TRABAJO ESPECIAL DE GRADO

"ANÁLISIS DE COSTOS PARA LA CONSTRUCCIÓN DE FUNDACIONES TÍPICAS CON ZAPATAS Y PILOTES"

Presentado ante la ilustre Universidad Central de Venezuela para optar al título de Ingeniero Civil por los Brs. CASTILLO GUEVARA, Wilmer O. DE LA CRUZ PEÑA, Eudis A.

TRABAJO ESPECIAL DE GRADO

"ANÁLISIS DE COSTOS PARA LA CONSTRUCCIÓN DE FUNDACIONES TÍPICAS CON ZAPATAS Y PILOTES"

Tutor Académico: Prof. VELÁSQUEZ, José Manuel.

Presentado ante la ilustre Universidad Central de Venezuela para optar al título de Ingeniero Civil por los Brs. CASTILLO GUEVARA, Wilmer O. DE LA CRUZ PEÑA, Eudis A.

DEDICATORIA

A mi padre, **Henry O. Castillo P**., por brindarme estimulo y apoyo incondicional en todo momento.

A la memoria de mi madre, **Josefina Guevara de Castillo**, que Dios la tenga en su gloria, siempre la llevare en mi mente y corazón.

A mis hermanos, **Henry José**, **Fabiola Vanessa** y **Maria Alejandra** por apoyarme continuamente.

A mi novia, Carimar Fermín por su apoyo y compañía en los momentos difíciles.

A mis **Tíos y Primos**, que de una u otra forma me apoyaron.

A mi dos lindas sobrinas, Fabiola Alejandra y Mariangel Vanessa por brindarme su alegría.

Antes que todo a **Jehová** de los Ejércitos, mi **Dios** en quien confío.

A mi madre "Cándida María Peña Frías" QUEPD Quien esperó con ansiedad este momento y no pudo presenciarlo. ¡Que Dios te bendiga mami! Siempre te recordaré.

A mis hermanos: Chanel De La Cruz y Francisco De La Cruz.

Ellos son los mejores hermanos. Los quiero mucho.

A mis sobrinos: Francis, Linda y Emmanuel.

Por ver lo lindo de la vida en sus sonrisas.

A Eduardo Belisario y Nelson Gutiérrez.

Han sido mis amistades de verdad.

A mis compañeros de estudios, con los cuales compartí gran parte de mi carrera, en especial a **Gabriela Acuña**, Carlos Martín, **Wilmer Castillo**, Seisller Cedeño, Verónica Arismendi, Heidi Carrasquel, Estebeni Bilbao y Luis Espinosa.

¡A todos ellos les deseo Éxito en la vida!

AGRADECIMIENTOS

Ante todo a **Dios**, Por darnos el privilegio y la capacidad para lograr esta meta.

LULO SOFTWARE, C.A.

Por la colaboración y el tiempo que nos dedicaron desinteresadamente. Especialmente a los ingenieros:

José Lulo.

Pedro Ballesteros.

CIMARPI, C.A.

Por permitirnos visitar sus obras y por la atención brindada por los ingenieros:

Milá de la roca.

Wilfrido Martínez.

Al Ingeniero Fabián Guzmán por su ayuda, colaboración y generosidad.

A nuestro tutor Profesor **José Manuel Velásquez**, por su valioso aporte y apoyo en nuestro trabajo.

Al Profesor colaborador Héctor Yánez, por todo gracias.

CASTILLO G, Wilmer O. DE LA CRUZ P, Eudis A.

"ANÁLISIS DE COSTOS PARA LA CONSTRUCCIÓN DE FUNDACIONES TÍPICAS CON ZAPATAS Y PILOTES"

Tutor Académico: Prof. José Manuel Velásquez. Trabajo Especial de Grado.

Caracas. Universidad Central de Venezuela. Facultad de Ingeniería.

Escuela de Ingeniería Civil. 2005

Palabras Claves: Fundaciones, Zapatas, Pilotes, Cómputos métricos, presupuestos, Análisis de Precios Unitarios.

RESUMEN

Este trabajo tiene como objetivo analizar, establecer y comparar costos promedios para la construcción de fundaciones típicas con zapatas aisladas y pilotes excavados, sólo bajo el efecto de carga axial en condiciones de servicio, con valores que van de 50 a 300 toneladas.

Las zapatas aisladas son centradas y cuadradas, los pedestales son rectangulares y los valores de presión admisible del suelo son 0.50, 1.00, 1.50 y 2.00 Kg./Cm² y se considera una profundidad de 2.00 metros.

Los pilotes se consideran trabajando de punta con una resistencia igual a 30 Kg./Cm² en condiciones de servicio y las longitudes de estudio son: 10, 15, 20 y 25 metros.

Los cabezales están diseñados sobre un pilote para cada una de las cargas y sobre dos pilotes a partir de 150 toneladas.

Con el uso de la Norma COVENIN 2000 – 92 se establecieron las partidas relacionadas con la construcción de infraestructuras y se seleccionaron las de interés.

A cada partida de interés se le hizo su análisis de precio unitario y con los cómputos métricos obtenidos del análisis, diseño y detallado de las fundaciones para cada una de las cargas, se calculó el costo promedio.

Las comparaciones de costos están en gráficos específicos en los cuales se evidencian la importancia que tiene la presión admisible del suelo para la construcción de zapatas aisladas y lo influyente en el costo que es para la construcción de fundaciones con pilotes, la longitud y el diámetro de estos.

INDICE

DEDICATORIA	iii
AGRADECIMIENTOS	v
RESUMEN	vi
INDICE	vii
INDICE DE TABLAS	xi
INDICE DE GRÁFICOS	
INTRODUCCIÓN	
CAPITULO 1	
MARCO TEÓRICO	
1.1 FUNDACIÓN	
1.2 TIPOS DE FUNDACIONES	17
1.3 FUNDACIONES DIRECTAS	17
1.3.1 Zapatas aisladas	17
1.3.2 Zapatas combinadas	18
1.3.3 Zapatas continuas	19
1.3.4 Zapatas conectadas	
1.3.5 Losa de fundación	
1.4 FUNDACIONES INDIRECTAS	
1.4.1 Pilotes	
1.4.1.1 Pilotes hincados	
a) Pilotes prefabricados	
b) Pilotes Franki	
c) Pilotes metálicos	
d) Pilotes en camisa no recuperable	
1.4.1.2 Pilotes excavados	
a) Pilotes excavados con maquinas rotativas sin camisa protectora	
b) Pilotes excavados con maquinas rotativas con protección de bentonita	
c) pilotes excavados por percusión o almejas	
1.5 CRITERIOS GENERALES PARA EL ANÁLISIS Y DISEÑO DE	
FUNDACIONES CON ZAPATAS	27
1.5.1 Notación utilizada en zapatas aisladas	
1.5.2 Caso particular zapatas cuadradas	
1.3.2 Caso particular zapatas cuaurauas	∠0

1.5.3 Presión admisible bajo la zapata	28
1.5.4 Predimensionado de la base	
1.5.5 Selección del espesor de la zapata	29
1.5.5.1 Criterio de rigidez	
1.5.5.2 Verificación por punzonado	30
1.5.5.3 Verificación por corte	
1.5.6 Diseño del acero por flexión	
1.5.6.1 Cálculo del momento último	
1.5.6.2 Capacidad resistente minorada	31
1.5.6.3 Cálculo del área de acero de la base	
1.5.7 Cálculo del área de acero del pedestal	
1.5.7.1 Acero longitudinal	
1.5.7.2 Acero transversal	
1.6 CRITERIO FUNDAMENTAL DE DISEÑO PARA PILOTES Y CABEZALE	S 33
1.6.1 Notación utilizada en fundaciones con un pilote	33
1.6.2 Predimensionado del pilote	
1.6.2.1 Cálculo del diámetro	34
1.6.2.2 Cálculo del área del acero longitudinal	34
1.6.2.3 Colocación del acero helicoidal	
1.6.3 Predimensionado de cabezal sobre un pilote	
1.6.3.1 Cálculo de la altura útil	35
1.6.3.3 Método de las bielas comprimidas	
1.6.3.4 Diseño	
1.6.4 Predimensionado de cabezal sobre dos pilotes	
1.6.4.1 Notación utilizada en fundaciones con dos pilotes	
1.6.4.2 Cálculo de la altura útil	
1.6.4.4 Diseño	
1.7 CONCEPTOS Y DEFINICIONES RELACIONADOS CON LA	
ADMINISTRACIÓN Y CONTROL DE OBRAS	41
1.7.1 Introducción	
1.7.2 Obra	
1.7.3 Costo	
1.7.3.1 Costos directos	
1.7.3.2 Costos indirectos	
1.7.4 Partidas	
1.7.4.1 Unidad de partida	
1.7.4.2 Rubro	
1.7.5 Análisis de precios unitarios	
1.7.5.1 Materiales.	
1.7.5.2 Equipos	
1.7.5.3 Mano de obra	
1.7.5.4 Rendimiento	
1.7.6 Presupuesto	
1.7.6.1 Presupuesto base	
1.7.7 Incidencia	
1.7.8 Índice	44

CAPITULO 2	45
ANÁLISIS, DISEÑO, DETALLADO Y PRESUPUESTO DE ZAPATA AISLADA	45
2.1 INFORMACIÓN DISPONIBLE	45
2.2 PREDIMENSIONADO DE LA BASE	
2.2.1 Cálculo del área	
2.2.2 Cálculo del lado	
2.3 SELECCIÓN DEL ESPESOR	
2.3.1 Criterio de rigidez	46
2.3.2 Verificación por punzonado	46
2.3.3 Verificación por corte	47
2.4 DISEÑO DEL ACERO POR FLEXIÓN	
2.4.1 Cálculo del momento último	48
2.4.2 Capacidad resistente minorada	48
2.4.3 Cálculo del área de acero	
2.5 DISEÑO DEL ACERO DEL PEDESTAL	
2.5.1 Cálculo del acero longitudinal	
2.5.2 Acero transversal	
2.6 DETALLADO DE ACERO EN ZAPATA	
2.6.1 Detallado Capa inferior	51
2.6.2 Detallado Capa Intermedia	52
2.6.3 Detallado Capa Superior	
2.7 DETALLADO DEL ACERO DEL PEDESTAL	
2.8 PRESUPUESTO	
CAPITULO 3	74
ANÁLISIS, DISEÑO, DETALLADO Y PRESUPUESTO DE FUNDACIÓN CON UN	
PILOTE Y SU CABEZAL	74
3.1 INFORMACIÓN DISPONIBLE	74
3.2 PREDIMENSIONADO DEL PILOTE	
3.2.1 Cálculo del diámetro	
3.2.2 Cálculo del área del acero longitudinal	75
3.2.3 Acero helicoidal	
3.3 PREDIMENSIONADO DEL CABEZAL	76
3.3.1 Cálculo de la altura útil	
3.3.2 Vista lateral	
3.3.3 Vista planta	77
3.4 CÁLCULO DEL ÁREA DE ACERO DEL CABEZAL	
3.5 DETALLADO DEL ACERO DEL CABEZAL	
3.6 DETALLADO DEL ACERO DEL PILOTE. SECCIÓN LONGITUDINAL	
3.7 DETALLADO DEL ACERO DEL PILOTE. SECCION TRANSVERSAL	81
3.8 PRESUPUESTO	90
CAPITULO 4	110

ANÁLISIS	S, DISEÑO, DETALLADO Y PRESUPUESTO DE FUNDACIÓN CON DOS	
PILOTES '	Y SU CABEZAL	110
4.1 I	NFORMACIÓN DISPONIBLE	110
	PREDIMENSIONADO DE UN PILOTE	
4.2.1	Cálculo del diámetro	110
4.2.2	Cálculo del área del acero longitudinal	111
4.2.3	Acero helicoidal	111
4.3 P	PREDIMENSIONADO DEL CABEZAL	112
4.3.1	Cálculo de la altura útil	112
4.3.2	Vista transversal	113
4.3.3	Vista longitudinal	114
4.3.4	Vista planta	114
	CÁLCULO DEL ÁREA DE ACERO DEL CABEZAL	
	CÁLCULO Y VERIFICACIÓN DEL CORTE ÚLTIMO	
	DETALLADO DEL ACERO DEL CABEZAL. SECCIÓN TRANSVERSAL	
	DETALLADO DEL ACERO DEL CABEZAL. SECCIÓN LONGITUDINAL	
	DETALLADO DEL ACERO DE LOS PILOTES. SECCIÓN TRANSVERSAL	
	DETALLADO DEL ACERO DE LOS PILOTES. SECCIÓN LONGITUDINAL	
	DETALLADO DEL ACERO EN PILOTES. SECCIÓN TRANSVERSAL	
	PRESUPUESTO	
CAPITULO	O 5	151
CONCLUS	SIONES Y RECOMENDACIONES	151
5.1	CONCLUSIONES	155
	RECOMENDACIONES	
BIBLIOGE	RAFÍA	156
ANEXOS		157

INDICE DE TABLAS

TABLA 2.1 CÓMPUTOS MÉTRICOS. Excavación, Carga y Compactación	55
TABLA 2.2 CÓMPUTOS MÉTRICOS. Concreto para Base y Pedestal	56
TABLA 2.3 CÓMPUTOS MÉTRICOS. Encofrado	57
TABLA 2.4 CÓMPUTOS MÉTRICOS. Acero No 3 para Infraestructuras	58
TABLA 2.5 CÓMPUTOS MÉTRICOS. Acero No 4 a No 7 para Infraestructuras	59
TABLA 2.6 CÓMPUTOS MÉTRICOS. Transporte	60
TABLA 2.7 PREDIMENSIONADO DE ZAPATAS	66
TABLA 2.8 VERIFICACIÓN DE LOS ESPESORES SELECCIONADOS	67
TABLA 2.9 DISEÑO DE ACERO POR FLEXIÓN	68
TABLA 2.10 ACERO COLOCADO	69
TABLA 2.11 CÓMPUTOS TOTALES DE ACERO PARA LAS FUNDACIONES	70
TABLA 2.12 CÓMPUTOS MÉTRICOS DE LAS ZAPATAS	71
TABLA 2.13 COSTOS PROMEDIOS PARA LAS ZAPATAS	72
TABLA 3.1 CÓMPUTOS MÉTRICOS. Excavación, Carga y Compactación	82
TABLA 3.2 CÓMPUTOS MÉTRICOS. Perforación	83
TABLA 3.3 CÓMPUTOS MÉTRICOS. Acero No 3 para Pilotes	84
TABLA 3.4 CÓMPUTOS MÉTRICOS. Acero de No 4 a No 7 para Pilotes	85
TABLA 3.5 CÓMPUTOS MÉTRICOS. Poda, Concreto para Pilote y Cabezal, Encofrado	86
TABLA 3.6 CÓMPUTOS MÉTRICOS. Acero No 3 para Infraestructuras	87
TABLA 3.7 CÓMPUTOS MÉTRICOS. Acero de No 4 a No 7 para Infraestructuras	88
TABLA 3.8 CÓMPUTOS MÉTRICOS. Transporte	89
TABLA 3.9 PREDIMENSIONADO DE PILOTES	98
TABLA 3.10 ACERO COLOCADO EN PILOTES DE 10 m.	99
TABLA 3.11 ACERO COLOCADO EN PILOTES DE 15 m.	100
TABLA 3.12 ACERO COLOCADO EN PILOTES DE 20 m.	101

TABLA 3.13 ACERO COLOCADO EN PILOTES DE 25 m.	102
TABLA 3.14 ACERO HELICOIDAL	103
TABLA 3.15 PREDIMENSIONADO Y CALCULOS DE ACEROS PARA CABEZALE	ES
	104
TABLA 3.16 ACERO COLOCADO EN LOS CABEZALES EN C / SENTIDO	105
TABLA 3.17 CÓMPUTOS DE ACEROS PARA CABEZALES	106
TABLA 3.18 CÓMPUTOS MÉTRICOS DE LOS CABEZALES Y PILOTES	107
TABLA 3.19 COSTOS PROMEDIOS PARA FUNDACIONES CON UN PILOTES	108
TABLA 4.1 CÓMPUTOS MÉTRICOS. Excavación, Carga y Compactación	122
TABLA 4.2 CÓMPUTOS MÉTRICOS. Perforación	123
TABLA 4.3 CÓMPUTOS MÉTRICOS. Acero No 3 para Pilotes	124
TABLA 4.4 CÓMPUTOS MÉTRICOS. Acero No 4 a No 7 para pilotes	125
TABLA 4.5 CÓMPUTOS MÉTRICOS. Poda, Concreto para pilote y cabezal, Encofrado	. 126
TABLA 4.6 CÓMPUTOS MÉTRICOS. Acero No 3 para Infraestructuras	127
TABLA 4.7 CÓMPUTOS MÉTRICOS. Acero de No 4 a No 7 para Infraestructuras	128
TABLA 4.8 CÓMPUTOS MÉTRICOS. Transporte	129
TABLA 4.9 PREDIMENSIONADO DE PILOTES	138
TABLA 4.10 ACERO COLOCADO EN PILOTES DE 10 m.	139
TABLA 4.11 ACERO COLOCADO EN PILOTES DE 15 m.	140
TABLA 4.12 ACERO COLOCADO EN PILOTES DE 20 m.	141
TABLA 4.13 ACERO COLOCADO EN PILOTES DE 25 m.	142
TABLA 4.14 ACERO HELICOIDAL	143
TABLA 4.15 PREDIMENSIONADO DE CABEZALES	
TABLA 4.16 CÁLCULO DE ACERO DE LOS CABEZALES	145
TABLA 4.17 ACERO COLOCADO EN LOS CABEZALES	146
TABLA 4.18 CÓMPUTOS DE ACERO PARA CABEZALES	147
TABLA 4.19 CÓMPUTOS MÉTRICOS DE LOS CABEZALES Y PILOTES	148
TABLA 4.20 COSTOS PROMEDIOS PARA FUNDACIONES CON DOS PILOTES	149

INDICE DE GRÁFICOS

GRÁFICO 2.1 PORCENTAJES DE COSTOS SEGÚN PARTIDAS, PARA FUNDACIÓN
AISLADA CENTRADA DE 2.75 m. x 2.75 m. PARA CARGA DE 150 TON. Y PRESIÓN
ADMISIBLE EN EL SUELO DE 2.00 Kg. / cm². ÁREA METROPOLITANA [MAYO
2005] 63
GRÁFICO 2.2 PORCENTAJES DE COSTOS SEGÚN ACTIVIDADES, PARA LA
CONSTRUCCIÓN DE ZAPATA AISLADA CENTRADA DE 2.75 m. x 2.75 m. PARA
CARGA DE 150 TON. Y PRESIÓN ADMISIBLE EN EL SUELO DE 2.00 Kg. / cm².
ÁREA METROPOLITANA [MAYO 2005]
GRÁFICO 2.3 COEFICIENTES DE INCIDENCIA POR OBRA
GRÁFICO 2.4 CURVAS CARGAS – COSTOS PROMEDIOS, PARA LA
CONSTRUCCIÓN DE ZAPATAS AISLADAS PARA DETERMINADOS VALORES DE
σadm. ÁREA METROPOLITANA [MAYO 2005]
GRÁFICO 3.1 PORCENTAJES DE COSTOS SEGÚN PARTIDAS, PARA LA
CONSTRUCCIÓN DE FUNDACIÓN CON UN PILOTE Y SU CABEZAL, PARA CARGA
DE 150 TON. ÁREA METROPOLITANA [MAYO 2005]
GRÁFICO 3.2 PORCENTAJES DE COSTOS SEGÚN ACTIVIDADES, PARA LA
CONSTRUCCIÓN DE FUNDACIÓN CON UN PILOTE, PARA CARGA DE 150 TON
ÁREA METROPOLITANA [MAYO 2005]
GRÁFICO 3.3 PORCENTAJES DE COSTOS DE LA FUNDACIÓN POR
COMPONENTES. ÁREA METROPOLITANA [MAYO 2005]
GRÁFICO 3.4 PORCENTAJES DE COSTOS ASOCIADOS A LA CONSTRUCCIÓN
DEL PILOTE SEGÚN ACTIVIDADES. ÁREA METROPOLITANA [MAYO 2005] 95
GRÁFICO 3.5 PORCENTAJES DE COSTOS ASOCIADOS A LA CONSTRUCCIÓN
DEL CABEZAL SEGÚN ACTIVIDADES. ÁREA METROPOLITANA [MAYO 2005] 96
GRÁFICA 3.6 COEFICIENTES DE INCIDENCIA POR OBRA

GRAFICO 3.7 CURVAS CARGAS – COSTOS PROMEDIOS, PARA LA
CONSTRUCCIÓN DE FUNDACIONES CON UN PILOTE Y SU CABEZAL. ÁREA
METROPOLITANA [MAYO 2005]
GRÁFICO 4.1 PORCENTAJES DE COSTOS SEGÚN PARTIDAS, PARA LA
CONSTRUCCIÓN DE FUNDACIÓN CON DOS PILOTE Y SU CABEZAL, PARA
CARGA DE 150 TON. ÁREA METROPOLITANA [MAYO 2005]
GRÁFICO 4.2 PORCENTAJES DE COSTOS SEGÚN ACTIVIDADES, PARA LA
CONSTRUCCIÓN DE CABEZAL CON DOS PILOTE, PARA CARGA DE 150 TON
ÁREA METROPOLITANA [MAYO 2005]
GRÁFICO 4.3 PORCENTAJES DE COSTOS DE LA FUNDACIÓN POR
COMPONENTES. ÁREA METROPOLITANA [MAYO 2005]
GRÁFICO 4.4 PORCENTAJES DE COSTOS ASOCIADOS A LA CONSTRUCCIÓN
DEL PILOTE SEGÚN ACTIVIDADES. ÁREA METROPOLITANA [MAYO 2005] 135
GRÁFICO 4.5 PORCENTAJES DE COSTOS ASOCIADOS A LA CONSTRUCCIÓN
DEL CABEZAL SEGÚN ACTIVIDADES. ÁREA METROPOLITANA [MAYO 2005]. 136
GRÁFICO 4.6 GRÁFICA DE COEFICIENTES DE INCIDENCIA POR OBRA 137
GRÁFICO 4.7 CURVAS CARGAS – COSTOS PROMEDIOS, PARA LA
CONSTRUCCIÓN DE FUNDACIONES CON DOS PILOTES Y SU CABEZAL. ÁREA
METROPOLITANA [MAYO 2005]
GRÁFICO 5.1 CURVAS CARGAS - COSTOS PROMEDIOS, PARA LA
CONSTRUCCIÓN DE FUNDACIONES CON UN PILOTE Y ZAPATAS AISLADAS
ÁREA METROPOLITANA [MAYO 2005]
GRÁFICO 5.2 CURVAS CARGAS - COSTOS PROMEDIOS, PARA LA
CONSTRUCCIÓN DE FUNDACIONES DOS PILOTES Y ZAPATAS AISLADAS ÁREA
METROPOLITANA [MAYO 2005]
GRÁFICO 5.3 CURVAS CARGAS – COSTOS PROMEDIOS, PARA LA
CONSTRUCCIÓN DE FUNDACIONES CON UN PILOTE, DOS PILOTES Y ZAPATAS
AISLADAS ÁREA METROPOLITANA [MAYO 2005]

INTRODUCCIÓN

La elaboración de este trabajo surge por la inquietud de saber más acerca del análisis, diseño y detallado de fundaciones típicas, así como también, conocer los costos promedios asociados a estas. Todo se inicia en el curso de la asignatura Fundaciones y Muros, donde se pone de manifiesto la importancia del estudio de las fundaciones para el desarrollo y la estabilidad de cualquier edificación.

En consecuencia el objetivo general fue Analizar, Establecer y Comparar Costos Promedios para la construcción de zapatas aisladas y pilotes excavados típicos, sometidos bajo carga axial.

Para determinar los costos promedios de las zapatas aisladas y de los pilotes excavados se realizaron una serie de etapas, de las cuales se derivan los cómputos métricos, con los que se obtuvieron los presupuestos de todas las fundaciones, por medio de los análisis de precios unitarios de cada una de las partidas correspondientes.

Las comparaciones de costos promedios entre fundaciones, están hechas en gráficos, en los cuales se verifica la importancia de la presión admisible del suelo para la construcción de zapatas aisladas, así como también lo influyente de la longitud y los diámetros para las fundaciones con pilotes.

Los costos promedios fueron calculados para el Área Metropolitana de Caracas para mayo de 2005; pudiéndose para otra fecha estimarse los costos con la ayuda de los índices de precios.

CAPITULO 1 Marco teórico

CAPITULO 1

MARCO TEÓRICO

En este capitulo se encuentra la información necesaria relacionada con los conceptos, definiciones y criterios utilizados en el desarrollo de este trabajo, así como también la terminología y notaciones usadas, con la finalidad de familiarizar al lector.

1.1 FUNDACIÓN

Es el elemento de transición entre la superestructura y el suelo portante; por medio de éste se transfieren las cargas provenientes de la edificación, y también cumple la función de adecuar la acción de las cargas a formas tolerables para los mantos portantes del suelo.

Es posible imaginar que las cargas se trasladan de la estructura al suelo al atravesar el contacto entre dos medios cuyas propiedades mecánicas son casi siempre muy distintas. Para lograr condiciones compatibles en los esfuerzos y deformaciones, se requiere diseñar la fundación en función de las propiedades de ambos medios.

Cabe destacar que el comportamiento del suelo portante frecuentemente controla el de la fundación. Todos los terrenos portantes, excepto los mantos excepcionalmente duros o compactos, o los rocosos de excelente calidad, son compresibles, es decir, susceptibles a sufrir bajo la acción de las cargas que se les aplican, deformaciones apreciables.¹

1.2 TIPOS DE FUNDACIONES

De acuerdo con la posición del terreno portante, las fundaciones se clasifican en:

Fundaciones Directas o Superficiales, y

Fundaciones Indirectas o Profundas.

1.3 FUNDACIONES DIRECTAS

Las fundaciones directas son elementos estructurales que se apoyan en toda el área de la base sobre el terreno, transfieren las cargas provenientes de la superestructura al suelo de fundación a profundidades relativamente superficiales, donde el suelo ofrezca la suficiente capacidad y tenga moderados asentamientos. A las fundaciones directas se les conoce también como zapatas.

1.3.1 Zapatas aisladas

De acuerdo con las necesidades, se diseñan con formas geométricas sencillas y simétricas; entre ellas, la cuadrada es la más usada. Se vinculan estructuralmente al extremo inferior de la columna para transmitir al terreno portante las cargas de la estructura, sobre un área lo suficientemente amplia para lograr una presión compatibles con las condiciones del terreno.

Pueden diseñarse con espesor uniforme o variarse por medio de pedestales o transiciones, para controlar esfuerzos en el material del elemento cuando se soportan columnas fuertemente cargadas.¹

Las zapatas aisladas se usan sobre suelos de baja compresibilidad y en estructuras en las que los asentamientos diferenciales pueden ser asimilados por la flexibilidad de la superestructura. Son el tipo de fundaciones directas más utilizadas. Según la posición de la columna con relación a la base, pueden ser:

Centradas: cuando el baricentro de la base coincide con el eje vertical de simetría de la columna. Ver figura 1.1 a

Excéntricas: cuando el baricentro de la base está desplazado con relación al eje vertical de simetría de la columna. Ver figura 1.1 b

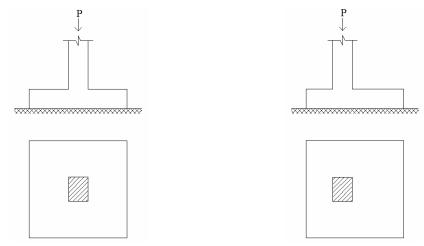


Fig. 1.1a Zapata Aislada Centrada

Fig. 1.1b Zapata Aislada Excéntrica

1.3.2 Zapatas combinadas

Se requiere a veces proyectar zapatas combinadas o compuestas, donde se combinan formas geométricas simples según las necesidades de la obra, para aprovechar el suelo de la manera más optima posible. La consideración de los factores estructurales y las características del terreno, propios de cada problema en un sitio dado, permite llegar a las alternativas técnicas y económicas más ventajosas. Ver figura 1.2

Estas zapatas se construyen por las siguientes condiciones:

- a) Cuando las áreas de cimentación se solapan al usar zapatas aisladas; dando como resultado una base común para dos columnas.
- b) Cuando las Resultantes de cargas resultan excéntricas, respecto al centroide del área de soporte, al considerar como solución una zapata aislada. Esto es muy común en columnas de lindero. Se puede utilizar una zapata combinada para la columna de lindero y una interior.

c) Cuando al adoptar zapatas aisladas resulten asentamientos diferenciales inadmisibles entre los respectivos soportes estructurales. Esto ocurre por acentuadas diferencias entre las cargas o por variabilidad en las condiciones resistentes del terreno.1

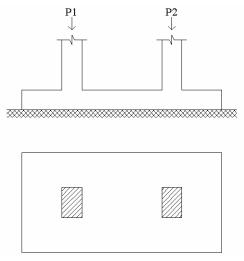


Fig. 1.2 Zapata Combinada

1.3.3 **Zapatas continuas**

Son elementos análogos a las zapatas aisladas combinadas, en los que la longitud es mucho mayor que el ancho. Se usan para cargas lineales provenientes de muros o paredes estructurales (pantallas) y también para fundación común de varias columnas.

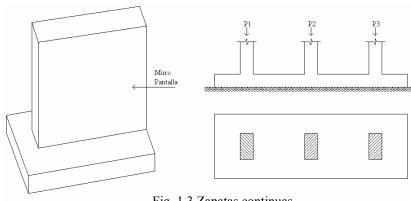


Fig. 1.3 Zapatas continuas

1.3.4 Zapatas conectadas

Las zapatas conectadas son producto de bases excéntricamente cargadas, donde el centro de presiones de la resultante de las cargas y momentos no coinciden con el baricentro de la base. En consecuencia, la base presenta generalmente una parte del área en tracción y el efecto de volcamiento que soporta, puede producir su inestabilidad.

Suelen conectarse dos zapatas aisladas por medio de una viga rígida, para equilibrar presiones en el suelo, cuando las cargas sobre las columnas son de valores muy desproporcionados de una con respecto a la otra.²

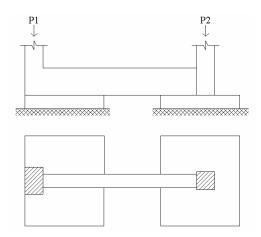


Fig. 1.4 Zapata conectada

1.3.5 Losa de fundación

Consiste en una estructura única de fundación, de tipo placa, para todos los elementos de soporte de una estructura. Pueden llegar a ocupar superficies iguales o mayores que la proyección en planta de la superestructura. Son apropiadas para controlar asentamientos diferenciales en variadas situaciones de carga, disposición estructural y condiciones del suelo portante.¹

En términos estructurales estrictos, una verdadera losa de fundación, es una losa plana de concreto armado con espesor uniforme en toda su extensión. Desde el punto de vista estructural, las losas de fundación trabajan como entrepisos invertidos, donde las cargas distribuidas equivalen a las reacciones del suelo, actuando de abajo hacia arriba, y las columnas y muros actúan como apoyos puntuales o lineales respectivamente.

Las losas de fundación se construyen según las siguientes condiciones:

- a) Cuando hay grandes diferencias entre las cargas de columnas y muros portantes adyacentes.
- b) Cuando las cargas de las columnas son pequeñas o moderadas y el espaciamiento de estas es relativamente pequeño y uniforme.
- c) Cuando el área de fundación cubierta por la solución de zapatas aisladas, combinadas, continuas o la combinación de estas, ocupe 50% o más del área proyectada de la edificación, probablemente resulte más ventajosa y económica la solución de losa de fundación.
- d) Si existe la posibilidad de ascenso del nivel freático, con una subpresión que puede levantar las zapatas aisladas poco cargadas.



Fig. 1.5 Losa de fundación

1.4 FUNDACIONES INDIRECTAS

Se originan naturalmente en la necesidad técnica y económica de trasladar las cargas de las estructuras a mantos profundos competentes a través de secuencias estratigráficas débiles y compresibles, no aptas para soportar elementos de fundación directa.

Las fundaciones indirectas incluyen: Pilas, Cajones y Pilotes, los cuales constituyen un amplio conjunto de soluciones estructurales y métodos constructivos, a los que se tiene que recurrir cuando la profundidad necesaria, conjuntamente con los problemas asociados de estabilidad y control de agua, se vuelve excesiva o compleja, para realizar una excavación convencional a cielo abierto hasta el manto portante.

El mecanismo de trabajo más común, consiste en un elemento estructural a compresión: columna, cilindro hueco o caja, que transmite fuerzas desde la base de los elementos de soporte de las estructuras hasta los mantos seleccionados como portantes.¹

Para su éxito, los sistemas de fundación indirectas requieren que los equipos y procedimientos constructivos, se adapten perfectamente a las características geotécnicas del sitio, condiciones del área de trabajo y programación general de la obra.

En este trabajo de los elementos de fundación indirecta mencionados, trataremos sólo con pilotes.

1.4.1 Pilotes

Con el crecimiento explosivo en la construcción de edificaciones y el aumento paralelo de sus alturas, se ha manifestado la necesidad de tener que fundar sobre pilotes, ya que las cargas unitarias transmitidas por las columnas superan generalmente, los valores admisibles del suelo para fundaciones superficiales.

Los pilotes son elementos estructurales de fundación de tipo columnar, relativamente esbeltos, sus longitudes son muy considerables con relación a su sección transversal, trabajan verticalmente o ligeramente inclinados, cuando se necesita contrarrestar fuerzas horizontales de cierta importancia.

La sección transversal de los pilotes puede ser de variadas formas: circular, octogonal, hexagonal, cuadrados y también pueden tener forma de H y ser sólidos o huecos. Los pilotes se construyen de madera, acero, concreto o combinaciones convenientes de ellos y pueden usarse aislados o en grupos vinculados en su parte superior por una estructura llamada cabezal que los une y se encarga de distribuir las cargas entre cada uno de los elementos.¹

Los pilotes transmiten las cargas al suelo por la presión que ejercen en la punta, por fricción producida en la superficie lateral (fuste) con el terreno, o por la combinación de ambos mecanismo. Se usan cuando los terrenos están formados por relleno de espesores grandes y resulta poco económico excavar hasta encontrar el terreno firme; también cuando las cargas sobre las fundaciones, son tales, que requerirían bases considerablemente grandes; cuando el suelo resistente esta a profundidades superiores a los 5 o 6 metros; cuando existe gran cantidad de agua en el terreno; y cuando se deben resistir acciones horizontales de cierta importancia.

Los tipos de pilotes más usados en la actualidad se dividen en dos grandes grupos: hincados y excavados; y cada uno de éstos tienen a su vez subdivisiones que obedecen a detalles constructivos, configuración de la sección y material.

1.4.1.1 Pilotes hincados

Los pilotes hincados son generalmente ejecutados sin extracción de tierra, por lo tanto, se desplaza el suelo, produciéndose a la vez una densificación del mismo.

En ocasiones los pilotes hincados pueden producir daños debido a los desplazamientos verticales y horizontales originados en el suelo, a estructuras, instalaciones y servicios vecinos, pilotes previamente construidos (por tensión y aplastamiento), al suelo aledaño, por alteración y subsiguientes reconsolidación y generación de fricción negativa.

Tipos de pilotes hincados:

a) Pilotes prefabricados

Son aquellos que son elaborados antes de ser hincados, estos pueden ser construido en obra o en talleres. Las dimensiones de este tipo de pilotes están limitadas debido a inconvenientes que se pueden presentar en cuanto al transporte, almacenamiento, manejo y colocación del mismo en sitio.

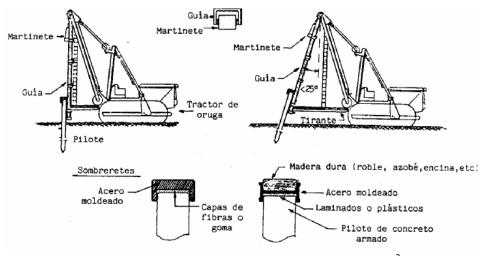


Fig. 1.6 Proceso de hincado de pilote prefabricado ²

b) Pilotes Franki

Se emplea un tubo metálico recuperable que es hincado en el suelo por medio de un martillo cilíndrico que golpea sobre un tapón, que puede ser de un material granular compactado o de concreto seco muy resistente, ubicado en el extremo inferior del tubo. El tapón impide que entre tierra, lodo o agua subterránea durante el proceso de penetración. Al ser expulsado el tapón forma el bulbo de la base, conjuntamente con un volumen adicional de concreto semi – seco que se va agregando y compactando con golpes de mazo. La dimensión que alcanza el bulbo depende de la naturaleza y de las características del suelo donde se apoya el pilote.²

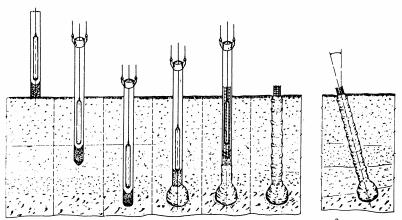


Fig. 1.6 Proceso de ejecución de un pilote Franki ²

c) Pilotes metálicos

Los perfiles estructurales de acero, así como las secciones tubulares, son comúnmente usados como pilotes. Se prefieren en general las secciones H reforzadas, por ser las que soportan mejor las grandes cargas que provienen de la superestructura.²

d) Pilotes en camisa no recuperable

Consisten básicamente en colocar en el terreno, en forma permanente un tubo de pared delgada que se hinca martillando con un mandril en el extremo inferior del tubo, de manera que el esfuerzo de hinca no produzca compresión sino tensión. Una vez alcanzado el rechazo se extrae el mandril y luego se vacía el concreto después de la colocación del acero de refuerzo.²

1.4.1.2 Pilotes excavados

Los pilotes excavados consisten simplemente en hacer un orificio en el suelo con el uso de herramientas, tales como, rotativas, sondas o almejas. Los orificios pueden tener formas variadas, dependiendo de la herramienta que se emplee, es decir, cuando se habla de rotativas o sondas, se esta al frente de secciones circulares, y secciones poligonales o H cuando se usa almejas.

Los tipos de pilotes excavados son:

a) Pilotes excavados con maquinas rotativas sin camisa protectora

Para llevar acabo este sistema en Venezuela se conoce la maquina caldwell, este sistema conviene solamente en suelos completamente secos y cohesivos sin infiltraciones de agua, de modo que no haya derrumbes de las paredes del pozo. Ver figura 1.7

b) Pilotes excavados con maquinas rotativas con protección de bentonita

Este método se conoce como excavación mojada y resulta especialmente indicada en suelos muy blandos, donde es imposible mantener estables las paredes del pozo.

Una de las ventajas de este método es que permite vaciar el concreto con tranquilidad y con tiempo, es decir, no hacer el proceso de vaciado

inmediatamente después del excavado del pozo, ya que, el lodo bentonitico estabiliza las paredes del mismo.² Ver figura 1.7

c) pilotes excavados por percusión o almejas

Este método es utilizado en la mayoría de los casos en la realización de excavaciones para la construcción de muros de contención, como también en excavaciones para pilotes de secciones cuadrada y rectangulares que son casos pocos frecuentes, se usan también para generar secciones H las cuales son utilizadas principalmente por la industria petrolera para la construcción de plataformas.²

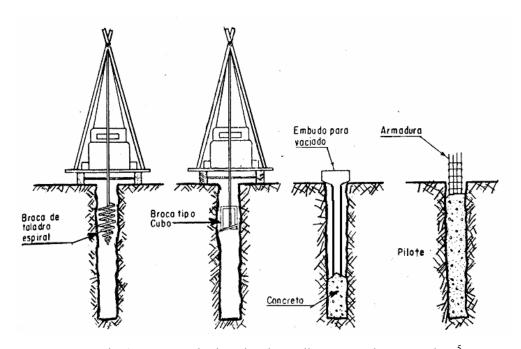


Fig. 1.7 Proceso de ejecución de un pilote Excavado con rotativas ⁵

1.5 CRITERIOS GENERALES PARA EL ANÁLISIS Y DISEÑO DE FUNDACIONES CON ZAPATAS

1.5.1 Notación utilizada en zapatas aisladas

V_u: Corte último que resiste la sección crítica.

Pu: Carga mayorada que actúa en la columna.

M_u: Momento Último Resistente.

 R_u : Resultante última de igual valor que el Corte Último (V_u) en verificación por corte y en el diseño del acero por flexión.

 $\sigma_{\rm u}$: Esfuerzo último.

A_P: Área en punzonado de la zapata.

A_C: Área para la verificación al corte de la zapata.

A_F: Área en flexión para calcular el Momento Último Resistente.

A : Área de la base de la zapata.

t : Brazo para el calculo del Momento Último Resistente en la verificación por corte.

 ϕ : Factor de minoración de resistencia. $\phi = 0.85$ Corte. $\phi = 0.90$ Flexión.

V_c: Resistencia al corte del concreto.

 V_s : Resistencia al corte que proporciona el acero de refuerzo.

f'c: Resistencia nominal del concreto a compresión.

 b_{o} : Perímetro de la sección crítica de la zapata.

d : Altura útil de la zapata.

H : Espesor de la zapata.

 r_c : Recubrimiento de calculo, por lo general r_c = 5 Cm.

a': Menor dimensión del pedestal.

b': Mayor dimensión del pedestal.

b = B: Longitud del lado de la zapata.

S : Longitud de volado, medida desde la cara del pedestal hasta el borde de la base.

q : Cuantía mecánica.

 ρ : Porcentaje de acero.

 ρ_{min} : Porcentaje de acero mínimo para garantizar ductilidad en la sección.

f_v: Resistencia nominal del acero a tracción.

A_s: Área de acero necesaria por flexión.

A's: Área de acero en compresión.

1.5.2 Caso particular zapatas cuadradas

1.5.3 Presión admisible bajo la zapata

La presión admisible bajo la zapata viene dada por la superposición de los efectos de los momentos flectores y la carga axial, según la ecuación:

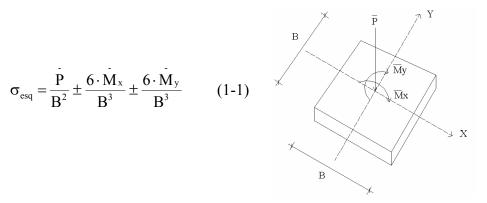


Fig. 1.8 Superposición de los efectos en zapata

Donde:

 σ_{esq} : Es el esfuerzo en las esquinas y sólo tendrá efecto para valores positivos.

 \bar{P} : Es la resultante de carga.

 M_x : Es la resultante de momentos en la dirección x.

M_y: Es la resultante de momentos en la dirección y.

B : Es el lado de la zapata.

Para zapatas sin los efectos de los momentos flectores y sólo con carga axial centrada con el baricentro de la base, el esfuerzo resultante bajo la zapata es uniforme y viene dado por la ecuación:

$$\sigma = \frac{\dot{P}}{B^2} \qquad (1-2)$$

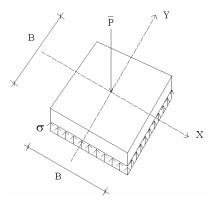


Fig. 1.9 Presión uniforme

1.5.4 Predimensionado de la base

Si $\sigma = \sigma_{adm}$; entonces, el área requerida para la base de la zapata se determina por medio de la ecuación:

$$B^2 = \frac{\dot{P}}{\sigma_{adm}}$$
; y por medio del área se obtiene el lado (B).

1.5.5 Selección del espesor de la zapata

1.5.5.1 Criterio de rigidez

 $\frac{S}{H} \le 3 \circ 2$ preferiblemente.

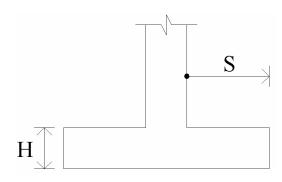


Fig. 1.10 Criterio de rigidez

1.5.5.2 Verificación por punzonado

La sección crítica que encierra el área en punzonado de la zapata, es la que se obtiene a una distancia $(\frac{d}{2})$ de las caras del pedestal y el corte último resistido por dicha sección se calcula con la siguiente expresión: $V_u = P_u - \sigma_u \cdot A_p$ y se debe cumplir que $V_u \le \phi (V_c + V_s)$.

Donde: $A_{p} = (a' + d)x(b' + d)$ $d = H - r_{c}$ $\sigma_{u} = \frac{P_{u}}{A}$ $V_{c} = 1.06 \sqrt{f_{c}} \cdot b_{o} \cdot d \qquad (1-3)$

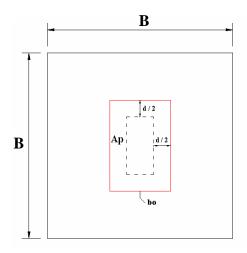


Fig. 1.11 Verificación por punzonado

1.5.5.3 Verificación por corte

Se realiza a una distancia (d) de la cara del pedestal sobre la zapata y el corte último resistido por dicha sección se calcula con la siguiente expresión: $V_u = \sigma_u \cdot A_c$ y se debe cumplir que $V_u \le \phi \left(V_c + V_s \right)$.

Donde:

$$\sigma_{u} = \frac{P_{u}}{A} \quad ; \quad d = H - r_{c}$$

$$A_{c} = (S - d) \cdot b$$

$$M_{u} = \overline{R} \cdot t \quad \rightarrow \quad t = \frac{(S - d)}{2}$$

$$V_{c} = 0.53 \sqrt{f_{c}} \cdot b \cdot d \qquad (1-4)$$

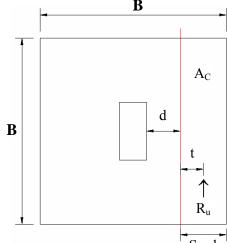


Fig. 1.12 Verificación por corte S - d

1.5.6 Diseño del acero por flexión

1.5.6.1 Cálculo del momento último

Una vez seleccionado el espesor definitivo de la zapata, el Momento Último Resistente (M_u) se calcula en la sección crítica ubicada en la cara del pedestal sobre la zapata, con la siguiente expresión: $M_u = R_u \cdot \frac{S}{2}$

$$V_{u} = R_{u} = \sigma_{u} \cdot A_{F}$$

$$\sigma_{u} = \frac{P_{u}}{A}$$

$$A_{F} = S \cdot b$$

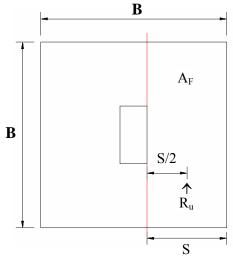


Fig. 1.13 Cálculo del momento último

1.5.6.2 Capacidad resistente minorada

Al tener definida las dimensiones de la sección de la zapata, es más fácil obtener la cuantía mecánica (q) para calcular el porcentaje de acero (ρ) con el uso la Capacidad Resistente Minorada, la cual viene dada por la formula:

$$\phi M_n = 0.90 \cdot b \cdot d^2 \cdot f_c \cdot q \left(1 - 0.59 \, q \right)$$

$$\phi M_n \ge M_u$$

$$(1-5)$$

Se hace $M_u = \phi M_n$ y de los valores de q se toma el menor, para obtener el porcentaje de acero mínimo necesario para la sección que se esta diseñando.

$$q = \rho \cdot f_y / f_c$$
; $\rho = q \cdot f_c / f_y$
 $\rho \ge \rho_{min} \rightarrow \rho_{min} \text{ en zapatas} = 0.0022$

1.5.6.3 Cálculo del área de acero de la base

Con el valor del porcentaje de acero (ρ) y las dimensiones de la zapata, el área de acero (A_s) se calcula con la formula:

$$A_s = \rho \cdot b \cdot d \qquad (1-6)$$

$$A'_s \cong 0.30 A_s$$

Nota: El acero en compresión (A'_s) se coloca para fines de confinamiento, armado, ductilidad, sismo y disminuir flechas; no es que la sección sea doblemente armada.

1.5.7 Cálculo del área de acero del pedestal

1.5.7.1 Acero longitudinal

Según el Ing. José Manuel Velásquez el área de acero longitudinal del pedestal debe ser aproximadamente igual a 1.00 % del área de la sección transversal del mismo.

$$A_s = 0.01 \cdot a' \cdot b'$$

1.5.7.2 Acero transversal

El acero transversal (ligaduras) es de ϕ 3/8" y se coloca con una separación de 10 cm a partir de 5 cm de la cara de la base. Las formas y las dimensiones de las ligaduras depende de la disposición del acero longitudinal que se haga en el pedestal.

1.6 CRITERIO FUNDAMENTAL DE DISEÑO PARA PILOTES Y CABEZALES

1.6.1 Notación utilizada en fundaciones con un pilote

P : Carga de servicio proveniente de la columna.

R_P: Resistencia a punta de los pilotes.

A_P: Área requerida para cada pilote.

 ϕ_P : Diámetro de los pilotes.

f'c: Resistencia nominal del concreto a compresión.

d : Altura útil del cabezal.

H: Altura total del cabezal.

r_c: Recubrimiento de calculo, por lo general 5 ó 7.5 Cm.

a': Mayor dimensión de la columna.

b': Menor dimensión de la columna.

b = B: Lado del cabezal.

ρ : Porcentaje de acero.

 ρ_{min} : Porcentaje de acero mínimo para garantizar ductilidad en la sección.

F_x: Fuerza de tracción que se produce en la base del cabezal en la dirección x.

F_v: Fuerza de tracción que se produce en la base del cabezal en la dirección y.

f_v: Resistencia nominal del acero a tracción.

 f_s : Tensión admisible del acero de refuerzo. $f_s = 0.50 F_v$

A_s: Área de acero necesaria por tracción.

A's: Área de acero en compresión.

1.6.2 Predimensionado del pilote

1.6.2.1 Cálculo del diámetro

Conocida la resistencia del pilote, se obtiene el área de concreto requerida según la siguiente expresión:

$$R_p \ge \frac{P}{A_p}$$
 ; $A_p = \frac{P}{R_p}$

$$A_{p} = \frac{\pi}{4} \phi_{p}^{2} \quad ; \quad \phi_{p} = \sqrt{\frac{4}{\pi} \cdot A_{p}}$$

1.6.2.2 Cálculo del área del acero longitudinal

El acero longitudinal en los pilotes es función de un porcentaje del área de su sección transversal, que puede ser de 1.00 o 0.75% hasta una profundidad aproximada de 6.00 m. continuando con 0.50% hasta el extremo inferior del acero longitudinal; también dependiendo de las condiciones de trabajo, los pilotes pueden ser armado con 0.50% a todo lo largo de su armadura longitudinal.

$$A_s = \rho \cdot \phi_p^2 \cdot \frac{\pi}{4} \rightarrow En Cm^2$$
 (1-7)

1.6.2.3 Colocación del acero helicoidal

El acero transversal en los pilotes es de ϕ 3/8" y se coloca con un paso de 10 Cm. los primeros dos metros de profundidad del pilote y luego con un paso de 20 Cm. hasta el extremo inferior del acero longitudinal; las empresas utilizan el acero transversal en rollos, para facilitar su colocación.

Con la ecuación de una hélice, de radio igual al radio del núcleo del pilote, se calcula la longitud de una rama usando la formula matemática de longitud de arco de dond resulta la siguiente formula:

Longitud de una rama =
$$\sqrt{4 \cdot \pi^2 \left(\frac{\phi_p - 15}{2}\right)^2 + (Paso)^2}$$

1.6.3 Predimensionado de cabezal sobre un pilote

1.6.3.1 Cálculo de la altura útil

La altura útil y el lado del cabezal son función del diámetro y sus valores se obtienen de la siguiente forma :

$$\begin{split} d \, \geq \, \varphi_p \qquad ; \quad d_{min} \, = 1.00 \, m. \\ b \, = \, B \, = \, \varphi_p \, + \, 40 \, Cm. \end{split} \label{eq:base_decomposition}$$

1.6.3.2 Análisis . Según Ing. José M. Velásquez (1989)

Los cabezales sobre un pilote, solo se pueden analizar mediante el método de las bielas, ya que en este tipo de cabezales, no hay forma de considerar la flexión, porque la carga axial pasa directamente del cabezal al pilote.

1.6.3.3 Método de las bielas comprimidas

En el caso de los cabezales, elementos de gran rigidez a flexión, no se producen deformaciones importantes por flexión, desde el punto de vista teórico, es más real asimilar este problema de la transmisión de una carga concentrada a través de un medio continuo ideal. Esta transmisión se realiza por medio de líneas de compresiones principales, generándose perpendicularmente a ellas líneas de tracciones principales.

Por lo tanto, se puede concebir en tal caso, la existencia de pequeños prismas de concreto comprimidos que se denominan "bielas" y la resistencia se debe complementar con aceros que sigan las líneas de tracciones principales.

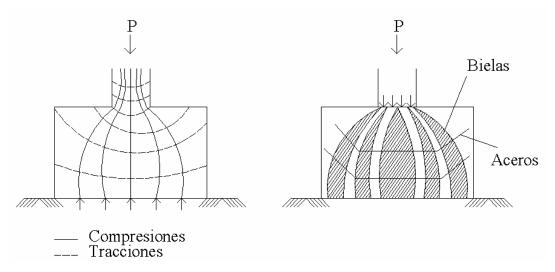


Fig. 1.14 Concepto de las Bielas Comprimidas 9

1.6.3.4 Diseño

El diseño de cabezales sobre un pilote, consiste en el calculo del área de acero necesaria para soportar las fuerzas horizontales generadas en la base del cabezal, producto de la aplicación de una carga sobre su superficie. Según el método de las bielas comprimidas, tales fuerzas, se obtienen por medio de la siguiente ecuación:

$$F_{x} = F_{y} = \frac{P \cdot (\phi_{p} - \sqrt{a' \cdot b'})}{8 \cdot d}$$
 (1-8)

$$A_{s} = \frac{F_{x}}{f_{s}} \rightarrow \text{Área de acero requerida. } f_{s} = 0.5 f_{y}$$

$$A_{s \min} = \rho \cdot b \cdot d \rightarrow \rho = 0.0022$$

$$A'_{s} \approx 0.30 A_{s}$$

El cabezal sobre un pilote, se arma en las dos direcciones y se coloca un acero intermedio para evitar microfisuración interna y zunchos horizontales para evitar desprendimiento lateral, ambos aceros son de ϕ 3/8".

1.6.4 Predimensionado de cabezal sobre dos pilotes

1.6.4.1 Notación utilizada en fundaciones con dos pilotes

P : Carga de servicio proveniente de la columna.

V_u: Corte último que resiste la sección crítica.

P_u: Carga mayorada que actúa en la columna más el peso del cabezal.

R_u: Resultante última en cada pilote.

R_P: Resistencia a punta de los pilotes.

A_P: Área requerida para cada pilote.

 ϕ_P : Diámetro de los pilotes.

 ϕ : Factor de minoración de resistencia. $\phi = 0.85$ Corte. $\phi = 0.90$ Flexión.

V_c: Resistencia al corte del concreto.

V_s: Resistencia al corte que proporciona el acero de refuerzo.

V_n: Resistencia máxima al corte proporcionada por el concreto y el acero de refuerzo.

f'c: Resistencia nominal del concreto a compresión.

d : Altura útil del cabezal.

H: Altura total del cabezal.

 L_n : Luz libre entre pilotes.

r_c: Recubrimiento de calculo, por lo general 5 ó 7.5 Cm.

a': Mayor dimensión de la columna.

b': Menor dimensión de la columna.

b = B : Longitud más corta del cabezal.

A : Longitud más larga del cabezal.

S: Separación centro a centro entre los pilotes.

ρ : Porcentaje de acero.

 ρ_{min} : Porcentaje de acero mínimo para garantizar ductilidad en la sección.

F_x: Fuerza de tracción que se produce en la base del cabezal en la dirección más larga.

f_v: Resistencia nominal del acero a tracción.

 f_s : Tensión admisible del acero de refuerzo. $f_s = 0.50 F_v$

A_s: Área de acero necesaria por tracción en la dirección mas larga del cabezal.

A's: Área de acero en compresión.

1.6.4.2 Cálculo de la altura útil

La altura útil y la longitud de los lados del cabezal son función del diámetro y sus valores se obtienen de la siguiente forma :

$$S = 2.5 \cdot \phi_p$$

$$d \ge \frac{S}{2}$$
 ; $d_{min} = 1.00 \, m$.

$$B = \phi_p + 40 \text{ Cm}$$
.

$$A = S + \phi_n + 40 \text{ Cm}.$$

1.6.4.3 Análisis Según Ing. José M. Velásquez (1989)

Los cabezales sobre dos pilotes se pueden calcular por dos métodos diferentes:

- Por el método de las bielas comprimidas.
- Considerándolo como una viga recta que reposa sobre dos apoyos simples constituidos por los pilotes y con la carga aplicada en el centro.

El primer método es el preferido en este tipo de cabezales porque la teoría de la flexión simple no se aplica con exactitud, debido a las dimensiones del elemento.

El método de las bielas comprimidas en este tipo de cabezal, se estudia de acuerdo a dos caso:

- 1.- Sin considerar las dimensiones de la columna.
- 2.- Considerando las dimensiones de la columna.

El segundo caso, es el más apropiado, ya que el hecho de incluir las dimensiones de la columna, disminuye el valor de fuerza horizontal en la dirección más larga del cabezal y por ende el área de acero que hay que proporcionar es menor.

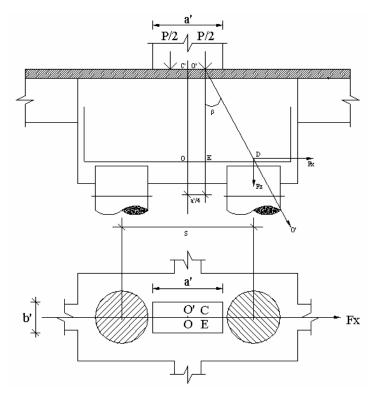


Fig. 1.15 Fuerzas en el cabezal considerando las dimensiones de la columnas ⁹

1.6.4.4 Diseño

En el cabezal sobre dos pilotes, para el diseño se tienen dos aspectos importantes, que son :

- 1.- El calculo del área de acero requerida para contrarrestar la fuerza horizontal producida en la dirección más larga del cabezal.
- 2.- La verificación por corte del cabezal.

La fuerza horizontal en la dirección más larga del cabezal según el método de las bielas comprimidas considerando las dimensiones de la columna viene dada por la formula:

$$F_{x} = \frac{P(2 \cdot S - a')}{8 \cdot d} \qquad (1-9)$$

$$A_s = \frac{F_x}{f_s} \rightarrow \text{Área de acero requerida.} \quad f_s = 0.5 f_y$$

$$A'_s \cong 0.30 \, A_s$$

La fuerza horizontal producida en la dirección corta del cabezal, se contrarresta con el uso de estribos dobles con barras de ϕ 3/8" separados a d/5, de los cuales se amarra el acero principal y el acero a compresión, así como también los zunchos horizontales de ϕ 1/2" que se colocan a una separación aproximadamente igual a d/3.

Para la verificación por corte del cabezal sobre dos pilotes, se incluye el peso del cabezal y la sección crítica se escoge en la dirección transversal en una de las caras de la columna sobre el cabezal.

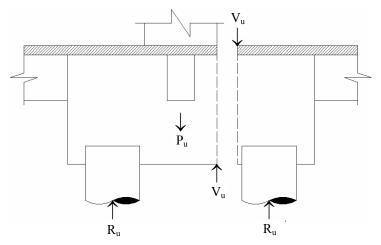


Fig. 1.16 Corte último y sección crítica del cabezal sobre dos pilotes ⁹

Peso del cabezal =
$$\gamma_{concreto}$$
 x Volumen_{concreto}
P_u = 1.5 · P + 1.4 · Peso del Cabezal

$$P_{u} - R_{u} - V_{u} = 0$$

 $V_{u} = P_{u} - R_{u}$ (1-10)

$$R_{\rm u} = \frac{P_{\rm u}}{2}$$

$$V_{_{n}} \; = \; \varphi \left(V_{_{c}} + V_{_{s}} \right) \quad ; \quad V_{_{u}} \; \leq \; V_{_{n}} \label{eq:vn}$$

$$V_n \le 2.12 \sqrt{f_c} \cdot b \cdot d \rightarrow Para \frac{L_n}{d} < 2$$
 (1-11)

$$V_{n} \leq 0.18 \left(10 + \frac{L_{n}}{d}\right) \sqrt{f_{c}} \cdot b \cdot d \rightarrow \text{Para } L_{n} / d \leq \left[2, 5\right]$$
 (1-12)

1.7 CONCEPTOS Y DEFINICIONES RELACIONADOS CON LA ADMINISTRACIÓN Y CONTROL DE OBRAS

1.7.1 Introducción

Esta sección tiene como finalidad presentar una serie de definiciones y conceptos básicos, con los cuales se pretende informar acerca de la terminología utilizada dentro del ámbito de la administración y control de obras, para así facilitar un mayor entendimiento del trabajo.

1.7.2 Obra

Es toda aquella construcción que ofrece una determinada condición de servicio según sea su finalidad.

Para su cabal ejecución, se debe establecer un análisis que contemple la magnitud y el costo involucrado en su realización. Según su naturaleza, las obras se clasifican en:

- ✓ Edificaciones
- ✓ Construcciones Viales
- ✓ Construcciones Hidráulicas.

1.7.3 Costo

Es el gasto que se genera durantes las diferentes etapas que constituyen la realización de una determinada obra.

1.7.3.1 Costos directos

Los costos directos los constituyen los costos de materiales, la mano de obra directa y el costo de funcionamiento de la maquinaria y del equipo.

1.7.3.2 Costos indirectos

Los costos indirectos son todos aquellos gastos que no pueden ser ubicados directamente en la operación de la obra, pero que son necesario para la correcta realización de la misma. Pueden ser de dos tipos: los gastos generales de la Empresa y los gastos indirectos de la obra.³

1.7.4 Partidas

Son las diferentes partes que describen los trabajos que se realizaran durante la ejecución de la obra, los cuales pueden ser medibles y cuantificables.⁸

1.7.4.1 Unidad de partida

Es la unidad de medida tomada como base para cuantificar una partida, cuya finalidad es poder realizar las debidas mediciones, valuaciones y correspondientes pagos. Esta deberá corresponder al sistema usualmente aceptado.⁸

1.7.4.2 Rubro

Es el titulo bajo el cual se agrupan partidas de características similares.

1.7.5 Análisis de precios unitarios

Precio unitario es el valor que tiene una unidad de obra para un lugar determinado en circunstancias propias.

En el análisis se deben reflejar los principales elementos que inciden en la fijación del precio de la partida y es además muy importante señalar las condiciones especiales si la hubiese. Es indispensable cuando se elabora un análisis tipificar la obra, así como la ubicación en el país.

1.7.5.1 Materiales

Los materiales constituyen todos los insumos a ser utilizados en dichas partidas. Estos insumos son calculados a costo directo a la fecha de la realización del análisis, debe tomarse en cuenta en estos cálculos el transporte o flete y los posibles desperdicios producidos. Para determinar la contribución de este rubro, existen varias alternativas, bien sea, utilizando el costo de material por unidad de medida; el costo total de materiales a ser usado entre la cantidad; ó el costo total de materiales entre el rendimiento de la partida.³

1.7.5.2 Equipos

Los equipos son las distintas herramientas, útiles y maquinarias, necesarias para la realización de lo descrito en la partida. El aporte de este rubro incluye los materiales necesarios para el funcionamiento, el desgaste por uso, así como los posibles desperfectos que pudieran sufrir estos equipos. Es calculado de dos maneras: multiplicando el precio total del equipo por un factor de depreciación, determinado por la vida útil de cada equipo, y dividido por el rendimiento de la partida; ó por el alquiler del equipo diario dividido entre el rendimiento, en cuyo caso se asume un factor de depreciación igual a la unidad (1).³

1.7.5.3 Mano de obra

La mano de obra es el costo de los trabajos hora – hombre requeridos para el cumplimiento de lo descrito en las partidas. Está determinada por la cantidad de personal destinada para la realización del trabajo, así como de los sueldos estipulados y los costos asociados a dichos sueldos (vacaciones, utilidades, prestaciones, dotaciones, sindicatos, etc.). Para determinar el aporte de este rubro se obtiene el total de la mano de obra directa, se multiplica por el factor prestaciones sociales y se divide por el rendimiento de la partida.³

1.7.5.4 Rendimiento

Es la cantidad ejecutable de una partida, medida en las unidades especificadas a esta, durante un día de trabajo, utilizando tanto equipo como cantidad y tipo de mano de obra necesarias para la su realización.⁸

1.7.6 Presupuesto

Es un plan estimativo donde se reflejan los costos de las diferentes partidas que se presentan para la realización de una obra.

1.7.6.1 Presupuesto base

Es el documento integrado por las cantidades de obra, precios unitarios, estimados y precios totales para cada una de las partidas. La suma de los precios totales en todas las partidas del presupuesto, determina el monto total estimado para la obra, el cual se utiliza a los fines de la elevación de las ofertas para la construcción de obra.

1.7.7 Incidencia

Es la importancia de cada uno de los integrantes del costo total de la obra con respecto al valor total de la obra y suele expresarse en tanto por ciento.

1.7.8 Índice

Es el numero abstracto que indica la relación que existe entre el precio de un elemento en una fecha determinada y el de la fecha anterior fijado como base.

CAPITULO 2

Análisis, Diseño, Detallado y Presupuesto de Zapata Aislada

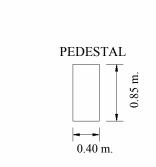
CAPITULO 2

ANÁLISIS, DISEÑO, DETALLADO Y PRESUPUESTO DE ZAPATA AISLADA

2.1 INFORMACIÓN DISPONIBLE

P = 150 Toneladas.

$$\sigma_{adm}=2.00\,Kg/Cm^2$$

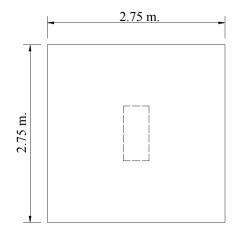

$$f_c = 250 \text{ Kg/Cm}^2$$

$$f_y = 4200 \text{ Kg/Cm}^2$$

Pedestal: 40 Cm. x 80 Cm.

Columna: 35 Cm. x 80 Cm.

$$A = ?$$
 $B = ?$



2.2 PREDIMENSIONADO DE LA BASE

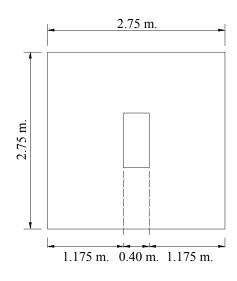
2.2.1 Cálculo del área

$$\begin{split} A_{req} = & \frac{P}{\sigma_{adm}} \\ & \frac{150 \, Ton. \, x \, 1000 \, Kg/l \, Ton.}{2.00 \, Kg/Cm^2} \end{split} \label{eq:adm}$$

$$A_{req} = 75000 \, \text{Cm}^2$$

2.2.2 Cálculo del lado

B =
$$\sqrt{A}$$
 = $\sqrt{75000 \text{ Cm}^2}$ = 273.86 Cm.
B = 275 Cm. \rightarrow 2.75 m.


2.3 SELECCIÓN DEL ESPESOR

2.3.1 Criterio de rigidez

 $\frac{S}{H} \le 3 \circ 2$ Preferiblemente.

$$H = 0.55 \text{ m}.$$

$$\frac{1.175}{0.55} = 2.14 \checkmark$$

2.3.2 Verificación por punzonado

$$H = 55 \text{ Cm}.$$
 ; $r_c = 5 \text{ Cm}.$

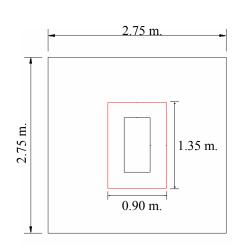
$$d = H - r_c \rightarrow d = 50 \text{ Cm}.$$

$$A_p = (40 + d)x(85 + d)Cm^2$$

$$A_p = 90 \text{ Cm x } 135 \text{ Cm} \rightarrow 12150 \text{ Cm}^2$$

$$b_0 = 4 \times d + 2 \times 40 \text{ Cm.} + 2 \times 85 \text{ Cm.}$$

$$b_0 = 450 \, \text{Cm}.$$


$$P_u = 1.5 \times 150000 \text{ Kg} \rightarrow 225000 \text{ Kg}.$$

$$\sigma_u = \frac{P_u}{A}$$

$$V_u = P_u - \sigma_u \cdot A_p$$

$$\rightarrow V_u = 188851 \,\mathrm{Kg}.$$

$$V_{u} \leq \Phi \left(V_{c} + V_{s}\right)$$

 $\Phi \!=\! 0.85 \;\; ; \;\; V_s \to No \; se \; toma. Todo el corte se le atribuye al concreto.$

$$V_c = 1.06 \cdot \sqrt{f_c} \cdot b_o \cdot d$$

$$V_c = 1.06 \cdot \sqrt{250} \text{ Kg/Cm}^2 \cdot 450 \text{ Cm.} \cdot 50 \text{ Cm.}$$

$$\rightarrow$$
 V_c = 377102 Kg.

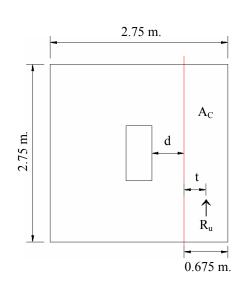
$$\Phi V_c = 320536 \text{ Kg}.$$

$$V_{u} \leq \Phi V_{c} \checkmark$$

2.3.3 Verificación por corte

$$H = 55 \text{ Cm}$$
.

$$r_c = 5 \text{ Cm}.$$


$$d = H - r_c \rightarrow d = 50 \text{ Cm}.$$

$$V_u = \sigma_u \cdot A_C$$

$$A = 275 \text{ Cm x } 67.5 \text{ Cm} \rightarrow 18563 \text{ Cm}^2$$

$$V_u = \overline{R}_u = 55227 \text{ Kg}.$$

$$V_{u} \leq \Phi \left(V_{c} + V_{s}\right)$$

 $\Phi \!=\! 0.85\,$; $\,V_{s} \to No$ se toma. Todo el corte se le atribuye al concreto.

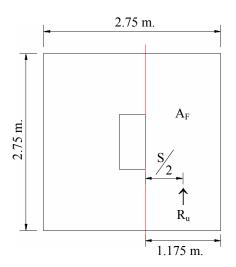
$$M_u = \overline{R}_u \cdot t \rightarrow t = \frac{(S - d)}{2}$$

$$M_{u} = 18639 \text{ Kg. - m.}$$

$$V_{c} = 0.53 \cdot \sqrt{f_{c}} \cdot b_{cr} \cdot d$$

$$= \ 0.53 \cdot \sqrt{250} \ Kg/Cm^2 \cdot 275 \ Cm. \cdot 50 \ Cm.$$

$$V_c = 115225 \text{ Kg}.$$


$$\rightarrow \Phi V_c = 97942 \text{ Kg}.$$

$$V_u \le \Phi V_c \checkmark$$

2.4 DISEÑO DEL ACERO POR FLEXIÓN

2.4.1 Cálculo del momento último

$$\begin{split} &V_{u} = \sigma_{u} \cdot A_{F} \\ &A = 275 \text{ Cm x } 117.5 \text{ Cm} \rightarrow 32313 \text{ Cm}^{2} \\ &V_{u} = \overline{R}_{u} = 96136 \text{ Kg}. \\ &S_{2}' = \frac{1.175}{2} \text{ m}. \\ &M_{u} = \overline{R}_{u} \cdot S_{2}' \\ &M_{u} = 56480 \text{ Kg. - m}. \end{split}$$

2.4.2 Capacidad resistente minorada

$$\begin{split} &\Phi\,M_{_{n}}=0.90\cdot b\cdot d^{2}\cdot f_{_{c}}\cdot q\,\big(1\text{-}0.59\,q\big)\\ &q=\rho\cdot\frac{f_{_{y}}}{f_{_{c}}}\quad;\quad \rho=q\cdot\frac{f_{_{c}}}{f_{_{y}}}\\ &\Phi\,M_{_{n}}=M_{_{u}}\quad;\quad En\ zapatas\ \rho_{min}\,=\,0.0022\\ &M_{_{u}}=0.90\cdot b\cdot d^{2}\cdot f_{_{c}}\cdot q\,\big(1\text{-}0.59\,q\big)\\ &\frac{5648000}{0.90}\,Kg\text{-}Cm.=275Cm\cdot\big(50\big)^{2}\,Cm^{2}\cdot250\,Kg/Cm^{2}\cdot q\,\big(1\text{-}0.59\,q\big)\\ &0.0365124=q\,\big(1\text{-}0.59\,q\big)\\ &q_{_{1}}=0.0374\quad;\quad q_{_{2}}=1.6526 \end{split}$$

2.4.3 Cálculo del área de acero

$$\rho = q \cdot \frac{f'_c}{f_y} = 0.0374 \cdot \frac{250 \text{ Kg/Cm}^2}{4200 \text{ Kg/Cm}^2} = 0.0022$$

$$\rho = \rho_{min} \rightarrow \rho_{diseño} = 0.0022$$

$$A_s = \rho \cdot b \cdot d = 0.0022 \ x \ 275 \ Cm \ x \ 50 \ Cm \ = \ 30.25 \ Cm^2.$$

$$A_s = 11.00 \, \text{Cm}^2 / \text{m}.$$

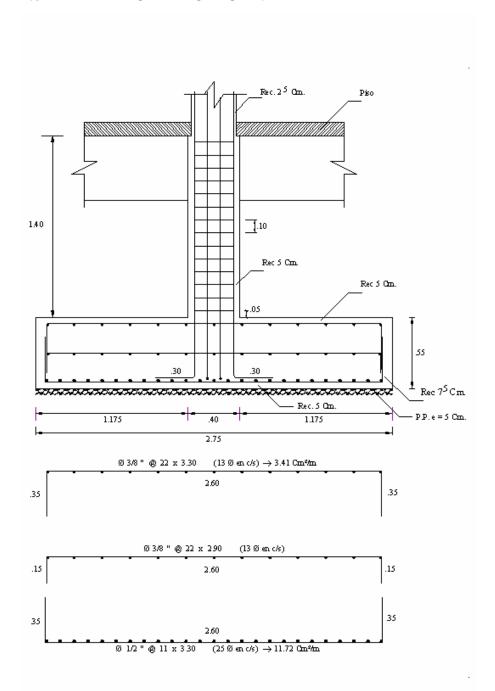
2.5 DISEÑO DEL ACERO DEL PEDESTAL

2.5.1 Cálculo del acero longitudinal

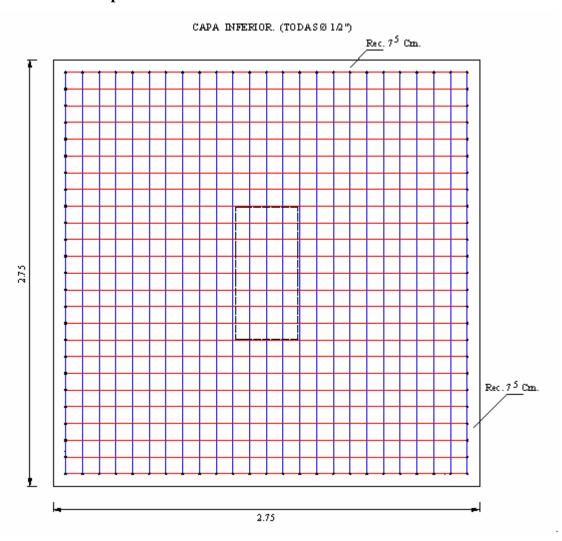
$$A_s = 0.01 \cdot a' \cdot b'$$

$$A_s = 0.01 \times 40 \text{ Cm} \times 85 \text{ Cm}$$

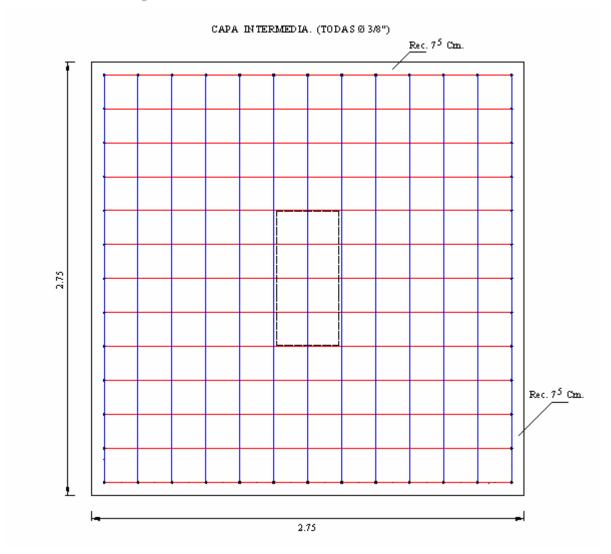
$$A_s = 34.00 \, \text{Cm}^2$$

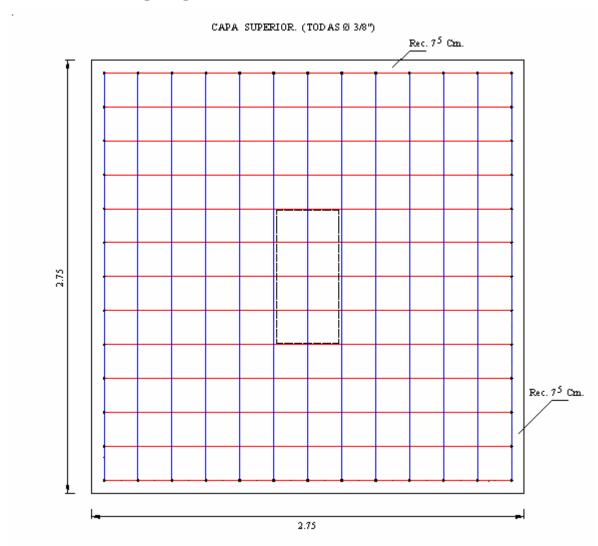

$$18 \phi 5/8$$
" $\rightarrow 35.64 \text{ Cm}^2$

2.5.2 Acero transversal


Ligaduras de ϕ 3/8" colocadas a partir de 5 Cm. de la cara de la base en todo lo largo del pedestal con una separación de 10 Cm.

Las formas de las ligaduras depende del arreglo del acero longitudinal que se haga en el pedestal.


2.6 DETALLADO DE ACERO EN ZAPATA


2.6.1 Detallado Capa inferior

2.6.2 Detallado Capa Intermedia

2.6.3 Detallado Capa Superior

2.7 DETALLADO DEL ACERO DEL PEDESTAL

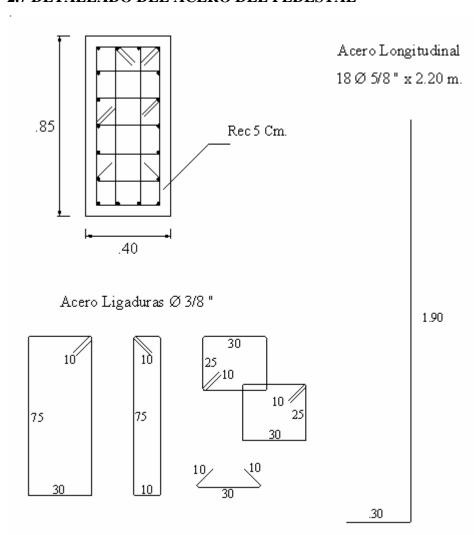


TABLA 2.1 CÓMPUTOS MÉTRICOS. Excavación, Carga y Compactación.

		I	DIMENS	NONES EN	METROS PO	SITIVAS	SUB-	DIMENS	ONES EN M	(ETROS NE	GATIVAS	SUB-	
Ν°	DESCRIPCIÓN	UNIDAD	LARGO	ANCHO	ALTO		TOTAL	LARGO	ANCHO	ALTO		TOTAL	TOTAL
1	E.311.310.000												
	EXCAVACION EN TIERRA CON	m^3	3.15	3.15	2.00		19.85						19.85
	USO DE EQUIPO DE RETRO-												
	EXCAVADOR PARA ASIENTO												
	DE FUNDACIONES, ZANJAS, U												
	OTROS (INCLUYE REPERFILA-												
	MIENTO A MANO).												
2	E.313.210.000												
_	CARGA CON EOUIPO LIVIANO	m^3	2.75	2.75	0.55		4.16						
	DE MATERIAL PROVENIENTE		2.75	2.75	0.05		0.38						
	DE LAS EXCAVACIONES PARA		0.40	0.85	1.40		0.48						
	ASIENTO DE FUNDACIONES.												5.02
	ZANJAS, U OTROS.												
3	E.317.000.000												
	COMPACTACION DE RELLENOS	m^3	3.15	3.15	2.00		19.85	2.75	2.75	0.55		4.16	
	CON APISONADORES DE PERCU-							2.75	2.75	0.05		0.38	
	SION CORRESPONDIENTES A							0.40	0.85	1.40		0.48	
	LOS ASIENTOS DE FUNDACIO-												14.84
	NES, ZANJAS, U OTROS.												
4	E.319.100.000												
_	CONSTRUCCION DE BASE DE PIE-	m^3	2.75	2.75	0.05		0.38						0.38
	DRA PICADA CORRESPONDIENTES												
	A OBRAS PREPARATIVAS INCLUYE												
	EL SUMINISTRO Y TRANSPORTE												
	DEL MATERIAL HASTA UNA DIS-												
	TANCIA DE 50 Km.												

TABLA 2.2 CÓMPUTOS MÉTRICOS. Concreto para Base y Pedestal.

			DIMENS	SIONES EN	METROS PO	SITIVAS	SUB-	DIMENS.	IONES EN M	METROS NE	GATIVAS	SUB-	
Ν°	DESCRIPCIÓN	UNIDAD	LARGO	ANCHO	ALTO		TOTAL	LARGO	ANCHO	ALTO		TOTAL	TOTAL
5	E.323.000.125											\Box	
	CONCRETO DE Fc 250 Kgf/cm^2	m^3	2.75	2.75	0.55		4.16						4.16
	A LOS 28 DIAS, ACABADO												
	CORRIENTE PARA LA CONSTRU-												
	CCION DE BASES Y ESCALONES.												
	INCLUYE EL TRANSPORTE												
	DEL CEMENTO Y AGREGADOS												
	HASTA 50 Km Y EXCLUYE EL												
	REFUERZO METALICO Y EL												
	ENCOFRADO.												
6	E.324.000.125		\vdash									\vdash	
	CONCRETO DE Fc 250 Kgf/cm^2	m^3	0.40	0.85	1.40		0.48					-	0.48
	A LOS 28 DIAS, ACABADO											-	
	CORRIENTE PARA LA CONSTRU-											-	
	CCION DE PEDESTALES.											-	
	INCLUYE EL TRANSPORTE											$\overline{}$	
	DEL CEMENTO Y AGREGADOS											-	
	HASTA 50 Km Y EXCLUYE EL											$\overline{}$	
	REFUERZO METALICO Y EL											$\overline{}$	
	ENCOFRADO.												
												—	
			<u> </u>										
			<u> </u>										
			⊢—									-	-

TABLA 2.3 CÓMPUTOS MÉTRICOS. Encofrado.

\blacksquare		Г	DIMENS	SIONES EN	METROS PO	SITTVAS	SUB-	DIMENS	IONES EN M	METROS NE	GATIVAS	SUB-	
N°	DESCRIPCIÓN	UNIDAD	LARGO	ANCHO	ALTO		TOTAL	LARGO	ANCHO	ALTO		TOTAL	TOTAL
7	E.341.010.110												
	ENCOFRADO DE MADERA, TIPO	m^2	2.75		0.55		1.51						
	RECTO, ACABADO CORRIENTE,		2.75		0.55		1.51						
	EN CABEZALES DE PILOTES,		2.75		0.55		1.51						
	BASES Y ESCALONES, PEDESTA-		2.75		0.55		1.51						9.55
	LES, VIGAS DE RIOSTRA, TIRAN-		0.40		1.40		0.56						
	TES, FUNDACIONES DE PARED.		0.40		1.40		0.56						
	LOSAS DE FUNDACIÓN Y BASES			0.85	1.40		1.19						
\vdash	DE PAVIMENTO.			0.85	1.40		1.19						
${}$													
г													
\vdash													
\vdash													
\vdash													
\vdash													
\vdash													
\vdash													
\vdash													
\vdash													
\vdash			\vdash										
\vdash			\vdash										
\vdash			\vdash										
\vdash			\vdash										
\vdash		+	\vdash										
\vdash		+	\vdash										
\vdash		_	\vdash										
\vdash		_	\vdash										
\vdash		_	\vdash										
\vdash		+											
—	I												

TABLA 2.4 CÓMPUTOS MÉTRICOS. Acero No 3 para Infraestructura.

OBRA: CONSTRUCCIÓN DE ZAPATA AISLADA CENTRADA CUADRADA.

	,	NÚMERO	LONGITUD DE		I	ONGITUD TO:	TAL EN METRO	OS	
Ν°	DESCRIPCIÓN	ELEMINTOS IGUALES	UN ELEMENTO	3/8"	1/2"	5/8"	3/4"	7/8"	1"
8	E.351.110.210								
	SUMINISTRO, TRANSPORTE,								
	PREPARACION Y COLOCACION								
	DE ACERO DE REFUERZO								
	Fy 4200 Kgf/Cm^2., UTILIZANDO								
	CABILLAS IGUAL O MENOR AL								
	N° 3, PARA INFRAESTRUCTURA.								
	ZAPATA	26	3.30	85.80					
		26	2.90	75.40					
	PEDESTAL	14	2.30	32.20					
	120201112	14	1.90	26.60					
		28	1.30	36.40					
		14	0.50	7.00					
TAR	GO EN METROS LINEALES			263.40					
	O EN KILOGRAMOS POR METRO LINEAL			0.559	0.994	1.554	2.237	3.045	3.987
	EN KILOGRAMOS POR ELEMENTO			147.24					

TOTAL (Kg) = 147.24

FECHA: 20/04/2005

TABLA 2.5 CÓMPUTOS MÉTRICOS. Acero No 4 a No 7 para Infraestructura.

OBRA: CONSTRUCCIÓN DE ZAPATA AISLADA CENTRADA CUADRADA.

	NÚMERO	LONGITUD DE		L	ONGITUD TO	TAL EN METRO	XS	
N° DESCRIPCIÓN	ELEMINTOS IGUALES	UN ELEMENTO	3/8"	1/2"	5/8"	3/4"	7/8"	1"
9 E.351.120.210								
SUMINISTRO, TRANSPORTE,								
PREPARACION Y COLOCACION								
DE ACERO DE REFUERZO								
Fy 4200 Kgf/Cm^2., UTILIZANDO								
CABILLAS No.4 A No.7, PARA								
INFRAESTRUCTURA.								
ZAPATA	50	3.30		165.00				
PEDESTAL	18	2.20			39.60			
	+							
ARĜO EN METROS LINEALES	•			165.00	39.60			
ESO EN KILOGRAMOS POR METRO LINEAL			0.559	0.994	1.554	2.237	3.045	3.987
ESO EN KILOGRAMOS POR ELEMENTO		•	_	164.01	61.54			

TOTAL (Kg) = 225.55

FECHA: 20/04/2005

TABLA 2.6 CÓMPUTOS MÉTRICOS. Trasporte.

	,		DIMENS	SIONES EN S	METROS PO	SETTVAS	SUB-	DIMENS	ONES EN M	(ETROS NE	GATIVAS	SUB-	
N°	DESCRIPCIÓN	UNIDAD	LARGO	ANCHO	ALTO		TOTAL	LARGO	ANCHO	ALTO		TOTAL	TOTAL
10	E.903.142.020												
	TRANSPORTE URBANO. EN	m^3	2.75	2.75	0.55		4.16						
	CAMIONES, DE TIERRA, AGREGADOS		2.75	2.75	0.05		0.38						
	Y ESCOMBROS MEDIDO EN ESTADO		0.40	0.85	1.40		0.48						
	SUELTO, A DISTANCIAS MAYORES												5.01
	DE 19Km Y HASTA 20Km. INCLUSIVE.												

2.8 PRESUPUESTO

DEMO *LuloWin - Control de Obras*

Página Nº: **1** Fecha: **24/05/2005**

PRESUPUESTO

Obra: CONSTRUCCION DE ZAPATA AISLADA DE 2.75 m. x 2.75 m.

Propietario: TRABAJO ESPECIAL DE GRADO

PARTIDA	DESCRIPCIÓN	UNIDAD	CANTIDAD	P.U.	TOTAL Bs.
1	E.311.310.000 EXCAVACION EN TIERRA CON USO DE EQUIPO RETROEXCAVADOR PARA ASIENTO DE FUNDACIONES, ZANJAS, ETC. INCLUYE REPERFILAMIENTO A MANO	Мз	19,85	7.383,39	146.560,29
2	E.313.210.000 CARGA CON EQUIPO LIVIANO DE MATERIAL PROVENIENTE DE LAS EXCAVACIONES PARA ASIENTO DE FUNDACIONES, ZANJAS U OTROS.	МЗ	5,01	4.034,92	20.214,95
3	E.317.000.000 COMPACTACION DE RELLENOS CON APISONADORES DE PERCUSION, CORRESPONDIENTE A LOS ASIENTOS DE FUNDACIONES, ZANJAS, ETC	МЗ	14,84	23.385,87	347.046,31
4	E.319.100.000 CONSTRUCCION DE BASE DE PIEDRA PICADA CORRESPONDIENTE A OBRAS PREPARATIVAS.	МЗ	0,38	80.163,39	30.462,09
5	E.323.000.125 CONCRETO DE Fc 250 kgf/cm2 A LOS 28 DIAS, ACABADO CORRIENTE, PARA LA CONSTRUCCION DE BASES Y ESCALONES.	МЗ	4,16	280.692,94	1.167.682,63
6	E.324,000.125 CONCRETO DE Fc 250 kgf/cm2 A LOS 28 DIAS, ACABADO CORRIENTE, PARA LA CONSTRUCCION DE PEDESTALES.	МЗ	0,48	307.047,63	147.382,86
7	E.341.010.111 ENCOFRADO DE MADERA TIPO RECTO, ACABADO CORRIENTE EN CABEZALES DE PILOTES, BASES Y ESCALONES.	M2	9,55	37.816,94	361.151,78
8	E.351.110.210 SUMINISTRO, PREPARACION Y COLOCACION DE ACERO DE REFUERZO FY 4.200 Kgf/Cm2, UTILIZANDO CABILLAS IGUAL O MENÓR DEL Nº 3 PARA INFRAESTRUCTURA.	KGF	147,24	3.999,01	588.814,23
9	E.351.120.210 SUMINISTRO, PREPARACION Y COLOCACION DE ACERO DE REFUERZO Fy 4.200 Kgf/Cm2, UTILIZANDO CABILLAS DE Nº 4 A Nº 7 PARA INFRAESTRUCTURA.	KGF	225,55	3.870,30	872.946,17
10	E.903.142.020 TRANSPORTE URBANO EN CAMIONES, DE TIERRA, AGREGADOS Y ESCOMBROS MEDIDO EN ESTADO SUELTO, A DISTANCIAS MAYORES A 19km Y HASTA 20km INCLUSIVE	МЗ x KM	100,20	577,16	57.831,43

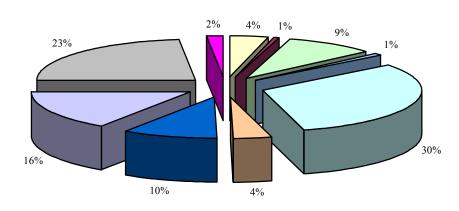
DEMO *LuloWin - Control de Obras*

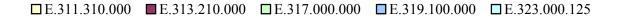
Página Nº: **2** Fecha: **24/05/2005**

PRESUPUESTO

Obra: CONSTRUCCION DE ZAPATA AISLADA DE 2.75 m. x 2.75 m.

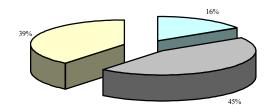
Propietario: TRABAJO ESPECIAL DE GRADO


PARTIDA	DESCRIPCIÓN	UNIDAD	CANTIDAD	P.U.	TOTAL Bs.
			(1	Total Bs.:	3.740.092, 561.013,
			тот	5.00 %) I.V.A.: AL GENERAL:	4.301.106,6


GRÁFICO 2.1

PORCENTAJES DE COSTOS SEGÚN PARTIDAS, PARA FUNDACIÓN AISLADA CENTRADA DE 2.75 m. x 2.75 m.

PARA CARGA DE 150 TON. CON PRESIÓN ADMISIBLE EN EL SUELO DE 2.00 Kg/Cm^2.


PARA CARGA DE 150 TON. CON PRESIÓN ADMISIBLE EN EL SUELO DE 2.00 Kg / Cm^2. ÁREA METROPOLITANA [MAYO 2005]

□E.324.000.125 □E.341.010.112 □E.351.110.210 □E.351.120.210 □E.903.142.020

GRÁFICO 2.2 PORCENTAJES DE COSTOS, SEGÚN ACTIVIDADES, PARA LA CONSTRUCCIÓN DE ZAPATA AISLADA CENTRADA DE 2.75 m, x 2.75 m. PARA CARGA DE 150 TON. CON PRESIÓN ADMISIBLE EN EL SUELO DE 2.00 Kg / Cm^2. ÁREA METROPOLITANA [MAYO 2005]

- EXCAVACIÓN, RELLENO, COMPACTACIÓN Y OTROS.
- ☐ CONCRETO Y ENCOFRADO.
- ☐ ACERO DE REFUERZO.

GRÁFICO 2.3 COEFICIENTES DE INCIDENCIA POR OBRA.

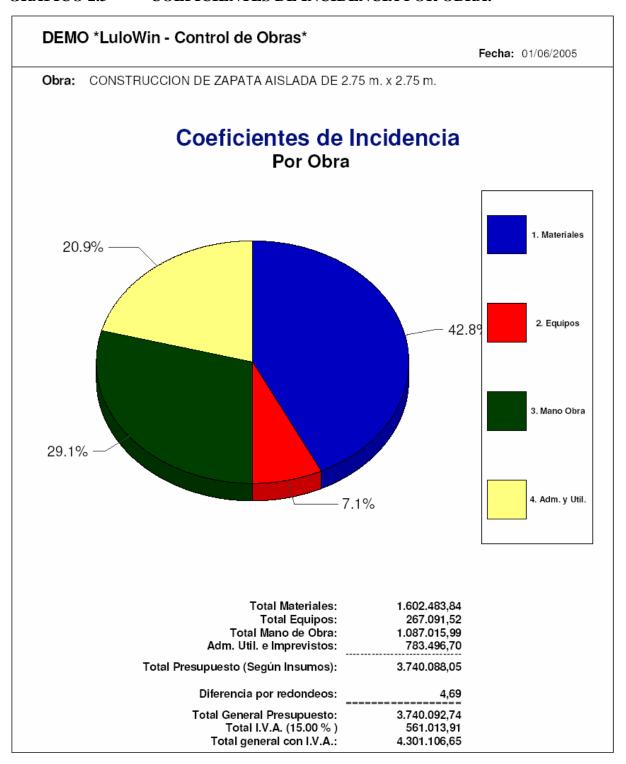


TABLA 2.7 PREDIMENSIONADOS DE ZAPATAS

P (Ton)	6adm (Kg/cm^2)		ENSIO DEL DESTA		Azap (cm²2)	B (cm)	S (cm)	S (cm)	VALOR S/H		2 o 3 LEMENTE	VALOR S/H	ALTURA DEL PEDESTAL
		a (cm)	х	b (cm)	1		SE TOMA	L MAYOR	t I	Hreq.(cm)	H (cm)	1	(m)
$\overline{}$	0.50	35	X	50	100000	320	142.50	135.00	3.00	47.50	50	2.85	1.50
50	1.00	35	x	50	50000	225	95.00	87.50	3.00	31.67	40	2.38	1.60
30	1.50	35	x	50	33333	185	75.00	67.50	3.00	25.00	40	1.88	1.60
	2.00	35	×	50	25000	160	62.50	55.00	3.00	20.83	40	1.56	1.60
\Box	0.50	35	X	65	150000	390	177.50	162.50	3.00	59.17	60	2.96	1.40
75	1.00	35	X.	65	75000	275	120.00	105.00	2.90	41.38	45	2.67	1.55
,,,	1.50	35	X.	65	50000	225	95.00	80.00	2.50	38.00	40	2.38	1.60
	2.00	35	X	65	37500	195	80.00	65.00	2.50	32.00	40	2.00	1.60
$\overline{}$	0.50	35	X	75	200000	450	207.50	187.50	3.00	69.17	70	2.96	1.30
100	1.00	35	X	75	100000	320	142.50	122.50	3.00	47.50	50	2.85	1.50
100	1.50	35	X	75	66667	260	112.50	92.50	2.50	45.00	45	2.50	1.55
	2.00	35	X	75	50000	225	95.00	75.00	2.30	41.30	45	2.11	1.55
\Box	0.50	35	X	75	250000	500	232.50	212.50	3.00	77.50	80	2.91	1.20
125	1.00	35	X	75	125000	355	160.00	140.00	3.00	53.33	55	2.91	1.45
123	1.50	35	X	75	83333	290	127.50	107.50	2.50	51.00	55	2.32	1.45
	2.00	35	x	75	62500	250	107.50	87.50	2.30	45:74	50	2.15	1.50
	0.50	40	X	85	300000	550	255.00	232.50	3.00	85.00	85	3.00	1.15
150	1.00	40	X	85	150000	390	175.00	152.50	3.00	58.33	60	2.92	1.40
250	1.50	40	X	85	100000	320	140.00	117.50	2.50	56.00	60	2.33	1.40
	2.00	40	X	85	75000	275	117.50	95.00	2.30	51.09	55	2.14	1.45
	0.50	40	X	85	350000	595	277.50	255.00	3.00	92.50	95	2.92	1.05
175	1.00	40	X	85	175000	420	190.00	167.50	3.00	63.33	65	2.92	1.35
1/3	1.50	40	X	85	116667	345	152.50	130.00	2.50	61.00	65	2.35	1.35
	2.00	40	X	85	87500	300	130.00	107.50	2.30	56.52	60	2.17	1.40
	0.50	45	X	95	400000	635	295.00	270.00	3.00	98.33	100	2.95	1.00
200	1.00	45	25	95	200000	450	202.50	177.50	3.00	67.50	70	2.89	1.30
200	1.50	45	X.	95	133333	370	162.50	137.50	2.50	65.00	65	2.50	1.35
	2.00	45	x	95	100000	320	137.50	112.50	2.20	62.50	0	2.12	1.35
	0.50	45	X	95	500000	710	332.50	307.50	3.00	110.83	115	2.89	0.85
250	1.00	45	×	95	250000	500	227.50	202.50	3.00	75.83	80	2.84	1.20
230	1.50	45	×	95	166667	410	182.50	157.50	2.60	70.19	75	2.43	1.25
	2.00	45	x	95	125000	355	155.00	130.00	2.30	67.39	70	2.21	1.30
	0.50	45	X	95	600000	775	365.00	340.00	3.00	121.67	125	2.92	0.75
300	1.00	45	x	95	300000	550	252.50	227.50	3.00	84.17	85	2.97	1.15
300	1.50	45	×	95	200000	450	202.50	177.50	2.60	77.88	80	2.53	1.20
	2.00	45	x	95	150000	390	172.50	147.50	2.40	71.88	75	2.30	1.25

TABLA 2.8 VERIFICACIÓN DE LOS ESPESORES SELECCIONADOS

P	байш					POR P	UNZON	NADO						POR	CORTE		
(Ton)	(Kg/cm*2)	r (en)	d (em)	d/2 (em)	Pu (Ton)	6u (kg/em*2)	bo (em)	Ap (enr^2)	Vu (Kg)	Φ*Ve (Kg)	Vu⊴Φ*Ve	6u (kg/em*2)	Acrit (cm/2)	Vu (Kg)	Ve (Kg)	Φ*Ve (Kg)	Vug Φ* Ve
${}$	0.50		45	22.50		0.73	350	7600	69434	224375	OK	0.73	31200	22852	120673	102572	O.K
	1.00		35	17.50	75.00	1.48	310	5950	66185	154570	OK	1.48	13500	20000	65993	56094	OK
50	1.50	5	35	17.50	75.00	2.19	310	5950	61961	154570	OK	2.19	7400	16216	54261	46122	O.K
ı	2.00		35	17.50	1	2.93	310	5950	57568	154570	OK	2.93	4400	12891	46928	39889	O.K
\vdash	0.50		55	27.50	\vdash	0.74	420	10800	104512	329084	OK	0.74	47775	35337	179752	152789	OK
75	1.00	5	40	20.00	112.50	1.49	360	7875	100785	205143	OK	1.49	22000	32727	92180	78353	O.K
/5	1.50	3	35	17.50	112.50	2.22	340	7000	96944	169528	OK	2.22	13500	30000	65993	56094	O.K
ı	2.00		35	17.50	1	2.96	340	7000	91790	169528	O.K	2.96	8775	25962	57194	48615	O.K
-	0.50		65	32.50	-	0.74	480	14000	139630	444477	OK	0.74	64125	47500	245116	208349	O.K
100	1.00	5	45	22.50	150.00	1.46	400	9600	135938	256429	0.K	1.46	31200	45703	120673	102572	0.K
100	1.50	3	40	20.00	150.00	2.22	380	8625	130862	216540	0.K	2.22	18850	41827	87152	74080	0.K
ı	2.00		40	20.00	1	2.96	380	8625	124444	216540	O.K	2.96	12375	36667	75420	64107	O.K
${}$	0.50		75	37.50		0.75	520	16500	175125	555596	O.K	0.75	78750	59063	314251	267114	0.K
125	1.00	5	50	25.00	187.50	1.49	420	10625	171692	299167	O.K	1.49	39050	58099	148746	126434	O.K
125	1.50)	50	25.00	187.30	2.23	420	10625	163812	299167	O.K	2.23	22475	50108	121511	103284	0.K
ı	2.00		45	22.50	1	3.00	400	9600	158700	250429	O.K	3.00	15625	46875	94275	80134	O.K.
$\overline{}$	0.50		80	40.00		0.74	570	19800	210273	649620	0.K	0.74	96250	71591	368722	313413	0.K
150	1.00	5	55	27.50	225.00	1.48	470	13300	205325	368261	0.K	1.48	46800	69231	179752	152789	0.K
130	1.50	,	55	27.50	223.00	2.20	470	13300	195776	368261	0.K	2.20	27200	59766	147489	125365	0.K
ı	2.00		50	25.00	1	2.98	450	12150	188851	320536	O.K	2.98	18563	55227	115225	97942	O.K
	0.50		90	45.00		0.74	610	22750	245631	782109	O.K	0.74	111563	82721	448751	381438	0.K
175	1.00	5	60	30.00	262.50	1.49	490	14500	240923	418834	O.K	1.49	54600	81250	211177	179500	O.K
1/5	1.50)	60	30.00	202.50	2.21	490	14500	230521	418834	O.K	2.21	31913	70380	173467	147447	O.K
ı	2.00		55	27.50	1	2.92	470	13300	223708	368261	O.K	2.92	22500	65625	138271	117530	O.K
	0.50		95	47.50		0.74	660	26600	280210	893228	OK	0.74	127000	94488	505526	429697	O.K
200	1.00	5	65	32.50	300.00	1.48	540	17600	273926	500037	0.K	1.48	61875	91667	245116	208349	0.К
200	1.50	3	60	30.00	300.00	2.19	520	16275	264335	444477	0.K	2.19	37925	83108	186037	158131	0.K
ı	2.00		60	30.00	1	2.93	520	16275	252319	444477	O.K	2.93	24800	7/2000	160897	136/62	O.K.
	0.50		110	55.00		0.74	720	31775	351363	1128288	OK	0.74	157975	117518	654481	556309	OK
250	1.00	5	75	37.50	375.00	1.50	580	20400	344400	619704	OK	1.50	76250	114375	314251	267114	OK
230	1.50)	70	35.00	373.00	2.23	560	18975	332670	558446	0.K	2.23	46125	102896	240507	204431	0.K
	2.00		65	32.50		2.98	540	17600	322629	500037	O.K	2.98	31950	95070	193369	164364	O.K
	0.50		120	60.00		0.75	760	35475	273421	1299241	0.К	0.75	189875	142258	779343	662442	0.К
300	1.00	5	80	40.00	450.00	1.49	600	21875	267459	683811	O.K	1.49	94875	141136	368722	313413	0.К
300	1.50	3	75	37.50	+30.00	2.22	580	20400	254667	619704	0.К	2.22	57375	127500	282826	240402	O.K
	2.00		70	35.00	1	2.96	560	18975	243861	558446	O.K	2.96	39975	118269	228775	194459	O.K

TABLA 2.9 DISEÑO DE ACERO POR FLEXIÓN

						DISEÑO DE ACERC	POR FLEXI	ÓN					$\neg \neg$
P	6adm.	GI.	s	В	Mn	Ф*fc*b*d^2*q*(1-0.59q)	ql	q2			SE TOMA	As	As/m
(Ton)	(Kg/cm ²)	(kg/cm'2)	(cm)	(cm)	(Kg*cm)	(Kg * cm)	SE TOMA	EL MENOR	ρ	p min	EL p	(cm^2)	(cm ² /m)
ш			(-)	. ,		, ,					MAYOR	. ,	, ,
	0.50	0.73	142.50	320	2379639	145800000.00 *q*(1-0.59q)	1.6735	0.0165	0.0010		0.0022	31.68	9.90
50	1.00	1.48	95.00	225	1504167	62015625.00 *q*(1-0.59q)	1.6653	0.0247	0.0015	0.0022	0.0022	17.33	7.70
	1.50	2.19	75.00	185	1140203	50990625.00 *q*(1-0.59q)	1.6673	0.0227	0.0014		0.0022	14.25	7.70
ш	2.00	2.93	62.50	160	915527	44100000.00 *q*(1-0.59q)	1.6689	0.0211	0.0013		0.0022	12.32	7.70
ı	0.50	0.74	177.50	390	4544171	265443750.00 *q*(1-0.59q)	1.6727	0.0173	0.0010		0.0022	47.19	12.10
75	1.00	1.49	120.00	275	2945455	99000000.00 *q*(1-0.59q)	1.6596	0.0304	0.0018	0.0022	0.0022	24.20	8.80
	1.50	2.22	95.00	225	2256250	62015625.00 *q*(1-0.59q)	1.6527	0.0373	0.0022		0.0022	17.49	7.77
ш	2.00	2.96	80.00	195	1846154	53746875.00 *q*(1-0.59q)	1.6548	0.0352	0.0021		0.0022	15.02	7.70
ı	0.50	0.74	207.50	450	7176042	427781250.00 *q*(1-0.59q)	1.6730	0.0170	0.0010		0.0022	64.35	14.30
100	1.00	1.46	142.50	320	4759277	145800000.00 *q*(1-0.59q)	1.6566	0.0334	0.0020	0.0022	0.0022	31.68	9.90
	1.50	2.22	112.50	260	3650841	93600000.00 *q*(1-0.59q)	1.6499	0.0401	0.0024		0.0024	24.80	9.54
ш	2.00	2.96	95.00	225	3008333	81000000.00 *q*(1-0.59q)	1.6519	0.0381	0.0023		0.0023	20.41	9.07
ı	0.50	0.75	232.50	500	10135547	632812500.00 *q*(1-0.59q)	1.6738	0.0162	0.0010		0.0022	82.50	16.50
125	1.00	1.49	160.00	355	6760563	199687500.00 *q*(1-0.59q)	1.6553	0.0347	0.0021	0.0022	0.0022	39.05	11.00
	1.50	2.23	127.50	290	5255253	163125000.00 *q*(1-0.59q)	1.6570	0.0330	0.0020		0.0022	31.90	11.00
ш	2.00	3.00	107.50	250	4333594	113906250.00 *q*(1-0.59q)	1.6509	0.0391	0.0023		0.0023	26.16	10.46
ı	0.50	0.74	255.00	550	13300568	792000000.00 *q*(1-0.59q)	1.6730	0.0170	0.0010		0.0022	96.80	17.60
150	1.00	1.48	175.00	390	8834135	265443750.00 *q*(1-0.59q)	1.6559	0.0341	0.0020	0.0022	0.0022	47.19	12.10
ı	1.50	2.20	140.00	320 275	6890625	217800000.00 *q*(1-0.59q)	1.6577	0.0323	0.0019		0.0022	38.72	12.10
ш	2.00		117.50		5648011	154687500.00 *q*(1-0.59q)	1.6526	0.0374	0.0022		0.0022	30.65	11.15
ı	0.50	0.74	277.50	595	16986673	1084387500.00 *q*(1-0.59q)	1.6741	0.0159	0.0009		0.0022	117.81	19.80
175	1.00	1.49	190.00	420	11281250	340200000.00 *q*(1-0.59q)	1.6561	0.0339	0.0020	0.0022	0.0022	55.44	13.20
ı	1.50 2.00	2.21	152.50 130.00	345 300	8847486 7393750	279450000.00 *q*(1-0.59q)	1.6576	0.0324	0.0019		0.0022	45.54 36.47	13.20 12.16
\vdash			295.00			204187500.00 *q*(1-0.59q)	1.6529	0.0371		_			
ı	0.50 1.00	0.74 1.48	295.00	635 450	20557087 13668750	1289446875.00 *q*(1-0.59q)	1.6739 1.6573	0.0161	0.0010		0.0022	132.72 64.35	20.90 14.30
200	1.50	2.19	162.50	370	10705236	427781250.00 *q*(1-0.59q)	1.6534	0.0327	0.0019	0.0022	0.0022	48.84	13.20
ı	2.00	2.19	137.50	320	8862305	299700000.00 *q*(1-0.59q)	1.6550	0.0350	0.0022		0.0022	42.24	
⊢	0.50	0.74	332.50	710	29196193	259200000.00 *q*(1-0.59q)		0.0330	0.0021	_	0.0022	171.82	13.20 24.20
ı	1.00	1.50	227.50	500	19408594	1932975000.00 *q*(1-0.59q)	1.6747	0.0153	0.0009		0.0022	82.50	16.50
250	1.50	2.23	182.50	410	15231517	632812500.00 *q*(1-0.59q) 452025000.00 *q*(1-0.59q)	1.6555	0.0313	0.0019	0.0022	0.0022	63.14	15.40
	2.00	2.23	182.50	355	12089201	452025000.00 *q*(1-0.59q) 337471875.00 *q*(1-0.59q)	1.0555	0.0345	0.0021		0.0022	53.01	14.93
\vdash	0.50	0.75	365.00	775	38678226	2511000000.00 *q*(1-0.59q)	1.6744	0.0380	0.0023	\vdash	0.0023	204.60	26.40
	1.00	1.49	252.50	550	26082102	792000000.00 *q*(1-0.59q)	1.6563	0.0130	0.0009		0.0022	96.80	17.60
300	1.50	2.22	202.50	450	20503125	569531250.00 *q*(1-0.59q)	1.6531	0.0357	0.0020	0.0022	0.0022	74.25	16.50
	2.00	2.22	172.50	390	17167067	4299/5000.00 *q*(1-0.59q)	1.6490	0.0309	0.0022		0.0022	66.69	17.10
ш	2.00	2.50	172.30	390	1/10/00/	-t-0.590)	1.0490	0.0410	0.0024		0.0024	00.09	17.10

TABLA 2.10 ACERO COLOCADO

		ACERO E	N ZAPATA EN C	/SENTIDO	ACERO EN	PEDESTAL
P (Ton)	6sdm (Kg/cm*2)	ACERO INFERIOR	ACERO INTERMEDIO	ACERO SUPERIOR	ACERO LONGITUDINAL DE 2.20 m.	ACERO LIGADURA Φ=3/8° EN (m.)
	0.50	25Ф1/2**3.70m	13⊕3/8**3.40m	13Ф3/8**3.70m	4Φ1/2°+6Φ5/8°	46.05
50	1.00	15Ф1/2**2.60m		8Ф3/8**2.60m	4Φ1/2"+6Φ5/8"	49.12
	1.50	13Ф1/2**2.20m		7Ф3/8**2.20m	4Φ1/2"+6Φ5/8"	49.12
	2.00	11Ф1/2**2.00m		6Φ3/8**2.00m	4Φ1/2"+6Φ5/8"	49.12
	0.50	37Φ1/2**4.60m	19Ф3/8**4.00m	19Ф3/8°*4.60m	8Φ1/2*+6Φ5/8*	67.62
75	1.00	21Φ1/2**3.20m		11Ф3/8**3.20m	8Φ1/2*+6Φ5/8*	72.45
15	1.50	15Ф1/2**2.60m		8Φ3/8**2.60m	8Φ1/2*+6Φ5/8*	77.28
	2.00	13Ф1/2**2.30m		7Ф3/8**2.30m	8Φ1/2*+6Φ5/8*	77.28
	0.50	33Ф5/8**5.30m	17@3/8**4.70m	17/01/2**5.30m	14Φ5/8*	68.77
100	1.00	25Φ1/2**3.70m	13@3/8**3.40m	13Ф3/8**3.70m	14Φ5/8*	79.35
100	1.50	21Φ1/2**3.00m		11Ф3/8**3.00m	14Φ5/8*	79.35
	2.00	15Ф1/2**2.60m		8Ф3/8**2.60m	14Ф5/8*	79.35
	0.50	41Φ5/8**6.00m	21@3/8**5.40m	21Ф1/2**6.00m	14Φ5/8*	63.48
	1.00	31Ф1/2**4.00m	1603/8**3.70m	16Ф3/8**4.20m	14Φ5/8*	74.06
125	1.50	25Φ1/2**3.50m	13@3/8**3.00m	13Ф3/8**3.50m	14Φ5/8*	74.06
	2.00	21Φ1/2**3.00m	1100/8**2.70m	11Ф3/8**3.00m	14Φ5/8*	79.35
	0.50		-	-	-	
150	1.00	25Φ5/8**4.60m	13@3/8**4.10m	13Ф1/2**4.60m	18Φ5/8*	102.20
150	1.50	21Φ5/8**4.00m	1100/8**3.40m	11Ф1/2**4.00m	18Φ5/8*	102.20
	2.00	25Φ1/2**3.30m	13@3/8**2.90m	13Ф3/8**3.30m	18Φ5/8*	102.20
	0.50			-	-	
175	1.00	27Φ5/8**4.90m	1400/8**4.40m	14Φ1/2**4.90m	18Φ5/8*	94.90
175	1.50	23Φ5/8**4.00m	12Ф3/8**3.70m	12Ф1/2**4.00m	18Φ5/8*	94.90
	2.00	29Φ1/2**3.70m	15@3/8**3.20m	15Ф3/8**3.70m	18Φ5/8*	102.20
	0.50					
200	1.00	33Ф5/8**5.30m	1703/8**4.80m	17Ф1/2**5.30m	16Ф5/8*+4Ф3/4*	112.19
200	1.50	27Ф5/8**4.40m	1400/8**4.00m	14D1/2**4.40m	16Ф5/8*+4Ф3/4*	112.19
	2.00	21Φ5/8**4.00m	1103/8**3.50m	11Ф1/2**4.00m	16Ф5/8*+4Ф3/4*	112.19
	0.50					
050	1.00	-	-	-	-	
250	1.50	33Ф5/8**5.00m	1703/8**4.30m	17Ф1/2**5.00m	16Ф5/8*+4Ф3/4*	103.56
	2.00	27Φ5/8** 4.00m	1403/8**3.70m	14D1/2**4.50m	16Ф5/8*+4Ф3/4*	112.19
	0.50				-	
200	1.00		-	-	-	-
300	1.50	39Ф5/8**5.40m	20@3/8**4.70m	20Ф1/2**5.40m	16Ф5/8*+4Ф3/4*	103.56
	2.00	33Ф5/8**4.80m	17@3/8**4.20m	17Ф1/2**4.80m	16Ф5/8*+4Ф3/4*	103.56

TABLA 2.11 CÓMPUTOS DE ACERO PARA LA FUNDACIÓN

P (Ton) 50	6sdm (Kg/cm*2) 0.50 1.00 1.50 2.00 0.50 1.50 2.00	ACERO CABILLAS MENORES O IGUAL A LA No 3 (Kgf) 128.93 50.71 44.68 40.87 200.48 79.85 66.45 61.20	ACERO CABILLAS DE No 4 A No 7 (Kgf) 213.15 106.79 86.11 73.00 396.37 171.60 115.54 97.45	TOTAL ACERO (Kgf) 342.08 157.50 130.79 113.87 596.85 251.45 181.99
100	0.50 1.00 1.50 2.00	127.77 147.55 75.21 67.61	770.57 231.75 179.15 125.40	898.34 379.30 254.36 193.01
125	0.50 1.00 1.50 2.00	162.27 182.71 135.87 114.46	1062.92 294.38 221.81 173.10	1225.19 477.09 357.68 287.56
150	0.50 1.00 1.50 2.00	116.72 98.94 147.24	537.84 410.09 225.55	654.56 509.03 372.79
175	0.50 1.00 1.50 2.00	121.92 102.69 172.84	609.10 442.50 274.85	731.02 545.59 447.69
200	0.50 1.00 1.50 2.00	153.94 125.32 105.76	797.10 566.00 422.93	951.04 691.40 528.69
250	0.50 1.00 1.50 2.00	139.62 120.63	756.18 535.29	895.80 655.92
300	0.50 1.00 1.50 2.00	162.98 137.72	943.64 728.91	1106-62 866-63

TABLA 2.12 CÓMPUTOS MÉTRICOS DE LAS ZAPATAS

		conne	D.442.DE	D.142 DE	EXCAVACION	CARCATE			CON	CRETO		P. C.
P (Ton)	6adm (Kg/cm^2)	SOBRE - ANCHO (cm)	BASE DE PIEDRA (cm)	BASE DE PIEDRA (m²3)	PARA LA FUNDACIÓN (m^3)	CARGA Y BOTE (m/3)	COMPACTACION (m^3)	ENCOFRADO (m°2)	ZAPATA (m^3)	PEDESTAL (m°3)	TOTAL CONCRETO (mr'3)	RELACIÓN ACERO/CONC. (Kgf/m/3)
\Box	0.50			0.51	25.92	5.88	20.04	8.87	5.12	0.25	5.37	63.70
50	1.00	20	5	0.25	14.05	2.55	11.50	6.24	2.03	0.27	2.30	68.48
50	1.50	20	,	0.17	10.13	1.81	8.32	5.60	1.37	0.27	1.64	79.75
	2.00			0.13	8.00	1.42	6.58	5.20	1.02	0.27	1.29	88.27
	0.50			0.76	36.98	10.20	26.78	12.06	9.13	0.31	9.44	63.23
75	1.00	20	5	0.38	19.85	4.12	15.73	7.95	3.40	0.34	3.74	67.23
15	1.50	20		0.25	14.05	2.63	11.42	6.70	2.03	0.35	2.38	76.47
	2.00			0.19	11.05	2.06	8.99	6.22	1.52	0.35	1.87	84.84
	0.50			1.01	48.02	15.52	32.50	15.35	14.18	0.33	14.51	61.91
100	1.00	20	5	0.51	25.92	6.01	19.91	9.59	5.12	0.38	5.50	68.96
200	1.50	20		0.34	18.00	3.77	14.23	7.98	3.04	0.39	3.43	74.16
	2.00			0.25	14.05	2.92	11.13	7.35	2.28	0.39	2.67	72.29
	0.50			1.25	58.32	21.55	36.77	18.53	20.00	0.30	20.30	60.35
125	1.00	20	5	0.63	31.21	7.93	23.28	10.89	6.93	0.37	7.30	65.35
120	1.50	20		0.42	21.78	5.42	16.36	9.46	4.63	0.37	5.00	71.54
	2.00			0.31	16.82	3.82	13.00	8.19	3.13	0.38	3.51	81.93
	0.50			1.51	69.62	27.59	42.03	21.45	25.71	0.37	26.08	-
150	1.00	20	5	0.76	36.98	10.35	26.63	12.74	9.13	0.46	9.59	68.25
	1.50			0.51	25.92	7.11	18.81	11.06	6.14	0.46	6.60	77.13
	2.00			0.38	19.85	5.02	14.83	9.55	4.16	0.48	4.64	80.34
	0.50			1.77	80.65	35.74	44.91	25.11	33.63	0.34	33.97	-
175	1.00	20	5	0.88	42.32	12.79	29.53	14.17	11.47	0.44	11.91	61.38
	1.50		· 1	0.60	29.65	8.78	20.87	12.22	7.74	0.44	8.18	66.70
	2.00			0.45	23.12	6.31	16.81	10.58	5.40	0.46	5.86	76.40
	0.50			2.02	91.13	42.75	48.38	28.06	40.32	0.41	40.73	-
200	1.00	20	5	1.01	48.02	15.72	32.30	16.10	14.18	0.53	14.71	64.65
	1.50			0.68	33.62	10.14	23.48	13.26	8.90	0.56	9.46	73.09
$ldsymbol{ldsymbol{ldsymbol{\sqcup}}}$	2.00			0.51	25.92	7.73	18.19	11.96	6.66	0.56	7.22	73.23
	0.50			2.52	112.50	60.83	51.67	34.90	57.97	0.34	58.31	-
250	1.00	20	5	1.25	58.32	21.74	36.58	19.22	20.00	0.49	20.49	
	1.50			0.84	40.50	13.96	26.54	15.66	12.61	0.51	13.12	68.28
$ldsymbol{ldsymbol{eta}}$	2.00			0.63	31.21	9.98	21.23	13.44	8.82	0.53	9.35	70.15
	0.50			3.00	132.85	78.38	54.47	40.71	75.08	0.30	75.38	-
300	1.00	20	5	1.51	69.62	27.69	41.93	21.78	25.71	0.47	26.18	
	1.50			1.01	48.02	17.70	30.32	17.62	16.20	0.49	16.69	66.30
$ldsymbol{ldsymbol{eta}}$	2.00			0.76	36.98	12.68	24.30	15.06	11.41	0.51	11.92	72.70

TABLA 2.13 COSTOS PROMEDIOS PARA LAS ZAPATAS

P (Ton)	P 6adm (Ton) (Kg/cm ²) PED a (cm)		ŒNSIO DEL EDESTA		B (cm)	PREFERIB	2 o 3 LEMENTE	ALTURA DEL PEDESTAL	COSTO PROMEDIO S/I.V.A (Bs)	COSTO PROMEDIO C/I.V.A (Bs)
		4 2	х	p (cm)		Hreq.(cm)	H (cm)	(m)	, ,	, ,
	0.50	35	х	50	320	47.50	50	1.45	3982405.80	4579766.67
50	1.00	35	x	50	225	31.67	40	1.55	1937225.56	2227809.39
	1.50	35	×	50	185	25.00	40	1.55	1502362.70	1727717.11
	2.00	35	x	50	160	20.83	40	1.55	1257317.50	1445915.13
	0.50	35	x	65	390	59.17	60	1.35	6568908.30	7554244.55
75	1.00	35	x	65	275	41.38	45	1.50	2951925.26	3394714.05
	1.50	35	x	65	225	38.00	40	1.55	2075370.08	2386675.59
	2.00	35	x	65	195	32.00	40	1.55	1730388.86	1989947.18
	0.50	35	х	75	450	69.17	70	1.25	9592660.82	11031559.95
100	1.00	35	x	75	320	47.50	50	1.45	4194984.33	4824231.98
100	1.50	35	x	75	260	45.00	45	1.50	2820631.10	3243725.76
	2.00	35	x	75	225	41.30	45	1.50	2222941.99	2556383.29
	0.50	35	х	75	500	77.50	80	1.15	12895870.08	14830250.60
125	1.00	35	x	75	355	53.33	55	1.40	5289530.29	6082959.83
123	1.50	35	x	75	290	51.00	55	1.40	3834286.02	4409428.92
	2.00	35	x	75	250	46.74	50	1.45	2945207.35	3380988.40
	0.50	40	х	85	550	85.00	85	1.10	-	-
150	1.00	40	x	85	390	58.33	60	1.35	6852084.07	7879896.68
130	1.50	40	x	85	320	56.00	60	1.35	5048694.74	5805998.95
	2.00	40	x	85	275	51.09	55	1.40	3740014.66	4301016.86
	0.50	40	х	85	595	92.50	95	1.00	-	-
176	1.00	40	x	85	420	63.33	65	1.30	8008311.79	9209558.56
175	1.50	40	x	85	345	61.00	65	1.30	5786456.07	6654424.49
	2.00	40	x	85	300	56.52	60	1.35	4510219.77	5186752.73
	0.50	45	x	95	635	98.33	100	0.95	-	-
200	1.00	45	x	95	450	67.50	70	1.25	9888204.66	11371435.35
200	1.50	45	x	95	370	65.00	65	1.30	6873424.86	7904438.59
	2.00	45	x	95	320	62.50	65	1.30	5331522.17	6131250.50
	0.50	45	х	95	710	110.83	115	0.80	-	-
250	1.00	45	×	95	500	75.83	80	1.15	-	-
250	1.50	45	×	95	410	70.19	75	1.20	8977826.86	10324500.89
	2.00	45	×	95	355	67.39	70	1.25	6633730.31	7628789.85
	0.50	45	х	95	775	121.67	125	0.70		
200	1.00	45	×	95	550	84.17	85	1.10	-	-
300	1.50	45	×	95	450	77.88	80	1.15	11088249.71	12751487.16
	2.00	45	×	95	390	71.88	75	1.20	8400437.02	9660502.58

GRÁFICO 2.4 CURVAS CARGAS - COSTOS PROMEDIOS, PARA LA CONSTRUCCIÓN DE ZAPATAS AISLADAS PARA DEIERMINADOS VALORES DE σadm. ÁREA MEIROPOLITANA [MAYO 2005]

CAPITULO 3

Análisis, Diseño, Detallado y Presupuesto de Fundación con un Pilote y su Cabezal

CAPITULO 3

ANÁLISIS, DISEÑO, DETALLADO Y PRESUPUESTO DE FUNDACIÓN CON UN PILOTE Y SU CABEZAL

3.1 INFORMACIÓN DISPONIBLE

P = 150 Toneladas.

$$f_c = 250 \text{ Kg/Cm}^2$$

$$f_v = 4200 \text{ Kg/Cm}^2$$

$$L_{Pilote} = 10.00 \text{ m}.$$

$$R_{pilote} = 30 \text{ Kg/Cm}^2$$

Columna: 35 Cm. x 80 Cm.

Sobre ancho: 20 Cm.

$$\phi_{pilote} = ?$$
 $B_{cabezal} = ?$

3.2 PREDIMENSIONADO DEL PILOTE

3.2.1 Cálculo del diámetro

$$R_p \ge \frac{P}{A_p}$$
; $A_p = \frac{P}{R_p} = \frac{150 \text{ Ton. } x 1000 \text{ Kg/1 Ton.}}{30 \text{ Kg/Cm}^2} = 5000 \text{ Cm}^2$

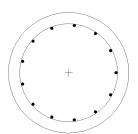
$$A_{p} = \frac{\pi}{4} \phi_{p}^{2}$$
 ; $\phi_{p} = \sqrt{\frac{4}{\pi} \cdot A_{p}} = 79.79 \text{ Cm.} \rightarrow 80 \text{ Cm.}$

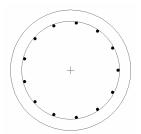
3.2.2 Cálculo del área del acero longitudinal

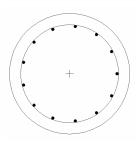
Para 0.50 %

$$A_s = 0.0050 \cdot 80^2 \cdot \frac{\pi}{4} \text{ Cm}^2 \rightarrow 25.13 \text{ Cm}^2$$

$$13 \phi 5/8$$
" @ 15 Cm. $\rightarrow 25.74 \text{ Cm}^2$


$$A_s = 0.0075 \cdot 80^2 \cdot \frac{\pi}{4} \text{ Cm}^2 \rightarrow 37.70 \text{ Cm}^2$$


$$13 \phi 3/4$$
" @ 15 Cm. $\rightarrow 37.05 \text{ Cm}^2$



$$A_s = 0.0100 \cdot 80^2 \cdot \frac{\pi}{4} \text{ Cm}^2 \rightarrow 50.27 \text{ Cm}^2$$

$$13 \phi 7/8$$
" @ 15 Cm. $\rightarrow 50.44 \text{ Cm}^2$

3.2.3 Acero helicoidal

φ 3/8["]

Radio del núcleo del pilote: 32.5 Cm.

Longitud de la circunferencia del núcleo = $2 \cdot \pi \cdot r \rightarrow 2 \times 3.1416 \times 32.5$ Cm.

Longitud de la circunferencia del núcleo = $204.20 \text{ Cm} \approx 2.05 \text{ m}$.

Hélice con un paso de 10 Cm. desde el extremo superior del pilote, hasta 2.00 m de profundidad. El armado consta de una vuelta plana (circunferencia) y 20 ramas helicoidales. La longitud de la circunferencia es aproximadamente igual a la longitud de una rama de la hélice, por lo tanto, el número de ramas es 21

Longitud de una rama paso 10 Cm =
$$\sqrt{4 \cdot \pi^2 \left(\frac{\phi_p - 15}{2}\right)^2 + (10)^2}$$

Longitud de una rama paso 10 Cm =
$$\sqrt{4 \cdot \pi^2 \left(\frac{80 - 15}{2}\right)^2 + 100} = 204.45 \text{ Cm.} \rightarrow 2.05 \text{ m.}$$

Hélice con un paso de 20 Cm. a partir de 2.00 m. de profundidad, hasta el extremo inferior del acero longitudinal, lo cual implica 37.5 ramas helicoidales y una vuelta plana al final. Por lo tanto, el número de ramas es 38.5

Longitud de una rama paso 20 Cm =
$$\sqrt{4 \cdot \pi^2 \left(\frac{\phi_p - 15}{2}\right)^2 + \left(20\right)^2}$$

Longitud de una rama paso 20 Cm =
$$\sqrt{4 \cdot \pi^2 \left(\frac{80 - 15}{2}\right)^2 + 400} = 205.18 \text{ Cm.} \rightarrow 2.05 \text{ m.}$$

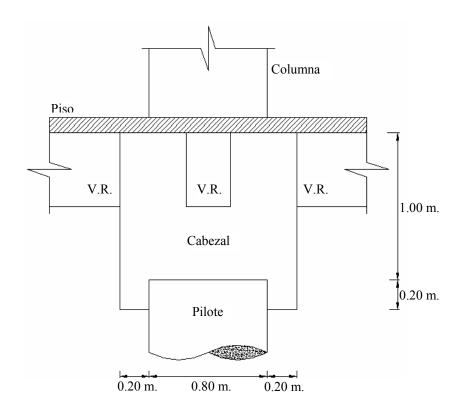
Longitud total del acero helicoidal requerida para el pilote.

$$(21+38.5)$$
 Ramas $\times 2.05 \frac{\text{m}}{\text{Ramas}} = 121.98 \text{ m.} \rightarrow 122 \text{ m.}$

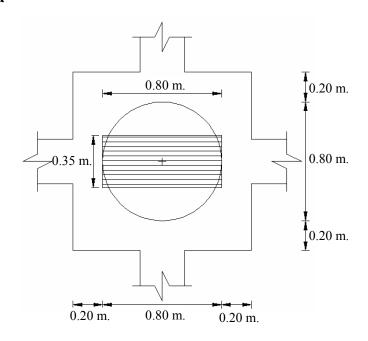
3.3 PREDIMENSIONADO DEL CABEZAL

3.3.1 Cálculo de la altura útil

Diámetro
$$(\phi_p) = 80 \text{ Cm}.$$

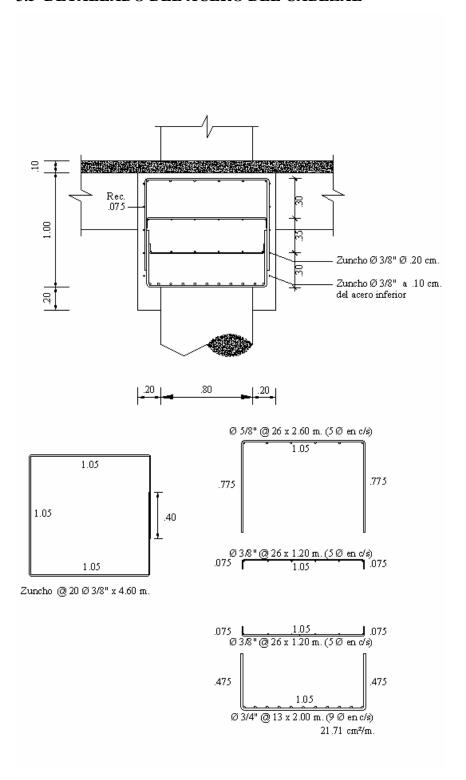

$$B = \, \varphi_{_{p}} + 2 \times 20 \, Cm \, \rightarrow \, 80 \, Cm. + 40 \, Cm.$$

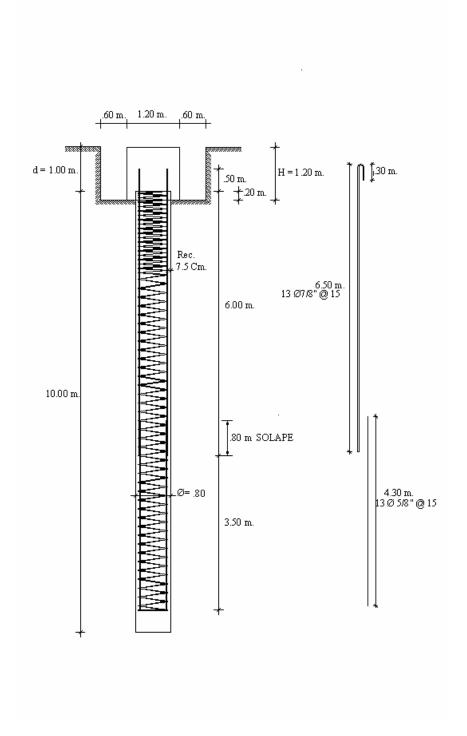
$$B = 120 \text{ Cm.} \rightarrow 1.20 \text{ m.}$$


$$d \geq \varphi_p \quad ; \quad d_{min} \, = 1.00 \, m. \label{eq:deltaphi}$$

$$\label{eq:posterior} \phi_p = 0.80 \ m. \ \rightarrow \ d \ = \ d_{\text{min}} = 1.00 \ m.$$

3.3.2 Vista lateral


3.3.3 Vista planta


3.4 CÁLCULO DEL ÁREA DE ACERO DEL CABEZAL

$$\begin{split} A_{sx} &= A_{sy} = \frac{F_x}{f_s} \\ f_s &= 0.5 \ f_y \to f_s \ = \ 0.5 \cdot 4200 \ Kg/Cm^2 = 2100 \ Kg/Cm^2 \\ F_x &= F_y = \frac{P \cdot \left(\varphi_p - \sqrt{a' \cdot b'} \right)}{8 \cdot d} \\ F_x &= F_y = \frac{150000 \ Kg \cdot \left(80 \ Cm - \sqrt{80 \ Cm \cdot 35 \ Cm} \right)}{8 \cdot 100 \ Cm} = 5078 \ Kg. \\ A_s &= \frac{F_x}{f_s} = \frac{5078 \ Kg}{2100 \ Kg/Cm^2} = 2.42 \ Cm^2 \to \text{\'Area de acero muy peque\~na}. \\ A_{s_{min}} &= \rho \cdot b \cdot d = 0.0022 \cdot 120 \ Cm \cdot 100 \ Cm \ \to \ 26.40 \ Cm^2 \ \to \ 22.00 \ Cm^2 / m. \ \therefore \end{split}$$

3.5 DETALLADO DEL ACERO DEL CABEZAL

3.6 DETALLADO DEL ACERO DEL PILOTE. SECCIÓN LONGITUDINAL

3.7 DETALLADO DEL ACERO DEL PILOTE. SECCION TRANSVERSAL

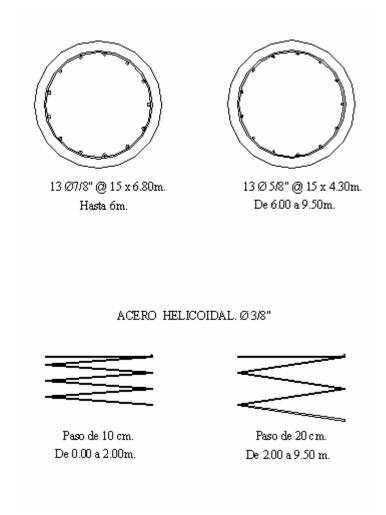


TABLA 3.1 CÓMPUTOS MÉTRICOS. De Excavación, Carga y Compatación.

		т —	NME	NSIONES E	N METROS	POSITIVAS		DDME	NSI/WES E	N METROS	NEGATIVAS		
Ν°	DESCRIPCIÓN	UNIDAD	Dine	Marchied E	ET PER I NO O	POSEIITAS	SUB-	Line	PASSONES E	A DESTRUCT	MOAIITAG	SUB-	TOTAL
-	Discitroion	CIALIL	LARGO	ANCHO	ALTO	DIAMETRO	TOTAL	LARGO	ANCHO	ALTO	DIAMETRO	TOTAL	IOIAL
1	E.311.3100.000												
	EXCAVACION EN TIERRA CON	m^3	2.40	2.40	1.20		6.91			1.20	0.80	0.60	6.31
	USO DE EQUIPO DE RETRO-												
	EXCAVADOR PARA ASIENTO												
	DE FUNDACIONES, ZANJAS, U												
	OTROS (INCLUYE REPERFILA-												
	MIENTO A MANO).												
_	F 313 314 444												
2	E.313.210.000		1.00	1.00			1.55					0.70	
	CARGA CON EQUIPO LIVIANO	m^3	1.20	1.20	1.20		1.73			1.20	0.80	0.60	6.65
	DE MATERIAL PROVENIENTE		11.00			0.80	5.53						igwdown
	DE LAS EXCAVACIONES PARA												
	ASIENTO DE FUNDACIONES,												
	ZANJAS, U OTROS.												igwdown
_	# *** *** ***												
3	E.317.000.000												
	COMPACTACION DE RELLENOS	m^3	2.40	2.40	1.20		6.91	1.20	1.20	1.20		1.73	5.19
	CON APISONADORES DE PERCU-												
	SION CORRESPONDIENTES A												igsquare
	LOS ASIENTOS DE FUNDACIO-												
	NES, ZANJAS, U OTROS.												
													\square
_		-											\vdash
\vdash													
		+											
		 											\vdash

FECHA: 23/05/2005

TABLA 3.2 CÓMPUTOS MÉTRICOS. De Perforación.

OBRA: CONSTRUCCIÓN DE FUNDACIÓN CON UN PILOTE.

	Ι	Г	DIME	NSIONES E	N METROS	POSITIVAS		DIME	NSIONES E	N METROS	NEGATIVAS		
N°	DESCRIPCIÓN	UNIDAD	LARGO	ANCHO	ALTO	DIAMETRO	SUB- TOTAL	LARGO	ANCHO	ALTO	DIAMETRO	SUB- TOTAL	TOTAL
4	E.321.220.080												
	PERFORACION SIN VACIAR,	m			11.00		11.00						11.00
	DE DIAMETRO 80 cm, CORRES-												
	PONDIENTE A PILOTES PERFO-												
	RADOS (CON EXTRACCION DE												
	TIERRA), SIN CAMISA DE PRO-												
	TECCION, CON USO DE LODOS												
	BENTONITICOS.												

TABLA 3.3 CÓMPUTOS MÉTRICOS. De acero menor No 3, para pilotes.

		NÚMERO	LONGITUD DE		LO	NGITUD TOT	AL EN METR	.OS	
Ν°	DESCRIPCIÓN	ELEMENTOS IGUALES	UN ELEMENTO	3/8"	1/2"	5/8"	3/4"	7/8"	1"
- 5	E.321.632.121								
	SUMINISTRO, TRANSPORTE,	1	122.00	122.00					
	PREPARACION Y COLOCACION								
	DE ACERO DE REFUERZO								
	Fy 4200 Kgf/Cm^2., UTILIZANDO								
	CABILLAS IGUAL O MENOR AL								
	N° 3, PARA PILOTES.								
	GO EN METROS LINEALES	122.00	0.00	0.00	0.00	0.00	0.00		
	DEN KILOGRAMOS POR METRO LINEAL	0.559	0.994	1.554	2.237	3.045	3.987		
PES(DEN KILOGRAMOS POR ELEMENTO	68.20	0.00	0.00	0.00	0.00	0.00		

TOTAL (Kg)=	68.20
-------------	-------

TABLA 3.4 CÓMPUTOS MÉTRICOS. De acero que van de No 4 a No 7, para pilotes.

		NÚMERO	LONGITUD DE		LO	NGITUD TO	AL EN MET	ROS	
Ν°	DESCRIPCIÓN	ELEMENTOS IGUALES	UN ELEMENTO	3/8"	1/2"	5/8"	3/4"	7/8"	1"
6	E.321.632.221								
	SUMINISTRO, TRANSPORTE,	13	6.80					88.40	
	PREPARACION Y COLOCACION	13	4.30			55.90			
	DE ACERO DE REFUERZO								
	Fy 4200 Kgf/Cm^2., UTILIZANDO								
	CABILLAS No.4 A No.7, PARA								
	PILOTE.								
	GO EN METROS LINEALES			0.00	0.00	55.90	0.00	88.40	0.00
	EN KILOGRAMOS POR METRO LINEAL		0.559	0.994	1.554	2.237	3.045	3.987	
PES(EN KILOGRAMOS POR ELEMENTO			0.00	0.00	86.87	0.00	269.18	0.00

TOTAL(Kg)=	356.05
------------	--------

FECHA: 23/05/2005

TABLA 3.5 CÓMPUTOS MÉTRICOS. De Poda, Concreto para pilote y cabezal, encofrado.

OBRA: CONSTRUCCIÓN DE FUNDACIÓN CON UN PILOTE.

		T	DIME	NSIONES E	N METROS	POSITIVAS	SUB-	DIME	INSIONES E	N METROS	NEGATIVAS	SUB-	TOTAL
Ν°	DESCRIPCIÓN	UNIDAD	LARGO	ANCHO	ALTO	DIAMETRO	TOTAL		ANCHO	ALTO	DIAMETRO	TOTAL	
7	E.321.640.000												
	PODA DE PILOTES DE CONCRE-	m^2				0.80	0.50						0.50
	TO, MEDIDO SEGÚN EL AREA												
	DE SUS SECCION.												
8	E. S/C												
	SUMINISTRO Y VACIADO	m^3			10.00	0.80	5.03						5.03
	CONCRETO PREMEZCLADO DE												
	Fc 210 Kgf/cm^2 A LOS 28 DIAS,												
	PARA PILOTE.												
9	E.322.000.125												
	CONCRETO DE Fc 250 Kgf/cm^2	m^3	1.20	1.20	1.20		1.73			0.20	0.80	0.10	1.63
	A LOS 28 DIAS, ACABADO												
	CORRIENTE PARA LA CONSTRU-												
	CCION DE CABEZALES DE PILO-												
	TES. INCLUYE EL TRANSPORTE												
	DEL CEMENTO Y AGREGADOS												
	HASTA 50 Km Y EXCLUYE EL												
	REFUERZO METALICO Y EL												
	ENCOFRADO.												
10	E.341.010.110												
	ENCOFRADO DE MADERA, TIPO	m^2	1.20		1.20		1.44						
	RECTO, ACABADO CORRIENTE,		1.20		1.20		1.44						5.76
	EN CABEZALES DE PILOTES.		1.20		1.20		1.44						
	BASES Y ESCALONES.		1.20		1.20		1.44						

TABLA 3.6 CÓMPUTOS MÉTRICO. De acero menor a No 3, para infraestructura.

		NÚMERO	LONGITUD DE	LONGITUD TOTAL EN METROS									
N.	DESCRIPCIÓN	ELEMENTOS IGUALES	UN ELEMENTO	3/8"	1/2"	5/8"	3/4"	7/8"	1"				
11	E.351.110.210												
	SUMINISTRO, TRANSPORTE,	20	1.20	24.00									
	PREPARACION Y COLOCACION	5	4.60	23.00									
	DE ACERO DE REFUERZO												
	Fy 4200 Kgf/Cm^2., UTILIZANDO												
	CABILLAS IGUAL O MENOR AL												
	N° 3, PARA INFRAESTRUCTURA.												
LAR	GO EN METROS LINEALES	47.00	0.00	0.00	0.00	0.00	0.00						
PES(DEN KILOGRAMOS POR METRO LINEAL	0.559	0.994	1.554	2.237	3.045	3.987						
PES(D EN KILOGRAMOS POR ELEMENTO	26.27	0.00	0.00	0.00	0.00	0.00						

101AL(Ng)- 20.27

TABLA 3.7 CÓMPUTOS MÉTRICO. De acero que van de No 4 a No 7, para infraestructura.

			LONGITUD DE		LO	NGITUD TO	AL EN METR	:08	
И°	DESCRIPCIÓN	ELEMENTOS IGUALES	UN ELEMENTO	3/8"	1/2"	5/8"	3/4"	7/8"	1"
12	E.351.120.210								
	SUMINISTRO, TRANSPORTE,	10	2.60			26.00			
	PREPARACION Y COLOCACION	18	2.00				36.00		
	DE ACERO DE REFUERZO								
	Fy 4200 Kgf/Cm^2., UTILIZANDO								
	CABILLAS No.4 A No.7, PARA								
	INFRAESTRUCTURA.								
<u> </u>									
	GO EN METROS LINEALES			0.00	0.00	26.00	36.00	0.00	0.00
	EN KILOGRAMOS POR METRO LINEAL			0.559	0.994	1.554	2.237	3.045	3.987
PESC	EN KILOGRAMOS POR ELEMENTO			0.00	0.00	40.40	80.53	0.00	0.00

TOTAL(Kg)=	120.94
------------	--------

TABLA 3.8 CÓMPUTOS MÉTRICOS. De Transporte.

OBRA: CONSTRUCCIÓN DE FUNDACIÓN CON UN PILOTE.

FECHA	- 23	MO5.	/2005

			DIME	NSIONES E	N METROS	POSITIVAS	SUB-	DIME	INSIONES E	N METROS	NEGATIVAS	SUB-	
Nº	DESCRIPCIÓN	UNIDAD	LARGO	ANCHO	ALTO	DIAMETRO	TOTAL	LARGO	ANCHO	ALTO	DIAMETRO	TOTAL	TOTAL
13	E.903.142.020												
	TRANSPORTE URBANO. EN	m^3	1.20	1.20	1.20		1.73			1.20	0.80	0.60	6.65
	CAMIONES, DE TIERRA,		11.00			0.80	5.53						
	Y ESCOMBROS MEDIDO EN ESTADO												
	SUELTO, A DISTANCIAS MAYORES												
	DE 19Km Y HASTA 20Km.												

3.8 PRESUPUESTO

DEMO *LuloWin - Control de Obras*

Página Nº: **1** Fecha: **24/05/2005**

PRESUPUESTO

Obra: CONSTRUCCION DE FUNDACION CON UN PILOTE DE DIAMETRO 80 Cm. LONG. 10 m. Y SU CABEZAL

Propietario: TRABAJO ESPECIAL DE GRADO

PARTIDA	DESCRIPCIÓN	UNIDAD	CANTIDAD	P.U.	TOTAL Bs.
1	E.311.310.000 EXCAVACION EN TIERRA CON USO DE EQUIPO RETROEXCAVADOR PARA ASIENTO DE FUNDACIONES, ZANJAS, ETC. INCLUYE REPERFILAMIENTO A MANO	МЗ	6,31	7.383,39	46.589,19
2	E.313.210.000 CARGA CON EQUIPO LIVIANO DE MATERIAL PROVENIENTE DE LAS EXCAVACIONES PARA ASIENTO DE FUNDACIONES, ZANJAS U OTROS.	МЗ	6,65	4.034,92	26.832,22
3	E.317.000.000 COMPACTACION DE RELLENOS CON APISONADORES DE PERCUSION, CORRESPONDIENTE A LOS ASIENTOS DE FUNDACIONES, ZANJAS, ETC	МЗ	5,19	23.385,87	121.372,67
4	E.321.220.080 PERFORACION SIN VACIAR, DE DIAMETRO 80 Cm., CORRESPONDIENTE A PILOTES PERFORADOS (CON EXTRACCION DE TIERRA), SIN CAMISA DE PROTECCION, CON USO DE LODOS BENTONITICOS.	М	11,00	86.133,10	947.464,10
5	E-321.632.121 SUMUNISTRO Y TRANSPORTE, PREPARACION Y COLOCACION DE ACERO DE REFUERZO FY 4200 Kg#CM2, UTILIZANDO CABILLA IGUAL O MENOR DEL Nº 3 PARA PILOTES.	KGF	68,20	3.562,92	242.991,14
6	E-321.632.221 SUMUNISTRO Y TRANSPORTE, PREPARACION Y COLOCACION DE ACERO DE REFUERZO Fy 4200 Kgf/CM2, UTILIZANDO CABILLA Nº 4 A Nº 7, PARA PILOTES.	KGF	356,05	3.418,12	1.217.021,63
7	E.321.640.000 PODA DE PILOTES DE CONCRETO, MEDIDO SEGUN EL AREA DE SU SECCION.	M2	0,50	220.946,56	110.473,28
8	E.S/C SUMINISTRO Y VACIADO CONCRETO PREMEZCLADO Fc 210 kgf/cm2 A LOS 28 DIAS, PARA PILOTES.	Мз	5,03	422.093,57	2.123.130,66
9	E.322.000.125 CONCRETO DE Fo 250 kgf/cm2 A LOS 28 DIAS, ACABADO CORRIENTE, PARA LA CONSTRUCCION DE CABEZALES DE PILOTES.	МЗ	1,63	280.692,94	457.529,49
10	E.341.010.111 ENCOFRADO DE MADERA TIPO RECTO, ACABADO CORRIENTE EN CABEZALES DE PILOTES, BASES Y ESCALONES.	M2	5,76	37.816,94	217.825,57
11	E.351.110.210 SUMINISTRO, PREPARACION Y COLOCACION DE ACERO DE REFUERZO Fy 4.200 Kgf/Cm2, UTILIZANDO CABILLAS IGUAL O MENOR DEL Nº 3 PARA INFRAESTRUCTURA.	KGF	26,27	3.999,01	105.053,99

DEMO *LuloWin - Control de Obras*

Página Nº: **2** Fecha: **24/05/2005**

PRESUPUESTO

Obra: CONSTRUCCION DE FUNDACION CON UN PILOTE DE DIAMETRO 80 Cm. LONG. 10 m. Y SU CABEZAL

Propietario: TRABAJO ESPECIAL DE GRADO

PARTIDA	DESCRIPCIÓN	UNIDAD	CANTIDAD	P.U.	TOTAL Bs.
12	E.351.120.210 SUMINISTRO, PREPARACION Y COLOCACION DE ACERO DE REFUERZO Fy 4.200 Kgf/Cm2, UTILIZANDO CABILLAS DE Nº 4 A Nº 7 PARA INFRAESTRUCTURA.	KGF	120,94	3.870,30	468.074,08
13	E.903.142.020 TRANSPORTE URBANO EN CAMIONES, DE TIERRA, AGREGADOS Y ESCOMBROS MEDIDO EN ESTADO SUELTO, A DISTANCIAS MAYORES A 19km Y HASTA 20km INCLUSIVE	МЗ x КМ	133,00	577,16	76.762,28
				Total Bs.:	6.161.120,30
			(1 TOT	5.00 %) I.V.A.: AL GENERAL:	924.168,05 7.085.288,35

GRÁFICO 3.1
PORCENTAJES DE COSTOS PROMEDIOS SEGÚN PARTIDAS, PARA LA CONSTRUCCIÓN DE FUNDACIÓN CON UN PILOTE Y SU CABEZAL, PARA CARGA DE 150 TONELADAS.
ÁREA METROPOLITANA [MAYO 2005]

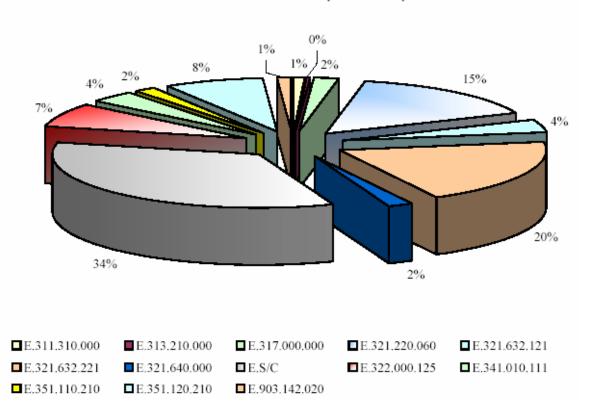
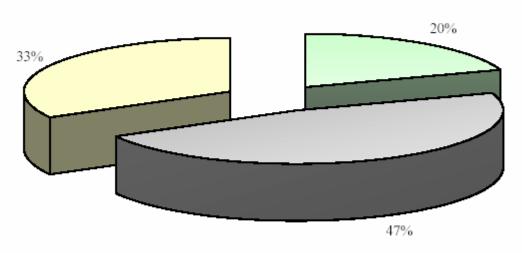



GRÁFICO 3.2
PORCENTAJES DE COSTOS SEGÚN ACTIVIDADES, PARA LA CONSTRUCCIÓN DE UNA FUNDACIÓN CON UN PILOTE Y SU CABEZAL, PARA CARGA DE 150 TON. ÁREA METROPOLITANA [MAYO 2005]

- PERFORACIÓN, EXCAVACIÓN, RELLENO, COMPACTACIÓN Y OTROS
- CONCRETO, ENCOFRADO Y PODA DE PILOTE
- ACERO DE REFUERZO

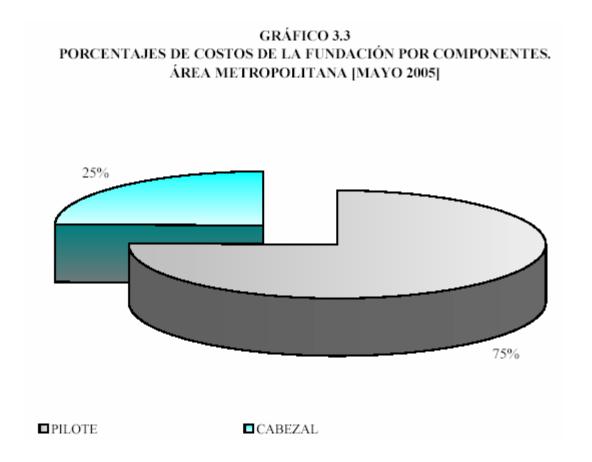
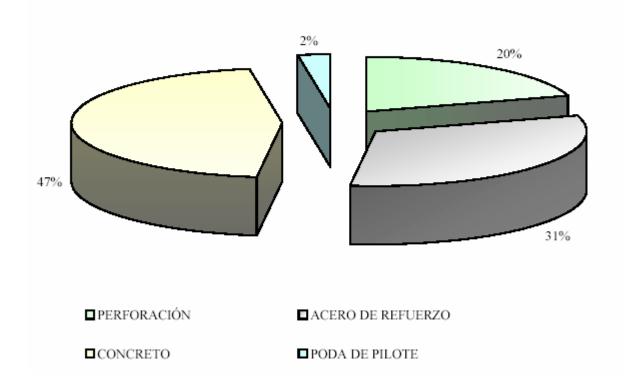
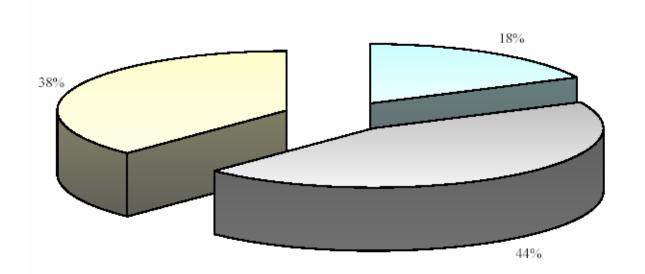




GRÁFICO 3.4 PORCENTAJES DE COSTOS ASOCIADOS A LA CONSTRUCCIÓN DEL PILOTE SEGÚN ACTIVIDADES. ÁREA METROPOLITANA [MAYO 2005]

GRÁFICA 3.5 PORCENTAJES DE COSTOS ASOCIADOS A LA CONSTRUCCIÓN DEL CABEZAL SEGÚN ACTIVIDADES. ÁREA METROPOLITANA [MAYO 2005]

- EXCAVACIÓN, RELLENO, COMPACTACIÓN Y OTROS.
- CONCRETO Y ENCOFRADO.
- ACERO DE REFUERZO.

GRÁFICA 3.6 COEFICIENTES DE INCIDENCIA POR OBRA.

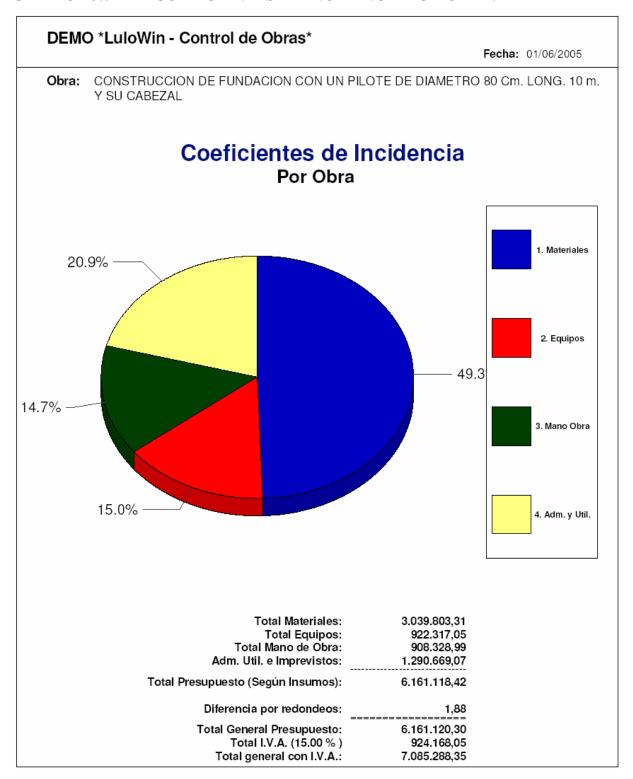


TABLA 3.9 PREDIMENSIONADO DE PILOTE

P (Ton)	L (m)	Rp (Kg/cm^2)	Ap.req. (cm^2)	D (cm)	D (cm)	Ap (cm^2)		DE REFUERZO OTE . As (cr			E REFUERZO RI N EL PILOTE .	EQUERIDO
	·/	(Ag/Cm 2)	(Cm 2)	(CIII)	(CIII)	(Cm 2)	0.50%*Ap	0.75%*Ap	1.00%*Ap	0.50%*Ap	0.75%*Ap	1.00%*Ap
50	10 15	30	1667	46.07	50	1963	9.82	14.73	19.63	80 1/2"@14	80 5/8"@14	70 3/4"@15
- 50	20 25	30	1007	10.01	,	1303	2.02	1	17.03	10.16 cm^2	15.84 cm^2	19.95 cm^2
75	10 15	30	2500	56.42	60	2827	14.14	21.21	28.27	50 1/2" + 505/8"@14	11/05/8"@13	100 3/4"@14
	20 25									16.25 cm^2	21.78 cm^2	28.50 cm^2
100	10 15	30	3333	65.15	70	3848	19.24	28.86	38.48	60 1/2" + 605/8" @ 14	80 5/8" + 403/4" @ 14	80 3/4" + 407/8" @ 14
100	20 25	30	3333	03.13	, .	3010	25-21	20.00	36.10	19.50 cm^2	27.24 cm^2	38.32 cm^2
125	10 15	30	4167	72.84	80	5027	25.13	37.70	50.27	130/5/8"@15	130 3/4"@15	13/0/7/8"@15
123	20 25	30	4107	12.04	80	3021	23.15	37.70	30.27	25.74 cm^2	37.05 cm^2	50.44 cm^2
150	10 15	30	5000	79.79	80	5027	25.13	37.70	50.27	130/5/8"@15	130/3/4"@15	130 7/8"@15
150	20 25	30	3000	15.15	80	3027	23.13	37.70	30.27	25.74 cm^2	37.05 cm^2	50.44 cm^2
175	10 15	30	5833	86.18	90	6362	31.81	47.71	63.62	160 5/8"@15	170 3/4"@14	160 7/8"@15
1/3	20 25	30	3633	30.10	30	0502	51.61	47.71	05.02	31.68 cm^2	48.45 cm^2	62.08 cm^2
200	10 15	30	6667	92.13	100	7854	39.27	58.90	78.54	12Ø 5/8"@15	9Ø 3/4" + 9Ø7/8" @ 15	90 7/8" + 901" @ 15
200	20 25	30	0007	92.13	100	7634	39.27	36.90	76.34	40.86 cm^2	60.57 cm^2	80.55 cm^2
250	10 15	30	8333	103.01	110	9503	47.52	71.27	95.03	10Ø 5/8" + 10Ø3/4" @ 15	15Ø 3/4" + 5Ø7/8" @ 15	190 1"@16
250	20 25	30	8333	105.01	110	9303	47.32	/1.2/	95.05	48.30 cm^2	72.45 cm^2	96.33 cm^2
200	10 15	20	10000	110.01	100	11216		04.00	112.10	200 3/4"@16	220 7/8"@15	220 1"@15
300	20 25	30	10000	112.84	120	11310	56.55	84.82	113.10	57.00 cm^2	85.36 cm^2	111.54 cm^2

TABLA 3.10 ACERO COLOCADO EN PILOTES DE 10 m.

SO 1/2"@14 Hasta fees					RO EN METROS	*	-		ACERO CABILLAS MENORES O IGUAL	ACERO CABILLAS DE No 4 A No 7 (Kg)	ACERO CABILLAS MAYORES A LA No
So 17	p	đ	0.75	%*Ap	TOTAL (m)	1.005	%*Ap	TOTAL (m)	A LA No 3 (Kg)		7 (Kg)
100 100	14	4	8Ø 5/8"@14	8Ø 1/2*@14		70 3.41@15	70/5/8"@15	1,0,0	38.26	153.26	-
100 6058° @ 14 90 508° + 40 508° + 40 508° + 40 508° + 6.90m	14	14	11@ 5/8"@13	11@1/2"@13		100 3/4"@14	50 3/4"@14		48.24	191.26	-
130 3/4"@15 130 5/8"@15 130 5/8"@15 130 5/8"@15 130 5/8"@15 130 5/8"@15 130 5/8"@15 130 5/8"@15 130 5/8"@15 130 5/8"&4.30m 130 5/8"&15 130 5/8"&15 130 5/8"&4.30m 130			8@ 5/8" + 4@3/4" @ 14 6.80 m.	4⊘ 5/8" + 4⊘3/4" @ 14 4.30 m.	4@5/8"*10.30m	8@ 3/4" + 4@7/8" @ 14 6.80 m.	4Ø 3/4" + 2Ø7/8" @ 14 4.30 m.	2@7/8"+6.80m 4@3/4"+10.30m	58.22	257.15	-
150 130 3/4"@15 130 5/8"@15 130 5/8"@15 130 5/8"@15 130 5/8"@15 130 5/8"@15 130 5/8"@15 130 5/8"@15 130 5/8"@15 130 5/8"@15 130 5/8"&4.30m 150 5/8"&4.	1:	15	13@3/4"@15	13@ 5/8"@15		13@ 7/8"@15	13Ø 5/8°@15 4.30 m.		68.20	356.05	-
175	1:	15	13@3/4"@15	13@ 5/8"@15		13@ 7/8"@15	13@ 5/8"@15		68.20	356.05	-
200 10.30 90.3/4" + 90.5/8" + 90.5/8" + 90.5/8" + 90.5/8" + 90.5/8" + 90.5/8" + 90.5/8" + 30 m 190.5/8"	1:	15	17@3/4"@14	17@ 5/8"@14		160 7/8"@15	8@ 7/8"@15		79.83	416.56	-
250 10@3/4" @ 15 15@ 3/4" + 10@ 5/8" + 5@7/8" + 6.90m 19@ 1"@16 19@ 3/4"@16 19@3/4" 4.30m 10@3/4" + 4.30m 10@3/4" + 10.30m 6.80 m 4.30 m	1:	15	9Ø 3/4" + 9Ø7/8" @ 15	9Ø 5/8" + 9Ø3/4" @ 15	9@5/8"*4.30m	9Ø 7/8" + 9Ø1" @ 15	9Ø 5/8" + 9Ø3/4" @ 15	9@1"+6.80m 9@5/8"+4.30m	89.80	333.06	244.00
20/0 3/4*@16			15@ 3/4" + 5@7/8"@ 15 6.80 m.	10@ 5/8" + 10@3/4"@ 15 4.30 m.	5@7/8"*6.80m 10@5/8"*4.30m	19© 1"@16 6.80 m.	19@ 3/4"@16 4.30 m.		99.78	182.76	515.12
300 22Ø 7/8°@15 22Ø 3/4°@15 22Ø3/4°*4.30m 22Ø3/4°*4.30m 11Ø1°*6.80m 11Ø1°*10.30m Nota:	10	16	22@7/8"@15	22@3/4"@15	22@7/8"+6.80m 22@3/4"+4.30m	22@ 1"@15	11@1"@15	11@1"*6.80m 11@1"*10.30m	111.44	-	749.95

TABLA 3.11 ACERO COLOCADO EN PILOTES DE 15 m.

P (Ton)		BARRA I	DE ACERO EN	METROS POR P	LOTE (PILOTE	EDE 15 m.)		ACERO CABILLAS MENORES O IGUAL	ACERO CABILLAS DE No 4 A No 7 (Kg)	ACERO CABILLAS MAYORES A LA No
	0.50%*Ap	0.759	%*Ap	TOTAL (m)	1.005	%*Ap	TOTAL (m)	A LA No 3 (Kg)	Dis No Trillo (de)	7 (Kg)
50	80 1/2°@14	Hasta 6m 8ø 5/8*@14	De 6 a 14.5m 8@ 1/2*@14	8@5/8"+6.80m	Hasta 6m 7@ 3/4"@15	De 6 a 14.5m 7@ 5/8*@15	7@3/4**6.80m	54.33	207.65	
Ш	16.00	6.90 m.	9.30 m.	8@1/2"+9.30m	6.80 m.	9.30 m.	7@5/8"+9.30m			
75	5@ 1/2" + 5@5/8" @ 14 16.00	Hasta 6m 11@ 5/8"@13	De 6 a 14.5m 11Ø 1/2'@13	11@5/8"*6.80m 11@1/2"*9.30m	Hasta 6m 10@3/4"@14	De 6 a 14.5m 5@ 3/4"@14	10@3/4"+6.80m 5@3/4"+9.30m	68.51	256.14	-
ш		6.80 m.	9.30 m.		6.80 m.	9.30 m.				
100	6@ 1/2" + 6@5/8" @ 14 16.00	Hasta 6m 8Ø 5/8" + 4Ø3/4" @ 14	De 6 a 14.5m 4Ø 5/8" + 4Ø3/4" @ 14	8@5/8"*6.80m 4@3/4"*6.80m 4@5/8"*9.30m	Hasta 6m 8Ø 3/4" + 4Ø7/8" @ 14	De 6 a 14.5m 4Ø 3/4" + 2Ø 7/8" @ 14	8@3/4"*6.80m 4@7/8"*6.80m 4@3/4"*9.30m	82.68	344.37	
$\vdash \vdash$		6.80 m.	9.30 m.	4@3/4**9.30m	6.80 m.	9.30 m.	2@7/8"+9.30m			
125	13Ø 5/8'@15 16.00	Hasta 6m 13@ 3/4"@15	De 6 a 14.5m 13@ 5/8"@15	13@3/4"*6.80m 13@5/8"*9.30m	Hasta 6m 13@ 7/8"@15	De 6 a 14.5m 13@ 5/8"@15	13@7/8"+6.80m 13@5/8"+9.30m	96.85	437.06	-
ш	10.00	6.80 m.	9.30 m.		6.80 m.	9.30 m.				
	13@ 5/8"@15	Hasta 6m	De 6 a 14.5m		Hasta 6m	De 6 a 14.5m				
150	16.00	13@3/4"@15	13@ 5/8"@15	13@3/4"*6.80m 13@5/8"*9.30m	13@ 7/8"@15	13@ 5/8"@15	13@7/8"+6.80m 13@5/8"+9.30m	96.85	457.06	-
ш		6.80 m.	9.30 m.		6.80 m.	9.30 m.				
175	16@5/8"@15	Hasta 6m 17@ 3/4"@14	De 6 a 14.5m 17Ø 5/8'@14	17@3/4"+6.80m 17@5/8"+9.30m	Hasta 6m 16@ 7/8"@15	De 6 a 14.5m 8@ 7/8"@15	16@7/8"+6.80m 8@7/8"+9.30m	113.37	557.84	
ıı	16.00	6.80 m.	9.30 m.		6.80 m.	9.30 m.				
200	12@5/8"@15	Hasta 6m 9@ 3/4" +	De 6 a 14.5m. 9@ 5/8" +	9@3/4"+6.80m 9@7/8"+6.80m	Hasta 6m 9@7/8" + 9@1"	De 6 a 14.5m 9@ 5/8" +	9@7/8"+6.80m 9@1"+6.80m	127.54	503.66	244.00
	16.00	9⊘7/8" @ 15 6.80 m.	9@3/4"@15 9.30 m.	9@5/8"+9.30m 9@3/4"+9.30m	@ 15 6.80 m.	9@3/4"@15 9.30 m.	9@5/8"+9.30m 9@3/4"+9.30m			
250	10@ 5/8" + 10@3/4" @ 15	Hasta 6m 15@ 3/4" +	De 6 a 14.5m 10@ 5/8" +	15@3/4"*6.80m 5@7/8"*6.80m	Hasta 6m 19@1*@16	De 6 a 14.5m 19@ 3/4"@16	19@1"*6.80m	141.71	395.28	515.12
	16.00	5Ø7/8" @ 15 6.80	10@3/4" @ 15 9.30	10@5/8**9.30m 10@3/4**9.30m	6.80 m.	9.30 m.	19(93/4"+9.30m.			
	20/03/4"/@16	Hasta 6m	De 6 a 14.5m		Hasta 6m	De 6 a 14.5m				
300	16.00	22@ 7/8"@15	22@3/4**9.30m		110/1"@15	22@1"*6.80m 11@1"*9.30m	158.25	-	1004.33	
ш		6.80 m.	9.30 m.	L	6.80 m.	9.30 m.				
	Nota :Las barr	as que tienen l	6 m. = 1 barra	de 12 m. + 1 bar	ra de 4 m.					

TABLA 3.12 ACERO COLOCADO EN PILOTES DE 20 m.

P (Ton)		BARRA	DE ACERO EN	METROS POR P		ACERO CABILLAS MENORES O IGUAL	ACERO CABILLAS DE No 4 A No 7 (Kg)	ACERO CABILLAS MAYORES A LA No		
	0.50%*Ap	0.755	%*Ap	TUTAL (m)	1.00%	%*Ap	TOTAL (m)	A LA No 3 (Kg)	DE NOTATIO (Kg)	7 (Kg)
50	8Ø 1/2*@14 21.00	Hasta 6m 8@ 5/8"@14 6.80 m.	De 6 a 19.5m 8Ø 1/2*@14 14.30 m.	8@5/8"*6.80m 8@1/2"*12.00m 8@1/2"*2.30m	Hasta 6m 7@ 3/4"@15 6.80 m.	De 6 a 19.5m 7@ 5/8*@15 14.30 m.	7@3/4"+6.80m 7@5/8"+12.00m 7@5/8"+2.30m	70.41	262.04	
75	5@ 1/2" + 5@5/8" @ 14 21.00	Hasta 6m. 11@ 5/8"@13 6.80 m.	De 6 a 19.5m 11@ 1/2"@13 14.30 m.	11@5/8"+6.80m 11@1/2"+12.00m 11@1/2"+2.30m	Hasta 6m 10@3/4"@14 6.80 m.	De 6 a 19.5m 5@ 3/4*@14 14.30 m.	10@3/4"+6.80m. 5@3/4"+12.00m. 5@3/4"+2.30m.	88.77	312.06	-
100	6Ø 1/2" + 6Ø5/8" @ 14 21.00	Hasta 6m 8Ø 5/8" + 4Ø3/4" @ 14 6.80 m.	De 6 a 19.5m 4Ø 5/8" + 4Ø3/4" @ 14 14.30 m.	8@5/8"*6.80m 4@3/4"*6.80m 4@5/8"*14.30m 4@3/4"*14.30m	Hasta 6m 8@ 3/4" + 4@7/8" @ 14 6.80 m.	De 6 a 19.5m 4@ 3/4" + 2@7/8" @ 14 14.30 m.	8@3/4"+6.80m 4@7/8"+6.80m 4@3/4"+14.30m 2@7/8"+14.30m	107.13	419.56	-
125	13@ 5/8"@15 21.00	Hasta 6m 13@ 3/4"@15 6.80 m.	De 6 a 19.5m 13Ø 5/8*@15 14.30 m.	13@3/4"+6.80m 13@5/8"*12.00m 13@5/8"*2.30m	Hasta 6m 13@ 7/8"@15 6.80 m.	De 6 a 19.5m 13Ø 5/8°@15 14.30 m.	13@7/8"*6.80m 13@5/8"*12.00m 13@5/8"*2.30m	125.50	558.07	-
150	13@ 5/8"@15 21.00	Hasta 6m 13@ 3/4"@15 6.80 m.	De 6 a 19.5m 13Ø 5/8*@15 14.30 m.	13@3/4"+6.80m 13@5/8"*12.00m 13@5/8"*2.30m	Hasta 6m 13@ 7/8"@15 6.80 m.	De 6 a 19.5m 13Ø 5/8°@15 14.30 m.	13@7/8"+6.80m 13@5/8"+12.00m 13@5/8"+2.30m	125.50	558.07	-
175	16@ 5/8"@15 21.00	Hasta 6m 17@ 3/4"@14 6.80 m.	De 6 a 19.5m 17@ 5/8*@14 14.30 m.	17@3/4"*6.80m 17@5/8"*12.00m 17@5/8"*2.30m	Hasta 6m 16@ 7/8"@15 6.80 m.	De 6 a 19.5m 8Ø 7/8*@15 14.30 m.	16@7/8"+6.80m. 8@7/8"+12.00m. 8@7/8"+2.30m.	146.91	679.64	-
200	12@ 5/8*@15 21.00	Hasta 6m 9@ 3/4" + 9@7/8" @ 15 6.80 m.	De 6 a 19.5m 90 5/8" + 903/4" @ 15 14.30 m.	9@3/4"*6.80m 9@7/8"*6.80m 9@5/8"*14.30m 9@3/4"*14.30m	Hasta 6m 90 7/8" + 901" @ 15 6.80 m.	De 6 a 19.5m 90 5/8" + 903/4" @ 15 14.30 m.	9@7/8"*6.80m 9@1"*6.80m 9@5/8"*14.30m 9@3/4"*14.30m	165.27	674.25	244.00
250	10@ 5/8" + 10@3/4" @ 15 21.00	Hasta 6m 15@ 3/4" + 5@7/8" @ 15 6.80 m.	De 6 a 19.5m 10@ 5/8" + 10@3/4"@ 15 14.30 m.	15@3/4"+6.80m 5@7/8"+6.80m 10@5/8"+14.30m 10@3/4"+14.30m	Hasta 6m 9© 1"@16 6.80 m.	De 6 a 19.5m 19@ 3/4"@16 14.30 m.	19@1"*6.80m 19@3/4"*12.00m 19@3/4"*2.30m	183.63	607.79	515.12
300	20@ 3/4*@16 21.00	Hasta 6m 22@ 7/8"@15 6.80 m.	De 6 a 19.5m 22@ 3/4"@15 14.30 m.	22@7/8"+6.80m 22@3/4"+12.00m 22@3/4"+2.30m	Hasta 6m 22Ø 1'@15 6.80 m.	De 6 a 19.5m 11@ 1"@15 14.30 m.	22@1"*6.80m 11@1"*12.00m 11@1"*2.30m	205.07 12 m. + 1barra d	-	1223.61

TABLA 3.13 ACERO COLOCADO EN PILOTES 25 m.

P (Ton)				METROS POR P	EDE 25 m.)		ACERO CABILLAS MENORES O IGUAL	ACERO CABILLAS DE No 4 A No 7 (Kg)	ACERO CABILLAS MAYORES A LA No	
	0.50%*Ap	0.75%	%*Ap	TOTAL (m)	1.005	%*Ap	TOTAL (m)	A LA No 3 (Kg)	Das tro visito i (ag)	7 (Kg)
50	8@ 1/2"@14 27.00	Hasta 6m 8ø 5/8"@14	De 6 a 24.5m 8Ø 1/21@14	8@5/8"*6.80m 8@1/2"*12.00m	Hasta 6m 7@ 3/4"@15	De 6 a 24.5m 7Ø 5/8"@15	7@3/4"*6.8m 7@5/8"*12m	86.48	325.13	-
		6.80 m.	20.10 m.	8@1/2"*8.10m	6.80 m.	20.10 m.	7@5/8"*8.1m			
75	5@ 1/2" + 5@5/8" @ 14 27.00	Hasta 6m 11Ø 5/8'@13	De 6 a 24.5m 11Ø 1/2"@13	11@5/8"*6.80m 11@1/2"*12.00m	Hasta 6m 10@3/4"@14	De 6 a 24.5m 5@ 3/4"@14	10@3/4"+6.80m 5@3/4"+12.00m	109.03	376.93	-
	22	6.80 m.	20.10 m.	11@1/2"*8.10m	6.80 m.	20.10 m.	5@3/4"+8.10m			
100	60 1/2" + 605/8" @ 14 27.00	Hasta 6m 8Ø 5/8" + 4Ø3/4" @ 14 6.80 m.	De 6 a 24.5m 4Ø 5/8" + 4Ø3/4" @ 14 20.10 m.	8@5/8"*6.80m 4@3/4"*6.80m 4@5/8"*20.10m 4@3/4"*20.10m	Hasta 6m 8Ø 3/4" + 4Ø7/8" @ 14 6.80 m.	De 6 a 24.5m 4@ 3/4" + 2@7/8" @ 14 20.10 m.	8@3/4"+6.80m 4@7/8"+6.80m 4@3/4"+20.10m 2@7/8"+20.10m	131.59	506.78	-
125	13Ø 5/8°@15 27.00	Hasta 6m 13@ 3/4"@15 6.80 m.	De 6 a 24.5m 13Ø 5/8"@15 20.10 m.	13@3/4"*6.80m 13@5/8"*12.00m 13@5/8"*8.10m	Hasta 6m 13@ 7/8"@15 6.80 m.	De 6 a 24.5m 13Ø 5/8"@15 20.10 m	13@7/8"+6.80m 13@5/8"+12.00m 13@5/8"+8.10m	154.14	675.24	-
\neg		Hasta 6m	De 6 a 24.5m	130000 011000	Hasta 6m.	De 6 a 24.5m	11000 011111			
150	13@ 5/8"@15 27.00	13@3/4'@15	130 5/8"@15	13@3/4"*6.80m 13@5/8"*12.00m	13@ 7/8"@15	130 5/8"@15	13@7/8"+6.80m 13@5/8"+12.00m	154.14	675.24	-
		6.80 m.	20.10 m.	13@5/8"*8.10m	6.80 m.	20.10 m.	13@5/8"*8.10m			
175	16@ 5/8"@15 27.00	Hasta 6m 17@ 3/4*@14	De 6 a 24.5m 17Ø 5/8"@14	17@3/4"*6.80m 17@5/8"*12.00m	Hasta 6m 16@ 7/8"@15	De 6 a 24.5m 8Ø 7/8"@15	16@7/8"+6.80m 8@7/8"+12.00m	180.45	820.93	-
		6.80 m.	20.10 m.	17Ø5/8"*8.10m	6.80 m.	20.10 m.	8@7/8"*8.10m			
200	12@ 5/8"@15 27.00	Hasta 6m 9@ 3/4" + 9@7/8" @ 15	De 6 a 24.5m 9Ø 5/8" + 9Ø3/4" @ 15	9@5/8"+20.10m	Hasta 6m 90 7/8" + 901" @ 15	De 6 a 24.5m 9Ø 5/8" + 9Ø3/4" @ 15	9@7/8"+6.80m 9@1"+6.80m 9@5/8"+20.10m	203.00	872.14	244.00
		6.80 m.	20.10 m.	9@3/4"*20.10m	6.80 m.	20.10 m.	9@3/4"+20.10m.			
250	10@ 5/8" + 10@3/4" @ 15	Hasta 6m 15@ 3/4" + 5@7/8" @ 15	De 6 a 24.5m 10@ 5/8" + 10@3/4" @ 15	15@3/4"*6.80m 5@7/8"*6.80m 10@5/8"*20.10m	Hasta 6m 9@1"@16	De 6 a 24.5m 19@ 3/4"@16	19@1"*6.80m 19@3/4"*12.00m	225.56	854.31	515.12
	27.00	6.80 m.	20.10 m.	10@3/4"*20.10m	6.80 m.	20.10 m.	19@3/4"+8.10m			
300	20@3/4"@16 27.00	Hasta 6m. 22@ 7/8*@15	De 6 a 24.5m 22Ø 3/4"@15	22@7/8"*6.80m 22@3/4"*12.00m	Hasta 6m 22@1"@15	De 6 a 24.5m	22@1"+6.80m 11@1"+12.00m	251.89	-	1477.98
		6.80 m.	20.10 m.	22@3/4"*8.10m	6.80 m.	20.10 m.	11@1"+8.10m	= 1 barra de 12 m	± I haves do " "	() m

TABLA 3.14 ACERO HELICOIDAL

P (Ton)	L (m)	Rp (Kg/cm*2)	Ap.req. (cm^2)	D (cm)	Ap (cm^2)		DE REFUERZO OTE . As (cr		ACERO HELICOIDAL (an)	ACERO HELICOIDAL EN METRO
	(m)	(Kg/Clif 2)	(Cm 2)		(Cm 2)	0.50%*Ap	0.75%*Ap	1.00%*Ap	Ø = 3/8"	Ø = 3/8"
50	10 15 20 25	30	1667	50	1963	9.82	14.73	19.63	115	68.45 97.20 125.95 154.70
75	10 15 20 25	30	2500	60	2827	14.14	21.21	28.27	145	86.30 122.55 158.80 195.05
100	10 15 20 25	30	3333	70	3848	19.24	28.86	38.48	175	104.15 147.90 191.65 235.40
125	10 15 20 25	30	4167	80	5027	25.13	37.70	50.27	205	122.00 173.25 224.50 275.75
150	10 15 20 25	30	5000	80	5027	25.13	37.70	50.27	205	122.00 173.25 224.50 275.75
175	10 15 20 25	30	5833	90	6362	31.81	47.71	63.62	240	142.80 202.80 262.80 322.80
200	10 15 20 25	30	6667	100	7854	39.27	58.90	78.54	270	160.65 228.15 295.65 363.15
250	10 15 20 25	30	8333	110	9503	47.52	71.27	95.03	300	178.50 253.50 328.50 403.50
300	10 15 20 25	30	10000	120	11310	56.55	84.82	113.10	335	199.35 283.10 366.85 450.60

TABLA 3.15 PREDIMENSIONADO Y CALCULO DE ACERO PARA CABEZALES

				ES DE LA	PREDIME		ENTO DE CA	BEZALES	()				
P (Ton)	D (cm)	a (cm)	LUM	DA b (cm)	A (cm)	SOBRE U B (cm)	N PILOTE H (cm)	d (cm)	fs (Kg/cm²2)	Fx = Fy (Kg)	As (cm'2)	Asmin (cm°2)	As/m (cm^2/m)
50	50	30	×	45	90	90	120	100	2100	829	0.39	19.80	22.00
75	60	30	ĸ	60	100	100	120	100	2100	1648	0.78	22.00	22.00
100	70	30	ĸ	70	110	110	120	100	2100	3022	1.44	24.20	22.00
125	80	30	x	70	120	120	120	100	2100	5340	2.54	26.40	22.00
150	80	35	ĸ	80	120	120	120	100	2100	5078	2.42	26.40	22.00
175	90	35	ĸ	80	130	130	120	100	2100	8112	3.86	28.60	22.00
200	100	40	×	90	140	140	120	100	2100	10000	4.76	30.80	22.00
250	110	40	ĸ	90	150	150	130	110	2100	14205	6.76	36.30	24.20
300	120	40	×	90	160	160	140	120	2100	18750	8.93	42.24	26.40

TABLA 3.16 ACERO COLOCADO EN LOS CABEZALES EN C/ SENTIDO

P (Ton)	ACERO INFERIOR	ACERO INTERMEDIO 1era CAPA	ACERO INTERMEDIO 2era CAPA	ACERO INTERMEDIO 3era CAPA	ACERO SUPERIOR	ACERO LIGADURA @ .20
50	7ф3/4"*2.00m	4φ3/8"*0.90m	4ф3/8"*0.90m	-	4ф5/8"*2.00m	5φ3/8"*3.50m
75	7ф3/4"*2.00m	4φ3/8"*1.00m	4ф3/8"*1.00m	-	4φ5/8"*2.50m	5φ3/8"*4.00m
100	9φ3/4"*2.00m	5φ3/8"*1.10m	5φ3/8"*1.10m	-	5φ5/8"*2.600m	5φ3/8"*4.20m
125	9φ3/4"*2.00m	5φ3/8"*1.20m	5φ3/8"*1.20m	-	5φ5/8"*2.60m	5ф3/8"*4.60m
150	9φ3/4"*2.00m	5φ3/8"*1.20m	5ф3/8"*1.20m	-	5φ5/8"*2.60m	5ф3/8"*4.60m
175	11¢3/4"*3.00m	6φ3/8"*1.30m	6ф3/8"*1.30m	-	6ф5/8"*3.00m	5ф3/8"*5.00m
200	11¢3/4"*2.50m	6φ3/8"*1.40m	6ф3/8"*1.40m	-	6φ5/8"*2.50m	5φ3/8"*5.50m
250	13\phi3/4"*3.00m	7φ3/8"*1.50m	7ф3/8"*1.50m	7ф3/8"*1.50m	7φ5/8"*3.00m	5ф3/8"*б.00m
300	13\$3/4"*3.00m	7φ3/8"*1.60m	7φ3/8"*1.60m	7φ3/8"*1.60m	7φ5/8"*3.50m	6φ3/8"*6.40m

TABLA 3.17 CÓMPUTOS DE ACERO

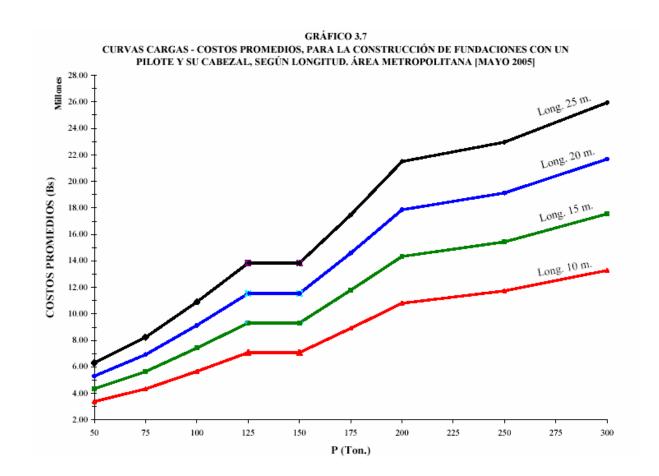

	PARA CABEZ	ZALES
P (Ton)	ACERO CABILLAS MENORES O IGUAL A LA No 3 (Kg)	ACERO CABILLAS DE No 4 A No 7 (Kg)
50	17.83	87.50
75	20.12	93.72
100	24.04	120.93
125	26.27	120.93
150	26.27	120.93
175	31.42	203.58
200	34.15	203.58
250	51.99	239.76
300	59.03	250.64

TABLA 3.18 CÓMPUTOS MÉTRICOS DE LAS FUNDACIONES CON PILOTES.

	SOBRE -	PERFO	RACION	CONC	RETO	PODA DE	EXCAVACION	CONCRETO	CARGA Y	COMPACTACIÓN	ENCOFRADO	
P (Ton)	ANCHO	PILOTE	PILOTE	PILOTE	PILOTE	PILOTE	CABEZAL	CABEZAL	BOTE	COMPACIACION	ENCOFRADO	
	(cm)	(m)	(m ³)	(m)	(m°3)	(m^2)	(m°3)	(m°3)	(m ³)	(m,3)	(m²2)	
	0.60	11.00	2.16	10	1.96				2.90			
50	0.60	16.00	3.14	15	2.95	0.20	5.06	0.93	3.88	4.32	4.32	
	0.60	21.00	4.12	20	3.93	0.20	3.00	0.55	4.86	4.52	4.52	
	0.60	26.00	5.11	25	4.91				5.84			
	0.60	11.00	3.11	10	2.83				3.97			
75	0.60	16.00	4.52	15	4.24	0.28	5.47	1.14	5.38	4.61	4.80	
	0.60	21.00	5.94	20	5.65	0.20	3.17	2.21	6.80	1.02	1.00	
	0.60	26.00	7.35	25	7.07				8.21			
	0.60	11.00	4.23	10	3.85				5.22			
100	0.60	16.00	6.16	15	5.77	0.38	5.89	1.38	7.15	4.90	5.28	
100	0.60	21.00	8.08	20	7.70	0.50	3.03	1.50	9.07	4.50	3.20	
	0.60	26.00	10.01	25	9.62				11.00			
	0.60	11.00	5.53	10	5.03				6.65			
125	0.60	16.00	8.04	15	7.54	0.50	6.31	1.63	9.17	5.19	5.76	
	0.60	21.00	10.56	20	10.05				11.68			
\Box	0.60	26.00	13.07	25	12.57				14.19			
	0.60	11.00	5.53	10	5.03	0.50			6.65			
150	0.60	16.00	8.04	15	7.54		6.31	1.63	9.17	5.19	5.76	
	0.60	21.00	10.56	20	10.05				11.68			
\vdash	0.60	26.00	13.07	25	12.57				14.19			
1	0.60	11.00	7.00	10	6.36	l			8.26			
175	0.60	16.00	10.18	15	9.54	0.64	6.74	1.90	11.44	5.48	6.24	
	0.60	21.00	13.36	20	12.72				14.62			
\vdash	0.60	26.00	16.54	25	15.90				17.81			
1	0.60	11.00	8.64	10	7.85				10.05			
200	0.60	16.00	12.57	15	11.78	0.79	7.17	2.19	13.98	5.76	6.72	
1	0.60	21.00	16.49	20	15.71				17.90			
\vdash	0.60	26.00	20.42	25	19.63				21.83			
1	0.60	11.10	10.55	10	9.50				12.24			
250	0.60	16.10	15.30	15	14.25	0.95	8.24	2.73	16.99	6.55	7.80	
	0.60	21.10	20.05	20	19.01				21.74			
\vdash	0.60	26.10	24.80	25	23.76				26.49			
	0.60	11.20	12.67	10	11.31				14.67			
300	0.60	16.20	18.32	15	16.96	1.13	9.39	3.36	20.32	7.39	8.96	
	0.60	21.20	23.98	20	22.62				25.98		l	
\Box	0.60	26.20	29.63	25	28.27				31.63			

TABLA 3.19 COSTOS PROMEDIOS PARA CABEZALES CON UN PILOTE.

	L	D	PREDIME	NSIONAMI	ENTO DE CA	ABEZALES	COSTO PROMEDIO	COSTO PROMEDIO										
P (Ton)	(m)	(cm)		SOBRE U	N PILOTE		S/IVA	S/IVA										
	()	()	A (cm)	B (cm)	H (cm)	d (cm)	(Bs)	(Bs)										
	10						2943888.55	3385471.84										
50	15	50	90	90	120	100	3780361.57	4347415.81										
50	20	50	,,,	,,,	120	100	4616834.59	5309359.78										
	25						5483045.25	6305502.04										
	10						3778428.44	4345192.71										
75	15	60	100	100	120	100	4915545.76	5652877.63										
15	20	- 00	100	100	120	100	6022036.73	6925342.24										
	25						7159119.87	8232987.85										
	10						4926527.52	5665506.64										
100	15	70	110	110	120	100	6460399.66	7429459.61										
100	20	/0	110	110	120	100	7953151.83	9146124.61										
	25						9487023.98	10910077.58										
	10						6160204.08	7084234.70										
125	15		120	120	120	100	8099043.94	9313900.53										
125	20	80	120	120	120	100	10037883.79	11543566.36										
	25						12031960.46	13836754.53										
	10	80					6160204.08	7084234.70										
150	15		80	80	80	80	80	120	120	120	100	8099043.94	9313900.53					
150	20							80	80	80	80	80	80	80	80	80	80	80
	25						12031960.46	13836754.53										
	10						7751734.79	8914495.01										
175	15	90	120	120	120	100	10255048.66	11793305.96										
1/3	20	90	130	130	120	100	12691777.54	14595544.18										
	25						15195125.59	17474394.43										
	10						9397670.91	10807321.55										
200	15	100	1.40	140	120	100	12465381.44	14335188.65										
200	20	100	140	140	120	100	15533057.78	17863016.45										
	25						18694048.80	21498156.12										
	10						10208977.15	11740323.72										
250	15		150	150	120	***	13423362.25	15436866.59										
250	20	110	150	150	130	110	16637713.16	19133370.14										
	25						19968314.34	22963561.49										
	10						11551552.21	13284285.04										
200	15	1.00				15261174.34	17550350.50											
300	20	120	160	160	140	120	18857238.15	21685823.87										
	25						22566827.93	25951852.12										

CAPITULO 4

Análisis, Diseño, Detallado y Presupuesto de Fundación con dos Pilotes y su Cabezal

CAPITULO 4

ANÁLISIS, DISEÑO, DETALLADO Y PRESUPUESTO DE FUNDACIÓN CON DOS PILOTES Y SU CABEZAL

4.1 INFORMACIÓN DISPONIBLE

P = 150 Toneladas.

$$f_c = 250 \text{ Kg/Cm}^2$$

$$f_v = 4200 \text{ Kg/Cm}^2$$

$$L_{Pilote} = 10.00 \text{ m}.$$

$$R_{pilote} = 30 \text{ Kg/Cm}^2$$

Columna: 35 Cm. x 80 Cm.

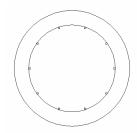
Sobre ancho: 20 Cm.

$$\phi_{pilote} = ?$$
 $A_{Cabezal} = ?$ $B_{Cabezal} = ?$

4.2 PREDIMENSIONADO DE UN PILOTE

4.2.1 Cálculo del diámetro

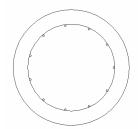
$$R_{p} \ge \frac{P/2}{A_{p}}$$
; $A_{p} = \frac{P/2}{R_{p}} = \frac{75000 \text{ Kg}}{30 \text{ Kg/Cm}^{2}} = 2500 \text{ Cm}^{2}$


$$A_p = \frac{\pi}{4} \phi_p^2$$
; $\phi_p = \sqrt{\frac{4}{\pi} \cdot A_p} = 56.42 \, \text{Cm.} \rightarrow 60 \, \text{Cm.}$

4.2.2 Cálculo del área del acero longitudinal

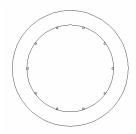
Para 0.50 %

$$A_s = 0.0050 \cdot 60^2 \cdot \frac{\pi}{4} \text{ Cm}^2 \rightarrow 14.14 \text{ Cm}^2$$


$$5 \phi 1/2$$
" + $5 \phi 5/8$ " @ 14 Cm. \rightarrow 16.25 Cm²

Para 0.75 %

$$A_s = 0.0075 \cdot 60^2 \cdot \frac{\pi}{4} \text{ Cm}^2 \rightarrow 21.21 \text{ Cm}^2$$


$$11 \phi 5/8$$
" @ 13 Cm. $\rightarrow 21.78 \text{ Cm}^2$

Para 1.00 %

$$A_s = 0.0100 \cdot 60^2 \cdot \frac{\pi}{4} \text{ Cm}^2 \rightarrow 28.27 \text{ Cm}^2$$

$$10 \phi 3/4$$
" @ 14 Cm. $\rightarrow 28.50 \text{ Cm}^2$

4.2.3 Acero helicoidal

Radio del núcleo del pilote: 22.5 Cm.

Longitud de la circunferencia del núcleo = $2 \cdot \pi \cdot r \rightarrow 2 \times 3.1416 \times 22.5$ Cm.

Longitud de la circunferencia del núcleo = $141.37 \text{ Cm} \rightarrow 1.45 \text{ m}$.

Hélice con un paso de 10 Cm. desde el extremo superior del pilote, hasta 2.00 m de profundidad. El armado consta de una vuelta plana (circunferencia) y 20 ramas helicoidales. La longitud de la circunferencia es aproximadamente igual a la longitud de una rama de la hélice, por lo tanto, el número de ramas es 21

Longitud de una rama paso 10 Cm =
$$\sqrt{4 \cdot \pi^2 \left(\frac{\phi_p - 15}{2}\right)^2 + (10)^2}$$

Longitud de una rama paso 10 Cm =
$$\sqrt{4 \cdot \pi^2 \left(\frac{60 - 15}{2}\right)^2 + 100} = 141.72 \text{ Cm.} \rightarrow 1.45 \text{ m.}$$

Hélice con un paso de 20 Cm. a partir de 2.00 m. de profundidad, hasta el extremo inferior del acero longitudinal, lo cual implica 37.5 ramas helicoidales y una vuelta plana al final. Por lo tanto, el número de ramas es 38.5

Longitud de una rama paso 20 Cm =
$$\sqrt{4 \cdot \pi^2 \left(\frac{\phi_p - 15}{2}\right)^2 + (20)^2}$$

Longitud de una rama paso 20 Cm =
$$\sqrt{4 \cdot \pi^2 \left(\frac{60 - 15}{2}\right)^2 + 400} = 142.78 \text{ Cm.} \rightarrow 1.45 \text{ m.}$$

OLongitud total del acero helicoidal requerida para el pilote.

$$(21+38.5)$$
 Ramas × 1.45 m/Ramas = 86.28 m. \rightarrow 86.30 m.

4.3 PREDIMENSIONADO DEL CABEZAL

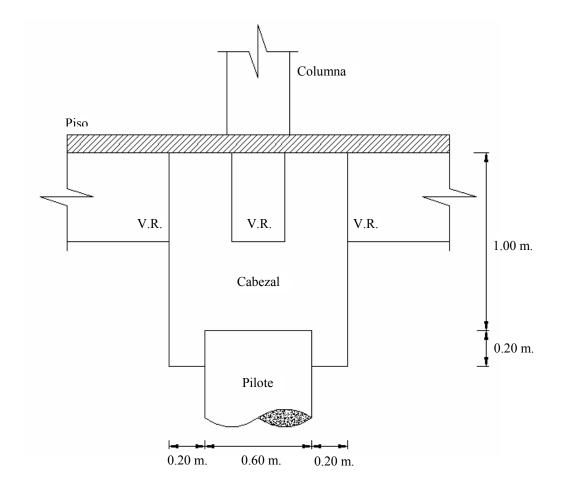
4.3.1 Cálculo de la altura útil

Diámetro
$$(\phi_p) = 60 \text{ Cm}.$$

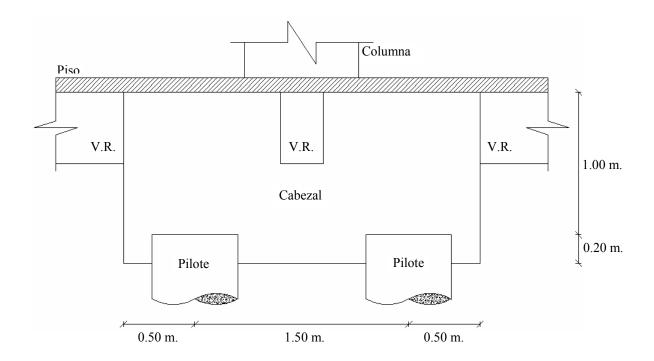
$$S = 2.5 \phi_p = 2 \times 60 \text{ Cm} \rightarrow S = 150 \text{ Cm}.$$

$$B = \phi_p + 2 \times 20 \text{ Cm} \rightarrow 80 \text{ Cm.} + 40 \text{ Cm.}$$

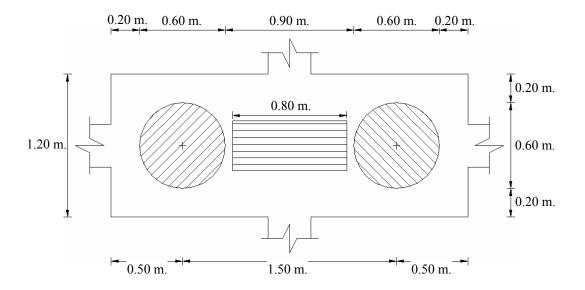
$$B = 120 \text{ Cm.} \rightarrow 1.20 \text{ m.}$$


$$A = \phi_p + S + 2 \times 20 \text{ Cm} \rightarrow A = 60 \text{ Cm.} + 150 \text{ Cm.} + 40 \text{ Cm}$$

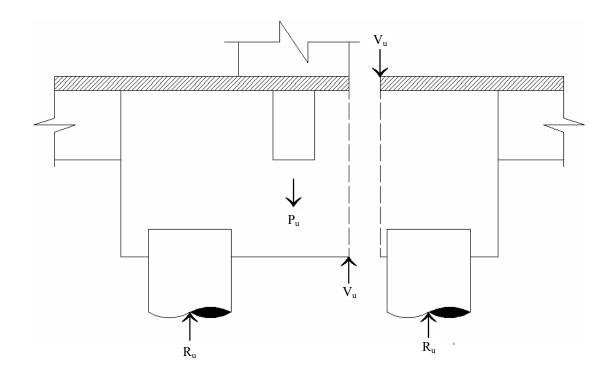
$$A = 250 \text{ Cm.} \rightarrow 2.50 \text{ m.}$$


$$d \ge \frac{S}{2}$$
; $d_{min} = 1.00 \, m$.

$$\frac{S_2}{2} = 0.75 \text{ m.} \rightarrow d = d_{min} = 1.00 \text{ m.}$$


4.3.2 Vista transversal

4.3.3 Vista longitudinal


4.3.4 Vista planta

4.4 CÁLCULO DEL ÁREA DE ACERO DEL CABEZAL

$$\begin{split} F_x &= \frac{P \left(2 \cdot S - a' \right)}{8 \cdot d} \\ F_x &= \frac{150000 \text{ Kg} \cdot \left(2 \cdot 150 \text{ Cm} - 80 \text{ Cm} \right)}{8 \cdot 100 \text{ Cm}} = 41250 \text{ Kg}. \\ f_s &= 0.5 \text{ f}_y \rightarrow \text{ f}_s = 0.5 \cdot 4200 \text{ Kg/Cm}^2 = 2100 \text{ Kg/Cm}^2 \\ A_s &= \frac{F_x}{f_s} = \frac{41250 \text{ Kg}}{2100 \text{ Kg/Cm}^2} = 19.64 \text{ Cm}^2 \rightarrow 19.64 \text{ Cm}^2/\text{m} \end{split}$$

4.5 CÁLCULO Y VERIFICACIÓN DEL CORTE ÚLTIMO

 $Peso \ del \ cabezal = \gamma_{concreto} \ x \ Volumen_{concreto}$

Peso del cabezal = $2400 \frac{\text{Kg}}{\text{m}^3} \cdot 2.50 \text{ m x } 1.00 \text{ m x } 1.20 \text{ m}$

Peso del cabezal = $7200 \, \mathrm{Kg} \, \rightarrow \, 7.20 \, \mathrm{Toneladas}$

$$P_u - R_u - V_u = 0$$

$$V_u = P_u - R_u$$

$$P_{\rm u} \ = \ 1.5 \cdot 150.00 \ Ton. + 1.4 \cdot 7.20 \ Ton.$$

$$P_u = 235.10 \, Ton.$$

$$R_u = \frac{P_u}{2} = 117.55 \text{ Ton.}$$

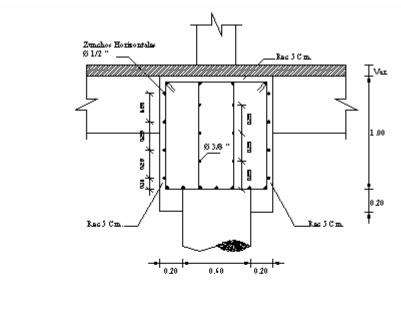
$$V_u = 235.10 \, Ton. -117.55 \, Ton.$$

$$V_u = 117.55 \text{ Ton.}$$

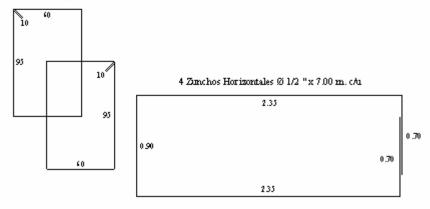
$$V_n = \phi (V_c + V_s)$$

$$V_u \leq V_n$$

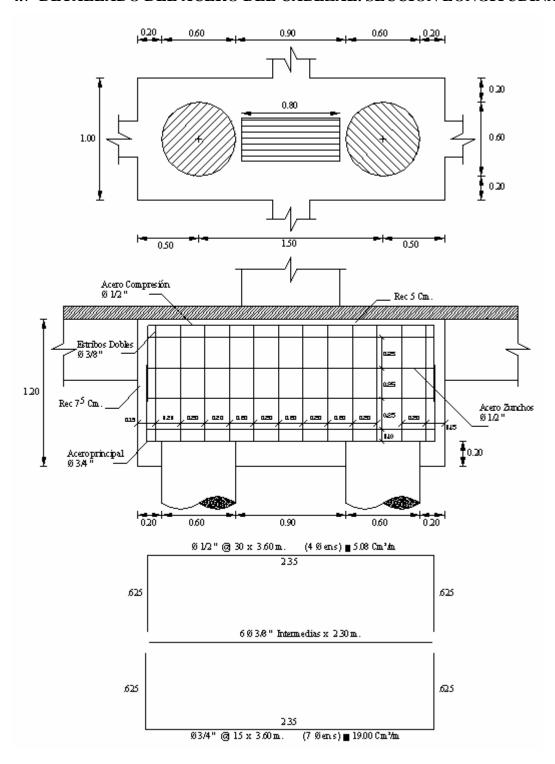
$$V_n \le 2.12 \sqrt{f_c} \cdot b \cdot d \rightarrow Para \frac{L_n}{d} < 2$$

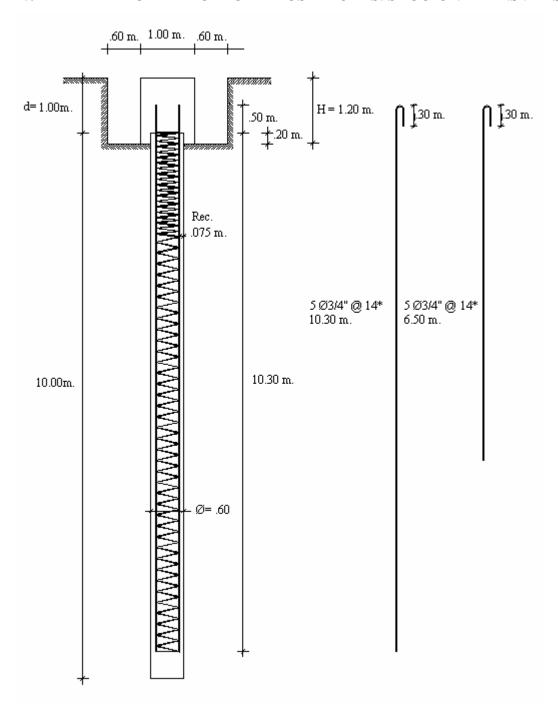

$$\frac{L_n}{d} = \frac{90}{100} = 0.90$$

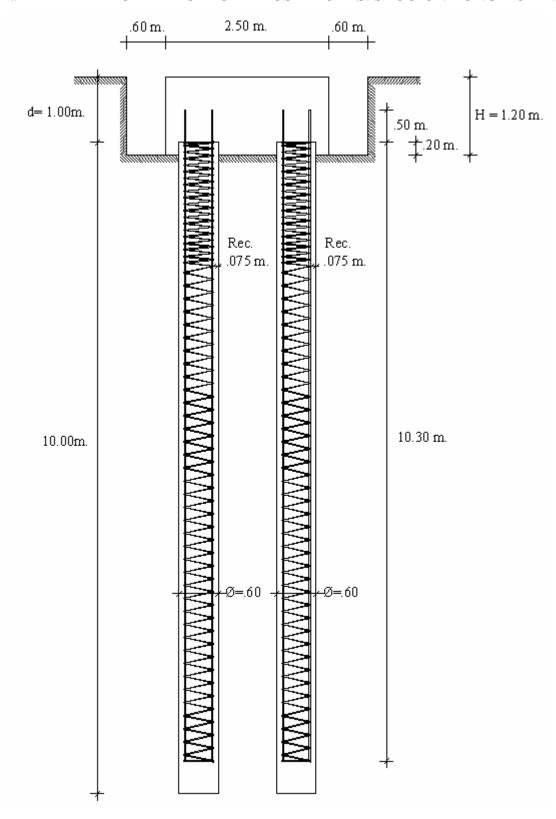
$$V_{_{n}} \; = \; 2.12 \, \sqrt{250} \, \cdot \! 100 \cdot \! 100 \; = \; 335201 \, Kg.$$

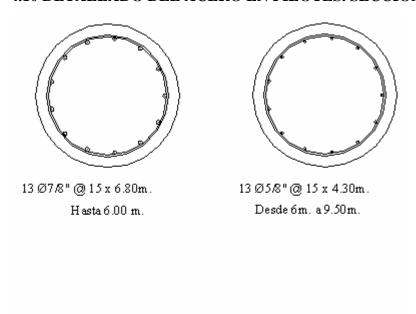

$$V_n = 335.20 \, Ton.$$

$$V_u \leq V_n \checkmark$$


4.6 DETALLADO DEL ACERO DEL CABEZAL. SECCIÓN TRANSVERSAL


Estribos Dobles Ø 3/8 @20 x3.30 m. c/u


4.7 DETALLADO DEL ACERO DEL CABEZAL. SECCIÓN LONGITUDINAL


4.8 DETALLADO DEL ACERO DE LOS PILOTES. SECCIÓN TRANSVERSAL

4.9 DETALLADO DEL ACERO DE LOS PILOTES. SECCIÓN LONGITUDINAL

4.10 DETALLADO DEL ACERO EN PILOTES. SECCIÓN TRANSVERSAL

ACERO HELICOIDAL. Ø38"

Paso de 10 cm. De 0.00 a 2.00 m. Paso de 20 cm. De 2.00 a 9.50 m.

FECHA: 28/05/2005

TABLA 4.1 CÓMPUTOS MÉTRICOS. De Excavación, Carga y Compatación.

OBRA: CONSTRUCCION DE FUNDACIÓN CON DOS PILOTE.

_			F11 67	A STATE OF THE REAL PROPERTY.		DOCUMENTS OF		TO 47			> TO 2 + THI ! + O		
N°	DESCRIPCIÓN	UNIDAD	DIME	NSIONES E	N METROS	POSITIVAS	SUB-	DIME	NSIONES E	N METROS	NEGATIVAS	SUB-	TOTAL
IN-	DESCRIPCION	UNIDAD	LARGO	ANCHO	ALTO	DIAMETRO	TOTAL	LARGO	ANCHO	ALTO	DIAMETRO	TOTAL	TOTAL
1	E.311.3100.000												
	EXCAVACION EN TIERRA CON	m^3	3.70	2.20	1.20		9.77			1.20	0.60	0.34	9.43
	USO DE EQUIPO DE RETRO-												
	EXCAVADOR PARA ASIENTO												
	DE FUNDACIONES, ZANJAS, U												
	OTROS (INCLUYE REPERFILA-												
	MIENTO A MANO).												
2	E.313.210.000												
	CARGA CON EQUIPO LIVIANO	m^3	2.50	1.00	1.20		3.00			1.20	0.60	0.34	8.88
	DE MATERIAL PROVENIENTE		11.00			0.60	3.11						
	DE LAS EXCAVACIONES PARA		11.00			0.60	3.11						
	ASIENTO DE FUNDACIONES,												
	ZANJAS, U OTROS.												
3	E.317.000.000												
	COMPACTACION DE RELLENOS	m^3	3.70	2.20	1.20		9.77	2.50	1.00	1.20		3.00	6.77
	CON APISONADORES DE PERCU-												
	SION CORRESPONDIENTES A												
	LOS ASIENTOS DE FUNDACIO-												
	NES, ZANJAS, U OTROS.												

FECHA: 28/05/2005

TABLA 4.2 CÓMPUTOS MÉTRICOS. De Perforación.

OBRA: CONSTRUCCION DE FUNDACIÓN CON DOS PILOTE.

			DIME	NSIONES E	N METROS	POSITIVAS	SUB-	DIME	INSIONES E	N METROS	NEGATIVAS	SUB-	
Ν°	DESCRIPCIÓN	UNIDAD					TOTAL					TOTAL	TOTAL
			LARGO	ANCHO	ALTO	DIAMETRO		LARGO	ANCHO	ALTO	DIAMETRO	10112	
4	E.321.220.080												
	PERFORACION SIN VACIAR,	m			11.00		11.00						22.00
	DE DIAMETRO 80 cm, CORRES-				11.00		11.00						
	PONDIENTE A PILOTES PERFO-												
	RADOS (CON EXTRACCION DE												
ᆫ	TIERRA), SIN CAMISA DE PRO-												
ᆫ	TECCION, CON USO DE LODOS												
$ldsymbol{ldsymbol{ldsymbol{eta}}}$	BENTONITICOS.												
ᆫ													
ᆫ													
ᆫ													
ㄴ													
╙													
⊢													
⊢													
⊢													
⊢													
⊢													
⊢													
⊢													\vdash
\vdash													-
⊢													
⊢													
⊢													
⊢													
$ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{L}}}}$													

TABLA 4.3 CÓMPUTOS MÉTRICOS. De acero menor No 3, para pilotes.

OBRA: CONSTRUCCION DE FUNDACIÓN CON DOS PILOTE.

		NÚMERO	LONGITUD DE		L0	NGITUD TOT	AL EN METR	.OS	
N°	DESCRIPCIÓN	ELEMINTOS IGUALES	UN ELEMENTO	3/8"	1/2"	5/8"	3/4"	7/8"	1"
5	E.321.632.121								
	SUMINISTRO, TRANSPORTE,	2	86.30	172.6					
	PREPARACION Y COLOCACION								
	DE ACERO DE REFUERZO								
	Fy 4200 Kgf/Cm^2., UTILIZANDO								
	CABILLAS IGUAL O MENOR AL								
	N° 3, PARA PILOTES.								
LAR	GO EN METROS LINEALES	172.60	0.00	0.00	0.00	0.00	0.00		
	EN KILOGRAMOS POR METRO LINEAL		0.559	0.994	1.554	2.237	3.045	3.987	
PES(EN KILOGRAMOS POR ELEMENTO			96.48	0.00	0.00	0.00	0.00	0.00

TOTAL (Kg) = 96.48

FECHA: 28/05/2005

TABLA 4.4 CÓMPUTOS MÉTRICOS. De acero que van de No 4 a No 7, para pilotes.

OBRA: CONSTRUCCION DE FUNDACIÓN CON DOS PILOTE.

П		NÚMERO	LONGITUD DE		LO	NGITUD TO	AL EN METR	OS	
N°	DESCRIPCIÓN	ELEMINTOS IGUALES	UN ELEMENTO	3/8"	1/2"	5/8"	3/4"	7/8"	1*
6	E.321.632.221								
	SUMINISTRO, TRANSPORTE,	10	6.80				68		
	PREPARACION Y COLOCACION	10	10.30				103		
	DE ACERO DE REFUERZO								
	Fy 4200 Kgf/Cm^2., UTILIZANDO								
	CABILLAS No.4 A No.7, PARA								
	PILOTE.								
LAR	GO EN METROS LINEALES	•		0.00	0.00	0.00	171.00	0.00	0.00
PESC	EN KILOGRAMOS POR METRO LINEAL		0.559	0.994	1.554	2.237	3.045	3.987	
PES(EN KILOGRAMOS POR ELEMENTO			0.00	0.00	0.00	382.53	0.00	0.00

TOTAL (Kg)=	382.53
-------------	--------

FECHA: 28/05/2005

FECHA: 28/05/2005

TABLA 4.5 CÓMPUTOS MÉTRICOS. De Poda, Concreto para pilote y cabezal, encofrado.

OBRA: CONSTRUCCION DE FUNDACIÓN CON DOS PILOTE.

		DIME	NSIONES E	N METROS	POSITIVAS	CITS.	DIME	INSIONES E	N METROS	NEGATIVAS	CTTP.	
DESCRIPCIÓN	UNIDAD	LARGO	ANCHO	ALTO	DIAMETRO	TOTAL	LARGO	ANCHO	ALTO	DIAMETRO	TOTAL	TOTAL
E.321.640.000												
	m^2											0.56
TO, MEDIDO SEGÚN EL AREA					0.60	0.28						
DE SUS SECCION.												
E. S/C												
SUMINISTRO Y VACIADO	m^3			10.00	0.60	2.83						5.66
CONCRETO PREMEZCLADO DE				10.00	0.60	2.83						
Fc 210 Kgf/cm^2 A LOS 28 DIAS,												
PARA PILOTE.												
E.322.000.125												
CONCRETO DE Fc 250 Kgf/cm^2	m^3	2.50	1.00	1.20		3.00			0.20	0.60	0.06	2.94
A LOS 28 DIAS, ACABADO												
CORRIENTE PARA LA CONSTRU-												
CCION DE CABEZALES DE PILO-												
TES. INCLUYE EL TRANSPORTE												
DEL CEMENTO Y AGREGADOS												
HASTA 50 Km Y EXCLUYE EL												
REFUERZO METALICO Y EL												
ENCOFRADO.												
E.341.010.110												
	m^2	2.50		1.20		3.00						$\vdash \vdash \vdash$
		2.50		1.20		3.00						8.40
			1.00	1.20		1.20						
BASES Y ESCALONES.			1.00	1.20		1.20						$\vdash \vdash$
	PODA DE PILOTES DE CONCRE- TO, MEDIDO SEGUN EL AREA DE SUS SECCION. E. S/C SUMINISTRO Y VACIADO CONCRETO PREMEZCLADO DE Fc 210 Kgf/cm^2 A LOS 28 DIAS, PARA PILOTE. E.322.000.125 CONCRETO DE Fc 250 Kgf/cm^2 A LOS 28 DIAS, ACABADO CORRIENTE PARA LA CONSTRU- CCION DE CABEZALES DE PILO- TES. INCLUYE EL TRANSPORTE DEL CEMENTO Y AGREGADOS HASTA 50 Km Y EXCLUYE EL REFUERZO METALICO Y EL ENCOFRADO. E.341.010.110 ENCOFRADO DE MADERA, TIPO RECTO, ACABADO CORRIENTE, EN CABEZALES DE PILOTES,	E.321.640.000 PODA DE PILOTES DE CONCRE- TO, MEDIDO SEGUN EL AREA DE SUS SECCION. E. S/C SUMINISTRO Y VACIADO	DESCRIPCIÓN UNIDAD LARGO E.321.640.000 PODA DE PILOTES DE CONCRE- TO, MEDIDO SEGUN EL AREA DE SUS SECCION. E. S/C SUMINISTRO Y VACIADO CONCRETO PREMEZCLADO DE FC 210 Kgf/cm^2 A LOS 28 DIAS, PARA PILOTE. E.322.000.125 CONCRETO DE FC 250 Kgf/cm^2 m^3 2.50 A LOS 28 DIAS, ACABADO CORRIENTE PARA LA CONSTRU- CCION DE CABEZALES DE PILO- TES. INCLUYE EL TRANSPORTE DEL CEMENTO Y AGREGADOS HASTA 50 Km Y EXCLUYE EL REFUERZO METALICO Y EL ENCOFRADO. E.341.010.110 ENCOFRADO DE MADERA, TIPO RECTO, ACABADO CORRIENTE, EN CABEZALES DE PILOTES, EN CABEZALES DE PILOTES,	DESCRIPCIÓN LARGO ANCHO E.321.640.000 PODA DE PILOTES DE CONCRE- TO, MEDIDO SEGUN EL AREA DE SUS SECCION. E. S/C SUMINISTRO Y VACIADO m^3 CONCRETO PREMEZCLADO DE FC 210 Kgf/cm^2 A LOS 28 DIAS, PARA PILOTE. E.322.000.125 CONCRETO DE Fc 250 Kgf/cm^2 m^3 2.50 1.00 A LOS 28 DIAS, ACABADO CORRIENTE PARA LA CONSTRU- CCION DE CABEZALES DE PILO- TES. INCLUYE EL TRANSPORTE DEL CEMENTO Y AGREGADOS HASTA 50 Km Y EXCLUYE EL REFUERZO METALICO Y EL ENCOFRADO. E.341.010.110 ENCOFRADO DE MADERA, TIPO m^2 2.50 RECTO, ACABADO CORRIENTE, EN CABEZALES DE PILOTES, 1.00	DESCRIPCIÓN UNIDAD LARGO ANCHO ALTO	LARGO ANCHO ALTO DIAMETRO	DESCRIPCIÓN UNIDAD LARGO ANCHO ALTO DIAMETRO	DESCRIPCIÓN UNIDAD LARGO ANCHO ALTO DIAMETRO TOTAL LARGO	DESCRIPCIÓN UNIDAD LARGO ANCHO ALTO DIAMETRO LARGO ANCHO ANCHO ANCHO ANCHO LARGO ANCHO ANC	DESCRIPCIÓN UNIDAD LARGO ANCHO ALTO DIAMETRO LARGO ANCHO ALTO DIAMETRO LARGO ANCHO ALTO ANCHO ALTO DIAMETRO DIAMETRO	DESCRIPCIÓN UNIDAD LARGO ANCHO ALTO DIAMETRO TOTAL LARGO ANCHO ALTO DIAMETRO	DESCRIPCIÓN UNIDAD LARGO ANCHO ALTO DIAMETRO TOTAL LARGO ANCHO ALTO DIAMETRO A

TABLA 4.6 CÓMPUTOS MÉTRICO. De acero menor a No 3, para infraestructura.

OBRA: CONSTRUCCION DE FUNDACIÓN CON DOS PILOTE.

		NÚMERO	LONGITUD DE		LO	NGITUD TOT	AL EN METR	.OS	
Ν°	DESCRIPCIÓN	ELEMINTOS IGUALES	UN ELEMENTO	3/8"	1/2"	5/8"	3/4"	7/8"	1"
11	E.351.110.210		1						
	SUMINISTRO, TRANSPORTE,	6	2.30	13.80					
	PREPARACION Y COLOCACION	24	3.30	79.20					
	DE ACERO DE REFUERZO								
	Fy 4200 Kgf/Cm^2., UTILIZANDO								
	CABILLAS IGUAL O MENOR AL								
	N° 3, PARA INFRAESTRUCTURA.								
AR	GO EN METROS LINEALES	·		93.00	0.00	0.00	0.00	0.00	0.00
ES(EN KILOGRAMOS POR METRO LINEAL	·	0.559	0.994	1.554	2.237	3.045	3.987	
ES(EN KILOGRAMOS POR ELEMENTO			51.99	0.00	0.00	0.00	0.00	0.00

TOTAL (Kg)=	51.99

FECHA: 28/05/2005

TABLA 4.7 CÓMPUTOS MÉTRICO. De acero que van de No 4 a No 7, para infraestructura.

OBRA: CONSTRUCCION DE FUNDACIÓN CON DOS PILOTE.

		NÚMERO	LONGITUD DE		LO	NGITUD TO	AL EN METR	.OS	
N°	DESCRIPCIÓN	ELEMINTOS IGUALES	UN ELEMENTO	3/8"	1/2"	5/8"	3/4"	7/8"	1"
12	E.351.120.210								
	SUMINISTRO, TRANSPORTE,	4	3.60		14.40				
	PREPARACION Y COLOCACION	4	7.00		28.00				
	DE ACERO DE REFUERZO	7	3.60				25.20		
	Fy 4200 Kgf/Cm^2., UTILIZANDO								
	CABILLAS No.4 A No.7, PARA								
	INFRAESTRUCTURA.								
				·					
LAR	GO EN METROS LINEALES			0.00	42.40	0.00	25.20	0.00	0.00
PES(EN KILOGRAMOS POR METRO LINEAL			0.559	0.994	1.554	2.237	3.045	3.987
PES(EN KILOGRAMOS POR ELEMENTO			0.00	42.15	0.00	56.37	0.00	0.00

TOTAL (Kg) = 98.52	1
--------------------	---

FECHA: 28/05/2005

FECHA: 28/05/2005

TABLA 4.8 CÓMPUTOS MÉTRICOS. De Transporte.

OBRA: CONSTRUCCION DE FUNDACIÓN CON DOS PILOTE.

			DIME	DIMENSIONES EN METROS POSITIVAS			SUB-	DIMENSIONES EN METROS NEGATIVAS				czup	
Ν°	DESCRIPCIÓN	UNIDAD	LARGO	ANCHO	ALTO	DIAMETRO	TOTAL	LARGO	ANCHO	ALTO	DIAMETRO	SUB- TOTAL	TOTAL
13	E.903.142.020												
	TRANSPORTE URBANO. EN	m^3	2.50	1.00	1.20		3.00			1.20	0.60	0.34	8.88
	CAMIONES, DE TIERRA,		11.00			0.60	3.11						
	Y ESCOMBROS MEDIDO EN		11.00			0.60	3.11						
	SUELTO, A DISTANCIAS MAYORES												
	DE 19Km Y HASTA 20Km.												

4.11 PRESUPUESTO

DEMO *LuloWin - Control de Obras*

Página Nº: **1** Fecha: **24/05/2005**

PRESUPUESTO

Obra: CONSTRUCCION DE FUNDACION CON DOS PILOTES DE DIAMETRO 60 Cm. LONG. 10 m. Y SU CABEZAL

Propietario: TRABAJO ESPECIAL DE GRADO

PARTIDA	DESCRIPCIÓN	UNIDAD	CANTIDAD	P.U.	TOTAL Bs.
1	E.311.310.000 EXCAVACION EN TIERRA CON USO DE EQUIPO RETROEXCAVADOR PARA ASIENTO DE FUNDACIONES, ZANJAS, ETC. INCLUYE REPERFILAMIENTO A MANO	МЗ	9,43	7.383,39	69.625,37
2	E.313.210.000 CARGA CON EQUIPO LIVIANO DE MATERIAL PROVENIENTE DE LAS EXCAVACIONES PARA ASIENTO DE FUNDACIONES, ZANJAS U OTROS.	МЗ	8,88	4.034,92	35.830,09
3	E.317.000.000 COMPACTACION DE RELLENOS CON APISONADORES DE PERCUSION, CORRESPONDIENTE A LOS ASIENTOS DE FUNDACIONES, ZANJAS, ETC	МЗ	6,77	23.385,87	158.322,34
4	E.321.220.060 PERFORACION SIN VACIAR, DE DIAMETRO 60 Cm., CORRESPONDIENTE A PILOTES PERFORADOS (CON EXTRACCION DE TIERRA), SIN CAMISA DE PROTECCION, CON USO DE LODOS BENTONITICOS.	М	22,00	49.286,17	1.084.295,74
5	E-321.632.121 SUMUNISTRO Y TRANSPORTE, PREPARACION Y COLOCACION DE ACERO DE REFUERZO FY 4200 Kgf/CM2, UTILIZANDO CABILLA IGUAL O MENOR DEL N° 3 PARA PILOTES.	KGF	96,48	3.562,92	343.750,52
6	E-321.632.221 SUMUNISTRO Y TRANSPORTE, PREPARACION Y COLOCACION DE ACERO DE REFUERZO Fy 4200 Kgf/CM2, UTILIZANDO CABILLA Nº 4 A Nº 7, PARA PILOTES.	KGF	382,52	3.418,12	1.307.499,26
7	E.321.640.000 PODA DE PILOTES DE CONCRETO, MEDIDO SEGUN EL AREA DE SU SECCION.	M2	0,56	220.946,56	123.730,07
8	E.S/C SUMINISTRO Y VACIADO CONCRETO PREMEZCLADO Fo 210 kgf/cm2 A LOS 28 DIAS, PARA PILOTES.	MЗ	5,66	422.093,57	2.389.049,61
9	E.322.000.125 CONCRETO DE Fc 250 kgf/cm2 A LOS 28 DIAS, ACABADO CORRIENTE, PARA LA CONSTRUCCION DE CABEZALES DE PILOTES.	МЗ	2,94	280.692,94	825.237,24
10	E.341.010.111 ENCOFRADO DE MADERA TIPO RECTO, ACABADO CORRIENTE EN CABEZALES DE PILOTES, BASES Y ESCALONES.	M2	8,40	37.816,94	317.662,30
11	E.351.110.210 SUMINISTRO, PREPARACION Y COLOCACION DE ACERO DE REFUERZO Fy 4.200 Kgf/Cm2, UTILIZANDO CABILLAS IGUAL O MENOR DEL Nº 3 PARA INFRAESTRUCTURA.	KGF	51,99	3.999,01	207.908,53

DEMO *LuloWin - Control de Obras*

Página Nº: **2** Fecha: **24/05/2005**

PRESUPUESTO

Obra: CONSTRUCCION DE FUNDACION CON DOS PILOTES DE DIAMETRO 60 Cm. LONG. 10 m. Y SU CABEZAL

Propietario: TRABAJO ESPECIAL DE GRADO

PARTIDA	DESCRIPCIÓN	UNIDAD	CANTIDAD	P.U.	TOTAL Bs.				
12	E.351.120.210 SUMINISTRO, PREPARACION Y COLOCACION DE ACERO DE REFUERZO Fy 4.200 Kgf/Cm2, UTILIZANDO CABILLAS DE Nº 4 A Nº 7 PARA INFRAESTRUCTURA.	KGF	98,52	3.870,30	381.301,96				
13	E.903.142.020 TRANSPORTE URBANO EN CAMIONES, DE TIERRA, AGREGADOS Y ESCOMBROS MEDIDO EN ESTADO SUELTO, A DISTANCIAS MAYORES A 19km Y HASTA 20km INCLUSIVE	МЗ x КМ	177,60	577,16	102.503,62				
				Total Da	7.346.716,65				
Total Bs.: (15.00 %) I.V.A.:									
			TOTA	AL GENERAL:	8.448.724,15				

GRÁFICO 4.1
PORCENTAJES DE COSTOS PROMEDIOS SEGÚN PARTIDAS, PARA LA
CONSTRUCCIÓN DE FUNDACIÓN CON DOS PILOTES Y SU CABEZAL, PARA CARGA
DE 150 TONELADAS. ÁREA METROPOLITANA [MAYO 2005]

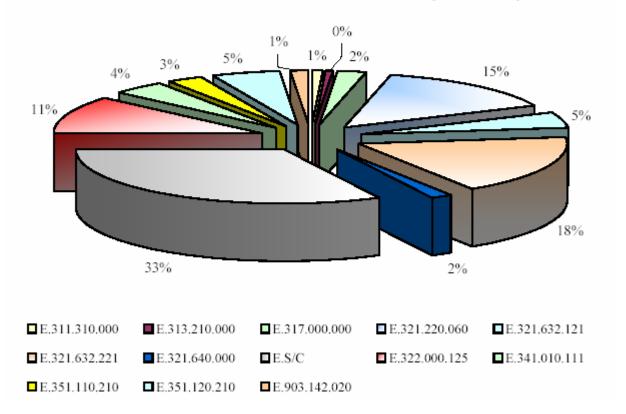
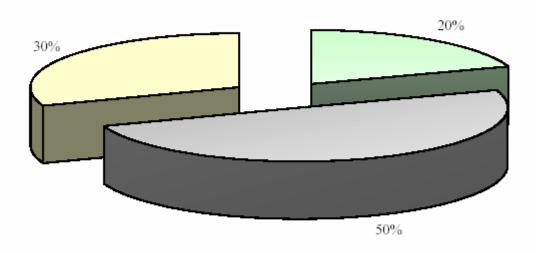



GRÁFICO 4.2
PORCENTAJES DE COSTOS SEGÚN ACTIVIDADES, PARA LA CONSTRUCCIÓN DE FUNDACIÓN CON DOS PILOTES Y SU CABEZAL, PARA CARGA DE 150 TON.
ÁREA METROPOLITANA [MAYO 2005]

- ■PERFORACIÓN, EXCAVACIÓN, RELLENO, COMPACTACIÓN Y OTROS
- ■CONCRETO, ENCOFRADO Y PODA DE PILOTES
- ACERO DE REFUERZO

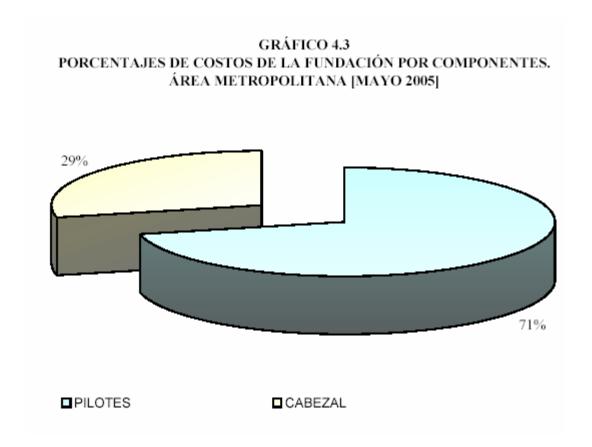
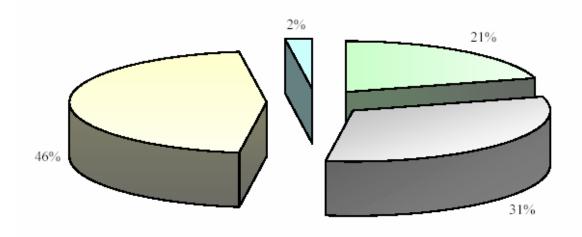
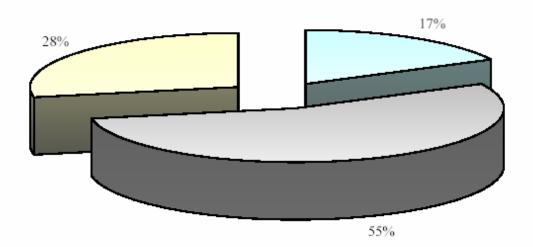



GRÁFICO 4.4 PORCENTAJES DE COSTOS ASOCIADOS A LA CONSTRUCCIÓN DE LOS DOS PILOTES SEGÚN ACTIVIDADES. ÁREA METROPOLITANA [MAYO 2005]



- PERFORACIÓN
- ACERO DE REFUERZO

■ CONCRETO

■ PODA DE PILOTES

GRÁFICO 4.5 PORCENTAJES DE COSTOS ASOCIADOS A LA CONSTRUCCIÓN DEL CABEZAL SEGÚN ACTIVIDADES. ÁREA METROPOLITANA [MAYO 2005]

- ■EXCAVACIÓN, RELLENO, COMPACTACIÓN Y OTROS.
- CONCRETO Y ENCOFRADO.
- ACERO DE REFUERZO.

GRÁFICO 4.6 GRÁFICA DE COEFICIENTES DE INCIDENCIA POR OBRA.

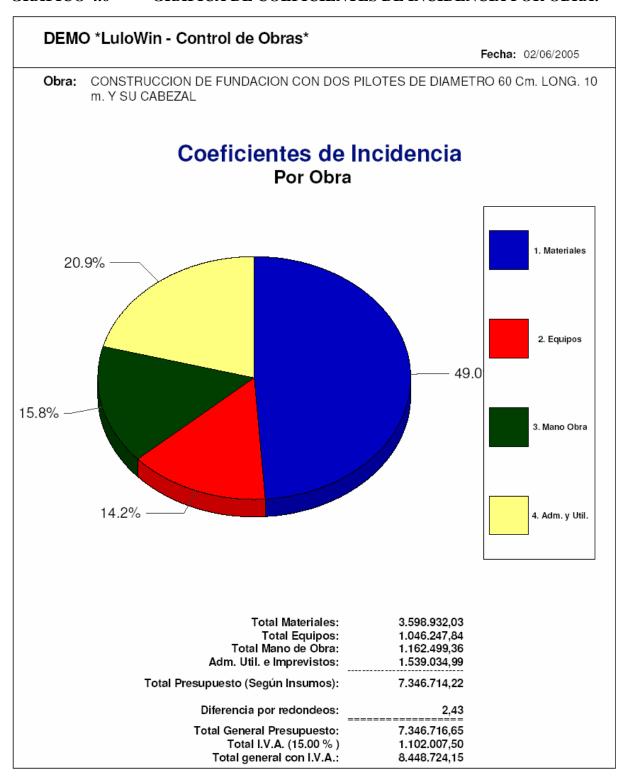


TABLA 4.9 PREDIMENSIONADO DE PILOTES

P	L	Rp	Ap.req.	D	D (am)	Ap	ACERO I CADA P	DE REFUERZ ILOTE . A	ZO PARA s (cm^2)		REFUERZO RI CADA PILOTE	-
(Ton)	(m)	(Kg/cm^2)	(cm^2)	(cm)	(cm)	(cm^2)	0.50%*Ap	0.75%*Ap	1.00%*Ap	0.50%*Ap	0.75%*Ap	1.00%*Ap
150	10 15 20	30	2500	56.42	60	2827.43	14.14	21.21	28.27	5φ 1/2" + 5φ5/8" @ 14	11¢ 5/8"@13	10φ 3/4"@14
	25									16.25 cm^2	21.78 cm^2	28.50 cm^2
175	10 15 20 25	30	2917	60.94	70	3848.45	19.24	28.86	38.48	6φ 1/2" + 6φ5/8" @ 14 19.50 cm^2	8φ 5/8" + 4φ3/4" @ 14 27.24 cm^2	8φ 3/4" + 4φ7/8" @ 14 38.32 cm ²
200	10 15 20 25	30	3333	65.15	70	3848.45	19.24	28.86	38.48	6φ 1/2" + 6φ5/8" @ 14 19.50 cm^2	8φ 5/8" + 4φ3/4" @ 14 27.24 cm^2	8φ 3/4" + 4φ7/8" @ 14 38.32 cm ²
250	10 15 20 25	30	4167	72.84	80	5026.55	25.13	37.70	50.27	13\phi 5/8"@15 25.74 cm^2	13\phi 3/4"@15 37.05 cm^2	13φ 7/8"@15 50.44 cm^2
300	10 15 20 25	30	5000	79.79	80	5026.55	25.13	37.70	50.27	13\phi 5/8"@15 25.74 cm^2	13\psi 3/4"@15 37.05 cm^2	13φ 7/8"@15 50.44 cm^2

TABLA 4.10 ACERO COLOCADO POR PILOTE (PILOTE DE 10 m.)

P (Ton)		BAI		ACERO CABILLAS MENORES O IGUAL	ACERO CABILLAS DE No 4 A No 7 (Kg)				
(101)	0.50%*Ap	0.759	%*Ap	TOTAL (m)	1.00%*Ap		TOTAL (m)	A LA No 3 (Kg)	
	5φ 1/2" +	Hasta 6m	De 6 a 9.5m		Hasta 6m	De 6 a 9.5m			
150	5φ5/8" @ 14	11¢ 5/8"@13	11φ 1/2"@13	11¢5/8"*6.80m 11¢1/2"*4.30m	10ф 3/4"@14	5φ 3/4"@14	5φ3/4"*6.80m 5φ3/4"*10.30m	48.24	191.26
	10.30	6.80 m.	4.30 m.		6.80 m.	4.30 m.			
	6\psi 1/2" +	Hasta 6m	De 6 a 9.5m		Hasta 6m	De 6 a 9.5m	4¢3/4"*6.80m		
175	6ф5/8" @ 14	8¢ 5/8" +	4φ 5/8" +	4φ5/8"*6.80m	8ф 3/4" +	4φ 3/4" +	2\phi7/8"*6.80m	58.22	257.15
1,,5	10.30	4φ3/4" @ 14	4φ3/4" @ 14	4φ5/8"*10.30m	4∳7/8" @ 14	2φ7/8" @ 14	4φ3/4"*10.30m	30.22	237.13
	10.50	6.80 m.	4.30 m.	4φ3/4"*10.30m	6.80 m.	4.30 m.	2φ7/8"*10.30m		
	6\phi 1/2" +	Hasta 6m	De 6 a 9.5m		Hasta 6m	De 6 a 9.5m	4¢3/4"*6.80m		
200	6∳5/8" @ 14	8φ 5/8" +	4φ 5/8" +	4¢5/8"*6.80m	8ф 3/4" +	4φ 3/4" +	2\$7/8"*6.80m	58.22	257.15
200	10.30	4∮3/4" @ 14	4φ3/4" @ 14	4φ5/8"*10.30 m	4¢7/8" @ 14	2φ7/8" @ 14	4¢3/4"*10.30m	30.22	237.13
	10.50	6.80 m.	4.30 m.	4φ3/4"*10.30 m	6.80 m.	4.30 m.	2φ7/8"*10.30m		
	13	Hasta 6m	De 6 a 9.5m		Hasta 6m	De 6 a 9.5m			
250		13ф 3/4"@15	13φ 5/8"@15	13\psi3/4"*6.80m 13\psi5/8"*4.30m	13ф 7/8"@15	13ф 5/8"@15	13φ7/8"*6.80m 13φ5/8"*4.30m	68.20	356.05
	10.30	6.80 m.	4.30 m.		6.80 m.	4.30 m.			
	13¢ 5/8"@15	Hasta 6m	De 6 a 9.5m		Hasta 6m	De 6 a 9.5m			
300		13ф 3/4"@15	13φ 5/8"@15	13¢3/4"*6.80m 13¢5/8"*4.30m	13¢ 7/8"@15	13ф 5/8"@15	13φ7/8"*6.80m 13φ5/8"*4.30m	68.20	356.05
	10.30	6.80 m.	4.30 m.	_	6.80 m.	4.30 m.	_		
	Nota:								

TABLA 4.11 ACERO COLOCADO POR PILOTE (PILOTE DE 15 m.)

P		BAI		ACERO CABILLAS MENORES O IGUAL	ACERO CABILLAS DE No 4 A No 7 (Kg)				
(Ton)	0.50%*Ap	0.75%	%*Ap	TOTAL (m)	1.009	%*Ap	TOTAL (m)	A LA No 3 (Kg)	DD 110 / 11110 / (Alg)
	5φ 1/2" +	Hasta 6m	De 6 a 14.5m		Hasta 6m	De 6 a 14.5m			
150	5φ5/8" @ 14	11φ 5/8"@13	11ф 1/2"@13	11¢5/8"*6.80m 11¢1/2"*9.30m	10ф 3/4"@14	5φ 3/4"@14	10φ3/4"*6.80m 5φ3/4"*9.30m	68.51	256.14
	16.00	6.80 m.	9.30 m.		6.80 m.	9.30 m.			
	6ф 1/2" +	Hasta 6m	De 6 a 14.5m	8¢5/8"*6.80m	Hasta 6m	De 6 a 14.5m	8¢3/4"*6.80m		
175	6ф5/8" @ 14	8¢ 5/8" +	4φ 5/8" +	4¢3/4"*6.80m	8ф 3/4" +	4φ 3/4" +	4¢7/8"*6.80m	82.68	344.37
1,5	16.00	4φ3/4" @ 14	4ф3/4" @ 14	4¢5/8"*9.30m	4∳7/8" @ 14	2φ7/8" @ 14	4\psi/4"*9.30m	02.00	511.57
	10.00	6.80 m.	9.30 m.	4¢3/4"*9.30m	6.80 m.	9.30 m.	2¢7/8"*9.30m		
	6ф 1/2" +	Hasta 6m	De 6 a 14.5m	8¢5/8"*6.80m	Hasta 6m	De 6 a 14.5m	8¢3/4"*6.80m		
200	6ф5/8" @ 14	8φ 5/8" +	4φ 5/8" +	4¢3/4"*6.80m	8φ 3/4" +	4φ 3/4" +	4¢7/8"*6.80m	82.68	344.37
200	16.00	4φ3/4" @ 14	4ф3/4" @ 14	4φ5/8"*9.30m	4¢7/8" @ 14	2φ7/8" @ 14	4¢3/4"*9.30m	02.00	311.27
	10.00	6.80 m.	9.30 m.	4¢3/4"*9.30m	6.80 m.	9.30 m.	2¢7/8"*9.30m		
	13ф 5/8"@15	Hasta 6m	De 6 a 14.5m		Hasta 6m	De 6 a 14.5m			
250	16.00	13ф 3/4"@15	13φ 5/8"@15	13¢3/4"*6.80m 13¢5/8"*9.30m	13ф 7/8"@15	13ф 5/8"@15	13φ7/8"*6.80m 13φ5/8"*9.30m	96.85	457.06
	10.00	6.80 m.	9.30 m.		6.80 m.	9.30 m.			
	13¢ 5/8"@15	Hasta 6m	De 6 a 14.5m		Hasta 6m	De 6 a 14.5m			
300		13ф 3/4"@15	13φ 5/8"@15	13¢3/4"*6.80m 13¢5/8"*9.30m	13¢ 7/8"@15	13ф 5/8"@15	13¢7/8"*6.80m 13¢5/8"*9.30m	96.85	457.06
	16.00	6.80 m.	9.30 m.		6.80 m.	9.30 m.			
	Nota :Las barras	s que tienen 16 n	n. = 1 barra de 1	2 m. + 1 barra de	4 m				

TABLA 4.12 ACERO COLOCADO POR PILOTE (PILOTE DE 20 m.)

P		BAF	RRA DE ACERO EN	METROS POR PILO	OTE (PILOTE DE	20 m.)		ACERO CABILLAS MENORES O IGUAL	ACERO CABILLAS DE No 4 A No 7 (Kg)
(Ton)	0.50%*Ap	0.75%	%*Ap	TOTAL (m)	1.00%*Ap		TOTAL (m)	A LA No 3 (Kg)	
	5φ 1/2" +	Hasta 6m	De 6 a 19.5m		Hasta 6m	De 6 a 19.5m			
150	5φ5/8" @ 14	11¢ 5/8"@13	11φ 1/2"@13	11φ5/8"*6.80m 11φ1/2"*12.00m	10ф 3/4"@14	5φ 3/4"@14	10φ3/4"*6.80m 5φ3/4"*12.00m	88.77	312.06
	21.00	6.80 m.	14.30 m.	11\psi1/2"*2.30m	6.80 m.	14.30 m.	5\phi3/4"*2.30m		
	6\phi 1/2" +	Hasta 6m	De 6 a 19.5m	8¢5/8"*6.80m	Hasta 6m	De 6 a 19.5m	8¢3/4"*6.80m		
175	6φ5/8" @ 14	8¢ 5/8" +	4φ 5/8" +	4¢3/4"*6.80m	8φ 3/4" +	4φ 3/4" +	4¢7/8"*6.80m	107.13	419.56
1,,,	21.00	4φ3/4" @ 14	4φ3/4" @ 14	4φ5/8"*14.30m	4¢7/8" @ 14	2φ7/8" @ 14	4φ3/4"*14.30 m	107.15	415.50
	21.00	6.80 m.	14.30 m.	4\phi 3/4"*14.30m	6.80 m.	14.30 m.	2φ7/8"*14.30m		
	6φ 1/2" +	Hasta 6m	De 6 a 19.5m	8¢5/8"*6.80m	Hasta 6m	De 6 a 19.5m	8¢3/4"*6.80m		
200	6φ5/8" @ 14	8φ 5/8" +	4φ 5/8" +	4¢3/4"*6.80m	8ф 3/4" +	4φ 3/4" +	4\phi7/8"*6.80m	107.13	419.56
200	21.00	4φ3/4" @ 14	4φ3/4" @ 14	4φ5/8"*14.30m	4¢7/8" @ 14	2∳7/8" @ 14	4φ3/4"*14.30m	107.15	415.50
	21.00	6.80 m.	14.30 m.	4φ3/4"*14.30m	6.80 m.	14.30 m.	2φ7/8"*14.30m		
	13	Hasta 6m	De 6 a 19.5m		Hasta 6m	De 6 a 19.5m			
250	21.00	13ф 3/4"@15	13φ 5/8"@15	13\psi/4"*6.80m 13\psi/8"*12.00m	13ф 7/8"@15	13ф 5/8"@15	13¢7/8"*6.80m 13¢5/8"*12.00m	125.50	558.07
	21.00	6.80 m.	14.30 m.	13\\$5/8"*2.30m	6.80 m.	14.30 m.	13φ5/8"*2.30m		
	13¢ 5/8"@15	Hasta 6m	De 6 a 19.5m		Hasta 6m	De 6 a 19.5m			
300	21.00	13ф 3/4"@15	13ф 5/8"@15	13¢3/4"*6.80m 13¢5/8"*12.00m	13¢ 7/8"@15	13ф 5/8"@15	13¢7/8"*6.80m 13¢5/8"*12.00m	125.50	558.07
		6.80 m.	14.30 m.	13¢5/8"*2.30m	6.80 m.	14.30 m.	13φ5/8"*2.30m		
	Nota : Las barra	s que tienen 21 :	m. = 1 barra de 1	12 m. + 1 barra de	9 m. y las barra	s de 14.30 m. = 1	l barra 12 m. + 1	barra 2.30 m.	

TABLA 4.13 ACERO COLOCADO POR PILOTE (PILOTE DE 25 m.)

P		BARRA D	E ACERO EN N	METROS POR PI	LOTE (PILOT	E DE 25 m.)		ACERO CABILLAS MENORES O IGUAL	ACERO CABILLAS DE No 4 A No 7 (Kg)
(Ton)	0.50%*Ap	0.759	6*Ap	TOTAL (m)	1.009	%*Ap	TOTAL (m)	A LA No 3 (Kg)	(2)
	5φ 1/2" +	Hasta 6m	De 6 a 24.5m		Hasta 6m	De 6 a 24.5m			
150	5φ5/8" @ 14	11¢ 5/8"@13	11φ 1/2"@13	11φ5/8"*6.80m 11φ1/2"*12.00m	10ф 3/4"@14	5φ 3/4"@14	10φ3/4"*6.80m 5φ3/4"*12.00m	109.03	376.93
	27.00	6.80 m.	20.10 m.	11\psi1/2"*8.10m	6.80 m.	20.10 m.	5¢3/4"*8.10m		
	6\phi 1/2" +	Hasta 6m	De 6 a 24.5m	8¢5/8"*6.80m	Hasta 6m	De 6 a 24.5m	8¢3/4"*6.80m		
175	6φ5/8" @ 14	8¢ 5/8" +	4φ 5/8" +	4¢3/4"*6.80m	8ф 3/4" +	4φ 3/4" +	4¢7/8"*6.80m	131.59	506.78
1,5	27.00	4φ3/4" @ 14	4φ3/4" @ 14	4φ5/8"*20.10 m	4∳7/8" @ 14	2φ7/8" @ 14	4¢3/4"*20.10m	131.37	300.70
	27.00	6.80 m.	20.10 m.	4φ3/4"*20.10m	6.80 m.	20.10 m.	2φ7/8"*20.10m		
	6\phi 1/2" +	Hasta 6m	De 6 a 24.5m	8¢5/8"*6.80m	Hasta 6m	De 6 a 24.5m	8¢3/4"*6.80m		
200	6∳5/8" @ 14	8φ 5/8" +	4φ 5/8" +	4¢3/4"*6.80m	8ф 3/4" +	4φ 3/4" +	4¢7/8"*6.80m	131.59	506.78
200	27.00	4φ3/4" @ 14	4φ3/4" @ 14	4φ5/8"*20.10m	4¢7/8" @ 14	2φ7/8" @ 14	4φ3/4"*20.10m	151.55	300.70
	27.00	6.80 m.	20.10 m.	4φ3/4"*20.10m	6.80 m.	20.10 m.	2φ7/8"*20.10m		
	13¢ 5/8"@15	Hasta 6m	De 6 a 24.5m		Hasta 6m	De 6 a 24.5m			
250	27.00	13ф 3/4"@15	13φ 5/8"@15	13¢3/4"*6.80m 13¢5/8"*12.00m	13ф 7/8"@15	13ф 5/8"@15	13φ7/8"*6.80m 13φ5/8"*12.00m	154.14	675.24
	27.00	6.80 m.	20.10 m.	13¢5/8"*8.10m	6.80 m.	20.10 m.	13φ5/8"*8.10 m		
	13¢ 5/8"@15	Hasta 6m	De 6 a 24.5m		Hasta 6m	De 6 a 24.5m			
300	27.00	13ф 3/4"@15	13¢ 5/8"@15	13φ3/4"*6.80m 13φ5/8"*12.00m	13¢ 7/8"@15	13ф 5/8"@15	13φ7/8"*6.80m 13φ5/8"*12.00m	154.14	675.24
	27.00	6.80 m.	20.10 m.	13¢5/8"*8.10m	6.80 m.	20.10 m.	13φ5/8"*8.10m		
	Nota :Las barras	s que tienen 27 n	n. = 2 barras de i	12 m. + 1 barra de	3 m. y las barra	s de 20.10 m. =	1 barra de 12 m.	+ 1 barra de 8.10 r	n.

TABLA 4.14 ACERO HELICOIDAL.

P	L	L Rp Ap.req. D Ap m) (Kg/cm^2) (cm^2) (cm) (cm^2)			_	ACERO I CADA P	DE REFUERZ ILOTE . A	ZO PARA s (cm^2)	ACERO HELICOIDAL	ACERO EN METRO HELICOIDAL
(Ton)	(m)	(Kg/cm^2)	(cm^2)	(cm)	(cm^2)	0.50%*Ap	0.75%*Ap	1.00%*Ap	$\phi = 3/8"$	$\phi = 3/8"$
	10									86.30
150	15	30	2500	60	2827.43	14.14	21.21	28.27	145	122.55
150	20	30	2300	00	2027.43	14.14	21.21	20.27	143	158.80
	25									195.05
	10									104.15
175	15	30	2917	70	3848.45	19.24	28.86	38.48	175	147.90
1	20					22.2.	20.00	20.10		191.65
	25									235.40
l	10									104.15
200	15	30	3333	70	3848.45	19.24	28.86	38.48	175	147.90
	20		2222		2010.12	15.24	20.00	30.40	1/3	191.65
	25									235.40
l	10									122.00
250	15	30	4167	80	5026.55	25.13	37.70	50.27	205	173.25
	20									224.50
	25									275.75
l	10									122.00
300	300 15	30	5000	80	5026.55	25.13	37.70	50.27	205	173.25
	20	<u> </u>	3000		3020.33	23.13	37.70	30.27	203	224.50
25										275.75

TABLA 4.15 PREDIMENSIONADO DEL CABEZAL

P (Ton)	D (cm)	LA C	OLU	MNA	S (cm)	CABE	ZAL SOB	NAMIENT RE DOS P	ILOTE	Υ concreto	CABEZAL
150	60	b' (cm) 35	x	a' (cm) 80	150	A (cm) 250	B (cm)	H (cm)	d (cm)	(Kg/m^3) 2400	(Kg) 7200
175	70	35	x	80	180	290	110	120	100	2400	9187
200	70	40	х	90	180	290	110	120	100	2400	9187
250	80	40	х	90	200	320	120	120	100	2400	11059
300	80	40	х	90	200	320	120	140	120	2400	12902

TABLA 4.16 CALCULO DEL ACERO DE LOS CABEZALES

Р	D	7	VERIFICA	CION POR	CORTE	ULTIMO (Vu)	ACERO DE	REFUERZO P	ARA EL CAB	EZAL (cm^2)	4	th
(Ton)	(cm)	Pu (Kg)	Ru (Kg)	Vu (Kg)	Ln/d (m)	Vn en (Kg) Para Ln/d<2	Vu<=Vn	fs (Kg/cm^2)	Fx (Kg)	As (cm^2)	As/m (cm^2/m)	tv (cm)	(cm)
150	60	235080	117540	117540	0.90	335201	O.K	2100	41250	19.64	19.64	20	25
175	70	275362	137681	137681	1.10	368722	O.K	2100	61250	29.17	26.52	20	25
200	70	312862	156431	156431	1.10	368722	O.K	2100	67500	32.14	29.22	20	25
250	80	390483	195241	195241	1.20	402242	O.K	2100	96875	46.13	38.44	20	25
300	80	468063	234032	234032	1.00	482690	O.K	2100	96875	46.13	38.44	20	25

TABLA 4.17 ACERO COLOCADO EN LOS CABEZALES

				ACERO EN CAE	BEZAL			
P (Ton)	ACERO INFERIOR	ACERO INTERMEDIO 1era CAPA	ACERO INTERMEDIO 2 da CAPA	ACERO INTERMEDIO 3 era CAPA	ACERO INTERMEDIO 4 era CAPA	ACERO SUPERIOR	ACERO ESTRIBOS DOBLES	ACERO ZUNCHO
150	7ф3/4"*3.60m	2φ3/8"*2.30m	2φ3/8"*2.30m	2φ3/8"*2.30m	-	4φ1/2"*3.60m	24φ3/8"*3.30m	4¢1/2"*7.00m
175	9φ7/8"*4.00m	2φ3/8"*2.70m	2φ3/8"*2.70m	2φ3/8"*2.70m	-	5φ5/8"*4.00m	28φ3/8"*3.60m	4¢1/2"*8.00m
200	9φ7/8"*4.00m	2φ3/8"*2.70m	2φ3/8"*2.70m	2φ3/8"*2.70m	-	5φ5/8"*4.00m	28φ3/8"*3.60m	4∳1/2"*8.00m
250	9φ1"*4.30m	2φ3/8"*3.00m	2φ3/8"*3.00m	2φ3/8"*3.00m	-	5φ3/4"*4.30m	30φ3/8"*3.75m	4¢1/2"*8.70m
300	9φ1"*4.30m	2φ3/8"*3.00m	2φ3/8"*3.00m	2φ3/8"*3.00m	2φ3/8"*3.00m	5φ3/4"*4.30m	30φ3/8"*4.15m	5¢1/2"*8.70m

TABLA 4.18 CÓMPUTOS DE ACERO

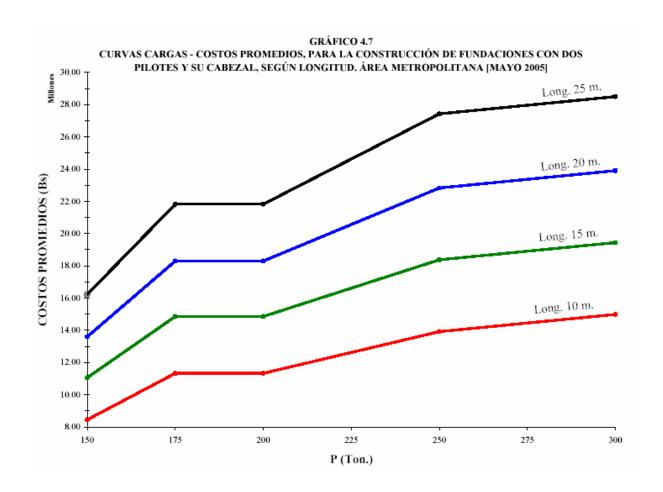

	Pa	ra Cabezales	
P (Ton)	ACERO CABILLAS MENORES O IGUAL A LA No 3 (Kg)	ACERO CABILLAS DE No 4 A No 7 (Kg)	ACERO CABILLAS MAYORES A LA No 7 (Kg)
150	51.99	98.52	-
175	65.40	172.51	-
200	65.40	172.51	-
250	72.95	91.33	154.30
300	83.01	91.33	154.30

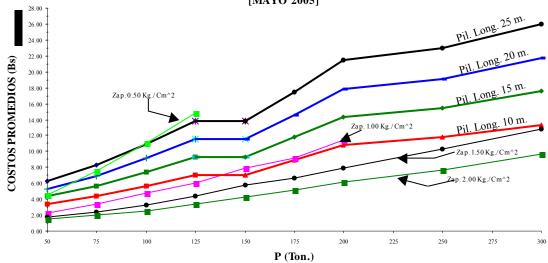
TABLA 4.19 CÓMPUTOS MÉTRICOS PARA CABEZALES Y PILOTES.

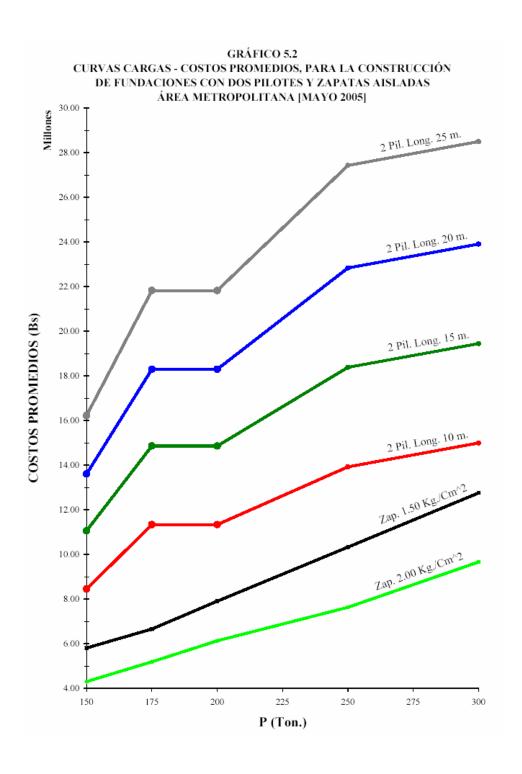
P	SOBRE -	PERFORACIÓ	N POR PILOTE	CONCRETO	POR PILOTE	PODA POR	EXCAVACIÓN	CONCRETO	CARGA Y	COMPACTACIÓN	ENCOFRADO
(Ton)	ANCHO	PILOTE	PILOTE	PILOTE	PILOTE	PILOTE	CABEZAL	CABEZAL	BOTE	COMPACIACION	ENCOTRADO
(1011)	(cm)	(m)	(m^3)	(m)	(m^3)	(m^2)	(m^3)	(m^3)	(m^3)	(m^3)	(m^2)
		11.00	3.11	10.00	2.83				8.88		
150	0.60	16.00	4.52	15.00	4.24	0.28	9.43	2.94	11.70	6.77	8.40
150	0.00	21.00	5.94	20.00	5.65	0.20	7.43	2.54	14.54	0.77	0.40
		26.00	7.35	25.00	7.07				17.36		
		11.00	4.23	10.00	3.85				11.83		
175	0.60	16.00	6.16	15.00	5.77	0.38	10.85	3.75	15.69	7.48	9.60
		21.00	8.08	20.00	7.70				19.53		
\vdash		26.00	10.01	25.00	9.62				23.39		
		11.00	4.23	10.00	3.85	0.38	10.85		11.83		l
200	0.60	16.00	6.16	15.00	5.77			3.75	15.69	7.48	9.60
200	0.00	21.00	8.08	20.00	7.70				19.53		2.00
		26.00	10.01	25.00	9.62				23.39		
		11.00	5.53	10.00	5.03				15.06		
250	0.60	16.00	8.04	15.00	7.54	0.50	12.07	4.51	20.08	8.07	10.56
230	0.00	21.00	10.56	20.00	10.05	0.50	12.07		25.12	0.07	10.50
		26.00	13.07	25.00	12.57				30.14		
		11.20	5.63	10.00	5.03				15.93		
300	0.60	16.20	8.14	15.00	7.54	0.50	14.08	5.28	20.95	9.41	12.32
300	0.00	21.20	10.66	20.00	10.05		14.08	3.28	25.99		12.32
		26.20	13.17	25.00	12.57				31.01		

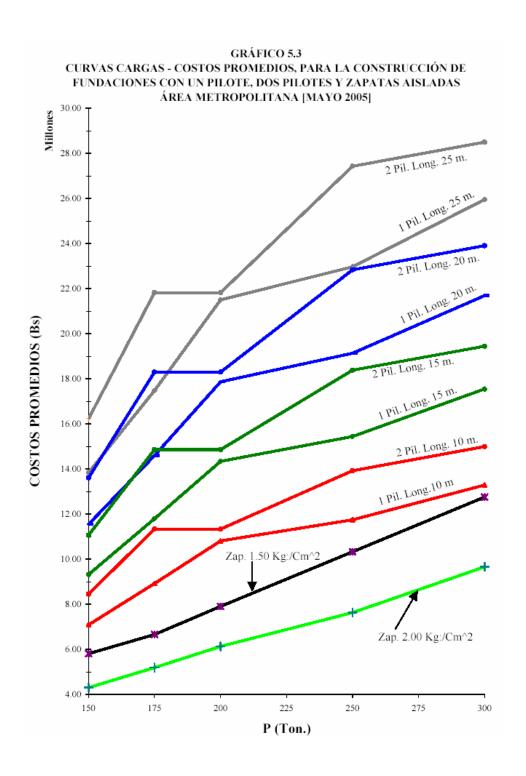
TABLA 4.20 COSTOS PROMEDIOS PARA CABEZALES CON DOS PILOTES

P (Ton)	L (m)	D (cm)		IMENSIO ZAL SOBI			COSTO PROMEDIO S/IVA	COSTO PROMEDIO S/IVA
(1011)	(111)	(cm)	A (cm)	B (cm)	H (cm)	d (cm)	(Bs)	(Bs)
	10						7346728.76	8448738.07
150	15	60	250	100	120	100	9617825.82	11060499.69
150	20	[00]	230	100	120	100	11827670.16	13601820.69
	25						14107140.73	16223211.84
	10						9855204.77	11333485.48
175	15	70	290	110	120	100	12919381.95	14857289.25
1/3	20	[/0	290	110	120	100	15909761.04	18296225.20
	25						18973938.23	21820028.97
	10	70	290	110	120	100	9855204.77	11333485.48
200	15						12919381.95	14857289.25
200	20	_ /0	290				15909761.04	18296225.20
	25						18973938.23	21820028.97
	10						12105065.66	13920825.51
250	15	80	320	120	120	100	15979981.40	18376978.61
230	20	80	320	120	120	100	19854897.13	22833131.70
	25						23848728.37	27426037.63
	10						13034557.26	14989740.85
300	15	80	220	120	140	120	16909472.99	19445893.94
300	20	80	320	120	140	120	20784388.72	23902047.03
	25						24778219.97	28494952.96

CAPITULO 5Conclusiones y Recomendaciones


CAPITULO 5


CONCLUSIONES Y RECOMENDACIONES


A partir de los cómputos métricos se determinaron los costos promedios de cada una de las de fundaciones, se realizaron los análisis correspondientes a los resultados obtenidos, tomando en cuenta las cargas, las presiones admisibles y las longitudes de los pilotes. Descrito en los capítulos anteriores.

A continuación se muestran las gráficas comparativas, donde se podrá observar como varían los costos promedios de un tipo de fundación con respecto a otro.

GRÁFICO 5.1 CURVAS CARGAS - COSTOS PROMEDIOS, PARA LA CONSTRUCCIÓN DE FUNDACIONES CON UN PILOTE Y ZAPATAS AISLADAS. ÁREA MEIRO POLITANA [MAYO 2005]

5.1 CONCLUSIONES

Por medio del análisis realizado a los Coeficientes de Incidencia por obra, se observó la importancia que tienen los Materiales y la Mano de Obra en los costos promedios de la construcción de infraestructuras.

Se determinó la relevancia del concreto y del acero por medio de los gráficos de los casos tipos que se resolvieron de modo detallado, donde se verificó que el concreto es un material que resulta tan costoso como el acero de refuerzo, por tal motivo, en el diseño hay que usar los materiales de la manera más optima posible, para no exceder en los costos.

A través de la superposición de curvas Cargas – Costos promedios para la construcción de fundaciones con zapatas aisladas y pilotes excavados se determinó que el valor de la presión admisible del suelo es un factor determinante y de gran importancia en los Costos Promedios de las zapatas aisladas, así como también lo es la longitud para la construcción de fundaciones con pilotes.

En conclusión, para los valores de cargas utilizados para realizar esta investigación, se determinó que es más económico construir zapatas aisladas para valores de presión admisible mayor o igual a 1.50 Kg./Cm².

5.2 RECOMENDACIONES

De acuerdo al tipo de investigación, se plantea las siguientes recomendaciones con el fin de dar a conocer entre los alumnos, profesores y profesionales en general la importancia de los costos a la hora de construir cualquier edificación.

- 1.- Ampliar la investigación considerando los efectos de momentos flectores.
- 2.- Aplicar este tipo de estudio a otros elementos de la construcción de edificaciones.
- 3.- Divulgar o expandir en los cursos de pre grado mayor información en relación con este tema que es de tanta importancia para la formación de un Ingeniero Civil.

BIBLIOGRAFÍA

- 1. Delgado Vargas, Manuel. **Ingeniería de Fundaciones: Fundamentos e Introducción al Análisis Geotécnico.** Editorial escuela Colombiana de Ingeniería, Santa Fé de Bogotá, 1996. Pág. 541.
- 2. Fratelli, Maria Graciela. **Suelos, Fundaciones y Muros.** Editorial Bonalde, Caracas, 1993. Pág. 570.
- 3. Gruber, Francisco. Análisis de Precios Unitarios de Partidas de Proyectos y Construcción de Obras Civiles. Caracas, 2003.
- 4. P. Jiménez Montoya, A. García Meseguer, F. Morán Cabre. **Hormigón Armado.** Editorial Gustavo Gilis, S.A. Tomo I, 10^a Edición. Barcelona-15, Resellón, 87-89. Pág. 467-496.
- 5. Pérez Guerra, Gustavo y Carrillo Pimentel, Pedro. **Ingeniería de Fundaciones.** Universidad Católica Andrés Bello, Caracas, 1981. Pág. 150.
- 6. Lulo Software. **Control de Obras.** Caracas, 2005.
- 7. Norma COVENIN 2000 92. Sector Construcción: Mediciones y Codificación de Partidas para Estudio, Proyectos y Construcción. Parte II-A Edificaciones. Fondonorma, Caracas, 1993. Pág. 375.
- 8. Rangel T., Luis Ernesto. Evaluación de los Costos de las Partidas Presupuestarias para el Análisis de Precios Unitarios con Aplicación a la Construcción de Edificación. Trabajo Especial de grado. Facultad de Ingeniería. Escuela de Ingeniería Civil. Universidad Central de Venezuela, Caracas. 1998.
- 9. Velásquez, José Manuel. **Diseño estructural de Fundaciones. Parte II: Cabezales y Pilotes.** MM Training C.A., Caracas, 2001.
- 10. Velásquez, José Manuel. **Fundaciones y Muros.** Apuntes de clase. Facultad de Ingeniería, Escuela de Ingeniería Civil. Universidad Central de Venezuela, Caracas, 2003.

ANEXOS

ANEXO A

Análisis de precios unitarios del presupuesto correspondiente a los cómputos métricos de la zapata aislada centrada.

Fecha: 24/05/2005

ANALISIS DE PRECIO UNITARIO

Partida № 1 Descripción de la Obra: CONSTRUCCION DE ZAPATA AISLADA DE 2.75 m. x 2.75 m. Propietario: TRABAJO ESPECIAL DE GRADO Código de la Obra: ZAPATA EXCAVACION EN TIERRA CON USO DE EQUIPO RETROEXCAVADOR PARA ASIENTO DE Descripción Partida: FUNDACIONES, ZANJAS, ETC. INCLUYE REPERFILAMIENTO A MANO Rendimiento Código: Código Covenin: Unidad Cantidad G1-00281 E.311.310.000 М3 19,85 M3 180,000000 M3/dia 1 .- MATERIALES Código Unidad **Cantidad** % Desp. **Total** Descripción Costo Total Materiales: 0,00 Unitario de Materiales: 0,00 2 .- EQUIPOS Dep. o Alq. Código Descripción Cantidad Total Costo RETROEXCAVADORA CAT428C 4x2 1.37vd3-ING 114.050.000.00 0.003690 420.844.50 1.00000 246 PALA REDONDA 040202 878,00 4,00000 21.950.00 0.010000 254 PICO PUNTA Y PALA BELLOTA U500949 0.010000 4,00000 32.185,00 1.287,40 74 CARRETILLA RUEDA GOMA CAP.=55Lts U200305 2,00000 94.830,00 0.003500 663,81 251 BARRA METALICA DE 1.47m PARA HACER HOYOS 2,00000 24.900,00 0.010000 498,00 Total Equipos: 424.171,71 2.356,51 Unitario de Equipos: 3 .- MANO DE OBRA Código Descripción Cantidad Salario Total MAESTRO DE OBRAS DE 1ra 32.295.00 0.50000 16.147.50 64 CAPORAL DE EQUIPO 1,00000 28.020,00 28.020.00 **OBRERO DE 1ra** 6,00000 18.856,00 113.136,00 OPERADOR DE PALA MAS 1 YARDA CUB DE 2da 58 1,00000 25.845,00 25.845,00 AYUDANTE DE OPERADORES 20.460.00 49 1,00000 20.460,00 Total Mano de Obra: 203.608,50 0,00 203.608,50 Mano de Obra Directa:

Calculado por: Br. EUDIS DE LA CRUZ

Revisado por: ING. PEDRO BALLESTEROS

Desarrollado Por:

USO EXCLUSIVO DE:

Lulo Software, C.A.

DEMO *LuloWin - Control de Obras*

 189.00 % Prestaciones Sociales:
 384.820,07

 4,000.00 Bs./dia Alimenticio:
 38.000,00

Total Mano de Obra: 626.428,57
Unitario Mano de Obra: 3.480,16

Costo Directo por Unidad: 5.836,67

15.00% Administración y Gastos Generales: 875,50

Sub-Total: 6.712,17

10.00% Utilidad e Imprevistos: 671,22

PRECIO UNITARIO Bs. 7.383,39

Total partida Bs.: 19.85 X 7,383.39 = 146,560.29

Fecha: 24/05/2005

ANALISIS DE PRECIO UNITARIO

					Partida Nº	2
Descripción de la Obra:	CONSTRUCCION DE Z	APATA AISLADA	DE 2.75 m. x 2.7	 '5 m.		
Propietario:	TRABAJO ESPECIAL D	E GRADO			Código de la Ob	ra: ZAPATA
Descripción Partida:	CARGA CON EQUIPO L ASIENTO DE FUNDACIO			ENTE DE LAS I	EXCAVACIONES I	PARA
Código:	Código Covenin:	Unidad	Cantida	ad	Rendimie	ento
G1-00285	E.313.210.000	M3	5,01 N	13	110,000000	M3/dia
1 MATERIALE	S					
Código Descripció		Unidad	Cantidad	% Desp.	Costo	Total
				Tota	al Materiales:	0,00
					e Materiales:	0,00
2 EQUIPOS						
Código Descripción			Cantidad	Costo	Dep. o Alq.	Total
375 MINISHOVEL I	BOBCAT 266 40HP CAP=0.31	M3	1,00000	55.875.000,00	0.003610	201.708,75
					otal Equipos: de Equipos:	201.708,75 1.833,72
3 MANO DE C)BRA			011110	<u> </u>	
Código Descripció	n		Cantidad	Salario		Total
64 CAPORAL DE			0,25000	28.020,00		7.005,00
50 OPERADOR D 1 OBRERO DE 1	E EQUIPO LIVIANO		1,00000 1,00000	22.635,00 18.856,00		22.635,00 18.856,00
T OBTICIO DE 1	nu		1,00000	Total Ma	ano de Obra:	48.496,00
						0,00
					Obra Directa:	48.496,00
Calculado por: Br. EUDIS	DE LA CRUZ			00 % Prestacio		91.657,44
Revisado por: ING. PEDF	O BALLESTEROS			4,000.00 Bs./d	a Alimenticio:	9.000,00
nevisado por. ING. FLDF	IO BALLESTEROS			Total M	ano de Obra:	149.153,4
Desarrollado Por: USO E	XCLUSIVO DE:				no de Obra:	1.355,94
Lulo Software, C.A. DEMO	*LuloWin - Control de Obras*		Co	sto Directo p	or Unidad:	3.189,60
		15.	00% Administra	ción y Gastos	Generales:	478,45
				,	Sub-Total:	3.668,1°

Total partida Bs.: 5.01 X 4,034.92 = 20,214.95

4.034,92

PRECIO UNITARIO Bs.

Fecha: 24/05/2005

ANALISIS DE PRECIO UNITARIO

Partida № 3

Descripción de la Obra: CONSTRUCCION DE ZAPATA AISLADA DE 2.75 m. x 2.75 m.

Propietario: TRABAJO ESPECIAL DE GRADO Código de la Obra: ZAPATA

Descripción Partida: COMPACTACION DE RELLENOS CON APISONADORES DE PERCUSION, CORRESPONDIENTE A

LOS ASIENTOS DE FUNDACIONES, ZANJAS, ETC

 Código:
 Código Covenin:
 Unidad
 Cantidad
 Rendimiento

 G1-00290
 E.317.000.000
 M3
 14,84 M3
 50,000000
 M3/dia

1	 MA	ΓER	ΙΛΙ	_ES
	 IVIA	ıcn	IAI	_E3

Código	Descripción	Unidad	Cantidad	% Desp.	Costo	Total
552	AGUA-TARIFA INDUSTRIAL TIPO "B"	m3	0,10000		1,375.00	137,50
				Total Materiales:		137,50
				Unitario de Materiales:		137 50

2 .- EQUIPOS

Código	Descripción	Cantidad	Costo	Dep. o Alq.	Total
507	COMPACTADORA DE PLANCHA .4x.4-GASOLINA	2,00000	60.000,00	1.000000	120.000,00
246	PALA REDONDA 040202	8,00000	21.950,00	0.010000	1.756,00
74	CARRETILLA RUEDA GOMA CAP.=55Lts U200305	4,00000	94.830,00	0.003500	1.327,62
166	MANG. PLASTICA 1/2" L=100m TIPO CULEBRA	2,00000	75.000,00	0.008000	1.200,00
			To	tal Equipos:	124.283,62
			Unitario	de Fauinos:	2 485 67

3 .- MANO DE OBRA

Código	Descripción	Cantidad	Salario	Total
3	CAPORAL	1,00000	22.635,00	22.635,00
1	OBRERO DE 1ra	10,00000	18.856,00	188.560,00
50	OPERADOR DE EQUIPO LIVIANO	2,00000	22.635,00	45.270,00
•			Total Mano de Obra:	256.465,00
				0.00

Calculado por: Br. EUDIS DE LA CRUZ

Revisado por: ING. PEDRO BALLESTEROS

Desarrollado Por: USO EXCLUSIVO DE:

Lulo Software, C.A. DEMO *LuloWin - Control de Obras*

 Mano de Obra Directa:
 256.465,00

 189.00 % Prestaciones Sociales:
 484.718,85

 4,000.00 Bs./dia Alimenticio:
 52.000,00

Total Mano de Obra: 793.183,85
Unitario Mano de Obra: 15.863,68
Costo Directo por Unidad: 18.486,85

15.00% Administración y Gastos Generales: 2.773,03

Sub-Total: 21.259,88

10.00% Utilidad e Imprevistos: 2.125,99

PRECIO UNITARIO Bs. 23.385,87

Total partida Bs.: 14.84 X 23,385.87 = 347,046.31

Fecha: 24/05/2005

ANALISIS DE PRECIO UNITARIO

Partida № 4

Descripción de la Obra: CONSTRUCCION DE ZAPATA AISLADA DE 2.75 m. x 2.75 m.

Propietario: TRABAJO ESPECIAL DE GRADO Código de la Obra: ZAPATA

Descripción Partida: CONSTRUCCION DE BASE DE PIEDRA PICADA CORRESPONDIENTE A OBRAS PREPARATIVAS.

Código: Código Covenin: Unidad Cantidad Rendimiento

G1-00293 E.319.100.000 M3 0.38 M3 30.000000 M3/dia

1.- MATERIALES

Código	Descripción	Unidad	Cantidad	% Desp.	Costo	Total
1729	PIEDRA TRIT.DE 1"(EN SITIO EXPLOTACION)	m3	1,10000		45,000.00	49.500,00
				Total Materiales:		49.500,00
				Unitario de	Materiales:	49 500 00

2.- EQUIPOS

Código	Descripción	Cantidad	Costo	Dep. o Alq.	Total
375	MINISHOVEL BOBCAT 266 40HP CAP=0.31 M3	1,00000	55.875.000,00	0.003610	201.708,75
74	CARRETILLA RUEDA GOMA CAP.=55Lts U200305	2,00000	94.830,00	0.003500	663,81
254	PICO PUNTA Y PALA BELLOTA U500949	2,00000	32.185,00	0.010000	643,70
246	PALA REDONDA 040202	8,00000	21.950,00	0.010000	1.756,00
166	MANG. PLASTICA 1/2" L=100m TIPO CULEBRA	1,00000	75.000,00	0.008000	600,00
			To	tal Equipos:	205.372,26
			Unitario (de Fauinos:	6 845 74

3 .- MANO DE OBRA

Código	Descripción	Cantidad	Salario	Total
29	MAESTRO DE OBRAS DE 1ra	0,25000	32.295,00	8.073,75
50	OPERADOR DE EQUIPO LIVIANO	1,00000	22.635,00	22.635,00
1	OBRERO DE 1ra	2,00000	18.856,00	37.712,00
			Total Mano de Obra:	68.420,75
				0,00

Calculado por: Br. EUDIS DE LA CRUZ

Revisado por: ING. PEDRO BALLESTEROS

Desarrollado Por: USO EXCLUSIVO DE:

Lulo Software, C.A. DEMO *LuloWin - Control de Obras*

 Mano de Obra Directa:
 68.420,75

 189.00 % Prestaciones Sociales:
 129.315,22

 4,000.00 Bs./dia Alimenticio:
 13.000,00

Total Mano de Obra: 210.735,97
Unitario Mano de Obra: 7.024,53
Costo Directo por Unidad: 63.370,27

15.00% Administración y Gastos Generales: 9.505,54

Sub-Total: 72.875,81

10.00% Utilidad e Imprevistos: 7.287,58

PRECIO UNITARIO Bs. 80.163,39

Total partida Bs.: 0.38 X 80,163.39 = 30,462.09

Fecha: 24/05/2005

ANALISIS DE PRECIO UNITARIO

Partida № 5

Descripción de la Obra: CONSTRUCCION DE ZAPATA AISLADA DE 2.75 m. x 2.75 m.

Propietario: TRABAJO ESPECIAL DE GRADO Código de la Obra: ZAPATA

Descripción Partida: CONCRETO DE Fc 250 kgf/cm2 A LOS 28 DIAS, ACABADO CORRIENTE, PARA LA CONSTRUCCION

DE BASES Y ESCALONES.

 Código:
 Código Covenin:
 Unidad
 Cantidad
 Rendimiento

 G1-00308
 E.323.000.125
 M3
 4,16 M3
 15,000000
 M3/dia

4	I I	RA A	LΖ	FR	IΛ		C
	_=	IVI #	4 1	ГВ	ΙА	1 6	

Código	Descripción	Unidad	Cantidad	% Desp.	Costo	Total
1	CEMENTO PORTLAND GRIS T1 42.5Kg C/CALETA	SACO	8,92500	<u>-</u>	8,350.00	74.523,75
1729	PIEDRA TRIT.DE 1"(EN SITIO EXPLOTACION)	m3	0,94500		45,000.00	42.525,00
1730	ARENA LAVADA/SITIO DE EXPLOT. 1600 Kgxm3	m3	0,47250		45,000.00	21.262,50
552	AGUA-TARIFA INDUSTRIAL TIPO "B"	m3	0,17850		1,375.00	245,44
				Tota	l Materiales:	138.556,69
				Unitario de	Materiales:	138.556.69

2.- EQUIPOS

Código	Descripción	Cantidad	Costo	Dep. o Alq.	Total
116	MEZCL/CONCRETO DIESEL CAP=0.75m3 24HP	1,00000	21.819.425,00	0.002500	54.548,56
372	VIBRADOR GASOLINA 5HP MANG.=5m	2,00000	2.606.065,00	0.003000	15.636,39
	CBZL=37mm				
75	CARRETON BUGGI 150 L RUEDAS DE GOMA	4,00000	650.000,00	0.003550	9.230,00
375	MINISHOVEL BOBCAT 266 40HP CAP=0.31 M3	1,00000	55.875.000,00	0.003610	201.708,75
229	CEPILLO DE GOMA PARA FRISAR 6"	2,00000	5.583,00	0.010000	111,66
246	PALA REDONDA 040202	3,00000	21.950,00	0.010000	658,50
			To	tal Equipos:	281.893,86
			Unitario	de Fauinos:	18.792.92

3 .- MANO DE OBRA

Código	Descripción	Cantidad	Salario	Total
28	MAESTRO DE OBRAS DE 2da	0,50000	28.020,00	14.010,00
32	MAQUINISTA DE CONCRETO DE 1ra	1,00000	22.635,00	22.635,00
50	OPERADOR DE EQUIPO LIVIANO	1,00000	22.635,00	22.635,00
5	ALBAÑIL DE 1ra	1,00000	25.320,00	25.320,00
2	AYUDANTE	2,00000	20.190,00	40.380,00
1	OBRERO DE 1ra	10,00000	18.856,00	188.560,00
			Total Mano de Obra:	313.540,00
				0.00

Calculado por: Br. EUDIS DE LA CRUZ

Revisado por: ING. PEDRO BALLESTEROS

Desarrollado Por: USO EXCLUSIVO DE:

Lulo Software, C.A. DEMO *LuloWin - Control de Obras*

 Mano de Obra Directa:
 313.540,00

 189.00 % Prestaciones Sociales:
 592.590,60

 4,000.00 Bs./dia Alimenticio:
 62.000,00

Total Mano de Obra: 968.130,60
Unitario Mano de Obra: 64.542,04

Costo Directo por Unidad: 221.891,65

15.00% Administración y Gastos Generales: 33.283,75

Sub-Total: 255.175,40

10.00% Utilidad e Imprevistos: 25.517,54

PRECIO UNITARIO Bs. 280.692,94

Total partida Bs.: 4.16 X 280,692.94 = 1,167,682.63

Fecha: 24/05/2005

ANALISIS DE PRECIO UNITARIO

Partida № 6

Descripción de la Obra: CONSTRUCCION DE ZAPATA AISLADA DE 2.75 m. x 2.75 m.

Propietario: TRABAJO ESPECIAL DE GRADO Código de la Obra: ZAPATA

Descripción Partida: CONCRETO DE Fc 250 kgf/cm2 A LOS 28 DIAS, ACABADO CORRIENTE, PARA LA CONSTRUCCION

DE PEDESTALES.

 Código:
 Código Covenin:
 Unidad
 Cantidad
 Rendimiento

 G1-00311
 E.324.000.125
 M3
 0,48 M3
 12,000000
 M3/dia

1.- MATERIALES

Código	Descripción	Unidad	Cantidad	% Desp.	Costo	Total
1	CEMENTO PORTLAND GRIS T1 42.5Kg C/CALETA	SACO	8,92500		8,350.00	74.523,75
1729	PIEDRA TRIT.DE 1"(EN SITIO EXPLOTACION)	m3	0,94500		45,000.00	42.525,00
1730	ARENA LAVADA/SITIO DE EXPLOT. 1600 Kgxm3	m3	0,47250		45,000.00	21.262,50
552	AGUA-TARIFA INDUSTRIAL TIPO "B"	m3	0,17850		1,375.00	245,44
				Tota	Materiales:	138.556,69
				Unitario de	Materiales:	138.556.69

2 .- EQUIPOS

	, , , , , , , , , , , , , , , , , , , 				
Código	Descripción	Cantidad	Costo	Dep. o Alq.	Total
116	MEZCL/CONCRETO DIESEL CAP=0.75m3 24HP	1,00000	21.819.425,00	0.002500	54.548,56
372	VIBRADOR GASOLINA 5HP MANG.=5m	2,00000	2.606.065,00	0.003000	15.636,39
	CBZL=37mm	· ·			
75	CARRETON BUGGI 150 L RUEDAS DE GOMA	4,00000	650.000,00	0.003550	9.230,00
375	MINISHOVEL BOBCAT 266 40HP CAP=0.31 M3	1,00000	55.875.000,00	0.003610	201.708,75
229	CEPILLO DE GOMA PARA FRISAR 6"	2,00000	5.583,00	0.010000	111,66
246	PALA REDONDA 040202	3,00000	21.950,00	0.010000	658,50
			To	tal Equipos:	281.893,86
			Unitario	de Fauinos:	23 491 16

3 .- MANO DE OBRA

Código	Descripción	Cantidad	Salario	Total
28	MAESTRO DE OBRAS DE 2da	0,50000	28.020,00	14.010,00
32	MAQUINISTA DE CONCRETO DE 1ra	1,00000	22.635,00	22.635,00
50	OPERADOR DE EQUIPO LIVIANO	1,00000	22.635,00	22.635,00
5	ALBAÑIL DE 1ra	1,00000	25.320,00	25.320,00
2	AYUDANTE	2,00000	20.190,00	40.380,00
1	OBRERO DE 1ra	10,00000	18.856,00	188.560,00
			Total Mano de Obra:	313.540,00
				0,00

Calculado por: Br. EUDIS DE LA CRUZ

Revisado por: ING. PEDRO BALLESTEROS

Desarrollado Por: USO EXCLUSIVO DE:

Lulo Software, C.A. DEMO *LuloWin - Control de Obras*

 Mano de Obra Directa:
 313.540,00

 189.00 % Prestaciones Sociales:
 592.590,60

 4,000.00 Bs./dia Alimenticio:
 62.000,00

Total Mano de Obra: 968.130,60 Unitario Mano de Obra: 80.677,55

Costo Directo por Unidad: 242.725,40

15.00% Administración y Gastos Generales: 36.408,81 **Sub-Total:** 279.134,21

10.00% Utilidad e Imprevistos: 27.913,42

PRECIO UNITARIO Bs. 307.047,63

Total partida Bs.: 0.48 X 307,047.63 = 147,382.86

Fecha: 24/05/2005

ANALISIS DE PRECIO UNITARIO

Partida № 7

Descripción de la Obra: CONSTRUCCION DE ZAPATA AISLADA DE 2.75 m. x 2.75 m.

Propietario: TRABAJO ESPECIAL DE GRADO Código de la Obra: ZAPATA

Descripción Partida: ENCOFRADO DE MADERA TIPO RECTO, ACABADO CORRIENTE EN CABEZALES DE PILOTES,

BASES Y ESCALONES.

 Código:
 Código Covenin:
 Unidad
 Cantidad
 Rendimiento

 G1-00458
 E.341.010.111
 M2
 9,55 M2
 40,000000
 M2/dia

1.- MATERIALES

Código	Descripción	Unidad	Cantidad	% Desp.	Costo	Total
42	MADERA T.SAQUI-SAQUI,S/CEPILL.S/MEDIDA	m3	0,00650	_	1,500,000.00	9.750,00
41	MADERA CUARTON AURORA 5X10 CM	m3	0,00650		800,000.00	5.200,00
69	CLAVOS DE 4" CAL.8	kg	0,15000		3,500.00	525,00
				Tota	l Materiales:	15.475,00
				Unitario de	Materiales:	15 475 00

2 .- EQUIPOS

Código	Descripción	Cantidad	Costo	Dep. o Alq.	Total
84	SIERRA/MESA P/MADERA DIS.35cm 8.5HP GAS.	0,33000	2.111.055,00	0.002500	1.741,62
80	CEPILLO DE CARPINTERO STANLEY 15"	1,00000	296.741,00	0.012000	3.560,89
250	SERRUCHO 26" 303365	2,00000	17.920,00	0.010000	358,40
245	MARTILLO PARA CARPINTERO STANLEY 51271	2,00000	17.800,00	0.010000	356,00
75	CARRETON BUGGI 150 L RUEDAS DE GOMA	1,00000	650.000,00	0.003550	2.307,50
251	BARRA METALICA DE 1.47m PARA HACER HOYOS	2,00000	24.900,00	0.010000	498,00
236	NIVEL DE 3 BURBUJAS 14" STANLEY	2,00000	19.115,00	0.010000	382,30
240	ESCUADRA MET.ALUM.MARCA ESPN(60x40CM)	2,00000	39.765,00	0.010000	795,30
230	CINTA METRICA 3m ACERO -TAJIMA 203777	3,00000	12.085,00	0.010000	362,55
			To	tal Equipos:	10.362,56
			Unitario d	de Equipos:	259,06

3 .- MANO DE OBRA

Código	Descripción	Cantidad	Salario	Total
9	MAESTRO CARPINTERO DE 1ra	1,00000	28.020,00	28.020,00
7	CARPINTERO DE 1ra	0,50000	25.320,00	12.660,00
6	CARPINTERO DE 2da	2,00000	22.635,00	45.270,00
2	AYUDANTE	3,00000	20.190,00	60.570,00
1	OBRERO DE 1ra	2,00000	18.856,00	37.712,00
			Total Mano de Obra:	184.232,00
				0.00

Calculado por: Br. EUDIS DE LA CRUZ

Revisado por: ING. PEDRO BALLESTEROS

Desarrollado Por: USO EXCLUSIVO DE:

Lulo Software, C.A. DEMO *LuloWin - Control de Obras*

Total Mano de Obra: 566.430,48
Unitario Mano de Obra: 14.160,76

Costo Directo por Unidad: 29.894,82

Mano de Obra Directa:

189.00 % Prestaciones Sociales:

4,000.00 Bs./dia Alimenticio:

184.232,00

348.198,48

34.000.00

15.00% Administración y Gastos Generales: 4.484,22 Sub-Total: 34.379,04

10.00% Utilidad e Imprevistos: 3.437,90

PRECIO UNITARIO Bs. 37.816,94

Total partida Bs.: 9.55 X 37,816.94 = 361,151.78

Fecha: 24/05/2005

ANALISIS DE PRECIO UNITARIO

_			_
Pa	rtida	\ N ≌	8

Descripción de la Obra: CONSTRUCCION DE ZAPATA AISLADA DE 2.75 m. x 2.75 m.

Propietario: TRABAJO ESPECIAL DE GRADO Código de la Obra: ZAPATA

Descripción Partida: SUMINISTRO, PREPARACION Y COLOCACION DE ACERO DE REFUERZO Fy 4.200 Kgf/Cm2,

UTILIZANDO CABILLAS IGUAL O MENOR DEL Nº 3 PARA INFRAESTRUCTURA.

Código:Código Covenin:UnidadCantidadRendimientoG1-00486E.351.110.210KGF147,24 KGF1.000,000000KGF/dia

1.- MATERIALES

Código	Descripción	Unidad	Cantidad	% Desp.	Costo	Total
51	ALAMBRON D=5,2mm(0,167 KG/M)L=6m	kg	0,55000		1,925.00	1.058,75
58	CABILLA D=3/8" R=2100 KG/CM2(0,559 KG/M)	kg	0,55000		1,790.00	984,50
65	ALAMBRE LISO GALVANIZADO CAL 18	kg	0,05000		2,800.00	140,00
				Tota	l Materiales:	2.183,25
				Unitario de	Materiales:	2.183.25

2.- EQUIPOS

Código	Descripción	Cantidad	Costo	Dep. o Alq.	Total
56	DOBLADORA DE CABILLA HASTA 1-3/8"	1,00000	16.250.000,00	0.003500	56.875,00
386	CORTADORA/CABILLA AUTOM. HASTA 1 3/8"	1,00000	15.500.000,00	0.003000	46.500,00
249	ALICATE CRESCENT 8" 0716003	4,00000	94.500,00	0.010000	3.780,00
348	TENAZA CRESCENT DE 8"	4,00000	30.275,00	0.010000	1.211,00
230	CINTA METRICA 3m ACERO -TAJIMA 203777	3,00000	12.085,00	0.010000	362,55
		Total Equipos:		108.728,55	
		Unitario de Equipos:		108,73	

3 .- MANO DE OBRA

Código	Descripción	Cantidad	Salario	Total
12	MAESTRO CABILLERO	1,00000	28.020,00	28.020,00
11	CABILLERO DE 1ra	3,00000	25.320,00	75.960,00
10	CABILLERO DE 2da	1,00000	22.635,00	22.635,00
2	AYUDANTE	4,00000	20.190,00	80.760,00
1	OBRERO DE 1ra	4,00000	18.856,00	75.424,00
			Total Mano de Obra:	282.799,00
				0.00

Calculado por: Br. EUDIS DE LA CRUZ

Revisado por: ING. PEDRO BALLESTEROS

Desarrollado Por: USO EXCLUSIVO DE:

Lulo Software, C.A. DEMO *LuloWin - Control de Obras*

 Mano de Obra Directa:
 282.799,00

 189.00 % Prestaciones Sociales:
 534.490,11

 4,000.00 Bs./dia Alimenticio:
 52.000,00

Total Mano de Obra: 869.289,11
Unitario Mano de Obra: 869,29

Costo Directo por Unidad: 3.161,27

15.00% Administración y Gastos Generales: 474,19 Sub-Total: 3.635,46

10.00% Utilidad e Imprevistos: 363,55

PRECIO UNITARIO Bs. 3.999,01

Total partida Bs.: 147.24 X 3,999.01 = 588,814.23

Fecha: 24/05/2005

ANALISIS DE PRECIO UNITARIO

_			
Da	rtida	. NIO	g
	111117	1 IV-	9

Descripción de la Obra: CONSTRUCCION DE ZAPATA AISLADA DE 2.75 m. x 2.75 m.

Propietario: TRABAJO ESPECIAL DE GRADO Código de la Obra: ZAPATA

Descripción Partida: SUMINISTRO, PREPARACION Y COLOCACION DE ACERO DE REFUERZO Fy 4.200 Kgf/Cm2,

UTILIZANDO CABILLAS DE Nº 4 A Nº 7 PARA INFRAESTRUCTURA.

Código: Unidad Cantidad Rendimiento Código Covenin: G1-00487 E.351.120.210 KGF 225,55 KGF 1.000,000000 KGF/dia

-		MΑ	TE	ERI	ΛІ	EC
	_	WL	\ I F	-61	Δ	-3

Código	Descripción	Unidad	Cantidad	% Desp.	Costo	Total
59	CABILLA D=1/2" R=2100 KG/CM2(0,994 KG/M)	kg	0,27500		1,680.00	462,00
60	CABILLA D=5/8" R=2100 KG/CM2(1,554 KG/M)	kg	0,27500		1,780.00	489,50
61	CABILLA D=3/4" R=2100 KG/CM2(2,237 KG/M)	kg	0,27500		1,750.00	481,25
62	CABILLA D=7/8" R=2100 KG/CM2(3,045 KG/M)	kg	0,27500		1,850.00	508,75
65	ALAMBRE LISO GALVANIZADO CAL 18	kg	0,05000		2,800.00	140,00
				Tota	Materiales:	2.081,50

Unitario de Materiales: 2.081,50

2.- EQUIPOS

Desarrollado Por:

Código	Descripción	Cantidad	Costo	Dep. o Alq.	Total
56	DOBLADORA DE CABILLA HASTA 1-3/8"	1,00000	16.250.000,00	0.003500	56.875,00
386	CORTADORA/CABILLA AUTOM. HASTA 1 3/8"	1,00000	15.500.000,00	0.003000	46.500,00
249	ALICATE CRESCENT 8" 0716003	4,00000	94.500,00	0.010000	3.780,00
348	TENAZA CRESCENT DE 8"	4,00000	30.275,00		1.211,00
230	CINTA METRICA 3m ACERO -TAJIMA 203777	3,00000	12.085,00	0.010000	362,55
		Total Equipos:		108.728,55	
		Unitario de Equipos:		108,73	

3 .- MANO DE OBRA

a /	-	<u> </u>	<u> </u>	
Código	Descripción	Cantidad	Salario	Total
12	MAESTRO CABILLERO	1,00000	28.020,00	28.020,00
11	CABILLERO DE 1ra	3,00000	25.320,00	75.960,00
10	CABILLERO DE 2da	1,00000	22.635,00	22.635,00
2	AYUDANTE	4,00000	20.190,00	80.760,00
1	OBRERO DE 1ra	4,00000	18.856,00	75.424,00
			Total Mano de Obra:	282.799,00
				0.00

Calculado por: Br. EUDIS DE LA CRUZ

USO EXCLUSIVO DE:

Revisado por: ING. PEDRO BALLESTEROS

Lulo Software, C.A. DEMO *LuloWin - Control de Obras*

282.799,00 Mano de Obra Directa: 189.00 % Prestaciones Sociales: 534.490,11 4,000.00 Bs./dia Alimenticio: 52.000,00

Total Mano de Obra: 869.289,11 Unitario Mano de Obra: 869,29 **Costo Directo por Unidad:** 3.059,52

15.00% Administración y Gastos Generales: 458,93

Sub-Total: 3.518,45

10.00% Utilidad e Imprevistos: 351,85

PRECIO UNITARIO Bs. 3.870,30

Total partida Bs.: 225.55 X 3,870.30 = 872,946.17

Fecha: 24/05/2005

ANALISIS DE PRECIO UNITARIO

					Partida N	№ 10
Descripción de la Obra:	CONSTRUCCION DE 2	ZAPATA AISLADA	DE 2.75 m. x 2.7	75 m.		
Propietario:	TRABAJO ESPECIAL I	DE GRADO	DO Código de la Obra: ZA			
Descripción Partida:	TRANSPORTE URBAN ESTADO SUELTO, A D					EDIDO EN
Código:	Código Covenin:	Unidad	Cantid	ad	Rendim	niento
G1-01172	E.903.142.020	M3 x KM	100,20 N	ИЗ x KM	1.103,770000	M3 x KM/dia
1 MATERIALE	S					
Código Descripción	n	Unidad	Cantidad	% Desp.	Costo	Total
				Tota	al Materiales:	0,00
					e Materiales:	0,00
2 EQUIPOS						
Código Descripción			Cantidad	Costo	Dep. o Alq.	Total
584 CAMION VOLT	TEO FIAT MP700E31HT 15m	3 24.9T	1,00000	179.820.850,00	0.002400	431.570,04
					otal Equipos:	431.570,04
3 MANO DE C	NRD A			Unitario	de Equipos:	391,00
Código Descripción			Cantidad	Salario		Total
	CAMION MAS DE 15 TONS		1.00000	23.535,00		23.535,00
, , , , , , , , , , , , , , , , , , , ,			1,00000	Total Ma	ano de Obra:	23.535,00 0,00
					Obra Directa:	23.535,00
Calculado por: Br. EUDIS	DE LA CRUZ		<u>189</u>	.00 % Prestacio		44.481,15
Revisado por: ING. PEDR	RO BALLESTEROS			4,000.00 Bs./di	a Alimenticio:	4.000,00
nevisado por. ind. i EDI	IO DALLESTERIOS			Total M	ano de Obra:	72.016,15
Desarrollado Por: USO E.	XCLUSIVO DE:				no de Obra:	65,25
Lulo Software, C.A. DEMO	*LuloWin - Control de Obras*		Co	sto Directo p	or Unidad:	456,25
		15.	.00% Administra	ación y Gastos	Generales:	68,44
					Sub-Total:	524,69
			10.0	0% Utilidad e	Imprevistos:	52,47
		Γ	PRECIO	UNITARIO	Bs.	577,16

Total partida Bs.: 100.20 X 577.16 = 57,831.43

ANEXO B

Análisis de precios unitarios del presupuesto correspondiente a los cómputos métricos de la fundación con un pilote y su cabezal.

Fecha: 24/05/2005

ANALISIS DE PRECIO UNITARIO

Código de la Obra: PILOTE80

Código de la Obra: PILOTE80

XCAVADOR PARA ASIENTO DE
TO A MANO
I Rendimiento
180,000000 M3/dia

% Desp. Costo Total

Total Materiales: 0,00
Unitario de Materiales: 0,00

Unitario de Materiales: 0,00

Costo Dep. o Alq. Total

[14.050.000,00 0.003690 420.844,50 21.950,00 0.010000 878,00 32.185,00 0.010000 1.287,40

Partida № 1

Descripción de la Obra:	CONSTRUCCION DE FUNDACION CON UN PILOTE DE DIAMETRO 8 CABEZAL

Propietario: TRABAJO ESPECIAL DE GRADO

Descripción Partida: EXCAVACION EN TIERRA CON USO DE EQUIPO RETROEXCAVADOR PARA ASIENTO DE

FUNDACIONES, ZANJAS, ETC. INCLUYE REPERFILAMIENTO A MANO

 Código:
 Código Covenin:
 Unidad
 Cantidad
 Rendimiento

 G1-00281
 E.311.310.000
 M3
 6.31 M3
 180.000000
 M3

Unidad

Cantidad

2	 EQU	IPOS

Código

1.- MATERIALES

Descripción

	· · · · · · · · · · · · · · · · · · ·				
Código	Descripción	Cantidad	Costo	Dep. o Alq.	Total
407	RETROEXCAVADORA CAT428C 4x2 1.37yd3-ING	1,00000	114.050.000,00	0.003690	420.844,50
246	PALA REDONDA 040202	4,00000	21.950,00	0.010000	878,00
254	PICO PUNTA Y PALA BELLOTA U500949	4,00000	32.185,00	0.010000	1.287,40
74	CARRETILLA RUEDA GOMA CAP.=55Lts U200305	2,00000	94.830,00	0.003500	663,81
251	BARRA METALICA DE 1.47m PARA HACER HOYOS	2,00000	24.900,00	0.010000	498,00
			To	tal Equipos:	424.171,71
			Unitario (de Equipos:	2.356,51

3 .- MANO DE OBRA

Código	Descripción	Cantidad	Salario	Total
29	MAESTRO DE OBRAS DE 1ra	0,50000	32.295,00	16.147,50
64	CAPORAL DE EQUIPO	1,00000	28.020,00	28.020,00
1	OBRERO DE 1ra	6,00000	18.856,00	113.136,00
58	OPERADOR DE PALA MAS 1 YARDA CUB DE 2da	1,00000	25.845,00	25.845,00
49	AYUDANTE DE OPERADORES	1,00000	20.460,00	20.460,00
			Total Mano de Obra:	203.608,50
				0.00

Calculado por: Br. WILMER CASTILLO

Revisado por: ING. PEDRO BALLESTEROS

Desarrollado Por: USO EXCLUSIVO DE:

Lulo Software, C.A. DEMO *LuloWin - Control de Obras*

 Mano de Obra Directa:
 203.608,50

 189.00 % Prestaciones Sociales:
 384.820,07

 4,000.00 Bs./dia Alimenticio:
 38.000,00

 Total Mano de Obra:
 626.428.57

Unitario Mano de Obra: 3.480,16
Costo Directo por Unidad: 5.836.67

15.00% Administración y Gastos Generales: 875,50

Sub-Total: 6.712,17

10.00% Utilidad e Imprevistos: 671,22

PRECIO UNITARIO Bs. 7.383,39

Total partida Bs.: 6.31 X 7,383.39 = 46,589.19

Fecha: 24/05/2005

ANALISIS DE PRECIO UNITARIO

					Partida №	2	
Descripción de la Obra:	CONSTRUCCION DE FU CABEZAL	NDACION CON	UN PILOTE DE	DIAMETRO 80 (Cm. LONG. 10 m.	YSU	
Propietario:	TRABAJO ESPECIAL DE	GRADO			Código de la Ob	ra: PILOTE80	
Descripción Partida:	CARGA CON EQUIPO LIV ASIENTO DE FUNDACIOI			ENTE DE LAS E	XCAVACIONES	PARA	
Código:	Código Covenin:	Unidad	Cantida	ad	Rendimi	niento	
G1-00285	E.313.210.000	M3	6,65 N	13	110,000000	M3/dia	
1 MATERIALE	S						
Código Descripción	1	Unidad	Cantidad	% Desp.	Costo	Total	
				Tota		0,00	
					Materiales:	0,00	
2 EQUIPOS		_					
Código Descripción	1		Cantidad	Costo	Dep. o Alq.	Total	
	BOBCAT 266 40HP CAP=0.31 N	/l3	1,00000	55.875.000,00	0.003610	201.708,75	
					tal Equipos:	201.708,75	
3 MANO DE C	NRDA			Unitario	de Equipos:	1.833,72	
Código Descripción			Cantidad	Salario		Total	
64 CAPORAL DE			0.25000	28.020.00		7.005.00	
50 OPERADOR D	E EQUIPO LIVIANO		1,00000	22.635,00		22.635,00	
1 OBRERO DE 1	ra		1,00000	18.856,00 Total Ma	no de Obra:	18.856,00 48.496,00	
				rotal Ma	no do Obra.	0,00	
				Mano de 0	Obra Directa:	48.496,0	
Calculado por: Br. WILMEI	R CASTILLO		<u>189.</u>	.00 % Prestacion		91.657,4	
				4,000.00 Bs./dia	a Alimenticio:	9.000,0	
Revisado por: ING. PEDR	O BALLESTEROS						
D # / D =	VOLUME DE				ano de Obra:	149.153,4	
	XCLUSIVO DE:		_	Unitario Ma		1.355,9	
Lulo Software, C.A. DEMO	*LuloWin - Control de Obras*			sto Directo po		3.189,6	
		15.	00% Administra	ación y Gastos		478,4	
			10.0	0% Utilidad e l	Sub-Total:	3.668,1 366,8	
			10.0	o /o Otilidad e I	inhievisios.	300,8	

PRECIO UNITARIO Bs. 4.034,92

Total partida Bs.: 6.65 X 4,034.92 = 26,832.22

Fecha: 24/05/2005

ANALISIS DE PRECIO UNITARIO

Pa	rti (ds.	Nº	3
Гα	ILIC	Ja	14-	J

Descripción de la Obra: CONSTRUCCION DE FUNDACION CON UN PILOTE DE DIAMETRO 80 Cm. LONG. 10 m. Y SU

CABEZAL

Propietario: TRABAJO ESPECIAL DE GRADO Código de la Obra: PILOTE80

Descripción Partida: COMPACTACION DE RELLENOS CON APISONADORES DE PERCUSION, CORRESPONDIENTE A

LOS ASIENTOS DE FUNDACIONES, ZANJAS, ETC

Código:Código Covenin:UnidadCantidadRendimientoG1-00290E.317.000.000M35.19 M350.00000M3/dia

1.- MATERIALES

Código	Descripción	Unidad	Cantidad	% Desp.	Costo	Total
552	AGUA-TARIFA INDUSTRIAL TIPO "B"	m3	0,10000		1,375.00	137,50
				Total Materiales:		137,50
				Unitario de	Materiales:	137.50

2.- EQUIPOS

Código	Descripción	Cantidad	Costo	Dep. o Alq.	Total
507	COMPACTADORA DE PLANCHA .4x.4-GASOLINA	2,00000	60.000,00	1.000000	120.000,00
246	PALA REDONDA 040202	8,00000	21.950,00	0.010000	1.756,00
74	CARRETILLA RUEDA GOMA CAP.=55Lts U200305	4,00000	94.830,00	0.003500	1.327,62
166	MANG. PLASTICA 1/2" L=100m TIPO CULEBRA	2,00000	75.000,00	0.008000	1.200,00
		Total Equipos:		124.283,62	
			I Initario	de Fauinos:	2 485 67

3 .- MANO DE OBRA

Código	Descripción	Cantidad	Salario	Total
3	CAPORAL	1,00000	22.635,00	22.635,00
1	OBRERO DE 1ra	10,00000	18.856,00	188.560,00
50	OPERADOR DE EQUIPO LIVIANO	2,00000	22.635,00	45.270,00
			Total Mano de Obra:	256.465,00
				0,00

Calculado por: Br. WILMER CASTILLO

Revisado por: ING. PEDRO BALLESTEROS

Desarrollado Por: USO EXCLUSIVO DE:

Lulo Software, C.A. DEMO *LuloWin - Control de Obras*

 Mano de Obra Directa:
 256.465,00

 189.00 % Prestaciones Sociales:
 484.718,85

 4,000.00 Bs./dia Alimenticio:
 52.000,00

Total Mano de Obra: 793.183,85
Unitario Mano de Obra: 15.863,68
Costo Directo por Unidad: 18.486,85

15.00% Administración y Gastos Generales: 2.773,03

Administracion y Gastos Generales: 2.7/3,03 Sub-Total: 21.259,88

10.00% Utilidad e Imprevistos: 2.125,99

PRECIO UNITARIO Bs. 23.385,87

Total partida Bs.: 5.19 X 23,385.87 = 121,372.67

Fecha: 24/05/2005

ANALISIS DE PRECIO UNITARIO

Partida № 4

Descripción de la Obra: CONSTRUCCION DE FUNDACION CON UN PILOTE DE DIAMETRO 80 Cm. LONG. 10 m. Y SU

CABEZAL

Propietario: TRABAJO ESPECIAL DE GRADO Código de la Obra: PILOTE80

Descripción Partida: PERFORACION SIN VACIAR, DE DIAMETRO 80 Cm., CORRESPONDIENTE A PILOTES

PERFORADOS (CON EXTRACCION DE TIERRA), SIN CAMISA DE PROTECCION, CON USO DE

LODOS BENTONITICOS.

Código: Código Covenin: Unidad Cantidad Rendimiento G13001 E.321.220.080 Μ 11,00 M 17,000000 M/dia

1	- M	ΙΔΊ	ΓFR	ΙΔΙ	LES
	- IV				

Código	Descripción	Unidad	Cantidad	% Desp.	Costo	Total
135	BENTONITA-DOSIFICACION=1 SACO/m3 4 USOS	SACO	0,13000		19,360.00	2.516,80
				Total Materiales:		2.516,80
				Unitario de	Materiales:	2.516.80

2 .- EQUIPOS

Desarrollado Por:

Código	Descripción	Cantidad	Costo	Dep. o Alq.	Total
184	CAMION PERFORADOR CALDWELL	1,00000	127.800.000,00	0.003000	383.400,00
427	EQUIPO PARA PREPARAR BENTONITA	1,00000	24.000.000,00	0.003500	84.000,00
28	CARGADOR DE RUEDAS CAT928-G(USA)2.40yd3	0,50000	248.450.000,00	0.002350	291.928,75
177	CAMION PLATAFORMA CAP=10TON, VOL=20M3	0,35000	122.034.000,00	0.002000	85.423,80
		Total Equipos:		844.752,55	
			Linitario (de Fauinns:	49 691 33

3 .- MANO DE OBRA

Código	Descripción	Cantidad	Salario	Total
29	MAESTRO DE OBRAS DE 1ra	1,00000	32.295,00	32.295,00
46	OPERADOR DE EQUIPO PERFORADOR	1,00000	22.080,00	22.080,00
52	OPERADOR DE EQUIPO PESADO DE 1ra	0,50000	28.020,00	14.010,00
2	AYUDANTE	1,00000	20.190,00	20.190,00
			Total Mano de Obra:	88.575,00
				0.00

Calculado por: Br. WILMER CASTILLO Revisado por: ING. PEDRO BALLESTEROS

USO EXCLUSIVO DE:

Lulo Software, C.A. DEMO *LuloWin - Control de Obras*

189.00 % Prestaciones Sociales: 4,000.00 Bs./dia Alimenticio: 14.000,00 Total Mano de Obra: 269.981,75 Unitario Mano de Obra: 15.881,28

88.575,00

167.406,75

Costo Directo por Unidad: 68.089,41 15.00% Administración y Gastos Generales: 10.213,41

Mano de Obra Directa:

Sub-Total: 78.302,82

10.00% Utilidad e Imprevistos: 7.830,28

86.133,10 PRECIO UNITARIO Bs.

Total partida Bs.: 11.00 X 86,133.10 = 947,464.10

Fecha: 24/05/2005

ANALISIS DE PRECIO UNITARIO

Partida № 5

Descripción de la Obra: CONSTRUCCION DE FUNDACION CON UN PILOTE DE DIAMETRO 80 Cm. LONG. 10 m. Y SU

CABEZAL

Propietario: TRABAJO ESPECIAL DE GRADO Código de la Obra: PILOTE80

Descripción Partida: SUMUNISTRO Y TRANSPORTE, PREPARACION Y COLOCACION DE ACERO DE REFUERZO Fy 4200

Kgf/CM2, UTILIZANDO CABILLA IGUAL O MENOR DEL № 3 PARA PILOTES.

Código:Código Covenin:UnidadCantidadRendimiento*INFRA56E-321.632.121KGF68.20 KGF700.000000KGF/dia

1 .	- M	ΔΤ	FRI	ΙΔΙ	.ES

Código	Descripción	Unidad	Cantidad	% Desp.	Costo	Total
*ACERO04	CABILLA ESTRIADA DE 3/8". RAT 2100.	KG.	1,00000		1,790.00	1.790,00
*ACERO10	ALAMBRE LISO GALVANIZADO, CALIBRE # 18.	KG.	0,05000		2,800.00	140,00
	Total Materiales:		Materiales:	1.930,00		
			Unitario de Materiales:		1.930,00	

2.- EQUIPOS

Código	Descripción	Cantidad	Costo	Dep. o Alq.	Total
*GRUATEL	GRUA TORRE.	1,00000	180.000.000,00	0.001000	180.000,00
*EQUIP02	EQUIPO DE CABILLA.	1,00000	6.665.000,00	0.002000	13.330,00
			To	tal Equipos:	193.330,00
			Unitario d	de Fauinos:	276.19

3 .- MANO DE OBRA

Código	Descripción	Cantidad	Salario	Total
12	MAESTRO CABILLERO	0,50000	28.020,00	14.010,00
10	CABILLERO DE 2da	1,00000	22.635,00	22.635,00
11	CABILLERO DE 1ra	2,00000	25.320,00	50.640,00
1	OBRERO DE 1ra	1,00000	18.856,00	18.856,00
2	AYUDANTE	1,00000	20.190,00	20.190,00
OPEGRUA1	OPERADOR DE GRUA (GRUERO) DE 1ra	0,50000	26.400,00	13.200,00
			Total Mano de Obra:	139.531,00
				0,00

Calculado por: Br. WILMER CASTILLO

Revisado por: ING. PEDRO BALLESTEROS

Desarrollado Por: USO EXCLUSIVO DE:

Lulo Software, C.A. DEMO *LuloWin - Control de Obras*

 Mano de Obra Directa:
 139.531,00

 189.00 % Prestaciones Sociales:
 263.713,59

 4,000.00 Bs./dia Alimenticio:
 24.000,00

Total Mano de Obra:

Unitario Mano de Obra: 610,35 Costo Directo por Unidad: 2.816,54

15.00% Administración y Gastos Generales: 422,48

Sub-Total: 3.239,02

427.244.59

10.00% Utilidad e Imprevistos: 323,90

PRECIO UNITARIO Bs. 3.562,92

Total partida Bs.: 68.20 X 3,562.92 = 242,991.14

Fecha: 24/05/2005

ANALISIS DE PRECIO UNITARIO

Partida Nº 6

Descripción de la Obra: CONSTRUCCION DE FUNDACION CON UN PILOTE DE DIAMETRO 80 Cm. LONG. 10 m. Y SU

CABEZAL

Propietario: TRABAJO ESPECIAL DE GRADO Código de la Obra: PILOTE80

Descripción Partida: SUMUNISTRO Y TRANSPORTE, PREPARACION Y COLOCACION DE ACERO DE REFUERZO Fy 4200

Kgf/CM2, UTILIZANDO CABILLA Nº 4 A Nº 7, PARA PILOTES.

Código:Código Covenin:UnidadCantidadRendimiento*INFRA58E-321.632.221KGF356.05 KGF1.000.000000KGF/dia

1		MA	ΓER	IAL	.ES
---	--	----	-----	-----	-----

Código	Descripción	Unidad	Cantidad	% Desp.	Costo	Total
*ACERO10	ALAMBRE LISO GALVANIZADO, CALIBRE # 18.	KG.	0,05000		2,800.00	140,00
*ACERO05	CABILLA ESTRIADA DE 1/2". RAT 2100.	KG.	0,27500		1,680.00	462,00
*ACERO06	CABILLA ESTRIADA DE 5/8". RAT 2100.	KG.	0,27500		1,780.00	489,50
*ACERO07	CABILLA ESTRIADA DE 3/4". RAT 2100.	KG.	0,27500		1,750.00	481,25
*ACERO08	CABILLA ESTRIADA DE 7/8". RAT 2100.	KG.	0,27500		1,850.00	508,75
				Tota	l Materiales:	2.081,50
				Unitario de	Materiales:	2.081,50

2.- EQUIPOS

Código	Descripción	Cantidad	Costo	Dep. o Alq.	Total
*EQUIP02	EQUIPO DE CABILLA.	1,00000	6.665.000,00	0.002000	13.330,00
*GRUATEL	GRUA TORRE.	1,00000	180.000.000,00	0.001000	180.000,00
		Total Equipos:		193.330,00	
			Unitario d	de Fauinos:	193 33

3 .- MANO DE OBRA

Código	Descripción	Cantidad	Salario	Total
12	MAESTRO CABILLERO	0,50000	28.020,00	14.010,00
10	CABILLERO DE 2da	1,00000	22.635,00	22.635,00
11	CABILLERO DE 1ra	2,00000	25.320,00	50.640,00
OPEGRUA1	OPERADOR DE GRUA (GRUERO) DE 1ra	0,50000	26.400,00	13.200,00
1	OBRERO DE 1ra	1,00000	18.856,00	18.856,00
2	AYUDANTE	1,00000	20.190,00	20.190,00
			Total Mano de Obra:	139.531,00
				0.00

Calculado por: Br. WILMER CASTILLO

Revisado por: ING. PEDRO BALLESTEROS

Desarrollado Por: USO EXCLUSIVO DE:

Lulo Software, C.A. DEMO *LuloWin - Control de Obras*

 Mano de Obra Directa:
 139.531,00

 189.00 % Prestaciones Sociales:
 263.713,59

 4,000.00 Bs./dia Alimenticio:
 24.000,00

Total Mano de Obra: 427.244,59
Unitario Mano de Obra: 427,24

15.00% Administración y Gastos Generales: 405,31

Costo Directo por Unidad:

Sub-Total: 3.107,38

2.702,07

10.00% Utilidad e Imprevistos: 310,74

PRECIO UNITARIO Bs. 3.418,12

Total partida Bs.: 356.05 X 3,418.12 = 1,217,021.63

Fecha: 24/05/2005

Partida № 7

ANALISIS DE PRECIO UNITARIO

Descripción de la Obra: CONSTRUCCION DE FUNDACION CON UN PILOTE DE DIAMETRO 80 Cm. LONG. 10 m. Y SU **CABEZAL** Propietario: TRABAJO ESPECIAL DE GRADO Código de la Obra: PILOTE80 Descripción Partida: PODA DE PILOTES DE CONCRETO, MEDIDO SEGUN EL AREA DE SU SECCION. Código: Código Covenin: Rendimiento Unidad Cantidad E.321.640.000 G1-00302 0,50 M2 M2 2,500000 M2/dia 1 .- MATERIALES % Desp. Código Descripción Unidad Cantidad Costo **Total** Total Materiales: 0,00 Unitario de Materiales: 0.00 2 .- EQUIPOS Código Descripción Cantidad Costo **Total** Dep. o Alq. 133 254 1,00000 1.000000 COMPRESOR CON 1 MARTILLO 135 p3 150.000,00 150.000,00 PICO PUNTA Y PALA BELLOTA U500949 2,00000 32.185,00 0.010000 643,70 333 PALA RECTANGULAR(M/METAL NEGRO)BELLOTA 2,00000 17.250,00 0.010000 345,00 Total Equipos: 150.988,70 Unitario de Equipos: 60.395,48 3.- MANO DE OBRA

Código	Descripción	Cantidad	Salario	Total
3	CAPORAL	0,50000	22.635,00	11.317,50
45	OPERADOR DE MARTILLO PERFORADOR	2,00000	20.460,00	40.920,00
2	AYUDANTE	2,00000	20.190,00	40.380,00
			Total Mano de Obra:	92.617,50
				0,00

Calculado por: Br. WILMER CASTILLO

Revisado por: ING. PEDRO BALLESTEROS

Mano de Obra Directa:

189.00 % Prestaciones Sociales:

4,000.00 Bs./dia Alimenticio:

Total Mano de Obra: 285.664,58

Desarrollado Por: USO EXCLUSIVO DE: Unitario Mano de Obra: 114.265,83

Lulo Software, C.A. DEMO *LuloWin - Control de Obras* Costo Directo por Unidad: 174.661,31

15.00% Administración y Gastos Generales: 26.199,20 Sub-Total: 200.860,51

10.00% Utilidad e Imprevistos: 20.086,05

92.617.50

175.047,08 18.000,00

PRECIO UNITARIO Bs. 220.946,56

Total partida Bs.: 0.50 X 220,946.56 = 110,473.28

Fecha: 24/05/2005

ANALISIS DE PRECIO UNITARIO

Partida № 8

Descripción de la Obra: CONSTRUCCION DE FUNDACION CON UN PILOTE DE DIAMETRO 80 Cm. LONG. 10 m. Y SU

CABEZAL

Propietario: TRABAJO ESPECIAL DE GRADO Código de la Obra: PILOTE80

Descripción Partida: SUMINISTRO Y VACIADO CONCRETO PREMEZCLADO Fc 210 kgf/cm2 A LOS 28 DIAS, PARA

PILOTES.

Código:Código Covenin:UnidadCantidadRendimientoG1-035E.S/CM35.03 M325.000000M3/dia

1	. М∆	\TEF	ΝΔΙ	FS

Código	Descripción	Unidad	Cantidad	% Desp.	Costo	Total
594	CONCRETO PREMEZC.210k/cm2 NORM.As=5 M50%	m3	1,10000		273,737.00	301.110,70
			Total Materiales:		301.110,70	
			Unitario de Materiales:		301.110.70	

2.- EQUIPOS

Código	Descripción	Cantidad	Costo	Dep. o Alq.	Total
246	PALA REDONDA 040202	1,00000	21.950,00	0.010000	219,50
GRUAUX	GRUA AUXILIAR	1,00000	180.000.000,00	0.003000	540.000,00
EQUIVAC	EQUIPO DE VACIADO	1,00000	15.000.000,00	0.003000	45.000,00
			Total Equipos:		585.219,50
			I Initario	de Fauinos:	23 408 78

3 .- MANO DE OBRA

Código	Descripción	Cantidad	Salario	Total
1	OBRERO DE 1ra	2,00000	18.856,00	37.712,00
49	AYUDANTE DE OPERADORES	1,00000	20.460,00	20.460,00
29	MAESTRO DE OBRAS DE 1ra	0,50000	32.295,00	16.147,50
			Total Mano de Obra:	74.319,50
				0,00

Calculado por: Br. WILMER CASTILLO

Revisado por: ING. PEDRO BALLESTEROS

Desarrollado Por: USO EXCLUSIVO DE:

Lulo Software, C.A. DEMO *LuloWin - Control de Obras*

 Mano de Obra Directa:
 74.319,50

 189.00 % Prestaciones Sociales:
 140.463,86

 4,000.00 Bs./dia Alimenticio:
 14.000,00

Total Mano de Obra: 228.783,36
Unitario Mano de Obra: 9.151,33
Costo Directo por Unidad: 333.670,81

15.00% Administración y Gastos Generales: 50.050,62

Sub-Total: 383.721,43

10.00% Utilidad e Imprevistos: 38.372,14

PRECIO UNITARIO Bs. 422.093,57

Total partida Bs.: $5.03 \times 422,093.57 = 2,123,130.66$

Fecha: 24/05/2005

ANALISIS DE PRECIO UNITARIO

Partida № 9

Descripción de la Obra: CONSTRUCCION DE FUNDACION CON UN PILOTE DE DIAMETRO 80 Cm. LONG. 10 m. Y SU

CABEZAL

Propietario: TRABAJO ESPECIAL DE GRADO Código de la Obra: PILOTE80

Descripción Partida: CONCRETO DE Fc 250 kgf/cm2 A LOS 28 DIAS, ACABADO CORRIENTE, PARA LA CONSTRUCCION

DE CABEZALES DE PILOTES.

Código: Código Covenin: Unidad Cantidad Rendimiento G1-00305 E.322.000.125 М3 1.63 M3 15.000000 M3/dia

1	MΔ	TER	IAI	_ES

Código	Descripción	Unidad	Cantidad	% Desp.	Costo	Total
1	CEMENTO PORTLAND GRIS T1 42.5Kg C/CALETA	SACO	8,92500		8,350.00	74.523,75
1729	PIEDRA TRIT.DE 1"(EN SITIO EXPLOTACION)	m3	0,94500		45,000.00	42.525,00
1730	ARENA LAVADA/SITIO DE EXPLOT. 1600 Kgxm3	m3	0,47250		45,000.00	21.262,50
552	AGUA-TARIFA INDUSTRIAL TIPO "B"	m3	0,17850		1,375.00	245,44
			Total Materiales:		l Materiales:	138.556,69
			Unitario de Materiales:		138.556,69	

2.- EQUIPOS

Código	Descripción	Cantidad	Costo	Dep. o Alq.	Total
116	MEZCL/CONCRETO DIESEL CAP=0.75m3 24HP	1,00000	21.819.425,00	0.002500	54.548,56
372	VIBRADOR GASOLINA 5HP MANG.=5m	2,00000	2.606.065,00	0.003000	15.636,39
	CBZL=37mm				
75	CARRETON BUGGI 150 L RUEDAS DE GOMA	4,00000	650.000,00	0.003550	9.230,00
375	MINISHOVEL BOBCAT 266 40HP CAP=0.31 M3	1,00000	55.875.000,00	0.003610	201.708,75
229	CEPILLO DE GOMA PARA FRISAR 6"	2,00000	5.583,00	0.010000	111,66
246	PALA REDONDA 040202	3,00000	21.950,00	0.010000	658,50
			To	tal Equipos:	281.893,86
			l Initario	de Fauinos:	18 792 92

3 .- MANO DE OBRA

Código	Descripción	Cantidad	Salario	Total
28	MAESTRO DE OBRAS DE 2da	0,50000	28.020,00	14.010,00
32	MAQUINISTA DE CONCRETO DE 1ra	1,00000	22.635,00	22.635,00
50	OPERADOR DE EQUIPO LIVIANO	1,00000	22.635,00	22.635,00
5	ALBAÑIL DE 1ra	1,00000	25.320,00	25.320,00
2	AYUDANTE	2,00000	20.190,00	40.380,00
1	OBRERO DE 1ra	10,00000	18.856,00	188.560,00
			Total Mano de Obra:	313.540,00
				0,00

Calculado por: Br. WILMER CASTILLO Revisado por: ING. PEDRO BALLESTEROS

Desarrollado Por: USO EXCLUSIVO DE:

Lulo Software, C.A. DEMO *LuloWin - Control de Obras*

Mano de Obra Directa: 313.540,00 189.00 % Prestaciones Sociales: 592.590,60 4,000.00 Bs./dia Alimenticio: 62.000,00

> Total Mano de Obra: 968.130,60 Unitario Mano de Obra: 64.542,04

Costo Directo por Unidad: 221.891,65

Sub-Total: 255.175,40 10.00% Utilidad e Imprevistos:

15.00% Administración y Gastos Generales:

25.517,54

33.283.75

PRECIO UNITARIO Bs. 280.692,94

Total partida Bs.: 1.63 X 280,692.94 = 457,529.49

Fecha: 24/05/2005

ANALISIS DE PRECIO UNITARIO

Partida Nº 10

Descripción de la Obra: CONSTRUCCION DE FUNDACION CON UN PILOTE DE DIAMETRO 80 Cm. LONG. 10 m. Y SU

CABEZAL

Propietario: TRABAJO ESPECIAL DE GRADO Código de la Obra: PILOTE80

Descripción Partida: ENCOFRADO DE MADERA TIPO RECTO, ACABADO CORRIENTE EN CABEZALES DE PILOTES,

BASES Y ESCALONES.

 Código:
 Código Covenin:
 Unidad
 Cantidad
 Rendimiento

 G1-00458
 E.341.010.111
 M2
 5.76 M2
 40.000000
 M2/dia

4	$N \Lambda \Lambda^{-}$	ΓER	IΛΙ	
	 IVIA	ıcn	IAL	.EJ

Código	Descripción	Unidad	Cantidad	% Desp.	Costo	Total
42	MADERA T.SAQUI-SAQUI,S/CEPILL.S/MEDIDA	m3	0,00650		1,500,000.00	9.750,00
41	MADERA CUARTON AURORA 5X10 CM	m3	0,00650		800,000.00	5.200,00
69	CLAVOS DE 4" CAL.8	kg	0,15000		3,500.00	525,00
			Total Materiales:		15.475,00	
				Unitario de	Materiales:	15.475.00

2.- EQUIPOS

Código	Descripción	Cantidad	Costo	Dep. o Alq.	Total
84	SIERRA/MESA P/MADERA DIS.35cm 8.5HP GAS.	0,33000	2.111.055,00	0.002500	1.741,62
80	CEPILLO DE CARPINTERO STANLEY 15"	1,00000	296.741,00	0.012000	3.560,89
250	SERRUCHO 26" 303365	2,00000	17.920,00	0.010000	358,40
245	MARTILLO PARA CARPINTERO STANLEY 51271	2,00000	17.800,00	0.010000	356,00
75	CARRETON BUGGI 150 L RUEDAS DE GOMA	1,00000	650.000,00		2.307,50
251	BARRA METALICA DE 1.47m PARA HACER HOYOS	2,00000	24.900,00	0.010000	498,00
236	NIVEL DE 3 BURBUJAS 14" STANLEY	2,00000	19.115,00	0.010000	382,30
240	ESCUADRA MET.ALUM.MARCA ESPN(60x40CM)	2,00000	39.765,00	0.010000	795,30
230	CINTA METRICA 3m ACERO -TAJIMA 203777	3,00000	12.085,00	0.010000	362,55
			To	tal Equipos:	10.362,56
			Unitario d	de Fauipos:	259.06

3 .- MANO DE OBRA

Código	Descripción	Cantidad	Salario	Total
9	MAESTRO CARPINTERO DE 1ra	1,00000	28.020,00	28.020,00
7	CARPINTERO DE 1ra	0,50000	25.320,00	12.660,00
6	CARPINTERO DE 2da	2,00000	22.635,00	45.270,00
2	AYUDANTE	3,00000	20.190,00	60.570,00
1	OBRERO DE 1ra	2,00000	18.856,00	37.712,00
			Total Mano de Obra:	184.232,00
				0,00

Calculado por: Br. WILMER CASTILLO

Revisado por: ING. PEDRO BALLESTEROS

Desarrollado Por: USO EXCLUSIVO DE:

Lulo Software, C.A. DEMO *LuloWin - Control de Obras*

 Mano de Obra Directa:
 184.232,00

 189.00 % Prestaciones Sociales:
 348.198,48

 4,000.00 Bs./dia Alimenticio:
 34.000,00

Total Mano de Obra: 566.430,48
Unitario Mano de Obra: 14.160,76

15.00% Administración y Gastos Generales: 4.484,22

Costo Directo por Unidad:

Sub-Total: 34.379,04

29.894.82

10.00% Utilidad e Imprevistos: 3.437,90

PRECIO UNITARIO Bs. 37.816,94

Total partida Bs.: 5.76 X 37,816.94 = 217,825.57

Fecha: 24/05/2005

ANALISIS DE PRECIO UNITARIO

Partida № 11

Descripción de la Obra: CONSTRUCCION DE FUNDACION CON UN PILOTE DE DIAMETRO 80 Cm. LONG. 10 m. Y SU

CABEZAL

Propietario: TRABAJO ESPECIAL DE GRADO Código de la Obra: PILOTE80

Descripción Partida: SUMINISTRO, PREPARACION Y COLOCACION DE ACERO DE REFUERZO Fy 4.200 Kgf/Cm2,

UTILIZANDO CABILLAS IGUAL O MENOR DEL № 3 PARA INFRAESTRUCTURA.

Código:Código Covenin:UnidadCantidadRendimientoG1-00486E.351.110.210KGF26.27 KGF1.000.000000KGF/dia

1	_	МΔ	TFI	$RI\Delta$	LES

Código	Descripción	Unidad	Cantidad	% Desp.	Costo	Total
51	ALAMBRON D=5,2mm(0,167 KG/M)L=6m	kg	0,55000		1,925.00	1.058,75
58	CABILLA D=3/8" R=2100 KG/CM2(0,559 KG/M)	kg	0,55000		1,790.00	984,50
65	ALAMBRE LISO GALVANIZADO CAL 18	kg	0,05000		2,800.00	140,00
				Tota	l Materiales:	2.183,25
				Unitario de	Materiales	2.183.25

2.- EQUIPOS

Código	Descripción	Cantidad	Costo	Dep. o Alq.	Total
56	DOBLADORA DE CABILLA HASTA 1-3/8"	1,00000	16.250.000,00	0.003500	56.875,00
386	CORTADORA/CABILLA AUTOM. HASTA 1 3/8"	1,00000	15.500.000,00	0.003000	46.500,00
249	ALICATE CRESCENT 8" 0716003	4,00000	94.500,00	0.010000	3.780,00
348	TENAZA CRESCENT DE 8"	4,00000	30.275,00	0.010000	1.211,00
230	CINTA METRICA 3m ACERO -TAJIMA 203777	3,00000	12.085,00	0.010000	362,55
			To	tal Equipos:	108.728,55
			Unitario (de Equipos:	108,73

3 .- MANO DE OBRA

Código	Descripción	Cantidad	Salario	Total
12	MAESTRO CABILLERO	1,00000	28.020,00	28.020,00
11	CABILLERO DE 1ra	3,00000	25.320,00	75.960,00
10	CABILLERO DE 2da	1,00000	22.635,00	22.635,00
2	AYUDANTE	4,00000	20.190,00	80.760,00
1	OBRERO DE 1ra	4,00000	18.856,00	75.424,00
			Total Mano de Obra:	282.799,00
				0.00

Calculado por: Br. WILMER CASTILLO

Revisado por: ING. PEDRO BALLESTEROS

Desarrollado Por: USO EXCLUSIVO DE:

Lulo Software, C.A. DEMO *LuloWin - Control de Obras*

 Mano de Obra Directa:
 282.799,00

 189.00 % Prestaciones Sociales:
 534.490,11

 4,000.00 Bs./dia Alimenticio:
 52.000,00

Total Mano de Obra: 869.289,11
Unitario Mano de Obra: 869,29
Costo Directo por Unidad: 3.161,27

15.00% Administración y Gastos Generales: 474,19

Sub-Total: 3.635,46

10.00% Utilidad e Imprevistos: 363,55

PRECIO UNITARIO Bs. 3.999,01

Total partida Bs.: 26.27 X 3,999.01 = 105,053.99

Fecha: 24/05/2005

ANALISIS DE PRECIO UNITARIO

Partida Nº 12

Descripción de la Obra: CONSTRUCCION DE FUNDACION CON UN PILOTE DE DIAMETRO 80 Cm. LONG. 10 m. Y SU

CABEZAL

Propietario: TRABAJO ESPECIAL DE GRADO Código de la Obra: PILOTE80

Descripción Partida: SUMINISTRO, PREPARACION Y COLOCACION DE ACERO DE REFUERZO Fy 4.200 Kgf/Cm2,

UTILIZANDO CABILLAS DE Nº 4 A Nº 7 PARA INFRAESTRUCTURA.

Código:Código Covenin:UnidadCantidadRendimientoG1-00487E.351.120.210KGF120.94 KGF1.000.000000KGF/dia

	ı	 IVI <i>F</i>	A I E	NIA	LE)
_						

MATERIALES

Código	Descripción	Unidad	Cantidad	% Desp.	Costo	Total
59	CABILLA D=1/2" R=2100 KG/CM2(0,994 KG/M)	kg	0,27500		1,680.00	462,00
60	CABILLA D=5/8" R=2100 KG/CM2(1,554 KG/M)	kg	0,27500		1,780.00	489,50
61	CABILLA D=3/4" R=2100 KG/CM2(2,237 KG/M)	kg	0,27500		1,750.00	481,25
62	CABILLA D=7/8" R=2100 KG/CM2(3,045 KG/M)	kg	0,27500		1,850.00	508,75
65	ALAMBRE LISO GALVANIZADO CAL 18	kg	0,05000		2,800.00	140,00
				Tota	l Materiales:	2.081,50
				Unitario de	Materiales:	2.081,50

2.- EQUIPOS

Código	Descripción	Cantidad	Costo	Dep. o Alq.	Total
56	DOBLADORA DE CABILLA HASTA 1-3/8"	1,00000	16.250.000,00	0.003500	56.875,00
386	CORTADORA/CABILLA AUTOM. HASTA 1 3/8"	1,00000	15.500.000,00	0.003000	46.500,00
249	ALICATE CRESCENT 8" 0716003	4,00000	94.500,00	0.010000	3.780,00
348	TENAZA CRESCENT DE 8"	4,00000	30.275,00	0.010000	1.211,00
230	CINTA METRICA 3m ACERO -TAJIMA 203777	3,00000	12.085,00	0.010000	362,55
			To	tal Equipos:	108.728,55
			Unitario (de Equipos:	108,73

3 .- MANO DE OBRA

Código	Descripción	Cantidad	Salario	Total
12	MAESTRO CABILLERO	1,00000	28.020,00	28.020,00
11	CABILLERO DE 1ra	3,00000	25.320,00	75.960,00
10	CABILLERO DE 2da	1,00000	22.635,00	22.635,00
2	AYUDANTE	4,00000	20.190,00	80.760,00
1	OBRERO DE 1ra	4,00000	18.856,00	75.424,00
			Total Mano de Obra:	282.799,00
				0.00

Calculado por: Br. WILMER CASTILLO

Revisado por: ING. PEDRO BALLESTEROS

Desarrollado Por: USO EXCLUSIVO DE:

Lulo Software, C.A. DEMO *LuloWin - Control de Obras*

 Mano de Obra Directa:
 282.799,00

 189.00 % Prestaciones Sociales:
 534.490,11

 4,000.00 Bs./dia Alimenticio:
 52.000,00

Total Mano de Obra: 869.289,11
Unitario Mano de Obra: 869,29
Costo Directo por Unidad: 3.059,52

15.00% Administración y Gastos Generales: 458,93 **Sub-Total:** 3.518,45

Sub-Total: 3.518,45 10.00% Utilidad e Imprevistos: 351,85

PRECIO UNITARIO Bs. 3.870,30

Total partida Bs.: 120.94 X 3,870.30 = 468,074.08

Fecha: 24/05/2005

ANALISIS DE PRECIO UNITARIO

					Partida N	l º 13
Descripción de la Obra	: CONSTRUCCION DE F CABEZAL	UNDACION CON	UN PILOTE DE	DIAMETRO 80	Cm. LONG. 10	n. Y SU
Propietario:	TRABAJO ESPECIAL D	E GRADO			Código de la C	Obra: PILOTE80
Descripción Partida:	TRANSPORTE URBANC ESTADO SUELTO, A DIS					EDIDO EN
Código:	Código Covenin:	Unidad	Cantic		Rendin	niento
G1-01172	E.903.142.020	M3 x KM	133,00	M3 x KM	1.103,770000	M3 x KM/dia
1 MATERIAL	ES					
Código Descripcio	ón	Unidad	Cantidad	% Desp.	Costo	Total
<u> </u>				Tota	al Materiales:	0,00
				Unitario d	le Materiales:	0,00
2 EQUIPOS						
Código Descripcio			Cantidad	Costo	Dep. o Alq.	Total
584 CAMION VOL	LTEO FIAT MP700E31HT 15m3	24.9T	1,00000	179.820.850,00	0.002400	431.570,04
					otal Equipos:	431.570,04
O MANO DE	0004			Unitario	de Equipos:	391,00
3 MANO DE						
Código Descripcio			Cantidad	Salario		Total
41 CHOFER DE	CAMION MAS DE 15 TONS		1,00000	23.535,00		23.535,00
				Total Ma	ano de Obra:	23.535,00 0,00
					Obra Directa:	23.535,00
Calculado por: Br. WILM	ER CASTILLO		<u>189</u>	9.00 % Prestacio	nes Sociales:	44.481,15
				4,000.00 Bs./d	<u>ia Alimenticio:</u>	4.000,00
Revisado por: ING. PED	PRO BALLESTEROS			T		70.040.45
Desarrollado Por: USO	EXCLUSIVO DE:				lano de Obra: ano de Obra:	72.016,15 65,2 5
	O *LuloWin - Control de Obras*		C	osto Directo p		456,25
Luio Soitware, C.A. DEM	C Luiovviii - Control de Oblas			•		•
		15.	.00% Administr	acion y Gastos		68,44
				200/ 11:22	Sub-Total:	524,69
			10.0	00% Utilidad e	imprevistos:	52,47

Total partida Bs.: 133.00 X 577.16 = 76,762.28

PRECIO UNITARIO Bs.

ANEXO C

Análisis de precios unitarios del presupuesto correspondiente a los cómputos métricos de la fundación con dos pilotes y su cabezal.

Fecha: 24/05/2005

ANALISIS DE PRECIO UNITARIO

Partida Nº 1

Descripción de la Obra: CONSTRUCCION DE FUNDACION CON DOS PILOTES DE DIAMETRO 60 Cm. LONG. 10 m. Y SU

CABEZAL

Propietario: TRABAJO ESPECIAL DE GRADO Código de la Obra: PILOTE60

Descripción Partida: EXCAVACION EN TIERRA CON USO DE EQUIPO RETROEXCAVADOR PARA ASIENTO DE

FUNDACIONES, ZANJAS, ETC. INCLUYE REPERFILAMIENTO A MANO

Código:Código Covenin:UnidadCantidadRendimientoG1-00281E.311.310.000M39.43 M3180.000000M3/dia

1	_	МΔ	TF	RΙΔ	LES

Código	Descripción	Unidad	Cantidad	% Desp.	Costo	Total
				Tota	l Materiales:	0,00
				Unitario de	Materiales:	0.00

2.- EQUIPOS

Código	Descripción	Cantidad	Costo	Dep. o Alq.	Total
407	RETROEXCAVADORA CAT428C 4x2 1.37yd3-ING	1,00000	114.050.000,00	0.003690	420.844,50
246	PALA REDONDA 040202	4,00000	21.950,00	0.010000	878,00
254	PICO PUNTA Y PALA BELLOTA U500949	4,00000	32.185,00	0.010000	1.287,40
74	CARRETILLA RUEDA GOMA CAP.=55Lts U200305	2,00000	94.830,00	0.003500	663,81
251	BARRA METALICA DE 1.47m PARA HACER HOYOS	2,00000	24.900,00	0.010000	498,00
	Total Equipo		tal Equipos:	424.171,71	
			Unitario	de Equipos:	2.356,51

3 .- MANO DE OBRA

Código	Descripción	Cantidad	Salario	Total
29	MAESTRO DE OBRAS DE 1ra	0,50000	32.295,00	16.147,50
64	CAPORAL DE EQUIPO	1,00000	28.020,00	28.020,00
1	OBRERO DE 1ra	6,00000	18.856,00	113.136,00
58	OPERADOR DE PALA MAS 1 YARDA CUB DE 2da	1,00000	25.845,00	25.845,00
49	AYUDANTE DE OPERADORES	1,00000	20.460,00	20.460,00
			Total Mano de Obra:	203.608,50
				0.00

Calculado por: Br. EUDIS DE LA CRUZ

Revisado por: ING. PEDRO BALLESTEROS

Desarrollado Por: USO EXCLUSIVO DE:

Lulo Software, C.A. DEMO *LuloWin - Control de Obras*

 Mano de Obra Directa:
 203.608,50

 189.00 % Prestaciones Sociales:
 384.820,07

 4,000.00 Bs./dia Alimenticio:
 38.000,00

Total Mano de Obra: 626.428,57

Unitario Mano de Obra: 3.480,16

Costo Directo por Unidad: 5.836,67 15.00% Administración y Gastos Generales: 875,50

Sub-Total: 6.712,17

10.00% Utilidad e Imprevistos: 671,22

PRECIO UNITARIO Bs. 7.383,39

Total partida Bs.: 9.43 X 7,383.39 = 69,625.37

Fecha: 24/05/2005

ANALISIS DE PRECIO UNITARIO

					Partida №	2
Descripción de la Obra:	CONSTRUCCION DE F	FUNDACION CON	DOS PILOTES	DE DIAMETRO	60 Cm. LONG. 10	m. Y SU
Propietario:	TRABAJO ESPECIAL I	DE GRADO			Código de la Ob	ra: PILOTE60
Descripción Partida:	CARGA CON EQUIPO L ASIENTO DE FUNDACI			ENTE DE LAS E	EXCAVACIONES I	PARA
Código:	Código Covenin:	Unidad	Cantid	ad	Rendimi	ento
G1-00285	E.313.210.000	M3	8,88		110,000000	M3/dia
1 MATERIALE			-,,,,,			
Código Descripción	n	Unidad	Cantidad	% Desp.	Costo	Total
2 50111200					al Materiales: e Materiales:	0,00 0,00
2 EQUIPOS Código Descripción	n		Cantidad	Costo	Dep. o Alq.	Total
	BOBCAT 266 40HP CAP=0.3	1 M3	1,00000	55.875.000,00	0.003610	201.708,75
					otal Equipos:	201.708,75
• • • • • • • • • • • • • • • • • • •				Unitario	de Equipos:	1.833,72
3 MANO DE C						
Código Descripción			Cantidad	Salario		Total
64 CAPORAL DE 50 OPERADOR D 1 OBRERO DE 1	E EQUIPO LIVIANO		0,25000 1,00000 1,00000	28.020,00 22.635,00 18.856,00		7.005,00 22.635,00 18.856,00
				Total Ma	ano de Obra:	48.496,00 0,00
					Obra Directa:	48.496,0
Calculado por: Br. EUDIS	DE LA CRUZ		<u>189</u>	.00 % Prestacio		91.657,4
Revisado por: ING. PEDR	RO BALLESTEROS			4,000.00 Bs./di	<u>a Alimenticio:</u>	9.000,0
Troviodad por. IIIa. I EDI	D, ILLEO I LI IOO			Total M	ano de Obra:	149.153,4
Desarrollado Por: USO E.	XCLUSIVO DE:				no de Obra:	1.355,9
Lulo Software, C.A. DEMO	*LuloWin - Control de Obras*		Co	sto Directo p	or Unidad:	3.189,6
J		15.	00% Administr	ación y Gastos	Generales: Sub-Total:	478,4 3.668,1

PRECIO UNITARIO Bs. 4.034,92

10.00% Utilidad e Imprevistos:

Total partida Bs.: 8.88 X 4,034.92 = 35,830.09

366,81

Fecha: 24/05/2005

ANALISIS DE PRECIO UNITARIO

Partida № 3

Descripción de la Obra: CONSTRUCCION DE FUNDACION CON DOS PILOTES DE DIAMETRO 60 Cm. LONG. 10 m. Y SU

CABEZAL

Propietario: TRABAJO ESPECIAL DE GRADO Código de la Obra: PILOTE60

Descripción Partida: COMPACTACION DE RELLENOS CON APISONADORES DE PERCUSION, CORRESPONDIENTE A

LOS ASIENTOS DE FUNDACIONES, ZANJAS, ETC

Código:Código Covenin:UnidadCantidadRendimientoG1-00290E.317.000.000M36.77 M350.00000M3/dia

1	M	Δ٦	ΓFΙ	RI.	ΔΙ	LE:	S

Código	Descripción	Unidad	Cantidad	% Desp.	Costo	Total
552	AGUA-TARIFA INDUSTRIAL TIPO "B"	m3	0,10000		1,375.00	137,50
				Total Materiales:		137,50
				Unitario de	Materiales:	137.50

2.- EQUIPOS

Código	Descripción	Cantidad	Costo	Dep. o Alq.	Total
507	COMPACTADORA DE PLANCHA .4x.4-GASOLINA	2,00000	60.000,00	1.000000	120.000,00
246	PALA REDONDA 040202	8,00000	21.950,00	0.010000	1.756,00
74	CARRETILLA RUEDA GOMA CAP.=55Lts U200305	4,00000	94.830,00	0.003500	1.327,62
166	MANG. PLASTICA 1/2" L=100m TIPO CULEBRA	2,00000	75.000,00	0.008000	1.200,00
•		Total Equipos:		124.283,62	
			Unitario d	de Fauinos:	2 485 67

3 .- MANO DE OBRA

Código	Descripción	Cantidad	Salario	Total
3	CAPORAL	1,00000	22.635,00	22.635,00
1	OBRERO DE 1ra	10,00000	18.856,00	188.560,00
50	OPERADOR DE EQUIPO LIVIANO	2,00000	22.635,00	45.270,00
			Total Mano de Obra:	256.465,00
				0,00

Calculado por: Br. EUDIS DE LA CRUZ

Revisado por: ING. PEDRO BALLESTEROS

Desarrollado Por: USO EXCLUSIVO DE:

Lulo Software, C.A. DEMO *LuloWin - Control de Obras*

 Mano de Obra Directa:
 256.465,00

 189.00 % Prestaciones Sociales:
 484.718,85

 4,000.00 Bs./dia Alimenticio:
 52.000,00

Total Mano de Obra: 793.183,85
Unitario Mano de Obra: 15.863,68
Costo Directo por Unidad: 18.486,85

15.00% Administración y Gastos Generales: 2.773,03

Sub-Total: 21.259,88

10.00% Utilidad e Imprevistos: 2.125,99

PRECIO UNITARIO Bs. 23.385,87

Total partida Bs.: 6.77 X 23,385.87 = 158,322.34

Fecha: 24/05/2005

ANALISIS DE PRECIO UNITARIO

Partida № 4

Descripción de la Obra: CONSTRUCCION DE FUNDACION CON DOS PILOTES DE DIAMETRO 60 Cm. LONG. 10 m. Y SU

CABEZAL

Propietario: TRABAJO ESPECIAL DE GRADO Código de la Obra: PILOTE60

Descripción Partida: PERFORACION SIN VACIAR, DE DIAMETRO 60 Cm., CORRESPONDIENTE A PILOTES

PERFORADOS (CON EXTRACCION DE TIERRA), SIN CAMISA DE PROTECCION, CON USO DE

LODOS BENTONITICOS.

Código: Código Covenin: Unidad Cantidad Rendimiento G13002 E.321,220,060 Μ 22,00 M 32.000000 M/dia

1	M	Δ٦	ΓFΙ	RI.	ΔΙ	LE:	S

Código	Descripción	Unidad	Cantidad	% Desp.	Costo	Total
135	BENTONITA-DOSIFICACION=1 SACO/m3 4 USOS	SACO	0,13000		19,360.00	2.516,80
				Tota	l Materiales:	2.516,80
				Unitario de	Materiales:	2.516.80

2.- EQUIPOS

Código	Descripción	Cantidad	Costo	Dep. o Alq.	Total
184	CAMION PERFORADOR CALDWELL	1,00000	127.800.000,00	0.003000	383.400,00
427	EQUIPO PARA PREPARAR BENTONITA	1,00000	24.000.000,00	0.003500	84.000,00
28	CARGADOR DE RUEDAS CAT928-G(USA)2.40yd3	0,50000	248.450.000,00	0.002350	291.928,75
177	CAMION PLATAFORMA CAP=10TON, VOL=20M3	0,35000	122.034.000,00	0.002000	85.423,80
-		Total Equipos:		844.752,55	
			Unitario	de Fauinos:	26 398 52

3 .- MANO DE OBRA

Código	Descripción	Cantidad	Salario	Total
29	MAESTRO DE OBRAS DE 1ra	1,00000	32.295,00	32.295,00
46	OPERADOR DE EQUIPO PERFORADOR	1,00000	22.080,00	22.080,00
50	OPERADOR DE EQUIPO LIVIANO	0,50000	22.635,00	11.317,50
49	AYUDANTE DE OPERADORES	1,00000	20.460,00	20.460,00
1	OBRERO DE 1ra	1,00000	18.856,00	18.856,00
			Total Mano de Obra:	105.008,50
				0,00

Calculado por: Br. EUDIS DE LA CRUZ

Revisado por: ING. PEDRO BALLESTEROS

Desarrollado Por: USO EXCLUSIVO DE: Lulo Software, C.A. DEMO *LuloWin - Control de Obras*

Mano de Obra Directa: 105.008,50 189.00 % Prestaciones Sociales: 198.466,07 4,000.00 Bs./dia Alimenticio: 18.000,00

Total Mano de Obra: 321.474,57 Unitario Mano de Obra: 10.046,08 **Costo Directo por Unidad:** 38.961,40

15.00% Administración y Gastos Generales: 5.844,21

Sub-Total: 44.805,61

10.00% Utilidad e Imprevistos: 4.480,56

PRECIO UNITARIO Bs. 49.286,17

Total partida Bs.: 22.00 X 49,286.17 = 1,084,295.74

Fecha: 24/05/2005

ANALISIS DE PRECIO UNITARIO

Partida № 5

Descripción de la Obra: CONSTRUCCION DE FUNDACION CON DOS PILOTES DE DIAMETRO 60 Cm. LONG. 10 m. Y SU

CABEZAL

Propietario: TRABAJO ESPECIAL DE GRADO Código de la Obra: PILOTE60

Descripción Partida: SUMUNISTRO Y TRANSPORTE, PREPARACION Y COLOCACION DE ACERO DE REFUERZO Fy 4200

Kgf/CM2, UTILIZANDO CABILLA IGUAL O MENOR DEL № 3 PARA PILOTES.

Código:Código Covenin:UnidadCantidadRendimiento*INFRA56E-321.632.121KGF96.48 KGF700.000000KGF/dia

1	 M	ΔТ	FF	3 1,	ΔΙ	LΕ	S

Código	Descripción	Unidad	Cantidad	% Desp.	Costo	Total
*ACERO04	CABILLA ESTRIADA DE 3/8". RAT 2100.	KG.	1,00000		1,790.00	1.790,00
*ACERO10	ALAMBRE LISO GALVANIZADO, CALIBRE # 18.	KG.	0,05000		2,800.00	140,00
			Total Materiales:		Materiales:	1.930,00
				Unitario de	Materiales:	1.930.00

2.- EQUIPOS

Código	Descripción	Cantidad	Costo	Dep. o Alq.	Total
*GRUATEL	GRUA TORRE.	1,00000	180.000.000,00	0.001000	180.000,00
*EQUIP02	EQUIPO DE CABILLA.	1,00000	6.665.000,00	0.002000	13.330,00
			To	tal Equipos:	193.330,00
			Unitario (de Equipos:	276.19

3 .- MANO DE OBRA

Código	Descripción	Cantidad	Salario	Total
12	MAESTRO CABILLERO	0,50000	28.020,00	14.010,00
10	CABILLERO DE 2da	1,00000	22.635,00	22.635,00
11	CABILLERO DE 1ra	2,00000	25.320,00	50.640,00
1	OBRERO DE 1ra	1,00000	18.856,00	18.856,00
2	AYUDANTE	1,00000	20.190,00	20.190,00
OPEGRUA1	OPERADOR DE GRUA (GRUERO) DE 1ra	0,50000	26.400,00	13.200,00
	·		Total Mano de Obra:	139.531,00
				0.00

Calculado por: Br. EUDIS DE LA CRUZ

Revisado por: ING. PEDRO BALLESTEROS

Desarrollado Por:

USO EXCLUSIVO DE:

Lulo Software, C.A. DEMO *LuloWin - Control de Obras*

 Mano de Obra Directa:
 139.531,00

 189.00 % Prestaciones Sociales:
 263.713,59

 4,000.00 Bs./dia Alimenticio:
 24.000,00

Total Mano de Obra: 427.244,59
Unitario Mano de Obra: 610,35
Costo Directo por Unidad: 2.816,54

15.00% Administración y Gastos Generales: 422,48

Sub-Total: 3.239,02

10.00% Utilidad e Imprevistos: 323,90

PRECIO UNITARIO Bs. 3.562,92

Total partida Bs.: 96.48 X 3,562.92 = 343,750.52

Fecha: 24/05/2005

ANALISIS DE PRECIO UNITARIO

Partida № 6

Descripción de la Obra: CONSTRUCCION DE FUNDACION CON DOS PILOTES DE DIAMETRO 60 Cm. LONG. 10 m. Y SU

CABEZAL

Propietario: TRABAJO ESPECIAL DE GRADO Código de la Obra: PILOTE60

Descripción Partida: SUMUNISTRO Y TRANSPORTE, PREPARACION Y COLOCACION DE ACERO DE REFUERZO Fy 4200

Kgf/CM2, UTILIZANDO CABILLA Nº 4 A Nº 7, PARA PILOTES.

Código:Código Covenin:UnidadCantidadRendimiento*INFRA58E-321.632.221KGF382.52 KGF1.000.000000KGF/dia

1		MA	ΓER	IAL	ES
---	--	----	-----	-----	----

Código	Descripción	Unidad	Cantidad	% Desp.	Costo	Total
*ACERO10	ALAMBRE LISO GALVANIZADO, CALIBRE # 18.	KG.	0,05000		2,800.00	140,00
*ACERO05	CABILLA ESTRIADA DE 1/2". RAT 2100.	KG.	0,27500		1,680.00	462,00
*ACERO06	CABILLA ESTRIADA DE 5/8". RAT 2100.	KG.	0,27500		1,780.00	489,50
*ACERO07	CABILLA ESTRIADA DE 3/4". RAT 2100.	KG.	0,27500		1,750.00	481,25
*ACERO08	CABILLA ESTRIADA DE 7/8". RAT 2100.	KG.	0,27500		1,850.00	508,75
				Total	l Materiales:	2.081,50
				Unitario de	Materiales:	2.081,50

2.- EQUIPOS

Código	Descripción	Cantidad	Costo	Dep. o Alq.	Total
*EQUIP02	EQUIPO DE CABILLA.	1,00000	6.665.000,00	0.002000	13.330,00
*GRUATEL	GRUA TORRE.	1,00000	180.000.000,00	0.001000	180.000,00
		Total Equipos:		193.330,00	
			Unitario	de Fauinos:	193 33

3 .- MANO DE OBRA

Código	Descripción	Cantidad	Salario	Total
12	MAESTRO CABILLERO	0,50000	28.020,00	14.010,00
10	CABILLERO DE 2da	1,00000	22.635,00	22.635,00
11	CABILLERO DE 1ra	2,00000	25.320,00	50.640,00
OPEGRUA1	OPERADOR DE GRUA (GRUERO) DE 1ra	0,50000	26.400,00	13.200,00
1	OBRERO DE 1ra	1,00000	18.856,00	18.856,00
2	AYUDANTE	1,00000	20.190,00	20.190,00
			Total Mano de Obra:	139.531,00
				0.00

Calculado por: Br. EUDIS DE LA CRUZ

Revisado por: ING. PEDRO BALLESTEROS

Desarrollado Por: USO EXCLUSIVO DE:

Lulo Software, C.A. DEMO *LuloWin - Control de Obras*

 Mano de Obra Directa:
 139.531,00

 189.00 % Prestaciones Sociales:
 263.713,59

 4,000.00 Bs./dia Alimenticio:
 24.000,00

Total Mano de Obra: 427.244,59
Unitario Mano de Obra: 427,24

15.00% Administración y Gastos Generales: 405,31

Costo Directo por Unidad:

Sub-Total: 3.107,38

2.702,07

10.00% Utilidad e Imprevistos: 310,74

PRECIO UNITARIO Bs. 3.418,12

Total partida Bs.: 382.52 X 3,418.12 = 1,307,499.26

Fecha: 24/05/2005

ANALISIS DE PRECIO UNITARIO

Partida № 7 Descripción de la Obra: CONSTRUCCION DE FUNDACION CON DOS PILOTES DE DIAMETRO 60 Cm. LONG. 10 m. Y SU **CABEZAL** Propietario: TRABAJO ESPECIAL DE GRADO Código de la Obra: PILOTE60 Descripción Partida: PODA DE PILOTES DE CONCRETO, MEDIDO SEGUN EL AREA DE SU SECCION. Rendimiento Código: Código Covenin: Unidad Cantidad E.321.640.000 G1-00302 0.56 M2 M2 2,500000 M2/dia 1 .- MATERIALES % Desp. Código Descripción Unidad Cantidad Costo **Total** Total Materiales: 0.00 0,00 Unitario de Materiales: 2 .- EQUIPOS Código Cantidad Descripción Costo Dep. o Alq. Total 1.000000 COMPRESOR CON 1 MARTILLO 135 p3 1,00000 150.000,00 150.000,00 254 PICO PUNTA Y PALA BELLOTA U500949 2,00000 32.185,00 0.010000 643,70 PALA RECTANGULAR(M/METAL NEGRO)BELLOTA 333 2,00000 17.250,00 0.010000 345,00 Total Equipos: 150.988,70 Unitario de Equipos: 60.395,48 3.- MANO DE OBRA Código Descripción **Cantidad** Salario **Total** 3 45 CAPORAL 0.50000 22.635.00 11.317,50 OPERADOR DE MARTILLO PERFORADOR 2,00000 20.460,00 40.920,00 2 AYUDANTE 2,00000 20.190,00 40.380,00 Total Mano de Obra: 92.617,50 0.00 Mano de Obra Directa: 92.617,50 189.00 % Prestaciones Sociales: Calculado por: Br. EUDIS DE LA CRUZ 175.047,08 4,000.00 Bs./dia Alimenticio: 18.000,00 Revisado por: ING. PEDRO BALLESTEROS Total Mano de Obra: 285.664,58 Unitario Mano de Obra: 114.265,83 Desarrollado Por: USO EXCLUSIVO DE: DEMO *LuloWin - Control de Obras* Costo Directo por Unidad: 174.661,31 Lulo Software, C.A. 15.00% Administración y Gastos Generales: 26.199,20 Sub-Total: 200.860,51 10.00% Utilidad e Imprevistos: 20.086,05

PRECIO UNITARIO Bs. 220.946,56

Total partida Bs.: 0.56 X 220,946.56 = 123,730.07

Fecha: 24/05/2005

ANALISIS DE PRECIO UNITARIO

Partida № 8

Descripción de la Obra: CONSTRUCCION DE FUNDACION CON DOS PILOTES DE DIAMETRO 60 Cm. LONG. 10 m. Y SU

CABEZAL

Propietario: TRABAJO ESPECIAL DE GRADO Código de la Obra: PILOTE60

Descripción Partida: SUMINISTRO Y VACIADO CONCRETO PREMEZCLADO Fc 210 kgf/cm2 A LOS 28 DIAS, PARA

PILOTES.

Código: Código Covenin: Unidad Cantidad Rendimiento G1-035 E.S/C М3 5.66 M3 25.000000 M3/dia

1	. М∆	\TEF	ΝΔΙ	FS

Código	Descripción	Unidad	Cantidad	% Desp.	Costo	Total
594	CONCRETO PREMEZC.210k/cm2 NORM.As=5 M50%	m3	1,10000		273,737.00	301.110,70
			Total Materiales:		301.110,70	
				Unitario de	Materiales:	301 110 70

2.- EQUIPOS

Código	Descripción	Cantidad	Costo	Dep. o Alq.	Total
246	PALA REDONDA 040202	1,00000	21.950,00	0.010000	219,50
GRUAUX	GRUA AUXILIAR	1,00000	180.000.000,00	0.003000	540.000,00
EQUIVAC	EQUIPO DE VACIADO	1,00000	15.000.000,00	0.003000	45.000,00
			To	tal Equipos:	585.219,50
			Unitario	de Fauinos:	23 408 78

3 .- MANO DE OBRA

Código	Descripción	Cantidad	Salario	Total
1	OBRERO DE 1ra	2,00000	18.856,00	37.712,00
49	AYUDANTE DE OPERADORES	1,00000	20.460,00	20.460,00
29	MAESTRO DE OBRAS DE 1ra	0,50000	32.295,00	16.147,50
			Total Mano de Obra:	74.319,50
				0,00

Calculado por: Br. EUDIS DE LA CRUZ

Revisado por: ING. PEDRO BALLESTEROS

Desarrollado Por: USO EXCLUSIVO DE:

Lulo Software, C.A. DEMO *LuloWin - Control de Obras*

Mano de Obra Directa: 74.319,50 189.00 % Prestaciones Sociales: 140.463,86 4,000.00 Bs./dia Alimenticio: 14.000,00

Total Mano de Obra: 228.783.36 Unitario Mano de Obra: 9.151,33 **Costo Directo por Unidad:** 333.670,81

15.00% Administración y Gastos Generales: 50.050,62

Sub-Total: 383.721,43

10.00% Utilidad e Imprevistos: 38.372,14

PRECIO UNITARIO Bs. 422.093.57

Total partida Bs.: 5.66 X 422,093.57 = 2,389,049.61

Fecha: 24/05/2005

ANALISIS DE PRECIO UNITARIO

Partida № 9

Descripción de la Obra: CONSTRUCCION DE FUNDACION CON DOS PILOTES DE DIAMETRO 60 Cm. LONG. 10 m. Y SU

CABEZAL

Propietario: TRABAJO ESPECIAL DE GRADO Código de la Obra: PILOTE60

Descripción Partida: CONCRETO DE Fc 250 kgf/cm2 A LOS 28 DIAS, ACABADO CORRIENTE, PARA LA CONSTRUCCION

DE CABEZALES DE PILOTES.

Código:Código Covenin:UnidadCantidadRendimientoG1-00305E.322.000.125M32.94 M315.00000M3/dia

1 -	MA ⁻	TFR	ΙΔΙ	FS

Código	Descripción	Unidad	Cantidad	% Desp.	Costo	Total
1	CEMENTO PORTLAND GRIS T1 42.5Kg C/CALETA	SACO	8,92500		8,350.00	74.523,75
1729	PIEDRA TRIT.DE 1"(EN SITIO EXPLOTACION)	m3	0,94500		45,000.00	42.525,00
1730	ARENA LAVADA/SITIO DE EXPLOT. 1600 Kgxm3	m3	0,47250		45,000.00	21.262,50
552	AGUA-TARIFA INDUSTRIAL TIPO "B"	m3	0,17850		1,375.00	245,44
				Tota	l Materiales:	138.556,69
				Unitario de	Materiales:	138.556,69

2.- EQUIPOS

Código	Descripción	Cantidad	Costo	Dep. o Alq.	Total
116	MEZCL/CONCRETO DIESEL CAP=0.75m3 24HP	1,00000	21.819.425,00	0.002500	54.548,56
372	VIBRADOR GASOLINA 5HP MANG.=5m	2,00000	2.606.065,00	0.003000	15.636,39
	CBZL=37mm				
75	CARRETON BUGGI 150 L RUEDAS DE GOMA	4,00000	650.000,00	0.003550	9.230,00
375	MINISHOVEL BOBCAT 266 40HP CAP=0.31 M3	1,00000	55.875.000,00	0.003610	201.708,75
229	CEPILLO DE GOMA PARA FRISAR 6"	2,00000	5.583,00	0.010000	111,66
246	PALA REDONDA 040202	3,00000	21.950,00	0.010000	658,50
			To	tal Equipos:	281.893,86
			l Initario	de Fauinos:	18 792 92

3 .- MANO DE OBRA

Código	Descripción	Cantidad	Salario	Total
28	MAESTRO DE OBRAS DE 2da	0,50000	28.020,00	14.010,00
32	MAQUINISTA DE CONCRETO DE 1ra	1,00000	22.635,00	22.635,00
50	OPERADOR DE EQUIPO LIVIANO	1,00000	22.635,00	22.635,00
5	ALBAÑIL DE 1ra	1,00000	25.320,00	25.320,00
2	AYUDANTE	2,00000	20.190,00	40.380,00
1	OBRERO DE 1ra	10,00000	18.856,00	188.560,00
			Total Mano de Obra:	313.540,00
				0,00

Calculado por: Br. EUDIS DE LA CRUZ

Revisado por: ING. PEDRO BALLESTEROS

Desarrollado Por: US

USO EXCLUSIVO DE:

Lulo Software, C.A. DEMO *LuloWin - Control de Obras*

 Mano de Obra Directa:
 313.540,00

 189.00 % Prestaciones Sociales:
 592.590,60

 4,000.00 Bs./dia Alimenticio:
 62.000,00

Total Mano de Obra: 968.130,60
Unitario Mano de Obra: 64.542,04

Costo Directo por Unidad: 221.891,65

15.00% Administración y Gastos Generales: 33.283,75 **Sub-Total:** 255.175,40

10.00% Utilidad e Imprevistos: 25.517,54

PRECIO UNITARIO Bs. 280.692,94

Total partida Bs.: 2.94 X 280,692.94 = 825,237.24

Fecha: 24/05/2005

ANALISIS DE PRECIO UNITARIO

Partida Nº 10

Descripción de la Obra: CONSTRUCCION DE FUNDACION CON DOS PILOTES DE DIAMETRO 60 Cm. LONG. 10 m. Y SU

CABEZAL

Propietario: TRABAJO ESPECIAL DE GRADO Código de la Obra: PILOTE60

Descripción Partida: ENCOFRADO DE MADERA TIPO RECTO, ACABADO CORRIENTE EN CABEZALES DE PILOTES,

BASES Y ESCALONES.

Código:Código Covenin:UnidadCantidadRendimientoG1-00458E.341.010.111M28.40 M240.000000M2/dia

1 -	MA	1T	=RI	ΔΙ	.ES
		~	_, ,		

Código	Descripción	Unidad	Cantidad	% Desp.	Costo	Total
42	MADERA T.SAQUI-SAQUI,S/CEPILL.S/MEDIDA	m3	0,00650		1,500,000.00	9.750,00
41	MADERA CUARTON AURORA 5X10 CM	m3	0,00650		800,000.00	5.200,00
69	CLAVOS DE 4" CAL.8	kg	0,15000		3,500.00	525,00
				Tota	Materiales:	15.475,00
				Unitario de	Materiales:	15.475.00

2.- EQUIPOS

Código	Descripción	Cantidad	Costo	Dep. o Alq.	Total
84	SIERRA/MESA P/MADERA DIS.35cm 8.5HP GAS.	0,33000	2.111.055,00	0.002500	1.741,62
80	CEPILLO DE CARPINTERO STANLEY 15"	1,00000	296.741,00	0.012000	3.560,89
250	SERRUCHO 26" 303365	2,00000	17.920,00	0.010000	358,40
245	MARTILLO PARA CARPINTERO STANLEY 51271	2,00000	17.800,00	0.010000	356,00
75	CARRETON BUGGI 150 L RUEDAS DE GOMA	1,00000	650.000,00		2.307,50
251	BARRA METALICA DE 1.47m PARA HACER HOYOS	2,00000	24.900,00	0.010000	498,00
236	NIVEL DE 3 BURBUJAS 14" STANLEY	2,00000	19.115,00	0.010000	382,30
240	ESCUADRA MET.ALUM.MARCA ESPN(60x40CM)	2,00000	39.765,00	0.010000	795,30
230	CINTA METRICA 3m ACERO -TAJIMA 203777	3,00000	12.085,00	0.010000	362,55
			To	tal Equipos:	10.362,56
			Unitario	de Fauinos:	259.06

3 .- MANO DE OBRA

Código	Descripción	Cantidad	Salario	Total
9	MAESTRO CARPINTERO DE 1ra	1,00000	28.020,00	28.020,00
7	CARPINTERO DE 1ra	0,50000	25.320,00	12.660,00
6	CARPINTERO DE 2da	2,00000	22.635,00	45.270,00
2	AYUDANTE	3,00000	20.190,00	60.570,00
1	OBRERO DE 1ra	2,00000	18.856,00	37.712,00
			Total Mano de Obra:	184.232,00
				0,00

Calculado por: Br. EUDIS DE LA CRUZ

Revisado por: ING. PEDRO BALLESTEROS

Desarrollado Por: USO EXC

USO EXCLUSIVO DE:

Lulo Software, C.A. DEMO *LuloWin - Control de Obras*

 Mano de Obra Directa:
 184.232,00

 189.00 % Prestaciones Sociales:
 348.198,48

 4,000.00 Bs./dia Alimenticio:
 34.000,00

Total Mano de Obra: 566.430,48
Unitario Mano de Obra: 14.160,76

Costo Directo por Unidad: 29.894,82

15.00% Administración y Gastos Generales: 4.484,22 Sub-Total: 34.379,04

Sub-Total: 34.379,04 10.00% Utilidad e Imprevistos: 3.437,90

PRECIO UNITARIO Bs. 37.816,94

Total partida Bs.: 8.40 X 37,816.94 = 317,662.30

Fecha: 24/05/2005

ANALISIS DE PRECIO UNITARIO

Partida № 11

Descripción de la Obra: CONSTRUCCION DE FUNDACION CON DOS PILOTES DE DIAMETRO 60 Cm. LONG. 10 m. Y SU

CABEZAL

Propietario: TRABAJO ESPECIAL DE GRADO Código de la Obra: PILOTE60

Descripción Partida: SUMINISTRO, PREPARACION Y COLOCACION DE ACERO DE REFUERZO Fy 4.200 Kgf/Cm2,

UTILIZANDO CABILLAS IGUAL O MENOR DEL Nº 3 PARA INFRAESTRUCTURA.

Código:Código Covenin:UnidadCantidadRendimientoG1-00486E.351.110.210KGF51.99 KGF1.000.000000KGF/dia

4	ΝЛΛ	\ΤΕ	DI.	ΛI	
	 IVI <i>F</i>	\ I E	nı,	ᄔ	LJ

Código	Descripción	Unidad	Cantidad	% Desp.	Costo	Total
51	ALAMBRON D=5,2mm(0,167 KG/M)L=6m	kg	0,55000		1,925.00	1.058,75
58	CABILLA D=3/8" R=2100 KG/CM2(0,559 KG/M)	kg	0,55000		1,790.00	984,50
65	ALAMBRE LISO GALVANIZADO CAL 18	kg	0,05000		2,800.00	140,00
				Tota	l Materiales:	2.183,25
				Unitario de	Materiales:	2 183 25

2.- EQUIPOS

Desarrollado Por:

Código	Descripción	Cantidad	Costo	Dep. o Alq.	Total
56	DOBLADORA DE CABILLA HASTA 1-3/8"	1,00000	16.250.000,00	0.003500	56.875,00
386	CORTADORA/CABILLA AUTOM. HASTA 1 3/8"	1,00000	15.500.000,00	0.003000	46.500,00
249	ALICATE CRESCENT 8" 0716003	4,00000	94.500,00	0.010000	3.780,00
348	TENAZA CRESCENT DE 8"	4,00000	30.275,00	0.010000	1.211,00
230	CINTA METRICA 3m ACERO -TAJIMA 203777	3,00000	12.085,00	0.010000	362,55
		Total Equipos:		108.728,55	
			Unitario	de Equipos:	108,73

3 .- MANO DE OBRA

Código	Descripción	Cantidad	Salario	Total
12	MAESTRO CABILLERO	1,00000	28.020,00	28.020,00
11	CABILLERO DE 1ra	3,00000	25.320,00	75.960,00
10	CABILLERO DE 2da	1,00000	22.635,00	22.635,00
2	AYUDANTE	4,00000	20.190,00	80.760,00
1	OBRERO DE 1ra	4,00000	18.856,00	75.424,00
			Total Mano de Obra:	282.799,00
				0.00

Calculado por: Br. EUDIS DE LA CRUZ

USO EXCLUSIVO DE:

Revisado por: ING. PEDRO BALLESTEROS

Lulo Software, C.A. DEMO *LuloWin - Control de Obras*

 Mano de Obra Directa:
 282.799,00

 189.00 % Prestaciones Sociales:
 534.490,11

 4,000.00 Bs./dia Alimenticio:
 52.000,00

Total Mano de Obra: 869.289,11
Unitario Mano de Obra: 869,29
Costo Directo por Unidad: 3.161,27

15.00% Administración y Gastos Generales: 474,19

Sub-Total: 3.635,46

10.00% Utilidad e Imprevistos: 363,55

PRECIO UNITARIO Bs. 3.999,01

Total partida Bs.: 51.99 X 3,999.01 = 207,908.53

Fecha: 24/05/2005

ANALISIS DE PRECIO UNITARIO

Partida Nº 12

Descripción de la Obra: CONSTRUCCION DE FUNDACION CON DOS PILOTES DE DIAMETRO 60 Cm. LONG. 10 m. Y SU

CABEZAL

Propietario: TRABAJO ESPECIAL DE GRADO Código de la Obra: PILOTE60

Descripción Partida: SUMINISTRO, PREPARACION Y COLOCACION DE ACERO DE REFUERZO Fy 4.200 Kgf/Cm2,

UTILIZANDO CABILLAS DE Nº 4 A Nº 7 PARA INFRAESTRUCTURA.

Código:Código Covenin:UnidadCantidadRendimientoG1-00487E.351.120.210KGF98.52 KGF1.000.000000KGF/dia

		•	-	IV	-	•		n	1	۱L	_	J
_	_	, –					_		-		,	

MATERIALEC

Código	Descripción	Unidad	Cantidad	% Desp.	Costo	Total
59	CABILLA D=1/2" R=2100 KG/CM2(0,994 KG/M)	kg	0,27500		1,680.00	462,00
60	CABILLA D=5/8" R=2100 KG/CM2(1,554 KG/M)	kg	0,27500		1,780.00	489,50
61	CABILLA D=3/4" R=2100 KG/CM2(2,237 KG/M)	kg	0,27500		1,750.00	481,25
62	CABILLA D=7/8" R=2100 KG/CM2(3,045 KG/M)	kg	0,27500		1,850.00	508,75
65	ALAMBRE LISO GALVANIZADO CAL 18	kg	0,05000		2,800.00	140,00
				Tota	l Materiales:	2.081,50
				Unitario de	Materiales:	2.081,50

2.- EQUIPOS

Código	Descripción	Cantidad	Costo	Dep. o Alq.	Total
56	DOBLADORA DE CABILLA HASTA 1-3/8"	1,00000	16.250.000,00	0.003500	56.875,00
386	CORTADORA/CABILLA AUTOM. HASTA 1 3/8"	1,00000	15.500.000,00	0.003000	46.500,00
249	ALICATE CRESCENT 8" 0716003	4,00000	94.500,00	0.010000	3.780,00
348	TENAZA CRESCENT DE 8"	4,00000	30.275,00	0.010000	1.211,00
230	CINTA METRICA 3m ACERO -TAJIMA 203777	3,00000	12.085,00	0.010000	362,55
			To	tal Equipos:	108.728,55
			Unitario d	de Equipos:	108,73

3 .- MANO DE OBRA

Código	Descripción	Cantidad	Salario	Total
12	MAESTRO CABILLERO	1,00000	28.020,00	28.020,00
11	CABILLERO DE 1ra	3,00000	25.320,00	75.960,00
10	CABILLERO DE 2da	1,00000	22.635,00	22.635,00
2	AYUDANTE	4,00000	20.190,00	80.760,00
1	OBRERO DE 1ra	4,00000	18.856,00	75.424,00
			Total Mano de Obra:	282.799,00
				0.00

Calculado por: Br. EUDIS DE LA CRUZ

Revisado por: ING. PEDRO BALLESTEROS

Desarrollado Por: USO EXCLUSIVO DE:

Lulo Software, C.A. DEMO *LuloWin - Control de Obras*

 Mano de Obra Directa:
 282.799,00

 189.00 % Prestaciones Sociales:
 534.490,11

 4,000.00 Bs./dia Alimenticio:
 52.000,00

Total Mano de Obra: 869.289,11
Unitario Mano de Obra: 869,29
Costo Directo por Unidad: 3.059,52

15.00% Administración y Gastos Generales: 458,93

Sub-Total: 3.518,45 10.00% Utilidad e Imprevistos: 351,85

PRECIO UNITARIO Bs. 3.870,30

Total partida Bs.: 98.52 X 3,870.30 = 381,301.96

Fecha: 24/05/2005

ANALISIS DE PRECIO UNITARIO

					Partida N	№ 13
Descripción de la Obra:	CONSTRUCCION DE FI CABEZAL	JNDACION CON	DOS PILOTES	DE DIAMETRO) 60 Cm. LONG.	10 m. YSU
Propietario:	TRABAJO ESPECIAL DI	E GRADO			Código de la C	Obra: PILOTE60
Descripción Partida:	TRANSPORTE URBANC ESTADO SUELTO, A DIS					EDIDO EN
Código:	Código Covenin:	Unidad			Rendim	niento
G1-01172	E.903.142.020	M3 x KM	177,60	M3 x KM	1.103,770000 M3 x KM/dia	
1 MATERIALE	ES					
Código Descripció	n	Unidad	Cantidad	% Desp.	Costo	Total
				To	tal Materiales:	0,00
				Unitario (de Materiales:	0,00
2 EQUIPOS						
Código Descripció			Cantidad	Costo	Dep. o Alq.	Total
584 CAMION VOLT	TEO FIAT MP700E31HT 15m3	24.9T	1,00000	179.820.850,0		431.570,04
					otal Equipos:	431.570,04
				Unitari	o de Equipos:	391,00
3 MANO DE C	DBRA					
Código Descripció	n		Cantidad	Salario		Total
41 CHOFER DE C	CAMION MAS DE 15 TONS		1,00000	23.535,0	0	23.535,00
				Total M	ano de Obra:	23.535,00 0,00
				Mano de	Obra Directa:	23.535,00
Calculado por: Br. EUDIS	DE LA CRUZ		<u>189</u>	9.00 % Prestaci	ones Sociales:	44.481,15
Deviceds now INC DEDE				4,000.00 Bs./d	dia Alimenticio:	4.000,00
Revisado por: ING. PEDF	NO BALLESTEROS			Total N	/lano de Obra:	72.016,15
Desarrollado Por: USO E.	XCLUSIVO DE:				ano de Obra:	65,25
Lulo Software, C.A. DEMO	*LuloWin - Control de Obras*		Co	osto Directo	por Unidad:	456,25
		15.	00% Administr	ación y Gasto		68,44
			40.	000/ 1483-1-	Sub-Total:	524,69
			10.0	00% Utilidad e	imprevistos:	52,47

Total partida Bs.: 177.60 X 577.16 = 102,503.62

PRECIO UNITARIO Bs.

ANEXO D

Análisis de precios unitarios de las partidas adicionales utilizadas para los costos promedios de las fundaciones que las incluyen.

Fecha: 24/05/2005

35.782,30

ANALISIS DE PRECIO UNITARIO

					Partida №	1
Descripción de la Obra:	ESTIMACION DE COST	TOS PARA EXCA	VACIONES DE D	IVERSOS DIAM	METROS	
Propietario:	TRABAJO ESPECIAL D	E GRADO	Código de la Obra: DIAMET			
Descripción Partida:	PERFORACION SIN VA PERFORADOS (CON E: LODOS BENTONITICOS			SO DE		
Código:	Código Covenin:	Unidad	Cantida	ad	Rendimi	ento
G1-026	E.321.220.050	М	1,00 N	1	50,000000	M/dia
1 MATERIALE	S					
Código Descripciór	1	Unidad	Cantidad	% Desp.	Costo	Total
135 BENTONITA-D	OSIFICACION=1 SACO/m3 4	USOS SACO	0,05000	•	19,360.00	968,00
					l Materiales:	968,00
2 FOLUDOS				Unitario de	Materiales:	968,00
2 EQUIPOS Código Descripciór	•		Cantidad	Costo	Dep. o Alq.	Total
	ORADOR CALDWELL		1,00000	127.800.000,00	0.003000	383.400,00
127 EQUIPO PARA	PREPARAR BENTONITA		1,00000	24.000.000,00	0.003500	84.000,00
28 CARGADOR DI	E RUEDAS CAT928-G(USA)	2.40yd3	0,50000	248.450.000,00	0.002350	291.928,75
177 CAMION PLATA	AFORMA CAP=10TON, VOL:	=20M3	0,60000	122.034.000,00	0.002000	146.440,80
					tal Equipos: de Equipos:	905.769,55 18.115,39
3 MANO DE O	RRΔ			Officario	ue Equipos.	10.110,00
Código Descripciór			Cantidad	Salario		Total
29 MAESTRO DE			1.00000	32.295,00		32.295,00
46 OPERADOR DI	E EQUIPO PERFORADOR		1,00000	22.080,00		22.080,00
	E OPERADORES E EQUIPO PESADO DE 1ra		4,00000 0.50000	20.460,00 28.020.00		81.840,00 14.010,00
OF ETIADOREDI	L LQOII O I LOADO DE IIA		0,30000		no de Obra:	150.225,00
						0,00
				<u>M</u> ano de C	Obra Directa:	150.225,0
Calculado por: Br. EUDIS A	A. DE LA CRUZ P.		189.00 % Prestaciones Sociales:			283.925,2
			4,000.00 Bs./dia Alimenticio:			26.000,0
Revisado por: ING. PEDR	O BALLESTEROS					
					ano de Obra:	460.150,2
	XCLUSIVO DE:			Unitario Mai		9.203,0
Lulo Software, C.A. DEMO	*LuloWin - Control de Obras*		Co	sto Directo po	or Unidad:	28.286,40
		15.	.00% Administra	ación y Gastos		4.242,96
					Sub-Total:	32.529,36

PRECIO UNITARIO Bs.

Fecha: 24/05/2005

					Partida №	2
Descripción de la Obra:	ESTIMACION DE COST		VACIONES DE D	NIVERSOS DIAM		
•			VACIONES DE L	IVERSOS DIAIV		DIAMETRO.
Propietario:	TRABAJO ESPECIAL D	E GRADO			Código de la Ob	ra: DIAMETRO
Descripción Partida:	PERFORACION SIN VAC PERFORADOS (CON EX LODOS BENTONITICOS	TRACCION DE				SO DE
Código:	Código Covenin:	Unidad	Cantida	ad	Rendimi	ento
G1-029	E.321.200.070	М	1,00 N	1	22,000000	M/dia
1 MATERIALE	ES					
Código Descripció	n	Unidad	Cantidad	% Desp.	Costo	Total
	OOSIFICACION=1 SACO/m3 4	USOS SACO	0,13000	•	19,360.00	2.516,80
					Materiales:	2.516,80
o FOLIIDOS				Unitario de	Materiales:	2.516,80
2 EQUIPOS Código Descripció	n		Cantidad	Costo	Dep. o Alq.	Total
	FORADOR CALDWELL		1.00000	127.800.000,00	0.003000	383.400.00
	A PREPARAR BENTONITA		1.00000	24.000.000,00	0.003500	84.000.00
	DE RUEDAS CAT928-G(USA)2		0,50000	248.450.000,00	0.002350	291.928,75
177 CAMION PLAT	TAFORMA CAP=10TON, VOL=	20M3	0,35000	122.034.000,00	0.002000	85.423,80
					tal Equipos:	844.752,55
3 MANO DE C)BDA			Unitario	de Equipos:	38.397,84
Código Descripció			Cantidad	Salario		Total
	OBRAS DE 1ra		1,00000	32.295,00		32.295,00
	DE EQUIPO PERFORADOR		1,00000	22.080,00		22.080,00
52 OPERADOR D	DE EQUIPO PESADO DE 1ra		0,50000	28.020,00		14.010,00
2 AYUDANTE			1,00000	20.190,00	no de Obra:	20.190,00 88.575,00
				i Olai Mai	no de Obra.	0,00
		L		Mano de C	Ohra Directa:	88.575,0
Calculado por: Br. EUDIS	A DELACRUZ P		Mano de Obra Directa: 189.00 % Prestaciones Sociales:			167.406,7
Calculado por. Br. EODIO	A. DE LA ONOZ I .		4,000.00 Bs./dia Alimenticio:			14.000,0
Revisado por: ING. PEDF	RO BALLESTEROS			1,000.00 Do./ale	e 7 tiii Tioritioio.	11.000,0
			Total Mano de Obra:			269.981,7
Desarrollado Por: USO E	XCLUSIVO DE:			Unitario Mai	no de Obra:	12.271,9
Lulo Software, C.A. DEMO	*LuloWin - Control de Obras*		Со	sto Directo po	or Unidad:	53.186,5
		15.	.00% Administra	ación y Gastos		7.977,9
			10.0	00/ 14:1:-11	Sub-Total:	61.164,5
			10.0	0% Utilidad e lı	inprevisios:	6.116,4

PRECIO UNITARIO Bs.	67.280,97

Fecha: 24/05/2005

,					Partida Nº	3
Descripción de la Obra:	ESTIMACION DE COST	TOS PARA EXCA	VACIONES DE D	IVERSOS DIAM	IETROS	
Propietario:	TRABAJO ESPECIAL D	DE GRADO			Código de la Ob	ora: DIAMETRO
Descripción Partida:	PERFORACION SIN VA PERFORADOS (CON E. LODOS BENTONITICOS	XTRACCION DE				JSO DE
Código:	Código Covenin:	Unidad	Cantida	ad	Rendimi	ento
G1-030	E.321.200.090	М	1,00 N	1	13,000000	M/dia
1 MATERIALE	S					
Código Descripción	n	Unidad		% Desp.	Costo	Total
135 BENTONITA-D	OSIFICACION=1 SACO/m3 4	USOS saco	0,13000		19,360.00	2.516,80
					Materiales:	2.516,80
2 EQUIPOS				Unitario de	Materiales:	2.516,80
Código Descripción	n		Cantidad	Costo	Dep. o Alq.	Total
	ORADOR CALDWELL		1.00000	127.800.000.00	0.003000	383.400,00
427 EQUIPO PARA	PREPARAR BENTONITA		1,00000	24.000.000,00	0.003500	84.000,00
28 CARGADOR D	E RUEDAS CAT928-G(USA)	2.40yd3	0,50000	248.450.000,00	0.002350	291.928,75
177 CAMION PLAT	AFORMA CAP=10TON, VOL	=20M3	0,35000	122.034.000,00	0.002000 tal Equipos:	85.423,80 844.752,55
					de Equipos. de Equipos:	64.980,97
3 MANO DE C	DRRΔ			Officario	ие Ечироз.	04.300,37
Código Descripción			Cantidad	Salario		Total
29 MAESTRO DE	OBRAS DE 1ra		1,00000	32.295,00		32.295,00
46 OPERADOR D	E EQUIPO PERFORADOR		1,00000	22.080,00		22.080,00
52 OPERADOR D 2 AYUDANTE	E EQUIPO PESADO DE 1ra		0,50000 1,00000	28.020,00 20.190,00		14.010,00 20.190,00
Z ATODANTE			1,00000		no de Obra:	88.575,00
				i otai iiia	110 do Obia.	0,00
				Mano de C	Obra Directa:	88.575,00
Calculado por: Br. EUDIS	A. DE LA CRUZ P.		189.00 % Prestaciones Sociales:			167.406,75
			4,000.00 Bs./dia Alimenticio:			14.000,00
Revisado por: ING. PEDR	O BALLESTEROS					, - ·
•					ano de Obra:	269.981,75
Desarrollado Por: USO E.	XCLUSIVO DE:			Unitario Mai	no de Obra:	20.767,83
Lulo Software, C.A. DEMO	*LuloWin - Control de Obras*		Co	sto Directo po	or Unidad:	88.265,60
		15	5.00% Administra	ción y Gastos		13.239,84
				00/11/11/11	Sub-Total:	101.505,44
			10.0	0% Utilidad e lı	mprevistos:	10.150,54

Fecha: 24/05/2005

					Partida №	4
Descripción de la Obra:	ESTIMACION DE COST	TOS PARA EXCA	VACIONES DE D	IVERSOS DIAM	1ETROS	
Propietario:	TRABAJO ESPECIAL D	E GRADO			Código de la Ob	ora: DIAMETRO
Descripción Partida:	PERFORACION SIN VAI PERFORADOS (CON EX LODOS BENTONITICOS	XTRACCION DE				JSO DE
Código:	Código Covenin:	Unidad	Cantida	ad	Rendimi	ento
G1-031	E.321.200.100	М	1,00 N	1	10,500000	M/dia
1 MATERIALE	S					
Código Descripció	n	Unidad	Cantidad	% Desp.	Costo	Total
135 BENTONITA-D	OSIFICACION=1 SACO/m3 4	USOS SACO	0,13000		19,360.00	2.516,80
					Materiales:	2.516,80
2 EQUIPOS				Unitario de	Materiales:	2.516,80
Z EQUIPOS Código Descripció	<u> </u>		Cantidad	Costo	Dep. o Alq.	Total
	ORADOR CALDWELL		1.00000	127.800.000,00	0.003000	383,400.00
427 EQUIPO PARA	A PREPARAR BENTONITA		1,00000	24.000.000,00	0.003500	84.000,00
	DE RUEDAS CAT928-G(USA)2		0,50000	248.450.000,00	0.002350	291.928,75
177 CAMION PLAT	AFORMA CAP=10TON, VOL	=201013	0,35000	122.034.000,00 To	0.002000 tal Equipos:	85.423,80 844.752,55
					de Equipos:	80.452.62
3 MANO DE C	BRA	-				
Código Descripció			Cantidad	Salario		Total
29 MAESTRO DE	OBRAS DE 1ra		1,00000	32.295,00		32.295,00
	DE EQUIPO PERFORADOR DE EQUIPO PESADO DE 1ra		0,50000 1,00000	22.080,00 28.020.00		11.040,00 28.020.00
2 AYUDANTE	LEGON OT LOADO DE NA		1,00000	20.190,00		20.190,00
				Total Ma	no de Obra:	91.545,00
						0,00
			Mano de Obra Directa:			91.545,0
Calculado por: Br. EUDIS	A. DE LA CRUZ P.		189.00 % Prestaciones Sociales: 4,000.00 Bs./dia Alimenticio:			173.020,0
Revisado por: ING. PEDF	RO BALLESTEROS			4,000.00 Bs./dia	<u> Alimenticio:</u>	14.000,0
TOTOGGO POT. IIVO. I EDI	Driello i Li ioo			Total Ma	ano de Obra:	278.565,0
Desarrollado Por: USO E	XCLUSIVO DE:			Unitario Mai		26.530,0
Lulo Software, C.A. DEMO	*LuloWin - Control de Obras*		Co	sto Directo po	or Unidad:	109.499,42
		15	.00% Administra	ación y Gastos	Generales: Sub-Total:	16.424,9 125.924,3
			10.0	0% Utilidad e li		12.592,4

PRECIO UNITARIO Bs. 138.516,76

Fecha: 24/05/2005

ANALISIS DE PRECIO UNITARIO

						Partida №	5
Descripció	on de la Obra:	ESTIMACION DE COST	OS PARA EXC	AVACIONES DE D	DIVERSOS DIAM	IETROS	
Propietario) :	TRABAJO ESPECIAL D	E GRADO			Código de la Ob	ora: DIAMETRO
Descripci	ón Partida:	PERFORACION SIN VAC PERFORADOS (CON EX LODOS BENTONITICOS	TRACCION DE				ISO DE
Có	digo:	Código Covenin:	Unidad	Cantid	ad	Rendimi	ento
	-032	E.321.200.110	М	1,00 N	1	8,699999	M/dia
1 MA	TERIALE	S					
Código	Descripció	n	Unidad	Cantidad	% Desp.	Costo	Total
135	BENTONITA-D	OSIFICACION=1 SACO/m3 4	USOS SACO	0,13000	•	19,360.00	2.516,80
						Materiales:	2.516,80
					Unitario de	Materiales:	2.516,80
2 EG	UIPOS						
Código	Descripció	n		Cantidad	Costo	Dep. o Alq.	Total
184		ORADOR CALDWELL		1,00000	127.800.000,00	0.003000	383.400,00
427	EQUIPO PARA	PREPARAR BENTONITA		1,00000	24.000.000,00	0.003500	84.000,00
28		E RUEDAS CAT928-G(USA)2	0,50000	248.450.000,00	0.002350	291.928,75	
177	CAMION PLAT	AFORMA CAP=10TON, VOL=	:20M3	0,35000	122.034.000,00	0.002000	85.423,80
						tal Equipos: de Equipos:	844.752,55 97.097,99
0 14	NO DE C	NDD 4			Unitario	ue Equipos.	97.097,99
	NO DE C	BRA					
Código	Descripció			Cantidad	Salario		Total
29 46		OBRAS DE 1ra		1,00000	32.295,00		32.295,00
46 52		E EQUIPO PERFORADOR		1,00000 0,50000	22.080,00 28.020,00		22.080,00 14.010,00
2	AYUDANTE	E EQUIPO PESADO DE 1ra		1,00000	20.190.00		20.190,00
	71100711112			1,00000		no de Obra:	88.575,00
							0,00
				L	Mano de C	Obra Directa:	88.575,00
Calculado p	or: Br. EUDIS	A. DE LA CRUZ P.		189	.00 % Prestacion	nes Sociales:	167.406,75
					4,000.00 Bs./dia		14.000,00
Revisado p	or: ING. PEDR	O BALLESTEROS					
						ano de Obra:	269.981,75
Desarrollado	Por: USO E.	XCLUSIVO DE:			Unitario Ma	no de Obra:	31.032,39
Lulo Softwa	re, C.A. DEMO	*LuloWin - Control de Obras*		Co	sto Directo po	or Unidad:	130.647,18
			15	5.00% Administra	ación y Gastos		19.597,08
					00/ 11:22 1 1 1	Sub-Total:	150.244,26

10.00% Utilidad e Imprevistos:

PRECIO UNITARIO Bs.

15.024,43

165.268,69

Fecha: 24/05/2005

ANALISIS DE PRECIO UNITARIO

					Partida №	6
Descripción de la Obra:	ESTIMACION DE COST	OS PARA EXCA	VACIONES DE D	IVERSOS DIAM	IETROS	
Propietario:	TRABAJO ESPECIAL D	E GRADO			Código de la Ob	ora: DIAMETRO
Descripción Partida:	PERFORACION SIN VAC PERFORADOS (CON EX LODOS BENTONITICOS	KTRACCION DE				ISO DE
Código:	Código Covenin:	Unidad	Cantid	ad	Rendimi	ento
G1-033	E.321.200.120	М	1,00 N	1	7,300000	M/dia
1 MATERIALE	ES					
Código Descripció	n	Unidad	Cantidad	% Desp.	Costo	Total
	OOSIFICACION=1 SACO/m3 4	USOS SACO	0,13000	•	19,360.00	2.516,80
					Materiales:	2.516,80
				Unitario de	Materiales:	2.516,80
2 EQUIPOS						
Código Descripció	n		Cantidad	Costo	Dep. o Alq.	Total
427 EQUIPO PARA 28 CARGADOR D	FORADOR CALDWELL A PREPARAR BENTONITA DE RUEDAS CAT928-G(USA)2 FAFORMA CAP=10TON, VOL=		1,00000 1,00000 0,50000 0,35000	127.800.000,00 24.000.000,00 248.450.000,00 122.034.000,00	0.003000 0.003500 0.002350 0.002000	383.400,00 84.000,00 291.928,75 85.423,80
	, -			To	tal Equipos:	844.752,55
				Unitario	de Equipos:	115.719,53
3 MANO DE C)BRA					
Código Descripció			Cantidad	Salario		Total
46 OPERADOR D	OBRAS DE 1ra DE EQUIPO PERFORADOR DE EQUIPO PESADO DE 1ra		1,00000 1,00000 0,50000 1,00000	32.295,00 22.080,00 28.020,00 20.190,00	no de Obra:	32.295,00 22.080,00 14.010,00 20.190,00 88.575,00
				i Otal IVIa	no do Obia.	0,00
					Obra Directa:	88.575,00
Calculado por: Br. EUDIS	A. DE LA CRUZ P.		<u>189</u>	.00 % Prestacion		167.406,75
Desired was INC DEDE	O DALL FOTEROO			4,000.00 Bs./dia	<u> Alimenticio:</u>	14.000,00
Revisado por: ING. PEDF Desarrollado Por: USO E	XCLUSIVO DE:			Total Ma Unitario Ma i	ano de Obra: no de Obra:	269.981,75 36.983,8 0
Lulo Software, C.A. DEMO	*LuloWin - Control de Obras*		Co	sto Directo po	or Unidad:	155.220,13
		15	5.00% Administra	ación y Gastos	Generales: Sub-Total:	23.283,02 178.503,15

PRECIO UNITARIO Bs.	196.353,47
---------------------	------------

17.850,32

10.00% Utilidad e Imprevistos:

Fecha: 24/05/2005

					Partida Nº	7
Descripción de la Obra:	ESTIMACION DE COST	OS PARA EXCA	VACIONES DE D	IVERSOS DIAN	METROS	
Propietario:	TRABAJO ESPECIAL D	E GRADO			Código de la Ol	ora: DIAMETRO
Descripción Partida:	SUMUNISTRO Y TRANS Kgf/CM2, UTILIZANDO (CERO DE REFUI	ERZO Fy 4200
Código:	Código Covenin:	Unidad	Cantida	ad	Rendimi	ento
*INFRA60	E-321.632.321	KGF	1,00 K	GF	700,000000	KGF/dia
1 MATERIALE	ES					
Código Descripción		Unidad	Cantidad	% Desp.	Costo	Total
*ACERO10 ALAMBRE LISO *ACERO09 CABILLA ESTR	O GALVANIZADO, CALIBRE # RIADA DE 1". RAT 2100. 3/8" R=2100 KG/CM2 7.907KG	‡ 18. кg. кg.	0,05000 0,55000 0,55000		2,800.00 1,235.96 1,500.00	140,00 679,78 825,00
					ıl Materiales: e Materiales:	1.644,78 1.644,78
2 EQUIPOS		L		<u> </u>	- material Co	
Código Descripción	 n		Cantidad	Costo	Dep. o Alq.	Total
*EQUIPO2 EQUIPO DE C	ABILLA.		1,00000	6.665.000,00	0.002000	13.330,00
*GRUATEL GRUA TORRE			1,00000	180.000.000,00 To	0.001000 otal Equipos:	180.000,00 193.330,00
					de Equipos:	276,19
3 MANO DE C	DBRA				4-1	-, -
Código Descripció			Cantidad	Salario		Total
12 MAESTRO CA 10 CABILLERO D 11 CABILLERO D 2 AYUDANTE 1 OBRERO DE 1	E 2da E 1ra		0,50000 1,00000 2,00000 1,00000 2,00000	28.020,00 22.635,00 25.320,00 20.190,00 18.856,00		14.010,00 22.635,00 50.640,00 20.190,00 37.712,00 145.187,00
				i Otai ivia	no de Obia.	0,00
Calculado por: Br. EUDIS			<u>189</u> .	Mano de 0 00 % Prestacion 4,000.00 Bs./dia	Obra Directa: nes Sociales: a Alimenticio:	145.187,00 274.403,43 26.000,00
Revisado por: ING. PEDF	RO BALLESTEROS			T		4.45 500 40
Desarrollado Por: USO E.	XCLUSIVO DE:				ano de Obra: no de Obra:	445.590,43 636,5 6
Lulo Software, C.A. DEMO	*LuloWin - Control de Obras*		Co	sto Directo p	or Unidad:	2.557,53
		15.	.00% Administra 10.0	ación y Gastos 0% Utilidad e I	Sub-Total:	383,63 2.941,16 294,12

Fecha: 24/05/2005

ANALISIS DE PRECIO UNITARIO

P	artic	da I	Nº	8

Descripción de la Obra: ESTIMACION DE COSTOS PARA EXCAVACIONES DE DIVERSOS DIAMETROS

Propietario: TRABAJO ESPECIAL DE GRADO Código de la Obra: DIAMETRO

Descripción Partida: SUMINISTRO, PREPARACION Y COLOCACION DE ACERO DE REFUERZO Fy 4200 kgf/cm2,

UTILIZANDO CABILLA DE DIAMETRO № 8 A № 11, PARA INFRAESTRUCTURA

Rendimiento Código: Unidad Cantidad Código Covenin: G1-00488 E.351.130.210 KGF 1,00 KGF 1.000,000000 KGF/dia

1.- MATERIALES

Código	Descripción	Unidad	Cantidad	% Desp.	Costo	Total
63	CABILLA D=1" R=2100 KG/CM2(3,978 KG/M)	kg	0,55000		1,240.00	682,00
64	CABILLA D=1-3/8" R=2100 KG/CM2 7.907KG/M	kg	0,55000		1,500.00	825,00
65	ALAMBRE LISO GALVANIZADO CAL 18	kg	0,05000		2,800.00	140,00
			· ·	Tota	Materiales:	1.647,00
				Unitario de	Materiales	1 647 00

2.- EQUIPOS

Código	Descripción	Cantidad	Costo	Dep. o Alq.	Total
56	DOBLADORA DE CABILLA HASTA 1-3/8"	1,00000	16.250.000,00	0.003500	56.875,00
386	CORTADORA/CABILLA AUTOM. HASTA 1 3/8"	1,00000	15.500.000,00	0.003000	46.500,00
249	ALICATE CRESCENT 8" 0716003	4,00000	94.500,00	0.010000	3.780,00
348	TENAZA CRESCENT DE 8"	4,00000	30.275,00	0.010000	1.211,00
230	CINTA METRICA 3m ACERO -TAJIMA 203777	3,00000	12.085,00	0.010000	362,55
			To	tal Equipos:	108.728,55
			Unitario	de Equipos:	108,73

3 .- MANO DE OBRA

Código	Descripción	Cantidad	Salario	Total
12	MAESTRO CABILLERO	1,00000	28.020,00	28.020,00
11	CABILLERO DE 1ra	3,00000	25.320,00	75.960,00
10	CABILLERO DE 2da	1,00000	22.635,00	22.635,00
2	AYUDANTE	4,00000	20.190,00	80.760,00
1	OBRERO DE 1ra	4,00000	18.856,00	75.424,00
			Total Mano de Obra:	282.799,00
				0.00

Calculado por: Br. EUDIS A. DE LA CRUZ P.

Revisado por: ING. PEDRO BALLESTEROS

Desarrollado Por: USO EXCLUSIVO DE:

Lulo Software, C.A. DEMO *LuloWin - Control de Obras*

Mano de Obra Directa: 282.799.00 189.00 % Prestaciones Sociales: 534.490,11 4,000.00 Bs./dia Alimenticio: 52.000,00

Total Mano de Obra: 869.289.11 Unitario Mano de Obra: 869,29

Costo Directo por Unidad: 2.625,02

15.00% Administración y Gastos Generales: 393,75 Sub-Total: 3.018,77

10.00% Utilidad e Imprevistos: 301,88

PRECIO UNITARIO Bs. 3.320,65