TRABAJO ESPECIAL DE GRADO

MODELACIÓN ANÁLISIS Y DISEÑO DE UNA EDIFICACIÓN EN ACERO UTILIZANDO UN SISTEMA DE ARRIOSTRAMIENTOS CONCÉNTRICOS A BASE DE DIAGONALES DE PANDEO RESTRINGIDO

Presentado ante la ilustre Universidad Central de Venezuela Por: Br. Saad Saad Charbel Br. Córdova Racanati Sergio Para optar por el Título de Ingeniero Civil

Caracas, Octubre 2011

TRABAJO ESPECIAL DE GRADO

MODELACIÓN ANÁLISIS Y DISEÑO DE UNA EDIFICACIÓN EN ACERO UTILIZANDO UN SISTEMA DE ARRIOSTRAMIENTOS CONCÉNTRICOS A BASE DE DIAGONALES DE PANDEO RESTRINGIDO

TUTOR ACADÉMICO: Prof. Suilio Eliud Hernández

Presentado ante la ilustre Universidad Central de Venezuela Por: Br. Charbel Saad Saad Br. Sergio Córdova Racanati Para optar por el Título de Ingeniero Civil

Caracas, Octubre 2011

ACTA

El día 4 denoviembre de 2011 se reunió el jurado formado por los profesores:

ELIUD HERNANDEZ_____ ____ANTONIO GÜELL_____ ESTEBAN TENREIRO

Con el fin de examinar el Trabajo Especial de Grado titulado: **"MODELACIÓN ANÁLISIS Y DISEÑO DE UNA EDIFICACIÓN EN ACERO UTILIZANDO UN SISTEMA DE ARRIOSTRAMIENTOS CONCÉNTRICOS A BASE DE DIAGONALES DE PANDEO RESTRINGIDO**". Presentado ante la Ilustre Universidad Central de Venezuela para optar al Título de INGENIERO CIVIL.

Una vez oída la defensa oral que los bachilleres hicieron de su Trabajo Especial de Grado, este jurado decidió las siguientes calificaciones:

Nombros	CALIFICACIÓN		
Nombres	Números	Letras	
Br. Charbel Saad Saad			
Br. Sergio Cordova Racanati			

Recomendaciones:

FIRMAS DEL JURADO:	
	A n
_	Jem)
	Not tall-
1	CTTT .
5 <u>~</u>	mitration
E	Caracas, 4 de noviembre de 2011
	7 1-

AGRADECIMIENTOS

Agradecemos a todos aquellos que nos han brindado su confianza, amistad y apoyo, durante el sueño de conseguir el preciado título de Ingeniero Civil. A todos aquellos que creyeron en nosotros, en nuestra capacidad y en este Trabajo Especial de Grado.

A nuestro tutor el Ingeniero Suilio Eluid Hernández, quien nos motivó y guió en la elaboración de este Trabajo y a todos los profesores de la Escuela de Ingeniería Civil que incentivaron en nosotros esta curiosidad por el diseño estructural y el amor a nuestra profesión.

A nuestros amigos y grandes compañeros de clases que nos apoyaron incondicionalmente en nuestra carrera, Alejandra Guerrero Cignarella, Grecia Zeoli Sciarra y especialmente a Miguel Fernandez Feo. A Valeria Paredes, por su comprensión, preocupación y apoyo, durante la realización de esta tesis y a lo largo de la carrera. En memoria de Jhon Bryan, Kevin José y Jeason Faddoul, personas maravillosas que se nos fueron demasiado pronto, gracias por todo, nunca los olvidaremos.

Especialmente a nuestros padres, hermanas y familiares quienes nos apoyaron, motivaron y ayudaron a lo largo de nuestra vida y carrera. Los Amamos.

A todos ustedes, sin duda alguna...

"Gracias Totales".

Saad S., Charbel.

Córdova R., Sergio A.

MODELACIÓN, ANÁLISIS Y DISEÑO DE UNA EDIFICACIÓN EN ACERO UTILIZANDO UN SISTEMA DE ARRIOSTRAMIENTOS CONCÉNTRICOS A BASE DE DIAGONALES DE PANDEO RESTRINGIDO

Tutor Académico: Prof. Suilio Eliud Hernández Rojas.

Trabajo Especial de Grado. Caracas, U.C.V. Facultad de Ingeniería.

Escuela de Ingeniería Civil. 2011, 122 páginas.

Palabras clave: Acero, Sismorresistencia, Pandeo, Diagonales, Pandeo Restringido.

Los riesgos en estructuras debido a actividades sísmicas exigen que los ingenieros busquen continuamente nuevos y mejores métodos de resistir estas fuerzas. Los Pórticos con Diagonales de Pandeo Restringido, mejor conocidos como BRBF, por sus siglas en ingles (Buckling Restraint Braced Frames), conforman un sistema relativamente nuevo, resistente a fuerzas laterales, desarrollado especialmente para soportar las cargas cíclicas como consecuencia de las acciones sísmicas.

En general, las estructuras con un sistema resistente más dúctil se desempeñan mejor ante las altas fuerzas sísmicas que los sistemas más rígidos. Los Pórticos con Diagonales de Pandeo Restringido son una opción significativamente más dúctil que aquellos con diagonales concéntricas tradicionales (SCBF por sus siglas en inglés Special Concentrical Braced Frames) lo cual aunado a su alta rentabilidad, le ha conferido a este sistema una aceptación notable en países desarrollados. Lograr una amplia aceptación de este sistema requiere el desarrollo de un diseño sencillo, con un comportamiento predecible y común para todos los ingenieros.

Este Trabajo Especial de Grado busca exponer el funcionamiento, proceso de diseño y chequeo de los Pórticos con Diagonales de Pandeo Restringido, y desarrollar una comparación entre este sistema y aquellos con diagonales concéntricas tradicionales, con la intención de aportar un mayor conocimiento y así, promover la confianza en este sistema.

ÍNDICE

INTRODUC	CIÓN	1
CAPÍTULO	Ι	3
FUNDAME	NTOS DE LA INVESTIGACIÓN	3
PLANTEAN	/IENTO DEL PROBLEMA	4
OBJETIVO	S	6
OBJETIVO	GENERAL	6
OBJETIVO	S ESPECÍFICOS	6
APORTES		7
CAPÍTULO	II MARCO TEÓRICO	8
I. ACER	O ESTRUCTURAL	9
I.1. R	eseña Histórica Del Acero Estructural	9
1.2. C	lasificación De Los Aceros	14
I.2.1.	Clasificación de Acero por su composición química:	14
I.2.2.	Clasificación del acero por su contenido de Carbono:	14
I.2.3.	Clasificación del Acero por sus propiedades mecánicas _	15
1.3. P	roductos Comerciales en Acero	17
I.4. C	riterios de Diseño del acero	18
I.4.1.	Estados límite	19
I.5. D	iseño de Elementos de Acero	20
I.5.1.	Elementos sometidos a tracción	20
I.5.2.	Elementos sometidos a compresión	21
I.5.3.	Elementos sometidos a flexión	22
I.5.4.	Elementos sometidos a corte	22
I.5.5.	Elementos sometidos a flexo-compresión	23
II. PAND	EO	23

II.1. Introducción	23
II.1.1. Pandeo elástico	24
II.1.2. Pandeo inelástico	25
II.2. Tipos de Pandeo	27
II.2.1. Pandeo flexional	27
II.2.2. Pandeo torsional	28
II.2.3. Pandeo flexo-torsional	28
II.2.4. Pandeo local	29
II.3. Formulación General	29
II.3.1. Tensión crítica de Euler. Limitación de la teoría de Euler	33
III. DISEÑO SISMORESISTENTE EN ACERO	34
III.1. Filosofía del Diseño Sismorresistente en Acero	34
III.2. Pasos a seguir para elaborar un Diseño Sismorresistente en	1
Acero 35	
IV. RESEÑA HISTORICA DE LAS DIAGONALES DE PANDEO	
RESTRINGIDO	36
V. ARTÍCULOS DE INVESTIGACIÓN DE LAS DIAGONALES DE	
PANDEO RESTRINGIDO	38
V.1. Specifying Buckling-Restrained Diagonal Systems. Kimberley	Y
Robinson. Noviembre de 2009	38
V.2. Component Testing, Stability Analysis and Characterization of	of
BRBF. Universidad de California.	42
V.3. Cost Advantages of Buckling Restrained Braced Frame Build	lings,
San Francisco, Dasse Desing Inc	44
Suposiciones y criterios de diseño	45
Resultados del diseño de los modelos	46
Cantidad de materiales y costos	48
Conclusiones	50
VI. DISEÑO DEL BRBF (AISC 341-210 F4)	51

VI.1.	Bases del diseño	_ 51	
VI.2.	Fuerza de la diagonal	_ 51	
VI.3.	Análisis	_ 52	
VI.4.	Miembros	_ 52	
Rec	uerimientos básicos	_52	
Dia	gonales	_53	
VII. EN	ISAYOS CÍCLICOS PARA LA CALIFICACIÓN DE LAS		
DIAGONALES	DE PANDEO RESTRINGIDO (AISC 341-2010 K3)		_54
VII.1.	Alcance	_ 54	
VII.2.	Historial de Cargas	_54	
Rec	uerimientos generales	_54	
Cor	itrol del ensayo	_54	
Sec	uencia de carga	_54	
Requ	erimientos para el reporte del Ensayo	_ 55	
VII.3.	Criterios de Aceptación	_ 56	
VIII.	PROYECTOS DE EDIFICACIONES CON SISTEMAS BRBF		_57
CAPÍTUL	O III MARCO METODOLÓGICO		_58
1. Esta	BLECER LA FILOSOFÍA Y PASOS A SEGUIR PARA ELABORAR EL DISEÑO)	
SISMORRESISTE	NTE DE UNA EDIFICACIÓN EN ACERO		_59
2. Proc	GRAMAR HOJAS DE CÁLCULO PARA LA DETERMINACIÓN DEL ESPECTR	0	
DE RESPUESTA	Y EL PREDIMENSIONAMIENTO DE ESTRUCTURAS TIPO SMF Y SCBF		_59
3. PLAN	TEAR UNA ESTRUCTURA TÍPICA Y SENCILLA DE ACERO		_60
4. DISE	ÑAR UNA ESTRUCTURA DE ACERO TIPO SCBF POR MEDIO DEL		
PROGRAMA ETA	ABS CUMPLIENDO CON LOS LINEAMIENTOS DE LA AISC 341 Y 360.		_60
5. Reco	DPILAR INFORMACIÓN, TRABAJOS DE INVESTIGACIÓN Y NORMAS		
RELACIONADAS	A LAS DIAGONALES DE PANDEO RESTRINGIDO (BR)		_61

6. CREAR HOJAS DE CÁLCULO GUÍA PARA EL DISEÑO DE UNA ESTRUCTURA DE				
ACERO, CON UN SISTEMA DE DIAGONALES DE PANDEO RESTRINGIDO (BR) SIGUIENDO				
LOS LINEAMIENTOS DE LA AISC 341				
7. DISEÑAR UNA ESTRUCTURA DE ACERO CON DIAGONALES DE PANDEO				
RESTRINGIDO (BRBF) POR MEDIO DEL PROGRAMA ETABS.	62			
8. CONTRASTAR LOS RESULTADOS OBTENIDOS PARA LOS DISTINTOS SISTEMA	S			
ESTRUCTURALES ADOPTADOS.	63			
CAPÍTULO IV RESULTADOS Y ANÁLISIS	64			
A. RESULTADOS DE LA EDIFICACIÓN DE ACERO DE PÓRTICOS CON DIAGONAL	ES			
Concéntricas	65			
a. Espectro de Respuesta	65			
b. Predimensionamiento de la estructura	66			
c. Verificación del cortante basal y control de desplazamientos	67			
d. Diseño de las correas y vigas de transferencia	72			
e. Diseño de vigas	74			
f. Diseño de las diagonales	76			
g. Diseño de Columnas	79			
B. RESULTADOS DE LA EDIFICACIÓN DE ACERO DE PÓRTICOS CON DIAGONALES				
DE PANDEO RESTRINGIDO	83			
a. Espectro de Respuesta	83			
b. Predimensionamiento de las diagonales de pandeo restringido	84			
c. Verificación del cortante basal y control de desplazamientos	86			
d. Diseño de correas y vigas de transferencia	91			
e. Diseño de vigas	93			
f. Diseño de diagonales de pandeo restringido	95			
g. Diseño de columnas97				
C. CONTRASTE DE AMBOS SISTEMAS101				
CAPÍTULO V CONCLUSIONES Y RECOMENDACIONE	S _110			

	111
RECOMENDACIONES	112
REFERENCIAS	113
APÉNDICES	115

ÍNDICE DE IMÁGENES

Im	nagen I-1 Puente Coalbrookdale	. 9
Im	nagen I-2 Construcción de la Torre Eiffel	11
Im	nagen I-3 Edificio Tacoma	12
Im	nagen I-4 Puente de Brooklyn	13
Im	nagen I-5 Empire State	13
Im	nagen I-6 Perfiles laminados Norma COVENIN 1618-98	17
Im	nagen I-7 Momento resistente a flexión Vs. Longitud de arriostramiento.	22
Im	nagen II-1 Tipos de Pandeo	28
Im	nagen II-2 Ejemplo de Pandeo Local	29
Im	nagen II-3 Cargas críticas de pandeo	30
Im	nagen II-4 Longitudes de pandeo	32
Im	nagen II-5 Factor de longitud teórico y de diseño de pandeo	33
Im	nagen II-6 Esfuerzo de compresión en función de la esbeltez	34
Im	nagen IV-1 Planteamiento del pandeo restringido	36
Im	nagen IV-2 Línea del tiempo del BRBF	37
Im	nagen IV-3 Diagrama de histéresis típico de una diagonal de pand	eo
restringic	lo	38
Im	nagen V-1 Comparación del desempeño de los sistemas	40
Im	nagen V-2 Rigideces efectivas	41
Im	nagen V-3 Resultados de ensayos variando la relación <i>Pe/Py</i>	43
Im	nagen V-4 Resultados de ensayos variando la relación <i>Pe/Py</i>	44
Im	nagen V-5 Plano de planta y elevación	45
Im	nagen V-6 Espectros de respuesta	46
Im	nagen A-1 Modo 1	68
Im	nagen A-2 Modo 2	68
Im	nagen A-3 Modo 3	69
Im	nagen A-4 Chequeo de correas y vigas de transferencia	72

Imagen A-5 Diseño por capacidad de correas y vigas de transferencia	. 73
Imagen A-6 Diseño por servicio de correas y vigas de transferencia	. 73
Imagen A-7 Chequeo de vigas	. 74
Imagen A-8 Diseño a capacidad de vigas	. 75
Imagen A-9 Chequeo de diagonales	. 76
Imagen A-10 Diseño de diagonales	. 77
Imagen A-11 Diseño de diagonal (Falla por esbeltez)	. 78
Imagen A-12 Chequeo de columnas sin amplificación sísmica	. 79
Imagen A-13 Diseño de columnas	. 80
Imagen A-14 Chequeo de columnas con amplificación sísmica	. 81
Imagen A-15 Diseño de columnas con sismo amplificado	. 82
Imagen B-1 Espectro de respuesta	. 83
Imagen B-2 Modo 1	. 87
0	
Imagen B-3 Modo 2	. 87
Imagen B-3 Modo 2 Imagen B-4 Modo 3	. 87 . 88
Imagen B-3 Modo 2 Imagen B-4 Modo 3 Imagen B-5 Chequeo de correas y vigas de transferencia	. 87 . 88 . 91
Imagen B-3 Modo 2 Imagen B-4 Modo 3 Imagen B-5 Chequeo de correas y vigas de transferencia Imagen B-6 Diseño de correas y vigas de transferencia por capacidad	. 87 . 88 . 91 . 92
Imagen B-3 Modo 2 Imagen B-4 Modo 3 Imagen B-5 Chequeo de correas y vigas de transferencia Imagen B-6 Diseño de correas y vigas de transferencia por capacidad Imagen B-7 Diseño de correas y vigas de transferencia por servicio	. 87 . 88 . 91 . 92 . 92
Imagen B-3 Modo 2 Imagen B-4 Modo 3 Imagen B-5 Chequeo de correas y vigas de transferencia Imagen B-6 Diseño de correas y vigas de transferencia por capacidad Imagen B-7 Diseño de correas y vigas de transferencia por servicio Imagen B-8 Chequeo de vigas	. 87 . 88 . 91 . 92 . 92 . 93
Imagen B-3 Modo 2 Imagen B-4 Modo 3 Imagen B-5 Chequeo de correas y vigas de transferencia Imagen B-6 Diseño de correas y vigas de transferencia por capacidad Imagen B-7 Diseño de correas y vigas de transferencia por servicio Imagen B-8 Chequeo de vigas Imagen B-9 Diseño de vigas.	. 87 . 88 . 91 . 92 . 92 . 93 . 94
Imagen B-3 Modo 2 Imagen B-4 Modo 3 Imagen B-5 Chequeo de correas y vigas de transferencia Imagen B-6 Diseño de correas y vigas de transferencia por capacidad Imagen B-7 Diseño de correas y vigas de transferencia por servicio Imagen B-8 Chequeo de vigas Imagen B-9 Diseño de vigas Imagen B-10 Chequeo de diagonales	. 87 . 88 . 91 . 92 . 92 . 93 . 94 . 95
Imagen B-3 Modo 2 Imagen B-4 Modo 3 Imagen B-5 Chequeo de correas y vigas de transferencia Imagen B-6 Diseño de correas y vigas de transferencia por capacidad Imagen B-7 Diseño de correas y vigas de transferencia por servicio Imagen B-8 Chequeo de vigas Imagen B-9 Diseño de vigas Imagen B-10 Chequeo de diagonales Imagen B-11 Diseño de diagonales	. 87 . 88 . 91 . 92 . 92 . 93 . 93 . 94 . 95 . 96
Imagen B-3 Modo 2 Imagen B-4 Modo 3 Imagen B-5 Chequeo de correas y vigas de transferencia Imagen B-6 Diseño de correas y vigas de transferencia por capacidad Imagen B-7 Diseño de correas y vigas de transferencia por servicio Imagen B-8 Chequeo de vigas Imagen B-9 Diseño de vigas Imagen B-10 Chequeo de diagonales Imagen B-11 Diseño de diagonales Imagen B-12 Chequeo de columnas sin amplificaciones sísmicos	. 87 . 88 . 91 . 92 . 92 . 93 . 93 . 94 . 95 . 96 . 97
Imagen B-3 Modo 2 Imagen B-4 Modo 3 Imagen B-5 Chequeo de correas y vigas de transferencia Imagen B-6 Diseño de correas y vigas de transferencia por capacidad Imagen B-7 Diseño de correas y vigas de transferencia por servicio Imagen B-8 Chequeo de vigas Imagen B-9 Diseño de vigas Imagen B-10 Chequeo de diagonales Imagen B-11 Diseño de diagonales Imagen B-12 Chequeo de columnas sin amplificaciones sísmicos Imagen B-13 Diseño de columnas sin cargas sísmicas amplificadas	. 87 . 88 . 91 . 92 . 92 . 93 . 93 . 94 . 95 . 96 . 97 . 98
Imagen B-3 Modo 2 Imagen B-4 Modo 3 Imagen B-5 Chequeo de correas y vigas de transferencia Imagen B-6 Diseño de correas y vigas de transferencia por capacidad Imagen B-7 Diseño de correas y vigas de transferencia por servicio Imagen B-8 Chequeo de vigas Imagen B-8 Chequeo de vigas Imagen B-9 Diseño de vigas Imagen B-10 Chequeo de diagonales Imagen B-11 Diseño de diagonales Imagen B-12 Chequeo de columnas sin amplificaciones sísmicos Imagen B-13 Diseño de columnas sin cargas sísmicas amplificadas	. 87 . 88 . 91 . 92 . 92 . 93 . 93 . 94 . 95 . 96 . 97 . 98 . 99

ÍNDICE DE TABLAS

Tabla I-1 Aceros según sus propiedades mecánicas	16
Tabla V-1 Valores y criterios de diseño asumidos	
Tabla V-2 Perfiles de los elementos	
Tabla V-3 Cantidad de materiales y costos	
Tabla VIII-1 Ejemplo de edificaciones con sistemas BRBF	57
Tabla A-1 Datos del Espectro de Respuesta SCBF	65
Tabla A-2 Predimensionamiento de la Estructura	66
Tabla A-3 Definición de masas participativas	67
Tabla A-4 Participación modal	67
Tabla A-5 Fuerzas cortantes debido a las acciones sísmicas	70
Tabla A-6 Control de desplazamientos	70
Tabla A-7 Verificación del cortante basal y desplazamientos	71
Tabla B-1 Espectro de respuesta	83
Tabla B-2 Diagonales Star Seismic	84
Tabla B-3 Predimensionamiento del núcleo de acero	85
Tabla B-4 Definición de masas participativas	86
Tabla B-5 Participación modal	86
Tabla B-6 Fuerzas cortantes debido a las acciones sísmicas	89
Tabla B-7 Control de desplazamientos	89
Tabla B-8 Verificación del cortante basal y desplazamientos	90
Tabla B-9 Verificación de deriva para BRBF AISC 341-2010	
Tabla C-1 Comparación de pesos y masas por grupos	103
Tabla C-2 Perfiles utilizados SCBF	104
Tabla C-3 Perfiles utilizados BRBF	105
Tabla C-4 Comparación de reacciones	109

ÍNDICE DE GRÁFICOS

Gráfico V-1 Comparación BRBF – SCBF Costo Vs. Niveles
Gráfico A-1 Espectro de Respuesta65
Gráfico C-1 Comparación de espectros 101
Gráfico C-2 Comparación de fuerzas cortantes 102
Gráfico C-3 Comparación de Peso por Elementos Estructurales entre los
Sistemas SCBF y BRBF 103
Gráfico C-4 Comparación de Acero requerido por metro cuadrado sin
conexiones entre los Sistemas SCBF y BRBF 106
Gráfico C-5 Comparación del Peso de la Estructura con conexiones entre
los Sistemas SCBF y BRBF 107
Gráfico C-6 Comparación de Acero requerido por metro cuadrado con
conexiones entre los Sistemas SCBF y BRBF 107
Gráfico C-7 Ahorro de Acero Requerido en Estructuras con y sin
conexiones al emplear un Sistema BRBF 108

INTRODUCCIÓN

Las estructuras en acero son una opción ampliamente usada en muchos países del mundo, debido a su facilidad y rapidez de construcción, así como la seguridad que tienen estas estructuras. En nuestro país sin embargo, esta rama de la construcción lamentablemente no se ha desarrollado ampliamente, lo cual pueda estar relacionado con la escaza información que se brinda sobre este tema en la carrera de pregrado del Ingeniero Civil. Adicionalmente, las normas nacionales que rigen este tema se encuentran muy desactualizadas al ser comparadas con las desarrolladas por la AISC (American Institute of Steel Construction), el cual es referencia obligatoria debido a sus continuas actualizaciones de sus códigos de diseño.

Siendo Venezuela un país de reconocido riesgo sísmico, el diseño de todas las estructuras debería contemplar las acciones y criterios sísmicos normalizados, y ampliamente estudiados, ya que de esto depende el correcto funcionamiento de las estructuras.

Los Pórticos con Diagonales de Pandeo Restringido, BRBF (Buckling Restrained Braced Frames), son un nuevo sistema resistente a cargas sísmicas que ha encontrado un gran uso en Estados Unidos y en parte de los países Asiáticos debido a su eficiencia y su promesa de poseer un alto desempeño ante solicitaciones sísmicas, siendo muy superior a los pórticos con diagonales concéntricas.

Este Trabajo Especial de Grado se realizó con la intención de ilustrar de forma sencilla el diseño sísmico para este nuevo tipo de pórticos resistentes a cargas laterales, en los estudiantes de pregrado y los nuevos ingenieros civiles, así como exponer las ventajas de este sistema dentro de las estructuras de acero convencionalmente utilizadas en nuestro país.

Para la elaboración de este proceso de aplicación se consultaron diversas bibliografías que tratan el tema, principalmente los Códigos de la AISC (341 y 360 del 2005 y 2010) y guías de diseño de los principales fabricantes de estas piezas a nivel mundial. Se recopilaron los lineamientos para el correcto diseño de estas diagonales, adecuándolas levemente a los códigos y normas nacionales, específicamente las Normas COVENIN 1756 – 01 y 1618 – 98.

Se realizó un modelo hipotético de dos estructuras, la primera de Pórticos de Acero con Diagonales Concéntricas y otra con Pórticos con Diagonales de Pandeo Restringido. Por medio de Tablas de Uso, Hojas de Cálculo y Gráficos, se logró predimensionar, diseñar y comparar ambos modelos.

CAPÍTULO I FUNDAMENTOS DE LA INVESTIGACIÓN

PLANTEAMIENTO DEL PROBLEMA

El pandeo es un fenómeno de inestabilidad elástica que puede darse en elementos comprimidos esbeltos, y que se manifiesta por la aparición de importantes desplazamientos transversales a la dirección principal de compresión. En la práctica, el pandeo local se caracteriza por generar una falla repentina de un elemento estructural sometido a compresión, donde el esfuerzo real de compresión en el punto de falla es menor que la compresión que es capaz de soportar el material.

La mayoría de las edificaciones de acero poseen elementos estructurales esbeltos sometidos a compresión y las diagonales de acero usadas principalmente para la estabilización estructural y la disminución de la vulnerabilidad sísmica son las que se ven más afectadas por el pandeo local. El diseño de estas diagonales, comúnmente se ve muy afectado por este fenómeno, razón por la cual se deben seleccionar perfiles con la suficiente sección transversal para que no fallen a causa del pandeo local. La sección transversal necesaria para que esto no ocurra es muy superior a la necesaria para soportar un esfuerzo a tracción de la misma magnitud.

Los eventos sísmicos representan uno de los mayores riesgos potenciales en Venezuela, la zona de mayor actividad sísmica corresponde a una franja de unos 100 km de ancho, definida a lo largo de los sistemas montañosos de Los Andes, la Cordillera Central y la Cordillera Oriental, lugares en los que se ubican los principales sistemas de fallas sismogénicas del país: Boconó, San Sebastián y El Pilar, respectivamente. En la actualidad, aproximadamente un 80% de la población vive en zonas de alta amenaza sísmica, variable que aumenta el nivel de riesgo.

Por tal motivo, resulta necesario e indispensable el uso de diagonales que ayuden a la estabilización de la estructura en prácticamente todas las edificaciones de acero del país. En Venezuela, lamentablemente solo se producen perfiles pequeños, lo cual obliga a importar la mayoría de los perfiles utilizados para las diagonales ya que el pandeo obliga a los ingenieros a seleccionar perfiles mayores, aumentando significativamente el tiempo de ejecución y costo de la obra.

Recientemente se han desarrollado en Estados Unidos y algunos países de Europa diagonales de pandeo restringido "Buckling Restraint" para el diseño sísmico. Estas diagonales poseen la ventaja de exhibir un comportamiento dúctil igual a tracción y compresión, por lo que están bien adaptadas para resistir cargas cíclicas. La resistencia a la compresión de estos miembros se rige por la capacidad del material, en lugar del pandeo global, pudiendo utilizar perfiles de menor sección transversal.

La intención primordial de este trabajo especial de investigación está dirigida a la validación y difusión de esta tecnología en nuestro país.

OBJETIVOS

Objetivo General

Crear una guía de utilidad práctica para los ingenieros estructurales vinculados al diseño sismorresistente para el diseño de las diagonales de pandeo restringido "Buckling Restraint".

Objetivos Específicos

- 1. Modelar, analizar y diseñar una estructura en acero utilizando un sistema con arriostramientos concéntricos típicos en ambas direcciones.
- Crear un proceso de aplicación de las diagonales de pandeo restringido "Buckling Restraint" en edificaciones de acero, usando un programa estructural (ETABS).
- Modelar, analizar y diseñar una estructura en acero utilizando un sistema con arriostramiento concéntricos tipo Buckling Restraint en ambas direcciones.
- Contrastar la eficiencia, cantidad de material y la factibilidad de edificaciones con diagonales comunes y edificaciones con diagonales de pandeo restringido "Buckling Restraint".

APORTES

En Latinoamérica no han sido utilizadas las diagonales de pandeo restringido, tampoco existe una metodología o normas para el diseño de diagonales de pandeo restringido. En este trabajo especial de grado se presenta una guía práctica para el diseño de diagonales de pandeo restringido, permitiendo a los ingenieros estructurales incorporar estos elementos en sus diseños y aprovechar los beneficios estructurales, económicos y de rendimiento que genera su uso en las edificaciones de acero.

La utilización apropiada de este sistema ofrece una serie de bondades entre las cuales destacan:

- Ahorro en la cantidad de acero estructural, ya que la edificación puede ser diseñada para fuerzas sísmicas menores, disminuyendo las secciones en todos los elementos estructurales.
- Ahorro en las conexiones, debido a su sencillez y rapidez.
- La energía durante un sismo es absorbida por el sistema de las diagonales de pandeo restringido, disminuyendo la deformación en las vigas y columnas.
- Luego de un sismo estas diagonales se pueden reemplazar fácilmente de ser necesario.
- Disminuye el tiempo de construcción de la obra.
- Reduce el costo de la obra.

CAPÍTULO II MARCO TEÓRICO

I. ACERO ESTRUCTURAL

I.1. Reseña Histórica Del Acero Estructural

El uso de hierro en la construcción se remonta a los tiempos de la Antigua Grecia; se han encontrado algunos templos donde ya se utilizaban vigas de hierro forjado. En la Edad Media se empleaban elementos de hierro en las naves laterales de las catedrales.

Pero, en verdad, comienza a usarse el hierro como elemento estructural en el siglo XVIII; en 1706 se fabrican en Inglaterra las columnas de fundición de hierro para la construcción de la Cámara de los Comunes en Londres. El primer uso formal de este metal en una estructura se dio en Shropshire, Inglaterra, en 1779. En ese lugar se construyo con hierro fundido el puente Coalbrookdale en forma de arco, de 33 metros de claro sobre el río Severn. Este puente fue un punto crítico en la historia de la ingeniería porque cambió el curso de la revolución industrial al introducir al hierro como un material estructural seguro y versátil.

Imagen I-1 Puente Coalbrookdale

El hierro irrumpe en el siglo XIX dando nacimiento a una nueva arquitectura, se erige como protagonista a partir de la Revolución Industrial,

llegando a su auge con la producción estandarizada de piezas. Aparece el perfil "doble T" en 1836, reemplazando a la madera y revoluciona la industria de la construcción creando las bases de la fabricación de piezas en serie.

Existen tres obras significativas del siglo XIX exponentes de esa revolución: La primera es el Palacio de Cristal, de Joseph Paxton, construida en Londres en 1851 para la Exposición Universal; esta obra representa un hito al resolver estructuralmente y mediante procesos de prefabricación el armado y desarmado, y establece una relación novedosa entre los medios técnicos y los fines expresivos del edificio. En su concepción establece de manera premonitoria la utilización del vidrio como piel principal de sus fachadas.

En esa Exposición de París de 1889, el ingeniero Ch. Duter presenta su diseño la Calerie des Machine, un edificio que descubre las ventajas plásticas del metal con una estructura ligera y mínima que permite alcanzar grandes luces con una transparencia nunca lograda antes. En estas Exposiciones Mundiales de Londres y París entre 1855 y 1889 se hizo alarde de una técnica cada vez más depurada de la construcción en hierro, y en la exposición de 1889, se había alcanzado su máxima expresión, con la Torre Eiffel (París, Francia) de 305 metros de altura, que renueva y modifica formalmente la ingeniería.

Imagen I-2 Construcción de la Torre Eiffel

El proceso inicial de producción de acero en gran escala se dio en Inglaterra en 1855. El camino hacia el cielo comenzó cuando el inglés Henry Bessemer (1813-1898) inventó un proceso para quitar las impurezas de hierro fundido con un chorro de aire para fabricar acero. Esto permitió la producción masiva barata de acero.

George Fuller (1851-1900) fue un arquitecto de Massachusetts que, en contra de la idea predominante de la época, reconoció los beneficios de la utilización de acero en la construcción de edificios. Hasta este punto, las alturas de los edificios han sido limitadas por la capacidad de carga de las paredes exteriores. En 1889, George Fuller construyó la primera estructura de jaulas de acero para soportar el peso del edificio en lugar de las paredes exteriores. Este edificio fue el Tacoma de 13 pisos en Chicago, demolido en 1929.

Imagen I-3 Edificio Tacoma

Desde 1880, el acero se transformó en el primer material estructural en los Estados Unidos de América, estimulado por los precios competitivos que favorecía el nuevo proceso de fabricación con hogar abierto. Esto dio lugar a un nuevo esplendor constructivo de numerosos puentes colgantes, como por ejemplo el Puente de Brooklyn en Nueva York, y comienza la época de oro de los rascacielos entre 1904 y 1912, hasta el inicio de la primera guerra mundial. En esta época se construyeron los edificios Woolworth y el Times Square en Nueva York.

Imagen I-4 Puente de Brooklyn

Durante la primera guerra se abrió un paréntesis en la construcción de estos rascacielos, sin embargo entre 1920 y 1930 recomenzó con nuevo ímpetu, con edificio como el Empire State, el Wall Tower, el Chrysler y el Rockefeller Center en Nueva York.

Imagen I-5 Empire State

I.2. Clasificación De Los Aceros

La clasificación del acero se puede determinar en función de sus características, las más conocidas son la clasificación del acero por su composición química y por sus propiedades o clasificación del acero por su uso; cada una de estas clasificaciones a la vez se subdivide o hace parte de otro grupo de clasificación.

- I.2.1. Clasificación de Acero por su composición química:
 - Acero al carbono: Se trata del tipo básico de acero que contiene menos del 3% de elementos que no son hierro ni carbono.
 - Acero de alto carbono: El Acero al carbono que contiene más de 0.5% de carbono.
 - Acero de bajo carbono: Acero al carbono que contiene menos de 0.3% de carbono.
 - Acero de mediano carbono: Acero al carbono que contiene entre 0.3 y 0.5% de carbono.
 - Acero de aleación: Acero que contiene otro metal que fue añadido intencionalmente con el fin de mejorar ciertas propiedades del metal.
 - Acero inoxidable: Tipo de acero que contiene más del 15% de cromo y demuestra excelente resistencia a la corrosión.
- I.2.2. Clasificación del acero por su contenido de Carbono:
 - Aceros Extra suaves: el contenido de carbono varía entre el 0.1 y el 0.2 %
 - Aceros suaves: El contenido de carbono está entre el 0.2 y 0.3 %

- Aceros semisuaves: El contenido de carbono oscila entre 0.3 y el 0.4
 %
- Aceros semiduros: El carbono está presente entre 0.4 y 0.5 %
- Aceros duros: la presencia de carbono varía entre 0.5 y 0.6 %
- Aceros extramuros: El contenido de carbono que presentan esta entre el 0.6 y el 07 %.

I.2.3. Clasificación del Acero por sus propiedades mecánicas

Según sus propiedades mecánicas, los aceros se clasifican en acero común (acero dulce), acero de alta resistencia y aceros especiales.

Las propiedades mecánicas de los aceros dependen de su composición química, de sus aleaciones, de su proceso de laminación, forma de enfriamiento, tratamiento térmico posterior y el tipo de solicitaciones a que sean sometidos. Las siguientes propiedades, sin embargo, son comunes a todos los aceros:

- Peso específico (γ): 7850 Kg/m3.
- Módulo de elasticidad longitudinal (E): 2.1 x 106 Kg/cm2.
- Módulo de elasticidad transversal o de corte (G): $\frac{E}{2(1+v)}$
- Coeficiente de Poisson (*v*): 0.3 (en el rango elástico)

0.5 (en rango plástico)

• Coeficiente de dilatación térmica (*α*): 11.7 x 10-6/°C

Acero común: también conocido por acero dulce o acero al carbono, fue por muchos años el material más usado en la construcción. Es un acero con bajo contenido de carbono (entre el 0.12 y 0.6% en peso). Entre estos aceros están el

AE25, ASTM A36 y Din ST37. La variación en el contenido de carbono resulta decisiva en las propiedades mecánicas de los diferentes aceros.

Acero de alta resistencia: son aquellos que han incrementado notablemente su punto de cedencia, por contenidos elevados de carbono (entre 1.4 y 1.7% en peso) o por aleaciones adecuadas, su ductilidad se ve drásticamente disminuida. En algunos casos, las elevadas resistencias se logran mediante tratamientos térmicos y templados, o por trabajos en frio.

Acero especiales: se fabrican con sofisticadas aleaciones, para cubrir necesidades específicas, y no todos son adecuados para su aplicación estructural. Por ejemplo, los aceros de los cascos de submarinos, naves especiales o los usados para la construcción de máquinas de alta precisión.

NORMA	DESIGANACIÓN	Fy (Kgf/cm²)	Fu (Kgf/cm²)
ASTM	A36	2530	4080
ASTM	A500 Gr C	3240	4360
ASTM	A53B	2460	4220
ASTM	A572 Gr 42	2950	4220
ASTM	A572 Gr 50	3520	4570
ASTM	A572 Gr 60	4220	5270
ASTM	A572 Gr 65	4570	5620
ASTM	A588	3520	4930
ASTM	A992	3520	4570
COVENIN	AE-25	2500	3700
COVENIN	AE-35	3500	5200
DIN	St-37	2400	3700
DIN	St-52	3600	5200

Tabla I-1 Aceros según sus propiedades mecánicas

I.3. Productos Comerciales en Acero

Las estructuras de acero se diseñan y fabrican con perfiles estructurales, los cuales pueden ser laminados o ensamblados. Los laminados son fabricados mediante un proceso de formado a través de un tren de laminación compuesto por un conjunto de rodillos que adecuadamente dispuestos permiten moldear el acero a altas temperaturas. Los ensamblados se fabrican partiendo de dos o más perfiles laminados o de planchas cortadas de acuerdo con las necesidades, conectados entre sí mediante pernos, remaches o soldadura.

Los perfiles laminados se encuentran normalizados y sus características pueden ser consultadas en manuales de diseño o en los catálogos de los fabricantes. Las normalizaciones más utilizadas en el mundo son la norteamericana y la europea. En la Figura I-1 se muestran las secciones comerciales típicas según la norma venezolana COVENIN 1618-98, así como también se denotan la nomenclatura de sus dimensiones.

Imagen I-6 Perfiles laminados Norma COVENIN 1618-98

I.4. Criterios de Diseño del acero

El criterio de diseño estructural consiste en seleccionar las secciones óptimas de cada miembro, con sus correspondientes uniones y conexiones, entre un conjunto de alternativas para cada caso. Para ello se puede emplear métodos de diseño que tomen en cuenta el comportamiento de la estructura en el rango elástico, o métodos que permitan cierta incursión de las secciones en el rango inelástico.

Los criterios elásticos han sido usados durante muchos años con éxito en el diseño de estructuras de acero, sin embargo en la actualidad se prefiere la aplicación del criterio de los estados límites (criterios inelásticos), por amplias razones. Ante todo este último criterio permite tener una visión más general del problema, cuando un sistema estructural, bajo cargas superiores a las previstas en el análisis, plastifica algunas de sus secciones en una redistribución interna de los esfuerzos, de modo de recurrir a su energía de reserva de deformación para continuar resistiendo y mantener la estructura en pie.

El diseño con factores de carga y resistencia, LRFD (Load and Resistance Factor Design) por sus siglas en ingles, es una aproximación más perfecta al diseño de las estructuras de acero para edificios, que el diseño por esfuerzos admisibles. Envuelve condisideraciones explícitas de estados límite, múltiples factores de carga y factores de resistencia y una determinación probabilística implícita de la confiabilidad. La designación LRFD refleja el concepto de factorizar tanto las cargas como las resistencias. El criterio fundamental de este diseño con factores de carga y de resistencia queda expresado en la ecuación siguiente, que se plantea a continuación:

$$\sum \gamma_i \cdot Q_i \leq \phi R_n$$

Donde:

γ = Factor de carga	\emptyset = Factor de resistencia
Q = Efecto nominal de la carga	R_n = Resistencia nominal
$\sum \gamma_i \cdot Q_i = \text{Resistencia requerida}$	ϕR_n = Resistencia de diseño

El término de la izquierda de la ecuación anterior, representa la resistencia que se requiere, la cual se calcula por medio del análisis estructural basándose en las cargas supuestas, afectadas por los coeficientes de carga, y el término de la derecha representa la capacidad estructural límite suministrada por los elementos y los miembros seleccionados, afectada por los factores de resistencia. Los factores de carga " γ " y los factores de resistencia " ϕ " reflejan el hecho de que las cargas y las resistencias pueden ser determinadas con cierto grado de aproximación. El factor de resistencia " ϕ " es igual o menor que 1, debido a que siempre existir 'a la posibilidad de que la resistencia real sea menor que el valor nominal " R_n " calculado con base en el comportamiento teórico de los elementos.

I.4.1. Estados límite

Un estado límite es una condición que representa el límite estructural de utilidad. Los estados límite pueden ser dictados por los requisitos funcionales como las deflexiones máximas; pueden ser conceptuales tales como la articulación plástica o la formación de un mecanismo; o pueden representar un colapso real de una parte o de la totalidad de la estructura, tal como la fractura o inestabilidad de un miembro. Se aceptan dos clases de estados límites, los de resistencia y los de servicio. La mayoría de los códigos estructurales están más dirigidos hacia los estados límite de resistencia por consideraciones lógicas de seguridad pública. Esto no significa que los estados límites de servicio no sean garantizar importantes para el diseñador quien debe igualmente el comportamiento funcional y la economía del diseño. Sin embargo, estas últimas consideraciones dependen más del criterio de los diseñadores. Las

consideraciones mínimas de seguridad pública, por otra parte no son materias que puedan estar sujetas al criterio individual y es por esta razón que las especificaciones están más dirigidas hacia el trabajo con los estados límites de resistencia que con los estados límites de servicio.

I.5. Diseño de Elementos de Acero

I.5.1. Elementos sometidos a tracción

El patrón de carga de tracción es el más sencillo de estudiar, debido a que los miembros sometidos a este tipo de solicitación son incondicionalmente estables, por lo tanto solo deben considerarse los estados límite de fluencia y de ruptura. Esto solo aplica si la carga de tracción se aplica en el centroide del miembro, de lo contrario se genera flexión además de la tracción axial.

Cedencia de la sección en el área total

$$\phi_t \cdot N_t = \phi_t \cdot F_y \cdot A_g \ge P_u \qquad \phi_t = 0.90$$

Fractura de la sección del área efectiva

$$\phi_t \cdot N_t = \phi_t \cdot F_u \cdot A_e \ge P_u \qquad \phi_t = 0.75$$

Donde:

 ϕ_t = Factor de minoración de A_e = Área efectiva resistencia

 N_t = Resistencia teórica a tracción

 F_{v} = Esfuerzo de cedencia

 F_u = Esfuerzo último

$$A_a =$$
Área gruesa

I.5.2. Elementos sometidos a compresión

Para el adecuado comportamiento de los elementos a compresión se deben considerar los siguientes criterios:

 Limitaciones en esbeltez: para describir el comportamiento de un miembro estructural comprimido, no se hace en general referencia directa a su longitud, si no a la esbeltez (λ) que resulta de la relación entre su longitud efectiva y su radio de giro mínimo.

$$\lambda = \frac{k \cdot l}{i_{min}}$$

Donde:

k = Factor de longitud efectiva

l = Longitud del elemento a compresión

 i_{min} = Radio de giro mínimo

 Resistencia Nominal a compresión: la resistencia a compresión del elemento dependerá de su esfuerzo crítico al pandeo.

$$\phi_c \cdot P_n = \phi_c \cdot F_{cr} \cdot A_g \ge P_u \qquad \phi_c = 0.85$$

Donde:

 ϕ_c = Factor de minoración de resistencia

 P_n = Resistencia teórica a compresión

 F_{cr} = Esfuerzo crítico a pandeo. Definido por las siguientes ecuaciones:

Para
$$\lambda \le 4.71 \cdot \sqrt{\frac{E}{F_y}}$$
 \longrightarrow $F_{cr} = \left(0.658^{\frac{F_y}{F_e}}\right)$
Para
$$\lambda > 4.71 \cdot \sqrt{\frac{E}{F_y}}$$
 $F_{cr} = 0.877 \cdot F_e$

$$F_e = \frac{\pi^2 \cdot E}{\lambda^2}$$

I.5.3. Elementos sometidos a flexión

La resistencia teórica M_t , será el menor valor que se obtenga de analizar los estados límites de agotamiento resistente por pandeo local de las alas y/o alma, por cedencia y por pandeo lateral torsional.

Imagen I-7 Momento resistente a flexión Vs. Longitud de arriostramiento

I.5.4. Elementos sometidos a corte

La resistencia minorada al corte de la sección viene dada por la resistencia del alma sin rigidizadores, la cual será $\phi_v V_n$, siendo $\phi_v = 0.90$

$$V_n = 0.60 \cdot F_v \cdot A_w$$

Donde:

 $A_w =$ Área del alma de la sección. $A_w = t_w \cdot d$

I.5.5. <u>Elementos sometidos a flexo-compresión</u>

Los elementos diseñados bajo la acción combinada de cargas axiales y momentos deberán cumplir con la siguiente ecuación para determinar que este dentro de los parámetros aceptables de demanda/capacidad:

Para
$$\frac{P_u}{\phi \cdot P_n} \ge 0.20$$

 $\frac{P_u}{\phi_c \cdot P_n} + \frac{8}{9} \left(\frac{M_{ux}}{\phi_b \cdot M_{nx}} + \frac{M_{uy}}{\phi_b \cdot M_{ny}} \right) \le 1.0$
Para $\frac{P_u}{\phi \cdot P_n} > 0.20$
 $\frac{P_u}{2\phi_c \cdot P_n} + \frac{8}{9} \left(\frac{M_{ux}}{\phi_b \cdot M_{nx}} + \frac{M_{uy}}{\phi_b \cdot M_{ny}} \right) \le 1.0$

II. PANDEO

II.1. Introducción

La fórmula de Euler, que aún se emplea para el cálculo de la carga crítica en campo elástico de columnas esbeltas, es una de las fórmulas más antiguas de la ingeniería. Su desarrollo, junto con las modificaciones introducidas por Engesser y Shanley para considerar el comportamiento no lineal, proveen la base para una historia que se ha desarrollado en forma continua desde 1744.

La columna perfecta, en su función estructural de transmitir cargas de compresión de un punto de la estructura a otro, debería permanecer recta mientras se acorta bajo una carga de compresión creciente. Pero al alcanzar la carga crítica, si se introduce una imperfección infinitesimal, la barra comienza a flectar. Si la columna fuera suficientemente esbelta para pandear elásticamente, no habría un incremento inicial de la carga al comenzar el proceso de pandeo. Sin

embargo si el mismo se iniciara en el rango inelástico, un leve incremento de carga acompañaría la iniciación del fenómeno.

II.1.1. Pandeo elástico

En 1678 Robert Hooke proporcionó los elementos preliminares necesarios para el desarrollo de la teoría del pandeo elástico al establecer que el desplazamiento de un cuerpo elástico era proporcional a la carga que lo producía. Afirmó que esta relación, ahora conocida como Ley de Hooke, podía ser aplicada a todos los cuerpos elásticos, metal, madera, piedra, cabello, hueso, tendón, seda, tierra cocida, vidrio, etc. Sus hallazgos fueron hechos en base a varios experimentos.

El segundo paso lo dio Jacob Bernoulli quién estudió el descenso y la curvatura en una viga cantilever. El aseguró, en 1705, sobre la base de la Ley de Hooke, que la curvatura en cualquier punto de una barra flectada era proporcional al momento resistente desarrollado en ese punto.

Leonard Euler (1707-1783) estudió bajo la supervisión del hermano de Jacob Bernoulli, John, y asumió como cierta la relación entre momento y curvatura. En el apéndice del libro que Euler publicó en 1744 sobre cálculo variacional, presentó por primera vez la fórmula para columnas que hoy lleva su nombre.

La "carga de Euler" es la carga para la cual una columna esbelta y elástica puede entrar en una configuración de flexión por efecto de carga axial únicamente. En la época de Euler las columnas eran hechas de mampostería o madera, siendo este último material considerado por Euler como apropiado para aplicar su fórmula.

Euler dedujo su fórmula en la hipótesis de lo que él llamó "momento de rigidez" de la barra y que era igual a $\frac{Ek^2}{\rho}$ donde " Ek^2 " era una constante a

determinar por vía experimental y ρ era el radio de curvatura de la columna. El tenía solo una idea aproximada de la relación existente entre la forma de la sección y la constante " Ek^{2} " y en un escrito posterior (en el año 1759) decía que el momento de rigidez parece ser proporcional al cuadrado, o quizás al cubo, del grosor de la pieza, por lo que, si la sección es circular, el momento de rigidez sería proporcional a la tercera o cuarta potencia del diámetro de la barra. De esta manera comienza a intuir el concepto de momento de inercia de una sección que no era conocido en esa época.

Euler escribió la fórmula para calcular "la fuerza necesaria para flectar la columna" como: $P = \frac{\pi^2 E k^2}{L^2}$ donde *E* es una propiedad resistente y k^2 una característica dimensional de la sección. A pesar de que él no tenía las bases para determinar *E* o k^2 en forma independiente, propuso determinar estos valores en forma combinada, mediante el ensayo de una viga cantilever con una carga *P* en el extremo en donde se medía el desplazamiento.

La transición de la constante de Euler " Ek^2 " al *EI* actual requiere de la aplicación de la ley de Hooke en conjunción con una adecuada evaluación de distribución de tensiones internas en un miembro flectado. Recién en 1783, 39 años después que Euler publicó su fórmula, Coulomb (1736-1806) aplicando la Ley de Hooke y las ecuaciones de equilibrio estático dedujo la expresión que relaciona el momento flector con las tensiones normales que éste origina en las vigas.

II.1.2. Pandeo inelástico

Si bien Euler fue el padre de la teoría del pandeo elástico, él no limitó el campo de validez de su fórmula, demostrando así que la interpretación de los fenómenos inelásticos era muy superior a los conocimientos de la época. En una memoria del año 1757 escribió: "... todo parece indicar que el momento de rigidez " Ek^2 " no está limitado a los cuerpos elásticos. La fórmula concierne a una fuerza

(que origina un momento) por medio de la cual la pieza sufre un corrimiento y no tiene ninguna importancia si tal pieza, después de la flexión, requiere o no de una fuerza adicional para retomar su forma primitiva".

Los progresos hacia una mejor interpretación del pandeo en campo no lineal no se desarrollaron por muchos años, debido fundamentalmente a la falta de conocimiento de las relaciones tensión deformación y momento flector-curvatura en el rango inelástico.

En 1889 Considere indicó por qué la fórmula de Euler no había sido muy usada por los ingenieros. Realizó una serie de ensayos sobre 32 columnas y sugirió que si el pandeo ocurría cuando se ha sobrepasado el límite de proporcionalidad, se debía considerar un módulo de elasticidad efectivo " E_{ef} ", cuyo valor estaba comprendido entre el módulo inicial "*E*" y el módulo tangente " E_t ".

Independientemente de estos estudios, Engesser en el mismo año sugirió que la resistencia de las columnas podía calcularse utilizando el módulo tangente en la fórmula de Euler. Con este criterio, para una columna articulada la tensión crítica era: $\sigma = \frac{\pi^2 E_t}{(l/r)^2}$ siendo "*r*" el radio de giro de la sección y "*l*" la longitud de la columna.

Seis años después, Jasinki, en base a los trabajos de Considere y Engesser, propuso utilizar un módulo de elasticidad reducido " E_r ", intermedio entre "E" y " E_t ", pero que dependía también de la forma de la sección. Sin embargo muchas experiencias de laboratorio, realizadas con sumo cuidado, mostraron que el pandeo y la falla de la columna se producía para cargas ligeramente superiores a las que indicaba la teoría del módulo tangente.

En 1946, Shanley reconcilió las controversias surgidas entre los defensores de ambas teorías. El estableció que obviamente era posible que se iniciara la flexión de la columna con un aumento simultáneo de carga axial de acuerdo a la teoría del módulo tangente. Bastaría una imperfección infinitesimal para producir la flexión inicial y por lo tanto la carga de la fórmula del doble módulo nunca se alcanzaría.

Shanley confirmó su anuncio mediante ensayos de modelos consistentes en dos barras rígidas conectadas en el centro por material inelásticamente deformable. De acuerdo a esas experiencias von Karman refinó la teoría del módulo tangente escribiendo que: "La carga del módulo tangente es el menor valor de carga axial para el cual puede ocurrir la bifurcación de la posición de equilibrio, sin tener en cuenta si la transición a la bifurcación de flexión requiere un aumento de la carga axial o no."

Estos nuevos conceptos, que tienen una importancia comparable a la contribución inicial de Euler, han sido llamados Teoría de Engesser-Shanley, que hoy es generalmente aceptada.

II.2. Tipos de Pandeo

Cuando un miembro axialmente cargado en compresión se vuelve inestable en su conjunto (es decir, no localmente inestable), él puede pandearse en una de las tres maneras expuestas a continuación.

II.2.1. <u>Pandeo flexional</u>: se trata de una deflexión causada por flexión respecto al eje correspondiente a la relación de esbeltez más grande. Este es usualmente el eje principal menor, o sea, aquel con menor radio de giro. Los miembros con cualquier tipo de sección transversal pueden fallar de esta manera.

- II.2.2. <u>Pandeo torsional</u>: Este tipo de falla es causada por torsión alrededor del eje longitudinal del miembro. Este caso puede ocurrir sólo en miembros con secciones transversales doblemente simétricas con elementos muy esbeltos en su sección. Los perfiles estándar laminados en caliente no son susceptibles al pandeo torsional, pero los miembros compuestos a base de placas delgadas sí lo son y deben ser investigados. El perfil cruciforme mostrado es particularmente vulnerable a este tipo de pandeo.
- II.2.3. <u>Pandeo flexo-torsional</u>: Este tipo de falla es causada por una combinación de pandeo por flexión y pandeo torsional. El miembro se flexiona y tuerce simultáneamente. Este tipo de falla sólo puede ocurrir en miembros con secciones transversales asimétricas, tanto en aquellas con un eje de simetría, como en aquellas sin ningún eje de simetría.

Imagen II-1 Tipos de Pandeo

II.2.4. <u>Pandeo local</u>: Es uno de los modos de falla más importantes en estructuras metálicas, donde pandean los elementos finos de una sección que es sometida a compresión en una serie de ondas o arrugas.

Imagen II-2 Ejemplo de Pandeo Local

II.3. Formulación General

Los problemas de estabilidad elástica relativos al pandeo de barras comprimidas se analizan basándose en la teoría de Euler y bajo las siguientes condiciones:

La barra es de un material perfectamente homogéneo y elástico, es decir que cumple con la Ley de Hooke y en el estado de tensiones alcanzado no se supera la tensión de proporcionalidad.

Su eje es idealmente recto.

La carga está exactamente centrada.

Los vínculos son ideales (sin rozamiento).

Imagen II-3 Cargas críticas de pandeo

A fin de formular las ecuaciones diferenciales que permitan determinar la carga de pandeo de una columna ideal, se debe permitir que ocurra un pequeño desplazamiento lateral del eje de la columna.

Para una sección genérica ubicada a una abscisa "x" la barra tiene un desplazamiento "y". Si planteamos el equilibrio entre el momento externo y el momento elástico interno tendremos:

$$P \cdot y = -E \cdot I \cdot \frac{d^2 y}{dx^2}$$
$$E \cdot I \cdot \frac{d^2 y}{dx^2} + P \cdot y = 0$$
$$\frac{d^2 y}{dx^2} + \frac{P}{E \cdot I} \cdot y = 0$$

Aplicando el siguiente cambio de variable $\propto^2 = \frac{P}{E \cdot I}$ obtenemos la siguiente diferencial $\frac{d^2y}{dx^2} + \propto^2 \cdot y = 0$ cuya solución general es la siguiente:

$$y = A\sin(\alpha \cdot x) + B\cos(\alpha \cdot x)$$

Imponiendo las siguientes condiciones de borde:

$$x = 0 \rightarrow y = 0 \rightarrow B = 0$$

 $x = l \rightarrow y = 0 \rightarrow A \sin(\alpha \cdot x) = 0$

La solución no trivial de la segunda condición de borde es $\propto = \frac{n \cdot \pi}{l}$ donde "*n*" es un número entero.

$$P = E \cdot I \cdot \frac{n^2 \cdot \pi^2}{l^2}$$

La menor de todas las cargas que para la cual se cumple con la ecuación anterior, corresponde a n = 1. Dicha carga es la "Carga crítica".

$$P_{crit} = \pi^2 \cdot \frac{E \cdot I}{l^2}$$

Procedimientos iguales se pueden utilizar para determinar las cargas críticas de pandeo elástico de columnas con diferentes condiciones de borde.

Imagen II-4 Longitudes de pandeo

$$P_{crit} = \pi^2 \cdot \frac{E \cdot I}{(k \cdot l)^2}$$

Desde el punto de vista práctico resulta muy conveniente poder tratar cualquier caso de sustentación mediante una expresión única para la carga crítica. Esto se logra transformando a la pieza en una barra ficticia biarticulada con una luz ideal que depende la luz real y de las condiciones reales de vinculación. Esta luz ficticia recibe el nombre de "Luz de pandeo" ó "Longitud de pandeo".

K teóricos	0.5	0.7	1.0	1.0	2.0	2.0
K diseño	0.65	0.8	1.2	1.0	2.1	2.0
			↓ ↓	No.		

Imagen II-5 Factor de longitud teórico y de diseño de pandeo

II.3.1. Tensión crítica de Euler. Limitación de la teoría de Euler

La tensión crítica de Euler se calcula como el cociente entre la carga crítica de pandeo de Euler y el área de la sección transversal de la barra:

$$\sigma_{crit} = \frac{P_{crit}}{A} = \frac{\pi^2 \cdot E \cdot l}{(k \cdot l)^2 \cdot A} = \frac{\pi^2 \cdot E \cdot i^2}{(k \cdot l)^2} = \frac{\pi^2 \cdot E}{\left(\frac{k \cdot l}{i}\right)^2}$$

Llamando $\lambda = \frac{k \cdot l}{i}$ donde esta relación representa la esbeltez de la pieza, obtenemos la siguiente expresión:

$$\sigma_{crit} = \frac{\pi^2 \cdot E}{\lambda^2}$$

La esbeltez de la pieza se define como la relación entre la luz de pandeo y el radio de giro mínimo de la sección transversal de la pieza correspondiente a la luz de pandeo considerada. Este parámetro es sumamente importante en el problema de pandeo. Efectivamente, cuanto más esbelta es una barra mayor es el riesgo de pandeo, y ello puede verse en la fórmula de la tensión crítica de Euler (10.15) que depende inversamente de la esbeltez. Podemos representar la función $\sigma_{crit} = f_{(\lambda)}$, y al hacerlo vemos que cuando "*l*" tiende a cero, la tensión crítica de Euler tiende a infinito. Pero la fórmula de Euler fue deducida bajo la hipótesis de la validez de la Ley de Hooke por lo tanto la misma solamente es válida si $\sigma_{crit} \leq \sigma_p$. En la zona comprendida entre esbeltez cero y " σ_p ", la fórmula de Euler debe ser reemplazada por otra ley que contemple el comportamiento elasto-plástico del material.

Imagen II-6 Esfuerzo de compresión en función de la esbeltez

III. DISEÑO SISMORESISTENTE EN ACERO

III.1. Filosofía del Diseño Sismorresistente en Acero

Para las estructuras sismorresistente en acero se toman en cuenta los siguientes parámetros que definen el diseño de cada uno de los elementos estructurales presentes en el sistema:

- Establecer un diseño por capacidad, limitar mecanismos frágiles y propiciar mecanismos dúctiles.
- Elegir y establecer el patrón de falla adecuado de los elementos "fusibles" que entraran en cedencia durante un evento sísmico.

- Los elementos "fusibles" deben ser capaces de desarrollar incursiones inelásticas significativas y de disipar energía durante un evento sísmico.
- Diseñar el resto de los elementos del sistema resistente a sismo con la condición de que permanezcan en el rango elástico al presentarse las fallas dúctiles (rotulas plásticas) esperadas en los "fusibles".
- Las conexiones de los elementos "fusibles" deben ser diseñadas en función a la capacidad inelástica esperada de los mismos.
- Las conexiones del resto de los elementos del sistema resistente a sismo deben ser diseñadas para las fuerzas que se producen al presentarse las fallas dúctiles (rotulas plásticas) esperadas en los "fusibles".

III.2. Pasos a seguir para elaborar un Diseño Sismorresistente en Acero

Basado en las recomendaciones de la organización FEMA por sus siglas en ingles "Federal Emergency Management Agency" se establecen los siguientes pasos para un adecuado diseño sismorresistente en acero:

- Seleccionar un Tipo de Sistema Estructural y configuración de pórticos adecuados a la arquitectura presentada.
- Hacer un predimensionado de los miembros pertenecientes a los pórticos.
- Determinar los datos para poder llevar a cabo el análisis estructural tales como las cargas gravitacionales y acciones.
- Llevar a cabo el modelaje y análisis matemático de la estructura.
- Comprobar el adecuado comportamiento de los miembros seleccionados para el pórtico según las fuerzas, derivas y limitantes de estabilidad adecuadas.

- Confirmar o revisar las dimensiones de los miembros basado en los requerimientos establecidos para cada uno de los tipos de sistemas estructurales, en caso de no cumplir con dichos requerimientos se deberá redimensionar los elementos y regresar al paso anterior.
- Completar el diseño de las conexiones, rigidizadores, arriostramientos laterales, entre otros elementos que dependerán del tipo de sistema estructural elegido.

IV. RESEÑA HISTORICA DE LAS DIAGONALES DE PANDEO RESTRINGIDO

La idea de eliminar el modo de falla por pandeo en elementos esbeltos sometidos a compresión ha sido objetivo de continuas discusiones e investigaciones. La solución teórica para eliminar este modo de falla es muy simple, colocar arriostramientos laterales al elemento comprimido, a intervalos cortos y regulares, de forma tal que la longitud efectiva del elemento comprimido se aproxime a cero.

Imagen IV-1 Planteamiento del pandeo restringido

En la década de los ochenta el Profesor Akira Wada, del Instituto Tecnológico de Tokyo, con la colaboración de la Corporación de Acero de Nippon iniciaron la investigación y desarrollo de un elemento esbelto que sometido a compresión no falle por pandeo. La inspiración de los elementos de pandeo restringido le surgió al Dr. Wada de los huesos humanos. Fue a través de esta idea que el Dr. Wada diseño estos elementos basados en un hueso humano típico, más grande en los extremos y una sección más reducida en el centro, planteando que puedan ser utilizados para el control de daños ante acciones sísmicas. El esquema original de diseño en una edificación con diagonales de pandeo restringido fue para ser utilizada como un "amortiguador histérico", en conjunto con el sistema de pórticos de acero. Estos aparatos utilizados como amortiguadores de histéresis logran reducir toneladas de acero, generalmente entre un 5 y 10% de toda la estructura.

A principios de 1988 el primer sistema de diagonales de pandeo restringido y pórticos de acero fue utilizado en Japón. El primer ensayo de laboratorio de los elementos de pandeo restringido se realizó en Estados Unidos, en la Universidad de California en Berkeley en 1999. El ensayo se realizó bajo la supervisión del Profesor E. Povov y el Profesor N. Makris. Estos ensayos se llevaron a cabo con el objetivo de ser utilizados luego el edificio Davis de la Universidad de California, el cual se convirtió el 17 de enero del 2000 en el primer edificio de los Estados Unidos en utilizar este sistema.

Imagen IV-2 Línea del tiempo del BRBF

Los resultados originales que se obtuvieron en Berkeley demostraron un buen desempeño ante solicitaciones cíclicas, cumpliendo con los protocolos establecidos por las empresas conjuntas de SEAOC (Structural Engineers Association of California), ATC (Applied Technology Council) y CUREE (Consortium of Universities for Research in Earthquake Engineering).

Fuente: Charles Lee Powell Structural, research laboratories, Caltrans SRMD test facility. Report No. SRMD–2007/05-rev2. 13 – 15 de Marzo de 2007.

V. ARTÍCULOS DE INVESTIGACIÓN DE LAS DIAGONALES DE PANDEO RESTRINGIDO

V.1. Specifying Buckling-Restrained Diagonal Systems. Kimberley Robinson. Noviembre de 2009.

El BRBF es un sistema codificado y avalado por la ASCE/SEI 7-05 y el ANSI/AISC 341-05. A pesar de que recientemente ha surgido tanta información sobre este tema muchos ingenieros todavía se preguntan: ¿Qué es un BRBF? ¿Cómo se clasifica este sistema?

La característica principal de este sistema es su capacidad de ceder en compresión como en tensión. Está compuesto por dos elementos principales que realizan tareas distintas, un núcleo de acero que es el componente que resiste la carga axial y una cubierta externa llena de un mortero que rodea al núcleo es el componente de estabilidad que impide el pandeo del núcleo.

Durante el proceso de fabricación se debe asegurar que el núcleo de acero y el mortero permanezcan separados, con el objetivo de prevenir la acción compuesta entre ambos que cambiaría totalmente el comportamiento deseado.

El BRB es colocado en un pórtico concéntricamente reforzado, transformándolo en un pórtico con arriostramientos de pandeo lateral restringido (BRBF), dicho sistema es el encargado de resistir la fuerza lateral. Este sistema típicamente es usado en los Estados Unidos para estructuras cuya categoría de demanda sísmica: D, E, o F, aunque también han sido explorados para usos en zonas de baja sismicidad.

El sistema BRBF expone un funcionamiento cíclico robusto y de gran ductilidad, que es reflejada en su factor de reducción de respuesta sísmica (R) de 8 cuando las vigas en los pórticos resistentes a las fuerzas laterales son conectadas a momento a las columnas y un R de 7 es aplicable cuando no lo son. Las pruebas que se han realizado sobre BRBF hasta el momento han sugerido que un BRB aún pueda ser capaz de soportar múltiples acontecimientos sísmicos sin llegar a la falla.

Imagen V-1 Comparación del desempeño de los sistemas

Fuente: The Unbonded Diagonal, Laboratorio de la Universidad de California, San Francisco.

La siguiente es una lista contiene algunas recomendaciones y procedimientos para proyectos estructurales con sistemas de pórticos de diagonales con pandeo restringido.

- El rango permisible de esfuerzo cedente del corazón de acero, (*F_{ysc}*).
 Un rango de 38 ksi ≤ *F_{ysc}* ≤ 46 ksi es generalmente la práctica aceptada. Sin embargo, es aconsejable ponerse en contacto con un fabricante de BRB para hablar de la gama recomendada.
- Variabilidad permitida en resistencia requerida en BRB. Hay dos opciones para cumplir con las exigencias de resistencia del BRB en AISC 341.

La <u>Opción 1</u> consiste en mantener un área principal de acero (A_{sc}) y variar la tensión cedente (F_{ysc}).

La <u>Opción 2</u> consiste en permitir que F_{ysc} no varíe y la compensación se logra ajustando A_{sc} de tal manera que se mantenga constante P_{ysc} .

- La opción 2 genera un menor valor de sobre-resistencia del BRB, pero también causa una variación de rigidez más amplia del BRB. Las rigideces de BRBs con resistencias idénticas podrán variar en un 15 a 20%. Si no se controla, esto puede resultar en una distribución de carga diferente de lo que se asumió en la fase de diseño, que puede conducir a plantas débiles o a comportamientos torsionales no deseados.
- Variabilidad permisible de la rigidez del BRB. Especificar una rigidez mínima o ambas una mínima y una máxima rigidez. Esto puede ser dado como un factor de modificación de rigidez (KF), o como un valor Keff.

Imagen V-2 Rigideces efectivas

Fuente: Modern Steel Construction, Noviembre de 2009.

V.2. Component Testing, Stability Analysis and Characterization of BRBF. Universidad de California.

La carga de pandeo crítica para una diagonal de pandeo restringido viene dada por la siguiente expresión:

$$P_{crit} = \frac{\pi^2}{(k \cdot l)^2} \cdot (E_i \cdot I_i + E_o \cdot I_o)$$

Donde:

 E_i = Módulo de Young del núcleo de E_o = Módulo de Young de la acero camisa.

 I_i = Inercia del núcleo de acero I_o = Inercia de la camisa

Despreciando el término $E_i \cdot I_i$, (El cual comúnmente es dos o tres veces menor que la rigidez de la camisa), la expresión queda reducida a:

$$P_{crit} = \pi^2 \cdot \frac{E_o \cdot I_o}{(k \cdot l)^2}$$

El resultado es la carga crítica de pandeo de la camisa. La estabilidad de la diagonal de pandeo restringido se asegura siempre y cuando esta carga crítica es mayor que la carga cedente del núcleo de acero.

Table 1. Test parameters of specimens and test results

						Pe		Pt		Pc	Per	Per	
	B×D×t	Ik	P _E A	A	Py	11	Pt	1	Pc	1	Per	1	1
	(nu)	(cn4)	(ton)	(cm2)	(ton)	Py	(ton)	Py	(ton)	Py	(ton)	Py	Pe
No. 1	150x150x4.5	896	171.0	16.84	48.50	3, 53	48.6	1.00	51.5	1.06	-	-	-
No. 2	150x100x4.5	352	67.4	16.84	48.50	1.39	48.3	1.00	51.8	1.07	-	-	-
No. 3	150x100x3.2	262	50.2	16.88	48.61	1.03	47.6	0.98	49.3	1.01	-	-	-
No. 4	150x75x4.5	183	35.0	16.84	48.50	0.72	48.3	1.00	-	-	46.5	0.96	1.33
No. 5	150x75x3.2	137	26.2	16.62	47.87	0.55	47.9	1.00	-	-	43.1	0.90	1.65

Figure 9. Test result of specimen No.1

Imagen V-3 Resultados de ensayos variando la relación P_e/P_v

Figure 13. Test result of specimen No.5

Photo 2. The Specimens after the test

Imagen V-4 Resultados de ensayos variando la relación P_e/P_v

Fuente: Primer ensayo en Japón, Universidad de Kanagawa, 1987.

V.3. Cost Advantages of Buckling Restrained Braced Frame Buildings, San Francisco, Dasse Desing Inc.

A través del desarrollo de un modelo hipotético de dos edificios, este informe investiga el ahorro potencial de material y las ventajas de costos entre los sistemas BRBF y SCBF. Se plantearon dos estructuras con la misma geometría de planta, pero una de tres niveles y otra de seis niveles y se comparó el diseño estructural probando primero con pórticos tipo SCBF y luego con pórticos BRBF.

Imagen V-5 Plano de planta y elevación.

Suposiciones y criterios de diseño

Los modelos de edificios desarrollados para los propósitos de este estudio poseen una geometría rectangular sencilla, se colocaron los sistemas resistentes a cargas laterales en todos los pórticos perimetrales. Se asumió la ubicación de las edificaciones modeladas en el centro de Los Ángeles, California, y como edificios de oficina.

2006 IBC, ASCE 7-05, AISC 341				
Los Ángeles, CA				
	D			
	II (Of	icinas)		
	1.	.00		
(s)	(s) 2.20			
(s)	0.74			
1.00				
1.50				
Fuerza	Fuerzas lateral equivalente			
(Kgf/cm ²)		2.44		
DDDE	R	8.0		
DRDF	Ω	2.5		
	R	6.0		
SCBF	Ω	2.0		
	2006 IBC, L (s) (s) Fuerza (Kgf/cm ²) BRBF SCBF	2006 IBC, ASCE Los Áng II (Of 1. (s) (s) 1. (s) Fuerzas later (Kgf/cm²) BRBF Ω SCBF Ω		

Tabla V-1 Valores y criterios de diseño asumidos

Resultados del diseño de los modelos

Al poseer un menor corte basal, el tamaño de las diagonales de pandeo restringido pueden ser mucho más ligeras que las del SCBF. Adicionalmente se consigue un ahorro en el material de las vigas ya que las solicitaciones debido a las diagonales no están desbalanceadas.

	COLUMNAS		D	DIAGONALES		VIGAS		CORREAS	
	NIVEL	BRBF	SCBF	BRBF	SCBF	BRBF	SCBF	BRBF	SCBF
	6	W14x74	W14x90	2.5 in²	HSS 8.625x.0375	W24x68	W24x68	W24x76	W27x84
	5	W14x74	W14x90	4.5 in ²	HSS10.75x0.500	W24x68	W33x130	W24x76	W36x135
6 NIVELES	4	W14x193	W14x257	6 in ²	HSS12.5x0500	W24x68	W30x116	W24x76	W33x130
	3	W14x193	W14x257	7 in ²	HSS14x0.500	W24x68	W27x84	W24x76	W27x84
	2	W14x342	W14x426	7.5 in²	W12x87	W24x68	W36x150	W24x76	W36x160
	1	W14x342	W14x426	7.5 in ²	W12x87	W24x68	W24x62	W24x76	W24x76
3 NIVELES	3	W14x342	W14x176	4 in ²	HSS10.0x0.375	W24x68	W36x210	W24x76	W36x210
	2	W14x342	W14x176	6 in ²	HSS11.25x0.500	W24x68	W30x99	W24x76	W30x116
	1	W14x342	W14x176	7.5 in ²	HSS12.5x0.500	W24x68	W27x84	W24x76	W27x84

Tabla V-2 Perfiles de los elementos

Cantidad de materiales y costos

Al realizar la suma de las cantidades de material se observa que con los sistemas BRBF se consigue un importante. Aunque los miembros BRBF pueden ser más costosos que las secciones HSS, el costo es compensado por el ahorro de material en las columnas, vigas, las conexiones y los cimientos.

Como los costos de construcción tienden a variar significativamente de un proyecto a otro, los costos de la Tabla V-3 se basan en valores promedio observados en proyectos de similar envergadura.

	Elemento	В	RBF	S	CBF	Ahorros	del BRBF
	Columnas	52 Ton	\$139,730.00	72 Ton	\$213,200.00	20 Ton	\$73,470
	Diagonales	N/A	\$242,345.00	34 Ton	\$168,249.00	N/A	-\$74,096
	Conexiones	N/A	\$128,546.00	N/A	\$290,584.00	N/A	\$162,038
Pisos	Vigas	Vigas Típicas Adecuadas	\$ -	13 Ton	\$27,500.00	13 Ton	\$27,500
ón de 6	Pilotes	16 de 12.23 m³	\$100,640.00	14 de 63.46 m³	\$231,990.00	24 de 26.76 m³	\$131,350
acio	Zapatas	110,86 m ³	\$76,850.00	315.76 m ³	\$218,890.00	204.90 m ³	\$142,040
Edific	Costo Total - Pilotes y Fundaciones		\$611,261.00		\$931,523.00		\$320,262
	Costo Total - Zapatas		\$587,471.00		\$918,423.00		\$330,952
	Columnas	15 Ton	\$39,000.00	23 Ton	\$58,800.00	8 Ton	\$19,800
	Diagonales	N/A	\$120,430.00	17 Ton	\$60,740.00	N/A	-\$59,690
	Conexiones	N/A	\$62,230.00	N/A	\$102,230.00	N/A	\$40,000
3 Pisos	Vigas	Vigas Típicas Adecuadas	\$ -	13 Ton	\$30,000.00	13 Ton	\$30,000
n de 🤅	Pilotes	8 de 9.17 m ³	\$43,960.00	16 de 17.58 m³	\$87,390.00	8 de 6.88 m³	\$43,430
ació	Zapatas	38.23 m ³	\$26,500.00	84.10 m ³	\$58,300.00	204.9 m ³	\$31,800
Edifica	Costo Total - Pilotes y Fundaciones		\$265,620.00		\$339,160.00		\$73,540
	Costo Total - Zapatas		\$248,160.00		\$310,070.00		\$61,910

Tabla V-3 Cantidad de materiales y costos

El ahorro de costos generado por los sistemas BRBF es más significativo en los edificios más altos, ya que las mayores cantidades material ahorradas compensan la diferencia de precio de las diagonales. Además, la ventaja del corte basal y el periodo de diseño de los edificios BRBF sobre los se incrementa notablemente con la altura del edificio.

Gráfico V-1 Comparación BRBF – SCBF Costo Vs. Niveles

Conclusiones

Los sistemas de pórticos con diagonales de pandeo restringido (BRBF) pueden producir importantes ahorros en costos estructurales en comparación con los sistemas convencionales de SCBF. Estos ahorros son el resultado de la disminución de las cantidades de material y de las fundaciones, debido a la reducción del cortante basal. El ahorro va aumentando con la altura del edificio, ya que las mayores cantidades de materiales de compensan los elevados costos de las diagonales de pandeo restringido.

La reciente inclusión de los sistemas de BRBF en los códigos de construcción ha hecho que su proceso de diseño y aprobación sean más fácil. El sistema se considera que tiene un mejor comportamiento sísmico que los pórticos con diagonales tradicionales, por lo que es una opción atractiva para los ingenieros estructurales. Esto, de acuerdo con las posibilidades de ahorro, también está haciendo BRBF una opción atractiva para los propietarios de

edificios y desarrolladores y a medida que estos se vayan familiarizando con el sistema los beneficios sólo deben aumentar.

VI. DISEÑO DEL BRBF (AISC 341-210 F4)

VI.1. Bases del diseño

Este capítulo del código se aplica a pórticos con diagonales concéntricas especialmente fabricadas conectadas a vigas y columnas. Se permiten excentricidades menores a la profundidad de la viga.

Al diseñar el sistema BRBF con lo establecido en este código se espera proveer una capacidad significativa de deformación inelástica, principalmente debido a la cedencia de la diagonal en tracción y en compresión. Las diagonales deberán ser diseñadas, ensayadas y detalladas para soportar las deformaciones esperadas. Las deformaciones esperadas serán las correspondientes al 2% o más de la altura de piso o a dos veces la deriva de piso, el mayor, en adición a la deformación resultante debido a las cargas gravitatorias.

El sistema BRBF debe ser diseñado para que las deformaciones inelásticas generadas por el sismo de diseño ocurran principalmente en las diagonales como cedencia de tracción y compresión.

VI.2. Fuerza de la diagonal

El ajuste de la esfuerzo de la diagonal debe ser establecido con base a los resultados de los ensayos.

El esfuerzo de compresión ajustado será $\beta \cdot \omega \cdot R_y \cdot P_{ysc}$ donde:

 β = Factor de ajuste del esfuerzo a compresión.

 ω = Factor de ajuste por endurecimiento.

 P_{ysc} = Esfuerzo de cedencia axial del núcleo de acero.

La fuerza ajustada de tracción será $\omega \cdot R_{\gamma} \cdot P_{\gamma sc}$

El factor R_y no será necesario considerarlo cuando se obtiene el P_{ysc} a través de un ensayo de laboratorio.

El factor de ajuste del esfuerzo a compresión, β , será calculado como la relación de la fuerza máxima a compresión y la fuerza máxima atracción del ensayo realizado siguiendo las especificaciones del capítulo K3.4c. Se utilizara el mayor valor de β que se obtenga de los dos ensayos de calificación necesarios. En ningún caso el valor β puede ser menor a la unidad.

El factor de ajuste por endurecimiento, ω , será calculado como la relación de la tensión máxima obtenida del ensayo y el esfuerzo de cedencia, $R_y \cdot P_{ysc}$. Se utilizará el mayor valor que se obtenga de ω .

VI.3. Análisis

Las diagonales de pandeo restringido no serán consideradas como parte del sistema resiste a cargas gravitacionales.

Para la determinación de la amplificación sísmica, el efecto de las cargas horizontales incluyendo el factor de sobrecarga, Ω , debe ser tomado como la fuerza que desarrolla en la diagonal el esfuerzo de compresión o tracción ajustado.

VI.4. Miembros

Requerimientos básicos

Las vigas y columnas deben satisfacer con los parámetros de miembros altamente dúctiles.

Diagonales

Las diagonales estarán compuestas por un núcleo de acero y un sistema que resista el pandeo del núcleo de acero.

- Núcleo de acero: Las láminas cuyo espesor sea mayor a 50mm deben satisfacer con los parámetros de tenacidad establecidos en la sección A3.3. No se permiten divisiones en el núcleo.
- Sistema resistente al pandeo: Las vigas, columnas y conexiones que estén en contacto con el núcleo de acero serán considerados como parte del sistema.

El núcleo de acero será diseñado para resistir las fuerzas axiales. El esfuerzo de diseño será, ϕP_{vsc} , en tensión como en compresión.

$$P_{ysc} = F_{ysc} \cdot A_{sc} \qquad \phi = 0.90$$

El diseño de las diagonales deberá estar basado en los cupones de los resultados de los ensayos cíclicos de calificación siguiendo los procedimientos de la sección K3. Los resultados de calificación deberán consistir en al menos dos resultados exitosos, uno del sistema completo incluyendo las demandas por rotación de las conexiones y otro ensayo uniaxial. Ambos reportes se podrán extraer de:

- Ensayos reportados en artículos o informes de investigación o ensayos usados en otros proyectos.
- Ensayos realizados específicamente para el proyecto.

La interpolación o extrapolación de los resultados para diferentes modelos de diagonales deberán ser justificadas por un análisis racional y demostrar que la distribución de esfuerzos internos sea menos severa que los obtenidos con las diagonales ensayadas.

VII. ENSAYOS CÍCLICOS PARA LA CALIFICACIÓN DE LAS DIAGONALESDE PANDEO RESTRINGIDO (AISC 341-2010 K3)

VII.1. Alcance

El propósito de evaluar individualmente las diagonales es proveer evidencia que la diagonal de pandeo restringido satisface con los requerimientos de esfuerzo y deformación inelástica establecidos en este código; también permite determinar el esfuerzo máximo del miembro. El propósito de ensayar el sistema es proveer evidencia que la diagonal puede soportar satisfactoriamente las deformaciones y rotaciones asociadas al diseño, así como también demostrar que el comportamiento histérico de la diagonal con el sistema es consistente con los resultados del ensayo individual uniaxial.

VII.2. Historial de Cargas

Requerimientos generales

Se permiten incrementos adicionales de carga mayores a los descritos en la sección K3.4c. Cada ciclo incluye una incursión completa a tracción y otra a compresión a la deformación.

Control del ensayo

Se llevará a cabo controlando el nivel de deformación axial o rotacional, Δ_b , impuesto en el ensayo.

Secuencia de carga

Las cargas se aplicarán para producir en la diagonal las siguientes deformaciones:

- 2 ciclos de cargas a la deformación correspondiente a $\Delta_b = \Delta_{bv}$
- 2 ciclos de cargas a la deformación correspondiente a $\Delta_b = 0.50 \Delta_{bm}$
- 2 ciclos de cargas a la deformación correspondiente a Δ_b = Δ_{bm}

- 2 ciclos de cargas a la deformación correspondiente a $\Delta_b = 1.50 \Delta_{bm}$
- 2 ciclos de cargas a la deformación correspondiente a $\Delta_b = 2.00 \Delta_{bm}$
- Ciclos adicionales completos de cargas a la deformación correspondiente a Δ_b = 1.50Δ_{bm} hasta que la diagonal acumule una deformación inelástica axial de por lo menos 200 veces la deformación asociada a la fuerza de cedencia. (no es requerida para el ensayo realizado al sistema).

Donde:

 Δ_{bm} = Deriva de diseño del nivel.

 Δ_{by} = El primer punto significativo de cedencia.

Requerimientos para el reporte del Ensayo

Se redactará un informe para cada ensayo realizado con todos los datos y resultados necesarios. El informe deberá incluir:

- Un dibujo o descripción detallada del ensayo, incluyendo dimensiones, condiciones de borde en los puntos de carga y reacciones, y la ubicación de la disposición de las diagonales.
- Un dibujo con los detalles de las conexiones, mostrando los perfiles de los miembros, el grado de acero, el tamaño de la conexión y sus elementos, de talles de la soldadura incluyendo el metal de relleno, el tamaño y ubicación de los pernos, el grado y tamaño de los conectores y cualquier otro detalle pertinente.
- La lista o gráfico de las cargas aplicadas y el historial de desplazamiento.
- Gráfico de carga en función de la deformación.

- Una lista cronológica de todas las observaciones, cedencia, deslizamiento, inestabilidad, desplazamiento transversal y ruptura de cualquier porción del miembro o conexión.
- El resultado de los ensayos realizados a los materiales.
- El control de calidad del manufacturador y garantía de calidad.

VII.3. Criterios de Aceptación

Por lo menos un ensayo del sistema y un ensayo de la diagonal deben ser exitosos, el protocolo de aceptación de cumplir con los siguientes requisitos:

- El diagrama de histéresis debe exhibir un comportamiento cíclico y estable, con pequeños incrementos de rigidez.
- No deben haber rupturas, inestabilidad, fallas en las conexiones.
- Para cada ciclo de carga mayor a Δ_{by} el esfuerzo de compresión y tracción máximos debe ser mayor a el esfuerzo nominal del núcleo
- Para cada ciclo de carga mayor a Δ_{by} la relación de compresión y tracción máximas no superara el valor de 1.30.

VIII.	PROYECTOS DE EDIFICACIONES CON SISTEMAS BRBF

li li	nformación del Edificio	Diseño Básico	Otros	
	Nuevas Construcciones	;		
	Edificio de Ciencias de las Plantas y el Ambiente		Análisis Push - Over, Revisión	
NO CONTRACTOR	Universidad de California	1008 CBC		
	3 Pisos y 1 Sótano, con un área de 11613 m²	(1997 UBC)	Previa y Prueba de las Diagonales	
	132 Diagonales		-	
and the	Centro para las Ciencias Biológicas		Análisis Push -	
	Instituto de Tecnología de California	1007 LIBC	Over, Revisión	
	3 Pisos y 1 Sótano, con un área de 10962m²	R=6.4 I=1.0; Z=0.4	Previa y No se hicieron Prueba de las Diagonales	
	84 Diagonales			
	Edificio de Servicio de Comedor para Estudiantes		Análisis Push - Over, Revisión	
	Universidad de California	R=6.4 l=1.0 :	Previa y No se	
	4 Pisos	Z=0.4	hicieron Prueba	
	95 Diagonales		Diagonales	
Attes .	Edificio para las Ciencias de Genomas y Bioanálisis	1000 000	Análisis Push - Over, Revisión Previa y No se hicieron Prueba	
Managementer a	Universidad de California	1998 CBC (1997 LIBC)		
A STATE OF THE PARTY OF THE PAR	6 Pisos con un área de 19603 m ²	R=6.4		
	97 Diagonales	l=1.0 ; Z=0.3	de las Diagonales	
	Edificio de Ciencias Psicológicas	1998 CBC	Análisis Push -	
	Universidad de California, Santa Cruz	(1997 UBC)	Over, y No se hicieron Prueba	
	5 Pisos con un área de 12682 m ²	l=1.25 ; Z=0.3	de las Diagonales	
and the second sec	74 Diagonales			
and all a second	Edificio para Investigaciones			
	Universidad de California, San Francisco	1998 CBC	Análisis Push - Over, y No se hicieron Prueba de las Diagonales	
MAR	5 Pisos con un área de 15886 m ²	(1997 UBC) R=7.0 ; Z=0.4		
and the set of the set	132 Diagonales		<u> </u>	

Tabla VIII-1 Ejemplo de edificaciones con sistemas BRBF
CAPÍTULO III MARCO METODOLÓGICO

1. Establecer la filosofía y pasos a seguir para elaborar el diseño sismorresistente de una edificación en acero

Consultando distintas fuentes de información, como normas, presentaciones, artículos de investigación, y guías de diseño estructural, se determinaron los lineamientos a seguir para elaborar el diseño de una edificación de acero, desde la selección del tipo de sistema estructural hasta el diseño de cada uno de sus elementos, sin incluir sus conexiones y las fundaciones de la estructura.

2. Programar hojas de cálculo para la determinación del espectro de respuesta y el predimensionamiento de estructuras tipo SMF Y SCBF

Se programaron hojas de cálculo con la finalidad de ayudar y agilizar el proceso de diseño y chequeo de la estructura de acero.

Se desarrollo un primer grupo de hojas de cálculo que facilitan la determinación y la exportación del espectro de respuesta al programa de modelación. En una de las hojas de cálculo se encuentran todas las tablas y datos necesarios que nos permiten definir el espectro de respuesta (Ver Apéndice 1). El segundo grupo de hojas de cálculo permiten realizar las verificaciones de corte basal y desplazamientos cumpliendo con lo establecido por la norma COVENIN 1756-1:2001.

Con los conocimientos básicos obtenidos de las asignaturas *"Estructuras de Acero"* y *"Análisis y Diseño Estructural Asistido por Computadora"*, la filosofía de diseño anteriormente mencionada y utilizando una base de datos de los perfiles de acero más comunes del país y los distintos tipos de acero, (Ver Apéndice 2 y 3), se creó un método para el predimensionado de estructuras tipo SMF (Special Moment Frame) y SCBF (Special Concentrically Braced Frame). A través de esta hoja de cálculo se determinaron las secciones para correas, vigas de

transferencia, vigas principales, columnas y diagonales que se emplearían en el primer modelo estructural.

3. Plantear una estructura típica y sencilla de acero

Se proyectó una estructura de seis niveles, la altura de entrepiso para todos los niveles es de cuatro metros cada uno. Se dispusieron ocho ejes verticales y siete ejes horizontales, las luces típicas de la estructura son de 5,50 y 7,00 metros. Cada nivel posee un área de 1.153,50 m², sumando un área total de 6.921m².

A todos los niveles se les asignaron las mismas cargas, permanentes y variables, a excepción del último nivel al cual se le asignaron cargas inferiores. Para la determinación de las cargas estáticas a colocar en los modelos, se consultaron las normas COVENIN 2002-88 y la ASCE/SEI 7-10.

4. Diseñar una estructura de acero tipo SCBF por medio del programa ETABS cumpliendo con los lineamientos de la AISC 341 y 360.

Siguiendo los parámetros del modelo típico de la edificación de acero, se siguió a definir los materiales a utilizar, los distintos tamaños de perfiles para vigas, columnas y diagonales, el espectro de respuesta según el tipo de edificación y la zona sísmica donde se construirá; se definieron las cargas y las distintas combinaciones de las mismas.

Luego de tener el diseño de la estructura completado, se corrió el modelo para chequear la deriva y el corte basal, cumpliendo con lo establecido en la Norma COVENIN 1756 – 01. Luego se llevo a cabo un proceso de iteración para optimizar las vigas, columnas y diagonales de la estructura, con la finalidad de obtener el peso total de la edificación en Kgf/m².

Luego del diseño de la estructura, se realizaron los análisis de todos los parámetros arrojados por el programa, como lo son las cantidades de materiales,

deriva, corte basal y pesos totales de la estructura, para obtener conclusiones de cómo se comporta y de cómo responde ante acciones sísmicas. Estos resultados contaron en el análisis final de este Trabajo Especial de Grado.

5. Recopilar información, trabajos de investigación y normas relacionadas a las diagonales de pandeo restringido (BR).

Se selecciono todo el material informativo referente a este tipo de elementos, los cuales son nuevos en el mercado mundial, por lo que se filtro la investigación en los parámetros más importantes para lograr un diseño sencillo basado en artículos de investigación y reportes de ensayos más exactos, de cómo se comportan este tipo de diagonales. Para esto se acudió a los creadores de esta nueva, como lo es Star Seismic, quienes nos proporcionaron mucha información y detalles de este tipo de sistema, y se interesaron en este Trabajo Especial de Grado.

Crear hojas de cálculo guía para el diseño de una estructura de acero, con un sistema de diagonales de pandeo restringido (BR) siguiendo los lineamientos de la AISC 341.

Se crearon hojas de cálculo, cuya finalidad es la de ayudar al predimensionamiento, diseño y chequeo de la estructura de acero y sus elementos, según los parámetros correspondientes a un sistema de diagonales de pandeo restringido, descritos en este Trabajo Especial de Grado. Esta hoja de cálculo es capaz de predimensionar elementos de las Diagonales de Pandeo Restringido como el núcleo de acero, el mortero de la camisa y el acero de la camisa.

7. Diseñar una estructura de acero con Diagonales de Pandeo Restringido (BRBF) por medio del programa ETABS.

- a. Se extrajeron las fuerzas de diseño de las diagonales correspondientes al modelo anterior con pórticos tipos SCBF.
- b. Utilizando la tabla creada en el paso anterior se obtuvo el área del núcleo para cada diagonal de pandeo restringido.
- c. Se cargaron en el programa ETABS una base de datos suministrados por la Ingeniera en Jefe Kimberley Robinson de Star Seismic, esta base de datos contenía los diferentes modelos que posee la compañía de este tipo de elementos.
- d. Para cada uno de los modelos suministrados se procedió a aumentar la rigidez axial de los elementos 1.50 veces.
- e. Trabajando sobre el modelo anteriormente creado con pórticos tipo SCBF se fueron modificando las diagonales asignándoles un modelo de diagonal de pandeo restringido que más se asemejara con el predimensionamiento realizado en el paso 7.b.
- f. Se realizaron varias corridas en el programa para optimizar los perfiles utilizados para los distintos tipos de elementos estructurales.
- g. Se realizaron los chequeos de corte basal y control de desplazamientos establecidos en la norma venezolana COVENIN 1756-2001 así como también el control de desplazamientos según lo establecido en la norma AISC 346-2010.
- h. Se obtuvieron todos los parámetros finales tales como cortante basal, peso de los elementos estructurales, desplazamientos y modos de vibración para ser comparados con el modelo anterior.

8. Contrastar los resultados obtenidos para los distintos sistemas estructurales adoptados.

Se determinaron datos tales como el peso de la estructura en Kg/m², la respuesta dinámica, entre otros, de forma tal que se puedo realizar comparaciones por medio de tablas y gráficos entre los distintos sistemas estructurales adoptados, y así establecer conclusiones al respecto.

CAPÍTULO IV RESULTADOS Y ANÁLISIS

A. Resultados de la Edificación de Acero de Pórticos con Diagonales Concéntricas

a. Espectro de Respuesta

DATOS INICIALES			
Tipo de Estructura	Acero		
Zona Sísmica	5		
Grupo	B2		
Nivel de Diseño	ND3		
Tipo de Sist. Resistente a Sismos	III		
Φ	1.00		
Forma Espectral	S3		
Altura del Edf. (m)	24		

RESULTADOS						
Ao	0.35	То	0.18			
Ta (s)	0.51	R	4.00			
T* (s)	0.70	С	1.11			
β	2.60	T+ (s)	0.30			
р	1.00	Ad	0.23			
α	1.00					

Tabla A-1 Datos del Espectro de Respuesta SCBF

Gráfico A-1 Espectro de Respuesta

b.	Predimens	ionamiento	de la	a estructura
----	-----------	------------	-------	--------------

1- Predimensionamiento de correas			
Lc (m)	3.50		
hmin (m)	0.159		
Perfil de la viga	IPE160		
h (m)	0.160		

2- Predimensionamiento de V.T.			
Lvt (m)	5.50		
hmin (m)	0.25		
Perfil de la viga	IPE270		
h (m)	0.270		

3			4		
Predimensionamiento de Vigas	SCBF		Predimensionamiento de Vigas	SCBF	
Lx (m)	7.00		Ly (m)	5.50	
hmin (m)	0.35		hmin (m)	0.275	
Numero de correas	1		Numero de correas	2	
Longitud Arriostrada (m)	3.50		Longitud Arriostrada (m)	1.83	
Perfil asumido de columnas	HEB800		Perfil asumido de columnas	HEB800	
Perfil de la viga	IPE450		Perfil de la viga	IPE300	
Lbv (m)	2.94		Lbv (m)	2.39	
Lbr (m)	2.70		Lbr (m)	1.53	
Ala Moderadamente Dúctil	6.51	ΟΚ	Ala Moderadamente Dúctil	7.01	ОК
Alma Moderadamente Dúctil	44.77	ок	Alma Moderadamente Dúctil	39.24	ок

5- Predimensionamiento de Diagonales			
L (m)	3.5		
h (m)	4		
Longitud (m)	5.32		
К	1		
r req (cm)	4.61		
Perfil de la diagonal	HEB200		
r real (cm)	5.06		

6- Predimensionamiento de Columnas			
Zx req (cm ³)	4275		
A req (cm ²)	312.4		
Perfil de la columna	HEB800		
Zx real (cm ³)	10200		
A real (cm ²)	334		

Tabla A-2 Predimensionamiento de la Estructura

66

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

c. Verificación del cortante basal y control de desplazamientos

	Tabla de Defin		
	Carga		
	PP	1	
	CV	0.5	
	SCP	1	
Tabla A	-3 Definición d	e masas partici	pativas

Tabla de Participación Modal						
Modo	Periodo	Masa Participativa Individual		Masa Participativa Acumulada		
		UX	UY	SumUX	SumUY	
1	0.69	2.31	70.67	2.31	70.67	
2	0.59	73.42	3.10	75.73	73.77	
3	0.48	1.04	2.89	76.78	76.66	
4	0.22	0.21	16.67	76.98	93.33	
5	0.19	15.99	0.20	92.97	93.53	
6	0.16	0.47	0.21	93.44	93.73	
7	0.12	0.02	4.44	93.46	98.18	
8	0.10	4.02	0.02	97.48	98.20	
9	0.09	0.05	1.10	97.52	99.30	
10	0.09	0.16	0.01	97.69	99.31	
11	0.08	1.16	0.09	98.84	99.40	
12	0.08	0.19	0.39	99.04	99.79	
13	0.07	0.06	0.00	99.10	99.80	
14	0.07	0.00	0.20	99.10	100.00	
15	0.06	0.55	0.00	99.65	100.00	
16	0.06	0.05	0.00	99.70	100.00	
17	0.05	0.27	0.00	99.97	100.00	
18	0.05	0.03	0.00	100.00	100.00	

Tabla A-4 Participación modal

Imagen A-1 Modo 1

Imagen A-2 Modo 2

Imagen A-3 Modo 3

Como se observa en la Tabla A-4, con los 18 modos dispuestos en el modelo, la sumatoria de masas participativas excede el 90%, cumpliendo con lo establecido en la norma COVENIN 1756-2001 capítulo 9.6.2. Al chequear los modos de vibración de la estructura diseñada, se observó un comportamiento predominantemente traslacional en los dos primeros modos, lo cual es una conducta deseada.

Tabla de Fuerzas Cortantes por Niveles (SX)				
Nivel	Carga	VX	VY	
Nivel6	ESPECTROX	178122.4	35637.31	
Nivel5	ESPECTROX	395099.89	84280.69	
Nivel4	ESPECTROX	557886.96	122102.27	
Nivel3	ESPECTROX	678188.24	149902.7	
Nivel2	ESPECTROX	764015.5	168728.79	
Nivel1	ESPECTROX	807054.58	177116.95	
Tabla de Fuerzas Cortantes por Niveles (SY)				
Tabla	de Fuerzas Co	rtantes por N	liveles (SY)	
Tabla (Nivel	de Fuerzas Co Carga	rtantes por N VX	liveles (SY) VY	
Tabla Nivel Nivel6	de Fuerzas Co Carga ESPECTROY	rtantes por N VX 37464.73	liveles (SY) VY 176563.38	
Tabla (Nivel Nivel6 Nivel5	de Fuerzas Co Carga ESPECTROY ESPECTROY	rtantes por N VX 37464.73 87102.24	liveles (SY) VY 176563.38 387866.07	
Tabla of Nivel Nivel 6 Nivel 5 Nivel 4	de Fuerzas Co Carga ESPECTROY ESPECTROY ESPECTROY	rtantes por N VX 37464.73 87102.24 125528.24	liveles (SY) VY 176563.38 387866.07 543147.87	
Tabla Nivel Nivel6 Nivel5 Nivel4 Nivel3	de Fuerzas Co Carga ESPECTROY ESPECTROY ESPECTROY ESPECTROY	rtantes por N VX 37464.73 87102.24 125528.24 152855.48	liveles (SY) VY 176563.38 387866.07 543147.87 658184.96	
Tabla Nivel Nivel6 Nivel5 Nivel4 Nivel3 Nivel2	de Fuerzas Co Carga ESPECTROY ESPECTROY ESPECTROY ESPECTROY ESPECTROY	rtantes por N VX 37464.73 87102.24 125528.24 152855.48 170402.51	liveles (SY) VY 176563.38 387866.07 543147.87 658184.96 740496.18	

Tabla A-5 Fuerzas cortantes debido a las acciones sísmicas

Nivel	Altura de Entrepiso (m)	Sismo	Desplazamiento Elástico ∆ei (m)	Desplazamiento Inelástico ∆i (m)	Deriva δi (m)	θ=∆i/h
Nivel 6	4	SX	0.028	0.088	0.013	0.003
Nivel 5	4	SX	0.024	0.076	0.015	0.004
Nivel 4	4	SX	0.019	0.060	0.017	0.004
Nivel 3	4	SX	0.013	0.043	0.016	0.004
Nivel 2	4	SX	0.008	0.027	0.017	0.004
Nivel 1	4	SX	0.003	0.010	0.010	0.002
Nivel 6	4	SY	0.038	0.121	0.020	0.005
Nivel 5	4	SY	0.032	0.101	0.022	0.005
Nivel 4	4	SY	0.025	0.079	0.023	0.006
Nivel 3	4	SY	0.018	0.056	0.021	0.005
Nivel 2	4	SY	0.011	0.035	0.022	0.006
Nivel 1	4	SY	0.004	0.012	0.012	0.003

Tabla A-6 Control de desplazamientos

VERIFICACIONES					
W	Peso Total (Kgf)	2932842			
	α	1.00			
	Ao	0.35			
	R	4.00			
	μ	0.89			
Та	(S)	0.51			
Т	Ta mayorado 1.6 veces (s)	0.81			
Ad	calculado con 1.6Ta (s)	0.196			
Vo	Corte Estático (Kgf)	326284			
Vo x	Corte Dinámico en x(Kgf)	807055			
Vo y	Corte Dinámico en y(Kgf)	782631			
	α*Ao/R	0.088			
	Vo x/W	1.821			
	Vo y/W	1.766			
	Susceptible a daños por	CI .			
	deformaciones:	JI			
	Deriva Limite	0.018			
δx	Deriva Inelástica máxima en x	0.004			
δγ	Deriva Inelástica máxima en y	0.006			

Tabla A-7 Verificación del cortante basal y desplazamientos

En la Tabla A-7 se realizó la comprobación de los capítulos 7.1, 9.6 y 10 de la norma COVENIN 1576-2001, Todas estas verificaciones se cumplieron sin ninguna complicación.

d. Diseño de las correas y vigas de transferencia

Imagen A-4 Chequeo de correas y vigas de transferencia

AISC360-05/	BC2006	Composite	Beam Desi	gn Beam	Label: B99	Units: Kgf-m
PCC PNA: 0.22 Full PNA: 0.24 Pmax: 0.00	29 PCC pł 0 Full phi Pmax 0	iiMn: 13452.70 Mn: 18317.619 Combo: NA)1 9			
Moment Desig	gn		-			
Type Constr Pos	Combo DCMPC2	Lb 1.833	СЬ 1.000	Mu 5394.096	phiMn 7944.727	Ratio 0.679
Final Pos	COMB2	5.500E-06	1.000	13362.572	13452.701	0.993
Shear Design	Camba	Dissi		DL3/a	Defe	
iype Constrilieft	DCMPC2	Вюск	2976.00	20907.87	Natio N 142	
Constr Rght	DCMPC2	οŔ	2976.00	20794.93	0.143	
Final Left	COMB2	OK	7314.00	18817.08	0.389	
Final Right	COMB2	OK	7314.00	18715.44	0.391	
End Reaction Left Combo	is Reaction F	Right Combo F	R. Reaction			
COMB2	7314.00	COMB2	7314.00			

Imagen A-5 Diseño por capacidad de correas y vigas de transferencia

AISC360-05/IBC2006		Composite	Beam Design	Beam l	abel: B99	Units: K	gf-m	
Deflection De Type PreComp DL Super Load Live Load Total-Camber	ssign Consider No Yes Yes Yes	Combo DCMPD2 DCMPD2 DCMPD2 DCMPD2 DCMPD2	Defl 0.010 0.010 0.005 0.020	Limit 0.000 0.023 0.015 0.023	Ratio 0.000 0.428 0.310 0.885	OK Yes Yes Yes Yes		
DG11 Vibratio Type Walking	o n Design Consider Yes	Mode a0/g	Actual 0.00371	Target 0.005	Ratio 0.742	OK Yes		
Frequency and E	Effective We	eight Paramete	ers					
Element	C, Factor	Eleff	E OODE DE	L	В	W	Delta	fn
Beam Girder Panel	2.0, 1.5 1.8, 1.0	2944200.0	8.407E-05 2.549E-05	5.5 7.0	5.7 11.0	14218.7 24070.1 18944.8	0.00291 0.00268 0.00560	10.451 10.883 7.538
Walking Acceleration Calculation								
fn 7.538	Beta 0.03	W 18944.8	Po 29.484	ap/g 0.00371	a0/g 0.005			

Imagen A-6 Diseño por servicio de correas y vigas de transferencia

Para el diseño de todos estos elementos predomino el diseño por capacidad, en las correas se utilizaron perfiles que van del IPE120 al IPE160 y para las vigas de transferencia perfiles desde el IPE180 al IPE240.

e. Diseño de vigas

Imagen A-7 Chequeo de vigas

AISC360-05/IBC2006 STEEL SF	CTION CHECK	Units	: Kgf-m (S	ummary for Com	bo and Station)	Units Kgf-m
Level: STORY2 Section:	IPE330					
Element: B23 Loc: 6.77	5 Element	Type: Speci	ial Concentr	ically Braced	Frame	
Colbo: COMB2 Classific	ation: Compact					
Provicion: LPED						
Analusis: Direct Analusis	2nd Ord	er: General S	2nd Arder	Reduction	• Tau-h Fixed	3********************************
AlphaPr/Pu=0.000 AlphaPr/f	e=0.000 Tau b=1	.000 Ef	A factor=0.8	00 EI factor	=0.800	
PhiB=0.900 PhiC=0.90	0 PhiTY=0	.900 Pl	niTF=0.750			
PhiS=0.900 PhiS-RI=1	.000 PhiST=0	.900				
L=7.000						
<u>9=0 006</u> I33=1.177	E-04 r33=0.1	37 S	33=7.133E-04	Av3=0.003		
	E-06 r22=0.0	35 52	22=9.850E-05	AV2=0.002		
E=2.100E+10 +U=253000	100.000 Ky=1.50	9 Za	33=8.040E-04 33=4 ELOE OL	CW=0.000		
KLTE=0.000 2KTIWIT=0	.950	Z	22=1.540E-04			
D/C Ratio 0 082 = 0 000	+ 8 982 + 8 888					
= (1/2)/	Pr/Pc) + (Mr33/M	c33) + (Mr22)	(Mc22)	Eq. (H1.3a-H	1-1b)	
		, , , , , , , , , , , , , , , , , , , ,				
STRESS CHECK FORCES & MOMEN	ITS (Combo COMB2)					
Location	u Mu33	Mu22	Vu2	Vu3	Tu	
6.775 0.00	0 -17969.687	0.000	13743.175	0.000	-0.184	
AXIAL FORCE & BIAXIAL MOMEN	T DESIGN (H1.3	a,H1-1b)				
Factor	L K1	K2	B1	B2	Cm	
Major Bending 0.93	6 1.000	1.000	1.000	1.000	1.000	
Minor Bending 0.40	8 1.000	1.000	1.000	1.000	1.000	
	ь V1+ь	еь				
	0 NICO 9 1 000	1 222				
	0 1.000	1.200				
	u nhi*Pnc	nhi*Pnt				
For	e Canacitu	Canacitu				
Axial Force 0.00	0 92230.672 1	42540.200				
	lu phi*Mn	phi*Mn				
Momer	t Capacity	NO LTB				
Major Bending 17969.68	7 18307.080	18307.080				
Minor Bending 0.00	0 3506.580					
SHEHR DESIGN		Chur				
	u pn1*vn o Copositu	Stress				
Major Shore 19749 4	е сарастту с 97570 соо	NdC10				
Minor Shear 8 8	0 50276 160	0.000				
	0 70210-100	0.000				
END REACTION MAJOR SHEAR FO	RCES					
	d Load	Riaht End	Load			
Reaction	n Combo	Reaction	Combo			

Imagen A-8 Diseño a capacidad de vigas

Todas las vigas fueron diseñadas por capacidad, y se optimizo el diseño manteniendo cierta similitud tal como se haría en proyectos reales. Como se puede observar en la imagen A-8 la combinación de carga predominante es la 2, esta combinación no considera las acciones sísmicas, esto implicaría que en el diseño del modelo siguiente con las diagonales de pandeo restringido se deberían utilizar secciones muy similares a esta, ya que las diagonales de pandeo restringido se consideran solo como un sistema resistente a cargas horizontales. Esto limitaría el ahorro de acero en las vigas ya que de ser más efectivas las diagonales de pandeo restringido igualmente se usaran las mismas vigas que las del modelo con SCBF.

Que la combinación 2 sea la predominante para el diseño de la mayoría de las vigas muy probablemente se deba a las grandes luces que se dispusieron, así como los valores de sobre carga permanente asumidos.

f. Diseño de las diagonales

Imagen A-9 Chequeo de diagonales

AISC360-05/IBC200	6 ST <mark>EEL</mark> SECT	ION CHECK	Uni	ts: Kgf-m (Sumr	nary for C	ombo and Station)
Level: STORY4 Element: D59 Combo: COMB6	Section: HE Loc: 2.658 Classificat	200B Eleme ion: Seismi	ent Type: Sp .c	ecial Concentrica	ally Brace	d Frame
Provision: LRFD Analysis: Direct A AlphaPr/Py=0.241 Ignore Seismic Co	Analysis AlphaPr/Pe= de? No	2nd C 0.324 Tau_b Ignor	order: Genera =1.000 ee Special EQ	l 2nd Order EA factor=0.800 Load? Yes	Reducti EI fact D/P Plu	on: Tau-b Fixed or=0.800 g Welded? Yes
SDC: D R=8.000 PhiB=0.900 PhiS=0.900	I=1.000 Omega0=3.00 PhiC=0.900 PhiS-RI=1.0	Rho=1 0 Cd=5. PhiTY 00 PhiSI	000 500 /=0.900 }=0.900	Sds=0.500 PhiTF=0.750		
L=5.315 A=0.008 J=0.000 E=2.100E+10 RLLF=1.000	I33=5.696E- I22=2.003E- fy=25300000 SRLimit=0.9	05 r33=0 05 r22=0 .000 Ry=1. 50	0.085 0.051 500	S33=5.696E-04 S22=2.003E-04 z33=6.430E-04 z22=3.060E-04	Av3=0.0 Av2=0.0 Cw=0.00	05 02 0
D/C Ratio: 0.48	1 = 0.471 + = (Pr/Pc)	0.010 + 0.00 + (8/9)(Mr33	0 8/Mc33) + (8/	9) (Mr22/Mc22)	Eq. (1	Hl.3a,Hl-la)
STRESS CHECK FORC Location 2.658	ES & MOMENTS Pu -47671.386	(Combo COME Mu33 171.076	86) Mu22 0.000	Vu2 0.000	Vu3 0.000	Tu 0.000
AXIAL FORCE & BIA Factor Major Bending Minor Bending	XIAL MOMENT L 1.000 1.000	DESIGN (HI K1 1.000 1.000	3a,H1-la) K2 1.000 1.000	B1 1.000 1.000	B2 1.000 1.000	Cm 1.000 1.000
LTB	L1tb 1.000	K1tb 1.000	Cb 1.316			
Axial Force	Pu Force 47671.386	phi*Pnc Capacity 101298.343	phi*Pnt Capacity 177833.700			
Major Bending Minor Bending	Mu Moment 171.076 0.000	phi*Mn Capacity 14641.110 6967.620	phi*Mn No LTB 14641.110			
SHEAR DESIGN	Vu	phi*Vn	Stress			
Major Shear Minor Shear	0.000 0.000	27324.000 81972.000	0.000 0.000			
END REACTION AXIA	L FORCES Left End Reaction -154661.657	Load Combo COMB9	Right End Reaction -154661.657	Load Combo COMB9		

Imagen A-10 Diseño de diagonales

AISC3	860-05/IBC200	6 STEEL SECT	ION CHECK	Uni	ts: Kgf-m	(Summary for	Combo and Station)
Level Elene Combo	: STORY4 ent: D59 : COMB9	Section: HE Loc: 5.315 Classificat:	180B Eleme ion: Seismi	ent Type: Sp .c	ecial Concer	trically Bra	ced Frame
Provi Analy Alpha Ignor	sion: LRFD vsis: Direct A Pr/Py=0.175 ce Seismic Co	Analysis AlphaPr/Pe=(de? No	2nd C 0.290 Tau_k Ignor	Order: Genera =1.000 ce Special EQ	l 2nd Order EA factor=0 Load? Yes	Reduc .800 EI fa D/P P	tion: Tau-b Fixed ctor=0.800 lug Welded? Yes
SDC: R=8.0 PhiB= PhiS=	D 000 ⊧0.900 ⊧0.900	I=1.000 Omega0=3.000 PhiC=0.900 PhiS-RI=1.00	Rho=1 Cd=5. PhiT1 00 PhiS1	000 500 2=0.900 2=0.900	Sds=0.500 PhiTF=0.750	i.	
L=5.3 A=0.0 J=0.0 E=2.1 RLLF=	815 007 000 000E+10 1.000	I33=3.831E-(I22=1.363E-(fy=25300000 SRLimit=0.99	05 r33=0 05 r22=0 .000 Ry=1. 50	0.077 0.046 500	S33=4.257E- S22=1.514E- z33=4.810E- z22=2.310E-	04 Av3=0 04 Av2=0 04 Cw=0.	.004 .002 000
D/C F	latio: 0.38	9 = 0.389 + (= (Pr/Pc)	0.000 + 0.00 + (Mr33/Mc33	00 3)^2 + (Mr22/	Mc22)	Eq. (H1.3b,H	1-2)
STRES I 5	S CHECK FORC Location 1.315	ES & MOMENTS Pu -28965.126	(Combo COME Mu33 0.000	39) Mu22 0.000	Vu2 96.561	Vu3 0.000	Tu 0.000
AXIAI F M M	. FORCE & BIA Tactor Major Bending Minor Bending	XIAL MOMENT 1 L 1.000 1.000	DESIGN (HI K1 1.000 1.000	3b,H1-2) K2 1.000 1.000	B1 1.000 1.000	B2 1.000 1.000	Cm 1.000 1.000
I	.TB	L1tb 1.000	Kltb 1.000	Cb 1.316			
A	xial Force	Pu Force 28965.126	phi*Pnc Capacity 74467.465	phi*Pnt Capacity 148688.100			
M M	Major Bending Minor Bending	Mu Moment 0.000 0.000	phi*Mn Capacity 10952.370 5259.870	phi*Mn No LTB 10952.370			
SHEAF	DESIGN						
M M	Major Shear Minor Shear	Vu Force 96.561 0.000	phi*Vn Capacity 23225.400 68856.480	Stress Ratio 0.004 0.000			
END F	REACTION AXIA	L FORCES Left End Reaction -154661.657	Load Combo COMB9	Right End Reaction -154661.657	Load Combo COMB9		

Imagen A-11 Diseño de diagonal (Falla por esbeltez)

La mayoría de las diagonales del modelo poseen una relación demanda capacidad inferior a 0.50, solo las diagonales de los dos primeros pisos sobrepasan este valor, esto se debe a que el diseño de estas posee un límite de esbeltez de acuerdo a lo establecido en el capítulo 12.3 de la norma COVEIN 1618-1998 y el capítulo 13.2a de la AISC 341-2005. Esta es una de las ineficiencias que se espera solventar con las diagonales de pandeo restringido en el otro modelo.

En la imagen A-8 se puede observar como al disminuir el perfil de la misma diagonal de la imagen superior la relación de esbeltez no cumple con las normas.

g. Diseño de Columnas

Imagen A-12 Chequeo de columnas sin amplificación sísmica

AISC360-05/IBC20	06 STEEL SECTION (СНЕСК	Units: Kgf-m (Summa	ry for Combo and Station)	Units Kgf-m 💌
	Soution, UFIFOD				
Element: C20	Section: HE450B	Floment Tune:	Special Concentrical	lu Bracod Framo	
Combo: COMB6	Classification:	Seismin	sheetat concenciata		
	ordspiritederon.	JUISHIC			
Provision: LRFD					
Analysis: Direct	Analysis	2nd Order: Ge	neral 2nd Order	Reduction: Tau-b Fixed	
AlphaPr/Py=0.423	B AlphaPr/Pe=0.129	7 Tau_b=1.000	EA factor=0.800	EI factor=0.800	
Ignore Seismic (Code? No	Ignore Specia	1 EQ Load? Yes	D/P Plug Welded? Yes	
SDC: D	I=1.000	Rho=1.000	Sds=0.500		
R=8.000	Omega0=3.000	Cd=5.500			
Ph18=0.900	Ph1C=0.900	Ph11Y=0.900	Ph11F=0.750		
Ph1S=0.900	PN15-RI=1.000	Ph151=0.900			
1-1 000					
L-4.000	133=7 0805-04	P33=8 101	533=0 00h	0u3=0 013	
.1=4.480F-06	100-1.707L 04	r22=0.073	S22=7_813F-84	AU2=0.00	
E=2.100E+10	Fu=25300000.000	Ru=1.500	733=0.004	Cw=5_267E-86	
RLLF=0.400	SRLimit=0.950		z22=0.001		
D/C Ratio: 0.7	/34 = 0.555 + 0.112	2 + 0.067			
	= (Pr/Pc) + (8/	/9)(Mr33/Mc33) +	· (8/9)(Mr22/Mc22)	Eq. (H1-1a)	
		nho COMD43			
SIKESS CHECK FUR	10115 G 11011ENTS (CUI	шо сонво) мазэ м		н	
0 000	-233406 538 -114	1033 1 158 854 -2867	158 -3840 200 -114	16 810 -0 637	
0.000	200470.500 11-	2007.	150 0047.277 114	0.000	
AXIAL FORCE & BI	AXIAL MOMENT DESIG	GN (H1-1a)			
Factor	L	K1	K2 B1	B2 Cm	
Major Bendir	ng 0.918	1.000 1.	000 1.000	1.000 0.850	
Minor Bendir	ng 0.918	1.000 1.	000 1.000	1.000 0.850	
	Lltb	Kltb	Cb		
LTB	0.918	1.850 1.	.970		
	PU p	on1*Pnc pn1*	PNC		
Avial Force	222406 E20 421	αμαστιλ ραμας	1LY		
HXIGI FUFLE	200490.500 4210	902.039 490300.			
	Mu	nhi*Mn nhi	*Mn		
	Moment Ca	apacitu No	LTB		
Major Bendir	ng 11458.854 900	570.140 90670.	140		
Minor Bendir	ng 2067.150 272	278.460			
2HEHK DE21GN		nhiallo Sta			
	Force C:	phirvn Str anacitu Pa	tio		
Major Shear	3849,200 057	534_666 G	<u>646</u>		
Minor Shear	1146,810 213	127.200 0	665		
	11101010 210				

Imagen A-13 Diseño de columnas

Imagen A-14 Chequeo de columnas con amplificación sísmica

AISC360-05/IBC20	06 STEEL SECTIO	N CHECK	Units: K	gf-m (Sumr	nary for Comb	o and Station)		Units	Kgf-m	-
Lougle CTODU4	Contrine UE hE	op						1	1	÷.
Level: STURY1	Section: HE45	UB Element Tur	or Special	Concontrio	11. Depend F	1200			-	-
Combo: SCDE1	Classificatio	n. Soicmin	e. special	concentr 10	arry praceu r	ane			-	-
50000. SOULT	0103311100010	II. 30130110					+		-	_
Provision: LRED										
Analusis: Direct	Analusis	2nd Order:	General 2nd	Order	Reduction:	Tau-h Fixed	1.2.4			
AlphaPr/Pu=0.640	AlphaPr/Pe=0.	196 Tau b=0.921	EA fa	ctor=0.800	EI factor=	9.800				Ŧ
Ignore Seismic C	ode? No	Ianore Spec	ial EO Load?	Yes	D/P Plua W	1ded? Yes				-
			•							
SDC: D	I=1.000	Rho=1.000	Sds=0	.500				4444		+
R=8.000	Omega0=3.000	Cd=5.500								
PhiB=0.900	PhiC=0.900	PhiTY=0.900	PhiTF	-0.750						
PhiS=0.900	PhiS-RI=1.000	PhiST=0.900								
L=4.000										
A=0.022	I33=7.989E-04	r33=0.191	\$33=0	. 004	Av3=0.013					
J=4.480E-06	I22=1.172E-04	r22=0.073	S22=7	.813E-04	Av2=0.006			_		
E=2.100E+10	Fy=25300000.0	00 Ry=1.500	z33=0	.004	Cw=5.267E-	96				
RLLF=0.400	SRLimit=0.950		Z22=0	. 881				_		
		000 . 0 000								
D/C Kall0. 0.8	39 = 0.839 + 0.	000 + 0.000	+ /0/03/14/2	2 (Mo 22)	Ea (114	0.04-4.53		_		
	((0,7)(11 00/11000)	• (0/ 7)(10 2)	2711022)	Eq. (n).	5a,n1-1a)				
STRESS CHECK FOR	CES & MOMENTS (Combo SCBE1)								
Incation		Mu33	Mu22	IIII2	llu3	Ти				
0.000	-353170.73 -	19269-884 -193	9.513 -595	1.286 -11	109.237	-0.872				-
AXIAL FORCE & BI	AXIAL MOMENT DE	SIGN (H1.3a,H1	-1a)							
Factor	L	K1	K2	B1	B2	Cm				
Major Bendin	g 0.918	1.000	1.000	1.000	1.000	0.850				
Minor Bendin	g 0.918	1.000	1.000	1.000	1.000	0.850				
	Lltb	Kltb	Cb							
LTB	0.918	1.850	2.056							
								_		
	Pu	phi*Pnc ph	1*Pnt							
	Force	Capacity Cap	acity					_		
HX1A1 Force	3531/0./2/ 4	21082.839 49038	0.000							
	Mu	n hi xMn n	bi xMo							
	Momont	Pur≉nn p	0 L TD							
Major Rendin	n 10260 884		0 LTD 0F+12					_		
Minor Rendin	n 1030 513	0 000E+13	01.12							
TITIOT Dellutin	9 12021510	I TOODL' TO								 -
SHEAR DESIGN										
	Vu	ohi∗Vn S	tress					+	\vdash	-
	Force	Capacitu	Ratio							
Major Shear	5951.286	95634.000	0.062							+
Minor Shear	1109.237 2	13127.200	0.005							

Imagen A-15 Diseño de columnas con sismo amplificado

Las dos primeras imágenes muestran el diseño de las columnas para las primeras nueve combinaciones que son las que no incluyen la amplificación sísmica. Las imágenes A-14 y A-15 corresponden al diseño para las combinaciones con el sismo amplificado y solo se realizó el respectivo chequeo axial de las columnas. Se puede observar que la relación demanda capacidad en

las columnas de los pisos superiores es menor a 0.50. No se siguieron disminuyendo las secciones de las columnas para no disminuir drásticamente la rigidez entre los niveles y debido a que a nivel constructivo sería muy complicada la conexión entre dos columnas cuya diferencia en el ancho fuese de más de 10cm.

B. Resultados de la Edificación de Acero de Pórticos con Diagonales de Pandeo Restringido

DATOS INICIALES				
Tipo de Estructura	Acero			
Zona Sísmica	5			
Grupo	B2			
Nivel de Diseño	ND3			
Tipo de Sist. Resistente a Sismos	III			
Φ	1.00			
Forma Espectral	S3			
Altura del Edf. (m)	22			

a.	Espectro	de	Respuesta
----	----------	----	-----------

-								
	RESULTADOS							
Ao	0.35	То	0.18					
Ta (s)	0.51	R	6.00					
T* (s)	0.70	С	1.23					
β	2.60	T+ (s)	0.40					
р	1.00	Ad	0.15					
α	1.00							

Tabla B-1 Espectro de respuesta

Imagen B-1 Espectro de respuesta

Se utilizaron los mismos datos para la determinación del espectro de respuesta de este sistema, pero para obtener el factor de reducción del espectro de respuesta se consultaron normas internacionales y artículos de investigación, se observó que variaba entre 7 y 8. Pero debido a que el máximo valor de R en la norma COVENIN 1756-2001 es de 6, se decidió trabajar con este último, aunque esto implique que las fuerzas sísmicas de diseño serían mayores.

Modele	Área	Ру
Modelo	A (cm²)	(kgf/cm²)
STARBRB-1.0	6.45	15509
STARBRB-1.5	9.68	23264
STARBRB-2.0	12.90	31018
STARBRB-2.5	16.13	38773
STARBRB-3.0	19.35	46527
STARBRB-3.5	22.58	54282
STARBRB-4.0	25.81	62036
STARBRB-4.5	29.03	69791
STARBRB-5.0	32.26	77545
STARBRB-5.5	35.48	85300
STARBRB-6.0	38.71	93054
STARBRB-6.5	41.94	100809

b. Predimensionamiento de las diagonales de pandeo restringido

Tabla B-2 Diagonales Star Seismic

Nivol	Diamanal	Pu	Areq	Areal	Madala
nivei	Diagonal	Kgf	cm²	cm²	wodelo
NIVEL 1	D1	27896	11.60	12.90	STARBRB-2.0
NIVEL 1	D10	34251	14.25	16.13	STARBRB-2.5
NIVEL 1	D11	37973	15.80	16.13	STARBRB-2.5
NIVEL 1	D12	39095	16.26	19.35	STARBRB-3.0
NIVEL 1	D13	30896	12.85	12.90	STARBRB-2.0
NIVEL 1	D14	31016	12.90	12.90	STARBRB-2.0
NIVEL 1	D15	31419	13.07	16.13	STARBRB-2.5
NIVEL 1	D16	32346	13.46	16.13	STARBRB-2.5
NIVEL 1	D17	29373	12.22	12.90	STARBRB-2.0
NIVEL 1	D18	30320	12.61	12.90	STARBRB-2.0
NIVEL 1	D19	26243	10.92	12.90	STARBRB-2.0
NIVEL 1	D2	30140	12.54	12.90	STARBRB-2.0
NIVEL 1	D20	24210	10.07	12.90	STARBRB-2.0
NIVEL 1	D21	24839	10.33	12.90	STARBRB-2.0
NIVEL 1	D22	25632	10.66	12.90	STARBRB-2.0
NIVEL 1	D23	26236	10.91	12.90	STARBRB-2.0
NIVEL 1	D24	24380	10.14	12.90	STARBRB-2.0
NIVEL 1	D25	29716	12.36	12.90	STARBRB-2.0
NIVEL 1	D26	31650	13.17	16.13	STARBRB-2.5
NIVEL 1	D27	35799	14.89	16.13	STARBRB-2.5
NIVEL 1	D28	30303	12.61	12.90	STARBRB-2.0
NIVEL 1	D29	29605	12.32	12.90	STARBRB-2.0
NIVEL 1	D30	36115	15.02	16.13	STARBRB-2.5
NIVEL 1	D31	29845	12.42	12.90	STARBRB-2.0
NIVEL 1	D32	28989	12.06	12.90	STARBRB-2.0
NIVEL 1	D33	37852	15.75	16.13	STARBRB-2.5
NIVEL 1	D34	38810	16.14	19.35	STARBRB-3.0
NIVEL 1	D35	43722	18.19	19.35	STARBRB-3.0
NIVEL 1	D36	37756	15.71	16.13	STARBRB-2.5
NIVEL 1	D37	35141	14.62	16.13	STARBRB-2.5
NIVEL 1	D38	41688	17.34	19.35	STARBRB-3.0
NIVEL 1	D39	29783	12.39	12.90	STARBRB-2.0
NIVEL 1	D40	27078	11.26	12.90	STARBRB-2.0
NIVEL 1	D41	40407	16.81	19.35	STARBRB-3.0
NIVEL 1	D42	40166	16.71	19.35	STARBRB-3.0

Tabla B-3 Predimensionamiento del núcleo de acero

Utilizando las fuerzas de diseño de las diagonales del modelo anterior con un sistema tipo SCBF, se determino los tipos de diagonales de pandeo restringido de la base de datos suministrada por la compañía Star Seismic. En la tabla B-3 se muestra algunos predimensionamientos donde la mayoría posee un núcleo de acero igual o mayor a 2 pulgas de acero o 11.60cm².

c. Verificación del cortante basal y control de desplazamientos

Tabla de Definición de Masas					
Carga Factor					
PP	1				
CV	0.5				
SCP	1				

Tabla B-4 Definición de masas participativas

Tabla de Participación Modal									
Modo	Periodo	UX UY		SumUX	SumUY				
1	0.91	2.16	72.79	2.16	72.79				
2	0.81	74.85	2.79	77.01	75.57				
3	0.66	1.11	2.06	78.12	77.63				
4	0.30	0.23	15.39	78.35	93.02				
5	0.28	14.07	0.23	92.43	93.25				
6	0.23	0.28	0.16	92.70	93.40				
7	0.17	0.02	4.34	92.72	97.75				
8	0.16	4.30	0.02	97.02	97.76				
9	0.13	0.08	0.65	97.10	98.41				
10	0.13	0.02	0.47	97.12	98.89				
11	0.12	1.35	0.00	98.46	98.89				
12	0.11	0.00	0.69	98.46	99.59				
13	0.10	0.03	0.00	98.49	99.59				
14	0.10	0.90	0.00	99.39	99.59				
15	0.09	0.00	0.41	99.39	100.00				
16	0.08	0.03	0.00	99.42	100.00				
17	0.08	0.55	0.00	99.97	100.00				
18	0.07	0.03	0.00	100.00	100.00				

Tabla B-5 Participación modal

Imagen B-2 Modo 1

Imagen B-3 Modo 2

Imagen B-4 Modo 3

Como se observa en la Tabla B-5, con los 18 modos dispuestos en el modelo, la sumatoria de masas participativas excede el 90%, cumpliendo con lo establecido en la norma COVENIN 1756-2001 capítulo 9.6.2. Al chequear los modos de vibración de la estructura diseñada, se observó un comportamiento predominantemente traslacional en los dos primeros modos, lo cual es una conducta deseada.

Tabla de Fuerzas Cortantes por Niveles (SX)								
Nivel	Carga	VX	VY					
NIVEL 6	SX	107205.12	16930.63					
NIVEL 5	SX	230833.02	39944.25					
NIVEL 4	SX	320821.55	57420.59					
NIVEL 3	SX	390715.69	70630					
NIVEL 2	SX	441319.81	79699.54					
NIVEL 1	SX	470082.92	84103.87					
Tabla de	Fuerzas Co	rtantes por N	liveles (SY)					
Nivel	Carga	VX	VY					
NIVEL 6	SY	17609.54	98431.52					
NIVEL 5	SY	40902.6	207214.99					
NIVEL 4	SY	58522.18	282992.9					
NIVEL 3	SY	71611.45	342364.84					
NIVEL 2	SY	80293.26	387399.07					

 NIVEL I
 SY
 84103.87
 415498.79

 Tabla B-6 Fuerzas cortantes debido a las acciones sísmicas

Nivel	Altura de Entrepiso (m)	Load	∆ei (m)	∆i (m)	δi (m)	θ=∆i/h
NIVEL 6	4	SX	0.029	0.094	0.012	0.003
NIVEL 5	4	SX	0.026	0.082	0.017	0.004
NIVEL 4	4	SX	0.020	0.065	0.017	0.004
NIVEL 3	4	SX	0.015	0.048	0.018	0.005
NIVEL 2	4	SX	0.009	0.030	0.018	0.004
NIVEL 1	4	SX	0.004	0.012	0.012	0.003
NIVEL 6	4	SY	0.033	0.107	0.016	0.004
NIVEL 5	4	SY	0.028	0.091	0.020	0.005
NIVEL 4	4	SY	0.022	0.071	0.020	0.005
NIVEL 3	4	SY	0.016	0.052	0.019	0.005
NIVEL 2	4	SY	0.010	0.032	0.019	0.005
NIVEL 1	4	SY	0.004	0.013	0.013	0.003

Tabla B-7 Control de desplazamientos

VERIFICACIONES							
W	Peso Total (Kgf)	2844725					
	α						
	Ao	0.35					
	R	4.00					
	μ	0.89					
Та	(S)	0.51					
Т	Ta mayorado 1.6 veces (s)	0.81					
Ad	calculado con 1.6Ta (s)	0.196					
Vo	Corte Estático (Kgf)	316481					
Vo x	Corte Dinámico en x(Kgf)	470083					
Voy	Corte Dinámico en y(Kgf)	415499					
	α*Ao/R						
	Vo x/W	1.324					
	Vo y/W	1.171					
Sus	Susceptible a daños por deformaciones: SI						
	Deriva Limite						
δx	Deriva Inelástica máxima en x	0.005					
δγ	Deriva Inelástica máxima en y	0.005					

Tabla B-8 Verificación del cortante basal y desplazamientos

	Nivel	Altura de entrepiso h (m)	θei=δei/h	θi=δi/h (%)	Máximo θ=δi/h (%)
	6	4.00	0.001	0.59	2.00
X	5	4.00	0.002	0.86	2.00
er	4	4.00	0.002	0.88	2.00
Sismo	3	4.00	0.002	0.90	2.00
	2	4.00	0.002	0.88	2.00
	1	4.00	0.001	0.62	2.00
	6	4.00	0.002	0.95	2.00
≻	5	4.00	0.002	1.27	2.00
er	4	4.00	0.002	1.28	2.00
0 E	3	4.00	0.002	1.23	2.00
Sis	2	4.00	0.002	1.22	2.00
	1	4.00	0.001	0.81	2.00

Tabla B-9 Verificación de deriva para BRBF AISC 341-2010

En la Tabla B-8 se realizó la comprobación de los capítulos 7.1, 9.6 y 10 de la norma COVENIN 1576-2001 y en la tabla B-9 se verifico que la deriva no exceda el 2% cumpliendo con el capítulo F4 de la AISC 341-2010.

Las Diagonales de Pandeo Restringido utilizadas en el diseño final deben soportar deformaciones mayores a 2 veces la deriva de su nivel, para cumplir con lo estipulado AISC 341-2010 en el capítulo F4.

d. Diseño de correas y vigas de transferencia

Imagen B-5 Chequeo de correas y vigas de transferencia

AISC360-05/	BC2006	Composite	e Beam Desi	ign Bear	h Label: 898	Units: Kgf-m	
PCC PNA: 0.2 Full PNA: 0.24 Pmax: 0.00	29 PCC pł 0 Full phi Pmax 0	niMn: 13452.7 Mn: 18317.6 Combo: NA	701 19				
Moment Desi	gn		-			.	
Type County Dec	Combo	1 000	Cb	Mu EDO A DOC	phiMn 7044 707	Ratio	
Final Pos	COMB2	5 500E-06	1.000	13362 572	13452 701	0.673	
r indiri oo	001102	0.0002.00	1.000	10002.012	10402.101	0.000	
Shear Design	1						
Туре	Combo	Block	Vu	PhiVn	Ratio		
Constr Left	DCMPC2	OK	2976.00	20794.93	0.143		
Constr Hight	DCMPC2	UK	2976.00	20794.93	0.143		
Final Left			7314.00	18715.44	0.391		
rinai niyrit	COMPZ	UN	7314.00	10710.44	0.551		
End Reactions Left Combo L. Reaction Right Combo R. Reaction							
COMB2	7314.00	COMB2	7314.00				

Imagen B-6 Diseño de correas y vigas de transferencia por capacidad

AISC360-05/IBC2006		Composite Beam Design		Beam I	Beam Label: B98		gf-m	
Deflection De	sign	<u> </u>	D //		D	01/		
Iype PreComp DL	Lonsider	DCMPD2	0.010	Limit 0.000	Batio 0.000	UK Yes		
Super Load	Yes	DCMPD2	0.010	0.023	0.428	Yes		
Total-Camber	res Yes	DCMPD2 DCMPD2	0.005	0.015	0.310	res Yes		
DG11 Vibratio	on Design							
Type Welking	Consider	Mode e0/a	Actual	Target 0.005	Ratio	OK Yes		
		ao/y	0.00403	0.005	0.015	163		
Frequency and I	-ffective We	eight Paramete	ers		_			
Element Slab	C, Factor	Elett 277288.4	D 6.002E-06	L	В	W	Delta	In
Beam	2.0, 1.5	3883813.1	8.407E-05	5.5	5.7	14218.7	0.00291	10.451
Girder Panel	1.8, 1.0	3416700.0	2.958E-05	7.0	11.0	23641.3 19134.8	0.00318	10.006
Walking Acceleration Calculation								
fn 7 227	Beta	W 19124 9	Po 29 494	ap/g 0.00409	a0/g			
1.221	0.03	15154.0	20.404	0.00403	0.000			

Imagen B-7 Diseño de correas y vigas de transferencia por servicio

Como se esperaba el diseño de estos elementos no difirió del anterior ya que la disposición fue la misma y las combinaciones de diseño no incluyen las cargas sísmicas por no pertenecer a un sistema resistente a cargas laterales.

e. Diseño de vigas

Imagen B-8 Chequeo de vigas
AISC360-	05/IBC200	6 STEEL	SECTI	ON CHE	СК		Uni	ts:	Kgf-	m (Summar	y for	Comb	o and	Station)	Units Kgf-m	-
Level: S	IUKY2	Section	: IPE	330	-				0								
Element:	BZ4	LOC: U.	180		FTewer	t Type:	20	ecial	CON	cent	ricali	y Bra	cea f	rame			
	JFIBZ	CLASS1+	10411	.on: C	ompact			_					_				
Proutcion																	
Applucic	Direct	0nalucic			2nd De	dor: Co	DOKO	1 2nd	Ord	or		Poduc	tion	Tou-	h Eivod	3*	
AlabaPr/		01nh2Pr	/Po=6	000	Tau b=	1 888	nei a	F0 F	acto	ст и=0	000	FI fa	ctor=	0.000	DITYER		
PhiB=0 01	9-0.000	PhiC=0	088		PhiTY=	0 000		PhiT	αι () F=0	758	000			0.000			
PhiS=0.0	88	PhiS-RI	=1.00	0	PhiST=	0.000		10110									
		11110 111															
L=7.000	>																
A=0.006		I33=1.1	77E-0	14	r33=0.	137		\$33=	7.13	3E-0	4	Av3=0	. 003				
J=0.000		I22=7.8	8 0E - 0	16	r22=0.	035		S22=	9.85	0E-0	5	Av2=0	. 002				
E=2.100E+	+10	Fy=2530	0000.	000	Ry=1.5	00		z33=	8.04	0E - 0	4	Cw=0.	000				
RLLF=0.90	89	SRLimit	=0.95	0	Ĩ I			z22=	1.54	0E-0	4						
D/C Ratio	o: 0.96	9 = 0.00	0 + 0	1.969 +	0.000												
		= (1/2)(Pr/	'Pc) +	(Mr33/	Mc33) +	(Mr	22/Mc	22)		Eq.	(H1.	3a,H1	-1b)			
STRESS CI	IECK FORC	ES & MOM	ENTS	(Combo	COMB2)											
Locat	tion		Pu		Mu33	M	u22		U	u2		Vu3		I	u		
0.18	0	0.	000	-17734	.474	0.	000	-136	56.5	07	6	. 000		0.20	6		
AXIAL FOR	RCE & BIA	XIAL MOM	ENT D	ESIGN	(H1.	3a,H1-1	b)										
Facto	or		L		K1		K2			B1		B2	_	0	n		
мазон	r Benaing	U.	949		.000	1 1	000		1.0	00		.000		1.00	0		
MINO	r senaing	υ.	474	1	.000	1.	000		٦.0	00	1	. 999	_	1.00	9		
			1+6		111+6		0.5										
1 TD		L 0	1 C D 6 7 6		RICD		000	_				_	_				
LID		υ.	4/4	1 1	.000	1.1.1.1	200										
			Du	nhi	*Pnc		Pnt	_					_				
		En	PCO	Cana	citu	Canac	itu										
	Eorce	0	000	01126	373	142540	200						_				
1010			000	1120		12540.	200										
			Ми	nh	i *Mn	nhi	*Mn										
		Мол	ent	Capa	citu	No	LTB										
Major	^r Bending	17734.	474	18307	.080	18307.	080										
Minor	Bending	0.	000	35 06	.580												
SHEAR DES	SIGN																
			Vu	ph	i∗Vn	Str	ess										
		Fo	rce	Capa	city	Ra	tio										
Major	r Shear	13656.	507	37570	.500	0.	363										
Minor	r Shear	0.	000	50276	.160	0.	000										
END REACT	TION MAJO	R SHEAR	FORCE	S													
		Left	End		Load	Right	End		LO	ad							
		React	10N		OMDO	React	10N		Com	DO			_				
		13656.	507		OURA	13598.	210		COM	RÀ							

Imagen B-9 Diseño de vigas

En las imágenes anteriores se muestra como de acuerdo a lo esperado del modelo anterior la combinación de diseño fue la número 2, por lo tanto el ahorro de material en estos elementos se vio limitado en este caso, ya que de haber dominado en el diseño una combinación que incluyera las acciones sísmicas se hubiese podido disminuir los perfiles.

f. Diseño de diagonales de pandeo restringido

Imagen B-10 Chequeo de diagonales

A diferencia del diseño de las diagonales en el modelo anterior, la relación demanda capacidad de casi todas las diagonales supera el 0.75, demostrando así ser un sistema mucho más eficiente, solo las diagonales del último nivel poseen una relación baja debido a que son utilizadas para controlar los desplazamientos. Con este sistema las diagonales de pandeo restringido se logran ajustar a la fuerza sin el problema de esbeltez que presentan las del modelo anterior, esto no solo se traduce en un uso más eficiente del acero, sino que las conexiones que se deben diseñar por capacidad resultan mucho más sencillas y de menores dimensiones.

AISC	360	-05	/11	3C200	6 STH	EL	SEC	TION	CHE	CK		-		U	ni	ts:	Kg	jf-m	(Sum	mary	for	r Coi	nbo	and	Sta	tion)
Leve	1.	STO	RYI	9 0 0	Sect	tion	0	TARBE	2B-3	5				_		-	-			_	-	_	-	_	_	_	
Elen	ent.	: [6		Loc	2	658		-	Ele	men	t T	voe		Spe	ecia	1 0	onden	tric	allv	Bra	aced	Fra	me			
Comb	00:	COM	ſΒ6	>	Clas	ssif	ica	tion	S	eis	mic	-	1 p c	·	-P												
Prov	isi	on:	LF	TD																							
Anal	vsi	3:	Dir	ect	Analy	/315			1.3	2nd	Or	der	: G	ene	ra	1 2n	d C	rder	10.00	R	edu	ctio	n: T	au+h	Fi	xed	
Alph	aPr	/Pv	=0.	789	Alpl	haPr	/Pe	=8.E-	-04	Tau	b=	0.6	67		23	EA	fac	tor=0	.800	E	Ife	acto	r=0.	800	14	89.88	
Igno	ore	Sei	smi	.c Co	de? 1	10				Ign	ōre	Sp	eci	al	ΕQ	Loa	d?	Yes		D	/P 1	Plug	Wel	ded?	Ye	s	
SDC:	D				I=1	.000	ř			Rho	±1.	000				Sds	=0.	500			1						
R=8.	000	-	-		Omed	ta0=	3.0	00		Cd=	5.5	00	-	-	-						-	-			-		
PhiE	3=0.	900	1		Phi	Ì=0.	900)		Phi	TY=	0.9	00			Phi	TF=	0.750									
Phis	S=0.	900			Phis	3-RI	=1.	000		Phi	ST=	0.9	00														
L=5.	315	>																									
A=0.	002				I33=	+0.0	08		11.8	r33	=1.	920				533	=0.	082		A	v3=0	0.03	4				
J=0.	008				122:	0.0	0.8		1	r22	=1.	920		_		522	=0.	082		A	v2=(0.03	4			_	
E=2.	100	E+1	0		fy=2	2671	664	15.793	3	Ry=	1.1	00				z33	=1.	639E-	05		1						
RLLE	=1.	000			SRL:	imit	=0.	950								z22	=1.	639E-	05								
D/C	Rat	io:		0.98	8 = 0	1.87	7 +	0.11	2 +	0.	000	-		-	-		-				-			-		-	
					=	(Pr/	Pc)	+ (8	9)	(Mr	33/	Mc3	3)	+ (8/	9) (M	r22	/Mc22)		Eq	. (H	1.3a	, H1-	-la)	-	-
STDE	22	СНЕ	CV	FORC	F5 6	MON	ENT	S IC	mbo	0	MRE	-		_										_	_		
JIM	Loc	ati	on	FORC	E.J &	HOP	D	S ICC	Junoc	M113	200	1	1	112	2			V122			VII 3			T	3		
	2.6	58	-Un		-475	576.	837		49	.46	2		0	.00	0		0	.000		0.	000		0	.000)		
AXTZ	I. F	ORC	F a	BTA	XTAT.	MON	ENT	DEST	GN	1	H1.	3a.	H1-	1a)													
	Fac	tor	-				1		-	K	1	Jul,		K	2			BI			B2			Cn	1		
	Mai	or	Ber	ding		1.	000		1	.00	6		1	.00	6		1	.000		1.	000		1	.000	ý		
	Min	or	Ber	ding	8	1.	000)	1	.00	6		1	.00	0		1	.000		1.	000		1	.000)		
	05307	6.02	2028	-	a	23		84 28	1.2			-	- 7	1000			-	1000 20		1.20				1000	23		-
						I	lth	>		Klt	b			C	b												
	LTB					1.	000)	1	.00	0		1	.31	6												
							Pu	1	phi	*Pn	c		phi	*Pn	τ												
_	2			-	1 100	Fo	rce	. (lapa	cit	y-	C	apa	cit	V	-					-				_		
_	Axi	al	Foi	ce	475	576.	837	54	1272	.56	8	54	295	.01	0			-	-		-			-	_	-	
							Mu	3	ph	i *M	'n		ph	i *M	n												
	1					Mon	ent		apa	cit	v		No	LT	в						-1-						
	Maj	or	Ber	nding	4	49.	462		394	.02	5		394	.02	7												
	Min	or	Ber	ding		0.	000)	394	.02	7					_					_			_		_	
CUP		FCT	CN																								
JULY	ar D	163	GIN				Vi	1	ph	i*V	'n		St	res	s												
	-					Fo	rce	. (apa	cit	Y	-	R	ati	0	-					-	-		-		-	
	Maj	or	She	ar		0.	000	496	5411		1	_	0	.00	0						-						
	Min	or	She	ar		0.	000	496	5411	. 51	1		0	.00	0												
END	REA	CTI	ON	AXIA	L FOR	CES	;																				
20.000			00000		Le	ft	End	1		Loa	d	Ri	ght	En	d			Load								-	
					Re	act	ion		C	omb	6	R	eac	tio	n	-	0	ombo									
					663	360.	568		C	OMB	9	66	360	.56	8		C	OMB9									
					1. 35.56	31200	10.54		1,508	1000	122	199.5	128.743	883C)			12.3	80.2 12 12 12 12					-				

Imagen B-11 Diseño de diagonales

g. Diseño de columnas

Imagen B-12 Chequeo de columnas sin amplificaciones sísmicos

	E DED STELE SECTION O		onres.	ngi in (Julii		bo and scaliny			-	
evel: STORY1	Section: HE360B								2	
lement: C23	Loc: 0.000	Element Type	: Special	Concentrica	ally Braced	Frame			1	
ombo: COMB7	Classification:	Seismic					_			
rouicion: LPE										
nalucic. Dire	rt Analusis	2nd Order: C	eneral 2nd	Order	Reduction	· Tau-h Fiyed	3*		1	
loboPr/Pu=0 k	66 AlphaPr/Po=0 19/	Tau b=1 000	FO F	actor=0.800	EI factor	-0.000				
anore Seismic	Code? No	Ignore Speci	al EO Load	2 Voc		Welded? Vec		<u>+</u>		
gnore sersmie	oode. no	Ignore spect	ar cy coud		<i>0</i> /1 110g	icided. res				
DC: D	I=1.000	Rho=1,000	Sds=	0.500			-	11111		
3=8.000	Omega 0=3.000	Cd=5.500								
hiB=0.900	PhiC=0.900	PhiTY=0.900	PhiT	F=0.750						+
hiS=0.900	PhiS-RI=1.000	PhiST=0.900								
										+
=4.000										
1=0.018	I33=4.319E-04	r33=0.154	\$33=	0.002	Av3=0.011					Ť
J=2.980E-06	I22=1.014E-04	r22=0.075	S22=	6.760E-04	Av2=0.005					
=2.100E+10	Fy=25300000.000	Ry=1.500	z33=	0.003	Cw=2.888E	-06				
LLF=0.400	SRLimit=0.950		z22=	0.001						
										Τ
)/C Ratio: 0	.757 = 0.594 + 0.056	+ 0.107								
	= (Pr/Pc) + (8/	9)(Mr33/Mc33)	+ (8/9)(Mr	22/Mc22)	Eq. (H1	-1a)				
STRESS CHECK F	ORCES & MOMENTS (Com	bo COMB7)								
Location	Pu	Mu33	Mu22	Vu2	Vu3	Tu				
0.000	-213187.813 38	74.216 -2830	.136 13	15.390 -14	148.003	-0.593				
										_
INTAL FURCE &	BIAXIAL MUMENI DESIG	N (H1-1a)	20			0				
Factor Madew Dood		K1 4 000 4	KZ RAR	B1	B2	UN				+
Hipon Dopd	111y 0.910 ina 0.010	1.000 1	.000	1.000	1.000	1.000				
FITHOL BEHN	1119 0.910	1.000 1	.000	1.000	1.000	1.000				+
	1.1+6	W1+6	C.b.							
		1 600 0	228							+
LID	0.710	1.002 2	.200							
	Du D	hixDoc ohi	*Dot							+
	Боксо Са	nacitu Cana	eitu							
	o 213187 813 3501	06 653 J12137	888							+
Avial Fore		70.030 412107								
Axial Forc								_		+
Axial Forc	Mu	nhi¥Mn nh	i ¥Mo							
Axial Forc	Mu Moment Ca	phi*Mn ph: pacitu No	i*Mn LTR							
Axial Forc	Moment Ca	phi*Mn ph pacity No 01 010 61001	i*Mn LTB 010							
Axial Forc Major Bend	Mu Moment Ca ing 3874.216 610	phi*Mn ph pacity No 91.910 61091 98.640	i*Mn LTB .910							
Axial Forc Major Bend Minor Bend	Mu Moment Ca ing 2874.216 610 ing 2830.136 234	phi*Mn ph pacity No 91.910 61091 98.640	i*Mn LTB .910							
Axial Forc Najor Bend Minor Bend	Mu Moment Ca ing 3874.216 610 ing 2830.136 234	phi*Mn ph pacity No 91.910 61091 98.640	İ∗Mn LTB .910							
Axial Forc Major Bend Minor Bend HEAR DESIGN	Mu Moment Ca ing 3874.216 618 ing 2830.136 234	phi∗Nn ph pacity No 91.918 61891 98.648	i*Mn LTB .910 ress							
Axial Forc Major Bend Minor Bend HEAR DESIGN	Nu Moment Ca ing 3874.216 610 ing 2830.136 234	phi×Nn ph pacity No 91.918 61891 98.648 phi×Vn St pacitu R	i×IIn LTB .910 ress							
Axial Forc Major Bend Minor Bend XHEAR DESIGN Major Shea	Nu Mu Moment Ca ing 3874.216 610 ing 2830.136 234 Uu Force Ca 1315.800 683 683	phi×Nn ph pacity No 91.910 61091 98.640 phi×Un St pacity R 18.888 8	i×IIn LTB .910 ress atio .019							

Imagen B-13 Diseño de columnas sin cargas sísmicas amplificadas

Imagen B-14 Chequeo de columnas con cargas sísmicas amplificadas

AISC360-05/IBC2006 STEEL SEC	TION CHECK Un	its: Kgf-m (Summary for Combo and Station)	Units Kgf-m 💌
	00,00		
Element: Cu5 Loc: 0 000	Element Tune: Si	nacial Concentrically Braced Frame	
Combo: BRBE2 Classifica	tion: Seismic	pectal concentration brace frame	
	CION. SCISHIC		
Provision: LRED			
Analusis: Direct Analusis	2nd Order: Genera	al 2nd Order Reduction: Tau-b Fixed	
AlphaPr/Pu=0.759 AlphaPr/Pe	=0.219 Tau b=0.732	EA factor=0.800 EI factor=0.800	
Ignore Seismic Code? No	Ignore Special E	D Load? Yes D/P Plug Welded? Yes	
9			
SDC: D I=1.000	Rho=1.000	Sds=0.500	┼╼┫┶┯┽╍┚┩╌┥╌┥┛╌┥╌┛╌╴
R=8.000 Omega0=3.0	00 Cd=5.500		
PhiB=0.900 PhiC=0.900	PhiTY=0.900	PhiTF=0.750	
PhiS=0.900 PhiS-RI=1.	000 PhiST=0.900		
L=4.000			
A=0.018 I33=4.319E	-04 r33=0.154	S33=0.002 Av3=0.011	
J=2.980E-06 I22=1.014E	-04 r22=0.075	S22=6.760E-04 Av2=0.005	
E=2.100E+10 fy=2530000	0.000 Ry=1.500	z33=0.003 Cw=2.888E-06	
RLLF=0.400 SRLimit=0.	950	z22=0.001	
D/C Ratio: 0.968 = 0.968 +			
= (Pr/Pc)	* (Mr33/MC33) 2 + (Mr22)	/MC22) Eq. (H1.3D,H1-2)	
	C (Combo DDDE2)		
	ა (600000 bnbr∠) Μα99 Μα99	Uu2 Uu2 Tu	
0.000 -347556 11	6022 138 52h0 h33	3305 508 -2018 212 -1 288	
0.000 047550.11	0722.100 5247.400	0077.570 2410.212 1.200	
AXIAL FORCE & BLAXIAL MOMENT	DESIGN (H1.3b.H1-2)		
Factor	K1 K2	B1 B2 Cm	
Major Bending 0.910	1.000 1.000		
Minor Bending 0.910	1.000 1.000		
Lltb	Kltb Cb		
LTB 0.910	1.602 1.705		
Pu	phi*Pnc phi*Pnt		
Force	Capacity Capacity		
Axial Force 347556.110	359196.653 412137.000		
Mu	phi*Mn phi*Mn		
Moment	Capacity No LTB		
Major Bending 6922.138	9.000E+21 9.000E+21		
Minor Bending 5249.433	9.000E+21		
SHEAR DESIGN			
VU	pn1*vn Stress		
Force	Capacity Katio		
Minow Chose 0440 040	101107 000 0.050		
Fillior Siledr 2418.212	104407.000 0.013		

Imagen B-15 Diseño de columnas con cargas sísmicas amplificadas

Al igual que en el modelo anterior la combinación que dómino el diseño de las columnas fue la 7. Como el sistema de Pórticos de Diagonales de Pandeo Restringido (BRBF) es un sistema más dúctil y posee un factor de reducción de fuerzas sísmicas más alto, se pudo reducir la sección de las columnas significativamente. También se observa un valor promedio demanda capacidad mayor que con el sistema de Pórticos de Diagonales Concéntricas (SCBF), llegando a tener en los últimos niveles el doble de eficiencia.

En el diseño de las columnas se puede observar fácilmente que existe una diferencia y ahorro significativo en comparación con el modelo anterior, pasando de utilizar perfiles HEB500 a perfiles HEB360.

C. Contraste de ambos sistemas

Gráfico C-1 Comparación de espectros

Gráfico C-2 Comparación de fuerzas cortantes

En el gráfico C-1 se puede apreciar la diferencia entre ambos espectros debido al alto factor de reducción de fuerza sísmica del sistema BRBF, a pesar de utilizar un valor de 6 cuando en otros países se utilizan valores entre 7 y 8. En el gráfico C-2 queda evidenciado como este cambio en el espectro significa una enorme diferencia en las fuerzas cortantes debido a las acciones sísmicas, llegando a ser prácticamente la mitad.

	Tabla de Masa y Peso por Grupos										
	SCB	F	BRBF								
Grupo	Peso Propio	Masa Total	Peso Propio	Masa Total							
	Total (Kgf)	(Kg)	Total (Kgf)	(Kg)							
Columnas	181780.88	18536.49	154638.72	15768.76							
Correas	41682.87	4250.47	41682.87	4250.47							
Diagonales X	43013.41	4386.15									
Diagonales Y	39750.07	4053.38									
Vigas T.	26937.79	2746.89	26937.79	2746.89							
Vigas X	73928.77	7538.64	73928.77	7538.64							
Vigas Y	36095.56	3680.72	36095.56	3680.72							
TOTAL	443189.35	TOTAL	333292.23								

Tabla C-1 Comparación de pesos y masas por grupos

Gráfico C-3 Comparación de Peso por Elementos Estructurales entre los Sistemas SCBF y BRBF

Como se observa en el Grafico C-3, no hubo diferencias en el diseño de elementos como las corres, vigas de transferencia y las vigas principales debido a

que las solicitudes que predominaron su diseño no incluían las cargas sísmicas. Las columnas evidencian un ahorro significativo vinculado a la disminución de las fuerzas sísmicas.

El peso de las Diagonales de Pandeo Restringido no se tomo en cuenta, debido a que a diferencia del resto de los elementos su adquisición se realiza por el número de piezas y no por la cantidad de Kilos (Kg).

	Tabla de Secciones Utilizadas										
Sección	Tipo de	Núm. Piezas	Largo Total	Peso Total							
	Elemento		(m)	(Kgi)							
HE180B	Diagonal	48	228.61	11718.65							
HE200B	Diagonal	228	1158.81	71044.84							
HE360B	Columna	86	344.00	48877.24							
HE400B	Columna	96	384.00	59685.12							
HE450B	Columna	96	384.00	65713.92							
HE500B	Columna	10	40.00	7504.60							
IPE120	Viga	24	60.00	621.72							
IPE140	Viga	120	300.00	3862.20							
IPE160	Viga	412	1442.00	22752.60							
IPE180	Viga	224	790.00	14821.59							
IPE200	Viga	38	191.00	4273.15							
IPE220	Viga	97	496.00	13004.62							
IPE240	Viga	295	1550.50	45380.34							
IPE300	Viga	41	273.00	10902.03							
IPE330	Viga	165	1095.00	50445.20							
IPE360	Viga	35	235.00	12581.54							
			Total	443189.35							

Tabla C-2 Perfiles utilizados SCBF

	Tabla de	e Secciones Ut	ilizadas	
	Tipo de Elemento	Núm. Piezas	Largo Total (m)	Peso Total (Kgf)
HE320B	Columna	96	384	48531.84
HE340B	Columna	96	384	51546.24
HE360B	Columna	96	384	54560.64
IPE120	Viga	24	60	621.72
IPE140	Viga	120	300	3862.2
IPE160	Viga	412	1442	22752.597
IPE180	Viga	224	790	14821.585
IPE200	Viga	38	191	4273.148
IPE220	Viga	97	496	13004.624
IPE240	Viga	295	1550.5	45380.34
IPE300	Viga	76	448	17857.802
IPE330	Viga	125	875	40885.312
IPE360	Viga	40	280	15194.184
STARBRB-2.0	Diagonal	44	233.86	2368.81
STARBRB-2.5	Diagonal	48	228.61	2894.495
STARBRB-3.0	Diagonal	44	233.86	3553.215
STARBRB-3.5	Diagonal	92	462.47	8197.71
STARBRB-4.0	Diagonal	48	228.61	4631.192
			Total	354937.65

Tabla C-3 Perfiles utilizados BRBF

Gráfico C-4 Comparación de Acero requerido por metro cuadrado sin conexiones entre los Sistemas SCBF y BRBF

En el Gráfico C-4 se muestra que se logro obtener una diferencia entre ambos sistemas de 15.88 Kgf/m². Estimando un precio actual de 25 Bsf/Kgf se lograría ahorrar en una edificación similar a la modelada, un total de 397.00 Bsf/m².

Gráfico C-6 Comparación de Acero requerido por metro cuadrado con conexiones entre los Sistemas SCBF y BRBF En base a datos de proyectos realizados se conoce que el peso de las conexiones en un sistema SCBF equivale a un 20% del peso total, mientras que en un sistema BRBF equivalen a un 10%. Por lo tanto el ahorro por peso pasa de 15.88 Kgf/m² a 23.87 Kgf/m², lo cual se traduce en un ahorro final de 597.77 Basf/m².

Aplicando lo antes mencionado a los 6,921 m² de construcción que posee la edificación modelada, el ahorro entre ambos sistemas es de **4,130,106.75** Bsf. Se debe asegurar que el precio de las Diagonales de Pandeo Restringido no supere el monto que se estima a ahorrar.

Según este ultimo Grafico C-7 se demuestra un porcentaje (%) de ahorro en acero significativo al utilizar un sistema de Pórtico de Diagonales de Pandeo Restringido, ya sea el 24.80% sin incluir las conexiones o un 31.06% si incluimos las conexiones.

En general estos resultados coinciden con los obtenidos en trabajos de investigación preliminares, realizados por entes internacionales especializados en la materia, como lo son Star Seismic, la Universidad de California y de Utah.

R	RELACION DE LAS REACCIONES BRBF/SCBF (%)										
Fx	Fx Fy Fz Mx My Mz										
93.82 106.47 75.28 98.37 92.86 88.30											
Tal	Tabla C-4 Comparación do reacciones										

Tabla C-4 Comparación de reacciones

Las reacciones verticales y los momentos que se producen en la base de la estructura son fundamentales para el diseño de las fundaciones. En la estructura con diagonales de pandeo restringido la reacción vertical representa un 75.28% de la que se obtuvo con el uso de diagonales concéntricas tradicionales, la tendencia en el resto de las relaciones de las reacciones fue de un 90%. Esto implicaría que la estructura con diagonales de pandeo restringido tendría unas fundaciones de menores dimensiones.

CAPÍTULO V CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES

Los Pórticos con Diagonales de Pandeo Restringido son un sistema con grandes ventajas constructivas y económicas, que elimina la falla por pandeo en las diagonales existente en otros sistemas. Este sistema posee un comportamiento cíclico y estable, y provee una mayor ductilidad.

Al comparar ambos modelos estructurales en una edificación de seis niveles y de tipología similar a la planteada, se demostró que el uso de Diagonales de Pandeo Restringido ofrece las siguientes ventajas:

- Disminución aproximada del 50% en la fuerza cortante de los niveles, gracias a la gran ductilidad y alto valor de reducción de fuerzas sísmicas del sistema.
- Reducción entre un 25 y 30% del acero estructural requerido.
- Disminución entre un 15 y 20% en las reacciones de la base, lo cual pudiera traducirse en fundaciones de menor tamaño.
- Reducción del peso de la estructura debido al uso de perfiles de menor tamaño para todas las columnas.
- Conexiones mucho más sencillas y de menor tamaño que permitirían disminuir el peso total de la estructura.
- Obtención de una estructura más elegante, atractiva y de mayores beneficios arquitectónicos.

Todas estas ventajas conllevarían un ahorro significativo en tiempo y en costos de construcción.

RECOMENDACIONES

- Hacer un estudio de las diagonales de pandeo restringido, que incluya ensayos de laboratorio para diversas secciones, modificando las dimensiones del núcleo y de la camisa.
- Realizar diversos modelos lineales y no lineales comparativos entre los sistemas SCBF, EBF y BRBF, para estructuras con distintos niveles y tipología.
- Inclusión del diseño y verificación de las diagonales de pandeo restringido en las próximas ediciones de la norma venezolana COVENIN 1618 (ESTRUCTURAS DE ACERO PARA EDIFICACIONES. MÉTODO DE LOS ESTADOS LÍMITES) y COVENIN 1756 (EDIFICACIONES SISMORRESISTENTES).

REFERENCIAS

Documentos Legales:

Edificaciones Sismorresistentes, (2001, 25 de Julio). Norma venezolana COVENIN, 1756, 25 de Julio de 2001.

Estructuras de Acero para Edificaciones. Método de los Estados Límites, (1998, 9 de Diciembre). Norma venezolana COVENIN, 1618, 9 de Diciembre de 1998.

Seismic Provisions for Structural Steel Buildings, (2005). American Institute of Steel Construction, 341, 2005.

Informes Técnicos:

13th World Conference on Earthquake Engineering, Vancouver. (2004, Agosto). APPLICATIONS - DESIGN OF BUCKLING RESTRAINED DIAGONALS IN JAPAN. Paper No. 3208.

Hernandez Eliud. (2010). Material de la asignatura "Análisis y Diseño Estructural Asistido por Computador". Caracas. Universidad Central de Venezuela.

López Walterio y Sabelli Rafael. North American Steel Construction Conference. Los Ángeles. (2004, Marzo). Design of Buckling-Restrained Braced Frames.

Lin Silian, Mohamed Al Satari, Safi Hussain y Van Benschoten Paul. Doffman Engineers, Inc, Los Ángeles. (2007). Buckling Restrained Braced Frame (BRBF) Structures: Analysis, Design and Approvals Issues.

Libros:

Crisafulli Francisco Javier. Journal of Structural Engineering, Vol. 109. (1983, Septiembre). Comentarios Históricos sobre la Teoría de Pandeo.

E. Popov, Ed. Introducción a la Mecánica de Sólidos. Limusa, México D.F. 1981.

Güell, A. (2008). Material de la asignatura "Estructuras de Acero". Caracas. Universidad Central de Venezuela.

T. Segui William. Diseño de Estructuras de Acero con LRFD. Cengage Learning Editores, 2000.

Valencia Clement Gabriel. Estructuras de Acero. Introducción al Diseño. Universidad Nacional de Colombia 2006.

APÉNDICES

TABLAS EXTRAIDAS DE LA NORMA COVENIN 1756-2001

Zona Sismica	Peligro Sismico	A,
7		0.4
6	Elevado	0.4
5		0.3
4	Internadia	0.3
3	Internedio	0.2
2		0.2
1	Bajo	0.1
0		

Fo	Forma espectral y Factor de corrección									
Matarial	Vsp	u (_)	Zona sismica (*	l a 4)	Zona sismica (S	5 a 7,				
maceriai	(m/s)	rı (m)	Forma espectra	ø	Forma espectra	Ŷ				
Roca sana/fracturada	>500	-	S1	0.9	S1	1				
Roca blanda o		<30	S1	0.9	S1	1				
meteorizada y suelos	>400	30-50	S2	0.8	S2	0.9				
muy duros o muy densos		>50	S3	0.7	S2	0.9				
		<15	S1	0.8	51	1				
Suelos duros o densos	250-400	15-50	S2	0.8	S2	0.9				
		>50	S3	0.8	S2	0.9				
Suelos firmes/medio	170, 250	≤50	S3	0.7	S2	1				
densos	110-200	>50	S3'	0.7	S3	0.8				
Qualas blandas lauskas	/170	≤15	S3	0.7	S2	0.9				
Suelos biandosisueitos	VIIU	>15	S3	0.7	S3	0.8				
Suelos blandos o sueltos intercalados con suelos mas rigidos	-	H1	52'	0.7	52	0.7				

Factor de importancia								
Grupo a								
A	1.3							
B1	1.15							
B2	1							

Nivel de diseño									
Curre	Zona Sismica								
Grupo	1y2	3y4	5, 6 y 7						
A; B1	ND2 ND3	ND3	ND3						
P 2	ND1	ND2	ND2						
DZ	ND2	ND3	ND3						

Valores de	Valo			
Forma Espectral	T" (s)	β	р	Ca
S1	0.4	2.4	1	RK
S2	0.7	2.6	1	Rł
S3	1	2.8	1	
S4	13	3	1	

	Valores de T+ (s										
р	Caso	T+ (s)									
1	R(5	0.1(R-1)									
1	R25	0.4									
1											

Factores de reduccion (R)											
Ninalda	Estructuras de concreto armado										
nivei de dicoño	Tipo de estructura										
uiseito		١V									
ND3	6	5	4.5	5	2						
ND2	4	3.5	3	3.5	1.5						
ND1	2	1.8	1.5	2	1.25						

TIPO Y DISPOSICION DE LOS	GURPO DE LA EDIFICACION					
ELEMENTOS NO ESTRUCTURALES	A	B1	B2			
Susceptibles de sufrir daños por deformaciones de la	0.01	0.015	0.018			
No susceptibles de sufrir daños por deformaciones de	0.02	0.02	0.024			

Factores de reduccion (R)												
Maralda	Estructuras de acero											
nivei de dicoño	Tipo de estructura											
uiseno	I	I		lla	IV							
ND3	6	5	4	6	2							
ND2	4	4	•	-	1.5							
ND1	2.5	2.3	2	-	1.25							

Factores de reduccion (R)												
Estructuras de acero - concreto												
Nivel de diceño	Tipo de estructura											
alseno	Ι	=		Illa	١V							
ND3	6	5	4	6	2							
ND2	4	4	•	-	1.5							
ND1	2.5	2.5	2.3	-	1							

Apéndice 1 Tablas para la determinación del espectro de respuesta

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

	Dii	monsi	ones	(mm	١					Mome	nto resp	ecto a lo	s ejes			Fsh	altaz								
Perfil															Peso		EJE-	Х-Х	1		EJE	-Y-Y	1	LOU	51162
	d	bf	tw	tf	e	(cm²)	(Kg/m)	lx (cm4)	Sx (cm3)	Rx (cm)	Zx (cm ³)	ly (cm4)	Sy (cm3)	ry (cm)	Zy (cm ³)	bf/tw	h/tw								
HEA100	96	100	5	8	12	21.20	17	349	73	4.05	84	134	27	2.51	43.60	6.25	16.00								
HEA1000	990	300	17	31	30	347.00	272	554000	11200	40.00	12800	14000	933	6.35	1520.00	4.84	56.24								
HEA120	114	120	5	8	12	25.30	20	606	106	4.89	120	231	38	3.02	61.90	7.50	19.60								
HEA140	133	140	6	9	12	31.40	28	1030	155	5.73	174	389	56	3.52	88.50	8.24	21.09								
HEA160	152	160	6	9	15	38.80	30	1670	220	6.57	247	615	77	3.98	124.00	8.89	22.33								
HEA180	171	180	6	10	15	45.30	36	2510	294	7.45	326	924	103	4.52	164.00	9.47	25.33								
HEA200	190	200	7	10	18	53.80	42	3690	389	8.28	432	1330	133	4.98	216.00	10.00	26.15								
HEA220	210	220	7	11	18	64.30	51	5410	515	9.17	571	1950	178	5.51	284.00	10.00	26.86								
HEA240	230	240	8	12	21	76.80	60	7760	675	10.10	749	2770	231	6.00	371.00	10.00	27.47								
HEA260	250	260	8	13	24	86.80	68	10500	836	11.00	926	3660	282	6.50	458.00	10.40	30.00								
HEA280	270	280	8	13	24	97.30	76	13700	1010	11.90	1120	4760	340	7.00	548.00	10.77	30.50								
HEA300	290	300	9	14	27	113.00	88	18300	1260	12.70	1390	6310	420	7.49	682.00	10.71	30.82								
HEA320	310	300	9	16	27	124.00	98	22900	1480	13.60	1640	6980	465	7.49	750.00	9.68	31.00								
HEA340	330	300	10	17	27	133.00	105	27700	1680	14.40	1860	7430	495	7.46	796.00	9.09	31.26								
HEA360	350	300	10	18	27	143.00	112	33100	1890	15.20	2100	7880	525	7.43	842.00	8.57	31.50								
HEA400	390	300	11	19	27	159.00	125	45100	2310	16.80	2570	8560	571	7.34	913.00	7.89	32.00								
HEA450	440	300	12	21	27	178.00	140	63700	2900	18.90	3230	9460	631	7.29	1010.00	7.14	34.61								
HEA500	490	300	12	23	27	198.00	155	87000	3550	21.00	3960	10400	691	7.24	1100.00	6.52	37.00								
HEA550	540	300	13	24	27	212.00	166	112000	4150	23.00	4630	10800	721	7.15	1150.00	6.25	39.36								
HEA600	590	300	13	25	27	226.00	178	141000	4790	25.00	5360	11300	751	7.05	1190.00	6.00	41.54								
HEA650	640	300	14	26	27	242.00	190	175000	5470	26.90	6150	11700	781	6.96	1240.00	5.77	43.56								
HEA700	690	300	15	27	27	260.00	204	215000	6240	28.70	7040	12200	812	6.84	1300.00	5.56	43.86								
HEA800	790	300	15	28	30	286.00	224	303000	7680	32.60	8720	12600	842	6.65	1360.00	5.36	48.93								
HEA900	890	300	16	30	30	321.00	252	422000	9480	36.30	10800	13500	903	6.50	1460.00	5.00	51.88								
HEB100	100	100	6	10	12	26.00	20	449	90	4.15	105	167	33	2.53	53.80	5.00	13.33								
HEB1000	1000	300	19	36	30	400.00	314	645000	12900	40.10	14900	16300	1080	6.38	1760.00	4.17	48.84								
HEB120	120	120	7	11	12	34.00	27	864	144	5.04	166	317	53	3.05	83.90	5.45	15.08								

	Di	monei	onoc	Imm	4					nto resp	specto a los ejes					Eshaltacas		
Porfil	וט	11161191	01163	(1111))	Área	Peso		EJE-X-X			EJE-Y-Y						
I GIIII	d	bf	tw	tf	e	(cm²)	(Kg/m)	lx (cm4)	Sx (cm3)	Rx (cm)	Zx (cm³)	ly (cm4)	Sy (cm3)	ry (cm)	Zy (cm³)	bf/tw	h/tw	
HEB140	140	140	7	12	12	43.00	34	1510	216	5.93	246	549	79	3.58	123.00	5.83	16.57	
HEB160	160	160	8	13	15	54.30	43	2490	311	6.78	356	889	111	4.05	176.00	6.15	16.75	
HEB180	180	180	9	14	15	65.30	51	3830	426	7.66	483	1360	151	4.57	238.00	6.43	17.88	
HEB200	200	200	9	15	18	78.10	61	5700	570	8.54	646	2000	200	5.06	317.00	6.67	18.89	
HEB220	220	220	10	16	18	91.00	72	8090	736	9.43	830	2840	258	5.59	407.00	6.88	19.79	
HEB240	240	240	10	17	21	106.00	83	11300	938	10.30	1060	3920	327	6.08	517.00	7.06	20.60	
HEB260	260	260	10	18	24	118.00	93	14900	1150	11.20	1290	5130	395	6.58	629.00	7.43	22.50	
HEB280	280	280	11	18	24	131.00	103	19300	1380	12.10	1540	6590	471	7.08	747.00	7.78	23.24	
HEB300	300	300	11	19	27	149.00	117	25200	1680	13.00	1880	8560	571	7.58	910.00	7.89	23.82	
HEB320	320	300	12	21	27	161.00	127	30800	1930	13.80	2160	9230	616	7.57	979.00	7.32	24.26	
HEB340	340	300	12	22	27	171.00	134	36700	2160	14.60	2420	9680	646	7.53	1030.00	6.98	24.75	
HEB360	360	300	13	23	27	181.00	142	43200	2400	15.50	2690	10100	676	7.49	1070.00	6.67	25.20	
HEB400	400	300	14	24	27	198.00	155	57700	2880	17.10	3240	10800	721	7.39	1140.00	6.25	26.07	
HEB450	450	300	14	26	27	218.00	171	79900	3550	19.10	3990	11700	781	7.33	1240.00	5.77	28.43	
HEB500	500	300	15	28	27	239.00	187	107000	4290	21.20	4830	12600	841	7.27	1330.00	5.36	30.62	
HEB550	550	300	15	29	27	254.00	199	137000	4970	23.20	5600	13100	871	7.17	1380.00	5.17	32.80	
HEB600	600	300	16	30	27	270.00	212	171000	5700	25.20	6440	13500	902	7.08	1430.00	5.00	34.84	
HEB650	650	300	16	31	27	286.00	225	211000	6480	27.10	7330	14000	932	6.99	1480.00	4.84	36.75	
HEB700	700	300	17	32	27	306.00	241	257000	7340	29.00	8340	14400	962	6.86	1530.00	4.69	37.41	
HEB800	800	300	18	33	30	334.00	262	359000	8980	32.80	10200	14900	993	6.68	1600.00	4.55	41.94	
HEB900	900	300	19	35	30	371.00	291	494000	11000	36.50	12600	15800	1050	6.52	1700.00	4.29	44.86	
IPE100	100	55	4	6	7	10.30	8	171	34	4.07	40	16	6	1.24	9.57	4.82	21.61	
IPE120	120	64	4	6	7	13.20	10	318	53	4.90	61	28	9	1.45	14.10	5.08	24.41	
IPE140	140	73	5	7	7	16.40	13	541	77	5.74	89	45	12	1.65	19.80	5.29	26.85	
IPE160	160	82	5	7	9	20.10	16	869	109	6.58	124	68	17	1.84	27.20	5.54	29.04	
IPE180	180	91	5	8	9	23.90	19	1320	146	7.42	167	101	22	2.05	35.90	5.69	30.94	
IPE200	200	100	6	9	12	28.50	22	1940	194	8.26	221	142	28	2.23	47.00	5.88	32.68	
IPE220	220	110	6	9	12	33.40	26	2770	252	9.11	286	205	37	2.48	60.80	5.98	34.17	
IPE240	240	120	6	10	15	39.10	31	3890	324	9.97	368	283	47	2.69	78.50	6.12	35.55	

Apéndice 2 Base de datos de los perfiles

NORMA	DESTG.	Fy (Kgf/cm ²)	Fu (Kgf/cm ²)
ASTM	A36	2530	4080
ASTM	A500 Gr C	3240	4360
ASTM	A53B	2460	4220
ASTM	A572 Gr 42	2950	4220
ASTM	A572 Gr 50	3520	4570
ASTM	A572 Gr 60	4220	5270
ASTM	A572 Gr 65	4570	5620
ASTM	A588	3520	4930
ASTM	A992	3520	4570
COVENIN	AE-25	2500	3700
COVENIN	AE-35	3500	5200
DIN	St-37	2400	3700
DIN	St-52	3600	5200

Apéndice 3 Clasificación y propiedades del acero

Apéndice 4 Conexión de diagonales de pandeo restringido

Apéndice 5 Conexión típica de diagonales de pandeo restringido

Apéndice 6 Conexión típica de diagonales de pandeo restringido 2

NOTES:

- 1. BOLT HOLES IN EXISTING GUSSET PLATE NOT SHOWN FOR CLARITY, SEE DETAILS 4-6/S402 FOR ADDITIONAL INFORMATION.
- 2. QUOTED CALLOUTS (I.E. 'FIN PLATE') REFER TO COLUMN HEADINGS IN TABLE BELOW.
- 3. CLIP BEAM FLANGES FOR GUSSET WELDING ACCESS.
- 4. NOTCH ANGLE AS REQUIRED TO CLEAR BEAM WEB AND PLACE FILLET WELDS, TYPICAL AT COLUMN GUSSET. NOTCH RADIUS TO BE 6". GRIND RADIUS SMOOTH. NOTCHES REQUIRED ONLY ON ONE SIDE OF GUSSET.
- 5. CENTER BRACE BETWEEN EDGES OF BEAM GUSSET AND COLUMN GUSSET.
- 6. FIN PLATE MAY BE TERMINATED AT EDGE OF GUSSET, VERIFY DIMENSION IN FIELD.~
- 7. HSS DEEP DIMENSION, SEE SCHEDULE 2/S300.

8" MAX., SEE NOTE ANGLES #3 REMOVE AND REPLACE (E) CONC. DEČK AS REQ'D. SEE DET. 3/S401 1/2 SEE NOTE #4, TYP. ω ò *** (E) WF COLUMN W.P. white R CLR, *** MAX., *** TYP. (E) WF BEAM-WELD 'S', TYP. NEW OR (E) 1" GUSSET PL HSS CASING, SEE SCHEDULE -'FIN PLATE' EACH 2/S300, HSS DEEP DIMENSION SIDE OF GUSSET SHOWN, TYP. PL, SEE NOTE #6, TYP. BUCKLING RESTRAINED -'ANGLE', LONG LEG BRACES, SEE SCHEDULE PARALLEL TO GUSSET, TYP. 2/S300, TYP. 'MAIN BOLTS', EACH END OF BRACE, TYP. (1 1/8*# A490, U.O.N.)

'FIN BOLTS', EACH END OF BRACE, TYP.

Apéndice 7 Conexión típica de diagonales de pandeo restringido 3