,094	OK
Ductilidad				0,085	OK

Tabla 4.20. Prueba de bondad de ajuste K-S. Valores resultados posterior al análisis inelástico (pushover).

Se obtuvo que cada uno de los parámetros analizados se ajusta a una distribución normal. Además se obtuvo que los valores de la ductilidad en las secciones de vigas son consistentes con la variación de la resistencia a compresión del concreto, es decir; menores valores de f'c implican menor ductilidad y viceversa. Caso contrario ocurre con la variación del esfuerzo cedente del acero, donde para el menor valor de fy se observan mayores ductilidades.

4.2.4 Valores de resistencia para las secciones de vigas. Estimadores Puntuales.

De igual manera como se procesaron los datos según Monte Carlo, se obtuvo los resultados para los cuatro pares de valores según el método de los Estimadores Puntuales.

Se obtuvieron valores de momentos y curvaturas cedentes y últimas para la viga (Anexo B.7). Se procesaron los valores antes mencionados, obteniendo así las medias y desviaciones estándares respectivas de cada variable (Tabla 4.22).

Tabla 4.21. Valores de resistencia a compresión del concreto y tensióncedente del acero. Estimadores Puntuales.

VARIABLE	Ν	MEDIA	DESVIACIÓN ESTÁNDAR	COEFICIENTE DE VARIACIÓN
fc`	4	287,5	50,22947	0,175
fy	4	4830,5	278,86018	0,058

Tabla 4.22. Valores de resistencia para las secciones de vigas. Estimadores Puntuales.

VARIABLE		N	MEDIA	DESVIACIÓN ESTÁNDAR	COEFICIENTE DE VARIACIÓN
My	Viga	4	3643250	208782,143	0,057
ФУ		4	5,90E-05	3,80E-06	0,064
Μu		4	4275900	194702,303	0,046
φυ		4	3,90E-04	3,06E-05	0,078

4.2.5 Valores de resistencia para las secciones de columnas.

Estimadores Puntuales.

Se obtuvieron los valores de momentos y curvaturas cedentes y últimas para la carga balanceada (Anexo A.4 y A.5) y para el punto de flexión pura (Anexo B.4 y B.5). Se procesaron los valores antes mencionados, obteniendo así las medias y desviaciones estándares respectivas de cada variable (Tabla 4.23).

VARIABLE		N	MEDIA	DESVIACIÓN ESTÁNDAR	COEFICIENTE DE VARIACIÓN
Pb	Delence ade	4	168907,5	30083,4311	0,178
Mb		4	4621150	434103,709	0,094
φb	COIDITITICITIE	4	1,18E-04	3,00E-06	0,025
My		4	2452560	161471,597	0,066
ФУ	Flexión Pura	4	7,80E-05	5,20E-06	0,067
Mυ	columna PB	4	3659650	186.420	0,051
φυ		4	2,29E-04	1,79E-05	0,078
	Tracción Pura PB	4	197120	11085,1252	0,056
	Compresión Pura PB	4	553767,5	63288,3709	0,114
Pb	Dalanaaada	4	167725	29725,7111	0,177
Mb		4	4375200	432535,787	0,099
φb	COlumna Fi	4	1,18E-04	3,00E-06	0,025
My		4	2305300	133670,366	0,058
фу	Flexión Pura	4	7,40E-05	4,90E-06	0,066
Mυ	columna P1	4	3116050	152451,621	0,049
φυ		4	2,87E-04	3,53E-05	0,123
Tracción Pura P1		4	147840	8313,84388	0,056
Compresión Pura P1		4	506965	63289,0957	0,125

Tabla 4.23. Valores de resistencia para las secciones de columnas. Estimadores Puntuales.

4.2.6 Valores resultados posterior al análisis inelástico (pushover). Estimadores Puntuales.

Luego de procesados los valores de entrada se procedió a realizar el análisis inelástico, obteniendo la resistencia alcanzada por la estructura, así como los desplazamientos máximos y las diversas rotaciones que se producen (Tabla 4.24). Los valores completos se observan en los anexos.

VARIABLE		Ν	MEDIA	DESVIACIÓN ESTÁNDAR	COEFICIENTE DE VARIACIÓN
Resistencia		4	41421,79	2191,40075	0,053
Desplazamiento		4	10 0070	0.70404	0.027
Máximo	VT	4	17,0778	0,70474	0,037
Desplazamiento	V I	٨	6 6893	0.20844	0.031
Cedente		4	0,0075	0,20044	0,001
Ductilidad		4	2,858	0,13834	0,048
Resistencia		4	27740,91	1.370	0,049
Desplazamiento		4	9,6065	0,04505	0,005
Muximo	VE				
Cedente		4	3,4178	0,14067	0,041
Ductilidad	-	4	2,8138	0,1064	0,038
Rotación Cedente	COL-P1-	4	0,003225	0,0002217	0,069
Rotación Última	Superior	4	0,019625	0,0023824	0,121
Ductilidad	Derecha	4	6,0708	0,41918	0,069
Rotación Cedente	COL-P1-	4	0,00305	0,0002082	0,068
Rotación Última	Inferior	4	0,015875	0,000718	0,045
Ductilidad	Derecha	4	5,2315	0,54877	0,105
Rotación Cedente	COL-P1-	4	0,00365	0,0002887	0,079
Rotación Última	Superior	4	0,0248	0,000516	0,021
Ductilidad	Izquierda	4	6,674	0,42704	0,064
Rotación Cedente	COL-P1-	4	0,0033	0,0002582	0,078
Rotación Última	Inferior	4	0,02505	0,0004577	0,018
Ductilidad	Izquierda	4	7,621	0,48719	0,064
Rotación Cedente	VIGA -	4	0,0048	0,000259	0,054
Rotación Última	Entrepiso	4	0,03555	0,0006147	0,017
Ductilidad	Derecha	4	7,4233	0,42384	0,057
Rotación Cedente	VIGA -	4	0,0048	0,0002559	0,053
Rotación Última	Entrepiso	4	0,035125	0,0004997	0,014
Ductilidad	Izquierda	4	7,35989	0,3521	0,048
Rotación Cedente	VIGA -	4	0,0027	0,0002414	0,089
Rotación Última	Techo	4	0,0045	0,0029967	0,666
Ductilidad	Izquierda	4	1,7133	1,1095	0,648

Tabla 4.24. Análisis estadístico de valores resultados posterior al análisisinelástico (pushover). Estimadores Puntuales.

4.3 SECUENCIA DE FORMACIÓN DE RÓTULAS PLÁSTICAS

Las dos figuras que se presentan a continuación buscan expresar o dar a entender como fue el mecanismo de formación de las rótulas plásticas a flexión presentes en el Pórtico 1 y el Pórtico 2. Vale la pena señalar que tanto para los 100 análisis de Simulación de Monte Carlo como los 4 análisis de Estimadores Puntuales, la secuencia de rotulación fue la misma, lo que indica que la variación de la resistencia a compresión del concreto ni de la tensión cedente del acero afectaron este comportamiento.

Figura 4.1. Secuencia de rotulación del Pórtico 1.

Fuente: Elaboración Propia.

Figura 4.2. Secuencia de rotulación del Pórtico 2.

4.4 CÁLCULO DE PORCENTAJES DE VARIACIÓN

Con la finalidad de determinar qué tan buena es la estimación de valores mediante Estimadores Puntuales, se procedió a utilizar la siguiente fórmula, que considera el comportamiento por Simulación de Monte Carlo como el comportamiento real de la estructura:

$$\% VAR = \frac{X_{EP} - X_{MC}}{X_{MC}} * 100$$

Ecuación 4.1. Porcentaje de variación.

Donde:

%VAR= porcentaje de variación de la variable en estudio.

X_{EP}= valor de la variable por Estimadores Puntuales.

X_{MC}= valor de la variable por Simulación de Monte Carlo.

4.4.1 Pórtico 1

Dawéna a hua	Seesión	Me	97 V A D	
Parametro	Seccion	MC	EP	% VAK
My		845631,6	849647,5	0,47
ФУ	P= 68114kgf	0,000135	0,000135	-0,22
Μu	columna PB	864476,9	866625	0,25
φυ		0,000231	0,000231	0,17
My		462827,7	464890	0,45
ФУ	P= 45536kgf	0,00017	0,000169	-0,41
Mu	columna P1	472153,8	473302,5	0,24
ΦU		0,000288	0,000289	0,24
My		238212,6	243615	2,27
ФУ	Flexión Pura	7,09E-05	7,13E-05	0,56
Mu	columna PB	333324,5	334577,5	0,38
ΦU		0,000776	0,000774	-0,18
My		121502,2	125267,5	3,10
ФУ	Flexión Pura	8,88E-05	8,95E-05	0,79
Mu	columna P1	176335,9	176742,5	0,23
φυ		0,000904	0,0009	-0,40
My		2186403	2188125	0,08
ФУ	Desitive V/T	4,89E-05	4,89E-05	0,00
Μu	POSITIVO VI	2706043	2709750	0,14
φυ		0,000368	0,000369	0,24
My		2068992	2069175	0,01
ФУ		3,46E-05	3,46E-05	0,00
Μu	POSITIVO VE	2819996	2823950	0,14
φυ		0,00045	0,00045	0,04
My		1397004	1405700	0,62
ФУ	No gativo V/T	4,16E-05	4,18E-05	0,48
Μu	Negalivo vi	1860290	1856175	-0,22
φυ		0,00051	0,000511	0,31
My		1739712	1742875	0,18
ФУ		0,000033	3,31E-05	0,30
Mu		2441349	2442150	0,03
φυ		0,0005	0,000501	0,14

Tabla 4.25. Porcentaje de variación de la Media. Secciones.

Tabla 4.26. Porcentaje de variación de la Media. Materiales.

Davéna atra	Me	97 V A D	
Parametro	MC	EP	% VAK
f'c	229,25	230	0,33
fy	2758,49	2760	0,05

Derrémentre	Se e cián	Ме	97 V A D	
Parametro	seccion	MC	EP	% VAK
Resistencia		4554,113	4485,113	-1,52
Desplazamiento Máximo	VТ	15,4327	14,1538	-8,29
Desplazamiento Cedente	VI	4,4572	3,946	-11,47
Ductilidad		3,4907	3,6145	3,55
Resistencia		3220,73	3171,933	-1,52
Desplazamiento Máximo		15,1792	13,9355	-8,19
Desplazamiento Cedente	VE	4,223	3,7283	-11,71
Ductilidad		3,631	3,774	3,94
Rotación Cedente	COL-P1-	0,002654	0,002658	0,12
Rotación Última	Superior	0,039047	0,035725	-8,51
Ductilidad	Derecha	14,8412	13,578	-8,51
Rotación Cedente	COL-P1-	0,002654	0,002658	0,12
Rotación Última	Inferior	0,039052	0,035725	-8,52
Ductilidad	Derecha	14,8428	13,578	-8,52
Rotación Cedente	COL-P1-	0,002585	0,00258	-0,19
Rotación Última	Superior	0,039055	0,035825	-8,27
Ductilidad	Izquierda	15,2559	14,0128	-8,15
Rotación Cedente	COL-P1-	0,002585	0,00258	-0,19
Rotación Última	Inferior	0,039055	0,035825	-8,27
Ductilidad	Izquierda	15,2459	14,0128	-8,09

Tabla 4.27. Porcentaje de variación de la Media. Valores Pushover.

Fuente: Elaboración Propia.

Comparando los valores medios obtenidos por el Método de Monte Carlo contra el método de los Estimadores Puntuales, se obtiene la Tabla 4.27. donde se observa el porcentaje de variación de cada variable (momentos y curvaturas cedentes y últimas). Se tiene que los porcentajes de variación no sobrepasando el 3,15% de las 33 variables analizadas en este caso. Para los valores de salidas, obtenidos del análisis inelástico se observan un porcentaje de variación un poco mayor pero no sobrepasando el 12% para ninguna de las 20 variables analizadas en este pórtico.

Darámatra	Socción		97 V A D	
Parameiro	Sección	MC	EP	% VAK
My		45111,66	44412,24	-1,55
ФУ	P= 68114kgf	1,78E-05	1,63E-05	-8,55
Μu	columna PB	60273,89	67872,1	12,61
φυ		3,45E-05	3,97E-05	15,06
My		23960,34	23564,74	-1,65
ФУ	P= 45536kgf	2,18E-05	1,97E-05	-9,94
Μu	columna P1	31800,52	35786,15	12,53
φυ		4,22E-05	4,94E-05	17,14
My		11541	14226,08	23,27
ФУ	Flexión Pura	3,82E-06	4,54E-06	18,85
Mυ	columna PB	14862,64	18578,04	25,00
φυ		5,08E-05	4,96E-05	-2,42
My		6019,619	7796,672	29,52
ФУ	Flexión Pura	4,85E-06	5,81E-06	19,79
Mυ	columna P1	8486,033	9464,644	11,53
Φυ		0,000101	9,77E-05	-3,45
My		101992,4	126047,1	23,58
ФУ	Positivo V/T	2,91E-06	3,41E-06	17,18
Μυ		95826,09	120690,6	25,95
Φυ		2,42E-05	2,67E-05	10,64
My		97650,33	119820,3	22,70
ФУ	Positivo VE	1,89E-06	2,22E-06	17,60
Μυ		93595,41	121362,2	29,67
Φυ		2,37E-05	2,65E-05	11,83
My		66518,21	81854,63	23,06
ФУ		2,16E-06	2,56E-06	18,52
Μυ		62451,15	80604,07	29,07
Φυ		1,53E-05	1,69E-05	10,41
My		82302,06	100749,6	22,41
ФУ	Negativo VE	1,73E-06	2,06E-06	19,08
Μυ		80172,23	96001,96	19,74
Φυ		2,04E-05	2,29E-05	11,95

Tabla 4.28. Porcentaje de variación de la Desviación Estándar. Secciones.
Tabla 4.29. Porcentaje de variación de la Desviación Estándar. Materiales.

Darámatra		97 V A D	
Parameiro	MC	EP	% VAR
f'c	34,62975	39,83717	15,04
fy	130,3999	159,3487	22,20

Tabla 4.30. Porcentaje de variación de la Desviación Estándar. Valores Pushover.

Davéna atra	Saaaián		97 \/ A D	
Parametro	Seccion	MC	EP	% VAK
Resistencia		343,3113	358,4099	4,40
Desplazamiento Máximo	VT	1,65835	1,81555	9,48
Desplazamiento Cedente	٧I	0,70026	0,72833	4,01
Ductilidad		0,19235	0,20164	4,83
Resistencia		242,7942	253,4718	4,40
Desplazamiento Máximo		1,65176	1,81682	9,99
Desplazamiento Cedente	VE	0,70417	0,73003	3,67
Ductilidad		0,23314	0,24555	5,32
Rotación Cedente	COL-P1-	0,000157	0,000177	12,82
Rotación Última	Superior	0,004508	0,004998	10,88
Ductilidad	Derecha	2,45951	2,78043	13,05
Rotación Cedente	COL-P1-	0,000157	0,000177	12,82
Rotación Última	Inferior	0,004511	0,004998	10,80
Ductilidad	Derecha	2,4606	2,78043	13,00
Rotación Cedente	COL-P1-	0,000159	0,000169	6,19
Rotación Última	Superior	0,004743	0,004998	5,39
Ductilidad	Izquierda	2,63917	2,85051	8,01
Rotación Cedente	COL-P1-	0,000159	0,000169	6,19
Rotación Última	Inferior	0,004749	0,004998	5,25
Ductilidad	Izquierda	2,63916	2,85051	8,01

Para la desviación estándar se observa que los porcentajes dan mayores, pero sin pasar del 30 % para todas las variables analizadas. Obteniendo valores de variación mayores en los momentos cedentes y últimos.

Para los valores resultados del análisis estático no lineal se obtienen variaciones no mayores al 15,5% de todos los valores analizados. Produciéndose las mayores variaciones en las rotaciones de la columna de piso 1.

Davéna alva	Seesión	C.\	1.	97 \ / A D
Parametro	sección	MC	EP	% VAK
My		0,0533467	0,052271	-2,02
ФУ	P= 68114kgf	0,1315322	0,120549	-8,35
Mu	columna PB	0,069723	0,078318	12,33
φυ		0,1496316	0,171874	14,86
My		0,0517695	0,050689	-2,09
ФУ	P= 45536kgf	0,1286219	0,116322	-9,56
Mu	columna P1	0,067352	0,075609	12,26
φυ		0,1464931	0,171181	16,85
My		0,0484483	0,058396	20,53
ФУ	Flexión Pura	0,0538787	0,063675	18,18
Mu	columna PB	0,0445891	0,055527	24,53
φυ		0,0654932	0,064023	-2,25
My		0,0495433	0,06224	25,63
ФУ	Flexión Pura	0,0546171	0,064916	18,86
Mu	columna P1	0,0481243	0,05355	11,28
φυ		0,1119841	0,108555	-3,06
My		0,0466485	0,057605	23,49
ФУ	Desitive V/T	0,0595092	0,069734	17,18
Mu	FOSITIVO VI	0,0354119	0,044539	25,78
φυ		0,0656964	0,07251	10,37
My		0,0471971	0,057907	22,69
ФУ	Positivo VE	0,0546243	0,064237	17,60
Mu		0,0331899	0,042976	29,49

Tabla 4.31. Porcentaje de variación del Coeficiente de Variación. Secciones.

Davánastra	Seesión	C.\	97 V A D	
Farameiro	Sección	MC	EP	% VAR
φυ	Positivo VE	0,0526246	0,058826	11,78
Му		0,0476149	0,058231	22,29
фу		0,0519231	0,061244	17,95
Mu		0,0335707	0,043425	29,35
φυ		0,0299902	0,033007	10,06
Му		0,0473079	0,057807	22,19
фу	Negative	0,0524242	0,062236	18,72
Mu		0,0328393	0,03931	19,71
φυ		0,0408318	0,045647	11,79

Tabla 4.32. Porcentaje de variación del Coeficiente de Variación.

Materiales.

Daránaatra	C.\	97 V A P	
Parameiro	dmetro MC		% VAR
f'c	0,1510567	0,173205	14,66
fy	0,0472722	0,057735	22,13

Fuente: Elaboración Propia.

Tabla 4.33. Porcentaje de	e variación del	Coeficiente de	Variación.	Valores
---------------------------	-----------------	----------------	------------	---------

Pushover.

Davéna atra	Se e ei á r	C.\	1.	97 V A D
Parametro	seccion	MC	EP	% VAK
Resistencia		0,0753849	0,079911	6,00
Desplazamiento Máximo	VТ	0,1074569	0,128273	19,37
Desplazamiento Cedente	۷I	0,1571076	0,184574	17,48
Ductilidad		0,0551036	0,055786	1,24
Resistencia		0,0753848	0,079911	6,00
Desplazamiento Máximo		0,1088173	0,130374	19,81
Desplazamiento Cedente	VE	0,1667464	0,195808	17,43
Ductilidad		0,0642082	0,065064	1,33
Rotación Cedente	COL-P1-	0,0592601	0,066777	12,68
Rotación Última	Superior	0,1154467	0,139909	21,19
Ductilidad	Derecha	0,1657218	0,204775	23,57

Parámotro	Socoión	C.\	97 V A D	
ratameno	Seccion	MC	EP	/0 VAK
Rotación Cedente	COL-P1-	0,0592601	0,066777	12,68
Rotación Última	Inferior	0,1155182	0,139909	21,11
Ductilidad	Derecha	0,1657773	0,204775	23,52
Rotación Cedente	COL-P1-	0,0614685	0,065395	6,39
Rotación Última	Superior	0,1214322	0,139518	14,89
Ductilidad	Izquierda	0,1729934	0,203422	17,59
Rotación Cedente	COL-P1-	0,0614685	0,065395	6,39
Rotación Última	Inferior	0,1216001	0,139518	14,74
Ductilidad	Izquierda	0,1731062	0,203422	17,51

Al igual que sucede con la desviación estándar, el mayor porcentaje de variación que se presenta es del 30%, y es de esperarse ya que este coeficiente está directamente relacionado con la desviación estándar. Y en los momentos cedentes y últimos son donde se producen las mayores variaciones.

Para el caso de los valores de salida no se superan el 24% de variación en ninguno de los casos (22 variables).

4.4.2 Pórtico 2

Devéne atra	Saasián	Media		97 V A D
Parametro	Seccion	MC	EP	% VAK
Pb	Palapagada	165561	168907,5	2,02
Mb		4598358	4621150	0,50
φb	Соютпать	0,000118	0,000118	-0,25
My		2379255	2452560	3,08
ФУ	Flexión Pura	7,86E-05	0,000078	-0,76
Mu	columna PB	3671958	3659650	-0,34
φυ		0,000227	0,000229	0,88
Pb	Balanceada columna P1	164590,9	167725	1,90
Mb		4350867	4375200	0,56
φb		0,000118	0,000118	-0,25
Му	Flexión Pura columna P1	2317128	2305300	-0,51
ФУ		7,51E-05	0,000074	-1,46
Mu		3130023	3116050	-0,45
φυ		0,000284	0,000287	1,14
My		3662807	3643250	-0,53
ФУ	Viga	5,93E-05	0,000059	-0,51
Mu	vigu	4294004	4275900	-0,42
φυ		0,000388	0,00039	0,49
Resistencia		41475,83	41421,79	-0,13
Desplazamiento Máximo		18,9029	19,0978	1,03
Desplazamiento Cedente	VT	6,6637	6,6893	0,38
Ductilidad		2,8398	2,858	0,64
Resistencia		27839,26	27740,91	-0,35
Desplazamiento Máximo	VE	9,6825	9,6065	-0,78
Desplazamiento Cedente		3,4609	3,4178	-1,25
Ductilidad		2,8028	2,8138	0,39

Tabla 4.34. Porcenta	je de variación de	la Media. Secciones.
----------------------	--------------------	----------------------

Fuente: Elaboración Propia.

Tabla 4.35. Porcentaje de variación de la Media. Materiales.

Darámatra	Ме	97 V A D	
Farameiro	MC	EP	% VAK
fc`	285,02	287,5	0,00870114
fy	4876,39	4830,5	-0,0094106

Baránatro	Sección	Media		97 V A D
Parametro	Sección	MC	EP	% VAK
Resistencia		41475,83	41421,79	-0,13
Desplazamiento		18 9029	19 0978	
Máximo	VT	10,7027	17,0770	1,03
Desplazamiento	, , , , , , , , , , , , , , , , , , ,	6 6637	6 6893	
Cedente		0,000/	0,0070	0,38
Ductilidad		2,8398	2,858	0,64
Resistencia	-	27839,26	27740,91	-0,35
Desplazamiento		9 6825	9 6065	
Máximo	VF	7,0020	,,0000	-0,78
Desplazamiento	, <u> </u>	3,4609	3,4178	
Cedente	-		0, , 0	-1,25
Ductilidad		2,8028	2,8138	0,39
Rotación	COL-P1-	0,003272	0,003225	1 4 4
	Superior	0.010/00	0.010/05	-1,44
Rotación Ultima	Derecha	0,019608	0,019625	0,09
DUCTIIIddd		5,9893	6,0708	1,36
Rotación	COL-P1-	0,003664296	0,00305	0 17
Rotación Última	Superior	0.015821	0.015875	-7,17
Ductilidad	Izquierda	5 11988	5 2315	2.18
Potación		5,11700	5,2515	2,10
Cedente	COL-PB-Inferior	0,003694	0,00365	-1 19
Rotación Última	Derecha	0.025582	0.0248	-3.06
Ductilidad	Boroonia	6.9527	6.674	-4.01
Rotación		0,, 02,	0,0,1	.,
Cedente	COL-PB-Inferior	0,003337	0,0033	-1.11
Rotación Última	Izquierda	0,025328	0,02505	-1,10
Ductilidad		7,6181	7,621	0,04
Rotación		0.004/04	0.00.40	
Cedente	VIGA -	0,004694	0,0048	2,26
Rotación Última		0,035821	0,03555	-0,76
Ductilidad	Derecha	7,65478	7,4233	-3,02
Rotación		0.004/04	0.0049	
Cedente	VIGA -	0,004674	0,0048	2,26
Rotación Última	Entrepiso	0,035582	0,035125	-1,28
Ductilidad		7,59902	7,35989	-3,15
Rotación		0.002694	0.0027	
Cedente	VIGA - Techo	0,002074	0,0027	0,22
Rotación Última	Izquierda	0,004395	0,0045	2,39
Ductilidad		1,71254	1,7133	0,04

Tabla 4.36. Porcentaje de variación de la Media. Valores Pushover.

De igual manera como se realizó en el pórtico 1, se desarrolló en el pórtico 2 con cada una de las variables.

Se obtuvo para los valores de entradas (características resistentes de las secciones) y para los valores de salida (resistencia alcanzada por la estructura, rotaciones, ductilidades), que el porcentaje de variación no superó el 3,5% de las 49 variables analizadas

Tabla 4.37. Porcentaje de variación de la Desviación Estándar. Secciones.

Danking alma	Co o olím		07 V A D	
Parametro	Seccion	MC	EP	% VAK
Pb		27015,06	30083,4311	11,36
Mb		372724,361	434103,709	16,47
φb	COlUMINA PB	2,5893E-06	0,000003	15,86
My		132366,589	161471,597	21,99
фу	Flexión Pura	4,7379E-06	0,000052	9,75
Mυ	columna PB	155254,975	186.420	20,07
φυ		1,6669E-05	0,0000179	7,38
Pb		26595,1369	29725,7111	11,77
Mb		372213,629	432535,787	16,21
φb	COUTING FT	2,5893E-06	0,000003	15,86
My		110730,994	133670,366	20,72
фу	Flexión Pura	4,4412E-06	0,0000049	10,33
Mu	columna P1	128722,048	152451,621	18,43
φυ		3,1826E-05	0,0000353	10,92
My		175982,803	208782,143	18,64
φγ	Viaa	3,4326E-06	0,000038	10,70
Μu	viga	160124,521	194702,303	21,59
ΦU		2,8313E-05	0,0000306	8,08

Tabla 4.38. Porcentaje de variación de la Desviación Estándar. Materiales

Darámatra		97 V A D	
Parameiro	MC	EP	% VAK
fc`	44,53531	50,22947	12,79
fy	236,69632	278,86018	17,81

Tabla 4.39. Porcentaje de variación de la Desviación Estándar. Valores

Davéna atra	Sección		97 V A D	
Parametro	Seccion	MC	EP	% VAK
Rotación Cedente	COL-P1-	0,0001995	0,0002217	11,13
Rotación Última	Superior	0,0020183	0,0023824	18,04
Ductilidad	Derecha	0,366	0,41918	14,53
Rotación Cedente	COL-P1-	0,0001852	0,0002082	12,42
Rotación Última	Superior	0,0006525	0,000718	10,04
Ductilidad	Izquierda	0,5265921	0,54877	4,21
Rotación Cedente		0,0002382	0,0002887	21,20
Rotación Última	COL-PB-Interior	0,0004444	0,000516	16,11
Ductilidad	Delecha	0,44431	0,42704	-3,89
Rotación Cedente		0,0002043	0,0002582	26,38
Rotación Última	COL-PB-Interior	0,0004406	0,0004577	3,88
Ductilidad	izquieraa	0,45726	0,48719	6,55
Rotación Cedente	VIGA -	0,0002382	0,000259	8,73
Rotación Última	Entrepiso	0,0006525	0,0006147	-5,79
Ductilidad	Derecha	0,4764461	0,42384	-11,04
Rotación Cedente	VIGA -	0,0002382	0,0002559	7,43
Rotación Última	Entrepiso	0,00044444	0,0004997	12,43
Ductilidad	Izquierda	0,3803871	0,3521	-7,44

Pushover.

Tabla 4.39. (Continuación). Porcentaje de variación de la

Desviación Estándar. Valores Pushover.

Davéna atra	Secelán		97 V A D	
Parametro	Seccion	MC	EP	% VAK
Rotación Cedente		0,0002382	0,0002414	1,34
Rotación Última	lzquierda	0,0025668	0,0029967	16,75
Ductilidad		1,0821053	1,1095	2,53

Para la desviación estándar se observa que los porcentajes dan mayores, pero sin pasar del 30 % para todas las variables analizadas. Obteniendo valores de variación mayores en los momentos cedentes y últimos.

Dawéna akra	Se e eián	C	97 V A D	
Farameiro	sección	MC	EP	70 VAK
Pb	Dalamaaada	0,163173	0,178106	9,15
Mb		0,081056	0,093938	15,89
φb	COUTING FB	0,021888	0,025424	16,16
My		0,055634	0,065838	18,34
ФУ	Flexión Pura	0,060279	0,066667	10,60
Μu	columna PB	0,042281	0,050939	20,48
φυ		0,073433	0,078166	6,45
Pb	Balanceada	0,161583	0,177229	9,68
Mb		0,085549	0,098861	15,56
φb	COlUMINA FI	0,021888	0,025424	16,16
My		0,047788	0,057984	21,34
ФУ	Flexión Pura	0,059137	0,066216	11,97
Mu	columna P1	0,041125	0,048925	18,97
φυ		0,112162	0,122997	9,66
My		0,048046	0,057307	19,27
ФУ	Viga	0,057885	0,064407	11,27
Mu	viga	0,03729	0,045535	22,11
φυ		0,072952	0,078462	7,55

Tabla 4.40. Porcentaje de variación del Coeficiente de Variación. Secciones.

Fuente: Elaboración Propia.

Tabla 4.41	. Porcentaje de	variación del	Coeficiente	de Variación.
------------	-----------------	---------------	-------------	---------------

Materiales.

Darámatra	C.	97 \/ A D	
Parametro	MC	EP	% VAK
fc`	0,156253	0,174711	11,81
fy	0,048539	0,057729	18,93

Tabla 4.42. Porcentaje de variación del Coeficiente de Variación. Valores Pushover.

Productive Section MC EP % VAR Resistencia 0.943455 0.052905 21.75 Desplazamiento 0.038913 0.036912 -5.14 Desplazamiento 0.0442193 0.03116 -26.15 Ductilidad 0.042193 0.03116 -26.15 Ductilidad 0.042386 0.049368 16.47 Desplazamiento 0.042386 0.049368 16.47 Desplazamiento 0.042619 0.041158 -3.43 Ductilidad 0.043253 0.037814 -12.58 Rotación COL-P1- 0.0505 0.068744 13.41 Ductilidad Ductilidad 0.041109 0.041238 0.044897 1.99 Rotación COL-P1- Superior 0.061109 0.069049 12.99 Rotación COL-P1- Superior 0.064483 0.07906 22.66 Ductilidad Ductilidad Ductilidad 0.063905 0.068926 13406.12 Rotación Ductilidad <td< th=""><th>Barámatra</th><th>Sección</th><th>C</th><th>97 \/ A D</th></td<>	Barámatra	Sección	C	97 \/ A D	
Resistencia 0.043455 0.052905 21.75 Desplazamiento Cedente VT 0.038913 0.036912 -5.14 Desplazamiento Cedente 0.042193 0.03116 -26.15 Ductilidad 0.044721 0.048404 8.24 Resistencia 0.042193 0.0049368 16.47 Desplazamiento Máximo VE 0.0422619 0.0449368 16.47 Desplazamiento Cedente VE 0.043253 0.00469 -6.65 Ductilidad VE 0.043253 0.00469 -3.43 Ductilidad 0.043253 0.037814 -12.58 Rotación Cedente COL-P1- Superior Ductilidad 0.06505 0.068744 13.41 Rotación Cedente COL-P1- Superior Izquierda 0.00505 0.068262 13406.12 Ductilidad Ductilidad 0.012932 0.121396 17.94 Ductilidad COL-P1- Superior 0.060505 0.068262 13406.12 Rotación Cedente COL-PB-Inferior 0.064483 0.079096 22.66	Parametro	Seccion	MC	EP	% VAK
Desplazamiento Máximo VT 0,038913 0,036912 -5,14 Desplazamiento Cedente 0,042193 0,03116 -26,15 Ductilidad 0,044721 0,048044 8,24 Resistencia 0,042193 0,0049368 16,47 Desplazamiento Máximo VE 0,042386 0,049368 16,47 Desplazamiento Cedente VE 0,042619 0,041158 -3,43 Ductilidad 0,042619 0,041158 -3,43 Ductilidad COL-P1- Superior 0,0505 0,068744 13,41 Rotación COL-P1- Superior 0,00505 0,068744 13,41 Rotación COL-P1- Superior 0,00505 0,068744 13,41 Rotación COL-P1- Superior 0,000505 0,068262 13406,12 Rotación COL-P8-Inferior 0,0041243 0,04228 9,66 Ductilidad Derecha 0,017372 0,02806 19,77 Ductilidad Derecha 0,061223 0,078942 27,80	Resistencia		0,043455	0,052905	21,75
Máximo Desplazamiento Cedente VT 0,038913 0,036912 -5,14 Desplazamiento Cedente 0,042193 0,03116 -26,15 Ductilidad 0,042193 0,048404 8,24 Resistencia 0,042386 0,049368 16,47 Desplazamiento Máximo VE 0,042386 0,049368 16,47 Desplazamiento Cedente VE 0,042380 0,049158 -3,43 Ductilidad 0,04253 0,037814 -12,58 Rotación Cedente COL-P1- Superior Ductilidad 0,0505 0,068744 13,41 Rotación COL-P1- Superior Izquierda 0,000505 0,068949 12,99 Rotación Última COL-P1- Superior 0,001109 0,069049 12,99 Rotación COL-P1- Superior 0,012852 0,104897 1,99 Rotación COL-PB-Inferior 0,064843 0,079096 22,66 Ductilidad Derecha 0,017372 0,020806 19,77 Ductilidad Ductilidad 0,063905 0,063925 <t< td=""><td>Desplazamiento</td><td></td><td></td><td></td><td></td></t<>	Desplazamiento				
Desplazamiento Cedente VI 0.042193 0.03116 -26.15 Ductilidad 0.042193 0.048104 8,24 Resistencia 0.042386 0.049368 16,47 Desplazamiento Máximo VE 0.042193 0.00469 -6,65 Desplazamiento Cedente 0.042619 0.0441158 -3,43 Ductilidad 0.043253 0.037814 -12,58 Rotación COL-P1- 0.0505 0.068744 13,41 Rotación Última Ductilidad 0.00109 0.069049 12,99 Rotación COL-P1- 0.000505 0.068744 13,41 Ductilidad Ductilidad 0.001109 0.069049 12,99 Rotación COL-P1- 0.000505 0.068262 13406,12 Ductilidad Ductilidad 0.012932 0.104897 1,99 Rotación COL-PB-Inferior 0.064483 0.079076 22,66 Rotación Última Derecha 0.017372 0.020806 19,77 Ductilidad	Máximo	УЛ	0,038913	0,036912	-5,14
Cedente 0,042193 0,03116 -26,15 Ductilidad 0,044721 0,048404 8,24 Resistencia 0,042386 0,049368 16,47 Desplazamiento 0,005023 0,00469 -6,65 Desplazamiento 0,04219 0,041158 -3,43 Ductilidad 0,04253 0,037814 -12,58 Rotación COL-P1- 0,0505 0,068744 13,41 Rotación COL-P1- 0,000505 0,068262 13406,12 Ductilidad Ductilidad 0,041243 0,045228 9,66 Ductilidad Derecha 0,012852 0,014897 1,97 Ductilidad Derecha 0,063905 0,063926 0,0133 <	Desplazamiento	V I			
Ductilidad 0,044721 0,048404 8,24 Resistencia Resistencia 0,042386 0,049368 16,47 Desplazamiento VE 0,005023 0,00469 -6,65 Desplazamiento 0,042619 0,041158 -3,43 Ductilidad 0,043253 0,037814 -12,58 Rotación COL-P1- 0,0505 0,068744 13,41 Ductilidad Derecha 0,012932 0,121396 17,94 Ductilidad Derecha 0,061109 0,069049 12,99 Rotación COL-P1- 0,000505 0,068262 13406,12 Rotación COL-P1- 0,000505 0,068262 13406,12 Rotación Izquierda 0,012825 0,104897 1,99 Rotación COL-PB-Inferior 0,064483 0,079096 22,66 Ductilidad Derecha 0,017372 0,020806 19,77 Rotación UICA 0,017376 0,018271 5,03 Ductilidad Derech	Cedente		0,042193	0,03116	-26,15
Resistencia 0.042386 0.049368 16.47 Desplazamiento Máximo VE 0.005023 0.00469 -6.65 Desplazamiento Cedente 0.042619 0.041158 -3,43 Ductilidad 0.042619 0.047158 -3,43 Rotación Cedente COL-P1- Superior Derecha 0.02932 0.121396 17.94 Nuctilidad COL-P1- Superior Derecha 0.00505 0.068262 13406,12 Rotación Cedente COL-P1- Superior Izquierda 0.0012832 0.012832 9,66 Ductilidad COL-P1- Superior Izquierda 0.004483 0.079096 22,66 Ductilidad COL-PB-Inferior Derecha 0.063905 0.068262 13406,12 Rotación Cedente COL-PB-Inferior Izquierda 0.064483 0.079096 22,66 Rotación Última Derecha 0.063905 0.068926 13406,12 Rotación Última Derecha 0.017372 0.028066 19,77 Ductilidad COL-PB-Inferior 0.061223 0.078242 27,80 Rotación Cedente <td>Ductilidad</td> <td></td> <td>0,044721</td> <td>0,048404</td> <td>8,24</td>	Ductilidad		0,044721	0,048404	8,24
Desplazamiento Máximo VE 0,005023 0,00469 -6,65 Desplazamiento Cedente 0,042619 0,041158 -3,43 Ductilidad 0,043253 0,037814 -12,58 Rotación Cedente COL-P1- Superior Derecha 0,0505 0,068744 13,41 Rotación última Ductilidad COL-P1- Superior Izquierda 0,00505 0,068262 13406,12 Rotación Cedente COL-P1- Superior Izquierda 0,0012832 0,014897 1,99 Rotación Cedente COL-P1- Superior Izquierda 0,0041243 0,045228 9,66 Ductilidad COL-PB-Inferior Cedente 0,041243 0,045228 9,66 Ductilidad Derecha 0,017372 0,020806 19,77 Ductilidad Derecha 0,017372 0,028927 6,50 Rotación Cedente COL-PB-Inferior Izquierda 0,06023 0,078242 27,80 Rotación última Derecha 0,050746 0,053958 6,33 Rotación última Derecha 0,050746 0,053958 6,33	Resistencia		0,042386	0,049368	16,47
Máximo VE 0,005023 0,00469 6,65 Desplazamiento Cedente 0,042619 0,041158 3,43 Ductilidad 0,043253 0,037814 -12,58 Rotación Cedente COL-P1- Superior Derecha 0,0505 0,068744 13,41 Rotación Última Ductilidad COL-P1- Superior Derecha 0,061109 0,069049 12,99 Rotación Cedente COL-P1- Superior Izquierda 0,041243 0,045228 9,66 Ductilidad COL-PB-Inferior Rotación 0,06109 0,04897 1,99 Rotación Cedente COL-PB-Inferior Ductilidad 0,064483 0,079096 22,66 Rotación Última Derecha 0,017372 0,020806 19,77 Ductilidad COL-PB-Inferior 0,063905 0,063927 6,50 Rotación Última Izquierda 0,017376 0,018271 5,03 Ductilidad VIGA- Entrepiso Derecha 0,050746 0,053313 5,06 Rotación Última Entrepiso Izquierda 0,012421 0,014224 13,90	Desplazamiento				
Desplazamiento Cedente VE 0,042619 0,041158 -3,43 Ductilidad 0,043253 0,037814 -12,58 Rotación Cedente COL-P1- Superior Derecha 0,0505 0,068744 13,41 Rotación última Ductilidad 0,0505 0,068744 13,41 Rotación COL-P1- Superior Derecha 0,061109 0,069049 12,99 Rotación COL-P1- Superior Izquierda 0,000505 0,068262 13406,12 Rotación última COL-PB- Superior Izquierda 0,041243 0,045228 9,66 Ductilidad Ductilidad 0,064483 0,079096 22,66 Rotación COL-PB-Inferior 0,064483 0,079096 22,66 Rotación última Derecha 0,017372 0,020806 19,77 Ductilidad COL-PB-Inferior 0,061223 0,078242 27,80 Rotación última Izquierda 0,050746 0,053958 6,33 Ductilidad Derecha 0,050746 0,053313 5,06 Rotación última </td <td>Máximo</td> <td></td> <td>0,005023</td> <td>0,00469</td> <td>-6,65</td>	Máximo		0,005023	0,00469	-6,65
Cedente 0,042619 0,041158 3,43 Ductilidad 0,043253 0,037814 -12,58 Rotación COL-P1- Superior 0,0505 0,068744 13,41 Rotación COL-P1- Superior 0,012932 0,121396 17,94 Ductilidad Derecha 0,061109 0,0689049 12,99 Rotación COL-P1- Superior 0,000505 0,068262 13406,12 Rotación Última Superior 0,0012852 0,104897 1,99 Rotación COL-PB-Inferior 0,064483 0,079096 22,66 Rotación Derecha 0,017372 0,020806 19,77 Ductilidad Derecha 0,017372 0,02806 0,13 Rotación COL-PB-Inferior 0,061223 0,078242 27,80 Rotación Izquierda 0,017396 0,018271 5,03 Ductilidad Izquierda 0,050746 0,053958 6,33 Rotación VIGA - Entrepiso 0,050746 0,053313 5,06	Desplazamiento	VE			
Ductilidad 0,043253 0,037814 -12,58 Rotación Cedente COL-P1- Superior Derecha 0,0505 0,068744 13,41 Rotación última Ductilidad Derecha 0,061109 0,069049 12,99 Rotación Cedente COL-P1- Superior Izquierda 0,000505 0,068262 13406,12 Notación última COL-P1- Superior Izquierda 0,012852 0,104897 1,99 Rotación Cedente COL-PB-Inferior 0,064483 0,079096 22,66 Rotación Cedente COL-PB-Inferior 0,063905 0,063986 0,13 Rotación Cedente COL-PB-Inferior 0,061223 0,078242 27,80 Rotación última Derecha 0,017376 0,018271 5,03 Ductilidad Izquierda 0,06023 0,063927 6,50 Rotación última Izquierda 0,050746 0,053758 6,33 Ductilidad VIGA - Entrepiso Izquierda 0,050746 0,053313 5,06 Rotación última Izquierda 0,050057 0,04784 -4,43	Cedente		0,042619	0,041158	-3,43
Rotación Cedente COL-P1- Superior Derecha 0,0505 0,068744 13,41 Rotación Última Ductilidad Superior Derecha 0,102932 0,121396 17,94 Ductilidad Derecha 0,061109 0,069049 12,99 Rotación Cedente COL-P1- Superior Izquierda 0,012852 0,048262 13406,12 Ductilidad Ductilidad 0,012852 0,104897 1,99 Rotación Cedente COL-PB-Inferior 0,064483 0,079096 22,66 Rotación Última Derecha Derecha 0,017372 0,020806 19,77 Ductilidad Derecha 0,063905 0,063926 0,13 Rotación Izquierda 0,06023 0,078242 27,80 Rotación Última Izquierda 0,017396 0,018271 5,03 Ductilidad VIGA - Entrepiso Izquierda 0,050746 0,053958 6,33 Rotación Última Derecha 0,050746 0,053313 5,06 Rotación Última Derecha 0,050746 0,053313 5,06	Ductilidad		0,043253	0,037814	-12,58
Cedente COL-P1- Superior Derecha 0,0505 0,068744 13,41 Rotación Última Ductilidad 0 0,102932 0,121396 17,94 Ductilidad Derecha 0,061109 0,069049 12,99 Rotación COL-P1- Superior 0,000505 0,068262 13406,12 Rotación Última Laquierda 0,012852 0,104897 1,99 Rotación COL-PB-Inferior 0,064483 0,079096 22,66 Rotación Última Derecha 0,017372 0,020806 19,77 Ductilidad Derecha 0,017372 0,020806 19,77 Ductilidad Derecha 0,063905 0,063986 0,13 Rotación COL-PB-Inferior 0,061223 0,078242 27,80 Ductilidad Izquierda 0,017396 0,018271 5,03 Ductilidad VIGA - 0,050746 0,053958 6,33 Rotación VIGA - 0,012491 0,014226 13,90 Ductilidad Izquierda	Rotación				
Rotación Última Superior 0,102932 0,121396 17,94 Ductilidad Derecha 0,061109 0,069049 12,99 Rotación COL-P1- Superior 0,000505 0,068262 13406,12 Rotación Última Izquierda 0,012852 0,104897 1,99 Rotación COL-PB-Inferior 0,064483 0,079096 22,66 Rotación Última Derecha 0,017372 0,020806 19,77 Ductilidad Derecha 0,017372 0,020806 19,77 Ductilidad Derecha 0,017372 0,020806 19,77 Ductilidad Derecha 0,063905 0,063986 0,13 Rotación COL-PB-Inferior 0,061223 0,078242 27,80 Ductilidad Izquierda 0,017396 0,018271 5,03 Ductilidad VIGA - Entrepiso Derecha 0,050746 0,053958 6,33 Rotación Última Izquierda 0,050057 0,04784 -4,43 Rotación VIGA - Techo	Cedente	COL-FI-	0,0505	0,068744	13,41
Ductilidad Derectid 0,061109 0,069049 12,99 Rotación Cedente COL-P1- Superior Izquierda 0,000505 0,068262 13406,12 Rotación Última Ductilidad 0,01243 0,045228 9,66 Ductilidad 0,068262 0,04897 1,99 Rotación Cedente COL-PB-Inferior 0,064483 0,079096 22,66 Rotación Última Derecha 0,017372 0,020806 19,77 Ductilidad Derecha 0,063905 0,063986 0,13 Rotación Cedente COL-PB-Inferior 0,061223 0,078242 27,80 Rotación Cedente COL-PB-Inferior 0,060023 0,063927 6,50 Rotación Última Izquierda 0,050746 0,053958 6,33 Ductilidad VIGA - Entrepiso 0,050746 0,053313 5,06 Rotación Cedente VIGA - Entrepiso 0,050746 0,053313 5,06 Rotación Cedente VIGA - Techo 0,088419 0,089407 1,12 Rotación Cedente	Rotación Última	Superior	0,102932	0,121396	17,94
Rotación Cedente COL-P1- Superior Izquierda 0,000505 0,068262 13406,12 Rotación Última Superior Izquierda 0,041243 0,045228 9,66 Ductilidad 0,102852 0,104897 1,99 Rotación Cedente COL-PB-Inferior 0,064483 0,079096 22,66 Rotación Última Derecha 0,017372 0,020806 19,77 Ductilidad Derecha 0,063905 0,063986 0,13 Rotación Cedente COL-PB-Inferior 0,061223 0,078242 27,80 Rotación Cedente COL-PB-Inferior 0,060023 0,063927 6,50 Rotación Última Izquierda 0,050746 0,053958 6,33 Ductilidad VIGA - Entrepiso Derecha 0,050746 0,053313 5,06 Rotación Última VIGA - Entrepiso Izquierda 0,050746 0,053313 5,06 Rotación Última Entrepiso Izquierda 0,050057 0,04784 -4,43 Rotación VIGA - Techo Izquierda 0,088419 0,089407 1,12 <td>Ductilidad</td> <td>Delecha</td> <td>0,061109</td> <td>0,069049</td> <td>12,99</td>	Ductilidad	Delecha	0,061109	0,069049	12,99
Cedente COL-PI- Superior Izquierda 0,000505 0,068262 13406,12 Rotación Última Superior Izquierda 0,041243 0,045228 9,66 Ductilidad 0,102852 0,104897 1,99 Rotación COL-PB-Inferior 0,064483 0,079096 22,66 Rotación Última Derecha 0,063905 0,063986 0,13 Rotación COL-PB-Inferior 0,061223 0,078242 27,80 Ductilidad Izquierda 0,060023 0,063927 6,50 Rotación Última Izquierda 0,050746 0,053958 6,33 Ductilidad Derecha 0,050746 0,053958 6,33 Rotación Última Derecha 0,050746 0,053313 5,06 Rotación Última Derecha 0,050057 0,04784 -4,43 Rotación Última Izquierda 0,050057 0,04784 -4,43 Rotación VIGA - Techo 0,088419 0,089407 1,12 Ductilidad VIGA - Techo 0,088419	Rotación				
Rotación Última Superior Izquierda 0,041243 0,045228 9,66 Ductilidad 0,102852 0,104897 1,99 Rotación COL-PB-Inferior 0,064483 0,079096 22,66 Rotación Última Derecha 0,017372 0,020806 19,77 Ductilidad Derecha 0,063905 0,063986 0,13 Rotación COL-PB-Inferior 0,061223 0,078242 27,80 Rotación Última Izquierda 0,061223 0,078242 27,80 Ductilidad 0,017396 0,018271 5,03 Ductilidad UIGA - 0,050746 0,053958 6,33 Rotación Última Derecha 0,062242 0,057096 -8,27 Rotación Última Derecha 0,050746 0,053313 5,06 Rotación Última Izquierda 0,05057 0,04784 -4,43 Rotación Última Izquierda 0,05057 0,04784 -4,43 Rotación VIGA - Techo 0,088419 0,089407 1	Cedente	COL-PT-	0,000505	0,068262	13406,12
Ductilidad I2quierad 0,102852 0,104897 1,99 Rotación Col-PB-Inferior 0,064483 0,079096 22,66 Rotación Última Derecha 0,017372 0,020806 19,77 Ductilidad Derecha 0,063905 0,063986 0,13 Rotación COL-PB-Inferior 0,061223 0,078242 27,80 Rotación Última Izquierda 0,060023 0,063927 6,50 Rotación Última Izquierda 0,050746 0,017291 5,03 Ductilidad VIGA - 0,050746 0,017291 -5,07 Rotación Última Derecha 0,050746 0,053958 6,33 Rotación Última Derecha 0,050746 0,053313 5,06 Rotación Última VIGA - 0,050746 0,053313 5,06 Rotación Última Izquierda 0,05057 0,04784 -4,43 Rotación Última Izquierda 0,0584027 0,665933 14,02 Ductilidad VIGA - Techo 0,	Rotación Última	Superior	0,041243	0,045228	9,66
Rotación Cedente COL-PB-Inferior Derecha 0,064483 0,079096 22,66 Rotación Última Derecha 0,017372 0,020806 19,77 Ductilidad 0,063905 0,063986 0,13 Rotación Cedente COL-PB-Inferior 0,061223 0,078242 27,80 Rotación Última Izquierda 0,017396 0,018271 5,03 Ductilidad VIGA - Entrepiso Derecha 0,050746 0,053958 6,33 Rotación Última VIGA - Entrepiso Derecha 0,0602242 0,057096 -8,27 Rotación Última VIGA - Entrepiso Derecha 0,050746 0,053313 5,06 Rotación Última VIGA - Entrepiso Izquierda 0,050057 0,04784 -4,43 Rotación Última Izquierda 0,050057 0,04784 -4,43 Rotación Cedente VIGA - Techo Izquierda 0,088419 0,089407 1,12 Rotación Última Izquierda 0,584027 0,665933 14,02 Ductilidad 0,0631872 0,647581 2,49	Ductilidad	Izquieraa	0,102852	0,104897	1,99
Cedente COL-PB-Inferior 0,064483 0,079096 22,66 Rotación Última Derecha 0,017372 0,020806 19,77 Ductilidad 0,063905 0,063986 0,13 Rotación COL-PB-Inferior 0,061223 0,078242 27,80 Rotación Última Izquierda 0,06023 0,018271 5,03 Ductilidad 0,050746 0,053958 6,33 Rotación VIGA - Entrepiso 0,062242 0,057096 -8,27 Rotación VIGA - Entrepiso 0,012491 0,014226 13,90 Ductilidad VIGA - Entrepiso 0,050746 0,053313 5,06 Rotación VIGA - Entrepiso 0,014226 13,90 Ductilidad VIGA - Entrepiso 0,050746 0,053313 5,06 Rotación Última Izquierda 0,050057 0,04784 -4,43 Rotación VIGA - Techo 0,088419 0,089407 1,12 Rotación Última Izquierda 0,584027 0,665933 14,02	Rotación				
Rotación Última Derecha 0,017372 0,020806 19,77 Ductilidad 0,063905 0,063986 0,13 Rotación Cedente COL-PB-Inferior 0,061223 0,078242 27,80 Rotación Última Izquierda 0,017396 0,018271 5,03 Ductilidad 0,060023 0,063927 6,50 Rotación VIGA - Entrepiso 0,050746 0,053958 6,33 Rotación Última Derecha 0,050746 0,053958 6,33 Rotación Última Derecha 0,050746 0,053313 5,06 Rotación VIGA - Entrepiso 0,012491 0,014226 13,90 Ductilidad VIGA - Entrepiso 0,050746 0,053313 5,06 Rotación Última Izquierda 0,050057 0,04784 -4,43 Rotación VIGA - Techo 0,088419 0,089407 1,12 Rotación Última Izquierda 0,584027 0,665933 14,02 Ductilidad 0,0631872 0,647581 <	Cedente	COL-PB-Inferior	0,064483	0,079096	22,66
Ductilidad 0,063905 0,063986 0,13 Rotación COL-PB-Inferior 0,061223 0,078242 27,80 Rotación Última Izquierda 0,060023 0,018271 5,03 Ductilidad 0,060023 0,063927 6,50 Rotación VIGA - Entrepiso 0,050746 0,053958 6,33 Rotación Última VIGA - Entrepiso 0,060224 0,057964 6,33 Rotación VIGA - Entrepiso 0,060242 0,057966 -8,27 Rotación VIGA - Entrepiso 0,050746 0,053313 5,06 Rotación VIGA - Entrepiso 0,050746 0,053313 5,06 Rotación Última VIGA - Entrepiso 0,012491 0,014226 13,90 Ductilidad VIGA - Techo 0,088419 0,089407 1,12 Rotación Última Izquierda 0,584027 0,665933 14,02 Rotación Última Izquierda 0,631872 0,647581 2,49	Rotación Última	Derecha	0,017372	0,020806	19,77
Rotación Cedente COL-PB-Inferior 0,061223 0,078242 27,80 Rotación Última Izquierda 0,017396 0,018271 5,03 Ductilidad 0,060023 0,063927 6,50 Rotación Motación Cedente VIGA - Entrepiso Derecha 0,050746 0,053958 6,33 Rotación Última Derecha 0,060224 0,057996 -5,07 Ductilidad Derecha 0,050746 0,053913 5,06 Rotación Cedente VIGA - Entrepiso Derecha 0,050746 0,053313 5,06 Rotación Cedente VIGA - Entrepiso Izquierda 0,050746 0,053313 5,06 Rotación Última VIGA - Entrepiso Izquierda 0,050057 0,04784 -4,43 Rotación VIGA - Techo Izquierda 0,088419 0,089407 1,12 Rotación Última Izquierda 0,584027 0,665933 14,02 Ductilidad Utiga - Techo 0,631872 0,647581 2,49	Ductilidad		0,063905	0,063986	0,13
Cedente COL-PB-Inferior 0,061223 0,078242 27,80 Rotación Última Izquierda 0,017396 0,018271 5,03 Ductilidad 0,060023 0,063927 6,50 Rotación VIGA - Entrepiso 0,050746 0,053958 6,33 Ductilidad 0,060224 0,057966 -5,07 Ductilidad Derecha 0,050746 0,053313 5,06 Rotación VIGA - Entrepiso 0,050746 0,053313 5,06 Rotación VIGA - Entrepiso 0,050746 0,053313 5,06 Rotación Última VIGA - Entrepiso 0,014226 13,90 Ductilidad 0,050057 0,04784 -4,43 Rotación VIGA - Techo 0,088419 0,089407 1,12 Rotación Última Izquierda 0,584027 0,665933 14,02 Ductilidad 0,031872 0,647581 2,49	Rotación				
Rotación Última Izquierda 0,017396 0,018271 5,03 Ductilidad 0,060023 0,063927 6,50 Rotación VIGA - Entrepiso 0,050746 0,053958 6,33 Rotación Última Ductilidad 0,062242 0,057096 -8,27 Rotación VIGA - Entrepiso 0,050746 0,053313 5,06 Rotación VIGA - Entrepiso 0,050746 0,053313 5,06 Rotación VIGA - Entrepiso 0,050746 0,053313 5,06 Rotación Última VIGA - Entrepiso 0,050057 0,04784 -4,43 Rotación VIGA - Techo 0,088419 0,089407 1,12 Rotación Última Izquierda 0,584027 0,665933 14,02 Ductilidad 0,0531872 0,647581 2,49	Cedente	COL-PB-Inferior	0,061223	0,078242	27,80
Ductilidad 0,060023 0,063927 6,50 Rotación Cedente VIGA - Entrepiso Derecha 0,050746 0,053958 6,33 Rotación Última Derecha 0,018216 0,017291 -5,07 Ductilidad 0,062242 0,057096 -8,27 Rotación Cedente VIGA - Entrepiso Izquierda 0,050746 0,053313 5,06 Rotación Última VIGA - Entrepiso Izquierda 0,012491 0,014226 13,90 Ductilidad 0,050057 0,04784 -4,43 Rotación Cedente VIGA - Techo Izquierda 0,088419 0,089407 1,12 Rotación Última Izquierda 0,584027 0,665933 14,02 Ductilidad 0,031872 0,647581 2,49	Rotación Última	Izquierda	0,017396	0,018271	5,03
Rotación Cedente VIGA - Entrepiso Derecha 0,050746 0,053958 6,33 Rotación Última Derecha 0,018216 0,017291 -5,07 Ductilidad 0,062242 0,057096 -8,27 Rotación Cedente VIGA - Entrepiso Izquierda 0,050746 0,053313 5,06 Rotación Última VIGA - Entrepiso Izquierda 0,012491 0,014226 13,90 Ductilidad 0,050057 0,04784 -4,43 Rotación Cedente VIGA - Techo Izquierda 0,088419 0,089407 1,12 Rotación Última Izquierda 0,584027 0,665933 14,02 Ductilidad 0,031872 0,647581 2,49	Ductilidad		0,060023	0,063927	6,50
Cedente VIGA - Entrepiso Derecha 0,050746 0,053958 6,33 Rotación Última Entrepiso Derecha 0,018216 0,017291 -5,07 Ductilidad 0,062242 0,057096 -8,27 Rotación Cedente VIGA - Entrepiso Izquierda 0,050746 0,053313 5,06 Notación Última 0,050057 0,014226 13,90 Ductilidad 0,050057 0,04784 -4,43 Rotación Cedente VIGA - Techo Izquierda 0,088419 0,089407 1,12 Rotación Última Izquierda 0,584027 0,665933 14,02 Ductilidad 0,631872 0,647581 2,49	Rotación				
Rotación Última Entrepiso Derecha 0,018216 0,017291 -5,07 Ductilidad Derecha 0,062242 0,057096 -8,27 Rotación Cedente VIGA - Entrepiso Izquierda 0,050746 0,053313 5,06 Notación Última 0,050057 0,014226 13,90 Ductilidad 0,050057 0,04784 -4,43 Rotación Cedente VIGA - Techo Izquierda 0,088419 0,089407 1,12 Rotación Última Izquierda 0,584027 0,665933 14,02 Ductilidad 0,631872 0,647581 2,49	Cedente	VIGA -	0,050746	0,053958	6,33
Ductilidad Derectid 0,062242 0,057096 -8,27 Rotación Cedente VIGA - Entrepiso Izquierda 0,050746 0,053313 5,06 Notación Última 0,012491 0,014226 13,90 Ductilidad 0,050057 0,04784 -4,43 Rotación Cedente VIGA - Techo Izquierda 0,088419 0,089407 1,12 Rotación Última Izquierda 0,584027 0,665933 14,02 Ductilidad 0,631872 0,647581 2,49	Rotación Última	Derecha	0,018216	0,017291	-5,07
Rotación Cedente VIGA - Entrepiso Izquierda 0,050746 0,053313 5,06 Notación Última Entrepiso Izquierda 0,012491 0,014226 13,90 Ductilidad 0,050057 0,04784 -4,43 Rotación VIGA - Techo 0,088419 0,089407 1,12 Rotación Última Izquierda 0,584027 0,665933 14,02 Ductilidad 0,631872 0,647581 2,49	Ductilidad	Delecha	0,062242	0,057096	-8,27
Cedente VIGA - Entrepiso Izquierda 0,050746 0,053313 5,06 Rotación Última Entrepiso Izquierda 0,012491 0,014226 13,90 Ductilidad 0,050057 0,04784 -4,43 Rotación VIGA - Techo 0,088419 0,089407 1,12 Rotación Última Izquierda 0,584027 0,665933 14,02 Ductilidad 0,631872 0,647581 2,49	Rotación				
Rotación Última Entrepiso Izquierda 0,012491 0,014226 13,90 Ductilidad 0,050057 0,04784 -4,43 Rotación 0,088419 0,089407 1,12 Rotación Última Izquierda 0,584027 0,665933 14,02 Ductilidad 0,631872 0,647581 2,49	Cedente	VIGA -	0,050746	0,053313	5,06
Ductilidad I2quierda 0,050057 0,04784 -4,43 Rotación	Rotación Última	Enirepiso	0,012491	0,014226	13,90
Rotación VIGA - Techo 0,088419 0,089407 1,12 Rotación Última Izquierda 0,584027 0,665933 14,02 Ductilidad 0,631872 0,647581 2,49	Ductilidad	Izquieraa	0,050057	0,04784	-4,43
Cedente VIGA - Techo 0,088419 0,089407 1,12 Rotación Última Izquierda 0,584027 0,665933 14,02 Ductilidad 0,631872 0,647581 2,49	Rotación				
Rotación Última Izquierda 0,584027 0,665933 14,02 Ductilidad 0,631872 0,647581 2,49	Cedente	VIGA - Techo	0,088419	0,089407	1,12
Ductilidad 0,631872 0,647581 2,49	Rotación Última	Izquierda	0,584027	0,665933	14,02
	Ductilidad		0,631872	0,647581	2,49

Al igual que sucede con la desviación estándar, el porcentaje de variación que mayor se presenta es del 30%, y es de esperarse ya que este coeficiente está directamente relacionado con la desviación estándar. Y en los momentos cedentes y últimos son donde se producen las mayores variaciones.

Resumiendo, se observa que la aproximación al comportamiento real de la estructura mediante el método de Estimadores Puntuales, resulta bastante buena, al obtenerse porcentajes de variación bajos. En el Pórtico 1 se observó que la media supera porcentajes de variación del 5% en el 76% de las variables estudiadas, sin embargo, nunca superó un porcentaje de variación del 12%. Para el Pórtico 2, los resultados de la media fueron todavía mejores, pues en el 100% de las variables estudiadas no se superó el 5% de variación. Para el caso de la desviación estándar se observó también que en ninguna de las variables estudiadas se superaron valores del 30%.

CAPÍTULO V CONCLUSIONES Y RECOMENDACIONES

Tras el estudio de dos sistemas de pórticos de concreto reforzado, se evaluó -a través de valores aleatorios de resistencia a compresión del concreto y la tensión cedente del acero, variables aleatorias y que presentan una distribución normal- la estimación probabilística de su comportamiento, tanto por Simulación de Monte Carlo como por Estimadores Puntuales. Este estudio permitió contrastar ambos métodos y medir de cierta forma la eficiencia de los Estimadores Puntuales. Una vez realizada la comparación entre los resultados de ambos métodos se concluye que:

- a. Las distribuciones probabilísticas que gobernaron los parámetros estudiados fueron las distribuciones normales, ajustándose todos los valores de Simulación de Monte Carlo (valores de entrada como de salida) a la misma.
- b. La secuencia de formación de las rótulas plásticas a flexión (obtenidos gracias a la aplicación del método estático no lineal) para cada pórtico no se vio afectada por la variación de la resistencia del concreto ni de la tensión cedente del acero.
- c. Se observa que el método de los Estimadores Puntuales puede considerarse como un buen estimador probabilístico en el comportamiento de una estructura. Para valores medios se presentó un mejor ajuste, donde no se superaron porcentajes de variación del

12%. En el caso de desviaciones estándar y coeficiente de variación los ajustes son menores, observándose porcentajes de variación hasta del 30%.

- d. Estos resultados toman validez para sistemas estructurales sencillos y estudiados a flexión, como fue el caso de análisis en este Trabajo Especial de Grado.
- e. Se puede usar el método de los Estimadores puntuales como un estudio previo, con el fin de ofrecer indicios de cómo se comportan las variables que se analicen.
- f. El método de los Estimadores Puntuales resulta ventajoso frente a la Simulación de Monte Carlo, al observarse que se pueden obtener resultados análogos a los del comportamiento real de una estructura con un número menor de análisis. Esta ventaja no se obtiene en todos los casos, ya que el aumento de las combinaciones o casos de análisis presenta un incremento exponencial de la forma 2ⁿ, siendo n el número de variables, por lo que, para un estudio que contemple más de 7 variables el método de la Simulación de Monte Carlo resultaría más ventajoso que el de Estimadores Puntuales, en el caso de utilizar 100 casos de análisis para Monte Carlo, al requerir menos ensayos para la obtención de resultados.

Del trabajo realizado se generaron las siguientes recomendaciones:

- a. Realizar nuevos estudios en los cuales se analicen estructuras más complejas, con el objetivo de explorar y conocer los límites de este método.
- b. Considerar el efecto de mecanismos de falla frágil en las estructuras, tales como: corte, adherencia, comportamiento de empalmes por solape, pandeo longitudinal del acero, entre otros; dado que para este Trabajo Especial de Grado sólo se tomaron en cuenta los casos a flexión. En la medida en que se ensayen más variables y existan más casos de análisis, este método podrá enriquecerse y validarse.
- c. Considerar el efecto de otras distribuciones para la variables aleatorias (f'c y fy), así como otros coeficientes de variación de las mismas.

REFERENCIAS BIBLIOGRÁFICAS

Burbano, L. (s.f.). *Monografias.com*. Recuperado el 15 de Julio de 2007, de http://www.monografias.com/trabajos12/puntu/puntu.shtml

Carderón, B. (s.f.). Universidad de Antioquia. Recuperado el 15 de Julio de 2007, http://bochica.udea.edu.co/~bcalderon/3_metodosestimacion.html

Castilla, E., & Marinilli, A. (2000). Propiedades del acero de refuerzo para el diseño de estructuras sismorresistentes. *Boletín Técnico IMME*, 39 (1).

Cóceres, H., Möller, O., & Rubinstein, M. (2000). ANÁLISIS DINÁMICO NO LINEAL DE ESTRUCTURAS ESPACIALES. Rosario, Argentina.

Construaprende. (s.f.). Recuperado el 11 de Julio de 2007, de http://www.construaprende.com/t/02/T2Pag8.php

COVENIN 803. "Aceros. Definiciones Y Clasificación".

COVENIN 1753:2006. "Proyecto y Construcción de Obras en Concreto Estructural".

COVENIN 1756:2001. "Edificaciones Sismorresistentes".

COVENIN 2004. "Terminología Edificaciones".

Escuela de Ingeniería de Antioquia. (s.f.). Recuperado el 11 de Julio de 2007, http://estructuras.eia.edu.co/hormigonII/Fuerzas%20sismicas/fuerzas_s%C3% ADsmicas_de_dise%C3%B10.htm

Estadístico. (s.f.). Recuperado el 15 de Febrero de 2008, de http://estadistico.com/dic.html?p=894

Fundación Venezolana de Investigaciones Sismológicas. (s.f.). Recuperado el 15 de Julio de 2007, de http://www.funvisis.org.ve/

Iberisa. (s.f.). Recuperado el 15 de Julio de 2007, de http://www.iberisa.com/designstar/nonlinear.htm

Marinilli M, A. (1997). Análisis probabilístico de asentamientos en estructuras de tierra. Boletín Técnico IMME , 35 (2).

Melchers, R. (1999). Structural reliability analysis and prediction (Segunda edición ed.). Inglaterra: John Wiley & Sons.

Mercedez, R. (s.f.). ARQHYS. Recuperado el 11 de Julio de 2007, de http://www.arqhys.com/construccion/reforzado-concreto.html

Miñano, R. (s.f.). Universidad Politécnica de Madrid. Recuperado el 16 de Julio de 2007, de Escuela Universitaria de Informática: http://www.eui.upm.es/~rafami/Estadistica/Material/Tema7-Alumnos.pdf Park, R., & Paulay, T. (1979). Estructuras de Concreto Reforzado. México D.F:: Limusa.

Porrero, J. (2004). Manual del Concreto Estructural. Caracas: Sidetur.

Proceedings of the National Academy of Scienses. (s.f.). Recuperado el 15 de Julio de 2007, de www.pnas.org/misc/rightperm.shtml

Universidad de Buenos Aires. (s.f.). Recuperado el 11 de Julio de 2007, de http://www.dm.uba.ar/materias/probabilidades_estadistica_C/2004/2/PyE C13.pdf

Universidad Técnica Federico Santa María. (s.f.). Recuperado el 11 de Julio de 2007, de Departamento de Informática: www.inf.utfsm.cl/~hallende/download/Esta-2-2001/Cap7.2001-2.ppt

Wikipedia. (s.f.). Recuperado el 8 de Mayo de 2008, de http://es.wikipedia.org/wiki/Prueba_de_Kolmogorov-Smirnov

Wikipedia. (s.f.). Recuperado el 8 de Mayo de 2008, de http://es.wikipedia.org/wiki/Prueba_de_Kolmogorov-Smirnov

Wikipedia. (s.f.). Recuperado el 22 de Julio de 2007, de http://es.wikipedia.org/wiki/Variable_aleatoria

Wikipedia. (s.f.). Recuperado el 22 de Julio de 2007, de http://es.wikipedia.org/wiki/Distribuci%C3%B3n_normal

Wikipedia. (s.f.). Recuperado el 22 de Julio de 2007, de http://es.wikipedia.org/wiki/Ley_de_elasticidad_de_Hooke

Wikipedia. (s.f.). Recuperado el 22 de Julio de 2007, de http://es.wikipedia.org/wiki/Hormig%C3%B3n_armado

<u>ANEXOS</u>

Anexo A. Anexos asociados al Pórtico 1. Gráfico A. Gráficos asociados al Pórtico 1. Anexo B. Anexos asociados al Pórtico 2. Gráfico B. Gráficos asociados al Pórtico 2. Anexo A.1. Valores f´c y fy para SIMULACIÓN DE MONTE CARLO Fuente: Elaboración Propia.

N°	f'c	fy
	(kgf/cm²)	(kgf/cm²)
1	216	2813
2	251	2496
3	206	2778
4	270	2795
5	169	2851
6	237	2890
7	227	3059
8	225	2852
9	193	2629
10	259	2834
11	177	2961
12	237	2690
13	205	2998
14	283	2703
15	275	2605
16	266	2903
17	266	2763
18	210	2716
19	218	2668
20	165	2790
21	251	2978
22	276	2934
23	211	2776
24	223	2796
25	209	2621
26	236	2691
27	220	2640
28	260	2726
29	261	2641
30	156	2669
31	273	2520
32	235	2980
33	280	2863
.34	297	2744
35	292	2845
36	285	2754
37	198	2684
38	208	3002
39	256	2870
40	237	2623
41	213	2771
42	209	2810
43	210	2471
44	239	2697
45	197	2878
46	202	2567
47	253	2738
48	233	2598
49	182	2575
50	241	2838

N°	f'c	fy
	(kgf/cm²)	(kgf/cm²)
.51	229	2682
52	253	2972
53	222	2628
54	212	2745
55	196	2880
56	230	2770
57	215	2542
58	286	2817
59	195	2668
60	258	2813
61	186	2898
62	252	2602
63	169	2750
6.0	252	2762
<u> </u>	235	2761
66	250	264
67	281	2905
49	237	2845
49	207	264.0
70	205	27//
71	107	2736
70	253	2855
73	347	2585
7.5	070	2532
75	240	2714
7.5	240	2/40
77	243	2607
79	200	204.)
70	2.0.0	22/13
80	181	2682
Q1	233	3040
82	248	2845
93	240	204.)
00	207	2614
<u> </u>	147	7007
0 <u>_</u>	220	2000
87	204	2820
QQ	2/19	2054
<u> </u>	197	22.00
90	204	2040
Q1	120	2700
92	251	27.00
93	105	27.00
91	175	2904
95	211	2842
96	186	2544
97	204	2780
92	218	2651
90	200	2512
100	216	2783

Anexo A.2. CARGA AXIAL P = 45536 kgf. SIMULACIÓN DE MONTE CARLO.

Piso 1

	CEDENCIA		AGOTA	MIENTO
N°	Μ	фу	Μ	φυ
	(kgf.cm)	(rad/cm)	(kgf.cm)	(rad/cm)
1	462886	1.73E-04	466894	2.71E-04
2	464221	1,46E-04	484541	3,16E-04
3	455015	1,76E-04	455464	2.59E-04
4	487948	1.53E-04	508144	3.39E-04
5	406755	2.28E-04	406636	2.14E-04
6	476296	1,67E-04	488214	2,99E-04
7	479517	1.79E-04	486130	2.86E-04
8	470648	1.71E-04	476711	2.83E-04
9	436731	1.80E-04	434719	2.43E-04
10	482621	1.57F-04	502694	3.26F-04
11	426682	2.17F-04	426046	2.22F-04
12	469566	1.59E-04	480747	2 99F-04
13	463255	1.88F-04	462525	2.58E-04
14	485450	1 45F-04	513256	3.53E-04
15	477301	1.43E-04	504147	3 47F-04
16	489863	1.58F-04	509093	3.33E-04
17	482133	1.52E-04	504544	3 35E-04
18	455008	1 71F-04	457036	2 64F-04
19	456915	1.65E-04	463443	2 74F-04
20	395556	2 33E-04	396007	2 1 1 E-04
20	487744	1.66E-04	502538	3 16F-04
21	193601	1,00E 04	516227	3 /3E-0/
22	4758854	1.30E-04	460351	2.65E-04
20	465407	1,74E-04	470869	2,00E-04
25	1/9969	1.67E-04	452401	2,00E-04
26	468085	1.59E-04	480097	2,00L-04
20	457712	1,67E 04	464301	2,77E-04
28	479601	1.53E-04	499003	3 28E-04
29	47.5230	1 49F-04	497342	3 28F-04
.30	359576	2.62E-04	371199	2 01F-04
31	47.5086	1 41F-04	500714	3 43F-04
32	480927	1 72F-04	490185	2 96F-04
33	491803	1.52E-04	51,5502	3 49F-04
34	490670	1 44F-04	520568	3 68E-04
35	49,5503	1 49F-04	521300	3.61E-04
36	490438	1.47F-04	515254	3.55E-04
37	444368	1.79F-04	442822	2.49F-04
38	464615	1.86F-04	465524	2.62F-04
39	485053	1.60F-04	501773	3.23E-04
40	465947	1.56E-04	478245	2 99F-04
41	459497	1.72F-04	462272	2.68F-04
42	457936	1.76F-04	459458	2.63F-04
43	444428	1,61E-04	447888	2,64E-04
44	470353	1,59E-04	483262	3,00E-04
45	450767	1,88E-04	448799	2,48E-04
46	441999	1,70E-04	442893	2,54E-04
47	477024	1.55E-04	495580	3,17E-04
48	463172	1,57E-04	474466	2,93E-04
49	421440	1,89E-04	418531	2,29E-04
50	477855	1.64E-04	489807	3.03E-04

	CEDENCIA		AGOTAMIENTO		
N°	Μ	фу	Μ	φυ	
	(kgf.cm)	(rad/cm)	(kgf.cm)	(rad/cm)	
51	464941	1.62E-04	473679	2.88E-04	
52	487046	1,65E-04	504218	3.17E-04	
53	457110	1,61E-04	465697	2,79E-04	
54	458218	1.72E-04	460255	2.67E-04	
55	450129	1.89E-04	447596	2.47E-04	
56	468912	1.65E-04	477754	2,90E-04	
57	451335	1.61E-04	455772	2.70E-04	
58	491521	1.49E-04	517874	3.55E-04	
59	440435	1.80E-04	438811	2.45E-04	
60	482333	1.57F-04	501549	3.24F-04	
61	439022	2.01F-04	435828	2.34F-04	
62	470942	1.50F-04	488963	3 17E-04	
63	404666	2 20E-04	404282	2 14F-04	
64	477970	1 57E-04	494937	3 17E-04	
65	470488	1.67E-04	482120	2 96F-04	
66	474644	1.53E-04	491390	3 17E-04	
67	191091	1,50E 04	517746	3 /9E-0/	
68	475200	1,54 <u>2-04</u>	186531	2 99E-04	
69	4/9071	1,00E-04	450554	2,77E-04	
70	452419	1,07E-04	453041	2,01E-04	
70	45786	1,75E-04	433041	2, <u>30L-04</u> 2,48E-04	
70	443700	1,020-04	440477	2,40L-04 3 17E 04	
72	402207	1.00L-04	538507	4 20E 04	
73	477808	1,272-04	504509	3 51E 04	
74	477600	1,400-04	185710	3.02E-04	
76	4/304/	1.53E-04	403/40	3.02E-04	
70	407000	1,33E-04	510331	3 55E-04	
78	468428	1,40 <u>E-04</u>	478760	2.93E-04	
70	467484	1,01E-04	470/00	2,73E-04	
80	424208	1,75E-04	470007	2,74L-04	
81	424200	1,76E-04	421274	2,27 L-04	
82	480080	1,70E-04	471000	2,70E-04 3.13E-04	
83	400000	1,61E-04	473041	3.09E-04	
84	4/7100	1,00E-04	472022	2.84E-04	
85	402720	2.31E-04	4/130/	2.00L-04	
86	401773	1.60F-04	401020	3.00E-04	
87	471002	1.80E-04	403017	2.54E-04	
88	433017	1.600-04	404715	2,30L-04	
89	404250	1,00L-04	477105	2 35E-04	
07	451404	1,700-04	450774	2,550-04	
90	431400	2 00E 04	432770	2,37L-04	
92	176916	1 565-04	192165	2,50L-04 316F-04	
93	442190	1.82F_0/	439930	2 45F-04	
91	121204	2 185-04	421044	2,70E-04	
95	461300	1 77F_0/	462815	2,201-04	
94	401320	1.8/F_0/	402013	2,00L-04 231F-01	
97	155152	1 77F_04	155520	2,54L-04 2,59E-01	
98	458070	1.65E-04	460808	2,37E-04	
99	457174	1.54F_04	467369	2.7 4L-04	
100	463018	1 72F-04	465773	2,00L-04	

Anexo A.3. CARGA AXIAL P = 68114 kgf. SIMULACIÓN DE MONTE CARLO. Planta Baja Fuente: Elaboración Propia.

	CEDI	NCIA	AGOTA	MIENTO
N°	Μ	фу	Μ	φυ
	(kgf.cm)	(rad/cm)	(kgf.cm)	(rad/cm)
1	849447	1.37E-04	854372	2.17E-04
2	849852	1,16E-04	885993	2.52E-04
3	832594	1,41E-04	832168	2,08E-04
4	887826	1.21E-04	933174	2.71E-04
5	743268	1,81E-04	741716	1.71E-04
6	875067	1,32E-04	896115	2,38E-04
7	882625	1.41E-04	893087	2,28E-04
8	864271	1,35E-04	873314	2,26E-04
9	795990	1,44E-04	793043	1,94E-04
10	887106	1.25E-04	921915	2.61E-04
11	780267	1.74E-04	778998	1.78E-04
12	856298	1.26F-04	880592	2.38F-04
13	849692	1.49F-04	847616	2.06F-04
14	890485	1 16F-04	941190	2 84F-04
15	875312	1,14F-04	924334	2.77F-04
16	899065	1.26F-04	936165	2.68F-04
17	886205	1 21F-04	925298	2 68F-04
18	831722	1.37E-04	835611	2.11E-04
19	837497	1.32E-04	846345	2 20F-04
20	720304	1.87F-04	721455	1 69F-04
20	892744	1, <u>31</u> F-04	923404	2.52E-04
27	905327	1.24F-04	950628	2 78F-04
23	838829	1 38F-04	842460	2.70E 04
20	856206	1 34F-04	865185	2,7 <u>2</u> E 04
25	821533	1 34F-04	826028	2.11E-04
26	858160	1.26F-04	879044	2.37E-04
27	835583	1.30F-04	848172	2 21F-04
28	878013	1 21F-04	914636	2.62F-04
29	867926	1 18F-04	910709	2 62F-04
30	652180	2 10F-04	674725	1.62F-04
31	861528	1 12F-04	916146	2 74F-04
32	884791	1.36F-04	899830	2,36F-04
33	901073	1 21F-04	949796	2.80E 0 1
34	900907	1 1.5E-04	9,58890	2 99F-04
35	905360	1 18F-04	960727	2 94F-04
36	895824	1.17F-04	946289	2.87F-04
37	810525	1 43E-04	808358	1 99F-04
38	855674	1.48F-04	854082	2.09F-04
39	886134	1,27F-04	921254	2,58F-04
40	852319	1 24F-04	87.5392	2,38E-04
41	841677	1.37E-04	845620	214F-04
42	839813	1.41F-04	840697	2,11F-04
43	807937	1.29F-04	816595	2.11F-04
44	858628	1.25F-04	884320	2.40F-04
45	825257	1.51F-04	821479	1.98F-04
46	805689	1,36E-04	807776	2,03E-04
47	871754	1.23E-04	907339	2.54E-04
48	845340	1.24E-04	866828	2.34E-04
49	767699	1.51E-04	762022	1.83E-04
50	872390	1.29E-04	897105	2.43E-04

	CEDE	NCIA	AGOTA	MIENTO
N°	Μ	фу	м	φυ
	(kgf.cm)	(rad/cm)	(kgf.cm)	(rad/cm)
51	850083	1.28E-04	866395	2.31E-04
52	897037	1.31E-04	925502	2.54E-04
53	839164	1,29E-04	851167	2,23E-04
54	837259	1,37E-04	841457	2.14E-04
55	823654	1,52E-04	819145	1.97E-04
56	860244	1,31E-04	874994	2,32E-04
57	821259	1,29E-04	831260	2.17E-04
58	901032	1,19E-04	953716	2.87E-04
59	803862	1,44E-04	800681	1,96E-04
60	885242	1.25E-04	919158	2.60F-04
61	802318	1.60F-04	797107	1.88F-04
62	860625	1 19F-04	895515	2.53E-04
63	737751	1.76F-04	736875	1.71F-04
64	873827	1 24F-04	907933	2.53E-04
6.5	864516	1.29F-04	883065	2.36F-04
66	864431	1.21F-04	900560	2.53F-04
67	906867	1 22F-04	953699	2.83E-04
68	871512	1.31E-04	892622	2,38E-04
69	819350	1.35E-04	823031	2.08E-04
70	827054	1 41F-04	827902	2,00E-01
70	813578	1,41 <u>E</u> 04	810458	1 98F-04
72	88/867	1,40 <u>0</u> 04	916420	2 54E-04
72	904007	1.03E-04	989521	2,54L-04 3,49E-04
74	868647	1,00E-04	923/33	2 80F-04
75	866128	1.27E-04	889684	2,00E-04
76	852216	1 21F-04	882311	2 45F-04
77	882973	1.14F-04	936688	2,10E 01
78	858325	1.28E-04	875753	2.34F-04
79	855089	1.38F-04	861403	2,01E-01
80	773134	1.57E-04	767808	1.82F-04
81	886157	1,39E-04	901832	2 34F-04
82	878977	1 28F-04	909065	2 49F-04
83	877021	1 28F-04	902527	2 48F-04
84	847179	1 28F-04	862273	2 28F-04
85	732599	1.85F-04	732083	1.70F-04
86	863026	1.27F-04	887968	2.40F-04
87	832021	1.44F-04	831482	2.05F-04
88	889971	1.32F-04	917680	2.49F-04
89	800978	1.58E-04	795763	1.88E-04
90	824901	1.39F-04	826579	2.08F-04
91	814116	1.60F-04	808874	1.90F-04
92	870619	1.23E-04	904544	2.52E-04
93	805925	1,45E-04	803009	1,96E-04
94	769910	1,74E-04	769113	1,76E-04
95	845884	1,41E-04	847583	2,12E-04
96	776437	1,47E-04	771339	1,88E-04
97	832855	1.42E-04	832323	2.08E-04
98	834636	1,31E-04	845026	2,20E-04
99	834390	1,23E-04	853278	2,31E-04
100	847392	1,37E-04	852044	2,17E-04

Anexo A.4. CARGA AXIAL P = 45536 kgf. ESTIMADORES PUNTUALES. Piso 1

	CEDENCIA		AGOTAMIENTO	
N٥	Μ	φγ	Μ	φυ
	(kgf.cm)	(rad/cm)	(kgf.cm)	(rad/cm)
1	490560	1,59E-04	508340	3,31E-04
2	451120	1,92E-04	447840	2,46E-04
3	478260	1,48E-04	499500	3,31E-04
4	439620	1,78E-04	437530	2,46E-04

Fuente: Elaboración Propia.

Anexo A.5. CARGA AXIAL P = 68114 kgf. ESTIMADORES PUNTUALES. Planta

Baja

AGOTAMIENTO **CEDENCIA** N٥ Μ Μ φυ φу (rad/cm) (kgf.cm) (kgf.cm) (rad/cm) 1,26E-04 935130 2,65E-04 899170 1 2 825100 1,53E-04 819540 1,97E-04 1,17E-04 913710 3 872870 2,65E-04 4 798120 801450 1,43E-04 1,97E-04

Anexo A.6. FLEXIÓN PURA. SIMULACIÓN DE MONTE CARLO. Piso 1 Fuente: Elaboración Propia.

	CEDE	NCIA	AGOTA	MIENTO
N°	м	фу	м	φυ
	(kgf.cm)	(rad/cm)	(kgf.cm)	(rad/cm)
1	124085	9.11E-05	176618	8.45E-04
2	110201	7.90E-05	170488	1.03E-03
3	122371	9,06E-05	172476	8,33E-04
4	122968	8,76E-05	184804	1.02E-03
5	124871	9,59E-05	166514	7,69E-04
6	127563	9,24E-05	185019	8,70E-04
7	134745	9,84E-05	189461	8,45E-04
8	125471	9,18E-05	179847	8,57E-04
9	116103	8,66E-05	163651	8.22E-04
10	124993	8.94F-05	184489	9.68F-04
11	129743	9.89F-05	171677	7.79F-04
12	119152	8.60F-05	175872	9.23F-04
13	132741	9.81F-05	179754	8.22F-04
14	119037	8 41 F-0.5	183201	1 09F-03
1.5	114596	8.13F-0.5	178392	1.09F-03
16	128129	9 12E-05	189161	9.68E-04
17	122232	8 68F-05	184559	1.00E-03
18	119606	8.83E-05	170308	8 45E-04
19	117151	8.61E-05	170000	8 70F-04
20	122129	9.42E-05	165354	7 59E-04
20	132137	9.45E-05	189889	896F-04
21	130/28	9 19E-05	191046	1 00E-03
22	122/36	9.02E-05	176233	8.33E-04
20	124056	9.03E-05	177319	8 57F-04
25	115318	8.52E-05	167784	8.45F-04
26	118909	8.60E-05	175176	9.23E-04
20	116575	8.52E-05	169615	8.82F-04
28	120712	8 60E-05	180666	1.00E-03
29	115805	8.30E-05	179051	1.02E-03
30	116180	9.08E-05	155708	7.59E-04
31	110543	7,87E-0.5	174805	1 11E-03
32	132371	9.56E-05	185235	8 70F-04
33	126733	8 94F-0.5	191196	1.02F-03
34	120736	8 48F-0.5	189000	1 11E-03
35	125523	8.83F-05	191180	1.07F-03
36	121678	8.57F-05	186905	1.07F-03
37	118679	8.81F-05	168517	8.22F-04
38	132390	9.79F-05	182133	8.22F-04
39	127343	9.08E-05	186889	9.38E-04
40	114830	8.35F-05	171833	9.52E-04
41	122873	9,01E-05	173584	8,45E-04
42	123202	9.13E-05	175350	8.33E-04
43	107972	8,00E-05	160627	8,96E-04
44	118480	8,59E-05	175225	9,38E-04
45	126429	9,45E-05	175168	8,11E-04
46	112295	8,37E-05	165501	8,33E-04
47	120941	8,66E-05	180484	9.68E-04
48	114158	8,30E-05	171109	9, <u>38</u> E-04
49	112836	8,54E-05	161462	8,00E-04
50	124959	9,04E-05	182752	8,96E-04

	CED	ENCIA	AGOTA	MIENTO
N°	Μ	фу	M	φυ
	(kgf.cm)	(rad/cm)	(kgf.cm)	(rad/cm)
51	118030	8.60E-05	174187	8.96E-04
52	132484	9,43E-05	189162	9.09E-04
53	115209	8,46E-05	169191	8,96E-04
54	121458	8.92E-05	172349	8.45E-04
55	126158	9,46E-05	174428	8,11E-04
56	122012	8,88E-05	176843	8,82E-04
57	111010	8.21E-05	166001	8.82E-04
58	124589	8,77E-05	190028	1,05E-03
59	117016	8,76E-05	165915	8,22E-04
60	123837	8,87E-05	183821	9,68E-04
61	127689	9,62E-05	174210	7,89E-04
62	114937	8,23E-05	175477	1,00E-03
63	120426	9,46E-05	157503	7,41E-04
64	121677	8.74E-05	181985	9.52E-04
65	121687	8.83E-05	178470	8.96E-04
66	117680	8,44E-05	177647	9,84E-04
67	128770	9.07E-05	191836	1.02E-03
68	125676	9,09E-05	181903	8,82E-04
69	115120	8,55E-05	166471	8,45E-04
70	120624	8,95E-05	171082	8,33E-04
71	120519	8,99E-05	168720	8,22E-04
72	125860	9.03E-05	184830	9.38E-04
73	112550	7,82E-05	190527	1,33E-03
74	110896	7,88E-05	175901	1,13E-03
75	120816	8,75E-05	177958	9,23E-04
76	114372	8,28E-05	173809	9,68E-04
77	116589	8.23E-05	183201	1,09E-03
78	118973	8,67E-05	175071	9,09E-04
79	126786	9,27E-05	179033	8,45E-04
80	118277	8,93E-05	162674	8,00E-04
81	134616	9,78E-05	189452	8,57E-04
82	125661	9.03E-05	183520	9.23E-04
83	123787	8,93E-05	182130	9,23E-04
84	116615	8.54E-05	172760	8.96E-04
85	124706	9.57E-05	164554	7.69E-04
86	120447	8,74E-05	177262	9,23E-04
87	124945	9.23E-05	175663	8.22E-04
88	130315	9,38E-05	187748	8,96E-04
89	125899	9,44E-05	170450	8,00E-04
90	119360	8,83E-05	171132	8,33E-04
91	129735	9,78E-05	177677	7,89E-04
92	120270	8,65E-05	179149	9.68E-04
93	118264	8,86E-05	166475	8,22E-04
94	128123	9.75E-05	169044	7.79E-04
95	125193	9.24E-05	1//465	8.33E-04
96	112491	8,49E-05	160/98	8,11E-04
97	122454	9.0/E-05	1/2513	8.33E-04
98	116441	8,56E-05	1/0000	8,/UE-U4
99	110922	8,06E-05	166419	9,52E-04
100	122830	9,02E-05	1/6058	8,45E-04

Anexo A.7. FLEXIÓN PURA. SIMULACIÓN DE MONTE CARLO. Planta Baja. Fuente: Elaboración Propia.

	CEDE	NCIA	AGOTA	MIENTO
N°	Μ	фу	Μ	φυ
	(kgf.cm)	(rad/cm)	(kgf.cm)	(rad/cm)
1	243676	7.28E-05	331020	7.59E-04
2	215325	6,31E-05	317590	8,22E-04
3	239436	7.23E-05	330008	7,41E-04
4	241918	7.01E-05	350677	8,22E-04
5	244855	7,65E-05	319363	6,90E-04
6	250140	7,38E-05	345759	7,79E-04
7	265694	7,87E-05	353888	7,59E-04
8	247437	7,34E-05	336807	7,69E-04
9	225884	6,90E-05	314051	7.32E-04
10	244777	7.14F-05	347405	8.11F-04
11	255254	7.90E-05	328871	6.98E-04
12	233562	6.87E-0.5	330994	7 89F-04
13	259126	7.82F-05	343377	7.32F-04
14	232822	6 72E-05	345462	8 45F-04
1.5	225961	6.51F-0.5	332830	8.45F-04
16	251442	7 29E-0.5	358093	8 11F-04
17	239814	6 94F-05	344912	8 22F-04
18	234468	7 0.5E-0.5	326318	7.50F-04
19	230612	6 89E-0.5	321282	7 69E-04
20	239101	7 51E-05	311734	6 90E-04
20	257546	7 54E-05	358566	7 89F-04
21	257540	7,34 <u>0</u> 00	362856	8 22E-04
22	239980	7.00E-05	329871	7 50E-04
20	241704	7,20E-05	332239	7 69F-04
25	224080	6 80E-05	315092	7.59E-04
26	233141	6.87E-05	329862	7.89E-04
20	200111	6 80E-05	322591	7.69E-04
28	236299	6.87E-05	344358	8 11F-04
29	227399	6 64E-05	334524	8 22F-04
30	228706	7 24F-05	300134	6 82F-04
31	218028	6.30E-0.5	326068	8.57E-04
32	258888	7.63E-05	353753	7 69F-04
33	247208	7 14E-0.5	356562	8.33E-04
34	237249	6 79E-0.5	353934	8.57E-04
35	246022	7.06F-05	360905	8.45F-04
36	237914	6.85E-05	349648	8.45F-04
37	231274	7.02E-05	316461	7.41F-04
38	259020	7.81F-05	347284	7.32F-04
39	248709	7.25E-05	352863	8.00F-04
40	225812	6.68F-05	328394	7.89F-04
41	238524	7,17F-05	332125	7.50F-04
42	241631	7.29E-05	328742	7.50E-04
43	212229	6,39E-05	304055	7,69E-04
44	232911	6,87E-05	333608	7,89E-04
45	248737	7,55E-05	334591	7,23E-04
46	221853	6,70E-05	310742	7,50E-04
47	236307	6.92E-05	336815	8,11E-04
48	223949	6,63E-05	322740	7,89E-04
49	220858	6,81E-05	303878	7,23E-04
50	245594	7,23E-05	341422	7.89E-04

	CEDE	NCIA	AGOTA	MIENTO
N°	Μ	фу	Μ	φυ
	(kgf.cm)	(rad/cm)	(kgf.cm)	(rad/cm)
51	231047	6.87E-05	328211	7.79E-04
52	258101	7,53E-05	360675	7,89E-04
53	227279	6,76E-05	324521	7,69E-04
54	237985	7,12E-05	329892	7,50E-04
55	248276	7,56E-05	333405	7.23E-04
56	238824	7,09E-05	332811	7,79E-04
57	218641	6,56E-05	312799	7,69E-04
58	243583	7,00E-05	353196	8,45E-04
59	230252	7,00E-05	318065	7.32E-04
60	242557	7.09E-05	345446	8.11F-04
61	249804	7.67E-05	327114	7.14E-04
62	224571	6.57E-0.5	330392	8 11F-04
63	235810	7.53E-05	303457	6.67F-04
64	240148	7 00E-0.5	344041	8 00F-04
65	238676	7.06E-05	338500	7 79F-04
66	2299.57	6 74E-0.5	332915	8 11F-04
67	251148	7 24F-05	359310	8.33E-04
68	246419	7 26F-05	344012	7 79F-04
69	225821	6.83E-05	319347	7.50F-04
70	236067	7 14F-05	327451	7,00E 01
70	234960	7 16F-05	323205	7 32F-04
72	2/8387	7.23E-05	3/8808	8 00E-04
73	240307	6 26E-05	354556	1.03E-03
74	219260	6 31E-05	329206	8 70F-04
75	217200	6.99E-05	336681	7 89E-04
76	225354	6.63E-05	327684	8.00E-04
77	228014	6 58E-05	343211	8 45E-04
78	233444	6.93E-05	334152	7 79F-04
79	246604	7.39E-05	335344	7.59E-04
80	230960	7 12F-05	312348	7 14F-04
81	263443	7,12E 00	354035	7.69E-04
82	247417	7 23E-05	349891	7 89F-04
83	243823	7 15E-05	346346	7 89F-04
84	230537	6 83E-05	325066	7 79F-04
85	244000	7.62E-05	316034	6.90F-04
86	236798	6.99E-05	335432	7.89F-04
87	243880	7.36F-05	329163	7.41F-04
88	256628	7.51E-05	354199	7.89F-04
89	246193	7.53E-05	326373	7.14F-04
90	233510	7.04F-05	321033	7.50F-04
91	254356	7.80F-05	333195	7.14F-04
92	237411	6.93E-05	341835	8.00E-04
93	232722	7,08E-05	319229	7,32E-04
94	249385	7,75E-05	324132	6,98E-04
95	245417	7,38E-05	332432	7,50E-04
96	220558	6,77E-05	302852	7,32E-04
97	239600	7.23E-05	330086	7,41E-04
98	229206	6,84E-05	320623	7,69E-04
99	217063	6,43E-05	314757	7,89E-04
100	241196	7.20E-05	329856	7.59F-04

Anexo A.8. FLEXIÓN PURA. ESTIMADORES PUNTUALES. Pisc	b 1
Fuente: Elaboración Propia.	

	CEDE	NCIA	AGOTAMIENTO	
N٥	Μ	φγ	Μ	φυ
	(kgf.cm)	(rad/cm)	(kgf.cm)	(rad/cm)
1	132720	9,20E-05	188160	9,68E-04
2	131260	9,62E-05	174380	8,11E-04
3	119060	8,30E-05	178990	1,00E-03
4	118030	8,67E-05	165440	8,22E-04

Anexo A.9. FLEXIÓN PURA. ESTIMADORES PUNTUALES. Planta Baja. Fuente: Elaboración Propia.

	CEDENCIA		AGOTAMIENTO	
N°	Μ	φγ	Μ	φυ
	(kgf.cm)	(rad/cm)	(kgf.cm)	(rad/cm)
1	257860	7,34E-05	356180	8,11E-04
2	253830	7,65E-05	333470	7,23E-04
3	231990	6,62E-05	337700	8,22E-04
4	230780	6,92E-05	310960	7,41E-04

Anexo A.10. Viga de Techo. SIMULACIÓN DE MONTE CARLO. Momento Negativo Fuente: Elaboración Propia.
	CEDENCIA		AGOTAMIENTO	
N°	Μ	фу	M	φυ
	(kgf.cm)	(rad/cm)	(kgf.cm)	(rad/cm)
1	1421583	4.27E-05	1868322	5.04E-04
2	1262906	3.71E-05	1748808	5,31E-04
3	1406539	4,24E-05	1853278	5,00E-04
4	1418145	4.13E-05	1892557	5.26E-04
5	1439779	4,45E-05	1867301	4,80E-04
6	1464664	4,34E-05	1920145	5.08E-04
7	1551330	4.62E-05	1996824	4.96E-04
8	1446170	4,31E-05	1900295	5.04E-04
9	1329372	4,04E-05	1782393	5,00E-04
10	1436212	4.21E-05	1918201	5.17E-04
11	1495246	4,60E-05	1916460	4,80E-04
12	1361347	4.03F-05	1828365	5.17F-04
13	1517631	4.58E-05	1962254	4.88E-04
14	1370942	3.97F-05	1877114	5.31F-04
15	1321515	3.84F-05	1811372	5.36F-04
16	1475847	4.31E-05	1952907	5.17F-04
17	1401584	4.09E-05	1895524	5.22F-04
18	1373421	4,13E-05	1828257	5.04E-04
19	1348945	4.04E-05	1816100	5.08E-04
20	1406639	4.36F-05	1824768	4.84F-04
21	1510055	4.45F-05	1976851	5.08F-04
22	1490376	4.33E-05	1964052	5 22F-04
23	1404590	4 22E-05	1864879	5 00F-04
24	1415263	4 23E-05	1880691	5 04F-04
25	1325080	3.99E-05	1782174	5.08F-04
26	1365138	4.04E-05	1826274	5.17E-04
27	1338402	4.00F-05	1794444	5.13F-04
28	1384574	4.05E-05	1871730	5.22E-04
29	1339131	3,92E-05	1831016	5,26E-04
30	1347468	4.20E-05	1770349	4.84E-04
31	1276828	3,72E-05	1784359	5,36E-04
32	1510696	4,48E-05	1958179	5.04E-04
33	1456059	4.22E-05	1933706	5.26E-04
34	1395107	4.01E-05	1898312	5,36E-04
35	1443155	4,17E-05	1935324	5.31E-04
36	1398948	4,05E-05	1895184	5,31E-04
37	1355902	4,11E-05	1809047	5.00E-04
38	1520064	4,58E-05	1953163	4,92E-04
39	1454441	4,27E-05	1920643	5,17E-04
40	1328380	3,93E-05	1810672	5,17E-04
41	1400729	4,21E-05	1850006	5,04E-04
42	1422667	4.28E-05	1869006	5.00E-04
43	1248437	3,75E-05	1726088	5,13E-04
44	1367924	4.05E-05	1834923	5,17E-04
45	1453982	4,41E-05	1893345	4.92E-04
46	1296116	3,92E-05	1751180	5,08E-04
47	1389962	4.08E-05	1858539	5.22E-04
48	1314681	3,90E-05	1794650	5,17E-04
49	1301472	3,98E-05	1741447	5,00E-04
50	1440563	4,26E-05	1896560	5,13E-04

	CEDENCIA		AGOTAMIENTO	
N٥	м	фу	M	φυ
	(kgf.cm)	(rad/cm)	(kgf.cm)	(rad/cm)
51	1359280	4.04E-05	1826891	5.13E-04
52	1504997	4,43E-05	1980048	5.08E-04
53	1331015	3,97E-05	1796021	5,13E-04
54	1391067	4,18E-05	1840732	5.04E-04
55	1458005	4,42E-05	1891412	4,92E-04
56	1404209	4,17E-05	1871723	5,08E-04
57	1286759	3,86E-05	1756701	5,13E-04
58	1431471	4,14E-05	1914122	5,31E-04
59	1347454	4,09E-05	1797544	5,00E-04
60	1424333	4.18F-05	1910300	5.17F-04
61	1462598	4.47F-05	1888750	4.88F-04
62	1316542	3 87E-05	1799844	5 26F-04
63	1386307	4.35E-05	1806225	4.76F-04
64	1400235	4 12F-05	1882703	5 17F-04
65	1399466	4.15E-05	1862781	5.13F-04
66	1353437	3 98E-05	1837453	5 22F-04
67	1472761	4 28F-05	1968079	5 22E-04
68	1442552	4 27E-05	1908262	5 08F-04
69	1331282	4 01F-05	1780034	5 08F-04
70	1388100	4 19E-05	1841873	5 00E-04
70	1384331	4 20E-05	1838220	4 96F-04
72	1447554	4,20E 00	1909616	5 17E-04
72	1317023	3.71E-05	1851935	5.61E-04
73	1286025	3 73E-05	1779399	5.01E-04
75	1393645	112E-05	1869892	5.13E-04
76	1321043	3 90E-05	1801102	5 22E-04
77	1342341	3.89E-05	1840202	5 36F-04
78	1376091	4 08E-05	1844568	5 13E-04
79	1449078	4.34F-05	1904571	5 00F-04
80	1356711	4 15E-05	1802207	4 92F-04
81	1546406	4.59E-05	1990343	5.00E-04
82	1445054	4 25E-05	1915018	5 13E-04
83	1426576	4 21E-05	1902086	5 13E-04
84	1346259	4 01E-05	1816863	5 13E-04
85	1431633	4.43F-05	1857520	4.80F-04
86	1391067	4.12E-05	1866991	5.13E-04
87	1428475	4.31F-05	1877508	4.96F-04
88	1499647	4.42F-05	1963870	5.08F-04
89	1439024	4.39E-05	1877497	4.88F-04
90	1366450	4.12F-05	1815983	5.04F-04
91	1496775	4,56E-05	1928516	4,84E-04
92	1385405	4.08F-05	1873218	5.17F-04
93	1362174	4,14E-05	1805466	5,00E-04
94	1469166	4,52E-05	1896908	4,80E-04
95	1436974	4,32E-05	1882308	5,00E-04
96	1295265	3,95E-05	1748775	5,00E-04
97	1407522	4.24E-05	1853806	5.00E-04
98	1340590	4,01E-05	1811611	5,08E-04
99	1271388	3,78E-05	1743031	5,22E-04
100	1406870	4,22E-05	1860400	5.04E-04

Anexo A.11. Viga de Techo. SIMULACIÓN DE MONTE CARLO. Momento Positivo Fuente: Elaboración Propia.

	CEDI	NCIA	AGOTAMIENTO	
N°	Μ	фу	Μ	φυ
	(kgf.cm)	(rad/cm)	(kgf.cm)	(rad/cm)
1	2228649	5.04E-05	2727555	3.57E-04
2	1987085	4,31E-05	2562342	4.00E-04
3	2198262	5,02E-05	2694569	3,53E-04
4	2228907	4.78E-05	2778550	3.90E-04
5	2241383	5.38E-05	2683782	3.21E-04
6	2293772	5,08E-05	2805768	3,64E-04
7	2423031	5.44E-05	2909675	3.45E-04
8	2257018	5.06E-05	2766129	3.59E-04
9	2077447	4.81E-05	2575565	3.57E-04
10	2257682	4.89F-05	2796127	3.80F-04
11	2330481	5.54F-05	2777622	3.21F-04
12	2132573	471F-05	2676138	3 77F-04
13	2368594	5 44F-05	2835745	3.37E-04
14	2157815	4.57E-05	2733882	4 0.3E-04
15	2074696	4 42F-05	2660218	4 05E-04
16	2310600	4 98F-05	2845944	3 80F-04
17	2199528	4 73E-05	2753149	3 90F-04
18	2148305	4.88E-05	2652924	3.61E-04
19	2115874	4 76F-05	2637764	3 68F-04
20	2192125	5 28E-05	2630823	3 19E-04
20	2365605	5.18E-05	2879303	3.66F-04
21	2337049	5.00E-05	2881706	3.82E-04
22	2196110	199E-05	2695632	3.57E-04
20	22120110	4,77E-05	2729415	3.61E-04
25	2074589	4.776-05	2588427	3.68E-04
26	2136448	4,71E-05	2673048	3 77E-04
20	2089566	4,72E-05	267.5040	3 73E-04
27	2166895	4,07E-05	2719146	3.90E-04
20	2099940	4 53E-05	2670242	3.95E-04
30	2095121	5 10E-05	2524330	3 13E-04
31	2011653	4 29F-05	2599953	4 11F-04
32	2359812	5 25E-05	2867420	3 55E-04
33	2282411	4 86F-05	2837582	3 90E-04
34	2194124	4 60E-05	2772209	4 08F-04
35	2769459	4 79E-05	2838540	3.97E-04
36	2194934	4 65E-05	2770484	4 00F-04
37	2118301	4 88E-05	2622245	3 55E-04
38	2369970	5 43E-05	2840940	3.39E-04
39	2281546	4 96E-05	2818701	3 75F-04
40	2082760	4 59E-05	2632236	3.82E-04
41	2193295	4 97F-05	2701023	3.57F-04
42	2220185	5.06E-05	2717483	3.53F-04
43	1954868	4 42F-05	2492118	3 80F-04
44	2144268	4 72F-05	2676201	3 80F-04
45	2269195	5 25F-05	2745479	341F-04
46	2028290	4 64F-05	2543553	3.68F-04
47	2180539	4 74F-05	2720018	3.85F-04
48	2063853	4.57F-05	2609219	3.82F-04
49	2032052	4 76F-05	2525955	3.53F-04
50	2255562	4.97E-05	2773219	3.70F-04

	CEDENCIA		AGOTAMIENTO	
N٥	м	φγ	Μ	φυ
	(kgf.cm)	(rad/cm)	(kgf.cm)	(rad/cm)
51	2125788	4.73E-05	2654666	3.75E-04
52	2360955	5.16E-05	2884176	3,66E-04
53	2081195	4,66E-05	2610179	3,75E-04
54	2170566	4,92E-05	2679340	3,59E-04
55	2273101	5.26E-05	2750012	3,39E-04
56	2194302	4,89E-05	2718204	3,68E-04
57	2012325	4.53E-05	2544818	3.77E-04
58	2244964	4,76E-05	2819120	3,95E-04
59	2107565	4,87E-05	2605346	3,55E-04
60	2238847	4,85E-05	2774964	3,82E-04
61	2284342	5,36E-05	2747824	3,31E-04
62	2069438	4.50E-05	2635897	3,92E-04
63	2158005	5,32E-05	2561125	2,99E-04
64	2195210	4.78E-05	2735409	3.82E-04
65	2193756	4.86E-05	2715357	3.73E-04
66	2117939	4,61E-05	2670206	3,90E-04
67	2316798	4,93E-05	2867155	3.87E-04
68	2260518	5,00E-05	2779984	3,66E-04
69	2081085	4,74E-05	2593612	3,66E-04
70	2169581	4,96E-05	2670120	3,55E-04
71	2158933	4,98E-05	2653862	3,51E-04
72	2267464	4,94E-05	2802670	3.75E-04
73	2077366	4,20E-05	2718298	4,44E-04
74	2018076	4,28E-05	2612445	4.14E-04
75	2177442	4.80E-05	2716803	3.75E-04
76	2072349	4,54E-05	2628114	3,87E-04
77	2114271	4,47E-05	2689994	4.08E-04
78	2149309	4,77E-05	2680141	3,75E-04
79	2265479	5,11E-05	2761479	3,55E-04
80	2112770	4,97E-05	2597365	3,45E-04
81	2417088	5,39E-05	2911529	3,49E-04
82	2257193	4,94E-05	2791029	3.73E-04
83	2234365	4,90E-05	2763026	3,75E-04
84	2110602	4.70E-05	2640252	3.75E-04
85	2225873	5.35E-05	2666166	3.19E-04
86	2179191	4,80E-05	2712577	3,75E-04
87	2228032	5.11E-05	2718912	3,49E-04
88	2346090	5,15E-05	2860442	3,66E-04
89	2244177	5,25E-05	2710584	3,37E-04
90	2139021	4,88E-05	2643153	3,59E-04
91	2332451	5,46E-05	2/88191	3,30E-04
92	21/1952	4./4E-05	2/21923	3.82E-04
93	2129658	4,92E-05	2624461	3,53E-04
94	228831/	5.45E-05	2/35/69	3.24E-04
95	2244641	5.11E-05	2/44901	3.51E-04
<u> 76</u>	2022976	4,/2E-U5	2526677	3,5/E-U4
<u> </u>	2199/34	5.02E-05	2675314	3.53E-04
<u> 78</u>	207/12/	4,/2E-U5	2622632	3,/UE-U4
77	1773720 2200150	4,42E-U3	2344710	3,0/E-U4 3,50E 0.4
100	2200137	4,77E-UJ	2/0/730	J,J7E-U4

	CEDENCIA		AGOTAMIENTO	
N٥	Μ	φγ	Μ	φυ
	(kgf.cm)	(rad/cm)	(kgf.cm)	(rad/cm)
1	1481900	4,31E-05	1948100	5,17E-04
2	1470900	4,46E-05	1895000	4,92E-04
3	1339800	3,90E-05	1813000	5,31E-04
4	1330200	4,03E-05	1768600	5,04E-04

Anexo A.12. Viga de Techo. ESTIMADORES PUNTUALES. Momento Negativo Fuente: Elaboración Propia.

Anexo A.13. Viga de Techo. ESTIMADORES PUNTUALES. I	Momento	Positivo
Fuente: Elaboración Propia.		

	CEDENCIA		AGOTAMIENTO	
N٥	Μ	φγ	Μ	φυ
	(kgf.cm)	(rad/cm)	(kgf.cm)	(rad/cm)
1	2309100	4,98E-05	2848900	3,77E-04
2	2284300	5,30E-05	2762300	3,37E-04
3	2089600	4,49E-05	2653900	4,00E-04
4	2069500	4,78E-05	2573900	3,59E-04

Anexo A.14.Viga de Entrepiso. SIMULACIÓN DE MONTE CARLO. Momento Negativo Fuente: Elaboración Propia.

	CEDENCIA		AGOTAMIENTO	
N°	Μ	фу	Μ	φυ
	(kgf.cm)	(rad/cm)	(kgf.cm)	(rad/cm)
1	1770116	3.39E-05	2451915	4.92E-04
2	1575461	2.95E-05	2317766	5.26E-04
3	1748648	3,37E-05	2421641	4,88E-04
4	1767747	3.27E-05	2501619	5.22E-04
5	1787318	3,54E-05	2420466	4,62E-04
6	1821658	3,44E-05	2516065	5,00E-04
7	1926963	3,66E-05	2608817	4,84E-04
8	1795664	3,42E-05	2498122	4,92E-04
9	1653193	3,21E-05	2325281	4,88E-04
10	1789516	3.34F-05	2517546	5.13F-04
11	1858690	3.66F-05	2487083	4.62F-04
12	1699577	3 20F-05	2412740	5 08F-04
13	1884883	3.64F-05	2541246	4.76F-04
14	1710669	3 15E-05	2473703	5.31E-04
1.5	1650621	3 04F-05	2414645	5.31E-04
16	1836516	3 41F-05	2564719	5 13E-04
17	1750762	3 24F-05	2477232	5 22F-04
18	1711123	3 28E-05	2398695	4 92F-04
19	1681651	3 21E-05	2375478	5 00F-04
20	1747697	3 48E-05	2385263	4 62F-04
20	1881675	3 52E-05	2595795	5 00F-04
21	1860915	3 /3E-05	2588978	5 17E-04
22	1750397	3 36F-05	2/39977	1 88F-04
20	1761878	3 35E-05	2453787	4,00 <u></u> 04
25	1650560	3.17E-05	2346201	4,70 <u>L</u> -04
26	1697735	3 20E-05	2409401	5 08E-04
20	1664377	3 17E-05	2374058	5 00E-04
28	1725791	3 21E-05	2465727	5 17F-04
29	1670243	3 11E-05	2420860	5 22F-04
30	1670027	3,35E-05	2311186	4 62F-04
31	1594131	2 94F-0.5	2358002	5.36E-04
32	1883046	3.56E-05	2576193	4 92F-04
33	1814256	3 34F-05	2558796	5 22F-04
34	1741857	3 18F-05	2512399	5.36F-04
35	1805477	3.30F-05	2550167	5.31E-04
36	1746370	3.21F-05	2496834	5.31E-04
37	1690314	3.27F-05	2361614	4.88F-04
38	1890480	3.64F-05	2554138	4.76F-04
39	1816189	3.39E-05	2539009	5.08E-04
40	1653165	3.12F-05	2371140	5.13E-04
41	1747366	3.34F-05	2427357	4.92F-04
42	1771037	3.40E-05	2443124	4.88E-04
43	1556478	2,98E-05	2264375	5,04E-04
44	1703228	3,21E-05	2422259	5,08E-04
45	1810734	3.51E-05	2472349	4,76E-04
46	1614574	3,11E-05	2302985	4,96E-04
47	1728186	3.23E-05	2465476	5,13E-04
48	1639004	3,10E-05	2369075	5,08E-04
49	1619204	3,17E-05	2284053	4,84E-04
50	1794435	3,37E-05	2494404	5.04E-04

	CEDENCIA		AGOTAMIENTO	
N٥	Μ	фу	м	φυ
	(kgf.cm)	(rad/cm)	(kgf.cm)	(rad/cm)
51	1691284	3.20E-05	2400961	5.04E-04
52	1877007	3.51E-05	2580902	5.04E-04
53	1656819	3.15E-05	2358134	5.04E-04
54	1728824	3.31F-05	2415383	4.92F-04
55	1808993	3.51E-05	2469104	4.76F-04
56	1747540	3.31E-05	2452206	5.00E-04
57	1602285	3.06F-05	2305204	5.04F-04
58	1787308	3.28F-05	2543109	5.26F-04
59	1677401	3.25E-05	2363091	4.84F-04
60	1780216	3.32F-05	2507289	5.13E-04
61	1822146	3.56F-05	2469926	4.69F-04
62	1642648	3 07E-05	2376410	5 22F-04
63	1719741	3 47E-05	2339252	4.55E-04
64	1746234	3 26E-05	2469427	5 13E-04
65	1745409	3 29E-05	2448946	5.04F-04
66	1688028	3 15E-05	2418309	5 17E-04
67	1842347	3 39E-05	2575627	5 22E-04
68	1794241	3 39E-05	2501858	5 00F-04
69	1656564	3 18E-05	2341882	4 96F-04
70	1725215	3.32E-05	2407113	4 88F-04
71	1719171	3 33E-05	2392202	4 84F-04
72	1805571	3.37E-05	2523309	5 08F-04
73	1642764	2 94F-0.5	2481041	5 66E-04
74	1602887	2,95E-05	2382710	5.36E-04
75	1735662	3 27E-05	2441384	5 08F-04
76	1647971	3.09E-05	2367607	5 17E-04
77	1675050	3 08F-05	2432332	5.36E-04
78	1709254	3.23F-05	2425479	5.04F-04
79	1805406	3.45E-05	2493685	4.88F-04
80	1686338	3.30F-05	2348446	4.76F-04
81	1925622	3.64E-05	2609628	4.88E-04
82	1798848	3.37E-05	2501878	5.08F-04
83	1774918	3.33E-05	2484781	5.08E-04
84	1679465	3,19E-05	2387282	5.04E-04
85	1775089	3,53E-05	2406811	4,62E-04
86	1731958	3,26E-05	2437098	5,08E-04
87	1773983	3,42E-05	2445471	4,84E-04
88	1866607	3,50E-05	2577718	5,00E-04
89	1788336	3,49E-05	2440557	4,72E-04
90	1704807	3,28E-05	2380474	4,92E-04
91	1855684	3,62E-05	2500031	4,69E-04
92	1727314	3.23E-05	2457276	5.13E-04
93	1695646	3,29E-05	2372562	4,84E-04
94	1824294	3,60E-05	2461747	4.62E-04
95	1790588	3,43E-05	2460815	4.88E-04
96	1610386	3,15E-05	2296496	4,84E-04
97	1749865	3,37E-05	2422272	4,88E-04
98	1671273	3,19E-05	2370110	5,00E-04
99	1582757	3,00E-05	2307396	5,13E-04
100	1751865	3,35E-05	2442444	4,92E-04

Anexo A.15.Viga de Entrepiso. SIMULACIÓN DE MONTE CARLO. Momento Positivo.

	CEDE	NCIA	AGOTAMIENTO	
N°	M	фу	Μ	φυ
	(kgf.cm)	(rad/cm)	(kgf.cm)	(rad/cm)
1	2103876	3.55E-05	2840121	4.38E-04
2	1879014	3.08E-05	2683685	4.80E-04
3	2079166	3,53E-05	2798003	4,35E-04
4	2107431	3.41E-05	2903018	4.72E-04
5	2125128	3.75E-05	2785214	4.05E-04
6	2168882	3,60E-05	2914117	4,48E-04
7	2293844	3.84E-05	3006162	4.32E-04
8	2138593	3,58E-05	2878748	4,41E-04
9	1965704	3,37E-05	2687078	4,35E-04
10	2134973	3,48E-05	2906211	4,65E-04
11	2208250	3,86E-05	2874098	4,03E-04
12	2018878	3,34E-05	2794972	4,58E-04
13	2244713	3,82E-05	2941058	4,20E-04
14	2038887	3,28E-05	2868622	4,84E-04
15	1964788	3,17E-05	2783451	4,88E-04
16	2186587	3,55E-05	2960054	4,65E-04
17	2078917	3.38E-05	2875201	4,72E-04
18	2031340	3,44E-05	2764765	4,41E-04
19	2000798	3,36E-05	2752571	4,48E-04
20	2076106	3,68E-05	2744422	4,05E-04
21	2239499	3,68E-05	2989916	4,51E-04
22	2212509	3.57E-05	2995228	4.69E-04
23	2077799	3,52E-05	2805042	4,38E-04
24	2097709	3.51E-05	2835200	4,44E-04
25	1959842	3,32E-05	2711586	4,44E-04
26	2022483	3,35E-05	2791204	4,58E-04
27	1975682	3.32E-05	2736087	4.51E-04
28	2053540	3,35E-05	2837507	4,72E-04
29	1988/05	3,24E-05	2/93514	4,/6E-04
30	1984431	3,55E-05	2658598	4,05E-04
31	189/649	3,07E-05	2/26593	4,92E-04
32	2239589	3./2E-05	2968423	4,41E-04
33	2159506	3,48E-05	2950767	4,/6E-04
34	20/4069	3.30E-05	2901805	4.92E-04
35	214/040	3.43E-05	2956103	4.84E-04
36	20/4846	3,33E-05	2895190	4,84E-04
3/	2006272	3.43E-05	2/28895	4.35E-04
38	2246550	3,82E-05	2742/3/	4,23E-04
39	2130060	3,335-03	2723410	4,62E-04
40	2075204	3,20E-03	2/34040	4,62E-04
41	2073304	3,30E-03	2011013	4,30E-04
42	18/0814	3135-05	2022/20	4.55E-04
45	202/151	3 35F_05	2790188	4 625-04
45	2152776	3 69F-05	2848417	4 23F-04
46	1919686	3.27F-0.5	2662060	4.44F-04
47	2059997	3.37F-0.5	2846550	4.65F-04
48	1951929	3,24F-0.5	2729257	4.62F-04
49	1919699	3,33E-05	2632584	4,32E-04
50	2132040	3.52E-05	2896684	4,51E-04

	CEDI	NCIA	AGOTAMIENTO	
N°	Μ	фу	M	φυ
	(kgf.cm)	(rad/cm)	(kgf.cm)	(rad/cm)
51	2011603	3.35E-05	2774157	4.55E-04
52	2235072	3.67E-05	2996099	4,51E-04
53	1967776	3,30E-05	2725220	4,55E-04
54	2053194	3.47E-05	2783946	4,41E-04
55	2150365	3.69E-05	2844707	4.23E-04
56	2078142	3,46E-05	2825654	4,51E-04
57	1905995	3.21E-05	2664553	4,55E-04
58	2123290	3,41E-05	2940124	4,80E-04
59	1995270	3,42E-05	2710036	4,35E-04
60	2116706	3,46E-05	2894435	4,65E-04
61	2165328	3.75E-05	2844313	4,14E-04
62	1958691	3.21E-05	2759879	4,72E-04
63	2042881	3,68E-05	2699188	3,95E-04
64	2074220	3.40E-05	2851269	4.65E-04
65	2071799	3,44E-05	2829195	4,55E-04
66	2005693	3.29E-05	2800151	4,69E-04
67	2192875	3,53E-05	2987580	4,72E-04
68	2136575	3,54E-05	2882485	4,51E-04
69	1971508	3,34E-05	2706757	4,44E-04
70	2051268	3.49E-05	2781208	4.35E-04
71	2045526	3.50E-05	2756988	4.32E-04
72	2144296	3.52E-05	2921615	4.58E-04
73	1960558	3.04E-05	2870572	5.26E-04
74	1910155	3.07E-05	2754267	4.92E-04
75	2062604	3.41E-05	2827905	4.58E-04
76	1960960	3,23E-05	2742439	4,69E-04
77	1996788	3.20E-05	2829376	4.88E-04
78	2034784	3,38E-05	2802173	4,55E-04
79	2146015	3,61E-05	2866690	4,38E-04
80	2003118	3,48E-05	2705491	4,23E-04
81	2288532	3,81E-05	3014286	4,35E-04
82	2140596	3.52E-05	2897275	4,58E-04
83	2111848	3,48E-05	2877641	4,58E-04
84	1996688	3.33E-05	2758499	4,55E-04
85	2109506	3.73E-05	2780826	4.03E-04
86	2057971	3,41E-05	2823037	4,58E-04
87	2107847	3,59E-05	2818294	4,32E-04
88	2220400	3,66E-05	2969278	4,51E-04
89	2126437	3,68E-05	2817385	4,17E-04
90	2021831	3,44E-05	2757865	4,38E-04
91	2206765	3,81E-05	2891490	4,11E-04
92	2057982	3,37E-05	2837293	4,65E-04
93	2016740	3,46E-05	2734340	4,32E-04
94	2166642	3,80E-05	2833021	4.05E-04
95	2124999	3.60E-05	2843119	4.35E-04
96	1917113	3,31E-05	2633665	4,35E-04
97	2080597	3.53E-05	2798736	4.35E-04
98	1988573	3,34E-05	2731737	4,51E-04
99	1884075	3,14E-05	2666189	4,65E-04
100	2082409	3,51E-05	2814977	4,41E-04

Anexo A.16.Viga de Entrepiso. ESTIMADORES PUNTUALES. Momento Negativo

	CEDENCIA		AGOTAMIENTO	
N٥	Μ	φγ	Μ	φυ
	(kgf.cm)	(rad/cm)	(kgf.cm)	(rad/cm)
1	1836000	3,41E-05	2557700	5,13E-04
2	1823900	3,54E-05	2472900	4,76E-04
3	1660800	3,08E-05	2405400	5,26E-04
4	1650800	3,20E-05	2332600	4,88E-04

Anexo A.17.Viga de Entrepiso. ESTIMADORES PUNTUALES. Momento Positivo. Fuente: Elaboración Propia.

	CEDENCIA		AGOTAMIENTO	
N٥	N° Μ φγ		Μ	φυ
	(kgf.cm)	(rad/cm)	(kgf.cm)	(rad/cm)
1	2178300	3,55E-05	2968600	4,62E-04
2	2167200	3,72E-05	2861900	4,20E-04
3	1972600	3,21E-05	2783400	4,80E-04
4	1958600	3,36E-05	2681900	4,38E-04

Anexo A.18.Valores de Salida. SIMULACIÓN DE MONTE CARLO. Techo Fuente: Elaboración Propia.

Análisis	Resistencia (kgf)	Desplazamiento Máximo (cm)	Desplazamiento Cedente (cm)	Ductilidad
1	4484.54	14.819	4.147	3.573
2	4684,51	17,591	5,394	3,261
3	4348,88	14,357	3,965	3,620
4	4925,25	16,586	4,946	3,353
5	3950,67	12,221	3,196	3,824
6	4753,02	15,618	4,483	3,484
7	4725,74	14,626	4,063	3,600
8	4589,58	15,070	4,254	3,542
9	4137,58	14,201	3,913	3,629
10	4845,70	16,032	4,684	3,423
11	4068,64	11,970	3,103	3,857
12	4622.32	15,957	4.645	3,435
13	4374,35	12,884	3,415	3,773
14	4993.02	17,393	5.328	3,264
15	4914,25	17,820	5,524	3,226
16	4912,86	15,597	4,508	3,460
17	4928,85	16,923	5,085	3,328
18	4346,49	14,646	4,086	3,584
19	4415,43	15,332	4,377	3,503
20	3943,52	12,884	3,438	3,748
21	4854,10	15,226	4,328	3,518
22	4979.12	15,652	4.543	3.445
23	4493,49	15,400	4,378	3,517
24	4527.03	14,902	4,187	3,559
25	4345,77	16,988	4,758	3,570
26	4601,27	15,856	4,602	3,445
27	4419,21	15,388	4,394	3,502
28	4812,74	16,494	4,891	3,372
29	4880,/4	1/,//6	5,4/5	3,24/
30	3680,10	11,925	3,138	3,800
31	4883,34	18,316	5,/64	3,178
32	464/.49	14.048	3.85/	3,642
33	5084,02	16,971	5,116	3,317
34	5184./3	18,141	5,699	3,184
35	5128,38	17,034	5,180	3,288
<u> </u>	3037,03	14 (29	3,321	3,203
<u> </u>	4203,03	14,630	4,001	3,307
<u> </u>	44/1,73	14 001	3,073	3,070
40	46/0,45	16,001	4,030	2 200
40	4303,34	10,430	3 590	3,000
<u>+</u> 1 ∕Ω	1/1/0 81	1/ 892	<u> </u>	3 540
/3	4440,01	16 109	4,1/2	3 /02
11	1676 12	16,107	4,707	3 /20
<u>44</u> 15	4020,40	13 955	3 799	3,430
<u> </u>	4319 70	16 041	<u> </u>	3 437
47	4787.07	16 447	4 860	3,384
48	4567 35	16,570	4,904	3,379
49	4091.23	14,840	4,177	3,553
.50	4743.36	15.811	4 572	3 4 5 9

Análisis	Resistencia (kgf)	Desplazamiento Máximo (cm)	Desplazamiento Cedente (cm)	Ductilidad
51	4573.59	16.099	4.692	3.431
52	4826,54	14,919	4.202	3.550
53	4444,47	15,770	4,554	3,463
54	4381,40	14,548	4,046	3,596
55	4306,44	13,842	3,757	3,684
56	4577,09	15,428	4,401	3,505
57	4410,54	16,530	4,878	3,389
58	5104,32	17,235	5,252	3,281
59	4205,39	14,550	4,043	3,599
60	4848,11	16,272	4,785	3,401
61	4169,74	13,275	3,415	3,888
62	4750,24	17,245	5.227	3,299
63	3742,63	10,961	2,782	3,940
64	4819,40	16,593	4,925	3,369
65	4723,63	16,942	5,039	3,362
66	4762,98	16,900	5,060	3,340
67	5056,34	16,355	4,851	3,371
68	4688,61	15,609	5,629	2,773
69	4304,63	15,194	4,310	3,526
70	4334,23	14,536	4,041	3,597
71	4230,10	14,038	3,847	3,649
72	4828.34	15,964	4,642	3,439
73	5496,76	20,000	6,746	2,965
74	4926.39	18.393	5.811	3,165
75	4672,20	16,042	4,666	3,438
76	4685,16	17,143	5,167	3,318
77	5056,24	18,319	5,763	3,179
78	4593,40	15,898	4,612	3,447
	4512,03	14,488	4,020	3,604
80	4011,23	13,206	3,543	3,/2/
81	4/44,8/	16,601	4,48/	3,699
82	4//0.22	16./00	4,/64	3,505
83	4/60,61	15,963	4,643	3,438
84	4548./5	16,164	4./24	3,422
85	38/6,60	11,708	3,029	3,866
00	4633,80	10,936	4,634	3,443
8/	4374,27	14,388	3,977	3,618
00	4813,00	10,206	4,343	3,313
07	4137,31	15,000	3,370	3,777
90	4304,04	13,022	4,220	3,555
21	4010,00	14 257	4 8 2 1	3 303
72	4/31,0/	14 257	3 0 2 1	3 607
7.5 Q A	4177,02	11 740	3 0 2 1	3,02/
95	4002,00	1/ 8/3	Λ 1 Λ7	3 520
94	4470,07	14,040	<u>4,14/</u> <u>111</u>	3 549
97	4347 72	14 304	3949	3 622
98	4432 33	15 609	4 482	3 483
99	4459.18	16,344	4 822	3,389
100	4486 44	15 035	4 231	3,554

Anexo A.19.Valores de Salida. SIMULACIÓN DE MONTE CARLO. Entrepiso Fuente: Elaboración Propia.

Análisis	Resistencia (kgf)	Desplazamiento Máximo (cm)	Desplazamiento Cedente (cm)	Ductilidad
1	3171.52	14.594	3.923	3.721
2	3312.95	17,374	5,176	3.356
3	3075,59	14,128	3,741	3,776
4	3483.20	16,366	4.726	3,463
5	2793,97	11,997	2,972	4,036
6	3361,40	15,391	4,256	3,617
7	3342,11	14,396	3,833	3,755
8	3245,81	14,845	4,029	3,685
9	2926,15	13,982	3,694	3,785
10	3426,94	15,811	4,462	3,544
11	2877,40	11,745	2,878	4,081
12	3268.97	15,736	4,425	3,556
13	3093,60	12,659	3,190	3,968
14	3531,13	17,175	5.110	3,361
15	3475,42	17,602	5,307	3,317
16	3474,44	15,376	4,288	3,586
17	3485,75	16,701	4,862	3,435
18	3073,90	14,425	3,865	3,732
19	3122,65	15,112	4,147	3,644
20	2788,91	12,658	3,211	3,942
21	3432,89	15,001	4,103	3,656
22	3521.30	15,432	4.323	3.569
23	3177,86	15,172	4,150	3,656
24	3201.58	14,679	3,965	3,703
25	3073,39	16,767	4,539	3,694
26	3254,08	15,635	4,382	3,568
27	3125,33	15,169	4,176	3,633
28	3403,63	16,275	4,671	3,484
29	3451,72	17,554	5,252	3,342
30	2602,62	11,708	2,922	4,007
31	3453,57	18,099	5,54/	3,263
32	3286.77	13.825	3.214	4.301
33	3595,49	16,/4/	4,893	3,423
34	3666./1	17.920	5,4/8	3.271
35	3626,86	16,813	4,959	3,391
36	35/8,39	17,142	5,100	3,361
3/	3016,87	14,415	3,858	3,/36
38	3162,62	13,430	3,465	3,876
39	3444,43	15,777	4,433	3,339
40	3242,81	16,21/	4,631	3,502
41	2/01,37	14///	3,376	3,327
42	3140.60	14,066	3,74/	3./16
43	3022,/0	15,672		3,340
44	32/1,88	12,044	4,404	3,347
43	305/05	15,727		3,043
40	2205 10	14 224	4,443	3,300
4/	3030,40	16,220	4,000	3,477
40 10	2230,07	11/417	<u>4,004</u> 3,057	3,470
<u>47</u> 50	2073,37	15 587	<i>3,734</i> <i>4 347</i>	3 586

Análisis	Resistencia (kgf)	Desplazamiento Máximo (cm)	Desplazamiento Cedente (cm)	Ductilidad
51	3234.50	15.877	4.470	3.552
52	3413,39	14,696	3,980	3.693
53	3143,19	15,551	4,334	3,588
54	3098,58	14,327	3,825	3.746
55	3045,57	13,616	3,531	3,857
56	3236,98	15,206	4,180	3,638
57	3119,19	16,309	4,657	3,502
58	3609,85	17,013	5,030	3,382
59	2974,11	14,328	3,821	3,749
60	3428,65	16,050	4,562	3,518
61	2948,89	13,050	3,189	4,092
62	3359,43	17.025	5,007	3,401
63	2646,84	10,750	2,571	4,182
64	3408.35	16,370	4,702	3,481
65	3340,62	16,716	4,813	3,473
66	3368,44	16,679	4,840	3,446
67	3575,91	16,133	4,629	3,485
68	3315,85	15,223	5,277	2,885
69	3044,29	14,974	4,090	3,662
70	3065,22	14,314	3,819	3,748
71	2991,58	13,817	3,624	3,813
72	3414.67	15,741	4,419	3,562
73	3887,38	19,783	6,529	3,030
74	3484.01	18,176	5,594	3,249
75	3304,24	15,820	4,444	3,560
76	3313,41	16,922	4,946	3,421
77	3575,84	18,098	5,542	3,265
78	3248,51	15,677	4,390	3,571
79	3190,97	14,263	3,795	3,758
80	2836,80	12,987	3,324	3,907
81	3355,64	14,372	3,827	3,755
82	3373,56	15,477	4.308	3.593
83	3366,77	15,740	4,419	3,562
84	3216.94	15,942	4.502	3.541
85	2741,58	11,487	2,808	4,091
86	3291,23	15,735	4,412	3,566
87	3107,69	14,162	3,752	3,775
88	3403,82	15,031	4,118	3,650
89	2927,38	12,535	3,154	3,974
90	3086,87	14,798	4,004	3,696
91	3052,90	13,419	3,452	3,888
92	3360.59	16,136	4,600	3.508
93	2969,60	14,036	3,710	3,783
94	2830.66	11,519	2.809	4,101
95	3167,16	14,616	3,920	3,729
96	2892,11	14,451	3,890	3,715
97	3074,76	14,052	3,720	3,778
<u> </u>	3134,60	15,388	4,261	3,612
99	3153,60	16,12/	4,605	3,502
100	3172.87	14 811	4 ()()6	3 697

Anexo A.20.Valores de Salida. ESTIMADORES PUNTUALES. Techo Fuente: Elaboración Propia.

Análisis	Resistencia (kgf)	Desplazamiento Máximo (cm)	Desplazamiento Cedente (cm)	Ductilidad
1	4796,09	14,249	3,969	3,590
2	4190,02	12,002	3,114	3,854
3	4794,55	16,434	4,885	3,364
4	4159,79	13,930	3,816	3,650

Anexo A.21.Valores de Salida. ESTIMADORES PUNTUALES. Entrepiso Fuente: Elaboración Propia.

Análisis	Resistencia (kgf)	Desplazamiento Máximo (cm)	Desplazamiento Cedente (cm)	Ductilidad
1	3391,86	14,032	3,753	3,739
2	2963,24	11,782	2,894	4,071
3	3390,77	16,217	4,669	3,474
4	2941,86	13,711	3,597	3,812

Anexo A.22. Estudio de Rótulas. SIMULACIÓN DE MONTE CARLO. Rótula

Superior-Izquierda

Análisis	Rotación Cedente (rad)	Rotación Última (rad)	Ductilidad
1	5.24F-03	3.76E-02	7,172
2	576F-03	4.52E-02	7 849
3	4 23E-03	3 63E-02	8,576
4	5.02E-03	4 25E-02	8 461
5	5 26F-03	3.04F-02	5 781
6	5 25E-03	3.97E-02	7 563
7	4 53E-03	3 69F-02	8 1 4 7
8	4 26E-03	3.82F-02	8 973
9	4 10E-03	3 59F-02	8 752
10	5 11E-03	1.09E-02	8 015
11	1.64E-03	2,97E-02	6 379
10	5 10E 03	2,77L-02	7 /15
13	1,47L-03	4,07L-02	7.415
14	4,JJL-03	3,22L-02	<u> </u>
14	57/502	4,4/E-02	0,200
10	5,76E-03	4,57E-02	7,704
10	5,17E-03	3,97E-02	7,0/7
10	<u>3,99E-U3</u>	4.34E-02	<u> </u>
10	4,14E-03	3,7 TE-UZ	<u> </u>
19	5,03E-03	3,90E-02	7,752
20	4,48E-03	3,22E-02	/,184
21	4,33E-03	3,8/E-02	8,92/
22	5,19E-03	3.99E-02	7,692
23	5,21E-03	3,91E-02	7,500
24	5,19E-03	3,/8E-02	/,2/8
25	5.01E-03	4.35E-02	8,690
26	5,99E-03	4,05E-02	6,755
27	4,99E-03	3.92E-02	7.851
28	5,96E-03	4,22E-02	7,078
29	5,84E-03	4,57E-02	7,823
30	4,38E-03	2,97E-02	6,781
31	5,65E-03	4,72E-02	8,360
32	4.38E-03	3.55E-02	8,090
33	5,07E-03	4,35E-02	8,573
34	5,87E-03	4,67E-02	7,954
35	5.01E-03	4.37E-02	8,711
36	5,91E-03	4,46E-02	7,537
37	4,16E-03	3.71E-02	8,919
38	4,54E-03	3,43E-02	7,563
39	5,16E-03	4,08E-02	7,911
40	5,90E-03	4,21E-02	7,124
41	4,21E-03	3,07E-02	7,304
42	4.24E-03	3.77E-02	8,897
43	5,80E-03	4,12E-02	7,106
44	6,00E-03	4,10E-02	6,840
45	4,48E-03	3.51E-02	7,854
46	5,96E-03	4,09E-02	6,865
47	6.00E-03	4.21E-02	7.014
48	5,88E-03	4,24E-02	7,211
49	5,09E-03	3,76E-02	7,396
50	5 17F-03	4 03E-02	7 783

Análisis	Rotación Cedente (rad)	Rotación Última (rad)	Ductilidad
51	5,01E-03	4,11E-02	8,209
52	4,30E-03	3,78E-02	8,781
53	5,96E-03	4,02E-02	6,748
54	4,17E-03	3,69E-02	8,857
55	4,42E-03	3,48E-02	7,866
56	5,12E-03	3,92E-02	7,653
57	5,87E-03	4,23E-02	7,202
58	5,00E-03	4,42E-02	8,832
59	4,15E-03	3,68E-02	8,871
60	5.07E-03	4.16E-02	8,198
61	4.51E-03	2.37E-02	5.260
62	5.81F-03	4.43F-02	7.622
63	4.42F-03	2.71F-02	6,131
64	5.03E-03	4.24E-02	8.427
65	5.10F-03	4.33F-02	8,495
66	5.91F-03	4.33E-02	7.329
67	5.13F-03	4,18F-02	8,149
68	5.20F-03	3.93E-02	7.557
69	5.03E-03	3.86E-02	7,681
70	4.20F-03	3.68F-02	8,766
71	4.22F-03	3.54F-02	8,389
72	5.15F-03	4.07F-02	7,901
73	5.96F-03	5.19E-02	8,715
74	5.65F-03	4.75E-02	8,402
75	5.05F-03	4.09F-02	8.091
76	5.85F-03	4.40F-02	7.518
77	5.79F-03	4.72F-02	8,155
78	5.04E-03	4.06E-02	8.060
79	4.29E-03	3.66E-02	8.527
80	4.24E-03	3.32E-02	7.831
81	4,48E-03	3,69E-02	8,228
82	5,15E-03	4,00E-02	7,763
83	5,12E-03	4,07E-02	7,944
84	5,99E-03	4,13E-02	6,892
85	4,53E-03	2.91E-02	6,417
86	5,05E-03	4,07E-02	8,057
87	4.31E-03	3,63E-02	8,414
88	5,30E-03	3,87E-02	7,305
89	4,44E-03	3,19E-02	7,179
90	5,14E-03	3,81E-02	7,412
91	4,58E-03	3,43E-02	7,493
92	5.01E-03	4,18E-02	8,348
93	4,18E-03	3,61E-02	8,640
94	4,59E-03	2,91E-02	6,335
95	4.30E-03	3.76E-02	8,752
96	5,04E-03	3,72E-02	7,382
97	4.24E-03	3.62E-02	8,546
98	5,01E-03	3,98E-02	7,948
99	5,78E-03	4,18E-02	7,227
100	5.21E-03	3.81E-02	7 3 1 7

Anexo A.23. Estudio de Rótulas. SIMULACIÓN DE MONTE CARLO. Rótula Inferior-Izquierda Fuente: Elaboración Propia.

Análisis	Rotación Cedente (rad)	Rotación Última (rad)	Ductilidad
1	5.24E-03	3.76E-02	7.172
2	576F-03	4.52F-02	7 850
3	4 23E-03	3.63E-02	8.577
4	5.02E-03	4 25E-02	8 461
5	5 26F-03	3.04F-02	5 782
6	5 25E-03	3 97E-02	7,563
7	4 53E-03	3 69F-02	8 1 4 7
8	4 26E-03	3.82E-02	8 974
9	4 10F-03	3.59E-02	8 753
10	5 11E-03	4 09F-02	8.016
11	4 66F-03	2 97F-02	6.379
12	5 49E-03	4 07F-02	7 415
13	4 55E-03	3.22F-02	7.087
14	5.41E-03	4 47F-02	8 261
15	5 76E-03	4 59E-02	7 965
16	5.17E-03	3.97E-02	7,680
17	5.99E_03	4 34E-02	7 2/1
18	4 14F-03	3.71F-02	8 971
19	5.03E-03	3 90F-02	7 753
20	1 18E-03	3.22E-02	7 185
20	4,40L-00	3.87E-02	8 928
21	5 19E-03	3.99E-02	7 493
22	5.21E-03	3.91E-02	7,075
20	5.19E-03	3.78E-02	7,300
24	5,17E-03	135E 02	<u> </u>
25	5.01L-03	4,05E-02	6 755
20	199E-03	4,00L-02	7 851
27	5.94E-03	1.22E-02	7,031
20	5.84E-03	4,22E-02	7,077
30	1 38F-03	2 97F-02	6 781
31	5.65E-03	1 72F-02	8 360
32	1 38E-03	3 55E-02	8.091
33	5.07E-03	135E-02	8 574
31	5.87E-03	4,00E-02	7 955
35	5.01E-03	4,07 <u>E</u> 02	8 712
36	5.01E-03	4.6F-02	7 538
37	116E-03	3 71E-02	8 920
38	4 54E-03	3 43F-02	7 564
39	5 16F-03	4 08F-02	7 912
40	5 90E-03	4 21F-02	7 125
40	4 21E-03	3.07F-02	7 303
42	4 24E-03	3 77F-02	8 898
43	5 80F-03	4 12F-02	7 107
44	6.00E-03	4 10F-02	6 841
45	4 48F-03	3.52F-02	7 855
46	5 96F-03	4 09F-02	6 865
<u>4</u> 7	6 00F-03	4 21F-02	7 014
48	5 88F-03	4 24F-02	7 211
49	5 09F-03	3 63F-02	7 1 2 6
50	5 17E-03	4 03F-02	7 783

Análisis	Rotación Cedente (rad)	Rotación Última (rad)	Ductilidad
51	5.01E-03	4,11E-02	8,209
52	4.30E-03	3.78E-02	8,781
53	5.96E-03	4.02F-02	6.748
54	4,17F-03	3.69E-02	8.857
55	4 42F-03	3 48F-02	7 866
.56	5 12E-03	3 92F-02	7 653
57	5.87E-03	4 23E-02	7 202
58	5.00E-03	4 42F-02	8 832
59	4 15E-03	3.68E-02	8 871
60	5.07E-03	4 16F-02	8 198
61	4.51E-03	2 37F-02	5 260
62	5.81E-03	1 /3E-02	7 400
63	1.42E-03	2.71E-02	6 131
64	5.03E-03	1.24E-02	8 /27
45	5 10E 03	4,240-02	<u> </u>
65	5.01E.03	4,33E-02	7 3 2 0
47	5 1 2 5 0 2	4,332-02	0 1 40
0/	5 20E 02	4,10E-02	0,147
<u> </u>	5.02E-03	3,73E-02	7,007
70	3,03E-03	3,00E-02	0.777
70	4,20E-03	3,00E-UZ	0,/00
71	4,22E-03	3,54E-02	8,389
72	5,15E-03	4.0/E-02	7.901
/3	5,96E-03	5,19E-02	8,715
74	3,63E-U3	4,75E-02	8,402
/5	5,05E-03	4.09E-02	8.091
/6	5,85E-03	4,40E-02	7,518
	5./9E-03	4./2E-02	8,155
/8	5,04E-03	4,06E-02	8,060
/9	4,29E-03	3,66E-02	8,52/
80	4,24E-03	3,32E-02	/,831
81	4,48E-03	3,69E-02	8,228
82	5,15E-03	4.00E-02	7,763
83	5,12E-03	4,0/E-02	/,944
84	5,99E-03	4,13E-02	6,892
85	4.53E-03	2.91E-02	6,41/
86	5,05E-03	4,0/E-02	8,05/
87	4.31E-03	3.63E-02	8,414
88	5,30E-03	3,87E-02	7,305
89	4,44E-03	3,19E-02	7,179
90	5,14E-03	3,81E-02	7,412
91	4,58E-03	3,43E-02	7,493
92	5.01E-03	4.18E-02	8.348
93	4,18E-03	3,61E-02	8,640
94	4,59E-03	2,91E-02	6,335
95	4.30E-03	3.76E-02	8.752
96	5,04E-03	3,72E-02	7,382
97	4.24E-03	3.62E-02	8,546
98	5,01E-03	3,98E-02	7,948
99	5,78E-03	4,18E-02	7,227
100	5 21F-03	3.81F-02	7 3 1 7

Anexo A.24. Estudio de Rótulas. SIMULACIÓN DE MONTE CARLO. Rótula Superior-Derecha Fuente: Elaboración Propia.

Análisis	Rotación Cedente (rad)	Rotación Última (rad)	Ductilidad
1	5.47E-03	3.74E-02	6.852
2	5.75E-03	4.51F-02	7.843
3	5 47E-03	3.62E-02	6 623
4	5,18F-03	4.23E-02	8,171
5	5.85E-03	3.03E-02	5 186
6	5 48F-03	3 96E-02	7 223
7	5.83E-03	3 68F-02	6 322
8	5 48F-03	3.81E-02	6 963
9	4 22F-03	3.58E-02	8 492
10	5 29E-03	4 08F-02	7 710
11	6.00E-03	2.94F-02	/ 9/1
12	5.14E-03	1.04E-02	7 895
12	5.85E-03	3.21E-02	5 /9/
14	197E-03	1/4F-02	8969
15	5.83E_03	4,402-02	7 852
16	5.38E-03	3.94E-02	7 362
17	5.14E 03	4 32E 02	9 /12
10	5 3 2 E 0 3	4,52L-02	4 954
10	5.01E.03	3 80E 02	7 473
20	5 00E 02	3.07L-02	5 520
20	5,00E-03	3,210-02	2,007
21	5,56E-03	3,03E-02	7 400
22	5.3/E-U3	3,98E-UZ	7,402
23	5,44E-03	3,70E-02	/,100
24	5,37E-U3	<u>3,77E-02</u>	0,772
2	5,18E-U3	4.34E-02	8,386
26	5,15E-03	4,03E-02	7,840
2/	5,13E-03	3.91E-02	/,616
28	5,09E-03	4,21E-02	0,267
29	3,73E-U3	4,56E-02	7,638
30	5,65E-03	2,96E-02	5,248
31	5,7 IE-03	4,/1E-02	8,259
32	5,65E-03	3,54E-02	6,254
33	5,24E-03	4,33E-02	8,266
34	5,99E-03	4,66E-02	7,780
35	5,1/E-03	4,36E-02	8,424
36	5,04E-03	4,45E-02	8,816
3/	5.35E-03	3./0E-02	6,914
<u>38</u>	5,84E-03	3,42E-02	5,865
39	5,36E-03	4,0/E-02	/,591
40	5,02E-03	4,19E-02	8,362
41	5,39E-03	3,0/E-02	5,/0/
42	5.51E-03	3./6E-02	6.833
43	4,90E-03	4,11E-02	8,3/9
44	5,14E-03	4,09E-02	/,965
45	5.69E-03	3.50E-02	6,163
46	5,11E-03	4,08E-02	/,980
47	5.15E-03	4.19E-02	8,139
48	5,01E-03	4,23E-02	8,446
49	5,26E-03	3,/5E-02	/,132
5()	5 36E-03	4 ()2E_()2	/ 189

Análisis	Rotación Cedente (rad)	Rotación Última (rad)	Ductilidad
51	5,17E-03	4,10E-02	7,930
52	5.55E-03	3.77E-02	6.793
53	5.11E-03	4.01E-02	7.850
54	5,36E-03	3,67E-02	6,851
55	5,71E-03	3,47E-02	6,072
56	5,32E-03	3.91E-02	7,352
57	5.00E-03	4.22E-02	8.437
58	5,14E-03	4,41E-02	8,581
59	5,34E-03	3,67E-02	6,875
60	5.25E-03	4.15E-02	7,900
61	5.80E-03	3.33E-02	5,743
62	4 92F-03	4 41F-02	8 9 6 9
63	5.67E-03	2 71F-02	4 780
64	5 20F-03	4 23E-02	8 137
65	5 29F-03	4.32E-02	8 173
66	5.04F-03	4.32F-02	8.572
67	5 32E-03	4 17F-02	7 838
68	5 40F-03	3 92F-02	7 263
69	5 20E-03	3 85E-02	7 406
70	5 40F-03	3.67E-02	6 797
71	5 45E-03	3.53E-02	6 475
72	5 35E-03	4 06F-02	7 585
73	5.00E.00	5 18F-02	8 695
74	571E-03	4 73E-02	8 284
75	5.23E-03	4 08F-02	7 800
76	4 97E-03	4 39E-02	8.834
77	5.88E-03	4 71E-02	8,008
78	5.00E.00	4 04F-02	7 755
79	5.54E-03	3 65E-02	6 588
80	5.46E-03	3 31E-02	6 064
81	5 78E-03	3 68F-02	6 362
82	5 36E-03	3.99F-02	7 451
83	5.32E-03	4.06F-02	7 635
84	5 1 5E-03	4 12F-02	7 995
85	5.84E-03	2 90F-02	4 966
86	5 23E-03	4.06E-02	7 768
87	5 55E-03	3.62E-02	6 524
88	5 54F-03	3.86E-02	6 965
89	5 72E-03	3 18E-02	5 561
90	5 35E-03	3.80F-02	7 107
91	5 89F-03	3 42F-02	5 807
92	5 15F-03	4 17F-02	8 100
93	5 40F-03	3 60E-02	6 669
94	5.91E-03	2.91F-02	4 921
95	5 55F_03	3 75F_02	6 761
96	5 22F-03	371F-02	7 105
97	5 47F_03	3 61F-02	6 599
98	5 17F_03	3.97F_02	7 47/
99	4 88F-03	4 17F-02	8 537
100	5 /1E-03	3.80F-02	7 025
			/ \//. '

Anexo A.25. Estudio de Rótulas. SIMULACIÓN DE MONTE CARLO. Rótula

Inferior-Derecha

Análisis	Rotación Cedente (rad)	Rotación Última (rad)	Ductilidad
1	5.47F-03	3.75E-02	6.854
2	5.75E-03	4.51F-02	7.846
3	5 47E-03	3.62E-02	6 6 2 5
4	5,18F-03	4.23E-02	8,176
5	5 85E-03	3.04F-02	5 188
6	5 48F-03	3 96F-02	7 223
7	5.83E-03	3.68E-02	6.322
8	5 48F-03	3.81E-02	6 963
9	4 22F-03	3.58E-02	8 496
10	5 29E-03	4 08F-02	7 713
11	6.00E-03	2 96F-02	4 9 4 1
12	5.14E-03	104E-02	7 895
12	5.85E-03	4,00 <u>L</u> -02	5 /9/
14	197E-03	1.44E-02	8 972
14	5,83E 03	4,401-02	7 8 5 /
14	5 38E 03	4, <u>JOL-02</u>	7 3 4 5
17	5.14E.02	1.20E-02	9 415
10	5 20E 02	4, <u>32E-02</u>	<u> </u>
10	5.01E.02	3,70E-02	7 475
20	5,212-03	3,07E-02	<u> </u>
20	5,00E-03	3,22E-02	<u> </u>
21	5,56E-03	3,00E-UZ	0,700
22	5.3/E-U3	3.98E-UZ	7,405
23	5,44E-U3	3,90E-02	/,1/0
24	5,37E-U3	3,77E-02	0,775
2	5,18E-U3	4.35E-02	8.390
26	5,15E-03	4,03E-02	7,840
27	5,13E-03	3.91E-02	7.619
28	5,09E-03	4,21E-02	8,2/4
29	5,95E-03	4,56E-02	/,658
30	5,65E-03	2,96E-02	5,248
31	5,/IE-03	4,/1E-02	8,259
32	5.65E-03	3.54E-02	6,254
33	5,24E-03	4,34E-02	8,270
34	5,99E-03	4,66E-02	7,783
35	5,1/E-03	4,36E-02	8,424
36	5,04E-03	4,45E-02	8,816
3/	5.35E-03	3./0E-02	6,916
<u>38</u>	5,84E-03	3,42E-02	5,865
39	5,36E-03	4,0/E-02	/,595
40	5,02E-03	4,20E-02	8,365
41	5,39E-03	3,06E-02	5,690
42	5,51E-03	3./6E-02	6.835
43	4,90E-03	4,11E-02	8,382
44	5,14E-03	4,09E-02	/,96/
45	5.69E-03	3.51E-02	6,166
46	5,11E-03	4,08E-02	/,980
47	5.15E-03	4.20E-02	8,141
48	5,01E-03	4,23E-02	8,448
49	5,26E-03	3,/5E-02	/,132
50	5 36E_03	4 02E-02	7 189

Análisis	Rotación Cedente (rad)	Rotación Última (rad)	Ductilidad
51	5.17E-03	4.10E-02	7,930
.52	5,55E-03	377F-02	6 793
53	5 11E-03	4 01F-02	7 850
.54	5 36E-03	3.67E-02	6 851
55	5 71E-03	3 47F-02	6.072
56	5.32E-03	3.91E-02	7 352
57	5.00E-03	4 22F-02	8 4 3 7
58	5.14E-03	4.41F-02	8 581
59	5 34E-03	3.67F-02	6 875
60	5.25E_03	4.15E-02	7 900
61	5.80E-03	4,13L-02	57/3
42	1 02E 03	1 41E 02	<u> </u>
43	4,72L-03	4,41L-02	4 780
65	5 20E 03	2,7 TL-02	9 1 3 7
04 	5.20E-03	4,23E-02	0,13/
0.0	5.04E.03	4,32E-02	0,1/3
00	5,04E-03	4, <u>3ZE-0Z</u>	0,3/2
0/	5,32E-U3	4,1/E-02	7,000
68	5,40E-03	3,92E-02	7,263
69	5,20E-03	3,83E-02	/,406
70	5,40E-03	3,6/E-U2	6,/9/
/	5,45E-03	3,53E-02	6,4/5
/2	5.35E-03	4.06E-02	/.585
/3	5,96E-03	5,18E-02	8,695
/4	5,71E-03	4,/3E-02	8,284
/5	5.23E-03	4.08E-02	/.800
/6	4,9/E-03	4,39E-02	8,834
77	5.88E-03	4.71E-02	8.008
78	5,21E-03	4,04E-02	7,755
79	5,54E-03	3,65E-02	6,588
80	5,46E-03	3,31E-02	6,064
81	5,78E-03	3,68E-02	6,362
82	5.36E-03	3.99E-02	7,451
83	5,32E-03	4,06E-02	7,635
84	5,15E-03	4,12E-02	7,995
85	5.84E-03	2.90E-02	4,966
86	5,23E-03	4,06E-02	7,768
87	5.55E-03	3.62E-02	6.524
88	5,54E-03	3,86E-02	6,965
89	5,72E-03	3,18E-02	5,561
90	5,35E-03	3,80E-02	7,107
91	5,89E-03	3,42E-02	5,807
92	5,15E-03	4,17E-02	8,100
93	5,40E-03	3,60E-02	6,669
94	5,91E-03	2,91E-02	4,921
95	5.55E-03	3.75E-02	6,761
96	5,22E-03	3,71E-02	7,105
97	5,47E-03	3.61E-02	6,599
98	5,17E-03	3,97E-02	7,674
99	4,88E-03	4,17E-02	8,537
100	5.41E-03	3.80E-02	7 0 2 5

Anexo A.26. Estudio de Rótulas. ESTIMADORES PUNTUALES. Rótula Superior-

Izquierda

Análisis	Rotación Cedente (rad)	Rotación Última (rad)	Ductilidad
1	5,85E-03	3,61E-02	6,169
2	5,48E-03	2,99E-02	5,453
3	5,83E-03	4,21E-02	7,226
4	5,48E-03	3,52E-02	6,428

Fuente: Elaboración Propia.

Anexo A.27. Estudio de Rótulas. ESTIMADORES PUNTUALES. Rótula Inferior-

Izquierda

Análisis	Rotación Cedente (rad)	Rotación Última (rad)	Ductilidad
1	5,85E-03	3,61E-02	6,169
2	5,48E-03	2,99E-02	5,453
3	5,83E-03	4,21E-02	7,226
4	5,48E-03	3,52E-02	6,428

Anexo A.28. Estudio de Rótulas. ESTIMADORES PUNTUALES. Rótula Superior-Derecha

Análisis	Rotación Cedente (rad)	Rotación Última (rad)	Ductilidad
1	5,26E-03	3,60E-02	6,838
2	5,25E-03	2,98E-02	5,675
3	4,53E-03	4,20E-02	9,263
4	4,26E-03	3,51E-02	8,238

Fuente: Elaboración Propia.

Anexo A.29. Estudio de Rótulas. ESTIMADORES PUNTUALES. Rótula Inferior-

Derecha

Análisis	Rotación Cedente (rad)	Rotación Última (rad)	Ductilidad
1	5,26E-03	3,60E-02	6,838
2	5,25E-03	2,98E-02	5,675
3	4,53E-03	4,20E-02	9,263
4	4,26E-03	3,51E-02	8,238

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Anexo B.1. Valores f´c y fy para SIMULACIÓN DE MONTE CARLO Fuente: Elaboración Propia.

N°	f'c	fy
	(kgf/cm²)	(kgf/cm²)
1	328	4896
2	323	4640
3	242	5097
4	244	4486
5	265	4989
6	284	4597
7	259	4967
8	339	5006
9	285	4776
10	274	5148
11	313	5051
12	323	5008
13	232	4744
14	272	5193
15	313	4807
16	299	5005
17	352	4732
18	255	4628
19	232	5135
20	156	5091
20	236	49.55
27	310	5102
22	293	/837
20	356	4967
25	231	4795
26	291	4837
20	206	4980
27	378	4/00
20	230	4435
30	245	4574
31	336	5189
32	277	4950
33	315	5037
34	280	4740
25	200	5097
34	222	/012
37	232	4/10
30	207	4077 1012
30	<u>∠40</u> 237	4745
40	23/	4770
<u>40</u> <u>1</u>	260	4707
41	200	401Z
42	270	4070 1811
43	252	<u>404 I</u> 501 1
44	300	1000
40	201	<u>4020</u> 5101
40	271	4947
4/	207	404/
<u>40</u>	320	4013
47 50	200	<u>4008</u>
50	223	J140

51	335	4570
52	283	4746
53	270	4573
54	275	4621
55	305	4688
56	196	5088
57	331	4493
58	296	5109
59	281	4503
60	254	.5042
61	296	4313
62	274	4452
63	367	4674
64	168	5039
65	251	5398
66	348	5026
67	336	5120
68	324	4636
49	203	4030
70	326	5043
70	280	4750
72	200	5159
72	250	1711
74	230	4/44
75	401	5036
76	27/	5210
70	274	1851
78	366	4667
70	255	4842
80	261	1873
81	31/	5090
82	299	5229
83	281	4856
84	276	5060
85	2/0	5175
86	340	4577
87	312	5107
88	242	4715
89	242	5043
90	304	4700
91	309	4700
92	244	4679
02	212	4943
94	320	5018
95	326	4676
96	2/8	5274
97	240	1575
98	267	5054
99	327	5382
100	358	4827
100	000	102/

N°	f'c	fy
	(kaf/cm²)	(kaf/cm²)

Anexo B.2. Condición Balanceada y Flexión Pura. SIMULACIÓN DE MONTE CARLO. Columna Piso 1 Fuente: Elaboración Propia.

	CO	NDICIÓN BALAN	ICEADA		FLEXIÓI	N PURA	
N°	Pb	Mb	φb	My	ФУ	Μu	φυ
	(kgf)	(kgf.cm)	(rad/cm)	(kgf.cm)	(rad/cm)	(kgf.cm)	(rad/cm)
1	189064	4723298	1.18F-04	2352231	7.35F-05	3202920	3.09F-04
2	192078	4596699	1.16F-04	2233864	6.98F-05	3065021	3.21F-04
3	135445	4062985	1.21E-04	2389176	8.04E-05	3184719	2.44E-04
4	148489	3875143	1.14F-04	2115524	7.04F-05	2887761	2.78F-04
5	151177	4231272	1,19E-04	2359231	7.75E-05	3162372	2.65E-04
6	170061	4253756	1,15E-04	2192184	7,05E-05	2996439	2.99E-04
7	148183	4173819	1,19E-04	2343885	7,74E-05	3146435	2,62E-04
8	192814	4850663	1,20E-04	2406875	7,48E-05	3266386	3,11E-04
9	166681	4318823	1,17E-04	2272699	7,32E-05	3083827	2,90E-04
10	152010	4336622	1,21E-04	2443701	7,97E-05	3254635	2,63E-04
11	176949	4646888	1,20E-04	2416135	7,65E-05	3258335	2,93E-04
12	183716	4719143	1.20E-04	2403294	7,55E-05	3246347	3.02E-04
13	136701	3868584	1,17E-04	2225208	7,52E-05	2995712	2,55E-04
14	149510	4324929	1.22E-04	2454675	8,04E-05	3273312	2.60E-04
15	182389	4567489	1,18E-04	2301453	7.27E-05	3133288	3.06E-04
16	170091	4517149	1,20E-04	2384536	7,63E-05	3221353	2,86E-04
17	206553	4863363	1,17E-04	2289036	7.03E-05	3143403	3.33E-04
18	152184	4016689	1,16E-04	2185036	7,21E-05	2971395	2,78E-04
19	128631	3982361	1,21E-04	2404359	8,16E-05	3186164	2,35E-04
20	87065	3347041	1,21E-04	2307510	8,64E-05	2912191	2,00E-04
21	135114	3973840	1,19E-04	2321765	7,84E-05	3105996	2,47E-04
22	173700	4630078	1.21E-04	2436988	7.74E-05	3278601	2.88E-04
23	170331	4414068	1,18E-04	2309529	7,39E-05	3127032	2,91E-04
24	203537	4978182	1,19E-04	2402561	7 <i>.</i> 37E-05	3267311	3.23E-04
25	135310	3881000	1.17E-04	2242465	7,60E-05	3017986	2.52E-04
26	169177	4397336	1,18E-04	2302362	7,39E-05	3125185	2,90E-04
27	117626	3733934	1.19E-04	2305579	8.05E-05	3069686	2.24E-04
28	224376	5061355	1,16E-04	2257400	6,82E-05	3128952	<u>3,53E-04</u>
29	141250	3/42624	1,14E-04	20/929/	<u> 7,02E-05</u>	2845021	2,/0E-04
30	14/4/1	3916960	1,15E-04	2156/33	7,18E-05	2930198	2,/4E-04
31	18535/	4852810	1,22E-04	2496180	7,78E-05	3361635	2,99E-04
32	158521	4311297	1.19E-04	2353283	7.64E-05	31606/4	2.75E-04
33	1/863/	4003111	1,20E-04	241/223	7,63E-05	3236843	2,94E-04
34	104641	426/000	1,1/E-04	2236733	7.29E-05	3037726	2,88E-04
34	133584	3030000	1.21E-04	2304031	7.71E-05	3080074	2.735-04
27	137070	3080771	1,175-04	2300031	771505	3082052	2,40E-04
38	137753	4006450	1.17 <u>L-04</u>	2314749	7.74L-05	3108073	2.52L-04
39	135283	3990455	1 19F-04	2335532	7 88F-05	3116076	2,30L-04
40	161111	4323566	1 19F-04	2329107	7 55E-05	3145840	2 79F-04
41	154608	4169887	1,18F-04	2275619	7.46F-0.5	3079331	2.74F-04
42	173595	4304980	1 1.5E-04	2195983	7 03E-05	3000866	3 03F-04
43	152086	4149278	1,18E-04	2285088	7,52E-05	3090361	2,70E-04
44	200183	4962933	1,20E-04	2421320	7,46E-05	3288642	3.17E-04
45	191146	4707908	1,18E-04	2326014	7.25E-05	3166580	3.14E-04
46	163005	4471752	1,21E-04	2424180	7,81E-05	3254248	2,77E-04
47	156093	4212086	1,18E-04	2296943	7.51E-05	3099615	2.75E-04
48	190823	4559406	1,15E-04	2212397	6,94E-05	3046178	3,21E-04
49	147684	4066603	1,18E-04	2270351	7,52E-05	3057273	2,67E-04
50	124624	3926612	1,21E-04	2400564	8,21E-05	3173297	2,31E-04

	CONDICIÓN BALANCEADA			FLEXIÓN PURA			
N°	Pb	Mb	φb	My	ФУ	Μu	φυ
	(kgf)	(kgf.cm)	(rad/cm)	(kgf.cm)	(rad/cm)	(kgf.cm)	(rad/cm)
51	200656	4670154	1.15E-04	2203715	6.83E-05	3047014	3.31E-04
52	166362	4297259	1.17F-04	2261520	7.29F-05	3068120	2.90F-04
53	162245	4126363	1.15E-04	2166569	7.06E-05	2962923	2.91E-04
54	164308	4187764	1.16F-04	2196551	7.12F-05	2996733	2.91F-04
55	180546	4464562	1.16E-04	2241387	7.11E-05	3063754	3.08E-04
56	109657	3677505	1.21E-04	2349248	8.31E-05	3084973	2.14E-04
57	200252	4613200	1.14E-04	2166795	6.73E-05	2994634	3.35E-04
58	165326	4508051	1,21E-04	2436831	7,81E-05	3265897	2.79E-04
59	170090	4190900	1,14E-04	2141238	6,91E-05	2947631	3.02E-04
60	143697	4152315	1,20E-04	2372745	7,88E-05	3173150	2,55E-04
61	183483	4256063	1,12E-04	2057682	6,55E-05	2869958	3,23E-04
62	167179	4118526	1.14E-04	2111929	6.85E-05	2912245	3.00E-04
63	216876	4972916	1,16E-04	2269120	6,90E-05	3133208	3,45E-04
64	95283	3442673	1.20E-04	2294196	8.43E-05	2949700	2.05E-04
65	131739	4173501	1.24E-04	2534635	8,48E-05	3341181	2.36E-04
66	197412	4930811	1,20E-04	2425030	7,49E-05	3292758	3,14E-04
67	187662	4845636	1.21E-04	2466399	7,68E-05	3320982	3.03E-04
68	192680	4601777	1,16E-04	2226004	6,96E-05	3059391	3,23E-04
69	167178	4453173	1,19E-04	2368184	7,60E-05	3193371	2,84E-04
70	183713	4751315	1,20E-04	2427469	7,62E-05	3280237	3,00E-04
71	164601	4275172	1,17E-04	2261220	7,31E-05	3069495	2,87E-04
72	133006	4060243	1.21E-04	2419208	8,15E-05	3208647	2.41E-04
73	147172	4019340	1,17E-04	2231644	7,42E-05	3022447	2,68E-04
74	176493	4029173	1,10E-04	1966256	6.32E-05	2751687	3.23E-04
75	227432	5380103	1.20E-04	2456878	7,36E-05	3349149	3,45E-04
76	150021	4341158	1,22E-04	2469800	8,07E-05	3287299	2,60E-04
77	158945	4259032	1,18E-04	2301156	7,49E-05	3112022	2.78E-04
78	216780	4970047	1,16E-04	2263045	6,89E-05	3127582	3,45E-04
79	148049	4091625	1,18E-04	2284072	7,56E-05	3080994	2,65E-04
80	151045	4155896	1,18E-04	2303389	7,58E-05	3105075	2,68E-04
81	176134	4656699	1,21E-04	2436429	7,71E-05	3279246	2,91E-04
82	163305	4548306	1.22E-04	2489443	7.98E-05	3327743	2.75E-04
83	162970	4319026	1,18E-04	2310226	7,47E-05	3118057	2,83E-04
84	155873	4344038	1.20E-04	2396064	7 <i>.</i> 81E-05	3212952	2.69E-04
85	137243	4133947	1.21E-04	2433766	8.13E-05	3233233	2.45E-04
86	203585	4718175	1,15E-04	2203331	6,82E-05	3050343	3,35E-04
87	174752	4649424	1.21E-04	2446350	7.74E-05	3289377	2,88E-04
88	142949	3939353	1,17E-04	2212798	7,41E-05	3000530	2,63E-04
89	136891	4053207	1,20E-04	2366726	7,95E-05	3156543	2,47E-04
90	179529	4456033	1,16E-04	2252315	7,14E-05	3070031	<u>3,06E-04</u>
91	178639	4557354	1,18E-04	2335500	7,39E-05	3162069	3,00E-04
92	144888	3945771	1,16E-04	2205438	7.35E-05	2984848	2.67E-04
93	179004	4620803	1,19E-04	2378307	7,51E-05	3215692	2,97E-04
94	181566	4691826	1.20E-04	2407028	7.57E-05	3251484	2.99E-04
95	192879	4630990	1.16E-04	2249906	7.02E-05	3085653	3.21E-04
96	133551	4132843	1,23E-04	2480225	8,31E-05	32/6955	2,40E-04
9/	160465	4102669	1,15E-04	2165048	<u>/.U/E-05</u>	2963550	2.88E-04
<u> </u>	1502/5	4258855	1,20E-04	2371405	7,86E-05	320100/	2,62E-04
<u> </u>	1/4116	4800505	1,24E-U4	25//931	<u>8,11E-05</u>	3442631	2,84E-04
100	20/889	4747343	1,18E-04	2337451	/,16E-05	3178/06	3,31E-04

Anexo B.3. Condición Balanceada y Flexión Pura. SIMULACIÓN DE MONTE CARLO. Columna Planta Baja Fuente: Elaboración Propia.

	CO	CONDICIÓN BALANCEADA			FLEXIÓN PURA			
N°	Pb	Mb	φb	My	ФУ	Μu	φυ	
	(kgf)	(kgf.cm)	(rad/cm)	(kgf.cm)	(rad/cm)	(kgf.cm)	(rad/cm)	
1	189924	4971190	1.18F-04	2797066	7.69E-05	3790805	2.42F-04	
2	194378	4838880	1,16F-04	2647908	7.29F-05	3655359	2.46F-04	
3	135174	4315436	1.21F-04	2810969	8.43F-05	3661241	2.08F-04	
4	151655	4113966	1 14F-04	2489173	7 37E-05	3382898	2 22F-04	
5	151514	4481302	1.19F-04	2784226	8.12F-05	3673249	2.19F-04	
6	172602	4495016	1.15E-04	2588497	7.37F-05	3534596	2.34F-04	
7	148644	4423364	1,19F-04	2764738	8.11F-05	3646126	2,17F-04	
8	193056	5101000	1.20F-04	2864045	7.83F-05	3871955	2.43F-04	
9	168216	4564079	1,17E-04	2691361	7.67E-05	3630802	2.30E-04	
10	151452	4590170	1.21F-04	2883655	8.35F-05	3777663	2.18F-04	
11	176938	4898253	1.20E-04	2865796	8.00E-05	3831457	2.33E-04	
12	183946	4969540	1.20F-04	2854292	7,90F-05	3840273	2.37F-04	
13	138415	4113178	1.17F-04	2611480	7.87F-05	3471115	2.12F-04	
14	148699	4579475	1.22F-04	2905989	8.44F-0.5	3792846	2.17F-04	
15	183750	4813408	1,18E-04	2733570	7.60E-05	3711106	2.39E-04	
16	170338	4767503	1,20E-04	2824818	7,98E-05	3773520	2,30E-04	
17	208335	5107569	1,17E-04	2720502	7,34E-05	3777633	2,52E-04	
18	154551	4258671	1,16E-04	2581202	7,56E-05	3478856	2,23E-04	
19	128146	4235662	1,21E-04	2824628	8,56E-05	3654348	2,03E-04	
20	86828	3599443	1,21E-04	2684743	9,08E-05	3397238	1,73E-04	
21	135642	4223139	1,19E-04	2731989	8,22E-05	3579182	2,09E-04	
22	173401	4882574	1,21E-04	2888832	8,10E-05	3845750	2.32E-04	
23	171523	4660677	1,18E-04	2726128	7,73E-05	3676503	2,32E-04	
24	204027	5227520	1,19E-04	2852923	7.70E-05	3892827	2,49E-04	
25	136738	4126733	1.17E-04	2639917	7.97E-05	3492005	2,11E-04	
26	170369	4643947	1,18E-04	2727571	7,74E-05	3673499	2,31E-04	
27	118014	3983821	1.19E-04	2704290	8.45E-05	3506508	1.97E-04	
28	226659	5303547	1,16E-04	2691529	7,12E-05	3792983	2,62E-04	
29	144703	3980323	1,14E-04	2444018	7,35E-05	3314271	2,19E-04	
30	150142	4157746	1,15E-04	2536735	7,51E-05	3427156	2,21E-04	
31	184568	5107205	1,22E-04	2965778	8,14E-05	3953031	2,38E-04	
32	159077	4560445	<u>1.19E-04</u>	2771305	<u>7.99E-05</u>	3687809	2.24E-04	
33	178725	4916163	1,20E-04	2856667	7,97E-05	3830118	2,34E-04	
34	166378	4512009	<u>1,17E-04</u>	2661767	7.63E-05	3600395	2.29E-04	
35	1/8013	4946126	1.21E-04	2899203	8.06E-05	3863391	2.34E-04	
36	134321	41/84//	1,19E-04	2/03632	8,1/E-05	3551006	2,08E-04	
3/	138823	4230820	1,19E-04	2/01/56	8,10E-05	3562540	2.11E-04	
38	138349	42554//	1,19E-04	2/2/6/4	8,1/E-05	358/301	2,11E-04	
39	135682	424026/	1,19E-04	2/4/895	8,26E-05	3591559	2,09E-04	
40	161898	45/1/96	1,19E-04	2/54/65	7,91E-05	36/8448	2,26E-04	
41	155940	4415966	1,18E-04	2688442	7,82E-05	3575266	2,22E-04	
42	1/6/3/	4546256	1,15E-04	2574606	7.35E-U5	3551/61	2.36E-04	
43	103200	4376008	1,10E-04	2070464	7,00E-U5	3600433	2,21E-04	
44	100200	3213367	1.20E-04	20/3430	7.77E-U3	370403/	2,4/E-04	
40	162711	4754200	1.71E-04	2/30103	8 18E-05	3802016	2,4 <u>3E-04</u> 2,25E-01	
<u>40</u> 17	157000	1158010	1 18F-04	2007043	7 84F-05	36002740	2,23L-04	
47 18	193271	4400742	1 15F_0/	2632790	7.00L-00	3641258	2.23L-04	
<u> </u>	149039	4312404	1 18F-04	2669158	7,20L-05	3559914	2 18F-04	
50	124110	4180030	1,21E-04	2818010	8,62E-05	3636123	2,01E-04	

	CONDICIÓN BALANCEADA			FLEXIÓN PURA			
N°	Pb	Mb	φb	My	ΦУ	Mu	Φυ
	(kgf)	(kgf.cm)	(rad/cm)	(kgf.cm)	(rad/cm)	(kgf.cm)	(rad/cm)
51	203349	4910760	1.15E-04	2616677	7.14E-05	3652239	2.51E-04
52	168066	4541846	1.17F-04	2667931	7.62F-05	3611142	2.30F-04
53	164922	4367102	1.15E-04	2564573	7.39E-05	3489255	2.30E-04
54	166715	4429569	1.16F-04	2591012	7.45F-05	3522916	2.31F-04
55	182576	4707832	1,16E-04	2661618	7.44E-05	3634034	2.39E-04
56	109437	3929802	1.21E-04	2750613	8.73E-05	3524807	1.90E-04
57	203379	4852091	1.14E-04	2572664	7.03E-05	3609811	2.51E-04
58	164987	4760716	1.21E-04	2883549	8.18E-05	3817899	2.26E-04
59	173160	4430065	1,14E-04	2538568	7,23E-05	3483646	2,35E-04
60	143736	4403538	1,20E-04	2796212	8,26E-05	3672113	2,14E-04
61	187622	4490970	1,12E-04	2446286	6,86E-05	3427730	2,45E-04
62	170536	4356559	1,14E-04	2502718	7,17E-05	3446843	2,33E-04
63	218984	5215812	1,16E-04	2701818	7,20E-05	3777234	2,59E-04
64	95339	3693913	1,20E-04	2680389	8,87E-05	3410956	1,80E-04
65	129773	4432601	1.24E-04	2989317	8,91E-05	3831764	2.05E-04
66	197541	5181586	1,20E-04	2887828	7,83E-05	3907279	2,45E-04
67	187262	5098505	1,21E-04	2931301	8.03E-05	3924872	2.39E-04
68	195003	4843867	1,16E-04	2649755	7,29E-05	3659812	2,46E-04
69	167600	4702841	1,19E-04	2803914	7,96E-05	3747304	2,28E-04
70	183634	5002932	1,20E-04	2883371	7,97E-05	3872058	2,37E-04
71	166282	4519852	1,17E-04	2666710	7,64E-05	3603079	2,29E-04
72	132386	4314067	1,21E-04	2844719	8.54E-05	3691580	2.06E-04
73	148887	4263916	1,17E-04	2633407	7,78E-05	3517370	2,19E-04
74	181700	4259857	1.10E-04	2326047	6,61E-05	3294865	2,43E-04
75	227505	5631049	1.20E-04	2930202	7,67E-05	4031567	2.61E-04
76	149114	4596078	1,22E-04	2913623	8,45E-05	3809518	2,17E-04
77	160042	4506039	1,18E-04	2720634	7.85E-05	3636364	2.25E-04
78	218928	5212788	1,16E-04	2694602	7,19E-05	3770035	2,59E-04
79	149213	4338384	1,18E-04	2694900	7,92E-05	3581086	2,18E-04
80	152034	4403340	1,18E-04	2718912	7,95E-05	3610584	2,20E-04
81	175902	4908926	1,21E-04	2889408	8,07E-05	3856666	2,33E-04
82	162290	4803623	1.22E-04	2945213	<u>8,36E-05</u>	3884494	2.25E-04
83	164055	45660/1	1,18E-04	2/33111	<u> </u>	3653812	2,2/E-04
84	155811	459563/	1.20E-04	28302/6	8,18E-05	3/42894	2.21E-04
85	136532	4388116	1.21E-04	2863961	8.53E-05	3/18886	2.09E-04
86	206239	4958932	1,15E-04	26284/6	7,13E-05	36/0949	2,52E-04
8/	1/4425	4902029	1.2TE-04	2899951	8,11E-05	385863/	2.32E-04
88	14482/	4183289	1,1/E-04	2609337	7,77E-05	3482927	2,17E-04
89	136723	4304463	1,20E-04	2/85245	8,34E-05	3640028	2,09E-04
90	181471	46773/3	1,16E-04	2663377	7,46E-05	3640728	2,38E-04
71	1/7023	4004773	1,10E-04	2700740	7,72E-05	2471077	2,30E-04
92	179/22	4100702	1 195-04	2822034	7.70E-03	3789738	2,100-04
91	1817400	1910200		2857512	7,000-00	3835011	2,00L-04
95	19/977	4873970	1 1 4 F-04	2657545	7.73L-05	3681597	2.00L-04
96	132271	4389248	1 23F-04	2916449	871F-05	3766825	2.40L-04
97	163130	4343455	1 1.5F-04	2561953	7 41F-05	3480448	2,00 <u>2</u> 04
98	150235	4510376	1.20F-04	2821355	8.23E-05	3712287	2.17E-04
99	172239	5059180	1,24E-04	3056752	8,49E-05	4028144	2,31E-04
100	209137	5195664	1,18E-04	2780561	7,48E-05	3835671	2,52E-04

Anexo B.4. Condición Balanceada y Flexión Pura. ESTIMADORES PUNTUALES.

Columna Piso 1

Fuente: Elaboración Propia.

CONDICIÓN BALANCEADA			FLEXIÓN PURA				
N°	Pb	Mb	φb	My	ФУ	Μu	φυ
	(kgf)	(kgf.cm)	(rad/cm)	(kgf.cm)	(rad/cm)	(kgf.cm)	(rad/cm)
1	187240	4819100	1,20E-04	2447200	7,6303E-05	3295000	3,02E-04
2	137890	4091200	1,20E-04	2388600	7,9967E-05	3175300	2,47E-04
3	198640	4663200	1,15E-04	2216900	6,8819E-05	3050900	3,28E-04
4	147130	3927300	1,15E-04	2168500	7,2112E-05	2943000	2,71E-04

Anexo B.5. Condición Balanceada y Flexión Pura. ESTIMADORES PUNTUALES.

Columna Planta Baja

Fuente: Elaboración Propia.

	CONDICIÓN BALANCEADA			FLEXIÓN PURA			
N°	Pb	Mb	φb	My	ФУ	Μu	φυ
	(kgf)	(kgf.cm)	(rad/cm)	(kgf.cm)	(rad/cm)	(kgf.cm)	(rad/cm)
1	187060	5070800	1,20E-04	2506600	7,9835E-05	3890300	2,38E-04
2	137710	4342400	1,20E-04	2610200	8,3854E-05	3661600	2,09E-04
3	201190	4903700	1,15E-04	2444040	7,1993E-05	3652900	2,49E-04
4	149670	4167700	1,15E-04	2249400	7,5475E-05	3433800	2,20E-04

Anexo B.6. Viga de Techo y Entrepiso. SIMULACIÓN DE MONTE CARLO. Viga Simétrica Fuente: Elaboración Propia.

	CEDE	NCIA	AGOTA	MIENTO
N°	м	ΦУ	м	φυ
	(kgf.cm)	(rad/cm)	(kgf.cm)	(rad/cm)
1	3691837	5.82F-05	4363394	4.11F-04
2	3491078	5.52F-05	4192450	4.20F-04
3	3813992	6.34E-05	4387065	3.53E-04
4	3359355	5,55E-05	3981323	3,85E-04
5	3740165	6.12E-05	4340830	3.73E-04
6	3458964	5,57E-05	4119378	4,00E-04
7	3727169	6,11E-05	4317303	3,70E-04
8	3779569	5,93E-05	4453720	4,11E-04
9	3589045	5,79E-05	4238001	3,92E-04
10	3862071	6,29E-05	4458427	3,70E-04
11	3806042	6,05E-05	4454920	3,95E-04
12	3772744	5.97E-05	4434609	4.03E-04
13	3547762	5,92E-05	4140809	3,64E-04
14	3894471	6,35E-05	4479591	3,68E-04
15	3623310	5.75E-05	4280121	4.08E-04
16	3768498	6,03E-05	4404669	3,90E-04
17	3567005	5.56E-05	4278432	4.32E-04
18	34/1452	5,69E-05	4086523	3,85E-04
19	3838122	6,43E-05	438/0/1	3,4/E-04
20	37/8168	6,/8E-05	4244231	2,9/E-04
21	3/04//0	6,18E-05	42/8088	3,5/E-04
22	3837786	6,12E-05	44/6313	3.92E-04
23	3633070	5,04E-05	4202243	3,73E-04
24	3597770	5,03E-05	44300/0	4,23E-04
25	3637063	5.85E-05	410/0/7	3.01L-04
20	371/77/	6 3/E-05	4272732	3 37E-04
28	3505577	5.41E-05	4254815	4 48F-04
20	3322444	5.54F-05	3936662	3 77F-04
30	3425605	5 66F-05	4047026	3 80F-04
31	3907423	6.15E-05	4561415	4.03E-04
32	3716897	6,03E-05	4340938	3,80E-04
33	3793406	6,03E-05	4442417	3,97E-04
34	3562571	5,76E-05	4201220	3,92E-04
35	3836875	6,09E-05	4478635	3,97E-04
36	3678221	6,15E-05	4244025	3,57E-04
37	3671509	6.10E-05	4246566	3.61E-04
38	3697048	6,15E-05	4280979	3,59E-04
39	3725936	6,21E-05	4291727	3,57E-04
40	3691527	5,97E-05	4310064	3,85E-04
41	3606427	<u>5,89E-05</u>	4231839	3,80E-04
42	3454292	5.55E-05	4114867	4.05E-04
43	3633141	5,94E-05	4242600	<u>3,//E-04</u>
44	3/8/951	5.71E-05	44//04/	4.1/E-04
45	3636531	5./3E-05	4324808	4,14E-04
46	3832582	6,1/E-U5	4447248	3,82E-04
4/	3637301	5 10E 05	4 <u>747444</u> 41 <u>7</u> 0177	3.82E-04
40 10	34/1000	5 93E 05	41071//	4, <u>205-04</u> 3,735.04
<u>47</u> 50	3843721	6 47F-05	4214/3/ A388311	3.7.5E-04 3.41F-04
			• •••• • • • • • • • • • • • •	

	CEDE	INCIA	AGOTA	MIENTO
N°	м	ΦУ	м	φυ
	(kgf.cm)	(rad/cm)	(kgf.cm)	(rad/cm)
51	3444251	5,41E-05	4163819	4,29E-04
52	3569698	5.76E-05	4201870	3.95E-04
53	3431554	5,58E-05	4076999	3,95E-04
54	3467161	5,62E-05	4118118	3,95E-04
55	3527879	5.62E-05	4199680	4.08E-04
56	3787301	6,53E-05	4302018	3,26E-04
57	3385426	5.32E-05	4099184	4.32E-04
58	3838708	6,17E-05	4460643	3,85E-04
59	3379909	5,46E-05	4054654	4,03E-04
60	3775218	6,22E-05	4361646	3,64E-04
61	3247177	5,19E-05	3934440	4,23E-04
62	3344067	5,42E-05	4003688	4.03E-04
63	3535174	5,47E-05	4261372	4,41E-04
64	3743961	6,63E-05	4224746	3.09E-04
65	4037343	6,69E-05	4596515	3,45E-04
66	3794443	5,93E-05	4483293	4,14E-04
67	3859100	6,07E-05	4518183	4.05E-04
68	3492242	5,51E-05	4195363	4,20E-04
69	3741981	6,01E-05	4364917	3,90E-04
70	3812385	6,03E-05	4468803	4,03E-04
71	3569577	5,77E-05	4204947	3,92E-04
72	3861906	6,42E-05	4417720	3,51E-04
73	3558507	5,86E-05	4162406	3,75E-04
74	3099250	5,00E-05	3801626	4,20E-04
75	3818271	5.83E-05	4539487	4.41E-04
76	3905032	6,36E-05	4495802	3,68E-04
77	3646540	5.92E-05	4261050	3.85E-04
78	3526522	5,46E-05	4254552	4,41E-04
79	3630900	5,97E-05	4237197	3,73E-04
80	3650603	5,98E-05	4263927	3,75E-04
81	3837804	6,10E-05	4474100	3,95E-04
82	3936366	6,31E-05	4550642	3.80E-04
83	3648314	5,90E-05	4279862	3,87E-04
84	3799649	6.17E-05	4406497	3.75E-04
85	3873157	6.41E-05	4439011	3.55E-04
86	3457188	5,41E-05	4169137	4,32E-04
87	3840741	6.12E-05	4487523	3.92E-04
88	3528890	5,85E-05	4126361	3,/3E-04
89	3//6680	6,2/E-05	4341292	3,5/E-04
90	3532108	5,64E-05	4199639	4,08E-04
91	3664509	5,84E-05	4320752	4,03E-04
92	3503/96	5./9E-05	4109030	3./5E-04
93	3/32826	5,94E-05	4388959	4,00E-04
94	3//8541	5,99E-05	4441604	4.00E-04
<u> </u>	3528502	5,56E-05	42190/6	4,20E-04
<u> </u>	3748181	6,54E-05	4510105	<u>3,47E-04</u>
9/	3429580	5,57E-05	40/8982	3.72E-04
<u> </u>	3/91619	6,20E-05	4384850	3,/UE-U4
<u> </u>	4051836	6,42E-05	46/6/52	3,70E-04
1 1()()	3645395	5 6/E-U5	4358993	I 4 79F-04

Anexo B.7. Viga de Techo y Entrepiso. ESTIMADORES PUNTUALES. Viga Simétrica

	CEDE	NCIA	AGOTA	MIENTO
N°	М	ФУ	М	φυ
	(kgf.cm)	(rad/cm)	(kgf.cm)	(rad/cm)
1	3838300	6,04E-05	4493100	4,03E-04
2	3808900	6,31E-05	4376900	3,55E-04
3	3473700	5,45E-05	4170300	4,26E-04
4	3452100	5,69E-05	4063300	3,77E-04

Fuente: Elaboración Propia.

Anexo B.8.Valores de Salida. SIMULACIÓN DE MONTE CARLO. Entrepiso Fuente: Elaboración Propia.

Análisis	Resistencia (kgf)	Desplazamiento Máximo (cm)	Desplazamiento Cedente (cm)	Ductilidad
1	28668 193	9 717	3.521	2 760
2	27481 976	9 743	3 630	2 684
3	28042 084	9,603	3 659	2,601
4	25616 400	9.678	3 430	2 822
.5	28026 203	9 645	3,368	2 864
6	26744 483	9 708	3 696	2 627
7	27845 104	9 639	3,317	2,02/
8	29282 614	9 718	3,379	2 876
9	27501.310	9.691	3.423	2,831
10	28802.917	9,640	3,500	2,755
11	29094,129	9,688	3,392	2,856
12	29062.437	9,704	3.443	2.819
13	26438.348	9.633	3.249	2.965
14	28977.777	9,629	3.831	2,513
15	28060,509	9,715	3,515	2,764
16	28684,651	9,679	3,297	2,936
17	28296,923	9.758	3.308	2,950
18	26390,698	9,674	3,326	2,908
19	27973,573	9,686	3,388	2,859
20	25547,211	9,694	3,325	2,916
21	27370,400	9,610	3,583	2,682
22	29232.139	9.682	3.911	2,476
23	27877,273	9,692	3,532	2,744
24	29344,513	9,734	3,594	2,709
25	26622,068	9,628	3,638	2,646
26	27857,153	9,690	3,715	2,609
27	26845,885	9,670	3.249	2.976
28	28221,238	9,792	3,831	2,556
29	25150,871	9,664	3,415	2,830
30	25987,667	9,670	3,444	2,808
31	29995,847	9,693	3,430	2,826
32	28058,589	9.666	3,368	2,870
33	29067,237	9,691	3,388	2,861
34	27277,968	9,690	3,645	2,659
35	29348.800	9,687	3,583	2.704
36	2/153,865	9,609	3,911	2,45/
37	27223.033	9,621	3.532	2.724
38	2/404,588	9,618	3,594	2,6/6
39	2/482,2/6	9,610	3,638	2,641
40	2/965,699	9,6/2	3,/15	2,604
41	2/303,445	9,667	3,607	2,680
42	26824./19	<u> </u>	3,515	2./64
43	2/3/4,619	<u> </u>	3,27/	2,930
44	27212,747	7,725	3,308	2,740
45	28375,67/	7./2/	3,326	2.924
46		7,062	3,388	2,002
4/	2/31/,434	<u>7,668</u>	3,325	2,708
40	27105.078	9,7,43	3 525	<u>2,047</u> 0.739
50	27 103,270	9 679	3 501	2,730

Análisis	Resistencia (kgf)	Desplazamiento Máximo (cm)	Desplazamiento Cedente (cm)	Ductilidad
51	27371.922	9.759	3.321	2.939
52	27359.855	9.692	3.430	2.826
53	26391.844	9,700	3.459	2.804
54	26671.071	9,698	3.445	2.815
55	27440.217	9,720	3,383	2.873
56	26969.827	9,653	3.711	2,601
57	26982.234	9,768	3,332	2,932
58	29023.995	9.669	3.394	2.849
59	26292.468	9.715	3,438	2.826
60	28052.322	9.625	3.515	2.739
61	25729,598	9,752	3,407	2,862
62	25990,191	9,715	3,458	2,809
63	28255,275	9,774	3,264	2,994
64	26004,031	9,540	3,846	2,480
65	29357,894	9,581	3.530	2.714
66	29564,521	9,728	3,312	2,937
67	29720.095	9,703	3.323	2,920
68	27485,410	9,747	3,341	2,917
69	28449,587	9,679	3,403	2,844
70	29328,057	9,700	3,340	2,905
71	27323,120	9,687	3,435	2,820
72	28230,080	9,597	3,540	2,711
73	26784,522	9,653	3,519	2,743
74	24644,523	9,760	3,458	2,823
75	30245,418	9,764	3.216	3.037
76	29058,213	9,633	3,452	2,791
77	27640,551	9.671	3,446	2,807
78	28198,798	9,775	3,265	2,994
79	27275,399	9,648	3,504	2,753
80	27337,262	9,630	3,474	2,772
81	292/5,/81	9,686	3,361	2,882
82	29599,438	9.655	3,400	2.840
83	2//56,861	9,6/8	3,431	2,821
84	28525,/22	9,650	3,450	2,/9/
85	284/7.925	9,603	3,530	2.720
86	2/491,162	9,764	3,315	2,945
8/	29298./83	9,682	3,365	2,8/8
88	26513,5/3	9,646	3,543	2,723
89	2/6/8,369	9,714	3,460	2,808
90		9,/19	3,385	2,871
71	2//31,340	7,641	3,327	<u>2,876</u>
72	2030/,1//		3,328	2./3/
73	20000,/07	0,702	3 3 5 0	2,07Z
74	27033,734	0 7 / 1	3,330	∠,07J 2,010
73	2//03.203	0.500	3,530	2,710
70	2002/,000	0 4 0 5	3,000	2,/ 1/
7/ 02	20040,020	<u>7,075</u> 0,220	3,400 3,470	<u>2,/70</u> 0,774
99	30595 049	9 667	3 315	2,770
100	28784 659	9 754	3 279	2 974

Anexo B.9.Valores de Salida. SIMULACIÓN DE MONTE CARLO. Techo Fuente: Elaboración Propia.

Análisis	Resistencia (kgf)	Desplazamiento Máximo (cm)	Desplazamiento Cedente (cm)	Ductilidad
1	42920.410	19,717	6.597	2,989
2	41108.690	19.556	6.561	2,981
3	41827 410	19.066	6.976	2 733
4	38419.040	19,978	7.059	2,830
5	41668.000	18,587	6,703	2,773
6	39578.230	17.987	6.411	2.806
7	41421.740	18,668	6.751	2,765
8	43827.900	19.674	6.550	3.004
9	41143.300	19.597	6.762	2.898
10	43154.590	19.709	6.888	2.861
11	43072.080	18.002	6.329	2.844
12	43329.850	19.085	6.498	2.937
13	39389,500	18,904	6,953	2,719
14	43465,240	19,992	6,984	2,863
15	42033,070	19,795	6,667	2,969
16	42510,630	18,145	6,416	2,828
17	42260.760	19,085	6.411	2.977
18	39182,490	18,416	6,679	2,758
19	41788,340	19,276	7,083	2,721
20	38320,820	18,319	7,588	2,414
21	40270,030	17,036	6,604	2,580
22	43302.210	18,079	6,362	2,842
23	41658,180	19,424	6,689	2,904
24	43671,620	18,852	6,311	2,987
25	39680,470	18,966	6,973	2.720
26	41681,650	19,619	6,741	2,910
27	40177.900	19,645	7.336	2,678
28	42062,480	19,025	6,213	3,062
29	37403,810	18,662	6,879	2,713
30	38612,570	18,522	6,759	2,740
31	44812,590	19,389	6,533	2,968
32	41654,240	18,381	6,565	2.800
33	43502,060	19,654	6,658	2,952
34	40831,400	19,680	6,803	2,893
35	43982.570	19,859	6,698	2,965
36	40503,010	19,073	7,030	2,713
3/	40028.880	16,926	6,55/	2.582
38	40308,530	16,958	6,561	2,585
39	40982,620	19,032	6,992	2,722
40	41493,080	18,306	6,532	2,803
41	40547,510	18,438	6,634	2,780
42	40157.240	19.712	6./38	2.725
43	400/3,100	10,312	0,240	2,704
44	44130,400	10 221	0,403	0.017
43	42300,030	10,720	0,40Z 2 810	2,700
40	40040,000	12,707	6,010	2,703
4/ /Q	40030,330	10,400	0,000	2,/00
40	40000,070	18 389	6,3/3	2,770
50	41631.340	19 400	7 1 5 4	2,712

Análisis	Resistencia (kgf)	Desplazamiento Máximo (cm)	Desplazamiento Cedente (cm)	Ductilidad
51	40757,800	18,851	6,361	2,964
52	40917,480	19.545	6.758	2.892
53	39103.560	18.145	6.514	2.786
54	39512,990	18,129	6,486	2,795
55	41058.090	19.631	6.664	2.946
56	40435,210	19,922	7,476	2,665
57	40131.360	18.680	6.336	2,948
58	43052,950	18,263	6,461	2,827
59	39255,070	19,308	6,697	2,883
60	41219,050	16,805	6,451	2,605
61	38355,900	19,025	6,557	2,902
62	38850,470	19,485	6,770	2.878
63	41948,100	18,409	6,155	2,991
64	38634,010	18,397	7,454	2,468
65	43803,440	19,185	6,970	2,753
66	44226,980	19,604	6,533	3,001
67	44319,080	19,116	6,465	2.957
68	41106,390	19,528	6,549	2,982
69	42173,580	18,181	6,448	2,820
70	43760,980	19,204	6,517	2,947
71	40881,260	19,613	6,788	2,889
72	42262.690	19,488	7.072	2,756
73	39677,100	18,029	6,662	2,706
74	36383,570	17,650	6,346	2,781
75	45113,700	19,118	6.224	3.071
76	43585,370	19,989	6,950	2,876
77	41021,390	18,346	6.568	2.793
78	41839,280	18,318	6,137	2,985
79	40482,810	18,324	6,699	2,735
80	40995,000	19,958	6,995	2,853
81	43348,220	18,021	6,332	2,846
82	43927,680	18.322	6.501	2,818
83	41162,130	18,240	6,511	2,801
84	42381,790	18,485	6,629	2,789
85	42465.220	19.019	6.930	2.744
86	40980,440	19,026	6,382	2,981
87	43398.080	18,071	6.354	2.844
88	39312,510	18,164	6,739	2,695
89	41517,550	19,007	6,959	2,731
90	41093,280	19,603	6,654	2,946
91	41082,070	18,0/2	6,339	2,851
92	39243,200	18,649	6./93	2./45
93	43014,100	19,933	6,/01	2,975
94	43359,/00	19,220	6,541	2,939
95	41426,180	19,549	6,546	2.98/
<u> 76</u>	43202,010	19,/58	/,07/	2,/84
<u> </u>	37051,620	18.201	6,543	2./82
<u> </u>	42130,280	10,110	6,/13	<u> </u>
77	43/23,730	10.244	6,332	2,710
100	42770.370	17.044	0.374	3.UZ3

Anexo B.10.Valores de Salida. ESTIMADORES PUNTUALES. Entrepiso Fuente: Elaboración Propia.

Análisis	Resistencia (kgf)	Desplazamiento Máximo (cm)	Desplazamiento Cedente (cm)	Ductilidad
1	29390,63	9,399	3,267	2,877
2	28035,01	9,609	3,544	2,711
3	27450,68	9,753	3,329	2,930
4	26087,31	9,665	3,531	2,737

Anexo B.11.Valores de Salida. ESTIMADORES PUNTUALES. Techo Fuente: Elaboración Propia.

Análisis	Resistencia (kgf)	Desplazamiento Máximo (cm)	Desplazamiento Cedente (cm)	Ductilidad
1	44085,94	19,395	6,540	2,966
2	41799,26	18,999	6,945	2,735
3	41028,09	19,431	6,500	2,989
4	38773,86	18,566	6,772	2,742

Anexo B.12. Estudio de Rótulas. SIMULACIÓN DE MONTE CARLO. Rótula PB Izquierda

Fuente: Elaboración Propia.

Análisis	Rotación Cedente (rad)	Rotación Última (rad)	Ductilidad
1	0.0033	0.0256	7,874
2	0.0031	0.0255	8,233
3	0.0036	0.0258	7.207
4	0.0032	0.0251	7,937
5	0,0034	0,0252	7,309
6	0.0031	0.0252	8,013
7	0.0034	0.0253	7.344
8	0,0033	0,0255	7,723
9	0,0033	0.0251	7,696
10	0,0035	0,0252	7,134
11	0.0034	0.0252	7,461
12	0,0033	0,0253	7,594
13	0,0034	0,0257	7,629
14	0,0036	0,0253	7,101
15	0.0032	0.0255	7,919
16	0,0034	0,0250	7,405
17	0,0031	0.0256	8,245
18	0,0032	0,0250	7,747
19	0,0036	0,0262	7,198
20	0,0039	0,0229	5,856
21	0,0035	0,0259	7,401
22	0.0034	0.0251	7,345
23	0,0033	0,0251	7,653
24	0,0032	0,0258	7,951
25	0.0034	0.0258	7,577
26	0,0033	0,0251	7,639
27	0,0036	0,0267	7,383
28	0,0030	0,0249	8,275
29	0,0032	0,0254	8,035
30	0,0032	0,0252	7,830
31	0,0034	0,0253	/,393
32	0.0034	0.0249	/.345
33	0,0034	0,0252	/,482
34	0,0032	0,0250	7,696
35	0.0034	0.0252	7,407
36	0,0035	0,0259	7,430
3/	0,0035	0.0257	7,442
38	0,0035	0,0258	7,418
39	0,0035	0,0239	7,36/
40	0,0034	0,0248	7,387
41	0,0033	0,0250	0 1 1 0
42	0,0034	0.0254	0,110 7 /00
43	0,0034	0,0231	<u>/ ,470</u> 7 800
44	0,0000	0,0237	<u> </u>
45	0,0032	0,0237	7 17/
40	0,0000	0.0240	7 /61
47	0.0033	0.0247	8 267
40	0,0031	0,0233	7 517
50	0.0037	0.0264	7 204

Análisis	Rotación Cedente (rad)	Rotación Última (rad)	Ductilidad
51	0.0030	0.0253	8.351
52	0.0032	0.0251	7,745
53	0.0032	0.0250	7,921
54	0.0032	0.0250	7.866
.55	0.0032	0.0255	8 064
.56	0.0037	0.0257	6 886
.57	0,0030	0.0252	8 431
.58	0.0035	0.0248	7 188
59	0.0031	0.0253	8,198
60	0.0035	0.0255	7 266
61	0.0029	0.0251	8,552
62	0.0031	0.0252	8 216
63	0.0030	0.0252	8 273
64	0.0038	0.0250	6.558
65	0.0038	0.0260	6 908
66	0.0033	0.0257	7 793
67	0.0034	0.0254	7 509
68	0.0031	0.0255	8 254
69	0.0034	0.0250	7 425
70	0.0034	0.0253	7 525
70	0,0004	0.0250	7 694
72	0.0036	0.0259	7 135
72	0.0033	0.0257	7,100
73	0.0028	0.0250	8 785
74	0,0020	0,0257	7 976
75	0.0036	0.0257	7.090
70	0,0000	0.0249	7 /77
78	0.0030	0.0247	8 285
70	0.0034	0.0252	7 477
80	0.0034	0.0254	7 516
81	0.0034	0.0251	7 375
82	0.0035	0.0248	7.035
83	0.0000	0.0249	7 496
84	0.0035	0.0250	7 214
85	0.0036	0.0258	7 137
86	0.0030	0.0255	8 433
87	0.0034	0.0250	7,308
88	0.0033	0.0254	7 656
89	0.0035	0.0257	7 256
90	0.0032	0.0255	8 044
91	0.0033	0.0256	7 828
92	0.0033	0.0254	7 715
93	0.0033	0.0252	7.580
94	0.0033	0.0252	7,536
95	0.0031	0.0258	8 294
96	0.0037	0.0259	7 027
97	0.0032	0.0249	7 871
98	0.0035	0.0253	7 254
99	0.0036	0.0249	6 979
100	0.0032	0.0256	8 110
Anexo B.13. Estudio de Rótulas. SIMULACIÓN DE MONTE CARLO. Rótula PB Derecha

Análisis	Rotación Cedente (rad)	Rotación Última (rad)	Ductilidad
1	0,0036	0,0258	7,211
2	0.0034	0,0257	7,551
3	0,0040	0,0261	6,520
4	0,0035	0,0253	7,196
5	0,0038	0,0255	6,654
6	0.0035	0,0255	7,332
7	0.0038	0.0256	6.670
8	0,0036	0,0258	7,106
9	0,0036	0,0253	7,016
10	0,0039	0.0255	6,500
11	0,0037	0,0254	6,803
12	0.0037	0,0256	6,969
13	0,0038	0,0259	6,881
14	0,0040	0,0256	6,456
15	0.0036	0,0257	7.233
16	0,0037	0,0252	6,747
17	0.0034	0.0259	7,604
18	0,0036	0,0252	7,032
19	0,0041	0,0264	6,480
20	0,0041	0,0230	5,575
21	0,0039	0,0261	6,666
22	0.0038	0.0253	6,696
23	0,0036	0,0254	6,996
24	0,0036	0,0261	7,335
25	0.0038	0.0260	6.834
26	0,0036	0,0254	6,982
27	0.0041	0.0269	6,612
28	0,0040	0,0252	6,358
29	0,0035	0,0256	7,260
30	0,0036	0,0254	7,100
31	0,0038	0,0256	6,790
32	0.0038	0.0251	6,680
33	0,0037	0,0254	6,835
34	0,0036	0,0253	7,042
35	0.0038	0.0254	6,768
36	0,0039	0,0261	6,689
37	0.0039	0.0259	6,718
38	0,0039	0,0260	6,684
39	0,0039	0,0261	6,649
40	0,0037	0,0251	6,749
41	0,0037	0,0253	6,845
42	0.0035	0.0257	/.432
43	0,003/	0,0254	6,81/
44	0,0036	0,0260	7,222
45	0.0035	0.0259	/.341
46	0,0038	0,0250	6,520
4/	0.003/	0.0252	6./95
48	0,0034	0,0257	/,581
49	0,003/	0,0255	6,836
	0.0041	00766	6 <u>46</u> Y

Análisis	Rotación Cedente (rad)	Rotación Última (rad)	Ductilidad
51	0,0033	0,0255	7,665
52	0.0036	0.0254	7,074
53	0,0035	0,0253	7,227
54	0,0035	0,0253	7,194
55	0.0035	0.0257	7,374
56	0,0042	0,0259	6,148
57	0.0033	0.0254	7,751
58	0,0038	0,0250	6,548
59	0,0034	0,0256	7,500
60	0,0039	0,0258	6,595
61	0,0032	0,0254	7,861
62	0.0034	0.0255	7.512
63	0,0033	0,0255	7,650
64	0,0043	0,0252	5,807
65	0.0042	0.0263	6.254
66	0,0036	0,0260	7,173
67	0.0037	0.0257	6,908
68	0,0034	0,0257	7,558
69	0,0037	0,0252	6,736
70	0,0037	0,0256	6,906
71	0,0036	0,0253	7,027
72	0,0041	0,0262	6,440
73	0.0037	0.0255	6,900
74	0,0031	0,0252	8,032
75	0,0035	0,0260	7,386
76	0,0040	0,0255	6,423
77	0,0037	0,0252	6.813
78	0,0033	0,0255	7,661
79	0,0038	0,0255	6,802
80	0,0038	0,0257	6,839
81	0,0038	0,0254	6,764
82	0.0039	0.0250	6,410
83	0,0037	0,0252	6,846
84	0,0038	0,0253	6,574
85	0,0033	0,0261	7.838
86	0,0033	0,0257	7,742
87	0,0038	0,0253	6.702
88	0,0037	0,0256	6,914
89	0,0040	0,0260	6,565
90	0.0035	0.0257	7,356
91	0,0036	0,0259	7,176
92	0,0037	0,0256	6,981
93	0,0037	0,0255	6,951
94	0,0037	0,0255	6,915
95	0,0034	0,0260	7,595
96	0,0041	0,0262	6,362
97	0.0035	0.0252	7,181
98	0,0039	0,0256	6,605
99	0,0038	0,0252	6,706
100	0,0035	0,0259	7,482

Anexo B.14. Estudio de Rótulas. SIMULACIÓN DE MONTE CARLO. Rótula P1 Izquierda Fuente: Elaboración Propia.

Análisis	Rotación Cedente (rad)	Rotación Última (rad)	Ductilidad
1	0,0030	0,0166	5,503
2	0.0029	0.0165	5,753
3	0,0033	0,0148	4,479
4	0,0029	0,0156	5,373
5	0.0032	0.0154	4,842
6	0,0029	0,0162	5,591
7	0.0032	0.0153	4,808
8	0,0031	0,0166	5,408
9	0,0030	0,0161	5,349
10	0,0033	0,0154	4,715
11	0,0031	0,0162	5,164
12	0.0031	0.0164	5,298
13	0,0031	0,0150	4,845
14	0,0033	0,0153	4,637
15	0.0030	0.0165	5,526
16	0,0031	0,0160	5,114
17	0.0029	0.0167	5,792
18	0,0030	0,0157	5,286
19	0,0034	0,0145	4,327
20	0,0036	0,0153	4,278
21	0,0032	0,0148	4,592
22	0.0032	0.0161	5.072
23	0,0030	0,0161	5,307
24	0,0030	0,0169	5,598
25	0.0031	0.0149	4,761
26	0,0030	0,0161	5,299
27	0.0033	0.0140	4.220
28	0,0028	0,0156	5,575
29	0,0029	0,0153	5,277
30	0,0030	0,0155	5,245
31	0,0032	0,0164	5,146
32	0.0031	0.0157	5.008
33	0,0031	0,0162	5,186
34	0,0030	0,0160	5,339
35	0.0032	0.0162	5,134
36	0,0032	0,0148	4,611
37	0.0032	0.0150	4,715
38	0,0032	0,0149	4,650
39	0,0032	0,0148	4,571
40	0,0031	0,0158	5,090
41	0,0031	0,0156	5,085
42	0.0029	0.0164	5.678
43	0,0031	0,0155	5,006
44	0,0031	0,0168	5,502
45	0.0030	0.0167	5.614
46	0,0032	0,0158	4,931
4/	0.0031	0.015/	5.089
48	0,0029	0,0165	5,///
49	0,0031	0,0154	4,982
50	0,0034	0,0143	4,241

Análisis	Rotación Cedente (rad)	Rotación Última (rad)	Ductilidad
51	0,0028	0,0163	5,789
52	0,0030	0,0161	5,356
53	0,0029	0,0160	5,479
54	0,0029	0,0160	5,440
55	0.0029	0,0165	5.621
56	0,0034	0,0166	4,830
57	0.0028	0.0162	5.833
58	0,0032	0,0158	4,915
59	0,0029	0,0163	5,706
60	0,0033	0,0151	4,643
61	0,0027	0,0161	5,933
62	0,0028	0.0162	5,717
63	0,0028	0,0163	5,741
64	0,0035	0,0160	4,569
65	0.0035	0.0146	4,179
66	0,0031	0,0168	5,460
67	0.0032	0.0165	5.230
68	0,0029	0,0165	5,739
69	0,0031	0,0160	5,104
70	0,0031	0,0164	5,232
71	0,0030	0,0160	5,310
72	0.0034	0.0147	4,373
73	0,0031	0,0154	5,016
74	0,0026	0,0159	6,069
75	0,0030	0.0168	5,570
76	0,0033	0,0153	4,606
77	0,0031	0.0157	5,082
78	0,0028	0,0163	5,741
79	0,0031	0,0154	4,931
80	0,0031	0,0154	4,924
81	0,0032	0,0162	5,108
82	0.0033	0.0158	4.810
83	0,0031	0,0159	5,161
84	0,0032	0,0156	4,844
85	0.0033	0.0148	4,419
86	0,0028	0,0165	5,860
8/	0.0032	0.0161	5,059
88	0,0031	0,0153	4,989
89	0,0033	0,0149	4,542
90	0,0029	0,0165	5,607
91	0,0030	0,0161	5,293
92	0.0030	0.0153	5,036
<u> </u>	0,0031	0,0163	5,2/1
94	0,0031	0,0163	5,230
<u> </u>	0.0029	0.0168	5,803
<u> </u>	0,0034	0,014/	4,278
<u> </u>	0.0029	0.0159	5,433
<u> 78</u>	0,0032	0,0153	4,/31
77	0,0029		5,420

Anexo B.15. Estudio de Rótulas. SIMULACIÓN DE MONTE CARLO. Rótula P1 Derecha

Análisis	Rotación Cedente (rad)	Rotación Última (rad)	Ductilidad
1	0,0032	0,0180	5,662
2	0,0030	0.0169	5,590
3	0.0035	0,0226	6,449
4	0,0031	0,0199	6,463
5	0.0034	0.0211	6,261
6	0,0031	0,0185	6,031
7	0,0034	0.0211	6,256
8	0,0032	0,0179	5,534
9	0,0032	0,0194	6,097
10	0,0035	0,0209	6,042
11	0,0033	0,0193	5,825
12	0.0033	0,0188	5,762
13	0,0033	0,0215	6,533
14	0,0035	0,0218	6,236
15	0.0031	0.0181	5.750
16	0,0033	0,0194	5,869
17	0,0030	0.0167	5,499
18	0,0031	0,0200	6,353
19	0,0036	0,0231	6,485
20	0,0038	0,0210	5,497
21	0,0034	0,0227	6,627
22	0.0034	0.0193	5,757
23	0,0032	0,0192	5,989
24	0,0032	0,0174	5,473
25	0.0033	0.0215	6,463
26	0,0032	0,0193	6,010
27	0,0035	0.0233	6,587
28	0,0029	0,0154	5,237
29	0,0031	0,0204	6,630
30	0,0031	0,0202	6,435
31	0,0034	0,0188	5,598
32	0.0033	0.0196	5.903
33	0,0033	0,0191	5,790
34	0,0032	0,0194	6,123
35	0.0033	0.0192	5./62
36	0,0034	0,0228	6,683
3/	0.0034	0.0224	6,62/
38	0,0034	0,0223	6,550
39	0,0034	0,0227	6,597
40	0,0033	0,0196	5,973
41	0,0033	0,0198	6,071
42	0.0031	0.0183	<u> </u>
43	0,0033	0,0175	5 4 4 2
44	0,0032	0,0175	<u> </u>
45	0.0031	0.0170	6 024
<u>40</u> <u>17</u>	0,0034	0,0204	<u> </u>
<u>4/</u> /2	0,0033	0.017/	5 612
40	0,0030	0,0107	6 4 40
50	0,0000	0.0211	6 1/3

Análisis	Rotación Cedente (rad)	Rotación Última (rad)	Ductilidad
51	0,0030	0,0166	5,594
52	0.0032	0.0194	6,104
53	0,0031	0,0186	6,021
54	0,0031	0,0185	5,947
55	0.0031	0.0182	5,878
56	0,0037	0,0231	6,297
57	0.0029	0,0166	5,680
58	0,0034	0,0194	5,710
59	0,0030	0,0181	5,992
60	0,0034	0,0221	6,409
61	0,0029	0,0169	5,902
62	0,0030	0.0183	6,096
63	0,0030	0,0162	5,427
64	0,0037	0,0233	6,222
65	0.0037	0.0229	6,181
66	0,0032	0,0178	5,491
67	0.0033	0.0187	5.625
68	0,0030	0,0169	5,576
69	0,0033	0,0195	5,885
70	0,0033	0,0188	5,689
71	0,0032	0,0194	6,088
72	0.0036	0.0228	6,393
73	0,0033	0,0210	6,450
74	0,0028	0,0162	5,847
75	0.0032	0.0163	5,144
76	0,0035	0,0208	5,920
77	0.0033	0.0197	6.019
78	0,0030	0,0162	5,427
79	0,0033	0,0210	6,342
80	0,0033	0,0207	6,244
81	0,0033	0,0193	5,770
82	0.0035	0.0207	5.963
83	0,0033	0,0197	6,048
84	0,0034	0,0209	6,136
85	0.0036	0.0225	6.324
86	0,0030	0,016/	5,628
8/	0.0034	0.0193	5./41
88	0,0033	0,0211	6,486
89	0,0035	0,0226	6,483
90	0,0031	0,0181	5,831
91	0,0032	0,0180	5,601
<u>72</u>	0,0032	0,0201	<u> </u>
73	0,0033		5,520
74	0,0033	0,0109	5,152
75	0,0031	0,0168	<u> </u>
70	0,0030	0,0227	0,313
7/	0,0031		
70 00	0,0034		5 401
100	0.0031	0.0200	5 358

Anexo B.16. Estudio de Rótulas. SIMULACIÓN DE MONTE CARLO. Rótula Viga Entrepiso-Derecha Fuente: Elaboración Propia.

Análisis	Rotación Cedente (rad)	Rotación Última (rad)	Ductilidad
1	0,0046	0,0366	7,997
2	0.0044	0.0365	8.291
3	0,0050	0,0348	6,954
4	0,0045	0,0356	7,882
5	0.0048	0.0354	7.324
6	0,0045	0,0362	8,086
7	0,0048	0,0353	7.294
8	0,0046	0,0366	7,906
9	0,0046	0,0361	7,839
10	0,0049	0,0354	7,189
11	0,0047	0,0362	7,650
12	0.0047	0.0364	7,791
13	0,0048	0,0350	7,345
14	0,0050	0,0353	7,108
15	0,0046	0,0365	8,019
16	0,0047	0,0360	7,604
17	0.0044	0.0367	8.331
18	0,0046	0,0357	7,787
19	0,0051	0,0345	6,797
20	0,0051	0,0353	6,885
21	0,0049	0,0348	7,078
22	0.0048	0.0361	7,557
23	0.0046	0.0361	7,797
24	0,0046	0,0369	8,097
25	0.0048	0.0349	7,262
26	0.0046	0.0361	7,785
27	0,0051	0,0340	6,707
28	0.0050	0.0356	7,171
29	0.0045	0.0353	7,797
30	0.0046	0.0355	7,753
31	0,0048	0.0364	7,632
32	0.0048	0.0357	7.502
33	0,0047	0,0362	7,678
34	0,0046	0,0360	7,840
35	0.0048	0.0362	7,618
36	0,0049	0,0348	7,097
37	0.0049	0.0350	7.207
38	0,0049	0,0349	7,136
39	0,0049	0,0348	7,064
40	0.0047	0.0358	7,585
41	0.0047	0.0356	7,579
42	0,0045	0,0364	8,167
43	0,0047	0,0355	7,510
44	0,0046	0,0368	8,001
45	0,0045	0,0367	8,107
46	0,0048	0,0358	7,404
47	0.0047	0.0357	7,581
48	0,0044	0,0365	8,316
49	0,0047	0,0354	7,482
50	0,0051	0,0343	6,708

Análisis	Rotación Cedente (rad)	Rotación Última (rad)	Ductilidad
51	0,0043	0,0363	8,391
52	0,0046	0,0361	7,866
53	0,0045	0,0360	8,000
54	0,0045	0,0360	7,972
55	0.0045	0,0365	8.140
56	0,0052	0,0366	7,023
57	0.0043	0.0362	8,466
58	0,0048	0,0358	7,429
59	0,0044	0,0363	8,227
60	0,0049	0,0351	7,144
61	0,0042	0,0361	8,534
62	0.0044	0.0362	8,239
63	0,0043	0,0363	8,379
64	0,0053	0,0360	6,744
65	0.0052	0.0346	6,646
66	0,0046	0,0368	7,959
67	0.0047	0.0365	7,735
68	0,0044	0,0365	8,296
69	0,0047	0,0360	7,595
70	0,0047	0,0364	7,735
71	0,0046	0,0360	7,827
72	0.0051	0,0347	6.845
73	0,0047	0,0354	7,537
/4	0,0041	0,0359	8,6/8
/5	0.0045	0.0368	8,143
/6	0,0050	0,0353	7,101
//	0.004/	0.0357	/.596
/8	0,0043	0,0363	8,388
/9	0,0048	0,0354	7,452
80	0,0048	0,0354	7,438
01	0,0040	0,0362	7,013
02	0.0049	0.0350	7,304
84	0,0047	0,0356	7 3/1
85	0,0040	0,0348	8 035
86	0.0043	0.0345	8 452
87	0,0048	0.0361	7 562
88	0.0047	0.0353	7 504
89	0,0050	0.0349	7 034
90	0.0045	0.0365	8 1 2 4
91	0.0046	0.0361	7.834
92	0.0047	0.0353	7.562
93	0,0047	0,0363	7,778
94	0,0047	0,0363	7,745
95	0.0044	0.0368	8.321
96	0,0051	0,0347	6,778
97	0.0045	0.0359	7,963
98	0,0049	0,0353	7,238
99	0,0048	0,0360	7,568
100	0.0045	0.0367	8 227

Anexo B.17. Estudio de Rótulas. SIMULACIÓN DE MONTE CARLO. Rótula Viga Entrepiso-Izquierda Fuente: Elaboración Propia.

Análisis	Rotación Cedente (rad)	Rotación Última (rad)	Ductilidad
1	0,0046	0,0358	7,821
2	0,0044	0.0357	8,107
3	0,0050	0,0361	7,216
4	0,0045	0,0353	7,817
5	0.0048	0.0355	7,346
6	0,0045	0,0355	7,928
7	0.0048	0.0356	7,358
8	0,0046	0,0358	7,731
9	0,0046	0,0353	7,664
10	0,0049	0,0355	7,211
11	0,0047	0,0354	7,479
12	0,0047	0.0356	7,618
13	0,0048	0,0359	7,536
14	0,0050	0,0356	7,170
15	0.0046	0.0357	7.841
16	0,0047	0,0352	7,434
17	0.0044	0.0359	8,148
18	0,0046	0,0352	7,680
19	0,0051	0,0364	7,173
20	0,0051	0,0330	6,438
21	0,0049	0,0361	7,344
22	0,0048	0.0353	7,388
23	0,0046	0,0354	7,645
24	0,0046	0,0361	7,919
25	0,0048	0,0360	7,493
26	0,0046	0,0354	7,633
27	0.0051	0,0369	7.280
28	0,0050	0,0352	7,092
29	0,0045	0,0356	/,865
30	0,0046	0,0354	7,733
31	0,0048	0,0356	/,463
32	0.0048	0.0351	/.3/8
33	0,004/	0,0354	7,507
34	0,0046	0,0353	7,686
35	0,0048	0.0354	7.448
36	0,0049	0,0361	7,364
3/	0.0049	0,0359	7.394
38	0,0049	0,0360	7,362
39	0,0049	0,0361	7,327
40	0,0047	0,0351	7,438
41	0,0047	0,0353	2,000
42	0.0043	0.0357	0,UU0 7 /00
43	0,004/	0,0334	<u>/,470</u> 7,804
44	0,0046	0,0360	7,020
40	0,0043	0,0357	7.727
40	0,0040	0,0350	7,240
4/ /Q	0,0047	0.0352	<u>/,4/0</u> 8 130
40 10	0,0044	0,0357	7 505
47 50	0,0047	0.0366	7,505

Análisis	Rotación Cedente (rad)	Rotación Última (rad)	Ductilidad
51	0,0043	0,0355	8,205
52	0,0046	0.0354	7.712
53	0,0045	0,0353	7,843
54	0,0045	0,0353	7,816
55	0,0045	0,0357	7,960
56	0,0052	0,0359	6,887
57	0,0043	0.0354	8,277
58	0,0048	0,0350	7,264
59	0,0044	0,0356	8,067
60	0,0049	0.0358	7,288
61	0,0042	0,0354	8,366
62	0.0044	0.0355	8.078
63	0.0043	0.0355	8,192
64	0.0053	0.0352	6.592
65	0.0052	0.0363	6.974
66	0.0046	0.0360	7.785
67	0.0047	0.0357	7,563
68	0.0044	0.0357	8,113
69	0.0047	0.0352	7.425
70	0.0047	0.0356	7.564
71	0.0046	0.0353	7.673
72	0.0051	0.0362	7.142
73	0.0047	0.0355	7.560
74	0.0041	0.0352	8.507
75	0.0045	0.0360	7,965
76	0.0050	0.0355	7,142
77	0.0047	0.0352	7,491
78	0.0043	0.0355	8.202
79	0.0048	0.0355	7,475
80	0.0048	0.0357	7,503
81	0.0048	0.0354	7,445
82	0.0049	0.0350	7,143
83	0.0047	0.0352	7.520
84	0.0048	0.0353	7,281
85	0.0043	0.0361	8.337
86	0.0043	0.0357	8.265
87	0.0048	0.0353	7.393
88	0.0047	0.0356	7.570
89	0.0050	0.0360	7.257
90	0.0045	0.0357	7,944
91	0,0046	0,0359	7,789
92	0,0047	0,0356	7,628
93	0,0047	0,0355	7,605
94	0,0047	0,0355	7,573
95	0.0044	0,0360	8,139
96	0,0051	0,0362	7,072
97	0.0045	0.0352	7,806
98	0,0049	0,0356	7,301
99	0,0048	0,0352	7,398
100	0.0045	0.0359	8 046

Anexo B.18. Estudio de Rótulas. SIMULACIÓN DE MONTE CARLO. Rótula Viga Techo-Izquierda Fuente: Elaboración Propia.

Análisis	Rotación Cedente (rad)	Rotación Última (rad)	Ductilidad
1	0,0026	0,0062	2,417
2	0.0024	0,0078	3,242
3	0,0030	0,0007	0,238
4	0,0025	0,0045	1,794
5	0.0028	0,0026	0,916
6	0,0025	0,0060	2,423
7	0.0028	0,0025	0,893
8	0,0026	0,0063	2,392
9	0,0026	0,0048	1,851
10	0,0029	0,0026	0,890
11	0,0027	0,0045	1,663
12	0.0027	0.0052	1.954
13	0,0028	0,0023	0,848
14	0,0030	0,0015	0,516
15	0.0026	0,0062	2.419
16	0,0027	0,0044	1,625
17	0.0024	0,0079	3,303
18	0,0026	0,0042	1,626
19	0,0031	0,0000	0,000
20	0,0031	0,0000	0,000
21	0,0029	8000,0	0,258
22	0.0028	0.0045	1,623
23	0,0026	0,0050	1,885
24	0,0026	0,0069	2,683
25	0.0028	0.0023	0.822
26	0,0026	0,0048	1,824
27	0.0031	0.0000	0.000
28	0,0030	0,0096	3,227
29	0,0025	0,0040	1,584
30	0,0026	0,0041	1,599
31	0,0028	0,0050	1,814
32	0.0028	0.0043	1.551
33	0,0027	0,0048	1,769
34	0,0026	0,0048	1,835
35	0.0028	0.0047	1,693
36	0,0029	0,0007	0,242
37	0.0029	0.0012	0,404
38	0,0029	0,0012	0,411
39	0,0029	0,0007	0,252
40	0,0027	0,0043	1,589
41	0,0027	0,0042	1,562
42	0.0025	0.0062	2,522
43	0,0027	0,0042	1,530
44	0,0026	0,0064	2,443
45	0.0025	0.0066	2.604
46	0,0028	0,0032	1,135
47	0.0027	0.0042	1.567
48	0,0024	0,00/8	3,258
49	0,002/	0,002/	1,000
50			() () () ()

Análisis	Rotación Cedente (rad)	Rotación Última (rad)	Ductilidad
51	0,0023	0,0083	3,550
52	0.0026	0,0049	1.876
53	0.0025	0,0059	2,361
54	0,0025	0,0059	2,349
55	0.0025	0,0063	2,521
56	0.0032	0,0000	0.000
57	0.0023	0.0084	3.674
58	0,0028	0,0044	1,556
59	0,0024	0,0068	2,838
60	0,0029	0,0014	0,484
61	0,0022	0,0081	3,633
62	0.0024	0,0063	2,652
63	0,0023	0,0086	3,673
64	0,0033	0,0000	0,000
65	0.0032	0,0000	0.000
66	0,0026	0,0063	2,413
67	0,0027	0,0052	1,918
68	0,0024	0,0078	3,257
69	0,0027	0,0044	1,612
70	0,0027	0,0051	1,901
71	0,0026	0,0048	1,849
72	0.0031	0,0004	0.127
73	0,0027	0,0030	1,112
74	0,0021	0,0091	4,266
75	0.0025	0.0081	3.232
76	0,0030	0,0026	0,864
77	0,0027	0.0043	1,587
78	0,0023	0,0086	3,708
79	0,0028	0,0028	1,012
80	0,0028	0,0031	1,109
81	0,0028	0,0045	1,650
82	0.0029	0,0028	0,969
83	0,0027	0,0044	1,625
84	0,0028	0,0027	0,939
85	0.0023	0,0008	0.323
86	0,0023	0,0081	3,502
87	0.0028	0.0045	1.624
88	0,0027	0,0029	1,071
89	0,0030	0,0000	0,000
90	0,0025	0,0063	2,522
91	0,0026	0,0060	2,298
92	0,002/	0.0041	1,518
93	0,0027	0,0061	2,295
74	0,0027	0,0051	1,708
75	0.0024	0,00/8	3.228
70	0,0031	0,0002	2 524
7/	0,0025	0,0087	0,000
70 00	0,0027	0,0020	1 222
100	0.0020	0,0034	3 236

Anexo B.19. Estudio de Rótulas. ESTIMADORES PUNTUALES. Rótula PB

Izquierda

Fuente: Elaboración Propia.

Análisis	Rotación Cedente (rad)	Rotación Última (rad)	Ductilidad
1	0,0034	0,0250	7,450
2	0,0036	0,0251	7,057
3	0,0030	0,0250	8,206
4	0,0032	0,0251	7,771

Anexo B.20. Estudio de Rótulas. SIMULACIÓN DE MONTE CARLO. Rótula PB

Derecha

Análisis	Rotación Cedente (rad)	Rotación Última (rad)	Ductilidad
1	0,0037	0,0247	6,679
2	0,0040	0,0248	5,684
3	0,0033	0,0248	7,412
4	0,0036	0,0249	6,921

Anexo B.21. Estudio de Rótulas. SIMULACIÓN DE MONTE CARLO. Rótula P1 Izquierda

Análisis	Rotación Cedente (rad)	Rotación Última (rad)	Ductilidad
1	0,0031	0,0165	5,288
2	0,0033	0,0149	4,539
3	0,0028	0,0166	5,880
4	0,0030	0,0155	5,219

Fuente: Elaboración Propia.

Anexo B.22. Estudio de Rótulas. SIMULACIÓN DE MONTE CARLO. Rótula P1

Derecha

Análisis	Rotación Cedente (rad)	Rotación Última (rad)	Ductilidad
1	0,0033	0,0189	5,739
2	0,0035	0,0226	6,481
3	0,0030	0,0169	5,681
4	0,0031	0,0201	6,382

Anexo B.23. Estudio de Rótulas. SIMULACIÓN DE MONTE CARLO. Rótula Viga Entrepiso-Derecha

Fuente: Elo	aboración	Propia.
-------------	-----------	---------

Análisis	Rotación Cedente (rad)	Rotación Última (rad)	Ductilidad
1	0,0044	0,0367	8,331
2	0,0046	0,0357	7,680
3	0,0051	0,0345	6,797
4	0,0051	0,0353	6,885

Anexo B.24. Estudio de Rótulas. SIMULACIÓN DE MONTE CARLO. Rótula Viga

Entrepiso-Izquierda

Análisis	Rotación Cedente (rad)	Rotación Última (rad)	Ductilidad
1	0,0044	0,0359	8,148
2	0,0046	0,0352	7,680
3	0,0051	0,0364	7,173
4	0,0051	0,0330	6,438

Anexo B.25. Estudio de Rótulas. SIMULACIÓN DE MONTE CARLO. Rótula Viga

Techo-Izquierda

Análisis	Rotación Cedente (rad)	Rotación Última (rad)	Ductilidad	
1	0,0026	0,0069	2,609	
2	0,0026	0,0023	0,886	
3	0,0029	0,0048	1,645	
4	0,0027	0,0000	0,000	

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Fuente: Elaboración Propia