TRABAJO ESPECIAL DE GRADO

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS-GUARENAS-GUATIRE

Presentado ante la ilustre Universidad Central de Venezuela Por los Brs. Chacón C. Ángel A., Guevara B. Woodwarde J. Para optar al título de Ingeniero Geólogo

Caracas, Abril 2008

TRABAJO ESPECIAL DE GRADO

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS-GUARENAS-GUATIRE

TUTOR ACADÉMICO: Prof. Armando Díaz Q.

Presentado ante la ilustre Universidad Central de Venezuela Por los Brs. Chacón C. Ángel A., Guevara B. Woodwarde J. Para optar al título de Ingeniero Geólogo

Caracas, Abril 2008

Los abajo firmantes, miembros del Jurado designado por el Consejo de Escuela de Geología, Minas y Geofísica, para evaluar el Trabajo Especial de Grado presentado por los Bachilleres Chacón C. Ángel A. y Guevara B. Woodwarde J., titulado:

"CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS-GUARENAS-GUATIRE"

Consideran que el mismo cumple con los requisitos exigidos por el plan de estudios, conducentes al Título de Ingeniero Geólogo, y sin que ello signifique que se hacen solidarios con las ideas expuestas por los autores, lo declaran APROBADO.

Jurado

Jurado

Tutor: Prof. Armando Díaz Q.

AGRADECIMIETOS

Gracias a Dios por darme salud, valor y ayudarme a superar los momentos difíciles.

Gracias a la Universidad Central de Venezuela por educarme y darme la oportunidad de convertirme en profesional, estoy orgulloso de ser UCEVISTA.

Quiero agradecer a mis padres Yolanda y Ángel, por darme la mejor educación del mundo y haber elegido lo mejor para mi.

Agradezco a mis abuelos Maíta y Paíto, por todos sus consejos, especialmente a ti Maita, que siempre me apoyaste y me diste motivos para seguir adelante, gracias por ser el pilar principal de esta bella familia.

Gracias a mi hermana Maite, a Rufo y a mis sobrinos Maibersy, Jorge y Vanesa, por haber creído en mí y por su constante apoyo, saben que sin ustedes todo hubiese sido distinto.

Gracias a Gerardo, Chela, Gabriela y Fernanda por haberme dado el privilegio de formar parte de su familia, además del apoyo y el cariño que siempre me ofrecieron, por dejarme contar con ustedes en los momentos difíciles y ofrecer siempre los consejos mas acertados, a ustedes, les deseo lo mejor del mundo, gracias, los quiero mucho...

Quiero agradecer a las familias: Cárdenas Hernández, Pino Cárdenas, Perdomo Cárdenas, Cárdenas Rangel, Rangel Cárdenas, Quintero Rangel, Guerra Rangel y Chacón Guerrero, por su gran apoyo.

Gracias a ti Susi, por haberme apoyado en todo momento, por estar allí cada vez que te he necesitado, gracias amor, recuerda cuan importante eres para mi... Gracias a Saúl, Lula, Leo, Evelyn, Juri, Sandra, Ale, Alessandra, Sori, José Luis y a Bruno José por brindarme su valiosa amistad.

Gracias a la empresa RGR, por darnos la oportunidad de realizar el Trabajo Especial de Grado, particularmente a Roque García, Roberto Ucar, Huáscar Godoy, Michael Werhmann, Javier y Eduardo García, Javier Adrian, Vanesa, Rommel, Jhonny Farfán, Tonny y las señoras María y Josefina.

Agradezco a la empresa Odebrercht por darnos la oportunidad de ingresar al proyecto del sistema Caracas-Guarenas-Guatire, especialmente a Gladys Díaz, Ricardo Vélez y Adriana Zambrano.

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

Gracias a los profesores de la escuela de Geología que de manera desinteresada colaboraron con mi formación en esta gran casa de estudio, especialmente agradezco a los profesores: Armando Quintero, Ricardo Alezones, Lennin González, Rafael Falcón, Alfredo Mederos y Sebastián Grande.

Gracias a Woody, mi compañero de tesis, de deporte y gran amigo, por fin lo logramos hermano, como tu dices, ya cerramos este ciclo, es hora de iniciar otro y seguir adelante, se le quiere mucho.

Gracias a mis amigos, aquellos que vivieron buenos y malos momentos a mi lado a lo largo de la carrera, a Grazi y a la Yoyis, las mejores amigas que tengo, sin ustedes no hubiese sido lo mismo, a mis mompirris: Manuel, Canache, Joao, Lonio, Marcos, Andrés, Ghersi, Eduardo, Richard y Joa.

Gracias a mis amigos de Carrizal, esos que desde un principio creyeron en mí y me apoyaron moralmente, especialmente a: Alejo, Manuel, Mariela, Arnold y a todos los muchachos del equipo Carrizal Futbol Club, de corazón, gracias a todos los que de alguna manera me ayudaron a lograr este sueño...

Ángel Chacón...

Agradezco a dios por darme la vida y todo lo que he necesitado en su debido momento, también le agradezco por haberme bendecido con la hermosa familia que tengo. A él también le agradezco de forma infinita por la existencia de la mejor universidad del planeta... MI UNIVERSIDAD CENTRAL DE VENEZUELA...

Agradezco a mi madre por todas las cosas que ha sacrificado por sus tres hijos, por todos sus sacrificios, sólo dios sabe... a mi padre por su incansable labor día a día para darnos siempre lo mejor, a mis hermanos por su apoyo y por siempre estar unidos en la buenas y en las malas. A mis abuelos Otilio y Dominga, a mi difunta abuela Lucia, a mis tíos y tías, muy en especial a Lilian y a Miguel, a mis primos y primas, a Jonhatan, Eudi, Norelis, Carlos Alexis, Maritza, Luis Vivas, Elvira, por el apoyo de siempre.

A mi amigo incondicional, mi futuro compadre, mi gran compañero de mediocampo en el Deportivo Geología y en Carrizal FC, y sobre todas las cosas a un gran profesional con quien compartí casi toda mi carrera universitaria: mi compañero de tesis ÁNGEL CHACÓN.

A mis amigos, desde el Núcleo de Cagua a: Adriana Ubieda, Harú, Adrian, Carmen, Ybeth, Verónica, Laura, Luis Fernando, Oscar Utrera, Ramón, Denis, Juan Sánchez, Alberto Ochoa, Mariela...y a todos aquellos con quienes compartí buenos momentos. A mis amigos de la UCV - Caracas: Andrés, Graziana (mención especial por ser tan comprensiva, tan buena persona y sobretodo tan honesta y aplicada), Adriana Zambrano, Javier, Ricardo Vélez, Jesús Ghersi, Fredy, Erick "Canache", Enzo, Iliana, Walter, Enrique, Alexandra, María Antonieta, María Fernanda, Johana (Martínez & Ojeda), Richard, Manuel, Hildemaro, Pedro, Allí, Humberto, José Penín, Alexis, William "Golonio" Méndez, Joao, Gerardo, y a muchos otros que quizás no recuerdo pero que siempre llevaré en mi memoria como una parte trascendente en esta hermosa etapa de mi vida... Al Deportivo Geología FC por darme siempre tantas alegrías y satisfacciones en el deporte más hermoso del planeta: el Fútbol, y ante todo crear ese sentido de pertenencia que hoy tengo de mi Escuela de Geología y de mi UCV. A mi amor María Virginia por apoyarme en las buenas y más aun en las malas, por ser siempre tan comprensible y porque ante todo es una excelente amiga...Te quiero mucho...

A mi profesor Ricardo Alezones, quien fue mi mentor y guía en el mundo de la geología y a quien considero un familiar más, al Prof. Franco Urbani, por sus sabios consejos, a mi tutor Armando Díaz Quintero, quien siempre nos apoyo en los momentos difíciles de la fase final de nuestra carrera. A la profe Carolina Machillanda por su paciencia y excelente forma de enseñar...

Al Ing. Geólogo Roque García Ruiz por el incondicional apoyo para la realización de este trabajo, al Ing. Geólogo Peter Werhmann por sus sabios consejos y asesorías en momentos claves para esta tesis, al Dr. Roberto Ucar por su ayuda

desinteresada y colaboración incondicional en este trabajo, a todo el personal de RGR por el excelente trato que dispensaron hacia nosotros, realmente nos hicieron sentir como en casa; en especial a Javier Adrian y Vanessa González por ser tan panas y al gran Jhony Farfán por todas esas grandes ayudas en AUTOCAD, como sabe de eso...

A la Organización de Bienestar Estudiantil (OBE), ente que siempre me tendió una mano desde mi llegada a Caracas y a quienes agradezco de forma infinita toda la ayuda que brinda a personas que como yo venimos del interior del país con el sueño de ser profesionales de la patria... sigan así...A Guillermo Manrique, a la Flia. Hernandez Ramos, a la Flia. Velásquez Villa, a la Flia. Bauce Cárdenas, a la Sra. Ángela de Pablos por sus sabios consejos y excelente trato hacia mi persona...

Woodwarde...

DEDICATORIA

"Esta dedicatoria va a dirigida a ti, que me diste la vida, que me viste crecer, que me apoyaste siempre y me diste motivos para salir adelante en los momentos difíciles, una vez me dijiste que las personas deben creer en si mismas y respetar esas creencias para poder conseguir lo que se proponen, bueno, por lo menos yo lo entendí así....jajajaja.... Gracias a ese consejo en este momento he logrado una de mis metas y todo esto te lo debo a ti, espero que puedas verme desde donde estés y te sientas orgullosa de tu hijo, gracias mamá, a ti te dedico este triunfo.... TE AMO!!!"

Ángel Chacón.

"A dios, Aida, Argenis, Atkins & Jason, A mi Abuela Dominga & Abuelo Otilio, A la memoria de mi Abuela Lucia, a la memoria de mi Tía Silvia, a la memoria de mi primo Arnoldo...a la Universidad Central de Venezuela y a mi bello País..."

... Woodwarde

Chacón C. Ángel A., Guevara B. Woodwarde J.

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS-GUARENAS-GUATIRE

Tutor Académico: Prof. Armando Díaz Q.

Tesis. Caracas, U.C.V. Facultad de Ingeniería. Escuela de Geología, Minas y

Geofísica. Año 2008, 143 p.

Palabras Claves: Geotecnia, geomecánica, vía férrea, túnel, Caracas, Guarenas, Guatire.

RESUMEN

El proyecto del Sistema Caracas – Guarenas – Guatire (SCGG) surge por la necesidad de mejorar la red de transporte a nivel nacional, por lo tanto la creación de nuevas alternativas que suplan las ya sobrecargadas vías de comunicación existentes son de gran vitalidad para el desarrollo económico y social del país, y es aquí donde las vías ferroviarias surgen como la alternativa más adecuada. Pero para la ejecución de un proyecto ferroviario de esa magnitud, es necesario poseer una buena información geológica de la zona y del comportamiento geomecánica de los macizos rocosos correspondientes a las secciones de túnel, es por esto que surge la idea de la realización de la caracterización geomecánica y modelado 3D de los macizos correspondientes al desarrollo de las obras subterráneas del Sistema Caracas - Guarenas – Guatire.

La zona de estudio se encuentra ubicada al nor – oeste del Estado Miranda, comprendiendo tres secciones de un tramo ubicado entre los sitios denominados La Culebrita y Puerta del Este, entre las coordenadas 10°31'-10°27' de latitud norte y

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

 $66^{\circ}45' \cdot 66^{\circ}39'$ de longitud oeste. La misma posee un área total aproximada de 40 km^2 .

El área de estudio está compuesta en su totalidad por rocas metamórficas correspondientes a la Formación Las Mercedes, las cuales provienen de protolitos sedimentarios y están afectadas por un metamorfismo de la facies de los esquistos verdes.

Los macizos rocosos varían en calidad desde excepcionalmente malos a medios de acuerdo a la clasificación Q de Barton, cuyos parámetros se trabajaron con valores estadísticos que arrojaban una determinada probabilidad de ocurrencia del valor de Q para cada sector del trazado, y de muy mala a media en la RMR de Bieniawski. Se identificaron tres familias de diaclasas y una foliación predominante, con rumbos subverticales y suaves respectivamente.

ÍNDICE

AGRADECIMIENTOSIV
DEDICATORIAVIII
RESUMENIX
ÍNDICEXI
CAPÍTULO I. GENERALIDADES1
PROBLEMA 1
JUSTIFICACIÓN1
OBJETIVO GENERAL
OBJETIVOS ESPECÍFICOS 2
UBICACIÓN2
TRABAJOS PREVIOS
CAPÍTULO II. METODOLOGÍA6
FASE PRE-CAMPO 6
FASE CAMPO7
FASE POST – CAMPO 14
CAPÍTULO III. GEOGRAFÍA FÍSICA
RELIEVE
DRENAJE
VEGETACIÓN 41
CLIMA
CAPÍTULO IV. MARCO TEÓRICO44
PROPIEDADES FÍSICAS DE LA MATRIZ ROCOSA
CLASIFICACIONES GEOMECÁNICAS 46
CLASIFICACIÓN RMR

CLASIFICACIÓN DEL MACIZO ROCOSO Q
CLASIFICACIÓN RMI 49
CAPÍTULO V. GEOLOGÍA REGIONAL
ESTRATIGRAFÍA REGIONAL 53
GEOLOGÍA ESTRUCTURAL REGIONAL 59
CAPÍTULO VI. RESUTADOS
GEOLOGÍA LOCAL
GEOLOGÍA ESTRUCTURAL LOCAL 82
GEOMECÁNICA110
CAPÍTULO VII. ANÁLISIS DE RESULTADOS 125
GEOLOGÍA 125
GEOMECÁNICA134
CAPÍTULO VIII. CONCLUSIONES Y RECOMENDACIONES139
BIBLIOGRAFÍA142

ÍNDICE DE FIGURAS

Figura #1. Ubicación de la zona de estudio4
Figura# 2. Representación esquemática de las propiedades geométricas de las
discontinuidades9
Figura #3. Modelos de continuidad o persistencia10
Figura #4.Actualización de 1993 del grafico de diseño del sistema Q para
túneles y cavernas, basados en los principios de de sostenimiento permanente del
MNT
Figura #5.Factores de ajuste para el sostenimiento en roca
Figura #6. Ábaco de sostenimiento para terrenos diaclasados
Figura #7. Portal de entrada del túnel El Encantado, visto desde la
urbanización Miranda
Figura #8. Portal de entrada del túnel de Mampote, visto desde el extremo
este del club Mampote. Rumbo E-O
Figura #9. Portal de entrada del túnel de Mampote, visto desde la autopista
Caracas Guarenas. Rumbo E-O
Figura #10. Cauce del rio Guarenas40
Figura #11. Vegetación tipo sabanera41
Figura #12. Bosque tropófilo41
Figura #13. Bromelia
Figura #14. Ubicación de las fajas tectónicas
Figura #15. Afloramiento del esquisto cuarzoso de aspecto gnéisico,
muscovítico y feldespático, representativo de la unidad Klm1. Rumbo N 50º E 63
Figura #16. Cristal de calcita con exfoliación romboédrica presente en la
muestra MI-004. Izquierda: nicoles paralelos. Derecha: nicoles cruzados. Foto
tomada con objetivo de 10X de aumento

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

Figura #18.Afloramiento del esquisto calcáreo-cuarzo-moscovítico,representativo de la unidad Klm2.Rumbo E-O.67

Figura #22. Afloramiento del esquisto de aspecto gnéisico cuarzofeldespático-calcáreos, de la unidad Klm3 (g). Rumbo N 65° E......71

Figura #25. Cristales anhedrales de cuarzo. Izquierda: nicoles paralelos. Derecha: nicoles cruzados. Foto tomada con objetivo de 10X de aumento.......77

Figura #28. Filosilicatos entrelazados con finas laminas de grafito dispuestos en bandas subparalelas intercaladas con cristales de cuarzo. Izquierda: nicoles

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

paralelos. Derecha: nicoles cruzados. Foto tomada con objetivo de 10X de aumento.

{	81	
	~ -	•

 Figura #32. Evidencia de la foliación en la quebrada Valencia, perteneciente

 al túnel La Encantada.
 86

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

Figura #41 Detalle de la foliación en la quebrada QEZ, perteneciente al			
sector #2 (S2) del túnel Mampote			
Figura #42 Evidencia de la foliación en la sección CDN-002, perteneciente al			
sector #2 (S2) del túnel Mampote92			
Figura #43. Diagramas que muestran la foliación dominante en el Sector #2			
(S2) del Túnel Mampote, Con rumbos entre N 60° E – E_O y N 50° O – E_O, junto a			
la distribución de los polos de dichos planos (* Dos Polos)93			
Figura #44. Diagramas que muestran las diaclasas dominante en el Túnel El			
Encantado, Tres familias, D1: N 31° O 88° N, D2: N 60° O SV, D3: N 16° O 70° S,			
junto al diagrama de concentración de los polos de dichos planos (* Dos Polos)94			
Figura #45. Evidencia del diaclasado en la quebrada Valencia, perteneciente			
al túnel La Encantada95			
Figura #46. Diagramas que muestran las diaclasas dominante en el Sector #1			
(S1) del Túnel Caucagüita, Dos familias, D1: N 79° E 89° S, D2: N 35° O 79°N,			
junto al diagrama de concentración de los polos de dichos planos (* Dos Polos)96			
Figura #47. Diagramas que muestran las diaclasas dominante en el Sector #2			
(S2) del Túnel Caucagüita, Tres familias, D1: N 5º E 88º S, D2: N 30º O 84 N, D3:			
N 59° E 72° S, junto al diagrama de concentración de los polos de dichos planos (*			
Dos, * Tres,* Cuatro Polos)			
Figura #48. Diagramas que muestran las diaclasas dominante en el Sector #3			
(S3) del Túnel Caucagüita, Tres familias, D1: N 22º O 83º N, D2: N 63º E 85 N, D3:			
N 78° E 56° S, junto al diagrama de concentración de los polos de dichos planos98			
Figura #49. Diagramas que muestran las diaclasas dominante en el Sector #2			
(S2) del Túnel Mampote, Cuatro familias, D1: N 15° E 86° S, D2: N 31° O 80 N, D3:			
N 51° E 50° S, D4: N 18° O 70° S junto al diagrama de concentración de los polos de			
dichos planos			
Figura #50. Evidencia de la foliación en la quebrada OMB, perteneciente al			
sector #2 (\$2) del túnel Mampote			
Figura #51. Evidencia del diaclasado en la sección CDN-002. perteneciente al			
sector #2 (S2) del túnel Mampote			

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

Figura #52. Vista desde el Nor – Oeste en perspectiva (Izquierda) y frontal
aproximadamente Oeste - Este (Derecha) de las posibles cuñas que se generarían en
el túnel La Encantada101
Figura #53. Vista desde el Sur de las posibles cuñas que se generarían en el
túnel La Encantada102
Figura #54. Vista desde el Nor – Oeste en perspectiva (arriba) y frontal
aproximadamente Oeste - Este (abajo) de las posibles cuñas que se generarían en el
sector #1 (S1) del túnel Caucagüita
Figura #55. Vista desde el Sur de las posibles cuñas que se generarían en el
sector #1 (S1) del túnel Caucagüita
Figura #56. Vista desde el Norte en perspectiva (Izquierda) y frontal desde el
Nor – Oeste (derecha) de las posibles cuñas que se generarían en el sector #2 (S2) del
túnel Caucagüita
Figura #57. Vista desde el Sur - Oeste de las posibles cuñas que se generarían
en el sector #2 (S2) del túnel Caucagüita106
Figura #58. Vista desde el Sur – Oeste en perspectiva (arriba) y frontal Oeste
- Este (abajo) de las posibles cuñas que se generarían en el sector #3 (S3) del túnel
Caucagüita107
Figura #59. Vista desde el Sur de las posibles cuñas que se generarían en el
sector #3 (S3) del túnel Caucagüita
Figura #60. Vista desde el Nor - Oeste en perspectiva (Izquierda) y frontal
desde el Sur – Oeste (derecha) de las posibles cuñas que se generarían en el sector #2
(S2) del túnel Mampote108
Figura #61. Vista desde el Sur – Este de las posibles cuñas que se generarían
en el sector #2 (S2) del túnel Mampote
Figura #62. Diagrama que muestra la concentración de polos de la foliación
dominante en los tres túneles del proyecto, donde se aprecia los bajos buzamientos de
dichos planos entre 15° y 35° Norte
Figura #63. Diagrama que muestra la dirección principal de la foliación

dominante en los tres túneles del proyecto, N 60° - 70° E. 131

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

Figura #65. Diagrama que muestra las diaclasas dominantes en los tres túneles del proyecto, Tres familias, D1: N 11° E 85° S, D2: N 31° O 85°N, D3: N 83°
E 83° S. (* Uno, ▲ Dos, ► Tres, + Cuatro, x Cinco, ◆ Seis, ▼ Siete Polos). 133

ÍNDICE DE TABLAS

Tabla #1. Descripción del grado de meteorización. 8
Tabla #2. Descripción del espaciado. 10
Tabla #3. Descripción de la continuidad11
Tabla #4. Descripción de la rugosidad. 11
Tabla #5. Descripción de la abertura. 12
Tabla #6. Determinación del GSI en rocas metamórficas de la cordillera de la
costa en Venezuela
Tabla #7. Clasificación Geomecánica según BIENAWSKI, 1989. RMR16
Tabla #8. Parámetros que forman el índice Q según BARTON, 1974.
Tabla #9. Clase de roca en base al índice Q según BARTON, 1974. 18
Tabla #10. Valores de los parámetros que forman el índice Q según BARTON,
1974
Tabla #11. Parámetros que forman el índice RMi según PALLSTRÖM,
1995,2000
Tabla #12. Valores de los parámetros que forman el índice RMi según
PALLSTRÖM, 1995,200026
Tabla #13. Características geomecánicas del macizo rocoso
Tabla #14. Valores de la constante mi para roca intacta por tipos de roca33
Tabla #15. Clasificación de la excavación por rangos de cobertura. 34
Tabla #16. Propiedades de la matriz rocosa y métodos para su determinación.
Tabla #17. Valores de abundancia mineral expresados en porcentaje en
esquisto calcáreo cuarzoso, esquisto cuarzoso de aspecto gnéisico, moscovítico y
feldespático

 Tabla #25. Datos de las respectivas cuñas en el sector #3 (S3) del túnel

 Caucagüita.
 106

 Tabla #26. Datos de las respectivas cuñas en el sector #2 (S2) del túnel

 Mampote.
 108

 Tabla #28. Resultados del ensayo de carga puntual y cálculo de la resistencia

 Tabla #30. Valores estimados de RQD para el macizo correspondiente al túnel de Mampote
 112

 Tabla #32. Caracterización del macizo en base a la clasificación (Q) de

 Barton.
 114

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

Tabla #33. Caracterización del macizo en base a la clasificación (RMR) de
Bieniawski114
Tabla #34. Caracterización del macizo en base a la clasificación (RMR) de
Bieniawski115
Tabla #35. Caracterización del macizo en base a la clasificación (RMR) de
Bieniawski116
Tabla #36. Caracterización del macizo en base a la clasificación (RMi) de
Pallmström
Tabla #37. Caracterización del macizo en base a la clasificación (RMi) de
Pallmström
Tabla #38. Caracterización del macizo en base a la clasificación (RMi) de
Pallstöm

CAPÍTULO I

GENERALIDADES

PROBLEMA

La necesidad de mejorar la red de transporte del país es vital para el desarrollo económico y social del mismo, por lo cual la construcción de nuevas vías de comunicación es una necesidad imperante hoy en día. Estas nuevas vías incluyen la construcción de ferrocarriles, que permitan transportar mayor cantidad de usuarios y mercancía en menor tiempo que los sistemas de transporte convencionales automotores.

La ejecución de este tipo de obras requieren la construcción de túneles en algunos de los tramos en los que se encuentra proyectada la misma, es aquí donde se hace indispensable disponer de la información geológica y geomecánica detallada de los macizos rocosos o los suelos en los cuales se llevarán a cabo las excavaciones.

JUSTIFICACIÓN

Teniendo como objetivo actualizar la información geológica, realizar la caracterización geomecánica detallada de los macizos rocosos a excavar e implementar una herramienta vanguardista en el área como es el modelado en 3D, para el desarrollo de las obras subterráneas del Sistema Caracas – Guarenas – Guatire (SCGG), se ha decidido realizar el presente trabajo especial de grado. A fin de tener una base de información indispensable para el desarrollo del proyecto.

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

OBJETIVO GENERAL

Realizar la caracterización geomecánica junto al modelado en 3D de los macizos rocosos correspondientes a las obras subterráneas que conforman el tramo sub-urbano del Sistema Caracas – Guarenas – Guatire (SCGG).

OBJETIVOS ESPECÍFICOS

- ✤ Realizar la caracterización geológica de las zonas de interés a través del levantamiento de campo, en el cual se tomarán muestras para la elaboración de secciones finas y ensayos de laboratorio.
- Determinar las características mineralógicas y texturales de los diferentes litotipos encontrados.
- ✤ Elaborar un mapa Geológico integrado al perfil geomecánico a escala 1:5.000 (túnel Caucagüita), 1:2500 (túneles La Encantada y Mampote).
- Realizar la caracterización geomecánica de los macizos rocosos en los cuales se ejecutaran las obras subterráneas del proyecto.
- ✤ Generar un modelado en 3D que muestre la distribución de los distintos parámetros geomecánicos en los tramos del proyecto.
- ✤ Actualizar la información geológica regional.

UBICACIÓN

El área de estudio se localiza hacia la zona nor – oeste del estado Miranda, comprendiendo tres secciones de un tramo ubicado entre los sitios denominados La Culebrita y Puerta del Este. La primera sección va desde la zona este de la quebrada Perico, ubicada al oeste del sector la Culebrita, con coordenadas UTM N:1.161.300 y E:746.250, hasta el margen oeste de la quebrada La Encantada (zona correspondiente al primer túnel, La Encantada), la segunda inicia al este de la quebrada La Encantada y finaliza al oeste del helipuerto Ávila del Estado Miranda (zona correspondiente al

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

segundo túnel, Caucagüita) y por ultimo, la tercera sección, que inicia en una zona ubicada al este de Terrazas de Mampote y culmina 1 km al oeste del cementerio situado en las cercanías de la carretera vieja Caracas-Guarenas con coordenadas UTM N:1.158.750 y E:752.750, a una distancia aproximada de 3 km del sector Puerta del Este (zona correspondiente al tercer túnel, Mampote).Ver Figura#1.

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE TRABAJOS PREVIOS

WEHRMANN (1972) y la revisión de GONZÁLEZ DE JUANA et al. (1980, p. 317), definen la formación Las Mercedes en la cual la litología predominante consiste en esquisto cuarzo - moscovítico - calcítico - grafitoso con intercalaciones de mármol grafitoso en forma de lentes, que cuando alcanza gruesos espesores se ha denominado "Caliza de Los Colorados". Las rocas presentan buena foliación y grano de fino a medio, el color característico es el gris pardusco. La mineralogía promedio consiste en cuarzo (40%) en cristales dispuestos en bandas con la mica, moscovita (20%) en bandas lepidoblásticas a veces con clivaje crenulado, calcita (23%) en cristales con maclas polisintéticas, grafito (5%), y cantidades menores de clorita, óxidos de hierro, epidoto y ocasionalmente plagioclasa sódica. El mármol intercalado con esquisto se presenta en capas delgadas usualmente centimétricas a decimétricas, son de color gris azuloso, cuya mineralogía es casi en su totalidad calcita, escasa dolomita y cantidades accesorias de cuarzo, muscovita, grafito, pirita y óxidos de hierro. En lo que respecta a la Formación las Brisas, WEHRMANN (op. cit.) afirma que está constituida en un 90% de esquistos cuarzo-feldespático-moscovíticos; el 10% restante lo constituyen, en orden de abundancia, esquistos cuarzo-feldespáticos, epidóticos o cloríticos, calizas, cuarcitas y metaconglomerados. Menciona igualmente, mineralizaciones pobres de cobre en algunas calizas, en forma de sulfuros y sulfatos.

BARBOZA & RODRÍGUEZ (2001), determinaron 3 patrones de falla, siendo el más antiguo el de orientación E – W, a este sistema pertenecen las fallas de San Sebastián, Macuto y Ávila. Los otros dos sistemas son N 40° - 70° W y N 30° - 70° E. La foliación se debe a las texturas metamórficas lepidoblásticas y nematoblásticas. La foliación predominante N 10° - 80° E con buzamiento al norte y al sur entre 16° - 84°. Las diaclasas tienen orientación principal N 35° - 80° E y buzamiento 40° - 80° tanto al sur como al norte y N 35° - 80° W, con buzamiento 30° - 85° al norte.

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

CAPÍTULO II

METODOLOGÍA

El desarrollo del proyecto se llevo a cabo en tres fases bien diferenciadas, las cuales se describen de forma detallada a continuación:

FASE PRE-CAMPO

Etapa en la cual se realizaron las labores que antecedieron al trabajo de campo y en la que se ejecutaron las siguientes actividades:

- ✤ Recopilación de la información bibliográfica disponible del área de estudio, en bibliotecas, empresas y a través de la internet. Se consultaron Tesis de Grado, Trabajos de Ascenso, Congresos, Seminarios, Conferencias, Revistas Especializadas, Libros, Informes Técnicos y material no publicado que estuvo al alcance.
- ✤ Integración de las hojas cartográficas 6847 I SO, 6847 II NO, 6847 III NE y 6847 IV SE a escala 1:25.000, puestas a disposición en formato digital por parte de la empresa Constructora Norberto Odebrecht S.A.
- Estudio fotogeológico de la misión aerofotográfica: 030198 N# 3190 3198 que cubren la región, orientada a la identificación de las evidencias de deformaciones tectónicas que pudiesen estar afectando al área en estudio y a la actualización de la cartografía geológica existente sobre la misma.
- Planificación de la exploración geológica y geomecánica superficial.

FASE CAMPO

En esta etapa se realizaron todas las actividades relacionadas con la recopilación de información en el área de estudio, las cuales se describen con detalle a continuación:

- ✤ Realizar un inventario detallado de todos los litotipos presentes en la zona, con énfasis particular en la ponderación de sus propiedades geomecánicas a fin de realizar las clasificaciones propuestas por BIENAWSKI (RMR, 1989), HOEK & BROWN (GSI modificado por TRUZMAN, 2000), BARTON (Q, 1974; actualizado en 1994) y PALLMSTRÖM (RMi, 1995; actualizado en 2000) y verificar los resultados obtenidos del estudio fotogeológico previo.
- Constatar la presencia de los procesos de geodinámica previamente identificados y de otros que no se hubiesen percibido durante la etapa de fotointerpretación, precisando su ubicación espacial, sus características físicas y sus extensiones superficiales.
- ✤ Toma de muestras representativas para su posterior procesamiento en el laboratorio.

Los aspectos tomados en cuenta al momento de realizar la caracterización de los macizos rocosos fueron los siguientes:

a) *DESCRIPCION DEL AFLORAMIENTO:* en esta actividad se realizó la identificación y descripción general del afloramiento, incluyendo la sectorización del mismo a fin de establecer zonas con características similares, y se especificaron las siguientes características:

- I. Formación y edad geológica.
- II. Litología.

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

- III. Rasgos estructurales observables a gran escala, por ejemplo: macizo estratificado, fallado, fracturado, masivo, plegado, etc.
- IV. Zonas alteradas, meteorizadas y espesor de las mismas.
- V. Presencia de agua, manantiales, etc.

Se incluyo de igual forma el grado de meteorización de la roca, a fin de tener una aproximación de las propiedades mecánicas de la misma. Tal caracterización se realizó de manera visual según la siguiente tabla:

TERMINO	DESCRIPCION
Fresca	No se observan signos de meteorización en la matriz rocosa.
Decolorada	Se observan cambios en el color original de la matriz rocosa. Es conveniente indicar el grado de cambio. Se debe destacar si se observa que el cambio de color se restringe a uno o algunos minerales.
Desintegrada	La roca se ha alterado al estado de un suelo, manteniéndose la fábrica original. La roca es friable, pero los granos minerales no están descompuestos.
Descompuesta	La roca se ha alterado al estado de un suelo, algunos o todos los minerales están descompuestos.

Tabla #1. Descripción del grado de meteorización. (Tomado y modificado de GONZÁLEZ ET AL., 2002).

La presencia de agua en el macizo será descrita de forma visual haciendo particular énfasis en las discontinuidades del mismo y especificando si el agua se presenta fluyendo, goteando o si el macizo esta húmedo, ligeramente húmedo o seco.

b) *DESCRIPCION DE LAS DISCONTINUIDADES*: en esta etapa se realizó la descripción de cada familia de discontinuidades tomando en consideración los siguientes parámetros:

- I. Orientación.
- II. Espaciado.
- III. Continuidad o Persistencia.
- IV. Rugosidad.

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL

SISTEMA CARACAS - GUARENAS - GUATIRE

- V. Resistencia de las paredes.
- VI. Abertura.
- VII. Relleno.

La orientación de las discontinuidades se pudo conocer por medio de la medición de la dirección de buzamiento y por la medición del buzamiento, usando para esto una brújula de campo con clinómetro.

Figura# 2. Representación esquemática de las propiedades geométricas de las discontinuidades. (Tomado de GONZÁLEZ *ET AL.*, 2002).

La distancia comprendida entre dos planos de discontinuidad de la misma familia y medida de manera perpendicular a dichos planos es conocida como espaciado, esta medición se debe realizar, como norma general, a una superficie 10 veces mayor a la longitud del espaciado y se efectuó utilizando una cinta métrica. La tabla #3 muestra los diferentes tipos de espaciado utilizados:

DESCRIPCIÓN	ESPACIADO
Extremadamente junto	< 2 cm
Muy junto	2 - 6 cm
Junto	6 - 20 cm
Moderadamente junto	20 - 60 cm
Separado	60 cm - 2 m
Muy separado	2 - 6 m
Extremadamente separado	>6 m

La continuidad o persistencia de un plano de discontinuidad es su extensión superficial, medida por la longitud según la dirección del plano y según su buzamiento. Esta medición se realizó con una cinta métrica. A continuación se muestra la descripción de la continuidad, junto a modelos de continuidad o persistencia:

Figura #3. Modelos de continuidad o persistencia. (Tomado de GONZÁLEZ ET AL., 2002).

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

CONTINUIDAD	LONGITUD
Muy baja continuidad	< 1 m
Baja continuidad	1 – 3 m
Continuidad media	3 – 10 m
Alta continuidad	10 – 20 m
Muy alta continuidad	> 20 m

Tabla #3. Descripción de la continuidad. (Tomado de GONZÁLEZ ET AL., 2002).

La rugosidad se define como el nivel de las irregularidades de las superficies a pequeña escala de dichos planos, por lo que puede ser medida en escalas centimétricas y milimétricas. La medición hecha en campo se llevo a cabo a través de comparación visual con los perfiles estándar de rugosidad que se muestran a continuación:

PERFILES DE RUGOSIDAD	SEGÚN	ADAPTACION A LA
	ISRM, 1981	CLASIFICACION
		RMR,1989
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Escalonado – Rugoso	Muy Rugoso
	Ondulado – Rugoso	
	Plano – Rugoso	Rugoso
	Escalonado – Liso	
	Escalonado – Pulido	Ligeramente Rugoso
	Ondulado – Liso	Ondulado
	Ondulado – Pulido	
	Plano – Liso	Suave
	Plano – Pulido	

Tabla #4. Descripción de la rugosidad. (Tomado de BECHARA & MATOS, 2006).

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL La abertura se refiere a la distancia entre ambas caras de la discontinuidad medida en forma perpendicular a las mismas, para la clasificación geomecánica se tomó el promedio de los valores obtenidos para cada familia de discontinuidades. A continuación la tabla #6muestra la descripción de la abertura.

ABERTURA	DESCRIPCION	
0	Muy cerrada	
< 0,1 mm	Cerrada	
0,1 – 1 mm	Parcialmente abierta	
1 – 5 mm	Abierta	
> 5 mm	Muy abierta	

 Tabla #5. Descripción de la abertura. (Tomado y modificado de GONZÁLEZ ET AL., 2002).

El relleno es el material existente entre las paredes de las discontinuidades, de naturaleza distinta a la roca. Las características descritas en campo son: el espesor (medido por medio del uso de una regla graduada) y la resistencia al corte, siendo esta última tomada como duro o blando.

c) Determinación del GSI (Geological Strength Index): esta propiedad evalúa la calidad del macizo rocoso en función del grado y las características de fracturación, estructuras geológicas, tamaño de los bloques y alteración de las discontinuidades. Se definió en campo de acuerdo a las estructuras presentes y las condiciones de la superficies de discontinuidad, utilizando la clasificación modificada por TRUZMAN, 2003 para las rocas de la cordillera de la costa venezolana (ver tabla #7).

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

# Tabla #6. Determinación del GSI en rocas metamórficas de la cordillera de la costa en Venezuela. (Tomado de TRUZMAN, 2003).



d) Recolección de muestras: se seleccionaron las muestras más representativas de los macizos estudiados, estando éstos ubicados lo más cerca

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES Al Desarrollo De Las Obras Subterráneas Del

SISTEMA CARACAS - GUARENAS - GUATIRE

posible del alineamiento de la vía férrea. Las muestran poseían forma cúbica de 15 cm por lado en las cuales se efectuaron los siguientes ensayos:

- I. Resistencia a la compresión simple.
- II. Densidad.
- III. Absorción.
- IV. Secciones delgadas para el estudio petrográfico.

FASE POST - CAMPO

👁 Etapa de laboratorio

En esta etapa se procedió a la elaboración de las secciones delgadas y a ensayar las muestras recolectadas en campo. A través del análisis petrográfico de las secciones delgadas se determinó la mineralogía, textura y el grado de metamorfismo de las rocas que conformaban el macizo rocoso determinando así la geología del mismo. De igual forma se procedió a realizar los siguientes ensayos:

a) Peso específico y absorción de agregado grueso (granulometría muy gruesa y homogénea). Según la norma ASTM C127-88.

b) Ensayo de carga puntual. Según la norma ASTM D 5731-02. 🕭 Etapa de oficina

En esta etapa se realizó la caracterización geomecánica del macizo rocoso según los siguientes métodos:

- a) BIENAWSKI (1989), Rock Mass Rating (RMR). Ver tabla #7.
- b) BARTON (1974, 2000), Clasificación ingenieril de macizos rocosos para el diseño del soporte en túnel (Q). Ver tablas #8, #9 y #10.
- c) PALLMSTRÖM (1995, 2000), RMi Un sistema de caracterización de macizos rocosos con fines ingenieriles.
- d) Determinación de características geomecánicas de resistencia y deformación del macizo rocoso, según HOEK & BROWN (1997), PERRI (1999) y MARINOS& HOEK (2001) (GSI modificado por TRUZMAN, 2003). Ver tablas #13 y #14.

En la clasificación RMR se requiere del parámetro geomecánico RQD (*Rock Quality Designation*), el cual se calcula de forma empírica a partir de la fórmula de PALLSTRÖM (1979) en GONZÁLEZ (2002), que se muestra a continuación:

$$\begin{aligned} RQD &= 115 - 3,3 . J_v & para J_v > 4,5 \\ RQD &= 100 & para J_v \le 4,5 \\ J_v &= \sum \frac{N \# \ de \ Discontinuidades}{Longintud \ de \ medida} \end{aligned}$$

Donde:

 $J_{\nu}$ =Número total de discontinuidades que interceptan una unidad de volumen (1 m³) del macizo rocoso.

En la clasificación geomecánica RMR (BIENAWSKI, 1989), vista en la tabla #9, se asignaron los valores correspondientes a cada parámetro, obteniéndose una cantidad que se corrigió según la orientación de las discontinuidades del macizo

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL

SISTEMA CARACAS - GUARENAS - GUATIRE
rocoso. Este valor se conoce como RMR corregido y se utilizó para determinar la clase (de I a V) y la calidad (desde muy buena hasta muy mala) del macizo rocoso. A partir de la clase se obtuvieron las características geotécnicas de cohesión y ángulo de fricción y se determinó el tipo de sostenimiento para cada sección del macizo rocoso.

			-						
	Resistencia de la matriz	Ensayo de Carga Puntual	> 100	100 - 40	40 - 20	20 - 10	Compr (Kg / c	esión Si m²)	mple
1	rocosa (Kg/cm ² )	Compresión Simple	> 2500	2500 - 1000	1000 - 500	500 - 250	250 - 50	50 - 10	< 10
	Pun	tuación	15	12	7	4	2	1	0
	ROD (%)		100 - 90	90 - 75	75 - 50	50-25	< 25		
2	Pun	tuación	20	17	13	6		3	
-	Separación er	Separación entre Diaclasas		2 - 0.6  m	60 - 20  cm	20 – 6cm	< 6 cm	< 6 cm	
3	Pun	tuación	20	15	10	8		5	
		Longitud de la Discontinuidad	< 1 m	3 – 1 m	10 – 3 m	20 – 10 m	> 20 m		
		Puntuación	6	4	2	1		0	
	des	Abertura	Nada	< 0,1 mm	1 – 0,1 mm	5 – 1 mm	> 5 mn	1	
	ida	Puntuación	6	5	3	1	> 5 mm 0 Suave		
4	Estado de las Discontinui	Rugosidad	Muy Rugosa	Rugosa	Ligeramente Rugosa	Ondulada	Suave		
4		Puntuación	6	5	3	1		0	
		Relleno	Ninguno	Relleno Duro< 5 mm	Relleno Duro > 5 mm	Relleno Blando < 5 mm	Rellend mm	o Blando	o > 5
		Puntuación	6	4	2	2		0	
		Meteorización	Sana	Levemente Meteorizada	Moderadamente Meteorizada	Muy Meteorizada	Comple Meteor	etament izada	e
		Puntuación	6	5	3	1		0	
		Caudal por 10 m de túnel	Nulo	<10 litros / min	10 – 25 litros / min	25 – 125 litros / min	>125 li	tros / m	in
5	Agua Agua / Freática Tensión 0 Principal Mayor		0-0,1	0,1 - 0,2	0,2-0,5	> 0,5			
		Estado General	Seco	Ligeramente Húmedo	Húmedo	Goteando	Agua F	luyendo	)
1	Pun	tuación	15	10	7	4	1	0	

Tabla #7.	Clasificación	Geomecánica	según BIEN	awski, 198	9. RMR.	(Tomado y	modificado	) de
		Ge	ONZÁLEZ <i>ET</i>	AL., 2002).				

Corrección por la orientación de las Discontinuidades						
Dirección perpendicular al eje del túnel						Buzamiento
Excavación con	n el buzamiento	Excavación cont	ra el buzamiento	Direction paralela al eje del tunel		0° - 20°
Buz. 45° - 90°	Buz. 20° - 45°	Buz. 45° - 90°	Buz. 20° - 45°	Buz. 45° - 90°	Buz. 20° - 45°	cualquier dirección
Muy favorable	Favorable	Media	Desfavorable	Muy desfavorable	Media	Media
0	- 2	- 5	- 10	- 12	- 5	- 5
			Clasificación			
Clase	Ι	II	III	IV	V	
Calidad	Muy Buena	Buena	Media	Mala	Muy Mala	
Valoración RMR	100 - 81	80 - 61	60 - 41	40 - 21	< 20	

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES Al Desarrollo De Las Obras Subterráneas Del

	Características Geotécnicas						
Clase	Ι	II	III	IV	V		
Tiempo de Mantenimiento y Longitud	20 años con 15 m de luz	1 año con 10 m de luz	1 semana con 5 m de luz	10 horas con 2,5 m de luz	30 min con 1 m de luz		
Cohesión	$> 4 \text{ kg} / \text{cm}^2$	$4 - 3 \text{ kg} / \text{cm}^2$	$3 - 2 \text{ kg} / \text{cm}^2$	$2 - 1 \text{ kg} / \text{ cm}^2$	$< 1 \text{ kg} / \text{ cm}^2$		
Angulo de Fricción	> 45°	45° - 35°	35° - 25°	25° - 15°	< 15°		

La clasificación del macizo rocoso **Q**, según BARTON (1974, 1994), evalúa los siguientes parámetros:

**Tabla #8.** Parámetros que forman el índice Q según BARTON, 1974.(Tomado de BARTON *ET AL.*, 1994).

RQD	Índice de fracturación.	Medida del tamaño del
Jn	Índice de diaclasado.	bloque.
Jr	Índice de rugosidad de la discontinuidad.	Medida del Angulo de
Ja	Índice de alteración o relleno de la	fricción entre bloques.
	discontinuidad.	
Jw	Factor de reducción por la presencia de agua	Medida de las tensiones
	o filtraciones a través de las	efectivas.
	discontinuidades.	
SRF	Factor representativo de las condiciones	
	tensionales de la roca	

Y se define a través de la siguiente expresión:

$$\boldsymbol{Q} = \left(\frac{RQD}{Jn}\right) \times \left(\frac{Jr}{Ja}\right) \times \left(\frac{Jw}{SRF}\right)$$

Donde **Q** puede variar entre cero (0) y mil (1000), a partir del cual se generan las clases de rocas siguientes:

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

	CLASE DE DE ROCA	INDICE Q
	Excepcionalmente Buena	400 - 1000
А	Extremadamente Buena	100 - 400
	Muy Buena	40 - 100
В	Buena	10 - 40
С	Media	4 - 10
D	Mala	1 – 4
Е	Muy Mala	0,4-1 0,1-0,4
F	Extremadamente Mala	0,04 - 0,1 0,01 - 0,04
G	Excepcionalmente Mala	0,001 - 0,01

Tabla #9. Clase de roca en base al índice Q según BARTON, 1974.(Tomado de BARTON *ET AL.*, 1994).

A continuación se muestran los valores correspondientes a los parámetros característicos del sistema de clasificación **Q**:

Tabla #10. V	/alores de los parámetros que forman el índice Q según BARTON, 197	4.
	(Tomado de BARTON ET AL., 1994).	

1. (	1. Calidad del testigo RQD (Rock Quality Designation)				
А	Calidad muy mala	0-25			
В	Calidad mala	25-50			
С	Calidad media	50-75			
D	Calidad buena	75-90			
Е	Calidad excelente	90-100			
Not	as:				
i) Cuando se obtienen valores del RQD inferiores a 10 (incluyendo el 0), se toma un					
valor nominal de 10 para calcular el índice Q.					
ii)	ii) Los intervalos de 5 unidades para el RQD, es decir, 100, 95, 90, etc., tienen				

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL

sufi	suficiente precisión.				
2. Í	ndice de diaclasado	Jn			
А	Roca masiva, sin diaclasar o con fisuración escasa	0,5-1,0			
В	Una familia de diaclasas	2			
С	Una familia y algunas diaclasas aleatorias	3			
D	Dos familias de diaclasas	4			
Е	Dos familias y algunas diaclasas aleatorias	6			
F	Tres familias de diaclasas	9			
G	Tres familias y algunas diaclasas aleatorias	12			
Н	Cuatro o más familias, diaclasas aleatorias, roca muy fracturada,	15			
	roca en terrones, etc.				
J	Roca triturada, terrosa	20			
Not	as:				
i) E	n intersecciones de túneles, se utiliza la expresión (3. Jn)				
ii) I	En las bocas de los túneles, se utiliza la expresión (2. Jn)				
3. Í	ndice de rugosidad de las Discontinuidades	Jr			
a) (	Contacto entre las dos caras de la discontinuidad ante un desplazamier	nto cortante.			
b) (	Contacto entre las dos caras de la discontinuidad ante un desplazami	iento cortante			
infe	rior a 10 cm.				
А	Diaclasas discontinuas	4			
В	Diaclasas onduladas, rugosas o irregulares	3			
С	Diaclasas onduladas, lisas	2			
D	Diaclasas onduladas, perfectamente lisas	1,5			
Е	Diaclasas planas, rugosas o irregulares	1,5			
F	Diaclasas planas, lisas	1			
G	Diaclasas planas, perfectamente lisas	0,5			
Not	as:				
i) 1	i) Las descripciones se refieren a caracterizaciones a pequeña escala y escala				

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL

intermedia, por este orden.

c) No existe contacto entre las caras de la discontinuidad ante un desplazamiento cortante.

Н	Zona que contiene minerales arcillosos con un espesor suficiente	1
	para impedir el contacto de las caras de la discontinuidad.	
J	Zona arenosa, de gravas o triturada con un espesor suficiente para	1
	impedir el contacto entre las dos caras de la discontinuidad.	

Notas:

i) Si el espaciado de la principal familia de discontinuidades es superior a 3 m, se debe aumentar el índice Jr, en una unidad.

ii) En el caso de diaclasas planas perfectamente lisas que presenten lineaciones, y que dichas lineaciones estén orientadas según la dirección de mínima resistencia, se puede utilizar el valor  $J_r = 0.5$ .

4. Í	ndice de alteración de las discontinuidades	Φr. aprox.	Ja
a)	Contacto entre los planos de la discontinuidad	(sin mineral	les de relleno
inte	ermedios)		
А	Discontinuidad cerrada, dura, sin		0,75
	reblandecimientos, impermeable, cuarzo.		
В	Planos de discontinuidad inalterados, superficies	25°-35°	1,0
	ligeramente manchadas.		
С	Planos de discontinuidades ligeramente alterados.	25°-30°	2,0
	Presentan minerales no reblandecibles, partículas		
	arenosas, rocas desintegrada libre de arcillas, etc.		
D	Recubrimientos de arcillas limosas o arenosas.	20°-25°	3,0
	Fracción pequeña de arcilla (no blanda).		
Е	Recubrimientos de arcillas blandas de baja fricción.	8°-16°	4,0

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL

b)	b) Contacto entre los planos de la discontinuidad ante un desplazamiento cortante						
infe	inferior a 10cm. (Minerales de relleno en pequeños espesores)						
F	Partículas arenosas, rocas desintegrada libre de	25°-30°	4,0				
	arcillas, etc.						
G	Fuertemente sobreconsolidados, con rellenos de	16°-24°	6,0				
	minerales arcillosos no blandos (continuos, pero						
	con espesores inferiores a 5 mm)						
Н	Sobreconsolidación media o baja, con	12°-16°	8,0				
	reblandecimiento, rellenos de minerales arcillosos						
	(continuos, pero de espesores inferiores a 5 mm).						
J	Rellenos de arcillas expansivas, es decir,	6°-12°	8-12				
	montmorillonita (continuos, pero con espesores						
	inferiores a 5 mm). El valor de Ja depende del						
	porcentaje de partículas con tamaños similares a los						
	de las arcillas expansivas						
	de las aremas expansivas.						
c)	No se produce contacto entre los planos de la	a discontinu	idad ante un				

desplazamiento cortante (Rellenos de mineral de gran espesor)

-		- /	
Κ	Zonas o bandas de roca desintegrada o triturada	6°-24°	6,8, ó 8-12
L	y arcillas (ver clases G, H y J para la		
М	descripción de las condiciones de las arcillas)		
Ν	Zonas o bandas de arcillas limosas o arenosas,	-	5,0
	con pequeñas fracciones de arcillas no		
	reblandecibles.		
0	Zonas o bandas continuas de arcillas, de espesor	6°-24°	10,13 ó
Р	grueso (ver clases G, H y J, para la descripción		13-20
R	de las condiciones de las arcillas)		
NT (			

Nota:

Los valores expresados para los parámetros Jr y Ja se aplican a las familias de diaclasas o discontinuidades que son menos favorables con relación a la estabilidad,

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL

tanto por la orientación de las mismas como por su resistencia al corte (esta							
resistencia puede evaluarse mediante la expresión: T $\approx \sigma_{n.tan-1}(J_r/J_a)$							
5. Factor de reducción por la presencia de agua Presión de							
		agua (kg/cm2)					
А	Excavaciones secas o pequeñas afluencias,	< 1	1,0				
	inferiores a 5 l/min, de forma localizada						
В	Afluencia o presión medias, con lavado	1-2,5	0,66				
	ocasional de los rellenos de las discontinuidades						
С	Afluencia importante o presión alta en rocas	2,5-10	0,5				
	competentes con discontinuidades sin relleno.						
D	Afluencia, importante o presión alta,	2,5-10	0,33				
	produciéndose un lavado considerable de los						
	rellenos de las diaclasas.						
Е	Afluencia, excepcionalmente alta o presión	> 10	0,2-0,1				
	elevada en el momento de realizar las						
	voladuras, decreciendo con el tiempo.						
F	Afluencia excepcionalmente alta o presión	> 10	0,1-005				
	elevada de carácter persistente, sin disminución						
	apreciable.						
i) L	os valores de las clases C, D, E y F son meramer	nte estimativos. S	i se acometen				
med	lidas de drenaje, puede incrementarse el valor de Jw	۷.					
ii) 1	No se han considerado los problemas especiales	derivados de la	formación de				
hiel	0.						
6.0	Condiciones tensionales de la roca (Stress Reducti	ion Factor)	SRF				
a)	Las zonas débiles intersectan a la excav	vación, pudiendo	o producirse				
desj	prendimientos de roca a medida que la excavación	del túnel va avanz	zando.				
Α	Múltiples zonas débiles, conteniendo arcilla o ro	oca desintegrada	10				
	químicamente, roca de contorno muy suelt	a (a cualquier					
			1				

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES Al Desarrollo De Las Obras Subterráneas Del

	profundidad).					
В	Zonas débiles aisladas, conteniendo arcil	la o roca de	esintegrada	5		
	químicamente (profundidad de la excavacio					
С	Zonas débiles aisladas, conteniendo arcil	esintegrada	2,5			
	químicamente (profundidad de la excavacio	50  m).				
D	Múltiples zonas de fracturas en roca	competente	(libres de	7,5		
	arcillas), roca de contorno suelta (a cualqui	er profundida	ad).			
Е	Zonas de fractura aisladas en roca	competente	(libre de	5		
	arcillas)(profundidad de excavación $\leq$ 50 m	n)				
F	Zonas de fracturas aisladas en roca	competente	(libre de	2,5		
	arcillas)(profundidad de excavación > 50 m	ı)				
G	Terreno suelto, diaclasas abiertas, fuert	emente fract	turado, en	5		
	terrones, etc. (a cualquier profundidad)					
No	tas:					
i) Se reducen los valores expresados del SRF entre un 25-50% si las zonas de						
1) ,	Se reducen los valores expresados del SR	CF entre un	25-50% si	las zonas de		
frac	Se reducen los valores expresados del SR cturas sólo ejercen cierta influencia pero no i	RF entre un ntersectan a	25-50% si a excavació	las zonas de m.		
frac b)	Se reducen los valores expresados del SR cturas sólo ejercen cierta influencia pero no i Rocas competentes, problemas tensionales	cF entre un ntersectan a $\frac{\sigma_c}{\sigma_c}$	25-50% si la excavació $\frac{\sigma_{\theta}}{\sigma}$	las zonas de m. SRF		
frac b) 1 en 1	Se reducen los valores expresados del SR cturas sólo ejercen cierta influencia pero no i Rocas competentes, problemas tensionales las rocas.	$\frac{\sigma_c}{\sigma_1}$	25-50% si la excavació $\frac{\sigma_{\theta}}{\sigma_{c}}$	las zonas de n. SRF		
frac b) 1 en 1 H	Se reducen los valores expresados del SR cturas sólo ejercen cierta influencia pero no i Rocas competentes, problemas tensionales las rocas. Tensiones pequeñas cerca de la	$\frac{\sigma_c}{\sigma_1} > 200$	25-50% si a excavació $\frac{\sigma_{\theta}}{\sigma_{c}}$ < 0,01	las zonas de n. SRF 2,5		
frac b) 1 en 1 H	Se reducen los valores expresados del SR cturas sólo ejercen cierta influencia pero no i Rocas competentes, problemas tensionales las rocas. Tensiones pequeñas cerca de la superficie, diaclasas abiertas.	$\frac{\sigma_c}{\sigma_1} > 200$	$\frac{25-50\% \text{ si}}{\sigma_{e}}$	las zonas de n. SRF 2,5		
frac b) 1 en 1 H	Se reducen los valores expresados del SR cturas sólo ejercen cierta influencia pero no i Rocas competentes, problemas tensionales las rocas. Tensiones pequeñas cerca de la superficie, diaclasas abiertas. Tensiones medias, condiciones	$\frac{\sigma_c}{\sigma_1} > 200 - 10$	25-50% si a excavació $\frac{\sigma_{\theta}}{\sigma_{c}}$ < 0,01	las zonas de m. SRF 2,5		
frac b) en H	Se reducen los valores expresados del SR cturas sólo ejercen cierta influencia pero no i Rocas competentes, problemas tensionales las rocas. Tensiones pequeñas cerca de la superficie, diaclasas abiertas. Tensiones medias, condiciones tensionales favorables.	$\frac{\sigma_c}{\sigma_1} > 200 - 10$	$25-50\% \text{ si}$ $a \exp(a \sqrt{\sigma_{\theta}})$ $\overline{\sigma_{c}}$	las zonas de m. SRF 2,5 1		
frac b) 1 en 1 H	Se reducen los valores expresados del SR cturas sólo ejercen cierta influencia pero no i Rocas competentes, problemas tensionales las rocas. Tensiones pequeñas cerca de la superficie, diaclasas abiertas. Tensiones medias, condiciones tensionales favorables. Tensiones elevadas, estructura muy	$\frac{\sigma_c}{\sigma_1}$ $= 200$ $200 - 10$ $10 - 5$	$25-50\% \text{ si}$ $a \exp(a \sqrt{\sigma_{\theta}})$ $\overline{\sigma_{c}}$	las zonas de m. <b>SRF</b> 2,5 1 0,5 - 2		
frac b) 1 en 1 H	Se reducen los valores expresados del SR cturas sólo ejercen cierta influencia pero no i Rocas competentes, problemas tensionales las rocas. Tensiones pequeñas cerca de la superficie, diaclasas abiertas. Tensiones medias, condiciones tensionales favorables. Tensiones elevadas, estructura muy compacta. Normalmente favorable para	$\frac{\sigma_c}{\sigma_1}$ $\frac{\sigma_c}{\sigma_1}$ $> 200$ $200 - 10$ $10 - 5$	$25-50\% \text{ si}$ $a \exp(a \sqrt{\frac{\sigma_{\theta}}{\sigma_{c}}})$ $< 0,01$ $0,01 - 0,03$ $0,3 - 0,4$	las zonas de m. <b>SRF</b> 2,5 1 0,5 - 2		
frac b) 1 en 1 H	Se reducen los valores expresados del SR cturas sólo ejercen cierta influencia pero no i Rocas competentes, problemas tensionales las rocas. Tensiones pequeñas cerca de la superficie, diaclasas abiertas. Tensiones medias, condiciones tensionales favorables. Tensiones elevadas, estructura muy compacta. Normalmente favorable para la estabilidad, puede ser desfavorable	$\frac{\sigma_c}{\sigma_1}$ $> 200$ $200 - 10$ $10 - 5$	$25-50\% \text{ si}$ $a \exp(avacio)$ $\frac{\sigma_{\theta}}{\sigma_{c}}$ $< 0,01$ $0,01 - 0,03$ $0,3 - 0,4$	las zonas de m. <b>SRF</b> 2,5 1 0,5 - 2		
frac b) I en I H	Se reducen los valores expresados del SR cturas sólo ejercen cierta influencia pero no i Rocas competentes, problemas tensionales las rocas. Tensiones pequeñas cerca de la superficie, diaclasas abiertas. Tensiones medias, condiciones tensionales favorables. Tensiones elevadas, estructura muy compacta. Normalmente favorable para la estabilidad, puede ser desfavorable para la estabilidad de los hastiales.	$\frac{\sigma_c}{\sigma_1}$ $> 200$ $200 - 10$ $10 - 5$	$25-50\% \text{ si}$ $a \exp(avació)$ $\frac{\sigma_{\theta}}{\sigma_{c}}$ $< 0,01$ $0,01 - 0,03$ $0,3 - 0,4$	las zonas de n. <b>SRF</b> 2,5 1 0,5 - 2		
frac b) I en I H J K	Se reducen los valores expresados del SR cturas sólo ejercen cierta influencia pero no i Rocas competentes, problemas tensionales las rocas. Tensiones pequeñas cerca de la superficie, diaclasas abiertas. Tensiones medias, condiciones tensionales favorables. Tensiones elevadas, estructura muy compacta. Normalmente favorable para la estabilidad, puede ser desfavorable para la estabilidad de los hastiales. Lajamiento moderado de la roca después	$\frac{\sigma_c}{\sigma_1}$ $> 200$ $200 - 10$ $10 - 5$ $5 - 3$	$25-50\% \text{ si}$ $a \exp(avació)$ $\frac{\sigma_{\theta}}{\sigma_{c}}$ $< 0,01$ $0,03$ $0,3 - 0,4$ $0,5 - 0$	las zonas de m. <b>SRF</b> 2,5 1 0,5 - 2 5 - 50		
frac b) I en I H J K	Se reducen los valores expresados del SR cturas sólo ejercen cierta influencia pero no i Rocas competentes, problemas tensionales las rocas. Tensiones pequeñas cerca de la superficie, diaclasas abiertas. Tensiones medias, condiciones tensionales favorables. Tensiones elevadas, estructura muy compacta. Normalmente favorable para la estabilidad, puede ser desfavorable para la estabilidad de los hastiales. Lajamiento moderado de la roca después de 1 hora enrocas masivas.	$\frac{\sigma_c}{\sigma_1} > 200$ $10 - 5$ $5 - 3$	25-50% si a excavació $\frac{\sigma_{\theta}}{\sigma_{c}}$ < 0,01 0,01 - 0,03 0,3 - 0,4 0,5 - 0,65	las zonas de n. <b>SRF</b> 2,5 1 0,5 - 2 5 - 50		

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES Al Desarrollo De Las Obras Subterráneas Del

	de algunos	minutos en ro	ocas n					
N	Estallidos (deformació dinámicas i	violentos ón explosiva) nmediatas en	de y def rocas	la ormao masiv	roca ciones vas.	< 2	> 1	200 - 400

Notas:

iii) Si se comprueba la existencia de campos tensionales fuertemente anisotrópicos: cuando  $5 \le \sigma 1/\sigma 3 > 10$ , se tomará en vez de  $\sigma c$  el valor  $0,5.\sigma c$ , donde  $\sigma c$  es la resistencia a compresión simple, $\sigma 1$  y  $\sigma 3$  son las tensiones principales mayor y menor, respectivamente y  $\sigma \theta$  es la tensión tangencial máxima (estimada a partir de la teoría dela elasticidad).

iv) En aquellos casos en los que la profundidad de la clave del túnel es menor que la anchura de la excavación, se sugiere aumentar el valor del factor SRF entre 2,5 y 5unidades (véase clase H).

c) ]	Rocas deformables: flujo plástico de roca incompetente	$\frac{\sigma_{\theta}}{\sigma_{c}}$	SRF			
son	netida a altas presiones litostaticas.	C				
0	Presión de deformación suave.	1 – 5	5 – 10			
Р	Presión de deformación intensa	> 5	10 - 20			
v) ]	Los fenómenos de deformación o fluencia de rocas suelen	ocurrir a pi	ofundidades:			
H >	> 350.Q1/3, donde $\gamma$ es la densidad de la roca en g/cm3 (Sir	ngh, 1993).				
d)	d) Rocas expansivas: actividad expansiva química dependiendo de la presencia d					
agu	ıa.					
Q	Presión de expansión suave.		5 - 10			

Q	riesion de expansion suave.	5 - 10
R	Presión de expansión intensa.	10 - 15
	$\boldsymbol{Q} = \left(\frac{RQD}{Jn}\right) \cdot \left(\frac{Jr}{Ja}\right) \cdot \left(\frac{Jw}{SRF}\right)$	

Una vez hallado el valor  $\mathbf{Q}$ , que determina la calidad del macizo rocoso, se procedió a recomendar el tipo de sostenimiento en función a dicho valor. Esta se hizo a través de la grafica de sostenimiento mostrada en la figura #12

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL

SISTEMA CARACAS - GUARENAS - GUATIRE



**Figura #4.** Actualización de 1993 del grafico de diseño del sistema Q para túneles y cavernas, basados en los principios de de sostenimiento permanente del MNT (GRIMSTAD Y BARTON, 1993).

Finalmente se realizó la clasificación del macizo rocoso según el **RMi**, PALLSTRÖM (1995, 2000) el cual evalúa los parámetros que se muestran en la tabla a continuación:

$\sigma_c$	Resistencia a la compresión de la roca intacta.
m _i	Factor para roca intacta empleado en el criterio de rotura de Hoek &
	Brown.
jR	Factor de rugosidad de las diaclasas (las valoraciones de jR están
	basadas en Jr del sistema Q). Esta incluye los factores de ondulación
	(jw) y suavidad (js) de las diaclasas.
jA	Factor de alteración de las diaclasas (las valoraciones para jA son

Tabla #11. Parámetros que forman el índice RMi según PALLSTRÖM, 1995,2000.(Tomado de PALLSTRÖM., 2000).

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES Al Desarrollo De Las Obras Subterráneas Del

	similares a las de Ja en el sistema Q).						
jL	Factor de tamaño de las diaclasas.						
(β)	Factor de forma de los bloques.						
Vb, RQD ó	Volumen del bloque, Índice de calidad de la roca ó conteo						
Jv	volumétrico de diaclasas						

Tabla #12. Valores de los parámetros que forman el índice RMi según PALLSTRÖM, 1995,2000.(Tomado de PALLSTRÖM., 2000).

PARÁMETROS DE ENTRADA AL RMI.							
Resistencia a la compres simple, $\sigma_c$ de la roca intacta.Valor (en MPa).	Obtenidos de ensayos de laboratorio(o asumidos de las tablas de manuales).						
Factor para roca intacta	Emplea Brown.	do en el criter	io de rotura de Hoo	ek &			
Factor de rugosidad de las diaclasas (jR) (las valoraciones de jR están basadas							
en Jr del sistema Q).							
Suavidad a pequeña escala de la superfície de la diaclasa (js)	Ondula (jw)	Dindulados Tuertemente Tuertemente Tuertemente Tijados Turan escala Turan escala Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertemente Tuertementemente Tuertementementementementementementementem					
Muy rugoso	3	4	6	7,5	9		
Rugoso	2	3	4	5	6		
Ligeramente rugoso	1,5	2	3	4	4,5		
Suave	1	1,5	2	2,5	3		

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL

Pulido	0,75	1	1,5	2	2,5
Alisado (espejos de falla) ^{*)}	0.6 - 1.5	1 - 2	1.5 - 3	2 - 4	2.5 - 5

Para diaclasas rellenas jR = 1 Para diaclasas irregulares, se sugiere una valoración de jR = 5

Factor de alteración de las diaclasas (jA) (las valoraciones para jA son similares a las de Ja en el sistema Q)

## a) Contacto entre las dos paredes de las diaclasas

Contacto de la pared de la diaclasa		Descripción	Valoración del jA					
	Diaclasas unidas o soldadas	Relleno impermeable no ablandado (cuarzo, epidota, etc.)	0,75					
Diaclasas limpias	Paredes de las diaclasas sanas	No existe relleno ni recubrimiento en la diaclasa, excepto el debido al óxido	1					
	Paredes de las diaclasas alteradas	Un grado más de alteración que la roca del bloque Dos grados más de alteración que la roca del bloque	2					
Recubrimientos o	Materiales de fricción	Dos grados más de alteración que la roca del bloque	3					
b) Diaclasas reller	Materiales cohesivos	Materiales de arcilla, clorita, talco, etc. des sin contacto o con conta	4 acto parcial					
-, -, -, -, -, -, -, -, -, -, -, -, -, -	b) Diachasus renemas con parenes sin contacto o con contacto parena							

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES Al Desarrollo De Las Obras Subterráneas Del

Tipo de relleno		Descripción		Contacto parcial entre las paredes: Relleno delgado (aprox. < 5 mm)		No hay contacto entre las paredes: Relleno Grueso	
Materiales de fricción		Arena, calcit etc., sin cont arcilla	a limosa, tenido en	4		8	
Materiales cohesivos duros		Relleno compactado de arcilla, clorita, talco, etc.		6		10	
Materiales cohesivos blandos		Arcilla medie sobre cor clorita, talco,	o o poco nsolidada, etc.	8		12	
Materiales expansivos		El material de relleno tiene propiedades expansivas		8 - 12		12 – 20	
Factor de tam	nañ	o de las diacla	sas (jL)				
Longitud de las diaclasas	Т	érmino	Tipo		Diaclasas continuas**)		Diaclasas discontinuas
< 0,5 m	< 0,5 m Muy corta		Divisiones de estratificación o foliación		jL = 3		6
0,1 – 1 m C		orta o equeña	Diaclasa	2			4
1 – 10 m	1 – 10 m Media		Diaclasa		1		2
10 – 30 m	L	arga o grande	Diaclasa		0,75		1,5
> 30 m	M gi	Iuy larga o rande	Diaclasa filón o cir	(rellena), zalla *) 0,5		tos ca	1
) i recucincinente una unica discontinuidad y se deben tratar estos casos por separado							

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL

**) Diaclasas discontinuas terminadas en roca masiva

Valores del factor de forma de los bloques ( $\beta$ ) para algunas formas características de bloque.*)

 $\beta = 30$  para bloques compactos o cúbicos;  $\beta = 40$  para bloques ligeramente alargados o planos;  $\beta = 75$  para bloques alargados o planos;  $\beta = 250$  para bloques muy alargados o planos;  $\beta = 500$  para bloques extremadamente alargados o planos.

*)Se puede utilizar el valor del índice **RQD**, o bien el índice del conteo volumétrico de diaclasas **Jv**.

Obteniéndose el valor del RMi a partir de la siguiente fórmula:

$$\mathbf{RMi} = \sigma_c \times 0.2 \times \sqrt{jC} \times Vb^D (D = 0.37 \times jC^{-0.2})$$

En donde:

$$jC = jL \times \frac{jR}{jA}$$

Para las rocas diaclasadas como las que se presentan en todos los macizos rocosos evaluados, cuya clasificación según el **RMi** es:

Muy Alto; **RMi**> 10 Alto; **RMi**= 1 - 10Moderado; **RMi**= 0,1 - 1Bajo; **RMi** = 0,01 - 0,1Muy bajo; **RMi**<0,01

Luego se estimó el sostenimiento de la roca en función del valor del **RMi**, en el cual se aplicaron las siguientes fórmulas:

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

$$G_{c} = \mathbf{RMi} \times (SL \times C)$$
$$S_{r} = CF \times (C_{o} \div N_{j}) = (D_{t} \div D_{b}) \times (C_{o} \div N_{j})$$

En donde:

Dt = Diámetro o luz del túnel o excavación, en metros. (Para hastiales, en vez del diámetro (<math>Dt), se usa la altura del mismo (Wt)).

Db = Diámetro equivalente del bloque, en metros.

C = Factor de ajuste por la gravedad para el sostenimiento en el techo o en los hastiales. Su valoración depende de la inclinación delos hastiales y del techo; y pueden leerse sus valores en la figura #13.

SL =Factor de ajuste por nivel de tensiones, ver figura #13.

Co = Factor de ajuste por la orientación de la principal familia de diaclasas, o diques(vetas, grietas, fisuras); ver figura #13.

Nj = Factor de ajuste por el número de familias de diaclasas; se considera aquí el grado de libertad de los bloques a fallar. Ver figura #13.

FACTORES DE AJUSTE PARA EL SOSTENIMIENTO EN ROCA							
NIVEL DE TENSIONES		Recubrimiento aproximado	Valoración NÚ SL	Mero de Familias De Juntas ⁹	Valoración Nj	NÚMERO DE FAMILIAS DE JUNTAS *)	Valoración Nj
Muy bajo (en portales, etc.)		< 10 m	0,1 Una	familia	3	Tres familias	1
Bajo		10 - 35 m	0,5 Una f	amilia + aleatorias	2	Tres familias+aleatorias	0,85
Moderado		35 - 350 m	1 Dos	familias	1,5	Cuatro familias	0,75
Alto		> 350 m	1.5 ^{°)} Dosf	amilias+ aleatorias	1,2	Cuatro familias+aleatorias	0,65
EN HASTIALES EN TECH		EN TECHO	TÉRMINO	valoracion Co	C	HASTIALES	С
para rumbos> 30º	para rumbos < 30°	para cualquier rumbo	TERMINO	,	Horizon	al (techo)	1
buzamiento < 30°	buzamiento < 20°	buzamlento>00°	favorable	1	30° Incl	inación	1,5
buzamiento = 30 - 60°	buzamiento = 20 - 45°	buzamiento = 45 - 60°	admisible	1,5	45° incli	nación	2,2
buzamiento > 60°	buzamiento = 45 - 60°	buzamiento = 20 - 45°	desfavorable	2	60° incli	nación	3
-	buzamiento > 60°	buzamiento<20°	muy desfavorable	3	Vertical	(hastiales)	5

Figura #5.Factores de ajuste para el sostenimiento en roca. (Tomado de PALLSTRÖM,2000).

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL

Y se utilizó la siguiente figura, Gc y Sr, para determinar dicho sostenimiento para la roca.

Figura #6. Ábaco de sostenimiento para terrenos diaclasados. (Tomado de PALLSTRÖM, 2000).

Una vez realizada la caracterización geomecánica del macizo rocoso según el **RMR, Q & RMi** se procedió a determinar las características geomecánicas, vistas en la tabla #15, según HOEK & BROWN (1997), PERRI (1999) y MARINO & HOEK (2001). La aplicación de las fórmulas que se muestran a continuación requerían de los siguientes parámetros básicos, dos de ellos relativos a los materiales rocosos que conforman el macizo y el tercero relativo a la macro – estructura del macizo (Tomado de PERRI, 2002):

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL

- ✤ La resistencia a la compresión uniaxial de la roca intacta ( $σ_{ci}$ ), cuyo valor se determina a través de ensayos de laboratorio.
- ✤ La constante ( $m_i$ ) que define el carácter friccionante de la roca, estimado a partir de la tabla #16.
- ♥ El GSI (Geological Strength Index) del macizo rocoso.

Autor (es)	Parámetro	Fórmula
BERRI (1000)	Cohesión	$\boldsymbol{c_m} = 0.75 . \sigma_{ci}(0.0058 + 0.0004 . m_i) . e^{GSI(0.0455 - 0.0073.\ln m_i)}$
FERRI (1999)	Angulo de fricción	$\varphi_m = 0,424.GSI - 0,0016.GSI^2 - 6 + 9\ln m_i$
Marinos& Hoek (2001)	Resistencia a la compresión uniaxial	$\boldsymbol{\sigma_{cm}} = (0,0034.m_i^{0.8}).\sigma_{ci}.[1,029+0,025.e^{(-0,1.m_i)}]^{GSI}$
Ноек & Brown (1997)	Modulo de deformación	$\boldsymbol{\varepsilon}_{m} = 1000. \sqrt{\frac{\sigma_{ci}}{100}} \cdot 10^{\frac{GSI-10}{40}}$

Tabla #13. Características geomecánicas del macizo rocoso. (Tomado y modificado de PERRI, 2002).

Tipo de	Fipo de Clase Grupo		Textura					
Roca				Gruesa	Media	Fina	Muy Fina	
tarias	Clásticas		ásticas	Conglomerado $(21 \pm 3)$ Brecha $(19 \pm 5)$	Arenisca $(17 \pm 4)$	Limolitas $(7 \pm 2)$ Grauvacas $(18 \pm 3)$	Lutitas $(4 \pm 2)$ Arcillas $(6 \pm 2)$ Margas $(7 \pm 2)$	
Sedimen		(	Carbonatos	Caliza Cristalina $(12 \pm 3)$	Caliza Esparítica (10 ± 2)	Caliza Micrítica (9 ± 2)	Dolomitas $(9 \pm 3)$	
	ticas	J	Evaporitas		Yeso $(8 \pm 2)$	Anhidrita $(12 \pm 2)$		
	Clás	(	Orgánicas				Creta $(7 \pm 2)$	
órficas	We foliadas Uigeramente foliadas Foliadas		Mármol $(9 \pm 3)$	Hornfel (19 $\pm$ 4) Metarenisca (19 $\pm$ 3)	Cuarcitas $(20 \pm 3)$			
etam			ramente liadas	Migmatita $(29 \pm 3)$	Anfibolita $(26 \pm 3)$			
W			liadas	Gneis $(28 \pm 5)$	Esquisto $(12 \pm 3)$	Filita $(7 \pm 3)$	Pizarra (7 ± 4)	
	nicas		Félsicas	Granito $(32 \pm 3)$ Granot $(29 \pm 3)$	Diorita $(25 \pm 5)$ liorita = 3)			
eas	Plutó		Máficas	Gabro (27 ± 3) (20 ±	Dolerita $(16 \pm 5)$ ita = 5)			
Ígne	En Hipoabisales		Pórfi (20 ±	dos = 5)	Diabasa $(15 \pm 5)$	Peridotita $(25 \pm 5)$		
	lcánicas		Lava		Riolita $(25 \pm 5)$ Andesita $(25 \pm 5)$	Dacita $(25 \pm 3)$ Basalto $(25 \pm 5)$	Obsidiana $(19 \pm 3)$	
	Vo	Р	iroclásticas	Aglomerado $(19 \pm 3)$	Brecha $(19 \pm 5)$	Toba $(13 \pm 5)$		

Tabla #14.	Valores de	e la constante	m _i para	roca intac	ta por f	tipos d	e roca.	(Tomado	y mod	lificado d	e
			Ноек, 2	2001en PE	rri, 20	02).					

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL

Luego de calculadas las características geomecánicas se clasificaron los macizos según su rango de cobertura para cada sector del túnel. Ver tabla #17.

Tabla #15. Clasificación de la excavación por rangos de cobertura.(Tomado y modificado de HOEK,2001 en PERRI, 2002).

Condición	Clasifiagoián	Caso A ( roca GSI	Caso B ( roca GSI	
Cobertura	Clasificación	≥25)	< 25 y/o suelo)	
1	Superficial	H≤Di	$H \leq B$	
2	Intermedia	$Di < H \le 2.5 Di$	$B < H \le 2.5 B$	
3	Profunda	H > 2.5 Di	H > 2.5 B	

En donde:



H: Cobertura de la excavación.

Di: Diámetro equivalente de la excavación (≈ b, siendo "b" el ancho de la excavación)

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL

$$B = b + 2.h.\tan\left(45^{\circ} - \frac{\varphi}{2}\right).\frac{15}{GSI}$$

Siendo:

h = Altura de la excavación.

 $\varphi$  = Angulo de fricción del macizo rocoso.

Como producto final se generó un perfil geológico geomecánico a lo largo de la vía férrea en el cual quedó plasmado la información generada a través de las distintas clasificaciones geomecánicas que se aplicaron. Además se realizó un modelado en 3D de los macizos rocosos analizados donde se pudiese apreciar la información geomecánica contenida en los perfiles.

# **CAPÍTULO III**

# **GEOGRAFÍA FÍSICA**

#### RELIEVE

El área de estudio comprende tres secciones de un tramo ubicado entre los sitios denominados La Culebrita y Puerta del Este. La primera sección va desde la zona este de la quebrada Perico, ubicada al oeste del sector la Culebrita, con coordenadas UTM N:1.161.300 y E:746.250, hasta el margen oeste de la quebrada La Encantada (zona correspondiente al primer túnel, La Encantada), la segunda inicia al este de la quebrada La Encantada y finaliza al oeste del helipuerto Ávila del Estado Miranda (zona correspondiente al segundo túnel, Caucagüita) y por ultimo, la tercera sección, que inicia en una zona ubicada al este de Terrazas de Mampote y culmina 1 km al oeste del cementerio situado en las cercanías de la carretera vieja Caracas-Guarenas con coordenadas UTM N:1.158.750 y E:752.750, a una distancia aproximada de 3 km del sector Puerta del Este (zona correspondiente al tercer túnel, Mampote).

La trayectoria del trazado sigue cercano al curso del río Guarenas, un valle profundo y angosto, con pobre desarrollo de planicies aluviales en es sus márgenes, en ocasiones truncada por deslizamientos antiguos de bloques, que ocasionalmente han originado la formación de depósitos lacustres de dimensiones reducidas. Tales deslizamientos han enmascarado la expresión de la traza de la falla Caucagüita-Guarenas, haciéndola invisible y dudoso su reconocimiento. Este valle separa dos unidades morfológicamente distintas entre si, a pesar de que están sustentadas por unidades litológicamente similares. La diferencia radica en el control estructural de ambas unidades.

La unidad norte, al este de la Encantada, algo más separada y alejada de la influencia de la falla del Ávila, continúa con cerros, cuyas cotas varían entre 400 y 850 m, pero con filas más agudas, ya que el control estructural es mayor en el tramo anterior (Petare-La Culebrita). Estas se orientan en sentido NW-SE, con pendientes que oscilan entre 25 y 40%, las cuales generan un relieve que va de abrupto a muy abrupto. Los cursos de agua, una vez que atraviesan la falla del Ávila, también siguen el mismo rumbo.

Por otra parte, la unidad sur, cuya altura máxima se encuentra en fila de Mariches, está orientada en sentido SO-NE, al igual que los cursos de agua principales, los cuales tienen un evidente control estructural. Esta tendencia sufre un cambio progresivo hacia el este, donde toman un rumbo NNO-SSE hasta llegar a Guarenas.

Las secciones estudiadas forman parte de la unidad norte y sur, por lo que las características de dichos tramos son similares a los expuestos anteriormente. No obstante, cada sección del túnel fue estudiado a detalle, y arrojaron datos característicos como los siguientes:

✤ La sección correspondiente al primer túnel (La Encantada), está ubicada entre la zona este de la quebrada Perico hasta el extremo oeste de la quebrada La Encantada. La misma posee una extensión de 1 km y altitudes que oscilan entre los 650 y 850 m, está conformado por cerros con topes redondeados e irregulares con una dirección aproximada NW-SE, con pendientes que van de 20° (zona este) a 25° (zona oeste), generando un relieve abrupto.



Figura #7. Portal de entrada del túnel El Encantado, visto desde la urbanización Miranda.

- ✤ La sección correspondiente al segundo túnel (Caucagüita), se ubica al este de la quebrada La Encantada y finaliza al oeste del helipuerto. Las cotas oscilan entre los 580 y 850 m y posee una extensión de 3.6 km. Este tramo está compuesto en su totalidad por cerros con topes redondeados y laderas irregulares, poseen una dirección aproximada N15-25°W, con pendientes de 25° las cuales generan un relieve abrupto.
- ✤ La sección correspondiente al tercer túnel (Mampote), al Sur de la autopista Caracas-Guarenas, pertenece a una zona ubicada al este de Terrazas de Mampote y culmina 1 km al oeste del cementerio situado en las cercanías de la carretera vieja Caracas-Guarenas, está compuesta por cerros con topes redondeados y laderas irregulares, con una altitud variable entre los 450 y 650 m. Estos cerros poseen una dirección aproximada N30-40°W, con pendientes que varían entre los 20 y 25°, generando así un relieve abrupto.



**Figura #8.** Portal de entrada del túnel de Mampote, visto desde el extremo este del club Mampote. Rumbo E-O.



Figura #9. Portal de entrada del túnel de Mampote, visto desde la autopista Caracas Guarenas. Rumbo E-O.

### DRENAJE

La red de drenaje presente en la zona es medianamente densa, y el curso de agua de primer orden está representado por el río Guarenas, el cual está alimentado por varias quebradas afluentes al mismo.

El río Guarenas posee una dirección preferencial este-oeste, siguiendo una geometría sinuosa, con valles profundos y angostos con pobre desarrollo de planicie

aluvial. El curso de las aguas es oeste-este, y el cual posee un caudal de agua moderadamente alto y constante a lo largo del año.

Los drenajes secundarios de mayor importancia son los que vienen de la zona norte, los cuales se incorporan al drenaje principal de manera ortogonal al curso de sus aguas, además, poseen un arreglo subparalelo entre si. Estos afluentes están entallados, formando valles medianamente profundos, con un caudal moderado y constante. Los mismos están representados por las quebradas Agua Salada, Perico, La encantada y una quebrada ubicada a 1.5 Km al Oeste del helipuerto Ávila, del Estado Miranda.



Figura #10. Cauce del rio Guarenas

La red de drenajes secundarios ubicados al sur de la zona de estudio, está compuesto por quebradas de curso intermitente y medianamente entalladas.

### VEGETACIÓN

La zona de estudio se encuentra ubicada en las cercanías del Parque Nacional El Ávila, en el cual se identifican alturas que oscilan entre los 120 y los 2.765 metros de altura sobre el nivel del mar, lo que permite conseguir vegetación muy diversa. En la parte inferior del parque se encuentra una vegetación de tipo sabanera, caracterizada por la abundancia de gramíneas, con gran variedad de árboles, plantas y arbustos. Más arriba (hasta los 1.200 metros de altura aproximadamente) se consigue vegetación de tipo bosque tropófilo, es decir, árboles y arbustos que pierden su follaje durante el verano, dando una sensación de sequía.



Figura #11. Vegetación tipo sabanera (Tomado de www.el-avila.com/images/sabana_01.jpg).



Figura #12. Bosque tropófilo (Tomado de www.el-avila.com/images/sabana_01.jpg).

Esta región cuenta con una vegetación muy diversa, identificándose de manera abundante el cedro, el samán, el bucare, el araguaney, el pardillo, el equiseto gigante, la palma grapa, la palma bendita y los helechos. Además, se pueden observar hermosas flores como la bromelia y la orquídea.



Figura #13. Bromelia (Tomado de pegasus.ucla.edu.ve/.../bromelia.jpg).

Luego, entre los 1.200 y 2.000 metros de altura, aproximadamente, se consigue vegetación de selva nublada, donde la constante capa de niebla que cubre esta zona ocasiona que los árboles estén siempre verdosos, y la humedad permite el crecimiento de muchas especies de orquídeas y helechos. Finalmente, a partir de los 2.000 metros de altura se encuentra vegetación de sub-páramo, es decir, muy parecida a la que se consigue en las regiones del páramo en nuestro país, sólo con algunas excepciones (Tomado de http://www.mipunto.com/venezuelavirtual).

#### CLIMA

La diversidad territorial de Venezuela se ve reflejada en una variedad de climas, los cuales se asocian directamente a los paisajes existentes. En el Litoral Venezolano, predomina un clima semiárido con vegetación seca, precipitaciones anuales de 600 mm3 y temperaturas anuales de 24° C de promedio.

La dinámica de la atmosfera sobre el territorio venezolano es la responsable de la distribución de lluvias sobre el territorio nacional. Los vientos alisios del noreste predominan sobre la mayor parte del territorio nacional desde Diciembre hasta Abril, como consecuencia del predominio del anticiclón atlántico. Estas masas de aire anticiclónicas se manifiestan, especialmente, por encima de los 1.500 m de altura, donde se producen fuertes inversiones de temperatura. Así, el viento anticiclónico de altura es completamente seco y la única nubosidad que se produce es la originada por fenómenos convectivos. Durante los mese mencionados, el territorio Venezolano, al norte del 6º L.N., está pasando por la estación seca (verano). En dicha estación el frente de convergencia entre el anticiclón del noreste está por debajo de los 3º de L.N., y los vientos alisios del norte predominan sobre casi todo el país. El efecto del frente de convergencia que desvía a los vientos del noreste se hace sentir hasta el paralelo 6° L.N., y al sur de esta área se producen precipitaciones hasta la altitud mencionada. Desde Abril hasta Noviembre, el frente de convergencia se desplaza hasta el paralelo 5º de L.N. Los vientos alisios que provienen del Atlántico, desde el noreste, sufren una fuerte desviación hacia el este, y por efectos de su choque con el frente de convergencia provocan precipitaciones frecuentes sobre todo el territorio situado al Sur del paralelo 10º de L.N (Tomado y modificado de: http://www.yv5fih.org.ve/clima_de_venezuela.html).

# **CAPÍTULO IV**

## MARCO TEÓRICO

GONZÁLEZ ET AL (2002), define los macizos rocosos como el conjunto integrado que se encuentra constituido por la "roca intacta" o bloques de matriz rocosa separados por discontinuidades o superficies de debilidad. Además de ser medios anisótropos, discontinuos y heterogéneos, mecánicamente hablando. Por lo tanto se puede considerar que estos presentan una resistencia a la tracción nula.

La matriz rocosa se define como el material exento de discontinuidades o los bloques de "roca intacta" que quedan entre ellas, tienden a tener un comportamiento heterogéneo y anisótropo íntimamente relacionado a su fábrica y a su microestructura mineral. Mecánicamente se caracteriza en base a su peso específico, resistencia a la compresión y deformabilidad.

La superficie de discontinuidad corresponde a cualquier plano de origen mecánico o sedimentario que separa bloques de matriz rocosa en un macizo. Mecánicamente queda caracterizada por su resistencia al corte o por la del material de relleno. Generalmente la resistencia a la tracción de esta superficie tiende a ser muy baja o nula.

Propiedades físicas de la matriz rocosa

Los parámetros que se emplean en la identificación y descripción cuantitativa de las propiedades básicas de las rocas, permiten establecer una primera clasificación con fines geotécnicos. Estas propiedades son conocidas como las propiedades índice que conjuntamente con la fábrica y la composición mineralógica determinan las

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

propiedades y el comportamiento mecánico de la matriz rocosa. A continuación se presenta la tabla #16 un cuadro con las propiedades de la matriz rocosa y métodos para su determinación.

Tabla #16. Propiedades de la matriz rocosa y métodos para su determinación.

	PROPIEDADES	METODOS DE DETERMINACION
	Composición mineralógica. Fábrica y textura. Tamaño de grano. Color.	Descripción visual. Microscopía óptica y electrónica. Difracción de rayos X.
Propiedades de identificación y clasificación.	Porosidad ( <i>n</i> ). Peso específico o unitario (γ). Contenido en humedad.	l'ecnicas de laboratorio.
	Permeabilidad (coeficiente de permeabilidad, <b>k</b> ).	Ensayo de permeabilidad.
	Durabilidad. Alterabilidad (índice de alterabilidad).	Ensayos de alterabilidad.
	Resistencia a la compresión simple ( $\sigma_c$ ).	Ensayo de compresión. Ensayo de carga puntual. Martillo Schmidt.
	Resistencia a la tracción ( $\sigma_t$ ).	Ensayo de tracción directa. Ensayo de tracción indirecta.
Propiedades mecánicas.	Velocidad de ondas sónicas ( <i>Vp</i> , <i>Vs</i> ).	Medida de velocidad de ondas elásticas en laboratorio.
	Resistencia (parámetros $\boldsymbol{c} \neq \boldsymbol{\phi}$ ).Deformabilidad(módulosdedeformaciónelásticaestáticos: $\boldsymbol{\mathcal{E}}$ odinámicos : $\boldsymbol{\mathcal{V}}$ ).	Ensayo de compresión triaxial. Ensayo de compresión uniaxial Ensayo de velocidad sónica.

(Tomado de GONZÁLEZ ET AL., 2002).

A continuación se definen las propiedades índice de mayor relevancia al momento de identificar y caracterizar cuantitativamente la matriz rocosa.

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

- ✤ Estudio Petrográfico: realizado a través de la observación macroscópica de la muestra y el análisis microscópico de secciones delgadas, con el objeto de determinar su composición mineralógica, textura, porosidad, grado de alteración, microfracturación y fábrica. También se pueden aplicar métodos como la difracción de rayos X y microscopia electrónica.
- Peso Específico (γ): Se define como el peso por unidad de volumen y depende de sus componentes. La unidad más común corresponde a gr / cm³. Comúnmente es trabajado como la densidad.
- ✤ Resistencia a la compresión simple o uniaxial ( $\sigma_c$ ): corresponde al máximo esfuerzo que soporta la roca sometida a compresión uniaxial, determinada sobre una probeta cilíndrica sin confinar en el laboratorio.

$$\sigma_{c} = \frac{F_{c}}{A} = \frac{Fuerza\ Compresiva\ Aplicada}{Area\ de\ Aplicación}$$

## Clasificaciones Geomecánicas

Estas clasificaciones establecen el grado de calidad del macizo rocoso, tomando en cuenta las propiedades de la matriz rocosa y de las discontinuidades y así proporcionar propiedades resistentes globales. (Tomado y modificado de GONZÁLEZ ET AL, 2002)

Las clasificaciones utilizadas en el desarrollo de este trabajo fueron:

- ♥ Rock Mass Rating (RMR) de BIENIAWSKI (1989).
- ✤ BARTON (1974, 2000).
- ✤ Pallmström (1995, 2000), RMi.
- ♥ Criterio de HOEK & BROWN (1997).

## a) Clasificación RMR.

Fue desarrollada por BIENIAWSKI en 1973 y actualizada en 1979 y 1989. Constituye un sistema de clasificación de macizos rocosos que permite relacionar índices de calidad con parámetros geotécnicos del macizo y de excavación y sostenimiento en túneles. Toma en cuenta los siguientes parámetros geomecánicos:

- I. Resistencia uniaxial de la matriz rocosa.
- II. Grado de fracturación en términos del RQD (Rock Quality Designation).
- III. Espaciado de las discontinuidades.
- IV. Condiciones de las discontinuidades.
- V. Condiciones hidrogeológicas.
- VI. Orientación de las discontinuidades con respecto a la excavación.

La incidencia de los parámetros en el comportamiento geomecánico de un macizo se expresa a través del índice de calidad RMR, que varía de 0 a 100 y se obtiene sumando los puntos obtenidos en cada uno de los primeros cinco parámetros, para finalmente aplicar las correcciones debidas a la orientación de las discontinuidades con respecto a la excavación. Esta clasificación asigna cinco clases al macizo rocoso y le atribuye determinadas características geotécnicas, como las mostradas en la última parte de la tabla #9 del Capítulo II. (Tomado y modificado de GONZÁLEZ ET AL, 2002)

b) Clasificación del macizo rocoso Q, según BARTON (1974,2000).

Luego de un extenso y reiterado periodo de ensayos y tanteos ejecutados en el año 1973, se tomaron en consideración, finalmente, un total de seis parámetros y un conjunto de categorías dentro del Sistema Q. De acuerdo con este sistema de clasificación, la calidad del macizo rocoso puede definirse mediante la expresión:

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

$$Q = \frac{(RQD)}{Jn} \times \frac{Jr}{Ja} \times \frac{Jw}{(SRF)}$$

El rango de valores numéricos que puede tomar el índice Q de calidad de la roca oscila entre 0,001 (excepcionalmente mala) y 1.000 (excepcionalmente buena). Los seis parámetros pueden estimarse a partir de la cartografía geológica de la zona y de la descripción de los testigos procedentes de los sondeos de investigación, pudiéndose verificar, o bien corregirse, posteriormente, durante la excavación. Los parámetros que componen esta clasificación son los siguientes:

- I. Índice de fracturación.
- II. Índice de diaclasado.
- III. Índice de rugosidad de la discontinuidad.
- IV. Índice de alteración o relleno de la discontinuidad.
- V. Factor de reducción por la presencia de agua o filtraciones a través de las discontinuidades.
- VI. Factor representativo de las condiciones tensionales de la roca.

El amplio rango de valores que puede tomar el índice Q (seis órdenes de magnitud) constituye una característica muy importante del Sistema y refleja la variación en la calidad de la roca, de manera probablemente más rápida, que mediante la escala lineal del índice RMR. Debido a esta característica, se logra de manera más fácil la correlación con el resto de parámetros físicos de la roca.

La calidad del macizo rocoso, Q, se correlaciona con el sostenimiento instalado, de forma que los resultados obtenidos con esta correlación se resumen en tablas detalladas o simplificadas, tal y como se muestra en el Capítulo II, en la sección correspondiente a la clasificación del macizo rocoso Q. (Tomado y modificado de BARTON 1974,2000)

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

c) Clasificación RMi, según PALLMSTRÖM (1995, 2000).

El método de sostenimiento RMi (Índice del Macizo Rocoso –Rock Mass index-) fue introducido en 1995. El mismo pide como datos de entrada, los principales rasgos que influencian las propiedades del macizo rocoso; para ser expresados como la resistencia a la compresión uniaxial del macizo rocoso y se expresa de la siguiente forma:

✤ Para rocas diaclasadas:

 $RMi = \sigma_c \times JP = \sigma_c \times 0.2\sqrt{jC} \times Vb^D$ ;  $(D = 0.37 \times jC^{-0.2})$ 

✤ Para rocas masivas:

$$RMi = \sigma_c \times f_{\sigma} = \sigma_c \times \left(\frac{0.05}{Db}\right)^{0.2} \approx 0.5 \times \sigma_c$$

Como fue presentado anteriormente por Palmström (1995, 1996), el RMi puede utilizarse en varias aplicaciones, adicionales a su uso en la estimación del sostenimiento, tales como: la caracterización de la resistencia y deformabilidad del macizo rocoso, el cálculo de las constantes del criterio de rotura de Hoek y Brown para macizos rocosos y la valoración o estimación del grado de penetración de máquinas tuneladoras a sección completa (TBM).

Este método solo usa como parámetros de entrada el volumen del bloque y el diámetro del túnel, los cuales son suficientes para realizar una estimación preliminar del sostenimiento. Esto puede ser de utilidad cuando solo sea disponible información limitada sobre las condiciones del terreno, por ejemplo como en el caso del estado inicial de un proyecto. Posteriormente, cuando los valores o valoraciones de los distintos factores que constituyen los datos de entrada, haya sido posible su observación o medida, puede hacerse una estimación más precisa del sostenimiento. (Tomado y modificado de PALLSTRÖM 1995, 2000).

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

Los parámetros utilizados en esta clasificación son los siguientes:

- I. Resistencia a la compresión uniaxial de la roca intacta.
- II. Parámetro del diaclasado.
- III. Factor de estado (o condición) de las diaclasas.
- IV. Volumen del bloque.
- V. Parámetro de masividad (para rocas masivas).
- VI. Diámetro equivalente del bloque (para rocas masivas).

# **CAPÍTULO V**

# **GEOLOGÍA REGIONAL**

AGUERREVERE & ZULOAGA (1937), realizaron el primer estudio sistemático de las rocas de la Cordillera de la Costa y la Serranía del Interior Central aportando conceptos sobre la geología estructural y la estratigrafía regional que han sido base para un sinfín de publicaciones en la referida área. En dicho trabajo quedan divididas las rocas de la zona en: las rocas gnéisicas graníticas del núcleo de la Cordillera que forman el basamento metamorfizado de la cuenca y tres series metasedimentarias: Serie Caracas, Serie Villa de Cura y Serie San Juan de los Morros. Estas series luego son correlacionadas con rocas sedimentarias de edad conocida, como las lutitas de la Formación Colón, la Formación La Luna, el Grupo Cogollo y la Formación Río Negro. De esta forma se fija una edad Cretácica para estas formaciones en base a las correlaciones.

SMITH (1952), estudia la Serranía del Interior, y la denomina "Serranía de la Costa" definiéndola como dos series de esquistos y filitas de edad Cretácica suprayacente a un basamento de roca granítica. Establece que las rocas metamórficas y las relaciones estructurales son parte del sistema de arco de islas del Caribe Este.

SEIDERS (1965), reconoce tres secuencias estratigráficas, compuestas por el Grupo Caracas y tres formaciones suprayacentes al norte y centro de la zona, en el área central el gneis de La Aguadita y rocas discordantes suprayacentes y por último asigna la tercera serie al Grupo Villa de Cura. Se asigna edad Maastrichtiense-Paleoceno para la deformación principal de la zona. Con excepción del basamento, establece que la facies de los esquistos verdes es el grado metamórfico más alto.
MENÉNDEZ (1966) reconoce cuatro fajas tectónicas de rumbo general esteoeste en las montañas occidentales del Caribe y establece el Eoceno superior como la edad del principal proceso de plegamiento. BELL (1968) amplia la subdivisión hecha por MENÉNDEZ (1966) y la aumenta a ocho Fajas (figura #14), basándose en rasgos estructurales; que en sentido Norte - Sur son:



Figura #14. Ubicación de las fajas tectónicas. (Tomado y modificado de MENÉNDEZ, ET. AL. 2000).

Faja tectónica de la Cordillera de la Costa: Limitada al norte por el sistema de fallas del Caribe y al sur por la zona de fallas de La Victoria. Contiene a las rocas metasedimentarias del Grupo Caracas y presenta grandes pliegues abiertos.

Faja tectónica de Caucagua-El Tinaco: Limitada al norte por la falla de La Victoria y por la zona de fallas de Santa Rosa al sur. Es una faja interrumpida de bloques de basamento que infrayace una secuencia vulcano-sedimentaria ligeramente metamorfizada. Son característicos los pliegues.

Faja tectónica de Paracotos: Limitada entre la falla de Santa Rosa al norte y la falla de Agua Fría al sur. Contiene a las capas de la Formación Paracotos que buzan al sur.

Faja tectónica de Villa de Cura: Limitado al norte por la falla de Agua
 Fría al norte y la falla de Cantagallo al sur. Compuesta por una acumulación

de rocas volcánicas ligeramente metamorfizadas.

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

 $\clubsuit$  *Cinturón de Fallas de Corrimiento:* Se denomina así por ser un sistema discontínuo de fallas, que exponen repetidamente secciones de formaciones ubicadas al norte del mismo.

✤ Faja Volcada: Corresponde a un cinturón angosto de rocas terciarias volcadas hacia el sur.

Faja de buzamientos suaves: Constituida por rocas sedimentarias del Eoceno que forman un homoclinal que buza al sur y constituye la parte septentrional de los Llanos a medida que suaviza el buzamiento hacia el sur.

URBANI, *ET. AL* (2004) en el Atlas Geológico de la Cordillera de la Costa, compilaron e integraron trabajos previos de la misma, donde separan la totalidad de la cordillera de la Costa en seis napas que son las siguientes:

✤ Napas de la Serranía del Litoral:

- I. 1.1. Napa Costera.
- II. Napa Ávila.
- III. Napa Caracas.

✤ Napas de la Serranía del Interior:

- IV. 2.1. Napa Caucagua-El Tinaco.
- V. 2.2. Napa Loma de Hierro.
- VI. 2.3. Napa de Villa de Cura

Estratigrafía Regional

URBANI, *ET. AL* (2004) en el Atlas Geológico de la Cordillera de la Costa realiza una muy completa definición y clasificación de las unidades litodémicas que afloran en esta región.

- ✤ Napas de la Serranía del Litoral:
  - I. Napa Costera: Unidades del Cretácico, con probables elementos más antiguos.
    - i. Asociación Metamórfica de La Costa.
      - 1. Esquisto verde de Agua Viva.
      - 2. Mármol de Antímano.
      - 3. Peridotita Serpentinizada de La Bimba.
      - 4. Metaígneas de Cabo Codera.
      - 5. Complejo Nirgua.
      - 6. Esquisto de Tacagua.
      - 7. Metadiorita de Todasana.
    - ii. Cuerpos de Serpentinita dispersos sin nombre formal.
  - II. Napa Ávila: Unidades Paleozoicas, a excepción del Gneis de Peña de Mora.
    - i. Asociación Metamórfica Ávila.
      - 1. Gneis Cabriales.
      - 2. Metatonalita de Caruao.
      - 3. Gneis Granítico de Choroní.
      - 4. Gneis de Colonia Tovar.
      - 5. Metagranito de Guaremal.
      - 6. Metagranito de Naiguatá.
      - 7. Augengneis de Peña de Mora.
      - 8. Complejo de San Julián.

- 9. Metaígneas de Tócome.
- 10. Complejo de Yaritagua.

#### III. Napa Caracas: Unidades del Paleozoico al Cretácico.

## i. Asociación Metasedimentaria Caracas.

- 1. Esquisto de Chuspita.
- 2. Esquisto de Las Brisas.
  - a. Metaconglomerado de Baruta.
  - b. Metaconglomerado de La Mariposa.
  - c. Mármol de Zenda.

## 3. Esquisto de Las Mercedes.

- a. Mármol de Los Colorados.
- ii. Cuerpos de Serpentinita dispersos sin nombre formal.
- iii. Gneis de Sebastopol.
- iv. Asociación Metamórfica Los Cristales.
  - 1. Esquisto de Aroa.
  - 2. Esquisto de Mamey.
- ✤ Napas de la Serranía del Interior.
  - I. Napa Caucagua-El Tinaco: Unidades del Precámbrico al Cretácico.
    - i. Complejo El Tinaco.

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

- 1. Gneis de La Aguadita.
- 2. Esquisto de Tinapú.
- ii. Unidades no agrupadas en asociaciones.
  - 1. Metaconglomerado de Charallave.
  - 2. Complejo de Conoropa.
    - a. Gneis Granítico de San Vicente.
  - 3. Gneis Tonalítico de Curiepe.
  - 4. Serpentinita de El Chupón.
  - Hornblendita, diorita y basalto- Zona de El Tinaco.
  - 6. Trondjemita de La Gloria.
  - 7. Metadiorita de La Guacamaya.
  - 8. Filita de Las Placitas.
  - 9. Filita de Muruguata.
  - 10. Volcánicas de Pilancones.
  - 11. Brecha ígnea de Sabana Larga.
  - 12. Serpentinita de San Antonio.
  - 13. Peridotita de Tinaquillo.
  - 14. Filita de Tucutunemo.
    - a. Metalava de Los Naranjos.
  - 15. Filita de Urape.
- II. Napa Loma de Hierro: Unidades del Cretácico al Eoceno.
  - i. Vulcano-sedimentarias de Boca del Oro.
  - ii. Serpentinita de Las Peñas Negras.

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

- iii. Complejo Ofiolítico de Loma de Hierro.
  - 1. Ultramáficas de Loma de Níquel.
  - 2. Gabro de Mesía.
  - 3. Metalava de Tiara.
- iv. Filita de Paracotos.
- v. Rocas volcánico-sedimentarias del Río Guare.
- vi. Cuerpos de Serpentinita dispersos sin nombre formal.
- III. Napa Villa de Cura: Unidades del Jurásico (?) al Cretácico.
  - i. Asociación Metavulcano-sedimentaria de Villa de Cura.
    - 1. Metatoba de El Caño.
    - 2. Metalava de El Carmen.
    - 3. Metatoba de El Chino.
    - 4. Granofel de Santa Isabel.
  - ii. Asociación Metaígnea San Sebastián.
    - 1. Unidades Volcánicas.
      - a. Metalava de Las Hermanas.
      - b. Volcánicas de Tiramuto.
    - 2. Unidades plutónicas ultramáficas a máficas.
      - a. Ultramáficas de Apa.
      - b. 2.3.2.2.2. Ultramáficas de Cerro Pelón.

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

- c. 2.3.2.2.3. Ultramáficas de Chacao.
- 3. Unidades plutónicas máficas.
  - a. Metagabro de Cantagallo.
  - b. Diorita Piroxénica de Platillón.

La formación que aflora en el área de estudio corresponde a **Las Mercedes**, que se describe a continuación.

AGUERREVERE & ZULOAGA (1937) establecen que son esquistos principalmente calcáreos, con zonas grafitosas y localmente zonas micáceas. Según GONZÁLEZ DE JUANA *ET AL.* (1980) la litología consiste en esquisto cuarzo - muscovítico-calcítico-grafitoso con algunos cuerpos lenticulares de mármol grafitoso que se denominó "Caliza de los Colorados" por AGUERREVERE & ZULOAGA (*op cit.*). La mineralogía promedio del esquisto consiste en 40% cuarzo, 20% muscovita, 23% calcita, grafito 5%, y cantidades menores de clorita, óxidos de hierro, epidoto y ocasionalmente plagioclasa sódica. El mármol se presenta en capas delgadas, son de color gris azuloso y su mineralogía consiste en casi su totalidad calcita, escasa dolomita y cuarzo, muscovita, pirita y óxidos de hierro en cantidades accesorias.

WEHRMANN (1972), menciona metaconglomerados en su base, esquistos cloríticos y una sección en el tope, de filitas negras, poco metamorfizadas, con nódulos de mármol negro similares a los de las formaciones La Luna y Querecual, indica que el tope de la formación se hace más cuarzosa y menos calcárea en su transición hacia la Formación Chuspita.

SEIDERS (1965), menciona además, meta-areniscas puras, feldespáticas y cuarzosas, de estratificación de grano variable, a veces gradada. El Léxico Estratigráfico habla de una edad de Mesozoico sin diferenciar debido a que la fauna de esta formación es poco diagnóstica. Se considera que el contacto inferior de la Formación Las Mercedes es generalmente transicional y a veces estructural, y el

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

contacto superior con la Formación Chuspita es transicional (SEIDERS (*op cit.*)). Esta formación se extiende desde Carenero, estado Miranda, hasta el estado Cojedes.

Geología Estructural Regional

La zona de estudio se encuentra en el límite norte de la Asociación Metasedimentaria Caracas, a través de la Formación Las Mercedes, con la Asociación Metamórfica Ávila, a través del Augengneis de Peña de Mora (URBANI, *ET. AL (op cit.)*).

La orientación de la foliación en la Napa Caracas (Fm. Las Mercedes) se compone por cuatro direcciones: N  $30^{\circ}$ - $70^{\circ}$  E con buzamiento al norte, N  $60^{\circ}$ - $70^{\circ}$  E con buzamiento al sur, N-S buzando al oeste y E-O con buzamiento al norte. Dicha foliación se debe a la textura lepidoblástica, común en todas las unidades. Se diferencian tres períodos de plegamiento en esta napa. (ORTA, 2003).

WEHRMANN (*op cit.*) menciona que en la Fm. Las Mercedes, en la carretera Petare – Santa Lucia, debido al cizallamiento producto del volcamiento de las estructuras se logra apreciar un clivaje incipiente paralelo al plano axial de los ejes del plegamiento. WHITTEN (1966) le denomina foliación crenulada y refiere que es producto de una nueva foliación (S2), perpendicular a la foliación original (S1), que sufre cizallamiento a lo largo de sus planos en la zona de los ejes de los micropliegues.

#### ✤ Fallamiento

Las estructuras de carácter regional que determinan el esquema estructural de la región, son las fallas principales del Sistema Tacagua – El Ávila y Caucagüita – Guarenas, las cuales a su vez pertenecen a un complejo sistema mayor, producto de la colisión de placas Caribe y Suramericana. El bloque entre estas fallas presenta una

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

serie de fallas conjugadas de rumbo NO – SE y movimiento transcurrente, generalmente dextral. En un ángulo casi recto se generan fallas de gravedad de rumbo general NE – SW y buzamiento al sur. El bloque ubicado al sur de la falla Caucagüita – Guarenas, presenta una serie de fallas mayores de gravedad como las de Caiza, Carimao, Quebrada Seca y Guacarapa, de rumbo ENE – OSO y buzamiento aparente al norte, las cuales colisionan y se truncan contra la falla de Caucagüita – Guarenas, al igual que las del bloque Norte, generando una geometría estructural bastante compleja a ambos lados de la falla principal. (Comunicación personal con WEHRMANN, 2008).

OLLARVES, *ET AL*. (2007), menciona que el sistema de falla Tacagua – El Ávila subdivide la Cordillera de la Costa en dos sistemas montañosos elongados en dirección Este – Oeste, ubicados uno en posición septentrional y el otro meridional, siendo el primero de mayor elevación. La depresión de Guarenas – Guatire se encuentra limitada al norte por esta falla. La traza activa de ésta muestra una geometría curvilínea que recorre el piedemonte de la montaña del Ávila, sugiriendo que esta falla no es vertical, y que además, buza hacia el norte.

En las adyacencias de la Universidad Metropolitana, la falla El Ávila se expresa en el paisaje como un conjunto de fallas de muy alto buzamiento, en donde las facetas triangulares y las bermas representan las geoformas características. Se reconocen zonas de fallas con rocas serpentinizadas, altamente trituradas, similares a las que se encuentran en el flanco norte de la Cordillera de la Costa a lo largo del sistema de fallas de Macuto. La estructuración de la falla en este sector, consiste en un sistema paralelo, ocasionalmente "*en échelon*", el cual se expresa en el paisaje con escarpes de fallas en las laderas de la montaña del Ávila, generando a su vez, un sistema escalonado de bermas. Este patrón se observa a todo lo largo de las estribaciones sur del Ávila hasta llegar a la cuenca de Guarenas – Guatire.

#### ✤ Metamorfismo

Las formaciones Las Brisas, Antímano, Las Mercedes y Tacagua se localizan dentro de los limites geográficos de la subfacie metamórfica Cuarzo – Albita – Muscovita – Clorita, perteneciente a la facie de los Esquistos Verdes con relación P/T (presión/temperatura) intermedia. Esta subfacie se caracteriza por la presencia de muscovita en el 100% de las muestras y de clorita y actinolita como minerales secundarios en algunas. En menor porcentaje aún se hallan epidoto, granate, calcita y esfena. (WEHRMANN, 1972)

#### ✤ Sismicidad

De acuerdo a los eventos sísmicos registrados entre el 2000 y 2007, asociados posiblemente al sistema de fallas Tacagua - El Ávila, se refieren a sismos de baja magnitud (Ms, entre 2 y 3), y someros (menores que 10 km, de profundidad). Siendo la mayor cantidad de éstos registrados en el área del cañón de Tacagua, y hacia el extremo este de Caracas, existiendo un vacío de eventos hacia la parte central de caracas y hacia la parte norte de Guarenas – Guatire.

Para realizar aproximaciones sobre el potencial sísmico del sistema de falla Tacagua – El Ávila, se considera que es una sola falla sin segmentación, por lo tanto, considerando la ecuación de MATSUDA (1975), y tomando como variable los 65 km de longitud de la falla, se estima que el potencial sismo génico de ésta, puede alcanzar una magnitud máxima (Ms) de 7,9. Asimismo, utilizando de WELLS & COOPERSMITH (1994), la magnitud máxima (Mw) es de 7,1 tomando en cuenta los 65 km de longitud de la falla y 20 km de profundidad para la zona de bloqueo. (Tomado de OLLARVES, *ET AL*. (2007), FUNVISIS)

# **CAPÍTULO VI**

# RESULTADOS

Geología Local

Luego de un estudio detallado de la zona se pudo determinar que la misma consta de 4 litotipos, en su totalidad compuestos por rocas metamórficas y pertenecientes a la Formación Las Mercedes. Los mismos fueron clasificados de acuerdo a la mineralogía y características texturales de la roca.

La zona de estudio está compuesta en su totalidad por lo esquistos típicos de la Formación Las Mercedes y comprende un tramo ubicado entre los ya citados sitios de La Culebrita y Puerta del Este, siguiendo una trayectoria cercana al curso del río Guarenas. De este trazado se pudieron diferenciar los siguientes litotipos:

✤ Unidad Klm 1

Esta unidad consta de un tipo litológico de la Formación Las Mercedes, el cual consiste en un esquisto calcáreo cuarzoso intercalado con un esquisto cuarzoso de aspecto gnéisico, muscovítico y feldespático, con cantidades variables de grafito y abundantes vetas de cuarzo y ocasionalmente, calcita.

Estos esquistos son sumamente tenaces, masivos y resistentes a la erosión, pero muy fracturados debido a esfuerzos tectónicos. Las vetas de feldespato y cuarzo son comunes, alcanzando ocasionalmente un par de decímetros de espesor. Eventualmente se hallan intercalados esquistos grafitosos de color negro, calcáreos,

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

en forma lenticular, en particular en las quebradas Santa Rosa, cerca del contacto con las facies Peña de Mora y cerca de su confluencia con la quebrada Ayala.

# I. Características de campo

Presenta un color fresco que varía de gris medio a oscuro, dependiendo de la cantidad de grafito presente, y un gris más claro como color meteorizado, la foliación está bien marcada y se pudieron observar vetas de cuarzo y calcita de hasta 3 cm de espesor perpendiculares y paralelos a la misma.



Figura #15. Afloramiento del esquisto cuarzoso de aspecto gnéisico, muscovítico y feldespático, representativo de la unidad Klm1. Rumbo N 50° E.

# II. Petrografía

A continuación se presentan los resultados del análisis petrográfico de las muestras representativas del litotipo Klm1.

	1		1	0	,		5	1			
MUESTRAS	Ca	Qz	Mu	Cl	Plag	Feld	Gr	Goe	Pi	Leu	Tu
QVN-002-A	74	10	12	0	0	3	1	Tz	Tz	0	0
MI-004	76	9	11	0	0	3	1	0	Tz	0	0
MAGA	24	32	27	1	5	0	4	6	0	1	0
CER	16	56	17	1	3	2	2	3	Tz	0	Tz
PL-001	63	17	15	0	0	3	2	Tz	0	Tz	0
PROMEDIO	50.6	24.8	16.4	0.4	1.6	2.2	2	1.8	0	0.2	0

 Tabla #17. Valores de abundancia mineral expresados en porcentaje en esquisto calcáreo cuarzoso, esquisto cuarzoso de aspecto gnéisico, moscovítico v feldespático.

Calcita (Ca); Cuarzo (Qz); Muscovita (Mu); Clorita (Cl); Plagioclasa (Plag); Feldepato (Feld); Grafito (Gr); Goehtita (Goe); Pirita (Pi); Leucoxeno (Leu); Turmalina (Tu).

La mayoría de las muestras analizadas poseen microfracturas rellenas de cuarzo y en algunos casos se pueden ver pliegues, evidenciados por la forma flexionada de los filosilicatos. En general los minerales encontrados se describen de la siguiente manera:

CALCITA: Se presentan como cristales anhedrales y subhedrales, con exfoliación romboédrica muy bien marcada en la mayoría de los casos. Los mismos, en algunos casos se pueden ver orientados y distribuidos uniformemente a lo largo de toda la sección. El tamaño de los cristales varía entre 0,05 y 0,7 mm.

CUARZO: Se observan cristales anhedrales tanto monocristalinos como policristalinos dispuestos a lo largo de toda la sección, con un tamaño de grano que oscila entre los 0,02 y 1,5 mm y un tamaño modal de 0,25 mm. En algunos casos este mineral se encuentra orientado y rellenando pequeñas vetas.

MUSCOVITA: Se presentan como cristales alagados con una dirección preferencial en la mayoría de los casos, dispuestos en bandas subparalelas. Los mismos se pueden ver algo deformados y en pocas ocasiones desorientados y en

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

grandes concentraciones con presencia de un clivaje de crenulación. Estos cristales se encuentran entrelazados con láminas delgadas de grafito.

CLORITA: al igual que la muscovita, la clorita se presenta como cristales hojosos dispuestos en bandas a lo largo de toda la sección, el mismo no excede el 1% en las secciones observadas.

PLAGIOCLASA: Se observan cristales subhedrales de albita distribuidos uniformemente a lo largo de toda la sección. Los mismos, en su mayoría, se encuentran muy alterados, lo que dificulta un poco su identificación. El tamaño de estos cristales varía entre 0,01 y 2 mm.

FELDESPATO: Se presentan como cristales anhedrales de menos de 0,07 mm de tamaño, distribuidos aleatoriamente a lo largo de la sección. En algunos casos se aprecian arcillas como producto de alteración.

GRAFITO: Se observa mayormente como delgadas láminas entrelazadas con muscovita, lo que resalta el aspecto foliado de la muestra. En otros casos se puede encontrar rellenando espacios vacíos como microfisuras y/o porosidades.

GOEHTITA: Aparece como pseudomorfos de pirita en la mayoría de lo casos y en otros rellenando microfracturas y/o espacios vacíos.

PIRITA: Se presenta como un mineral accesorio con cristales euhedrales de 0,5 mm. Se encuentran distribuidos aleatoriamente a lo largo de toda la sección. La mayoría presentan oxidación en los bordes.

LEUCOXENO: Esta dispuesto de manera muy puntual a lo largo de toda la sección en cantidades mínimas.

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

TURMALINA: Se presentan como cristales anhedrales, en algunos casos alargados y perpendiculares a la foliación. Poseen un tamaño promedio de 0,1.



**Figura #16.** Cristal de calcita con exfoliación romboédrica presente en la muestra MI-004. Izquierda: nicoles paralelos. Derecha: nicoles cruzados. Foto tomada con objetivo de 10X de aumento.



**Figura #17** Cristales de muscovita entrelazados con grafito evidenciando micropliegue. Izquierda: nicoles paralelos. Derecha: nicoles cruzados. Foto tomada con objetivo de10X de aumento.

#### ✤ Unidad Klm 2

Constituye la unidad típica de la Formación Las Mercedes, compuesta por esquistos calcáreos cuarzo-moscovíticos-grafitosos, con abundantes vetas de calcita y cuarzo, distribuidos tanto en la foliación como en las diaclasas. La presencia de pirita y sus derivados férricos y ferrosos es variable y aleatoria. Cabe destacar que, aun cuando es la unidad más cercana a la litología típica de la sección tipo, no deja de tener sus diferencias en cuanto a la composición porcentual de cuarzo y feldespato. Esta unidad se localiza específicamente entre Petare, la Urbanización Miranda y el sector Turumo.

# I. Características de campo

Presenta color fresco gris claro a medio, dependiendo de la cantidad de grafito presente, y un pardo claro y varias tonalidades de gris claro como color meteorizado. La zona se encuentra muy plegada y fracturada, además presenta foliación moderadamente desarrollada.



Figura #18. Afloramiento del esquisto calcáreo-cuarzo-moscovítico, representativo de la unidad Klm2. Rumbo E-O.

# II. Petrografía

A continuación se presentan los resultados del análisis petrográfico de las muestras representativas del litotipo Klm2.

 

 Tabla #18. Valores de abundancia mineral expresados en porcentaje en esquisto calcáreo cuarzomoscovíticos-grafitoso.

MUESTRAS	Qz	Mu	Cl	Ca	Plag	Goe	Gr	Tu	Ер
BA-001	65	13	8	5	4	4	1	Tz	Tz

Cuarzo (Qz); Muscovita (Mu); Clorita (Cl); Calcita (Ca); Plagioclasa (Plag); Goehtita (Goe); Grafito (Gr); Turmalina (Tu); Epidoto (Ep).

CUARZO: Se pueden observar cristales anhedrales tanto monocristalinos como policristalinos distribuidos uniformemente a lo largo de toda la sección, el tamaño de los mismos oscila entre 0,05 y 0,6 mm, con un tamaño modal de 0,15 mm.

MUSCOVITA: Las mismas se presentan como cristales tabulares dispuestos en bandas subparalelas en la mayoría de los casos, también se pueden apreciar dispuestas de manera aleatoria.

CLORITA: Esta se presenta dispuesta en bandas subparalelas en contacto con grafito y moscovita.

CALCITA: Se presenta como cristales anhedrales distribuidos en pequeñas concentraciones a lo largo de toda la sección.

PLAGIOCLASA: Se presentan como cristales subhedrales, con tamaño promedio de 0,25 mm y distribuidos uniformemente a lo largo de toda la sección. Se pueden observar cristales alterando a arcilla.

GOEHTITA: Se presenta rellenando poros o microfisuras. Casi siempre se encuentra en contacto con calcita y como pseudomorfos de pirita.

GRAFITO: La mayor concentración de este mineral se encuentra en contacto con los filosilicatos, se presenta como finas láminas entrelazadas con moscovita o clorita, lo que acentúa el aspecto foliado de la muestra.

TURMALINA: Se presentan como cristales anhedrales y subhedrales con tamaños menos a 0,3 mm. Se presentan por lo general de manera perpendicular a la foliación.

EPIDOTO: Se presenta en contacto con los filosilicatos y en bajas concentraciones.



Figura #19. Cristales de muscovita orientados intercalados con cristales de cuarzo. Izquierda :nicoles paralelos. Derecha: nicoles cruzados. Foto tomada con objetivo de 10X de aumento.



**Figura #20.** Pseudomorfo de pirita en contacto con cristales de cuarzo y muscovita. Izquierda: nicoles paralelos. Derecha: nicoles cruzados. Foto tomada con objetivo de 10X de aumento.

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

## ♥ Unidad Klm 3

Es una unidad que se presenta localmente al este de la quebrada La Encantada, en el área de los barrios El Aguacate y El Placer y consta de esquistos cuarzofeldespático-calcáreos o no, esquistos micáceos y filitas micáceas grafitosas de colores variables grises a negro, con abundantes vetas de calcita y cuarzo paralelas a la foliación y rellenando diaclasas. En superficie el feldespato se encuentra generalmente alterado a caolín y con frecuencia desaparece, dejando oquedades en la roca.

La unidad se presenta con intervalos de esquistos de aspectos gnéisicos, de foliaciones gruesas, lo cual se ha asignado como Klm 3 (g).



Figura #21. Afloramiento del esquisto cuarzo-feldespático-calcáreos, de la unidad Klm3. Rumbo E-O.

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE



Figura #22. Afloramiento del esquisto de aspecto gnéisico cuarzo-feldespático-calcáreos, de la unidad Klm3 (g). Rumbo N 65° E.

## I. Características de campo

Presenta un color fresco que varía de gris medio a oscuro, dependiendo de la cantidad de grafito existente, y de color meteorizado gris claro y pardo muy claro a blanquecino. Se observan vetas de cuarzo y calcita perpendiculares y paralelas a la foliación, las mismas poseen espesores no mayores a 4 cm. Se pudo apreciar una variación en el tamaño de grano en algunas zonas del área de estudio, permitiendo así clasificar a estos esquistos como esquistos de aspecto gnéisico en zonas específicas.

# II. Petrografía

A continuación se presentan los resultados del análisis petrográfico de las muestras representativas del litotipo Klm3 y la subdivisión Klm3 (g).

## Klm3

calcareos o no, esquistos micaceos y filitas micaceas grafitosas											
MUESTRAS	Qz	Ca	Mu	Bio	Feld	Gr	Goe	Pi	Tu	Leu	
QDCR-001	43	20	24	1	8	3	1	Tz	Tz	Tz	
CPL-002	12	74	9	0	3	2	Tz	Tz	Tz	0	
PROMEDIO	27.5	47	16.5	0.5	5.5	2.5	0.5	0	0	0	

 

 Tabla #19. Valores de abundancia mineral expresados en porcentaje en esquisto cuarzo feldespáticocalcáreos o no, esquistos micáceos y filitas micáceas grafitosas

Cuarzo (Qz); Calcita (Ca); Muscovita (Mu); Biotita (Bio); Feldepato (Feld); Grafito (Gr); Goehtita (Goe); Pirita (Pi); Turmalina (Tu); Leucoxeno (Leu).

Algunas muestras presentaron orientación en los cristales que la constituyen y microfisuras perpendiculares a la foliación. En general los minerales encontrados se describen de la siguiente manera:

CUARZO: Se presenta como cristales anhedrales policristalinos y monocristalinos, orientados y en algunos casos con sobrecrecimiento. El tamaño de los mismos oscila entre 0,02 y 0,7 mm, con una moda de (0,1-0,3) mm. Se pueden apreciar, en algunos casos, como poiquilos en cristales de calcita.

CALCITA: Se observan cristales anhedrales distribuidos uniformemente a lo largo de toda la sección. La exfoliación romboédrica se observa perfectamente, y poseen una orientación preferencial al igual que el cuarzo y los filosilicatos en la mayoría de los casos.

MUSCOVITA: Se presentan distribuidas de dos maneras, como pequeñas concentraciones dispuestas de manera aleatoria y en bandas paralelas y de un espesor aproximado de 0,5 mm.

BIOTITA: Se presentan como laminas delgadas en contacto con moscovita y grafito.

FELDESPATO: Se observan cristales anhedrales de feldespato distribuidos de manera uniforme a lo largo de toda la sección, algunos de estos se encuentran alterando a arcillas.

PLAGIOCLASA: Se presentan como cristales anhedrales de tamaños menores a 0,03 mm. Se observan cristales de albita zonados.

GRAFITO: Se pueden observar en contacto con los filosilicatos mayormente, lo que acentúa el aspecto foliado de la muestra. Se presenta como delgadas hojas entrelazadas con los filosilicatos distribuido de manera uniforme a lo largo de toda la sección.

GOEHTITA: Se presentan distribuidos de manera uniforme a lo largo de toda la sección, en contacto con calcita y rodeando bordes de cristales de pirita como producto de la oxidación de los mismos.

PIRITA: Se observan cristales euhedrales de este mineral. Presenta evidencia de oxidación en los bordes y se distribuyen de manera muy escasa.

TURMALINA: Se presentan como cristales anhedrales distribuidos de manera aleatoria y muy escasa.

LEUCOXENO: Se presenta de manera muy escasa a lo largo de la sección estudiada.



**Figura #23.** Cristales euhedrales de pirita en contacto con cristales de cuarzo y muscovita. Izquierda: nicoles paralelos. Derecha: nicoles cruzados. Foto tomada con objetivo de 10X de aumento.



**Figura #24.** Cristales de calcita en contacto con cristales anhedrales de cuarzo. Izquierda: nicoles paralelos. Derecha: nicoles cruzados. Foto tomada con objetivo de 10Xde aumento.

Klm3(g)

Tabla #20. Valores de abundancia mineral expresados en porcentaje en esquisto cuarzo feldespático-

MUESTRAS	Qz	Mu	Cl	Bio	Ca	Feld	Plag	Gr	Goe	Pi	Tu	Leu
QHE-001	71	7	5	0	5	10	2	Tz	Tz	Tz	Tz	Tz
QHE-002-A	31	12	5	3	28	0	8	6	7	0	0	0
QHE-002-B	51	19	1	0	19	0	5	1	4	0	0	0
PROMEDIO	51	12.7	3.7	1	17.3	3.3	5	2.3	3.7	0	0	0

calcáreos o no de aspecto gnéisico.

Cuarzo (Qz); Muscovita (Mu); Clorita (Cl); Biotita (Bio); Calcita (Ca); Feldepato (Feld); Plagioclasa

(Plag); Grafito (Gr); Goehtita (Goe); Pirita (Pi); Turmalina (Tu); Leucoxeno (Leu).

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE Las muestras analizadas en la subunidad Klm3 (g) presentan tamaños de cristales de cuarzo mayores que la unidad Klm3, se pueden observa bandas más gruesas de este mineral. También se aprecian microfracturas rellenas de óxido y grafito. En general los minerales encontrados se describen de la siguiente manera:

CUARZO: Se presentan como cristales anhedrales policristalinos y monocristalinos, con un tamaño que oscila entre 0,02 y 1 mm y una moda de 0,4 mm. Se pueden observar como poiquilos en cristales de calcita, en algunos casos.

MUSCOVITA: Este filosilicato esta dispuesto en bandas a lo largo de toda la sección, los mismos se encuentran flexionados, lo que evidencia una zona sometida a esfuerzos. Las bandas de moscovita poseen un espesor menor a 1mm en la mayoría de los casos, mantienen una disposición subparalela y pocas ocasiones algunas son perpendiculares a la foliación.

CLORITA: Esta se presenta como cristales tabulares dispuestos en bandas subparalelas en contacto con grafito y moscovita.

BIOTITA: Se presentan como laminas delgadas en contacto con moscovita, clorita, goehtita y grafito.

CALCITA: En general se presentan como cristales anhedrales dispuestos de manera uniforme en la mayoría de los casos, ya que la concentración del mismo varía en las muestras observadas. Presenta exfoliación romboédrica marcada y sus cristales poseen un tamaño promedio de 0,5 mm. Se puede observa en contacto con grafito y/o con oxido. El mismo puede verse alterado dejando poros, los cuales están rellenos por oxido y en otros casos como pórfidos conteniendo cristales de cuarzo.

FELDESPATOS: Están dispuestos a lo largo de toda la sección de manera aleatoria, poseen un alto grado de alteración en la mayoría de los casos, produciendo

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

así la generación de arcillas. Los mismos se presentan como cristales anhedrales con bordes redondeados y con un tamaño que varia entre 0,025 y 1,5 mm.

PLAGIOCLASA: Se presentan como cristales subhedrales y anhedrales de albita con tamaños no mayores de 1mm, distribuidos aleatoriamente a lo largo de toda la sección. En algunos casos estos cristales están medianamente alterados.

GRAFITO: Aparecen en delgadas laminas entrelazadas con los filosilicatos en la mayoría de los casos, en otras ocasiones se puede ver a este mineral en microfisuras o espacios vacíos.

GOEHTITA: Se encuentra rellenando espacios libres como microfracturas y poros, además esta en contacto con los filosilicatos y en otros casos se puede observar como pseudomorfos de pirita de color rojizo y con caras bien definidas.

PIRITA: Se presentan como cristales euhedrales con bordes oxidados y un tamaño no mayor a 0,4 mm.

TURMALINA: Se observan cristales anhedrales, en algunos casos alargados y perpendiculares a la foliación. Poseen un tamaño promedio de 0,1 mm.

LEUCOXENO: Se presentan como cristales anhedrales distribuidos a lo largo de toda la sección de manera escasa.



Figura #25. Cristales anhedrales de cuarzo. Izquierda: nicoles paralelos. Derecha: nicoles cruzados. Foto tomada con objetivo de 10X de aumento.



**Figura # 26.** Filosilicatos dispuestos en bandas subparalelas intercaladas con cristales de cuarzo. Izquierda: nicoles paralelos. Derecha: nicoles cruzados. Foto tomada con objetivo de 10X de aumento.

# ✤ Unidad Klm 5

Se observa este grupo litológico solamente en la vertiente Sur del valle del río Guarenas, a partir del Km 16+800 hasta aproximadamente el Km 20+100. Consta de esquistos cuarzo micáceos y filitas micáceas, ligeramente grafitosas, calcáreas o no, de colores gris oscuro. Hacia el cauce, los afloramientos observados son de color negro, fresco, pero en las laderas la roca se encuentra profundamente meteorizada, destacándose amplios anfiteatros topográficos de deslizamiento antiguo.

# I. Características de campo

Se observa un color fresco gris claro a medio y un color meteorizado gris pálido con manchas puntuales de oxidación de color rojizo, presenta una foliación bien marcada y vetas de cuarzo concordantes y discordantes a la misma, con un espesor promedio de 0,5 cm. Se pudieron observar, en algunos casos, lentes de cuarzo de unos 12 cm de ancho y 30 cm de largo aproximadamente.



Figura #27. Afloramiento del esquisto cuarzo micáceo, representativo de la unidad Klm5. Rumbo N 55° E.

# II. Petrografía

A continuación se presentan los resultados del análisis petrográfico de las muestras representativas del litotipo Klm5.

MUESTRAS	Qz	Mu	Cl	Bio	Feld	Plag	Ca	Gr	Leu	Pi	Tu	Goe
QEZ-001	63	18	2	0	3	5	3	0	Tz	0	0	6
QMA-003-A	61	20	2	0	0	5	0	6	Tz	0	0	6
QMB-003	62	22	4	0	0	4	0	3	Tz	Tz	Tz	5
QG-002-A	61	14	7	4	0	2	2	6	1	0	Tz	3
PROMEDIO	61.75	18.5	3.75	1	0.75	4	1.25	3.75	0.25	0	0	5

 Tabla #21. Valores de abundancia mineral expresados en porcentaje en esquistos cuarzo micáceos y filitas micáceas, ligeramente grafitosas, calcáreas o no.

Cuarzo (Qz); Muscovita (Mu); Clorita (Cl); Biotita (Bio); Feldepato (Feld); Plagioclasa (Plag); Calcita (Ca); Grafito (Gr); Leucoxeno (Leu); Pirita (Pi); Turmalina (Tu); Goehtita (Goe).

Se pueden observa microfisuras en algunas muestras analizadas. En general estas muestras están compuestas mayormente por cuarzo, con un porcentaje promedio de 61% de este mineral. En general los minerales encontrados se describen de la siguiente manera:

CUARZO: Está dispuesto de manera masiva a lo largo de toda la sección, esta intercalado con bandas orientadas de moscovita. El tamaño de los cristales varía entre 0,1 y 0,6 mm, con un tamaño modal de 0,3 mm. En algunos casos se observa a este mineral rellenando microfisuras, las cuales están orientadas de manera subparalela a las bandas de filosilicatos.

MUSCOVITA: Se presentan como cristales tabulares dispuestos en bandas subparalelas de hasta 0,5 mm de espesor. Se pueden observar entrelazados con grafito y en otros casos con goehtita.

CLORITA: Esta se presenta como laminas delgadas dispuestas en bandas subparalelas en contacto con moscovita y grafito.

BIOTITA: Se presentan como finas láminas entrelazadas con moscovita, clorita, goehtita y grafito, e intercaladas con bandas gruesas de cuarzo masivo.

FELDESPATOS: Se encuentran distribuidos en la sección de manera aleatoria. Se presentan como cristales anhedrales algo alterados y fracturados con un tamaño promedio de 0,3 mm.

PLAGIOCLASA: Se presentan como cristales anhedrales y subhedrales de albita con un tamaño que oscila entre 0,1 y 0,3 mm, siendo este ultimo el tamaño modal. Se observan varios cristales alterando a arcillas.

CALCITA: Se presentan como cristales anhedrales distribuidos de manera aleatoria a lo largo de toda la sección. En algunos casos se observa rellenando espacios vacíos y en otros en contacto con grafito.

GRAFITO: Se pueden observar delgadas láminas entrelazadas con los filosilicatos dando un aspecto foliado a la muestra. El mismo esta distribuido de manera uniforme a lo largo de toda la sección.

LEUCOXENO: Se presenta como un mineral accesorio, distribuido de manera aleatoria a lo largo de la sección estudiada. Se observan cristales alargados y redondeados.

PIRITA: Se presentan en cristales euhedrales distribuidos de manera aleatoria y en cantidades menores al 1%.

TURMALINA: Se observan cristales anhedrales dispuestos de manera aleatoria y escasa a lo largo de la sección estudiada.

GOEHTITA: Están distribuidos a lo largo de toda la sección de manera aleatoria. Se presentan cristales euhedricos de color rojizo, debido a que son pseudomorfos de pirita. Por otra parte aparece de manera puntual rellenando microfracturas o porosidad.



Figura #28. Filosilicatos entrelazados con finas laminas de grafito dispuestos en bandas subparalelas intercaladas con cristales de cuarzo. Izquierda: nicoles paralelos. Derecha: nicoles cruzados. Foto tomada con objetivo de 10X de aumento.



Figura #29. Pseudomorfos de pirita en contacto con cristales de cuarzo y muscovita .Izquierda: nicoles paralelos. Derecha: nicoles cruzados. Foto tomada con objetivo de 10X de aumento.

Geología Estructural Local

#### ✤ Fallamiento

Los macizos rocosos que comprenden la zona de estudio presentan diversas fallas locales que obedecen a patrones de fallamiento a nivel regional, las cuales son responsables de la morfología presente en el valle entre Caracas y Guarenas.

En la zona del portal oeste del túnel La Encantada se localiza una confluencia de tres fallas normales, con rumbos aproximado N 70° O, N 15° O y N 30° E, respectivamente. Por lo que debe darse un especial tratamiento al momento de la ejecución de dicho portal a fin de prevenir problemas de estabilidad por la baja calidad de roca y la presencia de las mencionadas fallas en el área. Este portal se localiza aproximadamente a 1200 m. al este, a lo largo del eje del trazado (progresiva 5 + 700), del viaducto de Turumo. Se ubica en el mapa y el perfil con los puntos CTR y CON.

Hacia el portal este del túnel en mención se infiere la existencia de una falla normal en dirección casi E - O y paralela al eje del trazado, ubicándose casi 200 m. al norte del mismo, por lo que habría que prestar especial atención en caso que esta pueda ser atravesada de forma longitudinal por el trazado en el subsuelo.



Figura #30 Evidencia de falla en el margen Oeste de la quebrada La Encantada.

En la progresiva 7 + 800, correspondiente a la zona oeste del túnel Caucagüita, se ubica una falla normal de rumbo aproximado N 20° E. Se ubica a lo largo de la quebrada El Placer, homónimo del Barrio que esta al sur de la misma y cuyos puntos de levantamiento se identifican como PL.

Existe entre la progresiva 8 + 150 y 8 + 200 una zona de falla en la cual dos fallas normales de rumbo N 15° O y N 75° E, la limitan al oeste y al este respectivamente. Esta zona de falla coloca en contacto la fase de esquisto cuarzo – feldespato calcáreo y esquistos micáceos de la unidad Klm 3 con su fase gnéisica Klm 3(g).

En las progresivas 8 + 550 y 9 + 300 se hallan dos fallas normales con rumbo aproximado N 70° E y N 30° E que atraviesan la fase gnéisica de Klm 3(g), y cortan el eje del trazado casi en ángulo recto.

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

En el túnel de Mampote se localizan múltiples deslizamientos a lo largo del eje del trazado, y en la progresiva 16 + 250 se halla una falla normal con dirección N 40° E, en la cual se ven truncadas sendas evidencias de deslizamientos con sentido NO – SE.

## ✤ Foliación

Los datos se agruparon para los diferentes sectores en los tres túneles del proyecto, utilizándose los diagramas de rosetas donde las clases de estudio miden 10° y estereogramas de densidad de polos.



Figura #31. Diagramas que muestran la foliación dominante en el Túnel El Encantado, Con rumbo preferencial N 30°- 40° E y la distribución de los polos de dichos planos.

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE



Figura #32. Evidencia de la foliación en la quebrada Valencia, perteneciente al túnel La Encantada.



Figura #33. Vista en detalle de la foto anterior.



Figura #34. Diagramas que muestran la foliación dominante en el Sector #1 (S1) del Túnel

Caucagüita, Con rumbos muy dispersos y la distribución de los polos de dichos planos (* Dos Polos).

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE


**Figura #35.** Diagramas que muestran la foliación dominante en el Sector #2 (S2) del Túnel Caucagüita, Con rumbos preferencial N 50° - 70° E y la distribución de los polos de dichos planos. (*

Dos Polos).





Figura #36. Evidencia de la foliación y diaclasas en la quebrada Placer, perteneciente al sector #2 (S2) del túnel Caucagüita.



Figura #37. Evidencia de la foliación y diaclasas en la quebrada QDY, perteneciente al sector #2 (S2) del túnel Caucagüita.



Figura #38. Diagramas que muestran la foliación dominante en el Sector #3 (S3) del Túnel Caucagüita, Con rumbo N 50° - 60° E y la distribución de los polos de dichos planos (* Dos Polos).

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE 90



Figura #39. Evidencia de la foliación y diaclasas en la quebrada GUAR, perteneciente al sector #3 (S3) del túnel Caucagüita.



Figura #40. Evidencia de la foliación en la quebrada QMB, perteneciente al sector #2 (S2) del túnel

Mampote.



Figura #41 Detalle de la foliación en la quebrada QEZ, perteneciente al sector #2 (S2) del túnel Mampote.



Figura #42 Evidencia de la foliación en la sección CDN-002, perteneciente al sector #2 (S2) del túnel

Mampote.



**Figura #43**. Diagramas que muestran la foliación dominante en el Sector #2 (S2) del Túnel Mampote, Con rumbos entre N 60° E – E_O y N 50° O – E_O, junto a la distribución de los polos de dichos

planos (* Dos Polos).

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

La sección #1 correspondiente al túnel de Mampote presenta numerosos plegamientos y efectos de tectonismo que hacen imposible la correcta medición de las discontinuidades en dicho macizo con un grado de acierto adecuado.

#### ✤ Diaclasas

Los datos se agruparon para los diferentes sectores en los tres túneles del proyecto, utilizándose los diagramas de rosetas donde las clases de estudio miden 10° y estereogramas de densidad de polos.



Figura #44. Diagramas que muestran las diaclasas dominante en el Túnel El Encantado, Tres familias, D1: N 31° O 88° N, D2: N 60° O SV, D3: N 16° O 70° S, junto al diagrama de concentración de los

polos de dichos planos (* Dos Polos).



Figura #45. Evidencia del diaclasado en la quebrada Valencia, perteneciente al túnel La Encantada.



**Figura #46.** Diagramas que muestran las diaclasas dominante en el Sector #1 (S1) del Túnel Caucagüita, Dos familias, **D1: N 79° E 89° S, D2: N 35° O 79°N**, junto al diagrama de concentración

de los polos de dichos planos (* Dos Polos).



**Figura #47.** Diagramas que muestran las diaclasas dominante en el Sector #2 (S2) del Túnel Caucagüita, Tres familias, **D1:** N 5° E 88° S, **D2:** N 30° O 84 N, **D3:** N 59° E 72° S, junto al diagrama

de concentración de los polos de dichos planos (* Dos, * Tres,* Cuatro Polos).

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE



Figura #48. Diagramas que muestran las diaclasas dominante en el Sector #3 (S3) del Túnel
Caucagüita, Tres familias, D1: N 22° O 83° N, D2: N 63° E 85 N, D3: N 78° E 56° S, junto al diagrama de concentración de los polos de dichos planos.

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE



Figura #49. Diagramas que muestran las diaclasas dominante en el Sector #2 (S2) del Túnel Mampote,
Cuatro familias, D1: N 15° E 86° S, D2: N 31° O 80 N, D3: N 51° E 50° S, D4: N 18° O 70° S junto al diagrama de concentración de los polos de dichos planos.



Figura #50. Evidencia de la foliación en la quebrada QMB, perteneciente al sector #2 (S2) del túnel Mampote.



Figura #51. Evidencia del diaclasado en la sección CDN-002, perteneciente al sector #2 (S2) del túnel

Mampote.

#### ✤ Estabilidad de la excavación

En esta sección se muestran las posibles cuñas que se generarían durante la excavación de los diferentes túneles en cada una de sus secciones. Para esto se utilizó el programa de computación **UNWEDGE VERSION: 3.005**, el cual emplea como datos de entrada la orientación de las discontinuidades en el macizo rocoso, al igual que la dirección de foliación, y la orientación del eje del túnel para generar a través de la intersección de estos planos las posible cuñas dentro de la excavación. A continuación la información respectiva de cada sector:



Figura #52. Vista desde el Nor – Oeste en perspectiva (Izquierda) y frontal aproximadamente Oeste -Este (Derecha) de las posibles cuñas que se generarían en el túnel La Encantada.



Figura #53. Vista desde el Sur de las posibles cuñas que se generarían en el túnel La Encantada.

CUÑA #	FACTOR DE	PESO
CUNA#	SEGURIDAD	(Ton)
5 (Techo)	7,197	361,8
4 (Piso)	Muy Estable	361,2
1,7	Muy Esta	ble

Tabla #22. Datos de las respectivas cuñas en el túnel La Encantada.



Figura #54. Vista desde el Nor – Oeste en perspectiva (arriba) y frontal aproximadamente Oeste – Este (abajo) de las posibles cuñas que se generarían en el sector #1 (S1) del túnel Caucagüita.



Figura #55. Vista desde el Sur de las posibles cuñas que se generarían en el sector #1 (S1) del túnel Caucagüita.

CUÑA #	FACTOR DE	PESO
CONA#	SEGURIDAD	(Ton)
6 (Techo)	2,562	102,8
7 (Techo Derecho)	6,034	0,447
8 (Techo Derecho)	0	0,007
1, 2, 3	Muy Establ	e

Tabla #23. Datos de las respectivas cuñas en el sector #1 (S1) del túnel Caucagüita.



Figura #56. Vista desde el Norte en perspectiva (Izquierda) y frontal desde el Nor – Oeste (derecha) de las posibles cuñas que se generarían en el sector #2 (S2) del túnel Caucagüita.

CUÑA #	FACTOR DE	PESO
CUNA #	SEGURIDAD	(Ton)
4 (Techo)	3,792	117,4
5 (Piso)	Muy Estable	117,8
2, 3, 6, 7	Muy Estal	ble

Tabla #24. Datos de las respectivas cuñas en el sector #2 (S2) del túnel Caucagüita.



Figura #57. Vista desde el Sur - Oeste de las posibles cuñas que se generarían en el sector #2 (S2) del túnel Caucagüita.

Tabla #25. Datos de las respectivas cuñas en el sector #3 (S3) del túnel Caucagüita.

CUÑA #	FACTOR DE	PESO
CUNA #	SEGURIDAD	(Ton)
8 (Techo)	0	55,49
1, 3, 4, 5, 6	Muy Estal	ble



**Figura #58.** Vista desde el Sur – Oeste en perspectiva (arriba) y frontal Oeste – Este (abajo) de las posibles cuñas que se generarían en el sector #3 (S3) del túnel Caucagüita.



Figura #59. Vista desde el Sur de las posibles cuñas que se generarían en el sector #3 (S3) del túnel Caucagüita.



Tabla #26. Datos de las respectivas cuñas en el sector #2 (S2) del túnel Mampote.

Figura #60. Vista desde el Nor - Oeste en perspectiva (Izquierda) y frontal desde el Sur – Oeste (derecha) de las posibles cuñas que se generarían en el sector #2 (S2) del túnel Mampote.



Figura #61. Vista desde el Sur – Este de las posibles cuñas que se generarían en el sector #2 (S2) del túnel Mampote.

Geomecánica

Los ensayos correspondientes a las muestras recolectadas se presentan a continuación:

MUESTRA	PESO ESPECIFICO	ABSORCION (%)	PESO UNITARIO (Ton/m³)
QEZ - 001	2,59	0,71	2,57
QHE - 001	2,49	1,42	2,46
MI - 004	2,74	0,55	2,73
QMA - 003 - B	2,49	1,13	2,46
QMB - 001	2,48	1,07	2,45
BA - 001	2,50	1,21	2,47
QG - 002	2,52	1,79	2,48
QHE - 002 - A	2,59	1,37	2,55
QDY - 001	2,44	2,04	2,39
QDCR - 002	3,07	3,52	2,97
CPL - 002	2,54	0,68	2,52
PL - 001	2,27	3,56	2,19
MAGA	2,45	1,26	2,42
QHE - 004	2,63	1,20	2,60
QVN - 001	2,55	1,72	2,51
QVN - 002	2,52	1,48	2,49
ENC - 005 - B	2,50	2,30	2,44
NP - 001	2,55	1,73	2,50
QMB - 003	2,56	0,81	2,54
QVN - 002 - A	2,59	1,09	2,56
QG - 002 - A	2,47	1,61	2,43

Tabla#27. Densidad y absorción.

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

Muestra	De(mm2)	Carga Neta (kN)	Factor de Corrección	ls (50)	с	Resistencia a la Compresion	Promedio (MPa)	Direccion de Aplicación de la carga	Túnel
NP-001	331550.00	1.80	47.04	0.26	23	(Ng/CIII )		Paralela a la direccion de la foliacion	
NP 001	240726 51	2.00	47,04	0,20	20	116.06	8,67	Paraondicular a la dirección de la foliación	
ML-004	100/288 18	5,00	77.47	0,50	23	110,50		Perpendicular a la dirección de la foliación	
MI-004	207350.86	6,60	/0.0/	1 11	23	260.03	18,60	Perpendicular a la dirección de la foliación	
0VN-001	934690 79	8.80	75.00	0.71	23	165.65	16.24	Perpendicular a la dirección de la foliación	
ENC-005-B	576795 22	5 10	60.36	0.53	23	125 20	10,24	Paralela a la direccion de la foliacion	
ENC-005-B	692750 42	8 80	65.54	0.83	23	195.32	15,71	Perpendicular a la direccion de la foliacion	
MAGA	301147.60	0.30	45.05	0.04	23	10.53		Paralela a la direccion de la foliacion	
MAGA	269032.25	3,90	42.82	0.62	23	145.63	7,65	Perpendicular a la direccion de la foliacion	
PL-001	224005.57	1.80	39.43	0.32	23	74.34		Perpendicular a la direccion de la foliacion	
PL-001	347450.80	2.60	53 56	0.40	23	94.03	8,25	Perpendicular a la direccion de la foliacion	
CPI -002	234245.80	3.60	44.86	0.69	23	161 72		Perpendicular a la direccion de la foliacion	
CPI -002	273172.68	3 60	43.12	0.57	23	133.30	14,46	Perpendicular a la direccion de la foliacion	
ODCR-001	382208.69	2 70	55.91	0.39	23	92.66		Perpendicular a la direccion de la foliacion	
QDCR-001	351174.18	3.00	53.82	0.46	23	107.86	8.56	Perpendicular a la direccion de la foliacion	CAUCAGÜITA
ODCR-002	619428 40	2.60	62.32	0.26	23	61.37	-,	Perpendicular a la direccion de la foliacion	
QDY-001	541182.46	3.30	58.65	0.36	23	83.90	8.23	Perpendicular a la direccion de la foliacion	
QHE-001	287783.76	9.30	44.14	1.43	23	334.64	-,	Perpendicular a la direccion de la foliacion	
QHE-001	271276.42	9.30	47.92	1.64	23	385.39		Perpendicular a la direccion de la foliacion	
QHE-004	304577.30	8.40	45.28	1.25	23	292.97	28.38	Perpendicular a la direccion de la foliacion	
QHE-002-A	398355.91	7.80	56.96	1.12	23	261.66		Perpendicular a la direccion de la foliacion	
QHE-002-A	478283.10	5.70	61.85	0.74	23	172.92		Perpendicular a la direccion de la foliacion	
BA-001	319004.47	10.20	46.23	1.48	23	346.81	34.00	Perpendicular a la direccion de la foliacion	
QEZ-001	1024319,68	23,40	78,15	1,79	23	418,85		Perpendicular a la direccion de la foliacion	
QEZ-001	201459,88	10,71	41,91	2,23	23	522,73		Perpendicular a la direccion de la foliacion	
QMB-001	927508,02	8,80	74,74	0,71	23	166,36	31,05	Perpendicular a la direccion de la foliacion	
QMB-003	316741,26	2,40	51,38	0,39	23	91,33		Perpendicular a la direccion de la foliacion	
QMB-003	573490,27	15,60	60,20	1,64	23	384,16		Perpendicular a la direccion de la foliacion	MAMPOTE
QMA-003-A	169716,89	7,80	38,80	1,78	23	418,35	28 75	Perpendicular a la direccion de la foliacion	
QMA-003-B	554237,05	6,70	59,28	0,72	23	168,12	20,10	Perpendicular a la direccion de la foliacion	
QG-002	373191,02	0,60	49,62	0,08	23	18,71		Perpendicular a la direccion de la foliacion	
QG-002	310314,94	6,90	45,66	1,02	23	238,20	20,85	Perpendicular a la direccion de la foliacion	
QG-002	651898,43	16,60	63,77	1,62	23	380,97		Perpendicular a la direccion de la foliacion	

Tabla #28. Resultados del ensayo de carga puntual y cálculo de la resistencia a la compresión simple.

Los resultados arrojados por el ensayo de carga puntual se utilizaron para calcular la resistencia a la compresión simple de la roca intacta, los cuales se expresan en Kg/m² pero con motivo de la clasificación RMi y el cálculo de los parámetros geomecánicos de Hoek se empleó el promedio de los valores de muestras en zonas adyacentes utilizando como unidad el MPa.

En la siguiente tabla se aprecian los valores del Rock Quality Designation (RQD), calculado en función del espaciamiento de las familias de diaclasas que afectaron al macizo:

TUNEL: LA ENCANTADA	COORDE	NADAS		INVEF	RSO DE	L ESP	ACIADO	b.	RQD
LOCALIDAD	NORTE	ESTE	PLANILLA	F1	F2	F3	F4	Jv	(%)
Quebrada Encantada	1.160.905	747.095	ENC - 005	20	0	0	0	20	49
Quebrada Valencia	1.160.589	746.623	MI - 001	20	0	0	0	20	49
Quebrada Valencia	1.160.593	746.465	MI - 002	15	0	0	0	15	66
Quebrada Valencia	1.160.589	746.441	MI - 003	8	6	0	0	14	69
Quebrada Valencia	1.160.597	746.415	MI - 004	25	25	0	0	50	10
Quebrada Valencia	1.160.584	746.433	MAI - 004	10	5	0	0	15	66
Quebrada Valencia	1.160.622	746.281	MAI - 005	20	4	0	0	24	36
Quebrada Valencia	1.160.547	746.630	QVN - 001	20	15	15	0	50	10
Quebrada Valencia	1.160.515	746.820	QVN - 002	15	20	0	0	35	10
Quebrada Contraloría	1.160.710	746.068	CTR - 001	5	0	0	0	5	99
Quebrada Contraloría	1.160.740	746.043	CTR - 002	5	6	0	0	11	79
Quebrada Contraloría	1.160.784	746.035	CTR - 003	6	6	0	0	12	75

Tabla #29. Valores estimados de RQD para el macizo correspondiente al túnel La Encantada

Tabla #30. Valores estimados de RQD para el macizo correspondiente al túnel de Mampote .

TUNEL: MAMAPOTE	COORDE	NADAS		INVEF	rso de	EL ESP/	ACIADO		RQD
LOCALIDAD	NORTE	ESTE	PLANILLA	F1	F2	F3	F4	Jv	(%)
Quebrada Ultima	1.158.440	756.420	QG - 001	20	1	0	0	21	46
Quebrada Ultima	1.158.503	756.455	QG - 002	7	0	0	0	7	92
Barrio Divino Niño	1.158.389	756.310	DN - 001	10	5	0	0	15	66
Barrio Divino Niño	1.158.392	756.368	DN - 002	10	0	0	0	10	82
Barrio Divino Niño	1.158.324	765.376	DN - 003	7	0	0	0	7	92
Barrio Divino Niño	1.158.381	756.114	DN - 004	10	5	0	0	15	66
Barrio Divino Niño	1.158.383	756.120	DN - 005	13	7	0	0	20	49
Barrio Divino Niño	1.158.321	756.148	DN - 006	8	0	0	0	8	89
Barrio Divino Niño	1.158.296	756.153	DN - 007	12	4	0	0	16	62
Barrio Divino Niño	1.158.371	756.118	DN - 008	10	6	0	0	16	62
Quebrada MA (QMA)	1.158.580	755.995	QMA - 001	7	3	0	0	10	82
Quebrada MA (QMA)	1.158.550	756.005	QMA - 002	8	8	0	0	16	62
Quebrada MA (QMA)	1.158.500	756.000	QMA - 003	12	20	0	0	32	10
Quebrada MA (QMA)	1.158.412	756.017	QMA - 004	1	5	0	0	6	95
Quebrada MB (QMB)	1.158.440	755.890	QMB - 001	6	20	0	0	26	29
Quebrada MB (QMB)	1.158.460	755.890	QMB - 002	10	0	0	0	10	82
Quebrada MB (QMB)	1.158.500	755.890	QMB - 003	7	5	0	0	12	75
Quebrada Ezequiel Zamora (QEZ)	1.158.520	755.563	QEZ - 001	4	1	2	0	7	92
Quebrada Ezequiel Zamora (QEZ)	1.158.564	755.596	QEZ - 002	8	1	0	0	9	85
Quebrada Ezequiel Zamora (QEZ)	1.158.743	755.540	QEZ - 003	8	20	0	0	28	23
Quebrada Ezequiel Zamora (QEZ)	1.158.725	755.460	QEZ - 004	8	1	0	0	9	85
Carretera Barrio Divino Niño (CDN)	1.158.534	755.922	CDN - 001	6	6	1	0	13	72
Carretera Barrio Divino Niño (CDN)	1.158.550	755.932	CDN - 002	12	4	1	0	17	59
PORTAL ENTRADA (BA)	1.158.870	755.090	BA - 001	40	0	0	0	40	10

TUNEL: CAUCAGÜITA	COORDENADAS			INVEF	RSO DE	L ESP	ACIADO		RQD
LOCALIDAD	NORTE	ESTE	PLANILLA	F1	F2	F3	F4	JV	(%)
Quebrada Helipuerto (QHE)	1.159.581	750.556	QHE - 001	15	10	0	0	25	33
Quebrada Helipuerto (QHE)	1.159.550	750.561	QHE - 002	5	1	0	0	6	95
Quebrada Helipuerto (QHE)	1.159.511	750.574	QHE - 003	8	10	0	0	18	56
Quebrada Helipuerto (QHE)	1.159.451	750.614	QHE - 004	5	6	0	0	11	79
Quebrada Guarenas (Qda.Guar)	1.159.550	749.840	Qda.Guar - 1	10	8	0	0	18	56
Quebrada Guarenas (Qda.Guar)	1.159.520	749.840	Qda.Guar - 2	10	0	0	0	10	82
Quebrada Guarenas (Qda.Guar)	1.159.480	749.840	Qda.Guar - 3	15	8	0	0	23	39
Camino El Aguacatico (AG)	1.159.872	749.183	AG - 018	10	6	4	0	20	49
Camino El Aguacatico (AG)	1.159.839	749.135	AG - 017	6	10	0	0	16	62
Camino El Aguacatico (AG)	1.159.826	749.110	AG - 016	10	8	0	0	18	56
Camino El Aguacatico (AG)	1.159.812	749.082	AG - 015	4	1	0	0	5	99
Camino El Aguacatico (AG)	1.159.779	748.982	AG - 014	10	8	0	0	18	56
Camino El Aguacatico (AG)	1.159.871	748.919	AG - 022	10	15	0	0	25	33
Camino El Aguacatico (AG)	1.159.886	748.933	AG - 023	20	20	10	1	51	10
Camino El Aguacatico (AG)	1.159.900	748.948	AG - 024	25	8	0	0	33	10
Camino El Aguacatico (AG)	1.159.854	748.916	AG - 021	3	0	0	0	3	100
Camino El Aguacatico (AG)	1.159.816	748.901	AG - 008	12	12	0	0	24	36
Camino El Aguacatico (AG)	1.159.802	748.885	AG - 009	10	0	0	0	10	82
Camino El Aguacatico (AG)	1.159.787	748.871	AG - 010	10	10	0	0	20	49
Barrio El Aguacate	1.159.885	748.848	QDY - 001	7	0	0	0	7	92
Barrio El Aguacate	1.159.980	748.608	QDCR - 1	10	10	0	0	20	49
Barrio El Aguacate	1.160.018	748.651	QDCR - 2	10	0	0	0	10	82
Camino El Placer	1.160.334	748.336	CPL - 001	25	0	0	0	25	33
Camino El Placer	1.160.316	748.329	CPL - 002	8	15	0	0	23	39
Camino El Placer	1.160.296	748.325	CPL - 003	15	0	0	0	15	66
Camino El Placer	1.160.280	748.327	CPL - 004	10	0	0	0	10	82
Camino El Placer	1.160.192	748.316	CPL - 005	10	0	0	0	10	82
Camino El Placer	1.160.135	748.327	CPL - 006	30	0	0	0	30	16
Quebrada El Placer	1.160.382	748.126	PL - 001	30	20	0	0	50	10
Quebrada El Placer	1.160.399	748.130	PL - 002	30	25	0	0	55	10
Quebrada El Placer	1.160.433	748.128	PL - 003	17	15	0	0	32	10
Quebrada El Placer	1.160.452	748.122	PL - 004	8	15	0	0	23	39
Cerrajería Portuguesa	1.160.365	747.872	CER - 008	15	3	0	0	18	56
Cerrajería Portuguesa	1.160.442	747.769	CER - 007	20	6	0	0	26	29
Cerrajería Portuguesa	1.160.550	747.598	CER - 006	5	0	0	0	5	99
Cerrajería Portuguesa	1.160.549	747.571	CER - 005	8	10	0	0	18	56
Cerrajería Portuguesa	1.160.555	747.549	CER - 004	10	1	0	0	11	79
Cerrajería Portuguesa	1.160.563	747.391	CER - 003	10	2	0	0	12	75
Cerrajería Portuguesa	1.160.558	747.368	CER - 001	10	5	0	0	15	66
EMPRESA MAGA	1.160.555	747.289	MAGA - 002	15	6	0	0	21	46
EMPRESA MAGA	1.160.555	747.267	MAGA - 001	3	8	15	0	26	29

## Tabla #31. Valores estimados de RQD para el macizo correspondiente al túnel Caucagüita.

Luego se clasificó el macizo rocoso según la metodología expuesta en el Capitulo II, estas se muestran en las siguientes tablas:

TÚNEL	PROGRESIVA (RANGO)	RQD	Jn	Jr	Ja	Jw	SRF	Q	PROBABILIDAD (%)	COEF. Variación	CLASE DE ROCA
	5+778 - 5+930	82	3,00	1,25	6,00	0,84	1,75	3,38	60	0,41	D (MALA)
	5+930 - 6+270	30	3,00	1,25	5,00	0,66	7,50	0,30	70	0,66	E (MUY MALA)
LA ENCANTADA	6+270 - 6+540	47	3,00	1,25	2,50	0,58	1,75	2,87	60	0,34	D (MALA)
	6+540 - 6+708	47	3,00	1,25	2,00	0,58	1,75	3,73	60	0,40	D (MALA)
	7+340 - 7+900	60	5,00	1,25	5,00	0,58	1,75	1,38	70	0,71	D (MALA)
	7+900 - 7+930	30	3,50	1,25	5,00	0,58	7,50	0,17	60	0,44	E (MUY MALA)
	7+930 - 8+220	48	3,00	1,25	5,00	0,80	1,75	2,55	70	0,66	D (MALA)
	8+220 - 8+250	70	3,00	1,25	2,00	0,58	7,50	1,26	60	0,38	D (MALA)
	8+250 - 8+420	45	3,00	1,25	6,00	0,58	1,75	1,29	60	0,50	D (MALA)
	8+420 - 8+440	70	3,00	1,25	1,50	0,58	7,50	1,39	60	0,38	D (MALA)
CAUCAGOITA	8+440 - 8+750	70	3,00	1,25	2,50	0,58	1,75	4,29	60	0,46	C (MEDIA)
	8+750 - 8+780	70	3,00	1,25	2,00	0,58	7,50	1,26	60	0,37	D (MALA)
	8+780 - 9+430	55	7,00	1,25	5,00	0,58	1,75	0,92	70	0,87	E (MUY MALA)
	9+430 - 9+450	70	3,00	1,25	2,00	0,58	3,75	2,43	60	0,38	D (MALA)
	9+450 - 9+900	60	3,50	1,25	7,00	0,58	3,75	1,09	60	0,34	D (MALA)
	9+900 - 10+554	60	3,50	1,25	4,50	0,58	1,75	2,10	70	0,62	D (MALA)
	16+010 - 16+400	12	18,00	0,75	7,00	0,58	7,50	0,01	90	0,31	G (EXCEPCIONALMENTE MALA)
	16+400 - 16+780	54	3,50	1,25	5,00	0,58	1,75	1,62	70	0,60	D (MALA)
MAMPOTE	16+780 - 17+300	51	5,00	1,25	5,00	0,58	1,75	1,09	70	0,77	D (MALA)
	17+300 - 17+560	69	3,00	1,25	1,80	0,58	1,75	5,96	60	0,43	C (MEDIA)
	17+560 - 17+780	68	3,00	1,25	4,00	0,83	1,75	3,94	60	0,44	D (MALA)

Tabla #32. Caracterización del macizo en base a la clasificación (Q) de Barton.

Tabla #33. Caracterización del macizo en base a la clasificación (RMR) de Bieniawski.

TUNEL: LA ENCANTADA	Coordena	Coordenadas U.T.M		esistencia de matriz rocosa	RQD	Espaciado	Continuidad	Abertura	Rugosidad	Relleno	eteorización	idrogeología	-	RMR	Ca m	alidad del acizo
LOCALIDAD	NORTE	ESTE		a N			)				Μ	н	Inicial	Corregido	Clase	Calidad
Quebrada Encantada	1.160.905	747.095	ENC - 005	2	8	5	6	1	3	2	3	10	40	30	IV	MALA
Quebrada Valencia	1.160.589	746.623	MI - 001	2	8	5	6	4	5	6	3	7	46	36	IV	MALA
Quebrada Valencia	1.160.593	746.465	MI - 002	2	13	5	6	1	5	2	3	7	44	34	IV	MALA
Quebrada Valencia	1.160.589	746.441	MI - 003	2	13	5	6	4	3	6	5	10	54	44	=	MEDIA
Quebrada Valencia	1.160.597	746.415	MI - 004	2	3	5	6	4	5	6	6	7	44	34	IV	MALA
Quebrada Valencia	1.160.584	746.433	MAI - 004	2	20	5	6	6	5	4	5	10	63	58	=	MEDIA
Quebrada Valencia	1.160.622	746.281	MAI - 005	2	20	5	6	1	5	4	3	10	56	51	=	MEDIA
Quebrada Valencia	1.160.547	746.630	QVN - 001	2	3	5	6	4	3	6	3	7	39	29	IV	MALA
Quebrada Valencia	1.160.515	746.820	QVN - 002	2	3	5	6	4	3	4	5	7	39	29	IV	MALA
Quebrada Contraloría	1.160.710	746.068	CTR - 001	2	20	5	6	1	5	2	3	15	59	47		MEDIA
Quebrada Contraloría	1.160.740	746.043	CTR - 002	2	17	5	6	1	5	2	3	15	56	44		MEDIA
Quebrada Contraloría	1.160.784	746.035	CTR - 003	2	17	5	6	1	5	2	5	15	58	46		MEDIA

TUNEL: CAUCAGÜITA	Coordena	das U.T.M	PLANILLA	esistencia de matriz rocosa	RQD	Espaciado	Continu ida d	A bertura	Rugosidad	Relleno	eteorización	idro geo logía		RMR		Calidad del macizo	
LOCALIDAD	NORTE	ESTE		a R							Μ	т	Inicial	Corregido	Clase	Calidad	
Quebrada Helipuerto (QHE)	1.159.581	750.556	QHE - 001	4	8	5	4	6	5	6	3	10	51	41		MEDIA	
Quebrada Helipuerto (QHE)	1.159.550	750.561	QHE - 002	4	20	5	6	4	3	6	3	10	61	51		MEDIA	
Quebrada Helipuerto (QHE)	1.159.511	750.574	QHE - 003	4	13	5	6	4	5	6	3	10	56	46	≡	MEDIA	
Quebrada Helipuerto (QHE)	1.159.451	750.614	QHE - 004	4	17	5	6	4	1	6	5	10	58	48	III	MEDIA	
Quebrada Guarenas (Qda.Guar)	1.159.550	749.840	Qda.Guar - 1	4	13	5	6	1	5	2	5	10	51	41	III	MEDIA	
Quebrada Guarenas (Qda.Guar)	1.159.520	749.840	Qda.Guar - 2	4	17	5	6	1	5	2	3	10	53	43		MEDIA	
Quebrada Guarenas (Qda.Guar)	1.159.480	749.840	Qda.Guar - 3	4	8	5	6	1	3	2	3	10	42	32	IV	MALA	
Camino El Aguacatico (AG)	1.159.872	749.183	AG - 018	2	8	5	6	1	5	2	6	10	45	35	IV	MALA	
Camino El Aguacatico (AG)	1.159.839	749.135	AG - 017	2	13	5	6	1	5	2	6	10	50	40	IV	MALA	
Camino El Aguacatico (AG)	1.159.826	749.110	AG - 016	2	13	5	6	1	5	4	6	10	52	42		MEDIA	
Camino El Aguacatico (AG)	1.159.812	749.082	AG - 015	2	20	5	6	1	5	2	5	10	56	46		MEDIA	
Camino El Aguacatico (AG)	1.159.779	748.982	AG - 014	2	13	5	6	1	5	4	3	10	49	39	IV	MALA	
Camino El Aguacatico (AG)	1.159.8/1	748.919	AG - 022	2	8	5	4	0	3	2	5	10	39	29	IV	MALA	
Camino El Aguacatico (AG)	1.159.886	748.933	AG - 023	2	3	5	6	1	5	2	5	10	39	29	IV	MALA	
Camino El Aguacatico (AG)	1.159.900	748.948	AG - 024	2	3	5	6	0	3	2	5	10	36	26	10	MALA	
Camino El Aguacatico (AG)	1.159.854	748.916	AG - 021	2	20	5	6	1	1	2	5	10	52	42		MEDIA	
Camino El Aguacatico (AG)	1.159.816	748.901	AG - 008	2	8	5	6	1	5	4	3	10	44	34	10	MALA	
	1.159.802	748.885	AG - 009	2	1/	5	6	1	5	4	3	10	53	43		MEDIA	
Camino El Aguacatico (AG)	1.159.787	748.871	AG - 010	2	8	5	6	1	5	6	3	10	40	30			
Barrio El Aguacato	1.109.000	740.040		2	20	5 5	0	1	о 2	0	3	10	0C	40			
Barrio El Aguacato	1.109.900	740.000		2	17	5	6	4	5	6	3	10	44 56	42			
Camino El Placer	1.100.010	740.001		2	0	5	6	4	5	6	2	10	56	04 //C			
Camino El Placer	1 160 316	740.330	CPL - 002	2	8	5	6	0	5	6	3	15	5/	40			
Camino El Placer	1 160 206	740.329	CPL - 002	2	13	5	6	4	5	2	3	15	52	44			
Camino El Placer	1 160 280	748 327	CPL - 004	2	17	5	6	1	3	6	5	15	60	55			
Camino El Placer	1 160 192	748.316	CPL - 005	2	17	5	6	1	5	2	3	15	56	51		MEDIA	
Camino El Placer	1 160 135	748 327	CPL - 006	2	3	5	6	1	5	2	5	15	44	39	IV	MALA	
Quebrada El Placer	1.160.382	748.126	PL - 001	2	3	5	6	0	3	2	5	7	33	28	IV	MALA	
Quebrada El Placer	1.160.399	748.130	PL - 002	2	3	5	6	0	5	2	5	7	35	30	IV	MALA	
Quebrada El Placer	1.160.433	748.128	PL - 003	2	3	5	6	0	3	6	5	7	37	32	IV	MALA	
Quebrada El Placer	1.160.452	748.122	PL - 004	2	8	5	4	1	5	2	5	7	39	34	IV	MALA	
Cerrajería Portuguesa	1.160.365	747.872	CER - 008	2	13	5	6	6	1	6	3	10	52	47	=	MEDIA	
Cerrajería Portuguesa	1.160.442	747.769	CER - 007	2	8	5	4	1	5	6	5	7	43	38	١V	MALA	
Cerrajería Portuguesa	1.160.550	747.598	CER - 006	2	20	5	6	4	5	6	5	10	63	58	III	MEDIA	
Cerrajería Portuguesa	1.160.549	747.571	CER - 005	2	13	5	6	4	1	6	5	10	52	42		MEDIA	
Cerrajería Portuguesa	1.160.555	747.549	CER - 004	2	17	5	4	4	5	6	3	10	56	46		MEDIA	
Cerrajería Portuguesa	1.160.563	747.391	CER - 003	2	17	5	6	1	1	6	5	10	53	48		MEDIA	
Cerrajería Portuguesa	1.160.558	747.368	CER - 001	2	13	5	6	1	5	6	5	10	53	48		MEDIA	
EMPRESA MAGA	1.160.555	747.289	MAGA - 002	2	8	5	6	1	1	2	3	10	38	33	IV	MALA	
EMPRESA MAGA	1.160.555	747.267	MAGA - 001	2	8	5	6	1	5	6	5	10	48	43		MEDIA	

Tabla #34. Caracterización del macizo en base a la clasificación (RMR) de Bieniawski.

TUNEL: MAMPOTE	Coordena	das U.T.M	PLANILLA	esistencia de matriz rocosa	RQD	Espaciado	Continuidad	Abertura	Rugosidad	Relleno	eteorización	idrogeología	I	RMR	Ca mi	ılidad del acizo
LOCALIDAD	NORTE	ESTE	1	<u>a</u> 2			)				Μ	Н	Inicial	Corregido	Clase	Calidad
Quebrada Ultima	1.158.440	756.420	QG - 001	2	8	5	6	1	3	0	5	10	40	40	IV	MALA
Quebrada Ultima	1.158.503	756.455	QG - 002	2	20	5	6	1	3	2	5	10	54	54	=	MEDIA
Barrio Divino Niño	1.158.389	756.310	DN - 001	4	13	5	6	1	5	4	3	10	51	46	=	MEDIA
Barrio Divino Niño	1.158.392	756.368	DN - 002	4	17	5	4	1	5	0	3	10	49	44	≡	MEDIA
Barrio Divino Niño	1.158.324	765.376	DN - 003	4	20	5	6	1	5	0	3	10	54	49	≡	MEDIA
Barrio Divino Niño	1.158.381	756.114	DN - 004	4	13	5	4	1	5	0	6	10	48	36	IV	MALA
Barrio Divino Niño	1.158.383	756.120	DN - 005	4	8	5	4	6	5	6	3	10	51	39	IV	MALA
Barrio Divino Niño	1.158.321	756.148	DN - 006	4	17	5	4	1	5	0	6	10	52	40	IV	MALA
Barrio Divino Niño	1.158.296	756.153	DN - 007	4	13	5	4	1	5	2	6	10	50	38	IV	MALA
Barrio Divino Niño	1.158.371	756.118	DN - 008	4	13	5	4	1	5	0	5	10	47	35	IV	MALA
Quebrada MA (QMA)	1.158.580	755.995	QMA - 001	4	17	5	6	0	1	0	5	10	48	43		MEDIA
Quebrada MA (QMA)	1.158.550	756.005	QMA - 002	4	13	5	6	1	3	6	6	10	54	49		MEDIA
Quebrada MA (QMA)	1.158.500	756.000	QMA - 003	4	3	5	6	1	3	2	3	10	37	32	IV	MALA
Quebrada MA (QMA)	1.158.412	756.017	QMA - 004	4	20	5	6	1	5	6	3	10	60	55	≡	MEDIA
Quebrada MB (QMB)	1.158.440	755.890	QMB - 001	4	8	5	6	0	5	0	3	10	41	39	IV	MALA
Quebrada MB (QMB)	1.158.460	755.890	QMB - 002	4	17	5	6	0	3	0	3	10	48	46	=	MEDIA
Quebrada MB (QMB)	1.158.500	755.890	QMB - 003	4	17	5	6	0	1	0	3	10	46	44		MEDIA
Quebrada Ezequiel Zamora (QEZ)	1.158.520	755.563	QEZ - 001	4	20	5	6	0	3	0	5	10	53	53		MEDIA
Quebrada Ezequiel Zamora (QEZ)	1.158.564	755.596	QEZ - 002	4	17	5	6	0	1	6	3	10	52	50		MEDIA
Quebrada Ezequiel Zamora (QEZ)	1.158.743	755.540	QEZ - 003	4	3	5	6	6	5	6	1	10	46	36	IV	MALA
Quebrada Ezequiel Zamora (QEZ)	1.158.725	755.460	QEZ - 004	4	17	5	6	6	1	6	3	10	58	48	≡	MEDIA
Carretera Barrio Divino Niño (CDN)	1.158.534	755.922	CDN - 001	4	13	5	6	6	1	6	3	7	51	51		MEDIA
Carretera Barrio Divino Niño (CDN)	1.158.550	755.932	CDN - 002	4	13	5	6	6	5	6	5	7	57	57		MEDIA
PORTAL ENTRADA (BA)	1.158.870	755.090	BA - 001	4	3	5	4	6	5	2	3	15	47	35	IV	MALA

 Tabla #35. Caracterización del macizo en base a la clasificación (RMR) de Bieniawski.

MAI
ESTE
747.095 ENC -
746.623 MI - 00
746.465 MI - 00
746.441 MI - 00
746.415 MI - 0
746.433 MAI - (
746.281 MAI -
746.630 QVN -
746.820 QVN -
746.068 CTR - (
746.043 CTR -
746.035 CTR -

Tabla #36. Caracterización del macizo en base a la clasificación (RMi) de Pallmström.

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

RMi		0,88	2,60	3,32	2,31	5,18	1,55	3,56	2,94	1,43	1,43	0,58	7,57	0,71	14,37	1,36	2,72	1,20	3,35	2,75	7,11	5,38	3,99	9,66	1,11
Parametro de Diaclasado	₽	0,04	0,12	0,12	0,08	0,18	0,05	0,12	0,10	0,05	0,05	0,02	0,26	0,02	0,59	0,04	0,09	0,04	0,11	0,09	0,23	0,17	0,13	0,31	0,03
Factor de Estado de las Diaclasas	ö	1,69	1,69	4,00	1,50	3,00	1,50	6,00	1,50	1,50	1,50	0,25	13,50	1,50	18,00	2,25	1,69	0,75	1,35	1,50	18,00	4,00	4,00	18,00	2,00
Diametro del Bloque (m) etniv lente	Db	0,16	0,48	0,23	0,34	0,48	0,23	0,17	0,43	0,21	0,21	0,34	0,21	0,11	0,55	0,13	0,34	0,28	0,48	0,37	0,12	0,37	0,26	0,20	0,11
əupolā ləb nəmùloV ( ^c m)	٩٧	0,004	0,111	0,012	0,038	0,111	0,012	0,005	0,077	0,009	0,009	0,038	0,009	0,001	0,167	0,002	0,038	0,022	0,111	0,051	0,002	0,051	0,017	0,008	0,001
Factor de Tamaño de las Diaclasas	Ϊ	6,00	6,00	4,00	2,00	4,00	2,00	2,00	2,00	2,00	2,00	2,00	6,00	6,00	6,00	6,00	6,00	6,00	6,00	6,00	6,00	4,00	4,00	6,00	2,00
Factor de Rugosidad de las Diaclasas	JГ	2,25	2,25	3,00	3,00	3,00	3,00	3,00	3,00	3,00	3,00	1,00	2,25	1,50	3,00	3,00	2,25	1,00	2,25	1,00	3,00	1,00	1,00	3,00	3,00
Rock Quaity Designation	RQD	46	92	99	82	92	99	49	89	62	62	82	62	6	95	29	82	75	92	85	23	85	72	59	10
Factor de Terminación de las diacasas	ŗ	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00
Factor de Longitud de las diacasas	Ľ	3,00	3,00	2,00	1,00	2,00	1,00	1,00	1,00	1,00	1,00	1,00	3,00	3,00	3,00	3,00	3,00	3,00	3,00	3,00	3,00	2,00	2,00	3,00	1,00
Factor de Alteracion de las diacasas	٨	8,00	8,00	3,00	4,00	4,00	4,00	1,00	4,00	4,00	4,00	8,00	1,00	6,00	1,00	8,00	8,00	8,00	10,00	4,00	1,00	1,00	1,00	1,00	3,00
Factor de Ondulación de las diacasas	ý	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,00	1,50	1,50	1,50	1,50	1,50	1,00	1,50	1,00	1,50	1,00	1,00	1,50	1,50
Factor de Suavidad de las diacasas	ś	1,50	1,50	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	1,00	1,50	1,00	2,00	2,00	1,50	1,00	1,50	1,00	2,00	1,00	1,00	2,00	2,00
Factor para roca intacta	m	7	7	12	12	12	12	12	12	10	10	19	19	19	13	13	13	13	19	19	13	19	13	13	13
Resistencia a la compresion simple (MPa)	$\sigma_{\rm c}$	20,85	20,85	28,75	28,75	28,75	28,75	28,75	28,75	28,75	28,75	28,75	28,75	28,75	28,75	31,05	31,05	31,05	31,05	31,05	31,05	31,05	31,05	31,05	34,00
PLANILLA		QG - 001	QG - 002	DN - 001	DN - 002	DN - 003	DN - 004	DN - 005	DN - 006	DN - 007	DN - 008	QMA - 001	QMA - 002	QMA - 003	QMA - 004	QMB - 001	QMB - 002	QMB - 003	QEZ - 001	QEZ - 002	QEZ - 003	QEZ - 004	CDN - 001	CDN - 002	BA - 001
ADAS U.T.M	ESTE	756.420	756.455	756.310	756.368	765.376	756.114	756.120	756.148	756.153	756.118	755.995	756.005	756.000	756.017	755.890	755.890	755.890	755.563	755.596	755.540	755.460	755.922	755.932	755.090
COORDEN	NORTE	1158440	1158503	1158389	1158392	1158324	1158381	1158383	1158321	1158296	1158371	1158580	1158550	1158500	1158412	1158440	1158460	1158500	1158520	1158564	1158743	1158725	1158534	1158550	1.158.870
TUNEL: MAMPOTE	LOCALIDAD	Quebrada Ultima	Quebrada Ultima	Barrio Divino Niño	Quebrada MA (QMA)	Quebrada MA (QMA)	Quebrada MA (QMA)	Quebrada MA (QMA)	Quebrada MB (QMB)	Quebrada MB (QMB)	Quebrada MB (QMB)	Quebrada Ezequiel Zamora (QEZ)	Carretera Barrio Divino Niño (CDN)	Carretera Barrio Divino Niño (CDN)	PORTAL ENTRADA (BA)										

 Tabla #37. Caracterización del macizo en base a la clasificación (RMi) de Pallmström.

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

EL: CAUCAGŬITA	COORDENA	ADAS U.T.M	PLANILLA	Resistencia a la compresion simple (MPa)	Factor para roca intacta	Factor de Suavidad de las diacasas	Factor de Onduiacion de Tas diacasas	Factor de Longitud de	las diacasas Factor de Terminación	de las diacasas	Pesignation Factor de Rugosidad de	las Diaclasas Factor de Tamaño de las	Volúmen del Bloque	Dismetro del Bloque Equiv lente (m)	Factor de Estado de las	Parametro de Diaclasado	RM
ALIDAD	NORTE	ESTE		g c	'n	ś	у	Ă		t	<u> </u>	R JL	٩ ٩	å	ο	4	
orada Helipuerto (QHE)	1.159.581	750.556	QHE - 001	28,38	12	2,00	1,50 1	,00	00 2,	00	с С	00 2,0	00'00	3 0,12	1 6,0	0,1(	2,97
orada Helipuerto (QHE)	1.159.550	750.561	QHE - 002	28,38	14	1,50	1,50 1	,00 3,	00 2,	00	95 2,	25 6,0	0 0,16	7 0,55	5 13,5	0,50	14,0
orada Helipuerto (QHE)	1.159.511	750.574	QHE - 003	28,38	12	2,00	1,50 1	,00 3,	00 2,	3 00	56 3,	00 6,0	00'0 0	7 0,15	9 18,0	0,3(	8,55
orada Helipuerto (QHE)	1.159.451	750.614	QHE - 004	28,38	20	1,00	1,00 1	,00 3,	00 2,	2 00	79 1,	00 6,0	0 0,03	0 0,31	6,0	0,2(	5,55
orada Guarenas (Qda.Guar)	1.159.550	749.840	Qda.Guar - 1	28,38	20	2,00	1,50 4	,00 3,	00 2,	3 00	56 3,	00 6,0	00'0 0	7 0,15	9 4,5	0,0,1	3,07
orada Guarenas (Qda.Guar)	1.159.520	749.840	Qda.Guar - 2	28,38	12	2,00	1,50 8	,00 3,	00 2,	3 00	32 3,	00 6,0	0 0,03	8 0,34	1 2,2	5 0,1	3,05
orada Guarenas (Qda.Guar)	1.159.480	749.840	Qda.Guar - 3	28,38	12	1,50	1,50 8	,00 3,	00 2,	00	39 2,	25 6,0	00'00	3 0,15	5 1,6	9 0'0	1,05
ino El Aguacatico (AG)	1.159.872	749.183	AG - 018	8,23	20	2,00	1,50 4	,00 3,	00 2,	7 00	έ θ	00 6,0	00'00	5 0,17	7 4,5	0,1(	0,81
ino El Aguacatico (AG)	1.159.839	749.135	AG - 017	8,23	20	2,00	1,50 3	,00	00 2,	00	33	00 4,0	0,00	9 0,21	4,0	0,1	0,85
ino El Aguacatico (AG)	1.159.826	749.110	AG - 016	8,23	20	, 2,00	1,50 4	,00	00	90 00	е́ 9	00 6,0	00'00	7 0,15	9 4,5	0,1,0	0,85
ino El Aguacatico (AG)	1.159.812	749.082	AG - 015	8,23 8,23	20	2,00	1,50 8	00 00 00	00		r gg	00 6,0	0,32	0,68	2,2 8 0	0,2,0	1,72
ino El Aduacatico (AG)	1 150 871	748 919	AG - 022	8 23	3 5	1 500	1 50 1	500			2 2 2 2 2	25 20		0,12	0,0		0
ino El Aquacatico (AG)	1.159.886	748.933	AG - 023	8.23	12	2.00	1.50 6	00 3.	00 1		2 Ο 1 Μ	00 6.0	00.00	10.1	3.0	0.0	0.35
no El Aguacatico (AG)	1.159.900	748.948	AG - 024	8,23	12	1,50	1,50 1(	0,00 3,	00 2,	00	6 2	25 6,0	00'00	1 0,10	1,3	0,0	0,18
no El Aguacatico (AG)	1.159.854	748.916	AG - 021	8,23	12	1,00	1,50 1(	0,00 3,	00 2,	00 1	00 1,	50 6,0	0 0,38	6 0,73	3 0,9	0,1:	3 1,05
no El Aguacatico (AG)	1.159.816	748.901	AG - 008	8,23	6	2,00	1,50 3	,00 2,	00 2,	00	36 3,	00 4,0	00'0 0	3 0,12	4,0	0'0 C	3 0,64
no El Aguacatico (AG)	1.159.802	748.885	AG - 009	8,23	6	2,00	1,50 3	,00 2,	00 2,	8 00	32 3,	00 4,0	0,03	8 0,34	4,0	0,16	31,32
no El Aguacatico (AG)	1.159.787	748.871	AG - 010	8,23	6	2,00	1,50 2	,00 3,	00 2,	7	ю 19	00 6,0	00'0 0	5 0,17	7 9,0	0,1	7 1,35
o El Aguacate	1.159.885	748.848	QDY - 001	8,23	12	2,00	1,50 4	,00 3,	00 2,	°	92 3,	00 6,0	0,011	1 0,48	3 4,5	0 0,2;	3 1,91
o El Aguacate	1.159.980	748.608	QDCR - 1	8,56	12	1,50	1,50 4	,00 3,	00 2,	7 00	t9 2'	25 6,0	0,00	5 0,17	7 3,3	8 0,08	3 0,67
o El Aguacate	1.160.018	748.651	QDCR - 2	8,56	12	2,00	1,50 1	,00	00 2,	800	33	00 6,0	0 0,03	8 0,34	18,0	0 0,4;	3,65
no El Placer	1.160.334	748.336	CPL - 001	14,46	12	, 2,00	1,50 1	,00 3,	00	00	e S	00 6,0	00'0	3 0,12	18,0	0 0,2;	3,56
no El Placer	1.160.316	748.329	CPL - 002	14,46	12	2,00	1,50	,00 00	00	000	ຕ່າ ຄູ	00 6,0	0,00	3 0,15	18,0	0 0,2(	3,7
no El Placer	1.160.296	740.007	CPL - 003	14,46	ກ່	2,00	2001	,00 2,00			ο Ω	00 6,0	0,010	2,0,2		0,0	0,1,0
no El Placer ino El Diacar	1.160.280	748.327		14,40	ກອ		1,5U 8 8 8	00,00			й с	25 0,0	0,03	8 0,34 8 0,37	+ r 2,0		+ 7,0
ino El Placer	1 160 135	748 327	CPI - 006	14.46	σ	200	50 8	00	00		19	00 00		1 0,0			1 0.56
orada El Placer	1.160.382	748.126	PL - 001	8,25	12	1,50	1,50 10	0,00 3,	00	` 88	0	25 6,0	00'00	1 0,11	1.3	0.0	0,19
rrada El Placer	1.160.399	748.130	PL - 002	8,25	6	2,00	1,50 1(	0,00 3,	00 2,	` 00	0 3,	00 6,0	00'0	1 0,11	1,8	0,0;	3 0,24
orada El Placer	1.160.433	748.128	PL - 003	8,25	12	2,00	1,50 4	,00 3,	00 2,	00	б Э	00 6,0	0,00	1 0,11	4,5	0,0,0	7 0,55
orada El Placer	1.160.452	748.122	PL - 004	8,25	6	2,00	1,50 1(	0,00 2,	00 2,	00	3 3	00 4,0	00'00	3 0,15	5 1,2	0,0;	3 0,23
ajería Portuguesa	1.160.365	747.872	CER - 008	8,25	6	1,00	1,50 4	,00 3,	00 2,	300	56 1,	50 6,0	00'0 0	7 0,15	9 2,2	5 0,0	0,52
ajería Portuguesa	1.160.442	747.769	CER - 007	7,65	12	2,00	1,50 4	,00	00 2,	00	б С	00 2,0	00'0	2 0,13	3 1,5	0,0	3 0,23
ajería Portuguesa	1.160.550	747.598	CER - 006	7,65	ი	2,00	1,50 1	,00	00	00	е́ б	00 6,0	0 0,32	0 0,68	3 18,0	0,0	3,83
ajería Portuguesa	1.160.549	747.571	CER - 005	7,65	<b>ი</b> (	1,00	1,00	,00 2,00	00	00	- - -	00 6,0	0,00	7 0,15	0,1 0,0	0,0	0,2
ajeria Portuguesa	1.160.555	747.549	CER - 004	7,65	<del>م</del> !	2,00	1,50	,00	00	00	б Ю	00 2,0	0 0,03	0 0,31	6,0	0,2(	1,51
ijería Portuguesa	1.160.563	747.391	CER - 003	7,65	12	1,00	1,00	0,00 2,	00	00	5	00 4,0	0,02	2 0,28	3 0,4	0,0	0,18
ajería Portuguesa	1.160.558	747.368	CER - 001	7,65	12	2,00	1,50 1(	0,00 3,	00	00	90 90	00 6,0	0,01	2 0,23	1,8	0,00	0,4
RESA MAGA	1.160.555	747.289	MAGA - 002	7,65	15	1,50	1,00 8	,00	00 2,	700	1,	50 4,0	0,00	4 0,16	3 0,7	5 0,03	0,16
RESA MAGA	1.160.555	747.267	MAGA - 001	7,65	12	2,00	1,50 8	,00 3,	00 2,	00	33	00 6,0	0,00	2 0,13	3 2,2	5 0,0	1 0,34

Tabla #38. Caracterización del macizo en base a la clasificación (RMi) de Pallstöm.

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL

SISTEMA CARACAS - GUARENAS - GUATIRE

# A continuación la tabla que muestra los valores de mi:

TUNEL: LA ENCANTADA	COORDEN	ADAS U.T.M		m.	
LOCALIDAD	NORTE	ESTE	FLANILLA	mi	EITOEOGIA
Quebrada Encantada	1.160.905	747.095	ENC - 005	20	ESQUISTO CUAZO-MICÁCEO-CALCÁREO
Quebrada Valencia	1.160.589	746.623	MI - 001	12	ESQUISTO CALCÁREO-MIC CEO-CUARZOSO
Quebrada Valencia	1.160.593	746.465	MI - 002	12	ESQUISTO CUARZO-MICÁCEO-GRAFITOSO
Quebrada Valencia	1.160.589	746.441	MI - 003	12	ESQUISTO CUARZO-MICÁCEO-GRAFITOSO
Quebrada Valencia	1.160.597	746.415	MI - 004	12	ESQUISTO CUARZO-MICÁCEO-CALCÁREOGRAFITOSO
Quebrada Valencia	1.160.584	746.433	MAI - 004	12	ESQUISTO GRAFITOSO-CALCÁREO-CUARZOSO-MICÁCEO
Quebrada Valencia	1.160.622	746.281	MAI - 005	12	ESQUISTO GRAFITOSO-CUARZO-CALCÁREO
Quebrada Valencia	1.160.547	746.630	QVN - 001	12	ESQUISTO GRAFITOSO-CUARZOSO-CALCÁREO
Quebrada Valencia	1.160.515	746.820	QVN - 002	12	ESQUISTO GRAFITOSO-CALCÁREO
Quebrada Contraloría	1.160.710	746.068	CTR - 001	12	ESQUISTO CUARZO-MICÁCEO-GRAFITOSO
Quebrada Contraloría	1.160.740	746.043	CTR - 002	12	ESQUISTO CUARZO-MICÁCEO-GRAFITOSO
Quebrada Contraloría	1.160.784	746.035	CTR - 003	12	ESQUISTO CUARZO-MICÁCEO-GRAFITOSO

## Tabla #39. Valores de m_i, túnel La Encantada.

Tabla #40. Valores de m_i, túnel Mampote.

TUNEL: MAMPOTE	COORDEN	ADAS U.T.M		_	
LOCALIDAD	NORTE	ESTE	PLANILLA	m _i	LITOLOGIA
Quebrada Ultima	1.158.440	756.420	QG - 001	7	FILITA CUARZO-MICÁCEA-GARFITOSA
Quebrada Ultima	1.158.503	756.455	QG - 002	7	FILITA CUARZO-MICÁCEA-GARFITOSA
Barrio Divino Niño	1.158.389	756.310	DN - 001	12	ESQUISTO CUARZO-MICÁCEO-GRAFITOSO
Barrio Divino Niño	1.158.392	756.368	DN - 002	12	ESQUISTO CUARZO-MICÁCEO-GRAFITOSO
Barrio Divino Niño	1.158.324	765.376	DN - 003	12	ESQUISTO CUARZO-MICÁCEO-GRAFITOSO
Barrio Divino Niño	1.158.381	756.114	DN - 004	12	ESQUISTO CUARZO-MICÁCEO-GRAFITOSO
Barrio Divino Niño	1.158.383	756.120	DN - 005	12	ESQUISTO CUARZO-MICÁCEO-GRAFITOSO
Barrio Divino Niño	1.158.321	756.148	DN - 006	12	ESQUISTO CUARZO-MICÁCEO-GRAFITOSO
Barrio Divino Niño	1.158.296	756.153	DN - 007	10	ESQUISTO CUARZO-MICÁCEO-GRAFITOSO
Barrio Divino Niño	1.158.371	756.118	DN - 008	10	ESQUISTO CUARZO-MICÁCEO-GRAFITOSO
Quebrada MA (QMA)	1.158.580	755.995	QMA - 001	19	ESQUISTO CUARZO-MICÁCEO-CALCÁREO
Quebrada MA (QMA)	1.158.550	756.005	QMA - 002	19	ESQUISTO CUARZO-MICÁCEO-CALCÁREO
Quebrada MA (QMA)	1.158.500	756.000	QMA - 003	19	ESQUISTO CUARZO-MICÁCEO
Quebrada MA (QMA)	1.158.412	756.017	QMA - 004	13	ESQUISTO CUARZO-MICÁCEO
Quebrada MB (QMB)	1.158.440	755.890	QMB - 001	13	ESQUISTO CUARZO-MICÁCEO-GRAFITOSO
Quebrada MB (QMB)	1.158.460	755.890	QMB - 002	13	ESQUISTO CUARZO-MICÁCEO-GRAFITOSO
Quebrada MB (QMB)	1.158.500	755.890	QMB - 003	13	ESQUISTO CUARZO-MICÁCEO-GRAFITOSO
Quebrada Ezequiel Zamora (QEZ)	1.158.520	755.563	QEZ - 001	19	ESQUISTO CUARZO-MICÁCEO-CALCÁREO
Quebrada Ezequiel Zamora (QEZ)	1.158.564	755.596	QEZ - 002	19	ESQUISTO CUARZO-MICÁCEO-CALCÁREO
Quebrada Ezequiel Zamora (QEZ)	1.158.743	755.540	QEZ - 003	13	ESQUISTO CUARZO-MICÁCEO
Quebrada Ezequiel Zamora (QEZ)	1.158.725	755.460	QEZ - 004	19	ESQUISTO CUARZO-MICÁCEO
Carretera Barrio Divino Niño (CDN)	1.158.534	755.922	CDN - 001	13	ESQUISTO CUARZO-MICÁCEO
Carretera Barrio Divino Niño (CDN)	1.158.550	755.932	CDN - 002	13	ESQUISTO CUARZO-MICÁCEO
PORTAL ENTRADA (BA)	1.158.870	755.090	BA - 001	13	ESQUISTO CUARZO-MICÁCEO-CALCÁREO

TUNEL: CAUCAGUITA	COORDENA	ADAS U.T.IVI		m.	
LOCALIDAD	NORTE	ESTE	I LANILLA		EITOEOGIA
Quebrada Helipuerto (QHE)	1.159.581	750.556	QHE - 001	12	ESQUISTO CUARZO-MICÁCEO-FELDESPÁTICO
Quebrada Helipuerto (QHE)	1.159.550	750.561	QHE - 002	14	ESQUISTO CUARZO-MICÁCEO-CALCÁREO-GRAFITOSO
Quebrada Helipuerto (QHE)	1.159.511	750.574	QHE - 003	12	ESQUISTO CUARZO-MICÁCEO-GRAFITOSO
Quebrada Helipuerto (QHE)	1.159.451	750.614	QHE - 004	20	ESQUISTO CUARZO-MICÁCEO-GRAFITOSO
Quebrada Guarenas (Qda.Guar)	1.159.550	749.840	Qda.Guar - 1	20	ESQUISTO CUARZO-MICÁCEO-GRAFITOSO
Quebrada Guarenas (Qda.Guar)	1.159.520	749.840	Qda.Guar - 2	12	ESQUISTO CUARZO-MICÁCEO-GRAFITOSO
Quebrada Guarenas (Qda.Guar)	1.159.480	749.840	Qda.Guar - 3	12	ESQUISTO CUARZO-MICÁCEO-CALCÁREO-GRAFITOSO
Camino El Aguacatico (AG)	1.159.872	749.183	AG - 018	20	ESQUISTO CUARZO-MICÁCEO-CALCÁREO
Camino El Aguacatico (AG)	1.159.839	749.135	AG - 017	20	ESQUISTO CUARZO-MICÁCEO-CALCÁREO
Camino El Aguacatico (AG)	1.159.826	749.110	AG - 016	20	ESQUISTO CUARZO-MICÁCEO-CALCÁREO
Camino El Aguacatico (AG)	1.159.812	749.082	AG - 015	20	ESQUISTO CUARZO-MICÁCEO
Camino El Aguacatico (AG)	1.159.779	748.982	AG - 014	20	ESQUISTO CUARZO-MICÁCEO-CALCÁREO
Camino El Aguacatico (AG)	1.159.871	748.919	AG - 022	12	ESQUISTO GRAFITOSO-MICÁCEO
Camino El Aguacatico (AG)	1.159.886	748.933	AG - 023	12	ESQUISTO GRAFITOSO-MICÁCEO
Camino El Aguacatico (AG)	1.159.900	748.948	AG - 024	12	ESQUISTO GRAFITOSO-MICÁCEO
Camino El Aguacatico (AG)	1.159.854	748.916	AG - 021	12	ESQUISTO GRAFITOSO-MICÁCEO
Camino El Aguacatico (AG)	1.159.816	748.901	AG - 008	9	FILITA MICÁCEA-CALCÁREA-GRAFITOSA
Camino El Aguacatico (AG)	1.159.802	748.885	AG - 009	9	FILITA MICÁCEA-CALCÁREA-GRAFITOSA
Camino El Aguacatico (AG)	1.159.787	748.871	AG - 010	9	FILITA MICÁCEA-CALCÁREA-GRAFITOSA
Barrio El Aguacate	1.159.885	748.848	QDY - 001	12	ESQUISTO CUARZO-MICÁCEO-GRAFITOSO
Barrio El Aguacate	1.159.980	748.608	QDCR - 1	12	ESQUISTO CUARZO-MICÁCEO-CALCÁREO-GRAFITOSO
Barrio El Aguacate	1.160.015	748.651	QDCR - 2	12	ESQUISTO CUARZO-MICÁCEO-CALCÁREO-GRAFITOSO
Camino El Placer	1.160.334	748.336	CPL - 001	12	ESQUISTO CALCÁREO-CUARZO-MICÁCEO-GRAFITOSO
Camino El Placer	1.160.316	748.329	CPL - 002	12	ESQUISTO CALCÁREO-CUARZO-MICÁCEO-GRAFITOSO
Camino El Placer	1.160.296	748.325	CPL - 003	9	FILITA CUARZO-MICÁCEA-GRAFITOSA-CALCÁREA
Camino El Placer	1.160.280	748.327	CPL - 004	9	FILITA CUARZO-MICÁCEA-GRAFITOSA-CALCÁREA
Camino El Placer	1.160.192	748.316	CPL - 005	9	FILITA CUARZO-MICÁCEA-GRAFITOSA-CALCÁREA
Camino El Placer	1.160.135	748.327	CPL - 006	9	FILITA CUARZO-MICÁCEA-GRAFITOSA-CALCÁREA
Quebrada El Placer	1.160.382	748.126	PL - 001	12	ESQUISTO CALCÁREO-CUARZO-MICÁCEO-GRAFITOSO
Quebrada El Placer	1.160.399	748.130	PL - 002	9	FILITA CUARZO-GRAFITOSA
Quebrada El Placer	1.160.433	748.128	PL - 003	12	ESQUISTO CALCÁREO-CUARZO-MICÁCEO-GRAFITOSO
Quebrada El Placer	1.160.452	748.122	PL - 004	9	FILITA CUARZO-GRAFITOSA
Cerrajería Portuguesa	1.160.365	747.872	CER - 008	9	FILITA CALCÁREA-CUARZO-MICÁCEA-GRAFITOSA
Cerrajería Portuguesa	1.160.442	747.769	CER - 007	12	ESQUISTO CUARZO-MICÁCEO-GRAFITOSO
Cerrajería Portuguesa	1.160.550	747.598	CER - 006	9	FILITA GRAFITOSA-CUAZO-MICÁCEA-CALCÁREA
Cerrajería Portuguesa	1.160.549	747.571	CER - 005	9	FILITA GRAFITOSA-CUAZO-MICÁCEA-CALCÁREA
Cerrajería Portuguesa	1.160.555	747.549	CER - 004	9	FILITA GRAFITOSA-CUAZO-MICÁCEA-CALCÁREA
Cerrajería Portuguesa	1.160.563	747.391	CER - 003	12	ESQUISTO CALCÁREO-CUARZO-MICÁCEO-GRAFITOSO
Cerrajería Portuguesa	1.160.558	747.368	CER - 001	12	ESQUISTO CUARZO-MICÁCEO-CALCÁREO-FELDESPÁTICO
EMPRESA MAGA	1.160.555	747.289	MAGA - 002	15	ESQUISTO CUARZO-MICÁCEO-CALCÁREO-GRAFITOSO
EMPRESA MAGA	1.160.555	747.267	MAGA - 001	12	ESQUISTO CUARZO-MICÁCEO-CALCÁREO-GRAFITOSO

Tabla #41. Valores de m_i, túnel Caucagüita.

Finalmente se calcularon los parámetros geomecánicos de Hoek y se clasifico la excavación en función de la cobertura, como lo muestran las siguientes tablas, y que pueden ser apreciados con mayor detalles en el Mapa Geológico – Perfil Geomecánico correspondiente a los anexos # 1, 2 y 3.

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

PROGRESI	VA (RANGO)	CLASIFICACIÓN DE LA EXCAVACIÓN SEGÚN COBERTURA	TUNEL
5+778	5+780	SUPERFICIAL	
5+780	5+783	INTERMEDIA	
5+783	6+700	PROFUNDA	LA ENCANTADA
6+700	6+705	INTERMEDIA	
6+705	6+708	SUPERFICIAL	
7+340	7+400	INTERMEDIA	
7+400	10+530	PROFUNDA	САНСАСІЛТА
10+530	10+544	INTERMEDIA	CAUCAGOITA
10+544	10+554	SUPERFICIAL	
16+010	16+012	SUPERFICIAL	
16+012	16+014	INTERMEDIA	
16+014	17+763	PROFUNDA	MAMPOTE
17+763	17+774	INTERMEDIA	
17+774	17+780	SUPERFICIAL	

Tabla #42. Clasificación de la excavación según la cobertura.

 Tabla #43. Parámetros geomecánicos según Hoek, túnel La Encantada.

TÚNEL: LA ENCANTADA	COORDE	NADAS U.T.M		GSI	$\sigma_{cl}$	m.	$\sigma_{\text{Cm}}$	C _m	φ _m	Em
LOCALIDAD	NORTE	ESTE		001	(MPa)		(MPa)	(MPa)	(Grados)	(MPa)
Quebrada Encantada	1.160.905	747.095	ENC - 005	30	15,71	20	1,53	0,33	32,24	1.253,46
Quebrada Valencia	1.160.589	746.623	MI - 001	40	18,60	12	1,94	0,44	30,76	2.425,30
Quebrada Valencia	1.160.593	746.465	MI - 002	38	18,60	12	1,80	0,42	30,17	2.161,55
Quebrada Valencia	1.160.589	746.441	MI - 003	41	18,60	12	2,01	0,45	31,06	2.569,01
Quebrada Valencia	1.160.597	746.415	MI - 004	43	18,60	12	2,16	0,48	31,64	2.882,47
Quebrada Valencia	1.160.584	746.433	MAI - 004	40	18,60	12	1,94	0,44	30,76	2.425,30
Quebrada Valencia	1.160.622	746.281	MAI - 005	38	18,60	12	1,80	0,42	30,17	2.161,55
Quebrada Valencia	1.160.547	746.630	QVN - 001	35	16,24	12	1,42	0,34	29,24	1.699,41
Quebrada Valencia	1.160.515	746.820	QVN - 002	33	16,24	12	1,32	0,32	28,61	1.514,60
Quebrada Contraloría	1.160.710	746.068	CTR - 001	33	8,70	12	0,71	0,17	28,61	1.108,56
Quebrada Contraloría	1.160.740	746.043	CTR - 002	32	8,70	12	0,68	0,17	28,29	1.046,55
Quebrada Contraloría	1.160.784	746.035	CTR - 003	33	8,70	12	0,71	0,17	28,61	1.108,56

TÚNEL: CAUCAGÜITA	COORDE	NADAS U.T.M		GSI	$\sigma_{cl}$	m.	$\sigma_{\text{Cm}}$	C _m	φ _m	E _m
LOCALIDAD	NORTE	ESTE		001	(MPa)	, ind	(MPa)	(MPa)	(Grados)	(MPa)
Quebrada Helipuerto (QHE)	1.159.581	750.556	QHE - 001	40	28,38	12	2,96	0,67	30,76	2.995,96
Quebrada Helipuerto (QHE)	1.159.550	750.561	QHE - 002	35	28,38	14	2,67	0,61	30,63	2.246,65
Quebrada Helipuerto (QHE)	1.159.511	750.574	QHE - 003	40	28,38	12	2,96	0,67	30,76	2.995,96
Quebrada Helipuerto (QHE)	1.159.451	750.614	QHE - 004	25	28,38	20	2,35	0,53	30,56	1.263,39
Quebrada Guarenas (Qda.Guar)	1.159.550	749.840	Qda.Guar - 1	30	28,38	20	2,76	0,60	32,24	1.684,75
Quebrada Guarenas (Qda.Guar)	1.159.520	749.840	Qda.Guar - 2	29	28,38	12	1,99	0,50	27,31	1.590,51
Quebrada Guarenas (Qda.Guar)	1.159.480	749.840	Qda.Guar - 3	29	28,38	12	1,99	0,50	27,31	1.590,51
Camino El Aguacatico (AG)	1.159.872	749.183	AG - 018	28	8,23	20	0,75	0,17	31,58	808,54
Camino El Aguacatico (AG)	1.159.839	749.135	AG - 017	28	8,23	20	0,75	0,17	31,58	808,54
Camino El Aguacatico (AG)	1.159.826	749.110	AG - 016	27	8,23	20	0,73	0,16	31,24	763,31
Camino El Aguacatico (AG)	1.159.812	749.082	AG - 015	29	8,23	20	0,77	0,17	31,91	856,45
Camino El Aguacatico (AG)	1.159.779	748.982	AG - 014	28	8,23	20	0,75	0,17	31,58	808,54
Camino El Aguacatico (AG)	1.159.871	748.919	AG - 022	25	8,23	12	0,50	0,13	25,96	680,30
Camino El Aguacatico (AG)	1.159.886	748.933	AG - 023	29	8,23	12	0,58	0,14	27,31	856,45
Camino El Aguacatico (AG)	1.159.900	748.948	AG - 024	22	8,23	12	0,45	0,12	24,92	572,40
Camino El Aguacatico (AG)	1.159.854	748.916	AG - 021	20	8,23	12	0,42	0,11	24,20	510,15
Camino El Aguacatico (AG)	1.159.816	748.901	AG - 008	29	8,23	9	0,49	0,14	24,73	856,45
Camino El Aguacatico (AG)	1.159.802	748.885	AG - 009	30	8,23	9	0,51	0,14	25,06	907,19
Camino El Aguacatico (AG)	1.159.787	748.871	AG - 010	30	8,23	9	0,51	0,14	25,06	907,19
Barrio El Aguacate	1.159.885	748.848	QDY - 001	30	8,23	12	0,60	0,15	27,64	907,19
Barrio El Aguacate	1.159.980	748.608	QDCR - 1	29	8,56	12	0,60	0,15	27,31	873,45
Barrio El Aguacate	1.160.018	748.651	QDCR - 2	40	8,56	12	0,89	0,20	30,76	1.645,27
Camino El Placer	1.160.334	748.336	CPL - 001	40	14,46	12	1,51	0,34	30,76	2.138,38
Camino El Placer	1.160.316	748.329	CPL - 002	45	14,46	12	1,80	0,39	32,20	2.851,57
Camino El Placer	1.160.296	748.325	CPL - 003	34	14,46	9	1,05	0,28	26,34	1.513,85
Camino El Placer	1.160.280	748.327	CPL - 004	29	14,46	9	0,87	0,24	24,73	1.135,23
Camino El Placer	1.160.192	748.316	CPL - 005	29	14,46	9	0,87	0,24	24,73	1.135,23
Camino El Placer	1.160.135	748.327	CPL - 006	29	14,46	9	0,87	0,24	24,73	1.135,23
Quebrada El Placer	1.160.382	748.126	PL - 001	30	8,25	12	0,60	0,15	27,64	908,30
Quebrada El Placer	1.160.399	748.130	PL - 002	31	8,25	9	0,54	0,14	25,38	962,11
Quebrada El Placer	1.160.433	748.128	PL - 003	28	8,25	12	0,56	0,14	26,98	809,52
Quebrada El Placer	1.160.452	748.122	PL - 004	35	8,25	9	0,62	0,16	26,66	1.211,23
Cerrajería Portuguesa	1.160.365	747.872	CER - 008	29	8,25	9	0,50	0,14	24,73	857,49
Cerrajería Portuguesa	1.160.442	747.769	CER - 007	30	7,65	12	0,56	0,14	27,64	874,64
Cerrajería Portuguesa	1.160.550	747.598	CER - 006	42	7,65	9	0,76	0,19	28,76	1.745,14
Cerrajería Portuguesa	1.160.549	747.571	CER - 005	26	7,65	9	0,41	0,12	23,72	694,75
Cerrajería Portuguesa	1.160.555	747.549	CER - 004	39	7,65	9	0,67	0,17	27,88	1.468,35
Cerrajería Portuguesa	1.160.563	747.391	CER - 003	28	7,65	12	0,52	0,13	26,98	779,53
Cerrajería Portuguesa	1.160.558	747.368	CER - 001	37	7,65	12	0,72	0,17	29,86	1.308,67
EMPRESA MAGA	1.160.555	747.289	MAGA - 002	25	7,65	15	0,53	0,13	27,97	655,89
EMPRESA MAGA	1.160.555	747.267	MAGA - 001	35	7,65	12	0,67	0,16	29,24	1.166,35

Tabla #44. Parámetros geomecánicos según Hoek, túnel Caucagüita.

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE
TÚNEL: MAMPOTE	COORDE	COORDENADAS U.T.M			σ _{ci}		$\sigma_{Cm}$	C _m	φ _m	Em
LOCALIDAD	NORTE	ESTE	PLANILLA	GSI	(MPa)	mi	(MPa)	(MPa)	(Grados)	(MPa)
Quebrada Ultima	1.158.440	756.420	QG - 001	32	20,85	7	1,23	0,37	23,44	1619,98
Quebrada Ultima	1.158.503	756.455	QG - 002	32	20,85	7	1,23	0,37	23,44	1619,98
Barrio Divino Niño	1.158.389	756.310	DN - 001	35	28,75	12	2,50	0,60	29,24	2261,04
Barrio Divino Niño	1.158.392	756.368	DN - 002	34	28,75	12	2,42	0,58	28,93	2134,56
Barrio Divino Niño	1.158.324	765.376	DN - 003	33	28,75	12	2,33	0,56	28,61	2015,15
Barrio Divino Niño	1.158.381	756.114	DN - 004	37	28,75	12	2,69	0,63	29,86	2536,93
Barrio Divino Niño	1.158.383	756.120	DN - 005	43	28,75	12	3,34	0,74	31,64	3583,50
Barrio Divino Niño	1.158.321	756.148	DN - 006	36	28,75	12	2,60	0,61	29,55	2395,01
Barrio Divino Niño	1.158.296	756.153	DN - 007	36	28,75	10	2,38	0,59	27,91	2395,01
Barrio Divino Niño	1.158.371	756.118	DN - 008	35	28,75	10	2,29	0,58	27,60	2261,04
Quebrada MA (QMA)	1.158.580	755.995	QMA - 001	35	28,75	19	3,18	0,67	33,38	2261,04
Quebrada MA (QMA)	1.158.550	756.005	QMA - 002	38	28,75	19	3,51	0,72	34,30	2687,25
Quebrada MA (QMA)	1.158.500	756.000	QMA - 003	33	28,75	19	2,98	0,64	32,75	2015,15
Quebrada MA (QMA)	1.158.412	756.017	QMA - 004	47	28,75	13	3,98	0,83	33,48	4511,36
Quebrada MB (QMB)	1.158.440	755.890	QMB - 001	40	31,05	13	3,36	0,75	31,48	3133,39
Quebrada MB (QMB)	1.158.460	755.890	QMB - 002	39	31,05	13	3,24	0,73	31,19	2958,11
Quebrada MB (QMB)	1.158.500	755.890	QMB - 003	35	31,05	13	2,82	0,65	29,96	2349,71
Quebrada Ezequiel Zamora (QEZ)	1.158.520	755.563	QEZ - 001	45	31,05	19	4,74	0,92	36,34	4178,44
Quebrada Ezequiel Zamora (QEZ)	1.158.564	755.596	QEZ - 002	35	31,05	19	3,44	0,72	33,38	2349,71
Quebrada Ezequiel Zamora (QEZ)	1.158.743	755.540	QEZ - 003	45	31,05	13	4,00	0,85	32,92	4178,44
Quebrada Ezequiel Zamora (QEZ)	1.158.725	755.460	QEZ - 004	40	31,05	19	4,04	0,82	34,90	3133,39
Carretera Barrio Divino Niño (CDN)	1.158.534	755.922	CDN - 001	37	31,05	13	3,02	0,69	30,58	2636,42
Carretera Barrio Divino Niño (CDN)	1.158.550	755.932	CDN - 002	48	31,05	13	4,45	0,93	33,75	4966,09
PORTAL ENTRADA (BA)	1.158.870	755.090	BA - 001	25	34,00	13	2,17	0,55	26,68	1382,74

 Tabla #45. Parámetros geomecánicos según Hoek, túnel Mampote.

# **CAPÍTULO VII**

# ANÁLISIS DE RESULTADOS

Geología

a) Litología

La zona de estudio está compuesta en su totalidad por rocas metamórficas correspondientes a la Formación Las Mercedes.

Todas las rocas encontradas en el área son de aspecto foliado y con variaciones en el tamaño de grano, lo que conlleva a clasificarlas como: filitas, esquistos y esquistos de aspecto gnéisico. Los litotipos presentes se encuentran distribuidos de manera uniforme a lo largo de toda la zona de estudio presentando solo algunas variaciones mineralógicas locales. Además, es necesario mencionar que el grafito está presente en la mayoría de los casos, característica importante para la identificación del protolito de la roca.

b) Metamorfismo

La zona de estudio está conformada en su totalidad por la Formación Las Mercedes, la cual se presenta según AGUERREVERE &. ZULOAGA (1937), en toda la extensión y en los flancos del macizo central de la Cordillera de la Costa, entre Carenero, estado Miranda, hasta el estado Cojedes. Por otra parte, el área de estudio comprende tres secciones de un tramo ubicado entre La Culebrita y Puerta del Este, siguiendo una trayectoria cercana al curso del río Guarenas. La primera sección va desde la zona este de la quebrada Perico ubicada al oeste del sector la Culebrita, con

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

coordenadas N:1.161.300 y E:746.250, hasta el extremo oeste de la quebrada La Encantada (zona correspondiente al primer túnel, La Encantada), la segunda inicia al este de la quebrada La Encantada y finaliza al oeste del helipuerto del Estado Miranda (zona correspondiente al segundo túnel, Caucagüita) y por último la tercera sección, que inicia en una zona ubicada al este de Terrazas de Mampote y culmina 1 km al oeste del cementerio situado en las cercanías de la carretera vieja Caracas-Guarenas con coordenadas N:1.158.750 y E:752.750, a una distancia aproximada de 3 km del sector Puerta del Este (zonas correspondiente al tercer túnel, Mampote).

Cada una de éstas secciones se corresponde con uno a dos grupos litológicos respectivamente, como lo es el caso del tramo correspondiente al túnel La Encantada, el cual está compuesto por la unidad Klm1, el tramo correspondiente al túnel Caucagüita, compuesto por las unidades Klm1 y Klm3 y por último el tramo correspondiente al túnel de Mampote, compuesto por las unidades Klm2 y Klm5.

Para cada uno de los litotipos identificados en el área de estudio y que componen las secciones de túnel, se estableció una asociación mineralógica basándose en los minerales índices de facies metamórficas, los cuales resultan de la composición mineralógica original de los protolitos que dieron origen a dichas rocas, así como de las condiciones de temperatura y presión que éstas alcanzaron.

Debido a que los litotipos están compuestos totalmente por rocas metamórficas, se puede asegurar que cada uno de éstos involucra una roca protolito y un grado de metamorfismo, lo que ayudaría a definir la facies metamórfica de la formación. A continuación se presentan las secciones de túnel con los grupos litológicos que la componen:

## 👁 Túnel La Encantada

Esta sección está construida en su totalidad por la unidad litológica Klm1, la cual está compuesta por:

- I. ESQUISTO CALCÁREO-CUARZOSO
- II. ESQUISTO CUARZOSO DE ASPECTO GNEÍSICO MUSCOVÍTICO-FELDESPÁTICO
  - ✤ Túnel Caucagüita

Esta sección está compuesta por las unidades Klm1, Klm3 y la subdivisión de ésta ultima Klm3 (g). En dicha zona se mantienen las características litológicas de la unidad Klm1, expuestas en la sección de túnel anterior, hasta el intervalo comprendido entre las progresivas 7+900 y 7+930, el mismo intervalo corresponde con la zona de contacto entre las unidades Klm1 y Klm3 y es considerada una zona de falla normal con rumbo aproximado N 20° E . A continuación se nombraran las rocas que componen éstas unidades:

- I. ESQUISTO CALCÁREO-CUARZOSO (Klm1)
- II. ESQUISTO CUARZOSO DE ASPECTO GNEÍSICO MUSCOVÍTICO-FELDESPÁTICO (Klm1)
- III. ESQUISTO CUARZO FELDESPÁTICO CALCÁREO O NO (klm3)
  - IV. ESQUISTO MICÁCEO (Klm3)
  - V. FILITA MICÁCEA -GRAFITOSA (Klm3)

#### ✤ Túnel Mampote

La sección del túnel de Mampote está compuesta por las unidades Klm2 y Klm5, las cuales están divididas por una falla normal con dirección N 40° E, ubicada en el intervalo comprendido entre las progresivas 16+390 y 16+410. Las rocas que componen éstas unidades son las siguientes:

- I. ESQUISTO CALCÁREO-CUARZO-MUSCOVÍTICO-GRAFITOSO (Klm2)
- II. ESQUISTO MICÁCEO ALGO CUARZOSO (Klm5)
- III. FILÍTA MICÁCEA LIGERAMENTE GRAFITOSA, CALCÁREA O NO
  (Klm5)

#### Protolitos de las unidades

La presencia constante de cuarzo, micas y calcita, evidencia un protolito sedimentario, además, la abundancia de filosilicatos en éstas rocas revela que los mismos se formaron como producto del metamorfismo de las abundantes arcillas presentes en la zona, la cual se puede determinar como un ambiente de plataforma de energía baja a media y además anóxico, en algunos casos, debido a la presencia de pirita y grafito (generado por materia orgánica) en las muestras. La variación en el tamaño de grano y la presencia de calcita sirven como referencia para estimar el tipo de ambiente en el que se creó la roca original, debido a que las rocas más alejadas de la línea de costa presentan un tamaño de grano más fino y muy poca concentración de calcita, mientras que las más cercanas poseen altas concentraciones de calcita y un tamaño de grano mayor.

## Metamorfismo de las unidades

La presencia de clorita, muscovita y en pocos casos de epidoto, en conjunto con la ausencia de zeolitas, prehnita, pumpellita y lawsonita, sugieren que éstas rocas sufrieron un metamorfismo que alcanzaron las facies de los esquistos verdes, ubicándose en la zona de la clorita, con una presión comprendida entre los 2 y 12 Kbar y un rango de temperatura de 300° a 600°.



Figura # 61. Facies Metamórficas (Tomado de www.ugr.es/geopeta/ej6.htm)

### c) Geología Estructural

La presencia de numerosas fallas de carácter local aunada a la existencia de fallas de mayor envergadura, como la de Caucagüita y El Ávila, resultan en un complejo cuadro estructural que ha dado como resultado tres familias de diaclasas y una dirección de foliación preferencial, aunque con mucha dispersión en dichos planos, en los tres macizos rocosos estudiados.

La dirección principal de acortamiento, responsable de la dirección de la foliación corresponde con N 40° - 50° O, lo cual se aprecia claramente en la figura #62.



**Figura #62.** Diagrama que muestra la concentración de polos de la foliación dominante en los tres túneles del proyecto, donde se aprecia los bajos buzamientos de dichos planos entre 15° y 35° Norte.

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE



Figura #63. Diagrama que muestra la dirección principal de la foliación dominante en los tres túneles del proyecto, N 60° - 70° E.



Figura #64. Diagrama que muestra la concentración de polos de las diaclasas dominantes en los tres túneles del proyecto, mostrando buzamientos subverticales para las familias de diaclasas.



Figura #65. Diagrama que muestra las diaclasas dominantes en los tres túneles del proyecto, Tres familias, D1: N 11° E 85° S, D2: N 31° O 85°N, D3: N 83° E 83° S. (* Uno, ▲ Dos, ► Tres, + Cuatro, x Cinco, * Seis, ▼ Siete Polos).

### Geomecánica

El proyecto ferroviario Sistema Caracas – Guarenas – Guatire contempla tres túneles, denominados en sentido oeste – este: La Encantada, con una longitud aproximada de 906 m.; Caucagüita, con 3087 m. de longitud aproximada y Mampote con una longitud aproximada de 1742 m.

#### ✤ Túnel La Encantada

La roca presente en este túnel posee un peso unitario que se ubica entre  $2,50 - 2,70 \text{ ton/m}^3$  y una absorción entre 0,55 - 1,70 %. Posee en la clasificación RMR valores entre 30 - 46 lo que corresponde a una clase de roca IV – III de calidad Mala – Media; en la clasificación RMi obtuvo valores entre 2,53 - 3,98 que se corresponde con valores altos en dicho sistema.

En la clasificación Q de Barton, obtuvo valores entre 0,30 - 3,73 que le confieren una calidad de roca E – D, entiéndase Muy Mala – Mala. Implicando esto el uso del siguiente sostenimiento: Hormigón proyectado con fibras, 50 – 150 mm de espesor y colocación de pernos, S (fr)+B). En el cálculo del valor de Q, para todos los túneles, se aplicó el programa de estadística Crystal Ball, que permitió determinar una probabilidad de ocurrencia de dicho valor entre 60% - 70% y un coeficiente de variación entre 0,34 - 0,66, lo que significa que la desviación estándar posee un valor relativo a la media muy alto debido a la incertidumbre de los parámetros medidos. También se generó una tabla de sensibilidad de los parámetros involucrados en el cálculo de Q donde se aprecia la relevancia que posee tanto el SRF (48%) como el Ja (29%) en dicho valor.

La zona correspondiente a la clasificación de Muy Mala (E), entre las progresivas 5+930 – 6+270, presenta numerosas evidencias de deslizamientos los

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

cuales influyen fuertemente en la calidad geomecánica de la roca, mas aun tratándose del Esquisto Calcáreo Cuarzo de Klm 1, que se encuentra a lo largo de este túnel.



Tabla #46. Sensibilidad de los parámetros en el cálculo del Q de Barton, túnel La Encantada.

#### ✤ Túnel Caucagüita

La roca presente en este túnel posee un peso unitario que se ubica entre 2,19 - 2,97 ton/m³ y una absorción entre 0,68 - 3,56 %. Posee en la clasificación RMR valores entre 31 - 48 lo que corresponde a una clase de roca IV – III de calidad Mala – Media; en la clasificación RMi obtuvo valores entre 0,30 - 7,80 que se corresponde con valores desde Moderado – Altos en dicho sistema.

En la clasificación Q de Barton, obtuvo valores entre 0,17 - 4,29 que le confieren una calidad de roca E – C, entiéndase Muy Mala – Media. Implicando esto el uso del siguiente sostenimiento: Hormigón proyectado, 40 - 100 mm de espesor y colocación de pernos, B + S, entre las progresiva 8+440 - 8+750 en la cual se encuentra la unidad Klm3 (g) compuesta por Esquistos de foliación muy gruesa (aspecto gnéisico) cuarzo feldespáticos calcáreos. Para el resto del trazado en este túnel se debería emplear el Hormigón proyectado con fibras, 50 - 150 mm de espesor

CARACTERIZACIÓN GEOMECÁNICA Y MODELADO 3D DE LOS MACIZOS ROCOSOS CORRESPONDIENTES AL DESARROLLO DE LAS OBRAS SUBTERRÁNEAS DEL SISTEMA CARACAS - GUARENAS - GUATIRE

y colocación de pernos, S (fr)+B. La probabilidad de ocurrencia de los valores de Q en este túnel se encuentran entre 60% - 70% y un coeficiente de variación entre 0,34 - 0,87, lo que significa que la desviación estándar posee un valor relativo a la media extremadamente alto debido a la incertidumbre de los parámetros medidos. También se generó una tabla de sensibilidad de los parámetros involucrados en el cálculo de Q donde se aprecia la relevancia que posee tanto el Ja (34%) como el SRF (31%) en dicho valor.

La zona correspondiente a la clasificación de Muy Mala (E), entre las progresivas 7+900 – 7+930, es una zona de falla que coloca en contacto la unidad Klm 1 (Esquisto Calcáreo Cuarzo) con Klm 3 (Esquisto Cuarzo Feldespático Calcáreo, Esquisto Micáceo); y la zona entre las progresivas 8+780 - 9+430 está compuesta básicamente por las Filitas Micáceas que se intercalan en la unidad Klm3 (g) y es por ello su baja calidad geomecánica (E).



Tabla #47. Sensibilidad de los parámetros en el cálculo del Q de Barton, túnel Caucagüita.

#### ✤ Túnel Mampote

La roca presente en este túnel posee un peso unitario que se ubica entre  $2,45 - 2,54 \text{ ton/m}^3$  y una absorción entre 0,81 - 1,79 %. Posee en la clasificación RMR valores entre 35 - 50 lo que corresponde a una clase de roca IV – III de calidad Mala – Media; en la clasificación RMi obtuvo valores entre 1,11 - 5,41 que se corresponde con valores Altos en dicho sistema.

En la clasificación Q de Barton, obtuvo valores entre 0,012 – 5,96 que le confieren una calidad de roca G - C, entiéndase Excepcionalmente Mala - Media. Implicando esto el uso del siguiente sostenimiento: Revestimiento de Hormigón CCA, entre las progresiva 16+010 - 16+400 en la cual se encuentra la unidad Klm2 compuesta por Esquisto Calcáreo Cuarzo Moscovítico Grafitoso y presenta un cizallamiento realmente fuerte. Entre las progresivas 17+300 – 17+560 se debería emplear el Hormigón proyectado, 40 – 150 mm de espesor y colocación de pernos, B + S; y para el resto del trazado de este túnel se debería emplear como sostenimiento el Hormigón proyectado con fibras, 50 – 120 mm de espesor y colocación de pernos, S (fr)+B. La probabilidad de ocurrencia de los valores de Q en este túnel se encuentran entre 60% - 90% y un coeficiente de variación entre 0.31 - 0.77, lo que significa que la desviación estándar posee un valor relativo a la media muy alto debido a la incertidumbre de los parámetros medidos. También se generó una tabla de sensibilidad de los parámetros involucrados en el cálculo de Q donde se aprecia la relevancia que posee tanto el SRF (40%) como el Ja (39%) en dicho valor. (Ver Tabla #48).



Tabla #48. Sensibilidad de los parámetros en el cálculo del Q de Barton, túnel Mampote.

# **CAPÍTULO VIII**

## **CONCLUSIONES**

La zona de estudio está compuesta en su totalidad por rocas metamórficas pertenecientes a la formación Las Mercedes, las mismas poseen un aspecto foliado y variación en el tamaño de grano, lo que genera la aparición de filitas, esquistos y esquistos de aspecto gnéisicos. En general, los esquistos aparecen en toda el área de estudio, es decir, en las cuatro unidades litológicas estudiadas, mientras que las filitas aparecen de manera intercalada con los mismos en las unidades Klm3 y Klm5, y los esquistos de aspecto gnéisico en la unidad Klm1y la sub- unidad Klm3 (g).

Las rocas presentes en el área de estudio poseen un protolito de origen sedimentario de ambiente anóxico. Esto se ve evidenciado por la presencia de cuarzo, filosilicatos y calcita en las muestras estudiadas, además, por la aparición de grafito y pirita, lo que acentúa la hipótesis de un ambiente anóxico.

En cuanto al metamorfismo sufrido por las rocas presentes en la zona, se puede decir que las mismas están afectadas por un metamorfismo que alcanzó la facies de los esquistos verdes.

La zona de estudio presenta una alta complejidad estructural que se ve evidenciada por la gran cantidad de fallas que la afectan y que han generado las bajas condiciones geomecánicas en los macizos rocosos en cuestión, además existen dos fallas de gran alcance como lo son la de Caucagüita y El Ávila. La dirección predominante de foliación es N 60° - 70° E con valores de buzamiento bajos, entre 15° y 35° Norte. Se identificaron tres familias de diaclasas con las siguientes direcciones: D1: N 11° E 85° S, D2: N 31° O 85°N, D3: N 83° E 83° S, aunque en ciertas zonas de los macizos rocosos se encontraron hasta cinco familias.

En cuanto al comportamiento geomecánico se encontraron grandes variaciones en la calidad de la roca debida principalmente a efectos de tectonismo y condiciones litológicas desfavorables, existiendo zonas caracterizadas como Excepcionalmente Malas y otras, de menor extensión areal, de calidad Media que inciden de forma directa en el tipo de sostenimiento a utilizar y repercute inexorablemente en los costos del proyecto.

El uso de valores estadísticos en los cálculos del Q de Barton generan una gran fiabilidad en los mismos y muestran un panorama distinto en cuanto al uso de estos sistemas de clasificación ya que se evitan, en lo posible, las subjetividades del autor al determinar el número de diaclasas por metro o los valores de GSI, y se puede determinar cuan posible sea que el valor calculado represente el correcto a utilizar.

# RECOMENDACIONES

- ✤ Realizar un estudio de geodinámica de superficie detallado en las zonas correspondientes a los portales de entrada y salida de las secciones de túnel.
- Evitar la construcción de viviendas y empresas en la superficie de los macizos correspondientes a las secciones de túnel, ya que eso podría ocasionar la percolación de aguas servidas, las cuales poseen un grado de acidez que afectaría de manera determinante la obra.
- ✤ Realizar el estudio detallado con núcleos de perforación a fin de tener valores de las propiedades geomecánicas más fiables, debido a la gran cobertura existente en la mayoría de los trayectos.

## **BIBLIOGRAFIA**

- BIENIAWSKI, Z. T. (1989). Engineering rock mass classifications. New York. John Wiley and Sons Inc: pp. 251.
- GONZÁLEZ, L. I. ETAL. (2002). Ingeniería Geológica. Madrid. Prentice Hall: pp. 744.
- GONZÁLEZ DE VALLEJO, L. I. (2003). SRC rock mass classifications of tunnels under high tectonics stress excavated in weak rocks. Engineering Geology. Elsevier, LXIX (3-4): pp. 273-285.
- HOEK, E. & BROWN, E. T. (1997). **Practical estimates of rock mass strength.** International Journal of Rock Mechanics and Mining Sciences. Elsevier, XXXIV (8): pp. 1165-1186.

HTTP://WWW.COTATUR.GOV.VE. [ CONSULTA: DICIEMBRE, 2007].

HTTP://WWW.MIPUNTO.COM/VENEZUELAVIRTUAL/000/002/035/010.HTML. [CONSULTA: ENERO, 2008].

HTTP://WWW.PDV.COM/LEXICO/LEXICOH.HTM. [CONSULTA: ENERO, 2008].

HTTP://WWW.YV5FIH.ORG.VE/CLIMA_DE_VENEZUELA.HTML

[CONSULTA: ENERO, 2008].

MARINOS, P. & HOEK, E. (2001). Estimating the geotechnical properties of heterogeneous rock masses such as flysch. Bulletin of the Internatinal Association of Engineering Geologist. (60): pp. 85–92.

- PERRI, G. (1999). Contribución a la caracterización geomecánica de los macizos rocosos en base al GSI de Hoek. Boletín de la Sociedad Venezolana de Geotecnia. (75).
- PERRI, G. (2002). **Proyecto de Túneles: Criterios de Diseño.** Boletín de la Sociedad Venezolana de Geotecnia. (81): pp. 3-41.
- SEIDERS, V. (1965). Geología de Miranda central, Venezuela. Boletín de Geología, VI (12): 289-416.
- SINGER, A., SCHMITZ, M., *ET AL*. (2008). Estudio de amenaza sísmica, procesos geomorfológicos activos y estimación de los efectos de sitio para el proyecto del tren Caracas-Guarenas-Guatire. Informe técnico. (40).
- TRUZMAN, M. (2000). Determinación del índice de resistencia geológica (GSI) en rocas metamórficas de la cordillera de la costa. Boletín de la Sociedad Venezolana de Geotecnia. (78).
- URBANI, F. Y J. RODRÍGUEZ (2003). Atlas Geológico de la Cordillera de la Costa. Venezuela. UCV. FUNVISIS.